

    
      
          
            
  
Welcome to deephyp’s documentation!

deephyp is an open source python-based toolbox, built on tensorflow, for training and using unsupervised autoencoders and supervised deep learning classifiers for hyperspectral data.

Source code available on Github [https://github.com/lloydwindrim/hyperspectral-autoencoders].
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Installation

The latest release [https://pypi.org/project/deephyp/] of the toolbox can be installed from the command line using pip:

pip install deephyp





or to update:

pip install deephyp --upgrade





The software dependencies needed to run the toolbox are python 2 or python 3 (tested with version 2.7.15 and 3.5.2) with packages:



	tensorflow (tested with v1.14.0) - not yet compatible with tensorflow v2.0


	numpy (tested with v1.15.4)







Because deephyp is note yet compatible with tensorflow v2.0, you will have to install an older version of tensorflow:

pip install tensorflow==1.14





Or if you are using a gpu:

pip install tensorflow-gpu==1.14





If you want to use deephyp but you have tensorflow v2.0 installed, you can install deephyp in a virtual environment with tensorflow v1.14. See instructions on setting up a virtual environment here [https://www.tensorflow.org/install/pip].

To import deephyp, in python write:

import deephyp





Source code available on github [https://github.com/lloydwindrim/hyperspectral-autoencoders].





          

      

      

    

  

    
      
          
            
  
How to cite

If you use the toolbox in your research, please cite: Windrim et al. Unsupervised Feature-Learning for Hyperspectral Data with Autoencoders. Remote Sensing 11.7 (2019): 864. [https://www.mdpi.com/2072-4292/11/7/864]
This paper explains the spectral angle (SA), spectral information divergence (SID) and sum-of-squared errors (SSE) loss functions for training autoencoders.

If you use the cosine spectral angle (CSA) loss function in your research, please cite: Windrim et al. Unsupervised feature learning for illumination robustness. 2016 IEEE International Conference on Image Processing (ICIP). [https://ieeexplore.ieee.org/abstract/document/7533202]

If you use the classification networks in your research, please cite: Windrim et al. Hyperspectral CNN Classification with Limited Training Samples. 2017 Proceedings of the British Machine Vision Conference (BMVC). [https://www.researchgate.net/publication/332818169_Hyperspectral_CNN_Classification_with_Limited_Training_Samples]
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Getting started with autoencoders

Autoencoders are unsupervised neural networks that are useful for a range of applications such as unsupervised feature learning and dimensionality reduction. Autoencoders are trained to learn the parameters for an encoder which maps the input data to a latent space and a decoder which reconstructs the input from the latent space. The latent space is often of a lower dimensionality then the input data, and can be thought of as a feature vector. The network is trained to minimise the reconstruction error between its decoded output and the input data (hence it is unsupervised). Once trained, the encoder can be used to map data to the latent space.

[image: ../../_images/cnn_latent_space.png]

Download a hyperspectral dataset

Some hyperspectral datasets in a matlab file format (.mat) can be downloaded from here [http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes]. To get started, download the ‘Pavia University’ dataset.

deephyp operates on hyperspectral data in numpy array format. The matlab file (.mat) you just downloaded can be read as a numpy array using the scipy.io.loadmat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html] function:

import scipy.io
mat = scipy.io.loadmat( 'PaviaU.mat' )
img = mat[ 'paviaU' ]





where img is a numpy array. You are now ready to use the toolbox!




Overview

For both autoencoders and classifiers, the toolbox uses several key processes:


	data preparation


	data iterator


	building networks


	adding train operations


	training networks


	loading and testing a trained network




Each of these are elaborated on below:




Data preparation

A class within the toolbox from the data module called HypImg handles the hyperspectral dataset and all of its meta-data. As mentioned earlier, the class accepts the hyperspectral data in numpy format, with shape [numRows x numCols x numBands] or [numSamples x numBands]. The networks in the toolbox operate in the spectral domain, not the spatial, so if a hypercube image is input with shape [numRows x numCols x numBands], it is reshaped to [numSamples x numBands], collapsing the spatial dimensions into a single dimension.

The Pavia Uni hyperspectral image can be passed to the HypImg class as follows:

from deephyp import data
hypData = data.HypImg( img )





It is also possible to pass class labels to HypImg, but if you are training an unsupervised autoencoder you do not need to do this.

Then the data can be pre-processed using a function of the HypImg class. For example, using the ‘minmax’ approach:

hypData.pre_process( 'minmax' )





The result is stored in the attribute spectraPrep attribute. Currently, only the ‘minmax’ approach is available, but additions will be made in future versions.




Data iterator

The Iterator class within the data module has methods for calling batches from the data that are used to train the network. A separate iterator object is made for the training and validation data. For example, an iterator object made from 200,000 pre-processed hyperspectral training samples with a batchsize of 1000 is defined by:

dataTrain = data.Iterator( dataSamples=hypData.spectraPrep[:200000, :], targets=hypData.spectraPrep[:200000, :], batchSize=1000 )





Similarly, an iterator object made from 100 validation samples is defined as:

dataVal = data.Iterator( dataSamples=hypData.spectraPrep[200000:200100, :], targets=hypData.spectraPrep[200000:200100, :] )





Because the batchsize is unspecified for the validation iterator, all 100 samples are used for each batch. For a typical unsupervised autoencoder, the targets that the network is learning to output are the same as the data samples being input into the network, as in the above iterator examples. When training a supervised classifier, the targets will be the ground truth class labels.

The data in any iterator can also be shuffled before it is used to train a network:

dataTrain.shuffle()








Building networks

The autoencoder module has classes for creating autoencoder neural networks:

from deephyp import autoencoder





There are currently two type of autoencoders that can be set up. A multi-layer perceptron (MLP) autoencoder has purely fully-connected (i.e. dense) layers:

net = autoencoder.mlp_1D_network( inputSize=hypData.numBands )





And a convolutional autoencoder has mostly convolutional layers, with a fully-connected layer used to map the final convolutional layer in the encoder to the latent vector:

net = autoencoder.cnn_1D_network( inputSize=hypData.numBands )





If not using config files to set up a network, then the input size of the data must be specified. This should be the number of spectral bands, which is stored in hypData.numBands for convenience.

Additional aspects of the network architecture can also be specified when initialising the autoencoder object. For the MLP autoencoder:

net = autoencoder.mlp_1D_network( inputSize=hypData.numBands, encoderSize=[50,30,10,5], activationFunc='relu', weightInitOpt='truncated_normal', tiedWeights=[1,0,0,0], skipConnect=False, activationFuncFinal='linear')





where the following components of the architecture can be specified:


	number of layers in the encoder (and decoder) - this is the length of the list ‘encoderSize’


	number of neurons in each layer of the encoder - these are the values in the ‘encoderSize’ list. The last value in the list is the number of dimensions in the latent vector.


	the activation function which proceeds each layer and the function for the final decoder layer - activationFunc and activationFuncFinal


	the method of initialising network parameters (e.g. xavier improved) - ‘weightInitOpt’


	which layers of the encoder to tie  to the decoder, such that they share a set of parameters - these are the values in the list ‘tiedWeights’


	whether the network uses skip connections between corresponding layers in the encoder and decoder - specified by the boolean argument skipConnect




Therefore, the above MLP autoencoder has four encoder layers (and four symmetric decoder layers), with five neurons in the latent layer. This network could be used to represent a hyperspectral image with five dimensions.

The convolutional autoencoder has similar arguments for defining the network architecture, but without ‘encoderSize’ and with some additional arguments:

net = autoencoder.cnn_1D_network( inputSize=hypData.numBands, zDim=3, encoderNumFilters=[10,10,10], encoderFilterSize=[20,10,10],  activationFunc='relu', weightInitOpt='truncated_normal',  encoderStride=[1, 1, 1], padding='VALID', tiedWeights=[0,0,0],  skipConnect=False, activationFuncFinal='linear' )





which are:


	number of layers in the encoder (and decoder) - this is the length of the list ‘encodernumFilters’


	number of filters/kernels in each conv layer - these are the values in the ‘encodernumFilters’ list


	the size of the filters/kernels in each conv layer - these are the values in the ‘encoderFilterSize’ list


	the stride of the filters/kernels in each conv layer - these are the values in the ‘encoderStride’ list


	the number of dimensions in the latent vector - zDim


	the type of padding each conv layer uses - padding




Note that the convolutional autoencoder uses deconvolutional layers in the decoder, which can upsample the data from the latent layer to the output layer.

Instead of defining the network architecture by the initialisation arguments, a config.json file can be used:

net = autoencoder.mlp_1D_network( configFile='config.json') )





A config file is generated each time a network in the toolbox is trained, so you can use one from another network as a template for making a new one.




Adding training operations

Once a network has been created, a training operation can be added to it. It is possible to add multiple training operations to a network, so each op must be given a name:

net.add_train_op( name='experiment_1' )





When adding a train op, details about how the network will be trained with that op can also be specified. For example, a train op for an autoencoder which uses the cosine spectral angle (CSA) loss function, a learning rate of 0.001 with no decay, optimised with Adam and no weight decay can be defined by:

net.add_train_op( name='experiment_1', lossFunc='CSA', learning_rate=1e-3, method='Adam', wd_lambda=0.0 )





There are several loss functions that can be used to train an autoencoder with this toolbox, many of which were designed specifically for hyperspectral data:


	cosine spectral angle (CSA) [https://ieeexplore.ieee.org/abstract/document/7533202]


	spectral angle (SA) [https://www.mdpi.com/2072-4292/11/7/864]


	spectral information divergence (SID) [https://www.mdpi.com/2072-4292/11/7/864]


	sum-of-squared errors (SSE) [https://www.mdpi.com/2072-4292/11/7/864]




Note that when using the CSA [https://ieeexplore.ieee.org/abstract/document/7533202], SA [https://www.mdpi.com/2072-4292/11/7/864] and SID [https://www.mdpi.com/2072-4292/11/7/864] loss functions it is expected that the reconstructed spectra have a different magnitude to the target spectra, but a similar shape. The SSE [https://www.mdpi.com/2072-4292/11/7/864] should produce a similar magnitude and shape. Also, since the SID contains log in its expression which is undefined for values <= 0, it is best to use sigmoid as the activation function (including the final activation function) for networks trained with the SID loss. See the code examples for a demonstration.

The method for decaying the learning rate can also be customised. For example, to decay the learning rate exponentially every 100 steps (starting at 0.001):

net.add_train_op( name='experiment_1',learning_rate=1e-3, decay_steps=100, decay_rate=0.9 )





A piecewise approach to decaying the learning rate can also be used. For example, to change the learning rate from 0.001 to 0.0001 after 100 steps, and then to 0.00001 after a further 200 steps:

net.add_train_op( name='experiment_1',learning_rate=1e-3, piecewise_bounds=[100,300], piecewise_values=[1e-4,1e-5] )








Training networks

Once one or multiple training ops have been added to a network, they can be used to learn a model (or multiple models) for that network through training:

net.train( dataTrain=dataTrain, dataVal=dataVal, train_op_name='experiment_1', n_epochs=100, save_addr=model_directory, visualiseRateTrain=5, visualiseRateVal=10, save_epochs=[50,100])





The train method learns a model using one train op, therefore the train method should be called at least once for each train op that was added. The name of the train op must be specified, and the training and validation iterators created previously must be input. A path to a directory to save the model must also be specified. The example above will train a network for 100 epochs of the training dataset (that is, loop through the entire training dataset 100 times), and save the model at 50 and 100 epochs. The training loss will be displayed every 5 epochs, and the validation loss will be displayed every 10 epochs.

It is also possible to load a pre-trained model and continue to train it by passing the address of the epoch folder containing the model checkpoint as the save_addr argument. For example, if the directory for the model at epoch 50 (epoch_50 folder) was passed to save_addr in the example above, then the model would initialise with the epoch 50 parameters and be trained for an additional 50 epochs to reach 100, at which point the model would be saved in a folder called epoch_100 in the same directory as the epoch_50 folder.

The interface for training autoencoders and classifiers is the same.




Loading and testing a trained network

Once you have a trained network, it can be loaded and tested out on some hyperspectral data.

Open a new python script. To load a trained model on a new dataset, ensure the data has been pre-processed similarly using:

from deephyp import data
new_hypData = data.HypImg( new_img )
new_hypData.pre_process( 'minmax' )





Then set up the network. The network architecture must be the same as the one used to train the model being loaded. However, this is easy as the directory where models are saved should contain an automatically generated config.json file, which can be used to set up the network with the same architecture:

from deephyp import autoencoder
net = autoencoder.mlp_1D_network( configFile='model_directory/config.json' )





Once the architecture has been defined, add a model to the network. For example, adding the model that was saved at epoch 100:

net.add_model( addr='model_directory/epoch_100'), modelName='csa_100' )





Because multiple models can be added to a single network, the added model must be given a name. The name can be anything - the above model is named ‘csa_100’ because it was trained for 100 epochs using the cosine spectral angle loss function).

When the network is set up and a model has been added, hyperspectral data can be passed through it. To use a trained autoencoder to extract the latent vectors of some spectra:

dataZ = net.encoder( modelName='csa_100', dataSamples=new_hypData.spectraPrep )





Make sure to refer to the name of the model the network should use. The encoded hyperspectral data (dataZ) can also be decoded to get the reconstruction:

dataY = net.decoder(modelName='csa_100', dataZ=dataZ)





It is also possible to encode and decode in one step with:

dataY = net.encoder_decoder(modelName='csa_100', dataZ=new_hypData.spectraPrep)





You can use numpy to reshape the latent vector dataZ so that it looks like an image again:

import numpy
imgZ = numpy.reshape( dataZ, (new_hypData.numRows, new_hypData.numCols, -1) )





Now you should have a basic idea of how to use the deephyp toolbox to train an autoencoder for hyperspectral data!







          

      

      

    

  

    
      
          
            
  
Getting started with classifiers

Classifiers are supervised neural networks that can be trained to automatically predict the class label of a data sample based on it spectral characteristics. Classifiers are trained to map input data samples to one-hot binary vectors which indicate the class of the data sample. The network requires data samples with class labels to train on (hence it is supervised). Once trained, a classifier can predict the class of new data samples.

[image: ../../_images/classification_pred.png]

Download a hyperspectral dataset

Some hyperspectral datasets in a matlab file format (.mat) can be downloaded from here [http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes]. To get started, download the ‘Pavia University’ dataset and its ground truth labels.

deephyp operates on hyperspectral data in numpy array format. The matlab files (.mat) you just downloaded can be read as a numpy array using the scipy.io.loadmat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html] function:

import scipy.io
mat = scipy.io.loadmat( 'PaviaU.mat' )
img = mat[ 'paviaU' ]





where img is a numpy array. Use the same function to read the ground truth class labels:

mat_gt = scipy.io.loadmat('PaviaU_gt.mat')
img_gt = mat_gt['paviaU_gt']





You are now ready to use the toolbox!




Overview

For both autoencoders and classifiers, the toolbox uses several key processes:


	data preparation


	data iterator


	building networks


	adding train operations


	training networks


	loading and testing a trained network




Each of these are elaborated on below:




Data preparation

A class within the toolbox from the data module called HypImg handles the hyperspectral dataset and all of its meta-data. As mentioned earlier, the class accepts the hyperspectral data in numpy format, with shape [numRows x numCols x numBands] or [numSamples x numBands]. The networks in the toolbox operate in the spectral domain, not the spatial, so if a hypercube image is input with shape [numRows x numCols x numBands], it is reshaped to [numSamples x numBands], collapsing the spatial dimensions into a single dimension.

The Pavia Uni hyperspectral image and labels can be passed to the HypImg class as follows:

from deephyp import data
hypData = data.HypImg( img, labels=img_gt )





Upon initialisation the HypImg object will automatically generate one-hot labels from the labels input, stored in the labelsOnehot attribute. Classes with a label <= 0 are considered a background class, and are not included in the numClasses attribute. Any samples with a zero label will appear as a row of zeros in labelsOnehot.

The data can be pre-processed using a function of the HypImg class. For example, using the ‘minmax’ approach:

hypData.pre_process( 'minmax' )





The result is stored in the spectraPrep attribute. Currently, only the ‘minmax’ approach is available, but additions will be made in future versions.




Data iterator

The Iterator class within the data module has methods for calling batches from the data that are used to train the network. A separate iterator object is made for the training and validation data.

Before setting up an Iterator object, establish which data samples from the hyperspectral image you will use to train and validate the network. For example, you can use the following code to get the indexes of 50 training samples and 15 validation samples per class, for each of the nine non-background classes in the Pavia Uni dataset:

import numpy as np
trainSamples = 50 # per class
valSamples = 15 # per class
train_indexes = []
for i in range(1,10):
    train_indexes += np.nonzero(hypData.labels == i)[0][:trainSamples].tolist()
val_indexes = []
for i in range(1,10):
    val_indexes += np.nonzero(hypData.labels == i)[0][trainSamples:trainSamples+valSamples].tolist()





Now, to build an iterator object for training from the pre-processed hyperspectral training samples and their labels, with a batchsize of 50, use:

dataTrain = data.Iterator( dataSamples=hypData.spectraPrep[train_indexes, :], targets=hypData.labelsOnehot[train_indexes,:], batchSize=50 )





Since we are training a supervised classifier, the targets are the ground truth class labels.

Similarly, an iterator object for validation is defined with:

dataVal = data.Iterator( dataSamples=hypData.spectraPrep[val_indexes, :], targets=hypData.labelsOnehot[val_indexes,:] )





Because the batchsize is unspecified for the validation iterator, all samples are used for each batch.

The data in any iterator can also be shuffled before it is used to train a network:

dataTrain.shuffle()








Building networks

The classifier module has a class for creating supervised classification neural networks:

from deephyp import classifier





There is currently one type of classifier that can be set up, which contains a combination of convolutional layers (at the start) and fully-connected layers (at the end).:

net = classifier.cnn_1D_network( inputSize=hypData.numBands, numClasses=hypData.numClasses )





If not using config files to set up a network, then the input size of the data (which should be the number of spectral bands) and the number of classes must be specified. These are stored in hypData.numBands and hypData.numClasses for convenience.

Additional aspects of the network architecture can also be specified when initialising the classifier object:

net = classifier.cnn_1D_network( inputSize=hypData.numBands, numClasses=hypData.numClasses, convFilterSize=[20,10,10], convNumFilters=[10,10,10], convStride = [1,1,1], fcSize=[20,20], activationFunc='relu', weightInitOpt='truncated_normal', padding='VALID' )





where the following components of the architecture can be specified:


	number of convolutional layers - this is the length of the list ‘convNumFilters’


	number of filters/kernels in each conv layer - these are the values in the ‘convNumFilters’ list


	the size of the filters/kernels in each conv layer - these are the values in the ‘convFilterSize’ list


	the stride of the filters/kernels in each conv layer - these are the values in the ‘convStride’ list


	the type of padding each conv layer uses - padding


	number of fully-connected layers - this is the length of the list ‘fcSize’


	number of neurons in each fully-connected layer - these are the values in the ‘fcSize’ list


	the activation function which proceeds each layer - activationFunc


	the method of initialising network parameters (e.g. xavier improved) - ‘weightInitOpt’




Therefore, the above CNN classifier has three convolutional layers, two fully-connected layers and an output layer. The three convolutional layers each have 10 filters, with sizes 20, 10 and 10. The fully-connected layers both have 20 neurons.

Instead of defining the network architecture by the initialisation arguments, a config.json file can be used:

net = classifier.cnn_1D_network( configFile='config.json') )





A config file is generated each time a network in the toolbox is trained, so you can use one from another network as a template for making a new one.




Adding training operations

Once a network has been created, a training operation can be added to it. It is possible to add multiple training operations to a network, so each op must be given a name:

net.add_train_op( name='experiment_1' )





When adding a train op, details about how the network will be trained with that op can also be specified. For example, a train op for a classifier with a learning rate of 0.001 with no decay, optimised with Adam, class balancing and no weight decay can be defined by:

net.add_train_op( name='experiment_1', balance_classes=True, learning_rate=1e-3, method='Adam', wd_lambda=0.0  )





Classification networks are trained using a cross-entropy loss function.

The method for decaying the learning rate can also be customised. For example, to decay the learning rate exponentially every 100 steps (starting at 0.001):

net.add_train_op( name='experiment_1',learning_rate=1e-3, decay_steps=100, decay_rate=0.9 )





A piecewise approach to decaying the learning rate can also be used. For example, to change the learning rate from 0.001 to 0.0001 after 100 steps, and then to 0.00001 after a further 200 steps:

net.add_train_op( name='experiment_1',learning_rate=1e-3, piecewise_bounds=[100,300], piecewise_values=[1e-4,1e-5] )








Training networks

Once one or multiple training ops have been added to a network, they can be used to learn a model (or multiple models) for that network through training:

net.train( dataTrain=dataTrain, dataVal=dataVal, train_op_name='experiment_1', n_epochs=100, save_addr=model_directory, visualiseRateTrain=5, visualiseRateVal=10, save_epochs=[50,100])





The train method learns a model using one train op, therefore the train method should be called at least once for each train op that was added. The name of the train op must be specified, and the training and validation iterators created previously must be input. A path to a directory to save the model must also be specified. The example above will train a network for 100 epochs of the training dataset (that is, loop through the entire training dataset 100 times), and save the model at 50 and 100 epochs. The training loss will be displayed every 5 epochs, and the validation loss will be displayed every 10 epochs.

It is also possible to load a pre-trained model and continue to train it by passing the address of the epoch folder containing the model checkpoint as the save_addr argument. For example, if the directory for the model at epoch 50 (epoch_50 folder) was passed to save_addr in the example above, then the model would initialise with the epoch 50 parameters and be trained for an additional 50 epochs to reach 100, at which point the model would be saved in a folder called epoch_100 in the same directory as the epoch_50 folder.

The interface for training autoencoders and classifiers is the same.




Loading and testing a trained network

Once you have a trained network, it can be loaded and tested out on some hyperspectral data.

Open a new python script. To load a trained model on a new dataset, ensure the data has been pre-processed similarly using:

from deephyp import data
new_hypData = data.HypImg( new_img )
new_hypData.pre_process( 'minmax' )





When doing inference, labels do not need to be input into HypImg (unless you want to use them for evaluation).

Set up the network. The network architecture must be the same as the one used to train the model being loaded. However, this is easy as the directory where models are saved should contain an automatically generated config.json file, which can be used to set up the network with the same architecture:

from deephyp import classifier
net = classifier.cnn_1D_network( configFile='model_directory/config.json' )





Once the architecture has been defined, add a model to the network. For example, adding the model that was saved at epoch 100:

net.add_model( addr='model_directory/epoch_100'), modelName='clf_100' )





Because multiple models can be added to a single network, the added model must be given a name. The name can be anything - the above model is named ‘clf_100’ because it is a classifier and was trained for 100 epochs).

When the network is set up and a model has been added, hyperspectral data can be passed through it. To use a trained classifier to predict the classification labels of some spectra:

dataPred = net.predict_labels( modelName='clf_100', dataSamples=new_hypData.spectraPrep  )





Like-wise, to predict the classification scores for each class of some spectra:

dataScores = net.predict_scores( modelName='clf_100', dataSamples=new_hypData.spectraPrep  )





To extract the features in the second last layer of the classifier network:

dataFeatures = net.predict_features( modelName='clf_100', dataSamples=new_hypData.spectraPrep, layer=net.numLayers-1 )





You can use numpy to reshape the predicted labels (dataPred) so that they look like an image again:

imgPred = numpy.reshape( dataPred, ( new_hypData.numRows, new_hypData.numCols ) )





Now you should have a basic idea of how to use the deephyp toolbox to train a classifier for hyperspectral data!







          

      

      

    

  

    
      
          
            
  
API Reference


Contents:


	deephyp.data
	deephyp.data.HypImg

	deephyp.data.Iterator





	deephyp.autoencoder
	deephyp.autoencoder.mlp_1D_network

	deephyp.autoencoder.cnn_1D_network





	deephyp.classifier
	deephyp.classifier.cnn_1D_network













          

      

      

    

  

    
      
          
            
  
deephyp.data


Contents:


	deephyp.data.HypImg

	deephyp.data.Iterator









          

      

      

    

  

    
      
          
            
  
deephyp.data.HypImg


	
class deephyp.data.HypImg(spectralInput, labels=None, wavelengths=None, bands=None)

	Class for handling data. Stores meta-data and contains attributes for pre-processing the data. If passed labels,         samples with label zero are considered as a background class. This class is not included in numClasses and data         samples with this label have a one-hot vector label of all zeros.


	Parameters

	
	spectralInput (np.array float) – Spectral dataset. Shape can be [numRows x numCols x numBands] or             [numSamples x numBands].


	wavelengths (np.array float) – Vector of wavelengths that spectralInput wavelengths lie within.


	bands (np.array int) – Wavelength indexes for each band of spectralInput. Shape [numBands].


	labels (np.array int) – Class labels for each spectral sample in spectralInput. Shape can be [numRows x numCols]             or [numSamples].









	
spectra

	Un-pre-processed spectral data with shape [numSamples x numBands].


	Type

	np.array float










	
spectraCube

	If data passed as image - un-pre-processed spectral datacube with             shape [numSamples x numBands]. Else None.


	Type

	np.array float










	
spectraPrep

	Pre-processed spectral data with shape [numSamples x numBands].


	Type

	np.array float










	
numSamples

	The number of spectra.


	Type

	int










	
numRows

	If data passed as image - the number of image rows. Else None.


	Type

	int










	
numCols

	If data passed as image - the number of image columns. Else None.


	Type

	int










	
wavelengths

	If provided - vector of wavelengths that spectra wavelengths lie within. Else None.


	Type

	np.array float










	
bands

	If provided - wavelength indexes for each band of spectra with shape [numBands]. Else None.


	Type

	np.array int










	
labels

	If provided - class labels for each spectral sample with shape [numSamples]. Else None.


	Type

	np.array int










	
labelsOnehot

	If labels provided - the one-hot label vector for each sample. Samples with label             zero (background class) have a one-hot vector of all zeros. Else None.


	Type

	np.array int










	
pre_process(method='minmax')

	Pre-process data for input into the network. Stores in the spectraPrep attribute.


	Parameters

	method (str) – Method of pre-processing. Current options: ‘minmax’

















          

      

      

    

  

    
      
          
            
  
deephyp.data.Iterator


	
class deephyp.data.Iterator(dataSamples, targets, batchSize=None)

	Class for iterating through data, to train the network.


	Parameters

	
	dataSamples (np.array float) – Data to be input into the network. Shape [numSamples x numBands].


	targets (np.array int) – Network output target of each dataSample. For classification, these are the class                 labels, and it could be the dataSamples for autoencoders. Shape [numSamples x arbitrary]


	batchSize (int) – Number of dataSamples per batch









	
dataSamples

	Data to be input into the network. Shape [numSamples x numBands].


	Type

	np.array float










	
targets

	Network output target of each dataSample. For classification, these are the class                 labels, and it could be the dataSamples for autoencoders. Shape [numSamples x arbitrary]


	Type

	np.array int










	
batchSize

	Number of dataSamples per batch. If None - set to numSamples (i.e. whole dataset).


	Type

	int










	
numSamples

	The number of data samples.


	Type

	int










	
currentBatch

	A list of indexes specifying the data samples in the current batch.                 Shape [batchSize]


	Type

	int list










	
get_batch(idx)

	Returns a specified set of samples and targets.


	Parameters

	idx (int list) – Indexes of samples (and targets) to return.



	Returns

	2-element tuple containing:


	(np.array float) - Batch of data samples at [idx] indexes. Shape [length(idx) x numBands].


	(np.array int) - Batch of targets at [idx] indexes. Shape [length(idx) x arbitrary].








	Return type

	(tuple)










	
next_batch()

	Return next batch of samples and targets (with batchSize number of samples). The currentBatch indexes are             incremented. If end of dataset reached, the indexes wraps around to the beginning.


	Returns

	2-element tuple containing:


	(np.array float) - Batch of data samples at currentBatch indexes. Shape [batchSize x numBands].


	(np.array int) - Batch of targets at currentBatch indexes. Shape [batchSize x arbitrary].








	Return type

	(tuple)










	
reset_batch()

	Resets the current batch to the beginning.






	
shuffle()

	Randomly permutes all dataSamples (and corresponding targets).













          

      

      

    

  

    
      
          
            
  
deephyp.autoencoder


Contents:


	deephyp.autoencoder.mlp_1D_network

	deephyp.autoencoder.cnn_1D_network









          

      

      

    

  

    
      
          
            
  
deephyp.autoencoder.mlp_1D_network


	
class deephyp.autoencoder.mlp_1D_network(configFile=None, inputSize=None, encoderSize=[50, 30, 10], activationFunc='sigmoid', tiedWeights=None, weightInitOpt='truncated_normal', weightStd=0.1, skipConnect=False, activationFuncFinal='linear')

	Class for setting up a 1-D multi-layer perceptron (mlp) autoencoder network. Layers are all fully-connected         (i.e. dense).


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if                         not using a config file.


	encoderSize (int list) – Number of nodes at each layer of the encoder. List length is number of encoder layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	tiedWeights (binary list or None) – Specifies whether or not to tie weights at each layer:
- 1: tied weights of specific encoder layer to corresponding decoder weights
- 0: do not tie weights of specific layer
- None: sets all layers to 0


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                         ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	skipConnect (boolean) – Whether to use skip connections throughout the network.


	activationFuncFinal (str) – Activation function for final layer. Current options: [‘sigmoid’, ‘relu’, ‘linear’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
tiedWeights

	Whether (1) or not (0) the weights of an encoder layer are tied to a decoder layer.


	Type

	binary list










	
skipConnect

	Whether the network uses skip connections between corresponding encoder and decoder layers.


	Type

	boolean










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
activationFuncFinal

	Activation function for final layer.


	Type

	str










	
encoderSize

	Number of inputs and number of nodes at each layer of the encoder.


	Type

	int list










	
decoderSize

	Number of nodes at each layer of the decoder and number of outputs.


	Type

	int list










	
z

	Latent representation of data. Accessible through the encoder class function, requiring a trained             model.


	Type

	tensor










	
y_recon

	Reconstructed output of network. Accessible through the decoder and encoder_decoder class             functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the encoder, decoder and encoder_decoder class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, lossFunc='CSA', learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a             name, and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	lossFunc (str) – Reconstruction loss function.


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
decoder(modelName, dataZ)

	Extract the reconstruction of some dataSamples from their latent representation encoding  using a trained             model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataZ (np.array) – Latent representation of data samples to reconstruct using the network. Shape                     [numSamples x arbitrary].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder(modelName, dataSamples)

	Extract the latent variable of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Shape [numSamples x inputSize].






	Returns

	Latent representation z of dataSamples. Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder_decoder(modelName, dataSamples)

	Extract the reconstruction of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Data samples to reconstruct using the network. Shape [numSamples x inputSize].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.




















          

      

      

    

  

    
      
          
            
  
deephyp.autoencoder.cnn_1D_network


	
class deephyp.autoencoder.cnn_1D_network(configFile=None, inputSize=None, zDim=5, encoderNumFilters=[10, 10, 10], encoderFilterSize=[20, 10, 10], activationFunc='sigmoid', tiedWeights=None, weightInitOpt='truncated_normal', weightStd=0.1, skipConnect=False, padding='VALID', encoderStride=[1, 1, 1], activationFuncFinal='linear')

	Class for setting up a 1-D convolutional autoencoder network. Builds a network with an encoder containing          convolutional layers followed by a single fully-connected layer to map from the final convolutional layer in         the encoder to the latent layer. The decoder contains a single fully-connected layer and then several         deconvolutional layers which reconstruct the spectra in the output.


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if not                         using a config file.


	zDim (int) – Dimensionality of latent vector.


	encoderNumFilters (int list) – Number of filters at each layer of the encoder. List length is number of                         convolutional encoder layers. Note that there is a single mlp layer after the last                         convolutional layer.


	encoderFilterSize (int list) – Size of filter at each layer of the encoder. List length is number of encoder layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	tiedWeights (binary list or None) – Specifies whether or not to tie weights at each layer:
- 1: tied weights of specific encoder layer to corresponding decoder weights
- 0: do not tie weights of specific layer
- None: sets all layers to 0


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                     ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	skipConnect (boolean) – Whether to use skip connections throughout the network.


	padding (str) – Type of padding used. Current options: [‘VALID’, ‘SAME’].


	encoderStride (int list) – Stride at each convolutional encoder layer.


	activationFuncFinal (str) – Activation function for final layer. Current options: [‘sigmoid’, ‘relu’, ‘linear’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
tiedWeights

	Whether (1) or not (0) the weights of an encoder layer are tied to a decoder layer.


	Type

	binary list










	
skipConnect

	Whether the network uses skip connections between corresponding encoder and decoder layers.


	Type

	boolean










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
activationFuncFinal

	Activation function for final layer.


	Type

	str










	
encoderNumFilters

	Number of filters at each layer of the encoder. List length is number of                         convolutional encoder layers. Note that there is a single mlp layer after the last                         convolutional layer.


	Type

	int list










	
encoderFilterSize

	Size of filter at each layer of the encoder. List length is number of encoder layers.


	Type

	int list










	
encoderStride

	Stride at each convolutional encoder layer.


	Type

	int list










	
decoderNumFilters

	
	Type

	int list










	
decoderFilterSize

	
	Type

	int list










	
decoderStride

	
	Type

	int list










	
zDim

	Dimensionality of latent vector.


	Type

	int










	
padding

	Type of padding used. Current options: [‘VALID’, ‘SAME’].


	Type

	str










	
z

	Latent representation of data. Accessible through the encoder class function, requiring a trained             model.


	Type

	tensor










	
y_recon

	Reconstructed output of network. Accessible through the decoder and encoder_decoder class             functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the encoder, decoder and encoder_decoder class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, lossFunc='SSE', learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a name,             and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	lossFunc (str) – Reconstruction loss function.


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
decoder(modelName, dataZ)

	Extract the reconstruction of some dataSamples from their latent representation encoding  using a trained             model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataZ (np.array) – Latent representation of data samples to reconstruct using the network. Shape                     [numSamples x arbitrary].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder(modelName, dataSamples)

	Extract the latent variable of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Shape [numSamples x inputSize].






	Returns

	Latent representation z of dataSamples. Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder_decoder(modelName, dataSamples)

	Extract the reconstruction of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Data samples to reconstruct using the network. Shape [numSamples x inputSize].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.




















          

      

      

    

  

    
      
          
            
  
deephyp.classifier


Contents:


	deephyp.classifier.cnn_1D_network









          

      

      

    

  

    
      
          
            
  
deephyp.classifier.cnn_1D_network


	
class deephyp.classifier.cnn_1D_network(configFile=None, inputSize=None, numClasses=None, convFilterSize=[20, 10, 10], convNumFilters=[10, 10, 10], convStride=[1, 1, 1], fcSize=[20, 20], activationFunc='relu', weightInitOpt='truncated_normal', weightStd=0.1, padding='VALID')

	Class for setting up a 1-D convolutional neural network (cnn) for classification. Contains several convolutional         layers followed by several fully-connected layers. The network outputs scores for each class, for a given set         of input data samples.


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if not                         using a config file.


	numClasses (int) – Number of labelled classes in the dataset (not including the zero class).


	convFilterSize (int list) – Size of filter at each convolutional layer. List length is number of                         convolutional layers.


	convNumFilters (int list) – Number of filters at each convolutional layer of the network. List length is                         number of convolutional layers.


	convStride (int list) – Stride at each convolutional layer. List length is number of convolutional layers.         fcSize (int list): Number of nodes at each fully-connected (i.e. dense) layer of the encoder. List length                         is number of fully-connected layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                     ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	padding (str) – Type of padding used. Current options: [‘VALID’, ‘SAME’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
convFilterSize

	Size of filter at each convolutional layer. List length is number of                         convolutional layers.


	Type

	int list










	
convNumFilters

	Number of filters at each convolutional layer of the network. List length is                         number of convolutional layers.


	Type

	int list










	
convStride

	Stride at each convolutional layer. List length is number of convolutional layers.         padding (str): Type of padding used. Current options: [‘VALID’, ‘SAME’].


	Type

	int list










	
fcSize

	Number of nodes at each fully-connected (i.e. dense) layer of the encoder. List length                         is number of fully-connected layers.


	Type

	int list










	
numLayers

	Total number of layers (convolutional and fully-connected).


	Type

	int










	
y_pred

	Output of network - class scores with shape [numSamples x numClasses]. Accessible through the             predict_scores class functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the predict_scores, predict_labels and predict_features             class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, balance_classes=True, learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a             name, and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	balance_classes (boolean) – Weight the samples during training so that the contribtion to the loss of each                             class is balanced by the number of samples the class has (in a given batch).


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
predict_features(modelName, dataSamples, layer)

	Extract the predicted feature values at a particular layer of the network.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() )


	dataSamples (np.array) – Shape [numSamples x inputSize]


	layer (int) – Layer at which to extract features. Must be between 1 and numLayers inclusive.






	Returns

	Values of neurons at layer. Shape [numSamples x numNeurons] if fully-connected layer and                         [numSamples x convDim1 x convDim2] if convolutional layer.



	Return type

	(np.array)










	
predict_labels(modelName, dataSamples)

	Extract the predicted classification labels of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() )


	dataSamples (array) – Shape [numSamples x inputSize]






	Returns

	Predicted classification labels of dataSamples. Shape [numSamples].



	Return type

	(np.array)










	
predict_scores(modelName, dataSamples, useSoftmax=True)

	Extract the predicted classification scores of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSamples (np.array) – Shape [numSamples x inputSize].


	useSoftmax (boolean) – Pass predicted scores output by network through a softmax function.






	Returns

	Predicted classification scores of dataSamples. Shape [numSamples x numClasses].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.




















          

      

      

    

  

    
      
          
            
  
Code Examples

Each example has a block of code for training and a block of code for testing. These should be run as separate scripts.


Contents:


	autoencoder examples
	train and test a basic MLP

	train multiple models for an MLP

	train an MLP with the SID loss function

	train and compare an MLP and CNN autoencoder





	classifier examples
	train and test a CNN classifier













          

      

      

    

  

    
      
          
            
  
autoencoder examples

Each example has a block of code for training and a block of code for testing. These should be run as separate scripts.


Contents:


	train and test a basic MLP

	train multiple models for an MLP

	train an MLP with the SID loss function

	train and compare an MLP and CNN autoencoder









          

      

      

    

  

    
      
          
            
  
train and test a basic MLP

The code block directly below will train an MLP (or dense) autoencoder on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘models’. Once trained, look at the next code block to test out the trained autoencoder. If you have already downloaded the Pavia Uni dataset (e.g. from another example) you can comment out that step.

The network has three encoder and three decoder layers, with 50 neurons in the first layer, 30 in the second and 10 in the third (the latent layer). A model is trained with 200,000 spectral samples and 100 validation samples with a batch size of 1000 samples. Training lasts for 100 epochs, with a learning rate of 0.001, the Adam optimiser and cosine spectral angle (CSA) reconstruction loss function. The train loss and validation loss are displayed every 10 epochs. Models are saved at 50 and 100 epochs. The models are saved in the models/test_ae_mlp folder.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import os
import shutil
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # download dataset (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat', os.path.join(os.getcwd(),'PaviaU.mat') )

 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # create data iterator objects for training and validation using the pre-processed data
 trainSamples = 200000
 valSamples = 100
 dataTrain = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[:trainSamples, :],
                           targets=hypData.spectraPrep[:trainSamples, :], batchSize=1000 )
 dataVal = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :],
                         targets=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :] )

 # shuffle training data
 dataTrain.shuffle()

 # setup a fully-connected autoencoder neural network with 3 encoder layers
 net = deephyp.autoencoder.mlp_1D_network( inputSize=hypData.numBands, encoderSize=[50,30,10], activationFunc='relu',
                                   weightInitOpt='truncated_normal', tiedWeights=None, skipConnect=False )

 # setup a training operation for the network
 net.add_train_op( name='csa', lossFunc='CSA', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                   method='Adam', wd_lambda=0.0 )

 # create a directory to save the learnt model
 model_dir = os.path.join('models','test_ae_mlp')
 if os.path.exists(model_dir):
     # if directory already exists, delete it
     shutil.rmtree(model_dir)
 os.mkdir(model_dir)

 # train the network for 100 epochs, saving the model at epoch 50 and 100
 net.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name='csa', n_epochs=100, save_addr=model_dir,
           visualiseRateTrain=10, visualiseRateVal=10, save_epochs=[50,100])





The code below will test a trained MLP (or dense) autoencoder on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘results’. The network can be trained using the above code block. Run the testing code block as a separate script to the training code block.

The network is setup using the config file output during training. Then the 100 epoch model is added (named ‘csa_100’). The model is used to encode a latent representation of the Pavia Uni data, and reconstruct it from the latent representation. A figure of the latent vector for a ‘meadow’ spectral sample and the reconstruction is saved in the results folder.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import matplotlib.pyplot as plt
import os
import numpy as np


 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # setup a network from a config file
 net = deephyp.autoencoder.mlp_1D_network( configFile=os.path.join('models','test_ae_mlp','config.json') )

 # assign previously trained parameters to the network, and name model
 net.add_model( addr=os.path.join('models','test_ae_mlp','epoch_100'), modelName='csa_100' )

 # feed forward hyperspectral dataset through encoder (get latent encoding)
 dataZ = net.encoder( modelName='csa_100', dataSamples=hypData.spectraPrep )

 # feed forward latent encoding through decoder (get reconstruction)
 dataY = net.decoder(modelName='csa_100', dataZ=dataZ)


 #--------- visualisation ----------------------------------------

 # reshape latent encoding to original image dimensions
 imgZ = np.reshape(dataZ, (hypData.numRows, hypData.numCols, -1))

 # reshape reconstructed output of decoder
 imgY = np.reshape(dataY, (hypData.numRows, hypData.numCols, -1))

 # reshape pre-processed input
 imgX = np.reshape(hypData.spectraPrep, (hypData.numRows, hypData.numCols, -1))

 # visualise latent image using 3 out of the 10 dimensions
 colourImg = imgZ.copy()
 colourImg = colourImg[ :,:,np.argsort(-np.std(np.std(colourImg, axis=0), axis=0))[:3] ]
 colourImg /= np.max(np.max(colourImg, axis=0), axis=0)

 # save a latent image (using 3 out of the 10 dimensions)
 plt.imsave(os.path.join('results', 'test_mlp_latentImg.png'), colourImg)

 # save plot of latent vector of 'meadow' spectra
 fig = plt.figure()
 plt.plot(imgZ[576, 210, :])
 plt.xlabel('latent dimension')
 plt.ylabel('latent value')
 plt.title('meadow spectra')
 plt.savefig(os.path.join('results', 'test_mlp_latentVector.png'))

 # save plot comparing pre-processed 'meadow' spectra input with decoder reconstruction
 fig = plt.figure()
 ax = plt.subplot(111)
 ax.plot(range(hypData.numBands),imgX[576, 210, :],label='pre-processed input')
 ax.plot(range(hypData.numBands),imgY[576, 210, :],label='reconstruction')
 plt.xlabel('band')
 plt.ylabel('value')
 plt.title('meadow spectra')
 ax.legend()
 plt.savefig(os.path.join('results', 'test_mlp_InputVsReconstruct.png'))









          

      

      

    

  

    
      
          
            
  
train multiple models for an MLP

The code block directly below will train several different models for a given MLP (or dense) autoencoder architecture on the Pavia Uni hyperspectral dataset. Each model is trained with a different reconstruction loss function. Make sure you have a folder in your directory called ‘models’. Once trained, look at the next code block to test out the trained autoencoder. If you have already downloaded the Pavia Uni dataset (e.g. from another example) you can comment out that step.

The network has four encoder and four decoder layers, with 50 neurons in the first layer, 30 in the second, 10 in the third and 3 in the fourth layer (the latent layer). Models are trained with 200,000 spectral samples and 100 validation samples with a batch size of 1000 samples. Training lasts for 100 epochs, with a learning rate of 0.001 and the Adam optimiser. Three different models are trained, each with a different reconstruction loss function: the sum-of-squared errors (SSE), cosine spectral angle (CSA) and spectral angle (SA). The train loss and validation loss are displayed every 10 epochs. Models are saved at 50 and 100 epochs. The models are saved in the models/test_ae_mlp_adv_csa, models/test_ae_mlp_adv_sa and models/test_ae_mlp_adv_sse folders. Note that all of these models use the same network object.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import os
import shutil
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # download dataset (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat', os.path.join(os.getcwd(),'PaviaU.mat') )

 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # create data iterator objects for training and validation using the pre-processed data
 trainSamples = 200000
 valSamples = 100
 dataTrain = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[:trainSamples, :],
                           targets=hypData.spectraPrep[:trainSamples, :], batchSize=1000 )
 dataVal = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :],
                         targets=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :] )

 # shuffle training data
 dataTrain.shuffle()

 # setup a fully-connected autoencoder neural network with 3 encoder layers
 net = deephyp.autoencoder.mlp_1D_network( inputSize=hypData.numBands, encoderSize=[50,30,10,3], activationFunc='relu',
                                   weightInitOpt='truncated_normal', tiedWeights=None, skipConnect=False )

 # setup multiple training operations for the network (with different loss functions)
 net.add_train_op(name='sse', lossFunc='SSE', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                  method='Adam', wd_lambda=0.0)

 net.add_train_op( name='csa', lossFunc='CSA', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                   method='Adam', wd_lambda=0.0 )

 net.add_train_op(name='sa', lossFunc='SA', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                  method='Adam', wd_lambda=0.0)


 # create directories to save the learnt models
 for method in ['sse','csa','sa']:
     model_dir = os.path.join('models','test_ae_mlp_adv_%s'%(method))
     if os.path.exists(model_dir):
         # if directory already exists, delete it
         shutil.rmtree(model_dir)
     os.mkdir(model_dir)

     # train a model for each training op
     dataTrain.reset_batch()
     net.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name=method, n_epochs=100, save_addr=model_dir,
               visualiseRateTrain=10, visualiseRateVal=10, save_epochs=[50, 100])





The code below will test the MLP (or dense) autoencoder models trained in the above code block, on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘results’. Run the testing code block as a separate script to the training code block. The code block below downloads the Pavia Uni ground truth labels.

The network is setup using the config file output during training. Because all three models use the same network, the network can be setup from just one of the config files. Each of the three trained models are added to the network. The models are each used to encode a latent representation of the Pavia Uni data and a scatter plot figure of the samples in two of the three latent dimensions are shown for each model. The two latent features with the greatest standard deviation of the data samples are used for the scatter plot.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import matplotlib.pyplot as plt
import os
import numpy as np
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # setup a network from a config file
 net = deephyp.autoencoder.mlp_1D_network( configFile=os.path.join('models','test_ae_mlp_adv_sse','config.json') )

 # assign previously trained parameters to the network, and name each model
 net.add_model( addr=os.path.join('models','test_ae_mlp_adv_sse','epoch_100'), modelName='sse_100' )
 net.add_model(addr=os.path.join('models', 'test_ae_mlp_adv_csa', 'epoch_100'), modelName='csa_100')
 net.add_model(addr=os.path.join('models', 'test_ae_mlp_adv_sa', 'epoch_100'), modelName='sa_100')

 # feed forward hyperspectral dataset through each encoder model (get latent encoding)
 dataZ_sse = net.encoder( modelName='sse_100', dataSamples=hypData.spectraPrep )
 dataZ_csa = net.encoder(modelName='csa_100', dataSamples=hypData.spectraPrep)
 dataZ_sa = net.encoder(modelName='sa_100', dataSamples=hypData.spectraPrep)

 # feed forward latent encoding through each decoder model (get reconstruction)
 dataY_sse = net.decoder(modelName='sse_100', dataZ=dataZ_sse)
 dataY_csa = net.decoder(modelName='csa_100', dataZ=dataZ_csa)
 dataY_sa = net.decoder(modelName='sa_100', dataZ=dataZ_sa)


 #--------- visualisation ----------------------------------------

 # download dataset ground truth pixel labels (if already downloaded, comment this out).
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.mat',
                         os.path.join(os.getcwd(), 'PaviaU_gt.mat') )

 # read labels into numpy array
 mat_gt = scipy.io.loadmat( 'PaviaU_gt.mat' )
 img_gt = mat_gt['paviaU_gt']
 gt = np.reshape( img_gt , ( -1 ) )

 method = ['sse','csa','sa']

 dataZ_collection = [dataZ_sse, dataZ_csa, dataZ_sa]
 for j,dataZ in enumerate(dataZ_collection):

     # save a scatter plot image of 2 of 3 latent dimensions
     idx = np.argsort(-np.std(dataZ, axis=0))
     fig, ax = plt.subplots()
     for i,gt_class in enumerate(['asphalt', 'meadow', 'gravel','tree','painted metal','bare soil','bitumen','brick','shadow']):
         ax.scatter(dataZ[gt == i+1, idx[0]], dataZ[gt == i+1, idx[1]], c='C%i'%i,s=5,label=gt_class)
     ax.legend()
     plt.title('latent representation: %s'%(method[j]))
     plt.xlabel('latent feature %i' % (idx[0]))
     plt.ylabel('latent feature %i' % (idx[1]))
     plt.savefig(os.path.join('results', 'test_mlp_scatter_%s.png'%(method[j])))









          

      

      

    

  

    
      
          
            
  
train an MLP with the SID loss function

The code block directly below will train an MLP (or dense) autoencoder on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘models’. Once trained, look at the next code block to test out the trained autoencoder. If you have already downloaded the Pavia Uni dataset (e.g. from another example) you can comment out that step.

The network has three encoder and three decoder layers, with 50 neurons in the first layer, 30 in the second and 10 in the third (the latent layer). A model is trained with 200,000 spectral samples and 100 validation samples with a batch size of 1000 samples. Training lasts for 100 epochs, with a learning rate of 0.001, the Adam optimiser and spectral information divergence (SID) reconstruction loss function. The train loss and validation loss are displayed every 10 epochs. Models are saved at 50 and 100 epochs. The models are saved in the models/test_ae_mlp_sid folder.

Since the SID loss contains log in its expression which is undefined for values <= 0, it is best to use sigmoid as the activation function (including the final activation function) for networks trained with the SID loss.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import os
import shutil
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # download dataset (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat', os.path.join(os.getcwd(),'PaviaU.mat') )

 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # create data iterator objects for training and validation using the pre-processed data
 trainSamples = 200000
 valSamples = 100
 dataTrain = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[:trainSamples, :],
                           targets=hypData.spectraPrep[:trainSamples, :], batchSize=1000 )
 dataVal = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :],
                         targets=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :] )

 # shuffle training data
 dataTrain.shuffle()

 # setup a fully-connected autoencoder neural network with 3 encoder layers
 net = deephyp.autoencoder.mlp_1D_network( inputSize=hypData.numBands, encoderSize=[50,30,10], activationFunc='sigmoid',
                                   weightInitOpt='truncated_normal', tiedWeights=None, skipConnect=False,
                                   activationFuncFinal='sigmoid' )

 # setup a training operation for the network
 net.add_train_op( name='sid', lossFunc='SID', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                   method='Adam', wd_lambda=0.0 )

 # create a directory to save the learnt model
 model_dir = os.path.join('models','test_ae_mlp_sid')
 if os.path.exists(model_dir):
     # if directory already exists, delete it
     shutil.rmtree(model_dir)
 os.mkdir(model_dir)

 # train the network for 100 epochs, saving the model at epoch 50 and 100
 net.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name='sid', n_epochs=100, save_addr=model_dir,
           visualiseRateTrain=10, visualiseRateVal=10, save_epochs=[100])





The code below will test a trained MLP (or dense) autoencoder on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘results’. The network can be trained using the above code block. Run the testing code block as a separate script to the training code block.

The network is setup using the config file output during training. Then the 100 epoch model is added (named ‘sid_100’). The model is used to encode a latent representation of the Pavia Uni data and a scatter plot figure of the samples in two of the ten latent dimensions are shown for each model. The two latent features with the greatest standard deviation of the data samples are used for the scatter plot.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import matplotlib.pyplot as plt
import os
import numpy as np
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # setup a network from a config file
 net = deephyp.autoencoder.mlp_1D_network( configFile=os.path.join('models','test_ae_mlp_sid','config.json') )

 # assign previously trained parameters to the network, and name model
 net.add_model( addr=os.path.join('models','test_ae_mlp_sid','epoch_100'), modelName='sid_100' )

 # feed forward hyperspectral dataset through encoder (get latent encoding)
 dataZ = net.encoder( modelName='sid_100', dataSamples=hypData.spectraPrep )

 # feed forward latent encoding through decoder (get reconstruction)
 dataY = net.decoder(modelName='sid_100', dataZ=dataZ)


 #--------- visualisation ----------------------------------------

 # download dataset ground truth pixel labels (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.mat',
                    os.path.join(os.getcwd(), 'PaviaU_gt.mat') )

 # read labels into numpy array
 mat_gt = scipy.io.loadmat( 'PaviaU_gt.mat' )
 img_gt = mat_gt['paviaU_gt']
 gt = np.reshape( img_gt , ( -1 ) )


 # save a scatter plot image of 2 of 3 latent dimensions
 idx = np.argsort(-np.std(dataZ, axis=0))
 fig, ax = plt.subplots()
 for i,gt_class in enumerate(['asphalt', 'meadow', 'gravel','tree','painted metal','bare soil','bitumen','brick','shadow']):
     ax.scatter(dataZ[gt == i+1, idx[0]], dataZ[gt == i+1, idx[1]], c='C%i'%i,s=5,label=gt_class)
 ax.legend()
 plt.title('latent representation: sid')
 plt.xlabel('latent feature %i' % (idx[0]))
 plt.ylabel('latent feature %i' % (idx[1]))
 plt.savefig(os.path.join('results', 'test_mlp_scatter_sid.png'))









          

      

      

    

  

    
      
          
            
  
train and compare an MLP and CNN autoencoder

The code block directly below will train an MLP (or dense) autoencoder and a CNN autoencoder on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘models’. Once trained, look at the next code block to test out the trained autoencoders. If you have already downloaded the Pavia Uni dataset (e.g. from another example) you can comment out that step.

The MLP network has four encoder and four decoder layers, with 50 neurons in the first layer, 30 in the second, 10 in the third and 3 in the fourth layer (the latent layer) of the encocer. The CNN network has an encoder with three convolutional layers and a fully-connected layer joining the output of the third convolutional layer to the latent layer. The decoder has a fully-connected layer joining the latent layer to the deconvolutional layers followed by three deconvolutional layers. The first convolutional layer has 10 filters of size 20, with the second and third both having 10 filters of size 10. All convolutional layers have a stride of 1. The decoder is symmetric. The CNN latent layer has 3 neurons (to have the same dimensionality as the MLP).

Both the mlp and cnn models are trained with 200,000 spectral samples and 100 validation samples with a batch size of 1000 samples, with a learning rate of 0.001 and the Adam optimiser. The MLP is trained for 100 epochs and the CNN is trained for 10 epochs. Both networks are trained with the cosine spectral angle (CSA) reconstruction loss function. The train loss and validation loss are visualised every 10 epochs, except for the CNN training loss which is visualised every 1 epoch. The MLP is saved at 100 epochs and the CNN is saved at 10 epochs. The models are saved in the models/test_ae_comparison_mlp and models/test_ae_comparison_cnn folders.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import os
import shutil
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # download dataset (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat', os.path.join(os.getcwd(),'PaviaU.mat') )

 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # create data iterator objects for training and validation using the pre-processed data
 trainSamples = 200000
 valSamples = 100
 dataTrain = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[:trainSamples, :],
                           targets=hypData.spectraPrep[:trainSamples, :], batchSize=1000 )
 dataVal = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :],
                         targets=hypData.spectraPrep[trainSamples:trainSamples+valSamples, :] )

 # shuffle training data
 dataTrain.shuffle()

 # setup a fully-connected autoencoder neural network with 3 encoder layers
 net_mlp = deephyp.autoencoder.mlp_1D_network( inputSize=hypData.numBands, encoderSize=[50,30,10,3], activationFunc='relu',
                                   weightInitOpt='truncated_normal', tiedWeights=None, skipConnect=False )

 # setup a convolutional autoencoder neural network with 3 conv encoder layers
 net_cnn = deephyp.autoencoder.cnn_1D_network( inputSize=hypData.numBands, zDim=3, encoderNumFilters=[10,10,10] ,
                                  encoderFilterSize=[20,10,10], activationFunc='relu', weightInitOpt='truncated_normal',
                                  encoderStride=[1, 1, 1], tiedWeights=None, skipConnect=False )

 # setup a training operation for each network (using the same loss function)
 net_mlp.add_train_op(name='csa', lossFunc='CSA', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                  method='Adam', wd_lambda=0.0)

 net_cnn.add_train_op( name='csa', lossFunc='CSA', learning_rate=1e-3, decay_steps=None, decay_rate=None,
                   method='Adam', wd_lambda=0.0 )



 # create directories to save the learnt models
 model_dirs = []
 for method in ['mlp','cnn']:
     model_dir = os.path.join('models','test_ae_comparison_%s'%(method))
     if os.path.exists(model_dir):
         # if directory already exists, delete it
         shutil.rmtree(model_dir)
     os.mkdir(model_dir)
     model_dirs.append( model_dir )

 # train the mlp model (100 epochs)
 dataTrain.reset_batch()
 net_mlp.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name='csa', n_epochs=100, save_addr=model_dirs[0],
           visualiseRateTrain=10, visualiseRateVal=10, save_epochs=[100])

 # train the cnn model (takes longer, so only 10 epochs)
 dataTrain.reset_batch()
 net_cnn.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name='csa', n_epochs=10, save_addr=model_dirs[1],
           visualiseRateTrain=1, visualiseRateVal=10, save_epochs=[10])





The code below will test the MLP (or dense) and CNN autoencoder models trained in the above code block, on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘results’. Run the testing code block as a separate script to the training code block. The code block below downloads the Pavia Uni ground truth labels.

The networks are setup using the config files output during training. Each of the models are added to their respective networks. The models are each used to encode a latent representation of the Pavia Uni data and a scatter plot figure of the samples in two of the three latent dimensions are shown for each model. The two latent features with the greatest standard deviation of the data samples are used for the scatter plot.

import deephyp.data
import deephyp.autoencoder

import scipy.io
import matplotlib.pyplot as plt
import os
import numpy as np
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # read data into numpy array
 mat = scipy.io.loadmat( 'PaviaU.mat' )
 img = mat[ 'paviaU' ]

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # setup each network from the config files
 net_mlp = deephyp.autoencoder.mlp_1D_network( configFile=os.path.join('models','test_ae_comparison_mlp','config.json') )
 net_cnn = deephyp.autoencoder.cnn_1D_network(configFile=os.path.join('models', 'test_ae_comparison_cnn', 'config.json'))

 # assign previously trained parameters to the network, and name each model
 net_mlp.add_model( addr=os.path.join('models','test_ae_comparison_mlp','epoch_100'), modelName='mlp_100' )
 net_cnn.add_model(addr=os.path.join('models', 'test_ae_comparison_cnn', 'epoch_10'), modelName='cnn_10')


 # feed forward hyperspectral dataset through each encoder model (get latent encoding)
 dataZ_mlp = net_mlp.encoder( modelName='mlp_100', dataSamples=hypData.spectraPrep )
 dataZ_cnn = net_cnn.encoder(modelName='cnn_10', dataSamples=hypData.spectraPrep)


 # feed forward latent encoding through each decoder model (get reconstruction)
 dataY_mlp = net_mlp.decoder(modelName='mlp_100', dataZ=dataZ_mlp)
 dataY_cnn = net_cnn.decoder(modelName='cnn_10', dataZ=dataZ_cnn)



 #--------- visualisation ----------------------------------------

 # download dataset ground truth pixel labels (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.mat',
                    os.path.join(os.getcwd(), 'PaviaU_gt.mat') )

 # read labels into numpy array
 mat_gt = scipy.io.loadmat( 'PaviaU_gt.mat' )
 img_gt = mat_gt['paviaU_gt']
 gt = np.reshape( img_gt , ( -1 ) )

 method = ['mlp','cnn']

 dataZ_collection = [dataZ_mlp, dataZ_cnn]
 for j,dataZ in enumerate(dataZ_collection):

     # save a scatter plot image of 2 of 3 latent dimensions
     idx = np.argsort(-np.std(dataZ, axis=0))
     fig, ax = plt.subplots()
     for i,gt_class in enumerate(['asphalt', 'meadow', 'gravel','tree','painted metal','bare soil','bitumen','brick','shadow']):
         ax.scatter(dataZ[gt == i+1, idx[0]], dataZ[gt == i+1, idx[1]], c='C%i'%i,s=5,label=gt_class)
     ax.legend()
     plt.xlabel('latent feature %i'%(idx[0]))
     plt.ylabel('latent feature %i' % (idx[1]))
     plt.title('latent representation: %s'%(method[j]))
     plt.savefig(os.path.join('results', 'test_comparison_%s.png'%(method[j])))


 # reshape reconstruction to original image dimensions
 imgY_mlp = np.reshape(dataY_mlp, (hypData.numRows, hypData.numCols, -1))
 imgY_cnn = np.reshape(dataY_cnn, (hypData.numRows, hypData.numCols, -1))
 imgX = np.reshape(hypData.spectraPrep, (hypData.numRows, hypData.numCols, -1))

 # save plot comparing pre-processed 'meadow' spectra input with decoder reconstruction
 fig = plt.figure()
 ax = plt.subplot(111)
 ax.plot(range(hypData.numBands),imgX[576, 210, :],label='pre-processed input')
 ax.plot(range(hypData.numBands),imgY_mlp[576, 210, :],label='mlp reconstruction')
 ax.plot(range(hypData.numBands), imgY_cnn[576, 210, :], label='cnn reconstruction')
 plt.xlabel('band')
 plt.ylabel('value')
 plt.title('meadow spectra')
 ax.legend()
 plt.savefig(os.path.join('results', 'test_reconstruct_comparison.png'))









          

      

      

    

  

    
      
          
            
  
classifier examples

Each example has a block of code for training and a block of code for testing. These should be run as separate scripts.


Contents:


	train and test a CNN classifier









          

      

      

    

  

    
      
          
            
  
train and test a CNN classifier

The code block directly below will train CNN classifier on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘models’. Once trained, look at the next code block to test out the trained classifier. If you have already downloaded the Pavia Uni dataset and ground truth dataset (e.g. from another example) you can comment out that step.

The CNN classification network has three convolutional layers and three fully-connected layers (including the output layer). The first convolutional layer has 10 filters of size 20, with the second and third both having 10 filters of size 10. All convolutional layers have a stride of 1. The first two fully-connected layers both have 20 neurons and the final fully-connected layer has 9 neurons (because there are 9 classes). A ReLU activation function is used.

The CNN model is trained on 50 samples per each of the 9 classes (not including the background class, which has a label of zero). 15 samples per class are used for validation, with a batch size of 50. The network is trained for 1000 epochs using the cross-entropy loss function with class balancing (even though the number of samples per class is already balanced). Both the train and validation loss are visualised every 10 epochs and models are saved at epochs 100 and 1000. The models are saved in the models/test_clf_cnn folders.

import deephyp.data
import deephyp.classifier

import scipy.io
import os
import shutil
import numpy as np
try:
    from urllib import urlretrieve # python2
except:
    from urllib.request import urlretrieve # python3


 # download dataset and ground truth (if already downloaded, comment this out)
 urlretrieve( 'http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat', os.path.join(os.getcwd(),'PaviaU.mat') )
 urlretrieve('http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.mat', os.path.join(os.getcwd(), 'PaviaU_gt.mat') )

 # read data into numpy array
 mat = scipy.io.loadmat('PaviaU.mat')
 img = mat['paviaU']

 # read labels into numpy array
 mat_gt = scipy.io.loadmat('PaviaU_gt.mat')
 img_gt = mat_gt['paviaU_gt']

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img, labels=img_gt )

 # pre-process data to make the model easier to train
 hypData.pre_process( 'minmax' )

 # get indices for training and validation data
 trainSamples = 50 # per class
 valSamples = 15 # per class
 train_indices = []
 for i in range(1,10):
     train_indices += np.nonzero(hypData.labels == i)[0][:trainSamples].tolist()
 val_indices = []
 for i in range(1,10):
     val_indices += np.nonzero(hypData.labels == i)[0][trainSamples:trainSamples+valSamples].tolist()

 # create data iterator objects for training and validation using the pre-processed data
 dataTrain = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[train_indices, :],
                           targets=hypData.labelsOnehot[train_indices,:], batchSize=50 )
 dataVal = deephyp.data.Iterator( dataSamples=hypData.spectraPrep[val_indices, :],
                         targets=hypData.labelsOnehot[val_indices,:] )

 # shuffle training data
 dataTrain.shuffle()

 # setup a cnn classifier with 3 convolutional layers and 2 fully-connected layers
 net = deephyp.classifier.cnn_1D_network( inputSize=hypData.numBands, numClasses=9, convFilterSize=[20,10,10],
               convNumFilters=[10,10,10], convStride = [1,1,1], fcSize=[20,20], activationFunc='relu',
               weightInitOpt='truncated_normal', weightStd=0.1, padding='VALID' )

 # setup a training operation
 net.add_train_op('basic50',balance_classes=True)

 # create a directory to save the learnt model
 model_dir = os.path.join('models', 'test_clf_cnn')
 if os.path.exists(model_dir):
     # if directory already exists, delete it
     shutil.rmtree(model_dir)
 os.mkdir(model_dir)

 # train the network for 1000 epochs, saving the model at epoch 100 and 1000
 net.train(dataTrain=dataTrain, dataVal=dataVal, train_op_name='basic50', n_epochs=1000, save_addr=model_dir,
           visualiseRateTrain=10, visualiseRateVal=10, save_epochs=[100,1000])





The code below will test the CNN classifier model trained in the above code block, on the Pavia Uni hyperspectral dataset. Make sure you have a folder in your directory called ‘results’. Run the testing code block as a separate script to the training code block.

The network is setup using the config file output during training. The model is added to the network (with the name ‘basic_model’). Pavia Uni data samples from the entire image are passed through the network, which predicts labels and class labels and scores for each sample. Figures are saved showing the predicted class labels for the image with and without the background class masked out, as well as showing the ground truth labels.

import deephyp.data
import deephyp.classifier

import scipy.io
import pylab as pl
import os
import numpy as np


 # read data into numpy array
 mat = scipy.io.loadmat('PaviaU.mat')
 img = mat['paviaU']

 # create a hyperspectral dataset object from the numpy array
 hypData = deephyp.data.HypImg( img )

 # pre-process data to make the model easier to train
 hypData.pre_process('minmax')


 # setup a fully-connected autoencoder neural network with 3 encoder layers
 net = deephyp.classifier.cnn_1D_network(configFile=os.path.join('models','test_clf_cnn','config.json'))

 # assign previously trained parameters to the network, and name model
 net.add_model( addr=os.path.join('models','test_clf_cnn','epoch_1000'), modelName='basic_model' )

 # feed forward hyperspectral dataset through the model to predict class labels and scores for each sample
 data_pred = net.predict_labels( modelName='basic_model', dataSamples=hypData.spectraPrep  )
 data_scores = net.predict_scores( modelName='basic_model', dataSamples=hypData.spectraPrep  )

 # extract features at second last layer
 data_features = net.predict_features(modelName='basic_model', dataSamples=hypData.spectraPrep, layer=net.numLayers-1)

 #--------- visualisation ----------------------------------------

 # reshape predicted labels to an image
 img_pred = np.reshape(data_pred, (hypData.numRows, hypData.numCols))

 # read labels into numpy array
 mat_gt = scipy.io.loadmat('PaviaU_gt.mat')
 img_gt = mat_gt['paviaU_gt']


 class_names = ['asphalt', 'meadow', 'gravel','tree','painted metal','bare soil','bitumen','brick','shadow']
 cmap = pl.cm.jet

 # save ground truth figure
 pl.figure()
 for entry in pl.unique(img_gt):
     colour = cmap(entry*255/(np.max(img_gt) - 0))
     pl.plot(0, 0, "-", c=colour, label=(['background']+class_names)[entry])
 pl.imshow(img_gt,cmap=cmap)
 pl.legend(bbox_to_anchor=(2, 1))
 pl.title('ground truth labels')
 pl.savefig(os.path.join('results', 'test_classification_gt.png'))

 # save predicted classes figure
 pl.figure()
 for entry in pl.unique(img_pred):
     colour = cmap(entry*255/(np.max(img_pred) - 0))
     pl.plot(0, 0, "-", c=colour, label=class_names[entry-1])
 pl.imshow(img_pred,cmap=cmap)
 pl.legend(bbox_to_anchor=(2, 1))
 pl.title('classification prediction')
 pl.savefig(os.path.join('results', 'test_classification_pred.png'))

 # save predicted classes figure with background masked out
 img_pred[img_gt==0] = 0
 pl.figure()
 for entry in pl.unique(img_pred):
     colour = cmap(entry*255/(np.max(img_pred) - 0))
     pl.plot(0, 0, "-", c=colour, label=(['background']+class_names)[entry])
 pl.imshow(img_pred,cmap=cmap)
 pl.legend(bbox_to_anchor=(2, 1))
 pl.title('classification prediction with background masked')
 pl.savefig(os.path.join('results', 'test_classification_pred_bkgrd.png'))









          

      

      

    

  

    
      
          
            
  
Related Publications

Some links to publications on deep learning for hyperspectral data:


	autoencoders: ICIP 2016 [https://ieeexplore.ieee.org/abstract/document/7533202], TIP 2017 [https://ieeexplore.ieee.org/abstract/document/8063434], Remote Sensing 2019 [https://www.mdpi.com/2072-4292/11/7/864]


	CNNs for classification using data augmentation: BMVC 2017 [https://www.researchgate.net/publication/332818169_Hyperspectral_CNN_Classification_with_Limited_Training_Samples]


	pre-training CNNs: TGRS 2018 [https://ieeexplore.ieee.org/abstract/document/8245897]


	PhD thesis [https://ses.library.usyd.edu.au/handle/2123/18734]








          

      

      

    

  

    
      
          
            
  
Contact

If you have any positive or negative feedback about deephyp, bugs to report or requests for new functionality in future versions, please get in contact via email:

lloydwindrim@gmail.com

Lloyd Windrim Ph.D
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deephyp package


Submodules




deephyp.autoencoder module

Description: high-level deep learning classes for building, training and using unsupervised autoencoders. Uses
functions from the low-level network_ops module.


	File name: autoencoder.py


	Author: Lloyd Windrim


	Date created: June 2019


	Python package: deephyp





	
class deephyp.autoencoder.cnn_1D_network(configFile=None, inputSize=None, zDim=5, encoderNumFilters=[10, 10, 10], encoderFilterSize=[20, 10, 10], activationFunc='sigmoid', tiedWeights=None, weightInitOpt='truncated_normal', weightStd=0.1, skipConnect=False, padding='VALID', encoderStride=[1, 1, 1], activationFuncFinal='linear')

	Bases: object

Class for setting up a 1-D convolutional autoencoder network. Builds a network with an encoder containing          convolutional layers followed by a single fully-connected layer to map from the final convolutional layer in         the encoder to the latent layer. The decoder contains a single fully-connected layer and then several         deconvolutional layers which reconstruct the spectra in the output.


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if not                         using a config file.


	zDim (int) – Dimensionality of latent vector.


	encoderNumFilters (int list) – Number of filters at each layer of the encoder. List length is number of                         convolutional encoder layers. Note that there is a single mlp layer after the last                         convolutional layer.


	encoderFilterSize (int list) – Size of filter at each layer of the encoder. List length is number of encoder layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	tiedWeights (binary list or None) – Specifies whether or not to tie weights at each layer:
- 1: tied weights of specific encoder layer to corresponding decoder weights
- 0: do not tie weights of specific layer
- None: sets all layers to 0


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                     ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	skipConnect (boolean) – Whether to use skip connections throughout the network.


	padding (str) – Type of padding used. Current options: [‘VALID’, ‘SAME’].


	encoderStride (int list) – Stride at each convolutional encoder layer.


	activationFuncFinal (str) – Activation function for final layer. Current options: [‘sigmoid’, ‘relu’, ‘linear’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
tiedWeights

	Whether (1) or not (0) the weights of an encoder layer are tied to a decoder layer.


	Type

	binary list










	
skipConnect

	Whether the network uses skip connections between corresponding encoder and decoder layers.


	Type

	boolean










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
activationFuncFinal

	Activation function for final layer.


	Type

	str










	
encoderNumFilters

	Number of filters at each layer of the encoder. List length is number of                         convolutional encoder layers. Note that there is a single mlp layer after the last                         convolutional layer.


	Type

	int list










	
encoderFilterSize

	Size of filter at each layer of the encoder. List length is number of encoder layers.


	Type

	int list










	
encoderStride

	Stride at each convolutional encoder layer.


	Type

	int list










	
decoderNumFilters

	
	Type

	int list










	
decoderFilterSize

	
	Type

	int list










	
decoderStride

	
	Type

	int list










	
zDim

	Dimensionality of latent vector.


	Type

	int










	
padding

	Type of padding used. Current options: [‘VALID’, ‘SAME’].


	Type

	str










	
z

	Latent representation of data. Accessible through the encoder class function, requiring a trained             model.


	Type

	tensor










	
y_recon

	Reconstructed output of network. Accessible through the decoder and encoder_decoder class             functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the encoder, decoder and encoder_decoder class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, lossFunc='SSE', learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a name,             and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	lossFunc (str) – Reconstruction loss function.


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
decoder(modelName, dataZ)

	Extract the reconstruction of some dataSamples from their latent representation encoding  using a trained             model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataZ (np.array) – Latent representation of data samples to reconstruct using the network. Shape                     [numSamples x arbitrary].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder(modelName, dataSamples)

	Extract the latent variable of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Shape [numSamples x inputSize].






	Returns

	Latent representation z of dataSamples. Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder_decoder(modelName, dataSamples)

	Extract the reconstruction of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Data samples to reconstruct using the network. Shape [numSamples x inputSize].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.

















	
class deephyp.autoencoder.mlp_1D_network(configFile=None, inputSize=None, encoderSize=[50, 30, 10], activationFunc='sigmoid', tiedWeights=None, weightInitOpt='truncated_normal', weightStd=0.1, skipConnect=False, activationFuncFinal='linear')

	Bases: object

Class for setting up a 1-D multi-layer perceptron (mlp) autoencoder network. Layers are all fully-connected         (i.e. dense).


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if                         not using a config file.


	encoderSize (int list) – Number of nodes at each layer of the encoder. List length is number of encoder layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	tiedWeights (binary list or None) – Specifies whether or not to tie weights at each layer:
- 1: tied weights of specific encoder layer to corresponding decoder weights
- 0: do not tie weights of specific layer
- None: sets all layers to 0


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                         ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	skipConnect (boolean) – Whether to use skip connections throughout the network.


	activationFuncFinal (str) – Activation function for final layer. Current options: [‘sigmoid’, ‘relu’, ‘linear’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
tiedWeights

	Whether (1) or not (0) the weights of an encoder layer are tied to a decoder layer.


	Type

	binary list










	
skipConnect

	Whether the network uses skip connections between corresponding encoder and decoder layers.


	Type

	boolean










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
activationFuncFinal

	Activation function for final layer.


	Type

	str










	
encoderSize

	Number of inputs and number of nodes at each layer of the encoder.


	Type

	int list










	
decoderSize

	Number of nodes at each layer of the decoder and number of outputs.


	Type

	int list










	
z

	Latent representation of data. Accessible through the encoder class function, requiring a trained             model.


	Type

	tensor










	
y_recon

	Reconstructed output of network. Accessible through the decoder and encoder_decoder class             functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the encoder, decoder and encoder_decoder class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, lossFunc='CSA', learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a             name, and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	lossFunc (str) – Reconstruction loss function.


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
decoder(modelName, dataZ)

	Extract the reconstruction of some dataSamples from their latent representation encoding  using a trained             model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataZ (np.array) – Latent representation of data samples to reconstruct using the network. Shape                     [numSamples x arbitrary].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder(modelName, dataSamples)

	Extract the latent variable of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Shape [numSamples x inputSize].






	Returns

	Latent representation z of dataSamples. Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
encoder_decoder(modelName, dataSamples)

	Extract the reconstruction of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSample (np.array) – Data samples to reconstruct using the network. Shape [numSamples x inputSize].






	Returns

	Reconstructed data (y_recon attribute). Shape [numSamples x arbitrary].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.



















deephyp.classifier module

Description: high-level deep learning classes for building, training and using supervised neural network     classifiers. Uses functions from the low-level network_ops module.


	File name: classifier.py


	Author: Lloyd Windrim


	Date created: August 2019


	Python package: deephyp





	
class deephyp.classifier.cnn_1D_network(configFile=None, inputSize=None, numClasses=None, convFilterSize=[20, 10, 10], convNumFilters=[10, 10, 10], convStride=[1, 1, 1], fcSize=[20, 20], activationFunc='relu', weightInitOpt='truncated_normal', weightStd=0.1, padding='VALID')

	Bases: object

Class for setting up a 1-D convolutional neural network (cnn) for classification. Contains several convolutional         layers followed by several fully-connected layers. The network outputs scores for each class, for a given set         of input data samples.


	Parameters

	
	configFile (str) – Optional way of setting up the network. All other inputs can be ignored (will be overwritten).                         Pass the address of the .json config file.


	inputSize (int) – Number of dimensions of input data (i.e. number of spectral bands). Value must be input if not                         using a config file.


	numClasses (int) – Number of labelled classes in the dataset (not including the zero class).


	convFilterSize (int list) – Size of filter at each convolutional layer. List length is number of                         convolutional layers.


	convNumFilters (int list) – Number of filters at each convolutional layer of the network. List length is                         number of convolutional layers.


	convStride (int list) – Stride at each convolutional layer. List length is number of convolutional layers.         fcSize (int list): Number of nodes at each fully-connected (i.e. dense) layer of the encoder. List length                         is number of fully-connected layers.


	activationFunc (str) – Activation function for all layers except the last one. Current options: [‘sigmoid’,                         ‘relu’, ‘linear’].


	weightInitOpt (string) – Method of weight initialisation. Current options: [‘gaussian’, ‘truncated_normal’,                     ‘xavier’, ‘xavier_improved’].


	weightStd (float) – Used by ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	padding (str) – Type of padding used. Current options: [‘VALID’, ‘SAME’].









	
inputSize

	Number of dimensions of input data (i.e. number of spectral bands).


	Type

	int










	
activationFunc

	Activation function for all layers except the last one.


	Type

	str










	
weightInitOpt

	Method of weight initialisation.


	Type

	string










	
weightStd

	Parameter for ‘gaussian’ and ‘truncated_normal’ weight initialisation methods.


	Type

	float










	
convFilterSize

	Size of filter at each convolutional layer. List length is number of                         convolutional layers.


	Type

	int list










	
convNumFilters

	Number of filters at each convolutional layer of the network. List length is                         number of convolutional layers.


	Type

	int list










	
convStride

	Stride at each convolutional layer. List length is number of convolutional layers.         padding (str): Type of padding used. Current options: [‘VALID’, ‘SAME’].


	Type

	int list










	
fcSize

	Number of nodes at each fully-connected (i.e. dense) layer of the encoder. List length                         is number of fully-connected layers.


	Type

	int list










	
numLayers

	Total number of layers (convolutional and fully-connected).


	Type

	int










	
y_pred

	Output of network - class scores with shape [numSamples x numClasses]. Accessible through the             predict_scores class functions, requiring a trained model.


	Type

	tensor










	
train_ops

	Dictionary of names of train and loss ops (suffixed with _train and _loss) added to the             network using the add_train_op class function. The name (without suffix) is passed to the train class             function to train the network with the referenced train and loss op.


	Type

	dict










	
modelsAddrs

	Dictionary of model names added to the network using the add_model class function. The             names reference models which can be used by the predict_scores, predict_labels and predict_features             class functions.


	Type

	dict










	
add_model(addr, modelName)

	Loads a saved set of model parameters for the network.


	Parameters

	
	addr (str) – Address of the directory containing the checkpoint files.


	modelName (str) – Name of the model (to refer to it later in-case of multiple models for a given network).













	
add_train_op(name, balance_classes=True, learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam', wd_lambda=0.0)

	Constructs a loss op and training op from a specific loss function and optimiser. User gives the ops a             name, and the train op and loss opp are stored in a dictionary (train_ops) under that name.


	Parameters

	
	name (str) – Name of the training op (to refer to it later in-case of multiple training ops).


	balance_classes (boolean) – Weight the samples during training so that the contribtion to the loss of each                             class is balanced by the number of samples the class has (in a given batch).


	learning_rate (float) – Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method.


	wd_lambda (float) – Scalar to control weighting of weight decay in loss.













	
predict_features(modelName, dataSamples, layer)

	Extract the predicted feature values at a particular layer of the network.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() )


	dataSamples (np.array) – Shape [numSamples x inputSize]


	layer (int) – Layer at which to extract features. Must be between 1 and numLayers inclusive.






	Returns

	Values of neurons at layer. Shape [numSamples x numNeurons] if fully-connected layer and                         [numSamples x convDim1 x convDim2] if convolutional layer.



	Return type

	(np.array)










	
predict_labels(modelName, dataSamples)

	Extract the predicted classification labels of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() )


	dataSamples (array) – Shape [numSamples x inputSize]






	Returns

	Predicted classification labels of dataSamples. Shape [numSamples].



	Return type

	(np.array)










	
predict_scores(modelName, dataSamples, useSoftmax=True)

	Extract the predicted classification scores of some dataSamples using a trained model.


	Parameters

	
	modelName (str) – Name of the model to use (previously added with add_model() ).


	dataSamples (np.array) – Shape [numSamples x inputSize].


	useSoftmax (boolean) – Pass predicted scores output by network through a softmax function.






	Returns

	Predicted classification scores of dataSamples. Shape [numSamples x numClasses].



	Return type

	(np.array)










	
train(dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Calls network_ops function to train a network.


	Parameters

	
	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (str) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved                         checkpoint. If address is for an epoch and contains a previously saved checkpoint, then the                         network will start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.



















deephyp.data module

Description: high-level classes for using hyperspectral data with the deep learning modules.


	File name: data.py


	Author: Lloyd Windrim


	Date created: June 2019


	Python package: deephyp





	
class deephyp.data.HypImg(spectralInput, labels=None, wavelengths=None, bands=None)

	Bases: object

Class for handling data. Stores meta-data and contains attributes for pre-processing the data. If passed labels,         samples with label zero are considered as a background class. This class is not included in numClasses and data         samples with this label have a one-hot vector label of all zeros.


	Parameters

	
	spectralInput (np.array float) – Spectral dataset. Shape can be [numRows x numCols x numBands] or             [numSamples x numBands].


	wavelengths (np.array float) – Vector of wavelengths that spectralInput wavelengths lie within.


	bands (np.array int) – Wavelength indexes for each band of spectralInput. Shape [numBands].


	labels (np.array int) – Class labels for each spectral sample in spectralInput. Shape can be [numRows x numCols]             or [numSamples].









	
spectra

	Un-pre-processed spectral data with shape [numSamples x numBands].


	Type

	np.array float










	
spectraCube

	If data passed as image - un-pre-processed spectral datacube with             shape [numSamples x numBands]. Else None.


	Type

	np.array float










	
spectraPrep

	Pre-processed spectral data with shape [numSamples x numBands].


	Type

	np.array float










	
numSamples

	The number of spectra.


	Type

	int










	
numRows

	If data passed as image - the number of image rows. Else None.


	Type

	int










	
numCols

	If data passed as image - the number of image columns. Else None.


	Type

	int










	
wavelengths

	If provided - vector of wavelengths that spectra wavelengths lie within. Else None.


	Type

	np.array float










	
bands

	If provided - wavelength indexes for each band of spectra with shape [numBands]. Else None.


	Type

	np.array int










	
labels

	If provided - class labels for each spectral sample with shape [numSamples]. Else None.


	Type

	np.array int










	
labelsOnehot

	If labels provided - the one-hot label vector for each sample. Samples with label             zero (background class) have a one-hot vector of all zeros. Else None.


	Type

	np.array int










	
pre_process(method='minmax')

	Pre-process data for input into the network. Stores in the spectraPrep attribute.


	Parameters

	method (str) – Method of pre-processing. Current options: ‘minmax’














	
class deephyp.data.Iterator(dataSamples, targets, batchSize=None)

	Bases: object

Class for iterating through data, to train the network.


	Parameters

	
	dataSamples (np.array float) – Data to be input into the network. Shape [numSamples x numBands].


	targets (np.array int) – Network output target of each dataSample. For classification, these are the class                 labels, and it could be the dataSamples for autoencoders. Shape [numSamples x arbitrary]


	batchSize (int) – Number of dataSamples per batch









	
dataSamples

	Data to be input into the network. Shape [numSamples x numBands].


	Type

	np.array float










	
targets

	Network output target of each dataSample. For classification, these are the class                 labels, and it could be the dataSamples for autoencoders. Shape [numSamples x arbitrary]


	Type

	np.array int










	
batchSize

	Number of dataSamples per batch. If None - set to numSamples (i.e. whole dataset).


	Type

	int










	
numSamples

	The number of data samples.


	Type

	int










	
currentBatch

	A list of indexes specifying the data samples in the current batch.                 Shape [batchSize]


	Type

	int list










	
get_batch(idx)

	Returns a specified set of samples and targets.


	Parameters

	idx (int list) – Indexes of samples (and targets) to return.



	Returns

	2-element tuple containing:


	(np.array float) - Batch of data samples at [idx] indexes. Shape [length(idx) x numBands].


	(np.array int) - Batch of targets at [idx] indexes. Shape [length(idx) x arbitrary].








	Return type

	(tuple)










	
next_batch()

	Return next batch of samples and targets (with batchSize number of samples). The currentBatch indexes are             incremented. If end of dataset reached, the indexes wraps around to the beginning.


	Returns

	2-element tuple containing:


	(np.array float) - Batch of data samples at currentBatch indexes. Shape [batchSize x numBands].


	(np.array int) - Batch of targets at currentBatch indexes. Shape [batchSize x arbitrary].








	Return type

	(tuple)










	
reset_batch()

	Resets the current batch to the beginning.






	
shuffle()

	Randomly permutes all dataSamples (and corresponding targets).












deephyp.network_ops module

Description: various functions for deep learning built on-top of tensorflow. The high-level modules in the package
call these functions.


	File name: network_ops.py


	Author: Lloyd Windrim


	Date created: June 2019


	Python package: deephyp





	
deephyp.network_ops.balance_classes(y_target, num_classes)

	Calculates the class weights needed to balance the classes, based on the number of samples of each class in the         batch of data.


	Parameters

	
	y_target (tensor) – One-hot classification labels (1D vector). Shape [numSamples x numClasses]


	num_classes (int) – 






	Returns

	A weighting for each class that balances their contribution to the loss. Shape [numClasses].



	Return type

	(tensor)










	
deephyp.network_ops.conv_output_shape(inputShape, filterSize, padding, stride)

	Computes the expected output shape (for the convolving axis only) of a convolution layer given an input shape.


	Parameters

	
	inputShape (int) – Shape of convolving axis of input data.


	filterSize (int) – Size of filter/kernel of convolution layer.


	stride (int) – Stride at which to convolve (must be >= 1).


	padding (str) – Type of padding to use (‘SAME’ or ‘VALID’).






	Returns

	Output shape of convolving axis for given layer and input shape.



	Return type

	(int)










	
deephyp.network_ops.create_variable(shape, method='gaussian', wd=False)

	Setup a trainable variable (collection of parameters) of a particular shape.


	Parameters

	
	shape (list) – Data shape.


	method (str) – How to initialise parameter values.


	wd (boolean) – Setup weight decay for this variable.






	Returns

	Set of parameters for the given variable.



	Return type

	(tensor)










	
deephyp.network_ops.init_weight(opts, shape, stddev=0.1, const=0.1, wd=False, dtype=tf.float32)

	Weight initialisation function.


	Parameters

	
	opts (str) – Method for initialising variable. (‘gaussian’,’truncated_normal’,’xavier’,’xavier_improved’,             ‘constant’).


	shape (list) – Data shape.


	stddev (int) – Standard deviation used by ‘gaussian’ and ‘truncated_normal’ variable initialisation methods.


	const (int) – Constant value to initialise variable to if using ‘constant’ method.


	wd (boolean) – Whether this variable contributes to weight decay or not.


	dtype (tf.dtype) – Data type for variable.






	Returns

	



	Return type

	weights










	
deephyp.network_ops.layer_activation(input, func='sigmoid')

	Define an activation function operation.


	Parameters

	
	input (tensor) – Data input into the function.


	func (str) – Type of activation function. (relu, sigmoid, linear).






	Returns

	Computes activation. Shape is same as input.



	Return type

	(tensor)










	
deephyp.network_ops.layer_conv1d(input, W, b, stride=1, padding='SAME')

	Define a 1 dimensional convolution layer operation.


	Parameters

	
	input (tensor) – Data input into the layer. Shape [numSamples x numInputNeurons x numFiltersIn].


	W (tensor) – Weight parameters of the filters/kernels. Shape [filterSize x numFiltersIn x numFiltersOut].


	b (tensor) – Bias parameters for the layer. Shape [numFiltersOut].


	stride (int) – Stride at which to convolve (must be >= 1).


	padding (str) – Type of padding to use (‘SAME’ or ‘VALID’).






	Returns

	Computes layer output. Shape [numSamples x numOutputNeurons x numFiltersOut].



	Return type

	(tensor)










	
deephyp.network_ops.layer_deconv1d(input, W, b, outputShape, stride=1, padding='SAME')

	Define a 1 dimensional deconvolution layer operation. Also called convolutional transpose or upsampling layer.


	Parameters

	
	input (tensor) – Data input into the layer. Shape [numSamples x numInputNeurons x numFiltersIn].


	W (tensor) – Weight parameters of the filters/kernels. Shape [filterSize x numFiltersOut x numFiltersIn].


	b (tensor) – Bias parameters for the layer. Shape [numFiltersOut].


	outputShape (list) – Expected shape of the layer output. Shape [numSamples x numOutputNeurons x numFiltersOut].


	stride (int) – Stride at which to convolve (must be >= 1).


	padding (str) – Type of padding to use (‘SAME’ or ‘VALID’).






	Returns

	Computes layer output. Shape [numSamples x numOutputNeurons x numFiltersOut].



	Return type

	(tensor)










	
deephyp.network_ops.layer_fullyConn(input, W, b)

	Define a fully connected layer operation. Also called a ‘dense’ layer.


	Parameters

	
	input (tensor) – Data input into the layer. Shape [numSamples x numInputNeurons].


	W (tensor) – Weight parameters for the layer. Shape [numInputNeurons x numOutputNeurons].


	b (tensor) – Bias parameters for the layer. Shape [numOutputNeurons].






	Returns

	Computes layer output. Shape [numSamples x numOutputNeurons].



	Return type

	(tensor)










	
deephyp.network_ops.load_config(net_obj, addr)

	Loads a network config file. Loads from variables in the config.json file and overwrites variables in network         object. Applies to variables in the net_config list in the network object.


	Parameters

	
	net_obj (obj) – Network object.


	addr (obj) – Directory location of config.json file.













	
deephyp.network_ops.load_model(addr, sess)

	Loads a model from the address of a checkpoint.


	Parameters

	
	addr (str) – Address of a directory to save checkpoint for current epoch.


	sess (obj) – Tensor flow session object.













	
deephyp.network_ops.loss_function_crossentropy_1D(y_pred, y_target, class_weights=None, num_classes=None)

	Cross entropy loss function op, comparing 1D tensors for network prediction and target. Weights the classes         when calculating the loss to balance un-even training batches. If class weights are not provided, then no         weighting is done (weight of 1 assigned to each class).


	Parameters

	
	y_pred (tensor) – Output of network (1D vector of class scores). Shape [numSamples x numClasses].


	y_target (tensor) – One-hot classification labels (1D vector). Shape [numSamples x numClasses].


	class_weights (tensor) – Weight for each class. Shape [numClasses].


	num_classes (int) – 






	Returns

	Cross-entropy loss.



	Return type

	(tensor)










	
deephyp.network_ops.loss_function_reconstruction_1D(y_reconstructed, y_target, func='SSE')

	Reconstruction loss function op, comparing 1D tensors for network reconstruction and target.


	Parameters

	
	y_reconstructed (tensor) – Output of network (reconstructed 1D vector). Shape [numSamples x inputSize].


	y_target (tensor) – What the network is trying to reconstruct (1D vector). Shape [numSamples x inputSize].


	func (string) – The name of the loss function to be used. ‘SSE’-sum of square errors,’CSA’-cosine spectral angle,             ‘SA’-spectral angle, ‘SID’-spectral information divergence.






	Returns

	Reconstruction loss.



	Return type

	(tensor)










	
deephyp.network_ops.loss_weight_decay(wdLambda)

	Weight decay loss op, regularises network by penalising parameters for being too large.


	Parameters

	wdLambda (float) – Scalar to control weighting of weight decay in loss.



	Returns

	Weight-decay loss.



	Return type

	(tensor)










	
deephyp.network_ops.save_config(net_obj, addr)

	Saves a network config file. Saves the variables listed in net_config within the network object.


	Parameters

	
	net_obj (obj) – Network object.


	addr (obj) – Directory of where to store the config.json file.













	
deephyp.network_ops.save_model(addr, sess, saver, current_epoch, epochs_to_save)

	Saves a checkpoint at a list of epochs.


	Parameters

	
	addr (str) – Address of a directory to save checkpoint for current epoch.


	sess (obj) – Tensor flow session object.


	saver (obj) – Tensor flow save object.


	current_epoch (int) – The current epoch.


	epochs_to_save (int list) – Epochs to save checkpoints at.













	
deephyp.network_ops.train(net_obj, dataTrain, dataVal, train_op_name, n_epochs, save_addr, visualiseRateTrain=0, visualiseRateVal=0, save_epochs=[1000])

	Function for training a network. Updates the network weights through the training op. The function will check         the save address for a model checkpoint to load, otherwise it will begin training from scratch.


	Parameters

	
	net_obj (obj) – Network object.


	dataTrain (obj) – Iterator object for training data.


	dataVal (obj) – Iterator object for validation data.


	train_op_name (string) – Name of training op created.


	n_epochs (int) – Number of loops through dataset to train for.


	save_addr (str) – Address of a directory to save checkpoints for desired epochs, or address of saved checkpoint.                         If address is for an epoch and contains a previously saved checkpoint, then the network will                         start training from there. Otherwise it will be trained from scratch.


	visualiseRateTrain (int) – Epoch rate at which to print training loss in console.


	visualiseRateVal (int) – Epoch rate at which to print validation loss in console.


	save_epochs (int list) – Epochs to save checkpoints at.













	
deephyp.network_ops.train_step(loss, learning_rate=0.001, decay_steps=None, decay_rate=None, piecewise_bounds=None, piecewise_values=None, method='Adam')

	Operation for training the weights of the network by optimising them to minimise the loss function. Note that         the default is a constant learning rate (no decay).


	Parameters

	
	loss (tensor) – Output of network loss function.


	learning_rate – (float) Controls the degree to which the weights are updated during training.


	decay_steps (int) – Epoch frequency at which to decay the learning rate.


	decay_rate (float) – Fraction at which to decay the learning rate.


	piecewise_bounds (int list) – Epoch step intervals for decaying the learning rate. Alternative to decay steps.


	piecewise_values (float list) – Rate at which to decay the learning rate at the piecewise_bounds.


	method (str) – Optimisation method. (Adam, SGD).






	Returns

	(op) A train op.
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