

Welcome to DeepForge’s documentation!

Getting Started

	Getting Started

	Quick Start

Fundamentals

	Interface Overview

	Custom Operations

	Storage and Compute Adapters

Deployment

	Quick Start

	Overview

	Native Installation

Step-by-Step Guides

	Introduction

	Creating Pipelines

	Creating Operations

	Creating Neural Networks

	Executing Pipelines

	Viewing Executions

	CIFAR-10 Classifier

	Redshift Estimator

Tutorials and Examples

	Tutorial Project - Redshift

	Redshift Estimation

Reference

	Command Line Interface

	Configuration

	Operation Feedback

Getting Started

What is DeepForge?

Deep learning is a promising, yet complex, area of machine learning. This complexity can both create a barrier to entry for those wanting to get involved in deep learning as well as slow the development of those already comfortable in deep learning.

DeepForge is a development environment for deep learning focused on alleviating these problems. Leveraging principles from Model-Driven Engineering, DeepForge is able to reduce the complexity of using deep learning while providing an opportunity for integrating with other domain specific modeling environments created with WebGME [https://webgme.org].

Design Goals

As mentioned above, DeepForge focuses on two main goals:

	Improving the efficiency of experienced data scientists/researchers in deep learning

	Lowering the barrier to entry for newcomers to deep learning

It is important to highlight that although one of the goals is focused on lowering the barrier to entry, DeepForge is intended to be more than simply an educational tool; that is, it is important not to compromise on flexibility and effectiveness as a research/industry tool in order to provide an easier experience for beginners (that’s what forks are for!).

Overview and Features

DeepForge provides a collaborative, distributed development environment for deep learning. The development environment is a hybrid visual and textual programming environment. Higher levels of abstraction, such as creating architectures, use visual environments to capture the overall structure of the task while lower levels of abstraction, such as defining custom training functions, utilize text environments. DeepForge contains both a pipelining language and editor for defining the high level operations to perform while training or evaluating your models as well as a language for defining neural networks (through installing a DeepForge extension such as DeepForge-Keras [https://github.com/deepforge-dev/deepforge-keras]).

Concepts and Terminology

	Operation - essentially a function written in Python (such as training a model, visualizing results, etc)

	Pipeline - directed acyclic graph composed of operations
- e.g., a training pipeline may retrieve and normalize data, train an architecture and return the trained model

	Execution - when a pipeline is run, an “execution” is created and reports the status of each operation as it is run (distributed over a number of worker machines)

	Artifact - an artifact represents some data (either user uploaded or created during an execution)

	Resource - a domain specific model (provided by a DeepForge extension) to be used by a pipeline such as a neural network architecture

Quick Start

There are two ways to give DeepForge a try: visit the public deployment at https://editor.deepforge.org, or spin up your own deployment locally.

Connecting to the Public Deployment

As of this writing, registration is not yet open to the public and is only available upon request.

After getting an account for https://editor.deepforge.org, the only thing required to get up and running with DeepForge is to determine the compute and storage adapters to use. If you already have an account with one of the existing integrations, then you should be able to use those without any further setup!

If not, the easiest way to get started is to connect your own desktop to use for compute and to use the S3 adapter to storage data and trained model weights. Connect your own desktop for computation using the following command (using docker):

docker run -it deepforge/worker:latest --host https://editor.deepforge.org -t <access token>

where <access token> is an access token for your user (created from the profile page of https://editor.deepforge.org).

After connecting a machine to use for computation, you can start creating and running pipelines w/o input or output operations! To save artifacts in DeepForge, you will need to connect a storage adapter such as the S3 adapter.

To easily create a custom storage location, minio [https://min.io] is recommended. Simply spin up an instance of minio [https://docs.min.io/docs/minio-quickstart-guide.html] on a machine publicly accessible from the internet. Providing the public IP address of the machine (along with any configured credentials) to DeepForge when executing a pipeline will enable you to save any generated artifacts, such as trained model weights, to the minio instance and register it within DeepForge.

Interface Overview

The DeepForge editor interface is separated into six views for defining all of the necessary features of your desired project. The details of each interface tab are detailed below. You can switch to any of the views at any time by clicking the appropriate icon on the left side of the screen. In order, the tabs are:

	[image: tabs]

	
	Pipelines

	Executions

	Resources

	Artifacts

	Custom Utils

	Custom Serialization

Pipelines

[image: ../_images/pipelines_tab.png]

In the initial view, all pipelines that currently exist in the project are displayed. New pipelines can be created using the floating red button in the bottom right. From this screen, existing pipelines can also be opened for editing, deleted, or renamed.

Pipeline editing

[image: ../_images/pipeline_example.png]

DeepForge pipelines are directed acyclic graphs of operations, where each operation is an isolated python module. Operations are added to a pipeline using the red plus button in the bottom right of the workspace. Any operations that have previously been defined in the project can be added to the pipeline, or new operations can be created when needed. Arrows in the workspace indicate the passing of data between operations. These arrows can be created by clicking on the desired output (bottom circles) of the first operation before clicking on the desired input (top circles) of the second operation. Clicking on a operation also gives the options to delete (red X), edit (blue </>), or change attributes. Information on the editing of operations can be found in Custom Operations

Pipelines are executed by clicking the yellow play button in the bottom right of the workspace. In the window that appears, you can name the execution, select a computation platform, and select a storage platform. Computation platforms specify what the compute resources used for execution of the operations, such as SciServer Compute [https://apps.sciserver.org/compute/], will be. Supported storage platforms, such as endpoints with an S3-compatible API, are used to store intermediate and output data. The provided storage option will be used for storing both the output objects defined in the pipeline, as well as all files used in execution of the pipeline.

[image: ../_images/execute_pipeline.png]

Executions

[image: ../_images/executions_tab.png]

This view allows the review of previous pipeline executions. Clicking on any execution will display any plotted data generated by the pipeline, and selecting multiple executions will display all of the selected plots together. Clicking the provided links will open either the associated pipeline or a trace of the execution (shown below). The blue icon in the top right of every operation allows viewing the text output of that operation. The execution trace can be viewed during execution to check the status of a running job. During execution, the color of a operation indicates its current status. The possible statuses are:

	Dark gray: Pending Execution

	Light gray: Execution Queued

	Yellow: Execution in Progress

	Orange: Execution Cancelled

	Green: Successfully Finished Execution

	Red: Execution Failed

[image: ../_images/execution_finished.png]

Resources

[image: ../_images/resources_tab.png]

This view shows the resources available for use in pipelines. Different types of resources are made available through DeepForge extensions and enable the introduction of new concepts into the project. One such example is deepforge-keras [https://github.com/deepforge-dev/deepforge-keras] which enables users to make neural networks architectures with a custom visual editor. The created architectures can then be referenced and used by operations for tasks such as training. From this view, resources can be created, deleted, and renamed.

[image: ../_images/neural_network.png]

As with pipelines, the neural networks are depicted as directed graphs. Each node in the graph corresponds to a single layer or operation in the network (information on operations can be found on the keras website [https://keras.io/api/]). Clicking on a layer provides the ability to change the attributes of that layer, delete the layer, or add new layers before or after the current layer. Many operations require that certain attributes be defined before use. The Conv2D operation pictured above, for example, requires that the filters and kernel_size attributes be defined. If these are left as <none>, a visual indicator will show that there is an error to help prevent mistakes. In order to ease analysis and development, hovering over any connecting line will display the shape of the data as it moves between the given layers.

Artifacts

[image: ../_images/artifacts_tab.png]

In this view, you can see all artifacts that are available to your pipelines. These artifacts can be used in any pipeline through the inclusion of the built in Input operation. Artifacts are pieces of saved data that may be associated with some Python data type. Any arbitrary type of data may be used for creating an artifact, but if a data type is not specified, or if a data type is not provided with a custom serialization, the artifact will be treated as a pickle object [https://docs.python.org/3/library/pickle.html]. If you have data that cannot be opened with Python’s pickle module, you will need to create a custom serialization as described below. Some deepforge extenstions may also support additional data types by default. DeepForge-Keras, for example, supports saved keras models, in addition to the standard pickle objects, without the need for custom serialization.

A new artifact can be created in one of three ways. First, artifacts are automatically created during the execution of any pipeline that includes the built-in Output operation. Second, artifacts can be directly uploaded in this view using the red upload button in the bottom right of the workspace. Using this option will also upload the artifact to the storage platform specified in the popup window. Finally, artifacts that already exist in one of the storage platforms can be imported using the blue import button in the bottom right of the workspace.

[image: import] [image: upload]

Custom Utils

[image: ../_images/custom_utils.png]

This view allows the creation and editing of custom utility modules. Utilities created here can be imported into any pipeline operation. For example, the swarp_config_string shown above can be printed out in a operation using the following code:

import utils.swarp_string as ss
print(ss.swarp_config_string)

Custom Serialization

[image: ../_images/custom_serializer.png]

In this view, you can create custom serialization protocols for the creation and use of artifacts that are neither python pickle objects nor keras models. To create a serialization, you will need to define two functions, one for serialization and one for deserialization. These functions must then be passed as arguments to the deepforge.serialization.register function as shown in the commented code above. The serializer and deserializer should have the same signatures as the dump and load functions respectively from python’s pickle module [https://docs.python.org/3/library/pickle.html].

Custom Operations

In this document we will outline the basics of custom operations including the operation editor and operation feedback utilities.

The Basics

Operations are used in pipelines and have named inputs and outputs. When creating a pipeline, if you don’t currently find an operation for the given task, you can easily create your own by selecting the New Operation… operation from the add operation dialog. This will create a new operation definition and open it in the operation editor. The operation editor has two main parts, the interface editor and the implementation editor.

[image: ../_images/operation_editor.png]

Editing the “TrainValidate” operation from the “redshift” example

The interface editor is provided on the right and presents the interface as a diagram showing the input data and output data as objects flowing into or out of the given operation. Selecting the operation node in the operation interface editor will expand the node and allow the user to add or edit attributes for the given operation. These attributes are exposed when using this operation in a pipeline and can be set at design time - that is, these are set when creating the given pipeline. The interface diagram may also contain light blue nodes flowing into the operation. These nodes represent “references” that the operation accepts as input before running. When using the operation, references will appear alongside the attributes but will allow the user to select from a list of all possible targets when clicked.

[image: ../_images/operation_interface.png]

The TrainValidate operation accepts training data, a model and attributes for setting the batch size, and the number of epochs.

The operation editor also provides an interface to specify operation python dependencies. DeepForge uses
conda to manage python dependencies for an operation. This pairs well with the integration of various compute platforms that available to the user and the only requirement for a user is to have Conda installed in their computing platform. You can specify operation dependencies using a conda environment file [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually] as shown in the diagram below:

[image: ../_images/operation_environment.png]

The operation environment contains python dependencies for the given operation.

To the left of the operation editor is the implementation editor. The implementation editor is a code editor specially tailored for programming the implementations of operations in DeepForge. It also is synchronized with the interface editor. A section of the implementation is shown below:

import numpy as np
from sklearn.model_selection import train_test_split
import keras
import time
from matplotlib import pyplot as plt

import tensorflow as tf

import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)

class TrainValidate():
 def __init__(self, model, epochs=10, batch_size=32):
 self.model=model
 self.batch_size = batch_size
 self.epochs = epochs
 np.random.seed(32)
 return

 def execute(self, dataset):
 model=self.model
 model.summary()
 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['sparse_categorical_accuracy'])
 X = dataset['X']
 y = dataset['y']
 y_cats = self.to_categorical(y)
 model.fit(X, y_cats,
 epochs=self.epochs,
 batch_size=self.batch_size,
 validation_split=0.15,
 callbacks=[PlotLosses()])
 return model.get_weights()

 def to_categorical(self, y, max_y=0.4, num_possible_classes=32):
 one_step = max_y / num_possible_classes
 y_cats = []
 for values in y:
 y_cats.append(int(values[0] / one_step))
 return y_cats

 def datagen(self, X, y):
 # Generates a batch of data
 X1, y1 = list(), list()
 n = 0
 while 1:stash@{1}
 for sample, label in zip(X, y):
 n += 1
 X1.append(sample)
 y1.append(label)
 if n == self.batch_size:
 yield [[np.array(X1)], y1]
 n = 0
 X1, y1 = list(), list()

class PlotLosses(keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
 self.i = 0
 self.x = []
 self.losses = []

 def on_epoch_end(self, epoch, logs={}):
 self.x.append(self.i)
 self.losses.append(logs.get('loss'))
 self.i += 1

 self.update()

 def update(self):
 plt.clf()
 plt.title("Training Loss")
 plt.ylabel("CrossEntropy Loss")
 plt.xlabel("Epochs")
 plt.plot(self.x, self.losses, label="loss")
 plt.legend()
 plt.show()

The “TrainValidate” operation uses capabilities from the keras package to train the neural network. This operation sets all the parameters using values provided to the operation as either attributes or references. In the implementation, attributes are provided as arguments to the constructor making the user defined attributes accessible from within the implementation. References are treated similarly to operation inputs and are also arguments to the constructor. This can be seen with the model constructor argument. Finally, operations return their outputs in the execute method; in this example, it returns a single output named model, that is, the trained neural network.

After defining the interface and implementation, we can now use the “TrainValidate” operation in our pipelines! An example is shown below.

[image: ../_images/train_operation.png]

Using the “TrainValidate” operation in a pipeline

Operation Feedback

Operations in DeepForge can generate metadata about its execution. This metadata is generated during the execution and provided back to the user in real-time. An example of this includes providing real-time plotting feedback. When implementing an operation in DeepForge, this metadata can be created using the matplotlib plotting capabilities.

[image: ../_images/plotloss.png]

An example graph of the loss function while training a neural network.

Storage and Compute Adapters

DeepForge is designed to integrate with existing computational and storage resources and is not intended to be a competitor to existing HPC or object storage frameworks.
This integration is made possible through the use of compute and storage adapters. This section provides a brief description of these adapters as well as currently supported integrations.

Storage Adapters

Projects in DeepForge may contain artifacts which reference datasets, trained model weights, or other associated binary data. Although the project code, pipelines, and models are stored in MongoDB, this associated data is stored using a storage adapter. Storage adapters enable DeepForge to store this associated data using an appropriate storage resource, such as a object store w/ an S3-compatible API.
This also enables users to “bring their own storage” as they can connect their existing cyberinfrastructure to a public deployment of DeepForge.
Currently, DeepForge supports 3 different storage adapters:

	S3 Storage: Object storage with an S3-compatible API such as minio [https://play.min.io] or AWS S3 [https://aws.amazon.com/s3/]

	SciServer Files Service : Files service from SciServer [https://sciserver.org]

	WebGME Blob Server : Blob storage provided by WebGME [https://webgme.org/]

Compute Adapters

Similar to storage adapters, compute adapters enable DeepForge to integrate with existing cyberinfrastructure used for executing some computation or workflow. This is designed to allow users to leverage their existing HPC or other computational resources with DeepForge. Compute adapters provide an interface through which DeepForge is able to execute workflows (e.g., training a neural network) on external machines.

Currently, the following compute adapters are available:

	WebGME Worker: A worker machine which polls for jobs via the WebGME Executor Framework [https://github.com/webgme/webgme/wiki/GME-Executor-Framework]. Registered users can connect their own compute machines enabling them to use their personal desktops with DeepForge.

	SciServer-Compute: Compute service offered by SciServer [https://sciserver.org]

	Server Compute: Execute the job on the server machine. This is similar to the execution model used by Jupyter notebook servers.

Quick Start

The recommended (and easiest) way to get started with DeepForge is using docker-compose. First, install docker [https://docs.docker.com/engine/installation/] and docker-compose [https://docs.docker.com/compose/install/].

Next, download the docker-compose file for DeepForge:

wget https://raw.githubusercontent.com/deepforge-dev/deepforge/master/docker/docker-compose.yml

Next, you must decide if you would like authentication to be enabled. For production deployments, this is certainly recommended. However, if you just want to spin up DeepForge to “kick the tires”, this is certainly not necessary.

Without User Accounts

Start the docker containers with docker-compose run :

docker-compose --file docker-compose.yml run -p 8888:8888 -p 8889:8889 -e "NODE_ENV=default" server

User Authentication Enabled

First, generate a public and private key pair

mkdir -p deepforge_keys
openssl genrsa -out deepforge_keys/private_key
openssl rsa -in deepforge_keys/private_key -pubout > deepforge_keys/public_key
export TOKEN_KEYS_DIR="$(pwd)/deepforge_keys"

Then start DeepForge using docker-compose run:

docker-compose --file docker-compose.yml run -v "${TOKEN_KEYS_DIR}:/token_keys" -p 8888:8888 -p 8889:8889 server

Finally, create the admin user by connecting to the server’s docker container. First, get the ID of the container using:

docker ps

Then, connect to the running container:

docker exec -it <container ID> /bin/bash

and create the admin account

./bin/deepforge users useradd admin <admin email> <password> -c -s

After setting up DeepForge (with or without user accounts), it can be used by opening a browser to http://localhost:8888!

For detailed instructions about deployment installations, check out our deployment installation instructions An example of customizing a deployment using docker-compose can be found here [https://github.com/deepforge-dev/deepforge/tree/master/.deployment].

Overview

DeepForge Component Overview

DeepForge is composed of four main elements:

	Client: The connected browsers working on DeepForge projects.

	Server: Main component hosting all the project information and is connected to by the clients.

	Compute: Connected computational resources used for executing pipelines.

	Storage: Connected storage resources used for storing project data artifacts such as datasets or trained model weights.

Component Dependencies

The following dependencies are required for each component:

	Server (NodeJS LTS)

	Database (MongoDB v3.0.7)

	Client: We recommend using Google Chrome and are not supporting other browsers (for now). In other words, other browsers can be used at your own risk.

Configuration

After installing DeepForge, it can be helpful to check out configuring DeepForge

Native Installation

Dependencies

First, install NodeJS [https://nodejs.org/en/] (LTS) and MongoDB [https://www.mongodb.org/]. You may also need to install git if you haven’t already.

Next, you can install DeepForge using npm:

npm install -g deepforge

Now, you can check that it installed correctly:

deepforge --version

After installing DeepForge, it is recommended to install the deepforge-keras [https://github.com/deepforge-dev/deepforge-keras] extension which provides capabilities for modeling neural network architectures:

deepforge extensions add deepforge-keras

DeepForge can now be started with:

deepforge start

Database

Download and install MongoDB from the website [https://www.mongodb.org/]. If you are planning on running MongoDB locally on the same machine as DeepForge, simply start mongod and continue to setting up DeepForge.

If you are planning on running MongoDB remotely, set the environment variable “MONGO_URI” to the URI of the Mongo instance that DeepForge will be using:

MONGO_URI="mongodb://pathToMyMongo.com:27017/myCollection" deepforge start

Server

The DeepForge server is included with the deepforge cli and can be started simply with

deepforge start --server

By default, DeepForge will start on http://localhost:8888. However, the port can be specified with the –port option. For example:

deepforge start --server --port 3000

Worker

The DeepForge worker (used with WebGME compute) can be used to enable users to connect their own machines to use for any required computation. This can be installed from https://github.com/deepforge-dev/worker. It is recommended to install Conda [https://conda.io/en/latest/] on the worker machine so any dependencies can be automatically installed.

Updating

DeepForge can be updated with the command line interface rather simply:

deepforge update

deepforge update --server

For more update options, check out deepforge update –help!

Manual Installation (Development)

Installing DeepForge for development is essentially cloning the repository and then using npm (node package manager) to run the various start, test, etc, commands (including starting the individual components). The deepforge cli can still be used but must be referenced from ./bin/deepforge. That is, deepforge start becomes ./bin/deepforge start (from the project root).

DeepForge Server

First, clone the repository:

git clone https://github.com/dfst/deepforge.git

Then install the project dependencies:

npm install

To run all components locally start with

./bin/deepforge start

and navigate to http://localhost:8888 to start using DeepForge!

Alternatively, if jobs are going to be executed on an external worker, run ./bin/deepforge start -s locally and navigate to http://localhost:8888.

Updating

Updating can be done the same as any other git project; that is, by running git pull from the project root. Sometimes, the dependencies need to be updated so it is recommended to run npm install following git pull.

Manual Installation (Production)

To deploy a deepforge server in a production environment, follow the following steps.
These steps are for using a Linux server and if you are using a platform other than Linux,
we recommend using a dockerized deployment.

	Make sure you have a working installation of Conda [https://conda.io/en/latest/] in your server.

	Clone this repository to your production server.

git clone https://github.com/deepforge-dev/deepforge.git

	Install dependencies and add extensions:

cd deepforge && npm install
./bin/deepforge extensions add deepforge-keras

	Generate token keys for user-management (required for user management).

chmod +x utils/generate_token_keys.sh
./utils/generate_token_keys.sh

Warning

The token keys are generated in the root of the project by default.
If the token keys are stored in the project root, they are accessible via /extlib,
which is a security risk. So, please make sure you move the created token keys out of the project root.

 Introduction

Introduction

This tutorial provides detailed instructions for creating a complete DeepForge project from scratch. The motivating examples for this walkthrough will be a simple image classification task using CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html] as our dataset and a more complex astronomical redshift estimation task using Sloan Digital Sky Survey [https://www.sdss.org/dr13/] as our dataset.

The overall process of creating projects is centered around the creation of data processing pipelines that will be executed to generate the data, visualizations, models, etc. that we need. This guide begins with a detailed walkthrough on how to create pipelines and all their constituent parts. After this introductory walkthrough will be detailed walkthroughs on how to create a pair of useful pipelines using the motivating examples.

[image: ../_images/pipelines-view.png]

 Creating Pipelines

Creating Pipelines

From the home view in the Pipelines tab, you are presented with a list of the pipelines that have already been created. Clicking on any of these pipelines will allow editing of that pipeline. To create a new, empty pipeline, click on the red button in the bottom right corner of the workspace.

[image: ../_images/pipelines-view.png]

The basic unit of work in a pipeline is the operation. Operations can be added using the red button in the bottom right corner of the workspace.

[image: ../_images/cifar-pipeline-blank.png]

After an operation has been added, the attributes of that operation can be changed by clicking on the operation and then clicking on the current value of that attribute.

[image: ../_images/cifar-gt.png]

Operation inputs and outputs are represented by blue circles that are visible after clicking on the operation. Blue circles on the top on the operation represent inputs, while circles on the bottom represent outputs. The red X circle can be clicked to remove an operation from the pipeline. This does not remove it from the set of available operations. The </> icon will open the operation editor view. Holding alt while clicking this icon will instead create a copy of the operation and open the new copy’s editor.

[image: ../_images/cifar-operation-io.png]

Operations can be connected by clicking on an input or output of an operation before clicking on an output or input respectively of another operation. All input and output connections are optional, though missing outputs may give errors depending upon the operation’s internal logic.

 Creating Operations

Creating Operations

When adding an operation to a pipeline, new operations can be created by clicking the New Operation option. This will open the operation editor for the new operation.

[image: ../_images/cifar-pipeline-blank.png]

This editor can also be reached for existing operations by clicking the </> icon when editing an operation’s attributes.

[image: ../_images/cifar-operation-io.png]

This editor has two primary views for editing the operation. The left view allows editing the underlying code of the operation directly. The right view provides a graphical means of adding inputs, outputs, and attributes.

[image: ../_images/new-operation.png]

Editing the Operation Interface

[image: ../_images/new-operation-orig.png]

Clicking on the operation in the right view will allow editing the operation interface. The operation interface consists of design time parameters (attributes and references) as well as inputs and outputs generated at runtime.

Attributes can be added by clicking the New Attribute label, which will open a dialog box where you can define the name, type, default value, and other metadata about that attribute. This dialog box can be viewed again to edit the attribute by clicking on the name of the attribute in the right-side view.

[image: ../_images/train-cifar-epochs.png]

Inputs and outputs can be added using the blue arrow icons. Any number of inputs and outputs can be added to an operation, but each should be given a unique name.

[image: ../_images/new-operation-io.png]

Using the plus icon, referencess to resources can be added to the operation. These resources will usually be some form of neural network. As with inputs and outputs, any number of resources can be added to an operation.

[image: ../_images/train-cifar-io.png]

The paint brush icon allows editing the color of the operation, but this is purely aesthetic and does not affect the operation’s underlying logic.

Implementing the Operation

[image: ../_images/operation-code-editor.png]

In the left-side view, the underlying logic of the operation is implemented using Python. The code here can be edited freely. All operations are defined by a class with the same name as the operation. This class has two primary functions associated with it. The first is the __init__ function, which will appear automatically when creating the operation’s first attribute. This function will run when the operation is initialized and is primarily used for the creation of class variables and the processing of attributes. Note that operation attributes will not be accessible from other functions and must be assigned to a class variable in this function to be utilized elsewhere. The second primary function is the execute function. This is the function that is executed when the operation is running. Any number of other classes and functions can be created in the code editor, but they will not be executed if they are not called within the execute function. The outputs of the execute function will also be the outputs of the operation.

Importing Libraries

[image: ../_images/operation-depen.png]

Python libraries can be used within an operation by importing them, which is usually done above the operation class. Any library that is installed on the compute backend’s python environment can be imported as normal, but more niche libraries that are available through pip or anaconda need to be specified as dependencies for the operation by clicking the Environment tab on the right side. The dependencies described here should be defined using the same syntax as in a conda environment file [https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually].

 Creating Neural Networks

Creating Neural Networks

This page will guide you through the steps needed to create a neural network architecture for use in pipelines.

Importing Resource Libraries

Neural networks and other models can be created from the Resources tab on the sidebar. Before any models can be created in this tab, you must import the associated library into the project using the red floating button in the bottom right of the workspace.

[image: ../_images/resources-blank.png]

In the box that appears, you will see a list of libraries that are available for import.

[image: ../_images/resources-import-keras.png]

Clicking the download icon will install that library and allow creation of associated models. The keras library, for instance, allows for the creation of neural network models.

[image: ../_images/resources-import-keras-after.png]

Creating a New Architecture

After any library has been imported, new models can be created by hovering over the import library button and clicking the floating blue button that appears. This will generate a blank model and automatically open up that model’s workspace.

[image: ../_images/resources-new.png]

Clicking anywhere in the workspace will add the first layer of the architecture, which will always be an input layer. Just as with pipelines, these architectures are represented by a flowchart, with each node representing a single layer in the neural network.

[image: ../_images/vgg-blank.png]

Editing Network Layers

Clicking on a layer allows for changing the parameters of that layer. Many of these parameters can be left undefined, but many layers require that some specific parameters be given. If a layer has not been supplied with the necessary parameters, or if there is some other error encountered at that layer when building the network, the layer will be highlighted with a red border. Hovering the mouse over the layer will reveal the error. Hovering over a newly created Input layer, for example, shows us that the layer requires that either the shape or batch_shape parameter must be defined.

[image: ../_images/vgg-input-error.png]

Some parameters may not be immediately clear on their effects from the name alone. For unfamiliar parameters, hovering over the name of the parameter will reveal a short description.

[image: ../_images/vgg-input-hover.png]

In addition, clicking on the ? icon in the top right of the expanded layer will display documentation on the layer as a whole, including descriptions of all available parameters.

[image: ../_images/vgg-input-doc.png]

Adding Additional Layers

To add additional layers, you can click on the arrow icons on the top or bottom of any layer. The icon should become a + icon and clicking again will open a menu from which the desired layer type can be chosen.

[image: ../_images/vgg-add-layer.png]

[image: ../_images/network-new-layer.png]

Layers can also be removed from the network by expanding the layer and clicking the red X icon in the top left. Two layers that already exist in the network can also be linked by clicking on the output icon on one layer and the input icon on another. A given layer can have any number of other layers as inputs or outputs. Some layers, such as the Dense layer, however, only expect one input and will give an error when multiple inputs are detected.

[image: ../_images/network-multi-io.png]

It is optional, though recommended, that the network be concluded with an Output layer. A network may include multiple outputs, in which case all outputs must be given an Output layer. If no Output layer is included, the last layer in the network will be treated as the sole output.

[image: ../_images/network-multi-out.png]

Connections Between Layers

When two layers are connected, they will be joined by a black arrow that indicates the flow of data through the network. Hovering over these arrows will reveal the shape of the data, which can help with analyzing the network to ensure that the data is being transformed as desired.

[image: ../_images/network-connect-hover.png]

Connections can also be removed and layers separated by clicking on the unwanted arrow and then clicking on the red X icon that appears.

[image: ../_images/network-connect-delete.png]

Exporting Architectures

With keras models, another feature exists to export the model as python code. Clicking the red arrow button in the bottom right of the workspace will display a window generating the code. After making any optional changes to the configuration, clicking run will generate the code.

[image: ../_images/vgg-generate-keras.png]

After successful generation, hovering over the red arrow button and clicking on the floating gray list button will provide a list of all exported architectures.

[image: ../_images/vgg-gen-keras-view-res.png]

Clicking on Details will provide some metadata about the export, as well as a link to download the generated file. This file can then be incorporated into a python project.

[image: ../_images/vgg-gen-keras-view-res-details.png]

 Executing Pipelines

Executing Pipelines

This page will guide you through the steps needed to execute a finished pipeline.

Executing within DeepForge

Finished pipelines can be conveniently executed from within DeepForge. To do so, navigate to the desired pipeline’s workspace, hover over the red + button in the bottom right, and click on the blue arrow button. This will open a dialog box for defining how to execute the pipeline. The configuration options are split into several sections. Once all information has been provided, clicking the blue Run button will begin execution. The information provided can also be saved for future executions by checking the box in the bottom left.

[image: ../_images/cifar-execute-dialog.png]

Basic Options

Here you will define the name of the execution. Execution names are unique identifiers and cannot be repeated. In the case that a name is given that has already been used for that project, an index will be added to the pipeline name automatically (i.e. test becomes test_2). Upon starting execution, the execution name will also be added to the project version history as a tag.

The pipeline can also be chosen to run in debug mode here. This will allow editing the operations and re-running the pipelines with the edited operations after creation. Alternatively, the execution will only use the version of each operation that existed when the pipeline was first executed. This can be helpful when creating and testing pipelines before deployment.

[image: ../_images/cifar-execute-basic.png]

Credentials for Pipeline Inputs

Pipeline inputs may be stored in different storage backends, such as S3 or SciServer Files, which may in turn require authorization for access. If authorization is required, this section of the dialog will be populated with input fields for the expected credentials. If no input artifacts are used in the pipeline, this section will not be present.

In the figure below, the pipeline inputs are stored using SciServer Files so a dropdown containing the linked SciServer accounts is shown.

[image: ../_images/simple-execute-creds.png]

Compute Options

In this section, you will select from the available compute backends. Each compute backend may require additional information, such as login credentials or computation resources that should be used.

In the figure below, SciServer Compute is selected. SciServer Compute requires the user to select a linked account and a compute domain; this example is using the account, brollb, on the “Small Jobs Domain”.

[image: ../_images/simple-execute-compute.png]

Storage Options

Here, the storage backend must be chosen from the available options. Each backend may require additional input, such as login credentials and the desired storage location. This storage backend and location will be where all files created during execution will be stored. This will include both files used during execution, such as data passed between operations, as well as artifacts created from Output operations.

The figure below shows an example using SciServer Files. Like SciServer Compute, the user must first select the linked account to use. Then the user must provide the volume and volume pool to be used. In this example, the “brollb” account is used with the “brollb/deepforge_data” volume on the “Storage” volume pool. More information can be found in the SciServer User Guide [https://www.sciserver.org/wp-content/uploads/2021/09/sciserver-how-to-2021-09-22.pdf].

[image: ../_images/simple-execute-storage.png]

Export Pipeline

If desired, pipelines can be exported as a command line utility for execution locally. Hovering over the red + icon in the pipeline’s workspace and clicking the yellow export button that appears will open a dialog box for exporting the pipeline.

[image: ../_images/export-pipeline.png]

The dialog will prompt the user to select which of the pipeline inputs should be treated as static artifacts. A static artifact is an input of the pipeline that should be fixed to the current value. For example, if you have an evaluation pipeline which accepts two inputs, testing data and a model, you may want to set the model as a static artifact to export a pipeline which allows you to easily evaluate the model on other datasets. Alternatively, setting the testing data as a static artifact would allow you to evaluate different models on the same data. Any static artifacts will require the login credentials for the backend and account where the artifact is stored so it can be retrieved and bundled in the exported zip archive.

Clicking the blue Run button in the bottom right will generate the execution files for the pipeline and automatically download them in a zip file. In this zip folder are all the files normally generated for execution. The simplest way to execute this pipeline is to run the top-level main.py file.

[image: ../_images/export-pipeline-dialog.png]

 Viewing Executions

Viewing Executions

This page will guide you through monitoring the execution of pipelines and viewing the output of finished executions.

Monitoring Executions

After execution has been started through DeepForge, the status of an execution can be checked using numerous methods.

Viewing Execution Status

While in the workspace for a pipeline, the bottom left corner shows a list of all executions associated with the pipeline. Clicking on the name of an execution will open the status tracker for that execution.

[image: ../_images/pipeline-view-exec.png]

An alternative method of getting to this screen is to go to the Executions tab for a list of all executions for the current project. In this view, clicking the name of the desired execution will also open the status tracker.

[image: ../_images/cifar-select-execution.png]

In the status tracker view, the current status for the execution is displayed on an operation level. Each operation is colored based upon its status, with the following possible states:

	Gray - Awaiting Execution

	Yellow - Currently Executing

	Green - Execution Finished Successfully

	Orange - Execution Cancelled

	Red - Error Encountered During Execution

[image: ../_images/cifar-execution-in-progress.png]

Also in this view, clicking on an operation will reveal the attribute values used for this execution. Clicking the blue monitor icon in the top right of a selected operation will open the console output for that operation.

[image: ../_images/status-tracker-selected.png]

Viewing the Compute Dashboard

In the top left of the webpage, clicking the DeepForge logo will open the DeepForge main dropdown menu. In this menu is an option named View Compute.

[image: ../_images/view-compute.png]

This option opens a dialog box that displays the current execution status of the connected compute backends. Each backend will have its own tab with information specific to that backend. The SciServer Compute tab includes a direct link to SciServer’s Compute Dashboard, where the status and output of current and past executions can be viewed.

[image: ../_images/view-compute-window.png]

Viewing Execution Output

Execution output can be viewed in one of two major ways. Textual output that is printed to the console can be viewed by going to the execution status tracker, selecting the operation that produces the desired output, and clicking on the blue monitor icon in the top right of the operation. For operations generating matplotlib figures, a set of buttons in the bottom left will allow swapping between console and matplotlib figures.

[image: ../_images/view-graphical-output.png]

Graphical output, which will generally by generated using a graphical library like Matplotlib [https://matplotlib.org/], can be viewed from the Executions tab on the sidebar. Beside each execution is a checkbox. Activating a checkbox will display the graphical output generated during that execution. Selecting multiple boxes will display the output from all selected executions together.

[image: ../_images/cifar-select-execution.png]

 CIFAR-10 Classifier

CIFAR-10 Classifier

This guide provides step-by-step instructions on how to create full pipeline for training and evaluating a simple image classification neural network. This example uses the CIFAR-10 dataset [https://www.cs.toronto.edu/~kriz/cifar.html]. This guide assumes that the reader has a basic understanding of the DeepForge interface. New users are recommended to review the step-by-step guides before attempting the process described in this guide.

Pipeline Overview

[image: ../_images/cifar-pipeline-blank.png]

This guild will give a step-by-step process beginning with a new, blank pipeline (shown above) and ending with the pipeline shown below that will create, train, and evaluate a CIFAR-10 classifier.

[image: ../_images/cifar-pipeline-final.png]

GetCifarData Operation

To create your first operation, click on the floating red button in the bottom right of the pipeline editor workspace, and click on the New Operation option that appears.

This operation provides the pipeline with the training and testing data that will be used by later operations. In many cases, this will be accomplished with Input operations, but it may be preferable in some cases to retrieve the data programmatically.

The first step in any operation should be giving it a name, defining its attributes, and defining its inputs and outputs. These steps are best performed in the right-side panel in the operation editor.

Our GetCifarData operation will produce four outputs, representing the images and labels from the training and testing sets. This operation does not require any inputs or attributes.

[image: ../_images/get-data-io.png]

The next step in creating any operation is defining its implementation. This is performed in the left panel using the python programming language. Every operation is defined as a python class that must include an execute function. Any arbitrary code can be included and run in association with this operation, but an execute function must be included and external code will only run if called from within the execute function.

CIFAR-10 is a very common benchmarking dataset. As such, the common keras neural network python library provides a simple method for directly downloading and using the data. The code for doing this is relatively straightforward and is shown below.

from keras.datasets import cifar10

class GetCifarData():

 def execute(self):
 print('Retrieving CIFAR-10 train_imgs')

 # Retrieve CIFAR-10 data. load_data() returns a 2-tuple of 2-tuples. The
 # left hand side decomposes these tuples into four separate variables.
 (train_imgs,train_labels),(test_imgs,test_labels) = cifar10.load_data()

 print('CIFAR-10 train_imgs successfully retrieved')
 print('Training set shape: {shape}'.format(shape=train_imgs.shape))
 print('Testing set shape: {shape}'.format(shape=test_imgs.shape))

 return train_labels, test_imgs, test_labels, train_imgs

When finished, return to the pipeline and use the add operation button again to add the new operation to the pipeline. At this point, you should have a single operation with four outputs, as shown below:

[image: ../_images/get-cifar-pipeline.png]

TrainCifar Operation

The next operation will create and train the neural network classifier.

Once again, our first step after naming is to define the inputs and outputs of the operation. Unlike the previous operation, two attributes should be added: batch_size and epochs. Batch size is the number of training samples that the model will be trained on at a time and epochs is the number of times that each training sample will be given to the model. Both are important hyperparameters for a neural network. For this guide, the attributes are defined as shown below, but the exact number used for default values can be changed as desired by the reader.

[image: ../_images/train-cifar-attr.png]

This operation will require two inputs (images and labels) and a neural network architecture. Finally, the operation produces one output, which is the trained classifier model. After all inputs, outputs, and attributes have been added, the structure of the operation should appear similar to the following:

[image: ../_images/train-cifar-io.png]

The code for this operation follows the standard procedure for creating and training a Keras network. The code for this process is shown below. Note that the attributes must be assigned as class variables in the __init__ function in order to be used in the execute function. Also note that we do not need to import the keras library explicitly here. This is because the architecture object already comes with all the currently needed keras functions attached.

class TrainCifar():

 # Runs when preparing the operation for execution
 def __init__(self, architecture, batch_size=32, epochs=20):
 print("Initializing Trainer")

 # Saves attributes as class variables for later use
 self.arch = architecture
 self.epochs = epochs
 self.batch_size = batch_size
 return

 # Runs when the operation is actually executed
 def execute(self, images, labels):
 print("Initializing Model")

 # Creates an instance of the neural network architecure. Other
 # losses and optimizers can be used as desired
 self.arch.compile(loss='sparse_categorical_crossentropy',
 optimizer='adam',
 metrics=['sparse_categorical_accuracy'])
 print("Model Initialized Successfully")

 print("Beginning Training")
 print("Training images shape:", images.shape)
 print("Training labels shape:", labels.shape)

 # Train the model on the given inputs (images) and outputs (labels)
 # using the specified training options.
 self.arch.fit(images,
 labels,
 batch_size=self.batch_size,
 epochs=self.epochs,
 verbose=2)

 print("Training Complete")

 # Saves the model in a new variable. This is necessary so that the
 # output of the operation is named 'model'
 model = self.arch

 return model

After the operation is fully defined, it needs to be added to the workspace and connected to the GetCifarData operation as shown below. Specifically, the train_images and train_labels outputs from GetCifarData should be connected to the images and labels inputs to TrainCifar respectively. Hovering over the circles representing each input or output will display the full name of that element. This should help to ensure that the correct inputs and outputs are matched together.

Note that the architecture selected from within the pipeline editor until after the Neural Network Architecture section of this guide is completed.

[image: ../_images/cifar-gt.png]

Neural Network Architecture

This section will describe how to create a simple, but effective, Convolutional Neural Network for classifying CIFAR-10 images. In particular, this section gives instructions on creating a slightly simplified VGG network [https://neurohive.io/en/popular-networks/vgg16/]. The basic structure of this network is a series of four feature detection blocks, followed by a densely connected classifier block.

For specifics on how to create a new network how to use the neural network editor interface, consult the Creating Neural Networks walkthrough.

Beginning from a blank network, the first step when building a network is to create an Input layer by clicking anywhere on the workspace.

For reference during design, the full architecture can be found here.

[image: ../_images/vgg-blank.png]

This Input layer requires that either the shape or batch_shape attributes be defined. Because our data is composed of 32*32 pixel RGB images, the shape of our input should be (32,32,3).

[image: ../_images/vgg-input.png]

The four feature detector blocks are each composed of two Conv2D layers followed by a MaxPooling2D layer. The settings for the first Conv2D and MaxPooling2D layers are shown below.

Every Conv2D layer requires that the filters and kernel_size attributes be defined. Each Conv2D layer in this network will use a kernel_size (window size) of (3,3), a stride of (1,1), and will use ReLU as the activation function. They should all also use same as the padding so that the size of the input does not change during convolution. For the first pair of Conv2D layers, the number of filters will be 32.

[image: ../_images/vgg-block-conv.png]

Every MaxPooling2D layer requires that the pool_size (window size) attribute be defined. In this network, all MaxPooling2D layers will use a pool_size of (2,2), a stride of (2,2), and padding set to valid. These settings will result in the size of the image being cut in half at every pooling.

[image: ../_images/vgg-block-pool.png]

A total of four of these convolutional blocks should be created in sequence. The only difference between each block is that the number of filters used in the Conv2D layers in each block should double after each pooling. In other words, the value of filters should be 32 for the first Conv2D layer, 64 for the third Conv2D layer, 128 for the fifth, and so on.

After the last convolutional block comes the classifier block. The first layer in this block is a Flatten layer, which converts the convolved image into a 1D vector that can be fed into the following Dense layers. The Flatten layer has no attributes to change.

There are a total of three Dense layers in this classifier, with the first two using the same attribute values. Every Dense layer requires that the units (output length) attribute be defined.

For the first two Dense layers, the number of units used will be 2048, and the activation function used will be ReLU, as shown below.

[image: ../_images/vgg-class-block-dense.png]

The final Dense layer will actually provide the output probability density function for the model. As such, the number of units should be the number of categories in the data (in this case 10). This last layer also uses the softmax activation function, which ensures that the output is a vector whose sum is 1.

[image: ../_images/vgg-class-block-out.png]

Optionally, an Output layer may be added after the final Dense layer. This layer explicitly marks the output of a model, but may be excluded when there is only one output. When there is only one output, such as in this network, the lowest layer in the model will be assumed to be the output layer.

PredictCifar Operation

This operation uses the model created by TrainCifar to predict the class of a set on input images. This operation has no attributes, takes a model and images as input and produces a set of predicted labels (named pred_labels), resulting in the following structure:

[image: ../_images/predict-cifar-io.png]

The code for this operation is short and straightforward with only one peculiarity. The predict function does not provide a prediction directly, instead providing a probability density function (pdf) [https://en.wikipedia.org/wiki/Probability_density_function] over the available classes. For example, a CIFAR-10 classifier’s output for a single input may be [0, 0.03, 0.9, 0.02, 0, 0, 0.05, 0, 0, 0], which indicates that the model is predicting that the likelihood that the image falls into each category is 0% for category 1, 3% for category 2, 90% for category 3, and so on. This requires taking the argmax of every output of the model to determine which class has been ruled the most likely.

import numpy as np

class PredictCifar():

 def execute(self, images, model):
 print('Predicting Image Categories')

 # Predicts the PDF for the input images
 pred_labels = model.predict(images)

 # Converts PDFs into scalar predictions
 pred_labels = np.argmax(pred_labels, axis=1)

 print('Predictions Generated')

 return pred_labels

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the test_images outputs from GetCifarData and the model output from TrainCifar should be connected to the images and model inputs to PredictCifar respectively.

[image: ../_images/cifar-gtp.png]

EvalCifar Operation

This operation evaluates the outputs from the classifier and produces a confusion matrix that could be helpful for determining where the shortcomings of the model lie.

[image: ../_images/cifar-eval-output.png]

This operation requires no attributes and produces no output variables. It requires two inputs in the form of true_labels and pred_labels. The structure of this operation is shown below:

[image: ../_images/eval-cifar-io.png]

With this operation, the code becomes a bit more complex as we build the visualization with the tools provided by the matplotlib.pyplot library [https://matplotlib.org/tutorials/introductory/pyplot.html]. The code below is annotated with comments describing the purpose of all graphing commands. Also of note is that the expected input true_labels is a 2-dimensional array, where the second dimension is of length 1. This is because of a quirk of keras that requires this structure for training and automatic evaluation. To ease calculations, the first step taken is to flatten this array to one dimension.

import matplotlib.pyplot as plt
import numpy as np

class EvalCifar():

 def execute(self, pred_labels, true_labels):

 # Reduces the dimensionality of true_labels by 1
 # ex. [[1],[4],[5],[2]] becomes [1, 4, 5, 2]
 true_labels = true_labels[:,0]

 # Builds a confusion matrix from the lists of labels
 cm = self.buildConfustionMatrix(pred_labels, true_labels)

 #normalize values to range [0,1]
 cm = cm / cm.sum(axis=1)

 # Calculates the overall accuracy of the model
 # acc = (# correct) / (# samples)
 acc = np.trace(cm) / np.sum(cm)

 # Display the confusion matrix as a grayscale image, mapping the
 # intensities to a green colorscale rather than the default gray
 plt.imshow(cm, cmap=plt.get_cmap('Greens'))

 # Adds a title to the image. Also reports accuracy below the title
 plt.title('CIFAR-10 Confusion Matrix\naccuracy={:0.3f}'.format(acc))

 # Labels the ticks on the two axes (placed at positions [0,1,2,...,9]) with
 # the category names
 bins = np.arange(10)
 catName = ['plane','car','bird',
 'cat','deer','dog','frog',
 'horse','ship','truck']
 plt.xticks(bins, catName, rotation=45)
 plt.yticks(bins, catName)

 # Determines value at the center of the color scale
 mid = (cm.max() + cm.min()) / 2

 for i in range(10):
 for j in range(10):
 # Prints the value of each cell to three decimal places.
 # Colors text so that white text is printed on dark cells
 # and black text on light cells
 plt.text(j, i, '{:0.3f}'.format(cm[i, j]),
 ha='center', va='center',
 color='white' if cm[i, j] > mid else 'black')

 # Labels the two axes
 plt.ylabel('True label')
 plt.xlabel('Predicted label')

 plt.tight_layout()

 # Displays the plot
 plt.show()

 def buildConfustionMatrix(self, pred_labels, true_labels):
 # Creates an empty matrix of size 10 x 10
 mat = np.zeros((10,10))

 # Computes count of times that image with true label t is
 # assigned predicted label p
 for p, t in zip(pred_labels, true_labels):
 mat[t][p] += 1

 return mat

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the test_labels outputs from GetCifarData and the pred_labels output from PredictCifar should be connected to the true_labels and pred_labels inputs to EvalCifar respectively.

[image: ../_images/cifar-gtpe.png]

ViewCifar Operation

This operation displays a random subset of images, along with the predicted and actual categories in which those images belong. Such a visualization might be helpful for seeing what kind of images are being misclassified and for what reason.

[image: ../_images/cifar-view-output.png]

This operation includes an attribute num_images for specifying the number of images that should be drawn from the testing set and displayed. As with the attributes in TrainCifar, this attribute should be given a type of integer and will be given the default value of 16.

[image: ../_images/view-cifar-attr.png]

This operation produces no outputs and requires three inputs: the images, the associated true labels, and the associated predicted labels. The overall structure is shown.

[image: ../_images/view-cifar-io.png]

As with the previous operation, the code for this operation gets slightly complicated and has been annotated with comments describing each command.

from matplotlib import pyplot as plt
import numpy as np
import math

class ViewCifar():
 def __init__(self, num_images=16):
 self.num_images = num_images

 return

 def execute(self, pred_labels, true_labels, images):
 # Reduces the dimensionality of true_labels by 1
 # ex. [[1],[4],[5],[2]] becomes [1, 4, 5, 2]
 true_labels = true_labels[:,0]

 # Chooses a random selection of indices representing the chosen images
 orig_indices = np.arange(len(images))
 indices = np.random.choice(orig_indices, self.num_images, replace=False)

 # Extracts the images and labels represented by the chosen indices
 images = np.take(images, indices, axis=0)
 pred_labels = np.take(pred_labels, indices, axis=0)
 true_labels = np.take(true_labels, indices, axis=0)

 # Calculates the number of rows and columns needed to arrange the images in
 # as square of a shape as possible
 num_cols = math.ceil(math.sqrt(self.num_images))
 num_rows = math.ceil(self.num_images / num_cols)

 # Creates a collection of subplots, with one cell per image
 fig, splts = plt.subplots(num_rows, num_cols, sharex=True, sharey=True)

 catName = ['plane','car','bird',
 'cat','deer','dog','frog',
 'horse','ship','truck']

 for i in range(self.num_images):

 # Determines the current row and column location
 col = i % num_cols
 row = i // num_cols

 # Displays the current image
 splts[row,col].imshow(images[i])
 splts[row,col].axis('off')

 # Retrieves the text label equivalent of the numerical labels
 p_cat = catName[pred_labels[i]]
 t_cat = catName[true_labels[i]]

 # Displays the category labels, with the true label colored green and in
 # the top-left corner and the predicted label colored red and in the
 # top-right corner
 splts[row,col].text(8,0,t_cat,ha='center',va='bottom',color='green')
 splts[row,col].text(24,0,p_cat,ha='center',va='bottom',color='red')

 # Displays the figure
 plt.show()

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the test_labels outputs from GetCifarData, the test_images from GetCifarData, and the pred_labels output from PredictCifar should be connected to the true_labels, images, and pred_labels inputs to ViewCifar respectively.

With this, we have a full pipeline ready for execution.

[image: ../_images/cifar-pipeline-final.png]

Execution and Results

With the pipeline fully prepared, it is time to execute the pipeline. To do this, go to the pipeline editor workspace, hover over the red Add Operation button and click the floating blue Execute Pipeline button

[image: ../_images/cifar-execute-button.png]

A dialog box will open where the settings for the current execution must be defined. All inputs are required are detailed below.

[image: ../_images/cifar-execute-dialog.png]

The Basic Options section includes two settings. The first is the name to be used for identifying the execution. An execution’s name must be unique within the project and if a name is given here that has already been used for an execution in the same project, a number will be appended to the given name automatically. The debug option allows for individual operations to be edited and rerun after execution. This is useful during pipeline development and allows for easier debugging or tuning.

[image: ../_images/cifar-execute-basic.png]

The Compute Options section allows configuration of the compute backend to be used for execution. The specific inputs required here will vary with the selected compute backend. For instance, the SciServer Compute [https://www.sciserver.org/about/compute/] backend requires login credentials and the selection of a compute domain.

[image: ../_images/cifar-execute-compute.png]

The Storage Options section allows configuration of the storage backend to be used during execution. This backend will be where all files used during execution and created as output from the pipeline will be stored. The specific inputs required here will vary with the selected compute backend. For instance, the SciServer Files Service backend requires login credentials, the selection of a storage volume, and the type of the volume.

[image: ../_images/cifar-execute-storage.png]

When all settings have been specified, click Run to begin execution. For information on how to check execution status, consult the Viewing Executions walkthrough.

To view the output of the execution, go to the Executions tab and check the box next to the desired execution.

[image: ../_images/cifar-select-execution.png]

For a more detailed and larger view of individual figures, click on the name of the execution to view its status page and open the console output for the desired operation. In the bottom left is a set of buttons for switching between console output and graph output for that operation.

[image: ../_images/cifar-execution-eval.png]

 Redshift Estimator

Redshift Estimator

This guide provides instructions on how to create a full pipeline for training and evaluating a convolutional neural network on the task of predicting astronomical redshift values given images of galaxies. It provides an approach that is simplified from work by Pasquet et. al. [https://arxiv.org/abs/1806.06607] The data referenced and used in this guide was obtained from the Sloan Digital Sky Survey Data Release 3 [https://www.sdss.org/dr13/], obtained via SciServer’s CasJobs Service [http://www.sciserver.org/about/casjobs/], and processed using Astromatic’s SWarp tool [https://www.astromatic.net/software/swarp].
This guide assumes that the reader has a basic understanding of the DeepForge interface and how to create basic pipelines. New users are recommended to review the step-by-step guides before attempting the process described in this guide.

Pipeline Overview

This guild will give instruction on creating a pipeline that will create, train, and evaluate a model that estimates photometric redshift. Each of the sections below details how to create a piece of the final pipeline and how each piece is connected.

[image: ../_images/redshift-final.png]

Input Operations

While it is possible to retrieve the data needed for model creation programmatically in many cases, this guide makes use of the Input operations to load preprocessed data. This is in the interest of both simplicity and generalizability to datasets and data sources different than those used in this tutorial.

This pipeline uses four Input operations. These operations provide the training input images, training output values, testing input images, and testing output values. For the purposes of this tutorial, the structure of the input images is a 4D numpy array of shape (N, 64, 64, 5), where N is the number of images. The outputs are 1D numpy arrays of length N. The process described in this tutorial will work for images that are not 64*64 pixels in size and that use any number of color channels, requiring only a slight change in the neural network.

[image: ../_images/redshift-inputs.png]

Each Input operation requires an artifact to have been added to the project. To do this, go to the artifacts view and click either of the two floating buttons in the bottom right of the workspace (one button only appears on hover).

[image: ../_images/artifact-blank.png]

With these buttons, you can either upload a local file to one of the storage backends or import a file that already exists within a storage backend.

[image: ../_images/artifact-import-upload.png]

By default, all artifacts are treated as python pickle objects [https://docs.python.org/3/library/pickle.html]. Using other forms of serialized data, such as FITS [https://fits.gsfc.nasa.gov/fits_documentation.html] or npy [https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html] files, requires defining a custom serializer in the Custom Serialization view, which is not covered in this tutorial.

TrainRedshift Operation

The first custom operation will create and train the neural network classifier.

Two attributes should be added: batch_size and epochs. Batch size is the number of training samples that the model will be trained on at a time and epochs is the number of times that each training sample will be given to the model. Both are important hyperparameters for training a neural network. For this guide, the attributes are defined as shown below, but the exact number used for default values can be changed as desired by the reader.

This operation will require two inputs (images and labels) and a neural network architecture. Finally, the operation produces one output, which is the trained classifier model. After all inputs, outputs, and attributes have been added, the structure of the operation should appear similar to the following:

[image: ../_images/redshift-train-io.png]

The code for this operation follows the standard procedure for creating and training a Keras network with one minor caveat. The method used by Pasquet et al. on which this pipeline is based formulates redshift prediction as a classification problem. Because the labels used in this tutorial are floating point values, they must be converted into a categorical format. This is the purpose of the to_categorical function. The code for this operation is shown below.

import numpy as np

class TrainRedshift():
 def __init__(self, architecture,
 epochs=20,
 batch_size=32):
 self.arch = architecture
 self.epochs = epochs
 self.batch_size = batch_size

 # Maximum expected redshift value and number of bins to be used in classification
 # step. The max_val will need to change to be reasonably close to the maximum
 # redshift of your dataset. The number of bins must match the output shape of the
 # architecture but may be tuned as a hyperparameter. Both can optionally be made
 # attributes of the operation.
 self.max_val = 0.4
 self.num_bins = 180
 return

 def execute(self, images, labels):
 print(type(labels))
 print("Initializing Model")

 # Initialize the model
 self.arch.compile(loss='sparse_categorical_crossentropy',
 optimizer='adam',
 metrics=['sparse_categorical_accuracy'])
 print("Model Initialized Successfully")

 print("Beginning Training")
 print("Training images shape:", images.shape)
 print("Training labels shape:", labels.shape)

 # Train the model on the images and the labels. Labels are converted to categorical
 # data because the architecture expects an index to an output vector of length 180
 self.arch.fit(images,
 self.to_categorical(labels),
 epochs=self.epochs,
 verbose=2)

 print("Training Complete")

 # Saves the model in a new variable. This is necessary so that the
 # ouput of the operation is named 'model'
 model = self.arch
 return model

 # Converts floating point labels to categorical vectors. The result for a given input
 # label is a 1D vector of length 1 whose value is the index representing the range in
 # which the label falls. For example, if the max_val is 0.4 and the num_bins is 4, the
 # possible indices are 0-3, representing the ranges [0,0.1), [0.1,0.2), [0.2,0.3), and
 # [0.3,0.4] respectively. So, a label of 0.12 results in an output of [1]
 def to_categorical(self, labels):
 return np.array(labels) // (self.max_val / self.num_bins)

After the operation is fully defined, it needs to be added to the workspace and connected to the Input operations as shown below. Specifically, the training images and training outputs should be connected to the images and labels inputs of TrainRedshift respectively.

Note that the architecture selected from within the pipeline editor until after the Neural Network Architecture section of this guide is completed.

[image: ../_images/redshift-t.png]

Neural Network Architecture

This section will describe how to create a convolutional neural network for estimating redshift from images. In particular, this section gives instructions on creating an Inception-v1 network [https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202#8fff]. The basic structure of this network is an input block, a series of five inception blocks, followed by a densely connected classifier block. These blocks are each described in order below.

For reference during design, the full architecture can be found here.

Input Block

The input block begins, as with all network architectures, with an Input layer. The shape of this layer should be the shape of the input images (64*64*3 in this case). This input feeds into a 5*5 Conv2D layer with 64 filters and linear activation. The activation here is linear because the layer is to be activated by the PReLU layer that follows. The Input block is finished with an AveragePooling2D layer with a window size and stride of 2. Note that all layers use same padding to prevent changes in data shape due to the window size.

[image: ../_images/incep-input-block.png]

Inception Blocks

The five inception blocks fall into one of three designs. Blocks 1 and 3 share the same design, as do blocks 2 and 4. Each of the three designs are described more detail below. Take note throughout these subsections that every Conv2D layer is followed by a PReLU layer using the default attribute values. In addition, all AveragePooling2D layers will use have the attribute values of (2,2) for both pool_size and strides and same for padding. In the interest of brevity, this will not be pointed out in each subsection.

Inception Blocks 1 and 3

Blocks 1 and 3 each begins with an AveragePooling2D layer. This is the same layer pictured at the bottom of the input block and blocks 2 and 4. The output of this layer is fed into 4 separate Conv2D layers that all have a kernel_size of 1*1. Two of these new layers feed into another Conv2D layer, one with kernel_size 3*3 and another with kernel_size 5*5. Another of the original Conv2D layers feeds into an AveragePooling2D layer. Finally, the remaining original Conv2D layer, along with the AveragePooling2D layer and the two new Conv2D layers all feed into a Concatenate layer. For reference, the expected structure is shown below.

[image: ../_images/incep-incep-block-1.png]

Inception Blocks 2 and 4

Blocks 2 and 4 are laid out mostly identically to blocks 1 and 3, with the exception of the first and last layers. The first layer in these blocks is the Concatenate layer from the end of the previous block. In addition, another AveragePooling2D layer is added after the Concatenate layer at the end of the block. For reference, the expected structure is shown below.

[image: ../_images/incep-incep-block-2.png]

Inception Block 5

Block 5 is laid out mostly identically to blocks 1 and 3. The only difference is that one of the two branches with two Conv2D layers is omitted. Specifically, the branch in which the second layer has a kernel_size of 5*5 is left out. For reference, the expected structure is shown below.

[image: ../_images/incep-incep-block-3.png]

Conv2D Attributes

All Conv2D layers in the architecture use a stride of 1, use same padding, and use a linear activation function. The only attributes that vary between the various layers are the number of filters and the kernel_size. Notice in the diagrams above that every Conv2D layer is marked with an identifying letter. The table below gives the correct values for filters and kernel_size for every layer in each inception block.

	
	Block 1

	Block 2

	Block 3

	Block 4

	Block 5

	Con2D layer

	filters

	kernel

	filters

	kernel

	filters

	kernel

	filters

	kernel

	filters

	kernel

	a

	48

	(1,1)

	64

	(1,1)

	92

	(1,1)

	92

	(1,1)

	92

	(1,1)

	b

	64

	(1,1)

	92

	(1,1)

	128

	(1,1)

	128

	(1,1)

	128

	(1,1)

	c

	(3,3)

	(3,3)

	(3,3)

	(3,3)

	(3,3)

	d

	(5,5)

	(5,5)

	(5,5)

	(5,5)

	

Classifier Block

The classifier block begins with a Flatten layer to reshape the data into a 1D vector. This feeds into a Dense layer with 1096 units and ReLU activation. The next layer is a Dropout layer intended to help prevent overfitting. The dropout rate used here is 0.3, but this may require tuning to fit the dataset most appropriately. . Finally, a Dense layer using softmax activation produces the final output. This final layer must use the value for units as the num_bins variable used in various operations. An optional Output layer may also be included but is unnecessary as long as the Dense layer is the lowest layer in the architecture.

[image: ../_images/incep-output.png]

PredictRedshift Operation

This operation uses the model created by TrainRedshift to predict the values of a set on input images. This operation has no attributes, takes a model and a set of images as input and produces a set of predicted values (named labels) and the associates probability density functions that resulted in those values (named pdfs). The structure of the operation is as shown below:

[image: ../_images/redshift-predict-io.png]

The model.predict function results in a probability density function (PDF) over all redshift values in the allowed range [0,0.4]. In order to get scalar values for predictions, a weighted average is taken for each PDF where the value being averaged is the redshift value represented by that bin and the weight is the PDF value at that bin (i.e. how likely it is that the value represented by that bin is the actual redshift value).

import numpy as np

class PredictRedshift():

 def execute(self, images, model):
 # See first comment in PredictRedshift()
 max_val = 0.4
 num_bins = 180
 step = max_val / num_bins

 # Generates PDF for the redshift of each image
 pdfs = model.predict(images)
 bin_starts = np.arange(0, max_val, step)

 # Regresses prediction to a scalar value. Essentially a weighted average
 # where the weights are the pdf values for each bin and the values are
 # the beginning of the range represented by each bin.
 labels = np.sum((bin_starts + (step / 2)) * pdfs, axis=1)

 return pdfs, labels

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the test images Input operation and the model output from TrainRedshift should be connected to the images and model inputs to PredictRedshift respectively.

[image: ../_images/redshift-tp.png]

EvalRedshift Operation

This operation creates a figure for evaluating the accuracy of the redshift model. The resulting figure (shown on the right in the image below) plots the true redshift value against the predicted value. The further a point falls away from the diagonal dotted line, the more incorrect that prediction.

[image: ../_images/redshift-eval-res.png]

This operation has no attributes and produces no output. It requires two inputs in the form of a list of predicted redshift values (pt) and a list of actual redshift values (gt). The structure of the operation is as shown below:

[image: ../_images/redshift-eval-io.png]

The code for this operation is below and is heavily annotated to explain the various graphing functions.

import numpy as np
from properscoring import crps_gaussian
import matplotlib.pyplot as plt

class EvalRedshift():

 def execute(self, gt, pt):
 print('Evaluating model')

 # Calculates various metrics for later display. For more info, see section 4.1 of
 # of Pasquet et. al.
 residuals = (pt - gt) / (gt + 1)
 pred_bias = np.average(residuals)
 dev_MAD = np.median(np.abs(residuals - np.median(residuals))) * 1.4826
 frac_outliers = np.count_nonzero(np.abs(residuals) > (dev_MAD * 5)) / len(residuals)
 crps = np.average(crps_gaussian(pt, np.mean(pt), np.std(pt)))

 # Creates the figure and gives it a title
 plt.figure()
 plt.title('Redshift Confusion Scatterplot')

 # Plots all galaxies where the x-value is the true redshift of a galaxy and the
 # y-value is the predicted redshift value of a galaxy
 plt.scatter(gt, pt)

 # Creates a dashed black line representing the line on which a perfect prediction
 # would lie. This line has a slope of 1 and goes from the origin to the maximum
 # redshift (predicted or actual)
 maxRS = max(max(gt), max(pt))
 endpoints = [0, maxRS]
 plt.plot(endpoints, endpoints, '--k')

 # Creates a formatted string with one metric per line. Prints metrics to three
 # decimal places
 metricStr = 'pred_bias: {pb:.03f}\n' + \
 'MAD Deviation: {dm:.03f}\n' + \
 'Fraction of Outliers: {fo:.03f}\n' + \
 'Avg. CRPS: {ac:.03f}'
 formattedMetrics = metricStr.format(pb=pred_bias,
 dm=dev_MAD,
 fo=frac_outliers,
 ac=crps)

 # Prints the metrics string at the top left of the figure
 plt.text(0, maxRS, formattedMetrics, va='top')

 # Labels axes and displays figure
 plt.ylabel('Predicted Redshift')
 plt.xlabel('True Redshift')
 plt.show()

 return

Notice in the above code that there is a new library used to calculate one of the metrics. This library is not standard and is not included in many default environments. Because of this, the library needs to be added to the environment at runtime by going to the Environment tab in the operation editor and defining the operation dependencies as shown below. Operation dependencies are defined in the style of a conda environment file [https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually].

[image: ../_images/redshift-eval-depen.png]

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the test values Input operation and the labels output from PredictRedshift should be connected to the gt and pt inputs to EvalRedshift respectively.

[image: ../_images/redshift-tpe.png]

PdfVisRedshift Operation

This operation creates another figure for evaluating the accuracy of the redshift model as shown below. Compared to the output of the EvalRedshift operation, this figure provides a more zoomed in picture of individual predictions. Each of the subplots is a plotting of the probability density function for a randomly chosen input image. The red and green lines indicate the predicted and actual value of the image’s redshift value respectively.

[image: ../_images/redshift-pdfvis-res.png]

This operation has one attribute, num_images and produces no output. It requires three inputs in the form of a list of predicted redshift values (pt), a list of actual redshift values (gt), and a list of probability density functions (pdfs). The structure of the operation is as shown below:

[image: ../_images/redshift-pdfvis-io.png]

The code for this operation is below and is heavily annotated to explain the various graphing functions.

import numpy as np
import matplotlib.pyplot as plt
import math

class PdfVisRedshift():
 def __init__(self, num_images=9):

 # Calculates the number of rows and columns needed to arrange the images in
 # as square of a shape as possible
 self.num_images = num_images
 self.num_cols = math.ceil(math.sqrt(num_images))
 self.num_rows = math.ceil(num_images / self.num_cols)

 self.max_val = 0.4
 return

 def execute(self, gt, pt, pdfs):

 # Creates a collection of subfigures. Because each prediciton uses the same bins,
 # x-axes are shared.
 fig, splts = plt.subplots(self.num_rows,
 self.num_cols,
 sharex=True,
 sharey=False)

 # Chooses a random selection of indices representing the chosen images
 random_indices = np.random.choice(np.arange(len(pt)),
 self.num_images,
 replace=False)

 # Extracts the pdfs and redshifts represented by the chosen indices
 s_pdfs = np.take(pdfs, random_indices, axis=0)
 s_pt = np.take(pt, random_indices, axis=0)
 s_gt = np.take(gt, random_indices, axis=0)

 # Creates a list of the lower end of the ranges represented by each bin
 x_range = np.arange(0, self.max_val, self.max_val / pdfs.shape[1])

 for i in range(self.num_images):
 col = i % self.num_cols
 row = i // self.num_cols

 # Creates a line graph from the current image's pdf
 splts[row,col].plot(x_range, s_pdfs[i],'-')

 # Creates two vertical lines to represent the predicted value (red) and the
 # actual value (green)
 splts[row,col].axvline(s_pt[i], color='red')
 splts[row,col].axvline(s_gt[i], color='green')

 # Creates a formatted string with one metric per line. Prints metrics to three
 # decimal places. d (delta) is how far off the prediction was from the actual value
 metricString = 'gt={gt:.03f}\npt={pt:.03f}\n \u0394={d:.03f}'
 metricString = metricString.format(gt = s_gt[i],
 pt = s_pt[i],
 d = abs(s_gt[i]-s_pt[i]))

 # Determines whether the metrics should be printed on the left or right of the
 # figure. If prediction is on the left end, the right side should be more clear
 # and should be the chosen side.
 alignRight = s_pt[i] <= self.max_val / 2

 # Adds the metric string to the figure at the top of the subfigure (which is the
 # max value of that pdf)
 splts[row,col].text(self.max_val if alignRight else 0,
 np.max(s_pdfs[i]),
 metricString,
 va='top',
 ha='right' if alignRight else 'left')

 # Automatically tweaks margins and positioning of the graph
 plt.tight_layout()
 plt.show()

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as shown below. Specifically, the labels and pdfs output from PredictRedshift and the test values Input operation should be connected to the pt, pdfs and pt inputs to PdfVisRedshift respectively.

[image: ../_images/redshift-tpep.png]

Output Operations

Output operations are special operations that allow saving python objects generated during execution. For instance, in this tutorial, it might be useful to save the trained model and the generated predictions for later use or analysis. Shown below is the result of adding two Output operations to the pipeline to save these two objects.

[image: ../_images/redshift-final.png]

Objects created in this way will be saved in the execution working directory (defined in Execution Options when executing a pipeline) under the name given to the operation’s saveName attribute. Objects saved in this manner will also be automatically added to the list of available artifacts for use in other pipelines.

[image: ../_images/output-artifacts.png]

Execution and Results

As with all pipelines, this pipeline can be executed using the red floating button in the bottom right of the pipeline editor view. In addition to the normal settings that are always included, this pipeline (as with any pipeline using Input operations) required additional credentials for each artifact being used.

[image: ../_images/redshift-execute-creds.png]

To view the output of the execution, go to the Executions tab and check the box next to the desired execution.

[image: ../_images/redshift-eval-res.png]

For a more detailed and larger view of individual figures, click on the name of the execution to view its status page and open the console output for the desired operation. In the bottom left is a set of buttons for switching between console output and graph output for that operation.

[image: ../_images/redshift-pdfvis-res.png]

 Tutorial Project - Redshift

Tutorial Project - Redshift

The project described on this page can be found in the examples repo [https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial] on GitHub under the name Redshift-Tutorial.webgmex

Pipeline Overview

	Basic Input/Output

	Display Random Image

	Display Random CIFAR-10

	Train CIFAR-10

	Train-Test

	Train-Test-Compare

	Train-PredVis

	Download-Train-Evaluate

Pipelines

Basic Input/Output

This pipeline provides one of the simplest examples of a pipeline possible in DeepForge. Its sole purpose is to create an array of numbers, pass the array from the first node to the second node, and print the array to the output console.

The Output operation shown is a special built-in operation that will save the data that is provided to it to the selected storage backend. This data will then be available within the same project as an artifact and can be accessed by other pipelines using the special built-in Input operation.

[image: ../_images/basic-io.png]

import numpy

class GenArray():
 def __init__(self, length=10):
 self.length = length
 return

 def execute(self):
 arr = list(numpy.random.rand(self.length))
 return arr

Display Random Image

[image: ../_images/display-rand-img.png]

This pipeline’s primary purpose is to show how graphics can be output and viewed. A random noise image is generated and displayed using matplotlib’s pyplot library. Any graphic displayed using the plt.show() function can be viewed in the executions tab.

from matplotlib import pyplot as plt
from random import randint

class DisplayImage():
 def execute(self, image):
 if len(image.shape) == 4:
 image = image[randint(0, image.shape[0] - 1)]
 plt.imshow(image)
 plt.show()

Display Random CIFAR-10

[image: ../_images/display-cifar.png]

As with the previous pipeline, this pipeline simply displays a single image. The image from this pipeline, however, is more meaningful, as it is drawn from the commonly used CIFAR-10 dataset [http://www.cs.toronto.edu/~kriz/cifar.html]. This pipeline seeks to provide an example of the input being used in the next pipeline while providing an example of how the data can be obtained. This is important for users who seek to develop their own pipelines, as CIFAR-10 data generally serves as an effective baseline for testing and development of new CNN architectures or training processes.

Also note, as shown in the figure above, that it is not necessary to utilize all of the outputs of a given node. Unless specifically handled, however, it is generally inappropriate for an input to be left undefined.

from keras.datasets import cifar10

class GetDataCifar():
 def execute(self):
 ((train_imgs, train_labels),
 (test_imgs, test_labels)) = cifar10.load_data()
 return train_imgs, train_labels, test_imgs, test_labels

Train CIFAR-10

[image: ../_images/train-basic.png]

This pipeline gives a very basic example of how to create, train, and evaluate a simple CNN. The primary takeaway from this pipeline should be the overall structure of a training pipeline, which should follow the following steps in most cases:

	Load data

	Define the loss, optimizer, and other metrics

	Compile model, with loss, metrics, and optimizer, using the compile() method

	Train model using the fit() method, which requires the training inputs and outputs

	Output the trained model for serialization and/or utilization in subsequent nodes

import numpy as np
import keras

class TrainBasic():
 def __init__(self, model, epochs=20, batch_size=32, shuffle=True):
 self.model = model
 self.epochs = epochs
 self.batch_size = batch_size
 self.shuffle = shuffle
 return

 def execute(self, train_imgs, train_labels):
 opt = keras.optimizers.rmsprop(lr=0.001)
 self.model.compile(loss='sparse_categorical_crossentropy',
 optimizer=opt,
 metrics=['sparse_categorical_accuracy'])
 self.model.fit(train_imgs,
 train_labels,
 batch_size=self.batch_size,
 epochs=self.epochs,
 shuffle=self.shuffle,
 verbose=2)
 model = self.model
 return model

class EvalBasic():
 def __init__(self):
 return

 def execute(self, model, test_imgs, test_labels):
 results = model.evaluate(test_imgs, test_labels, verbose=0)
 for i, metric in enumerate(model.metrics_names):
 print(metric,'-',results[i])
 return results

Train-Test

[image: ../_images/train-single.png]

This pipeline provides an example of how one might train and evaluate a redshift estimation model. In particular, the procedure implemented here is a simplified version of work by Pasquet et. al. (2018) [https://www.aanda.org/articles/aa/abs/2019/01/aa33617-18/aa33617-18.html]. For readers unfamiliar with cosmological redshift, this article [https://earthsky.org/astronomy-essentials/what-is-a-redshift] provides a simple and brief introduction to the topic. For the training process, there are two primary additions that should be noted.

First, the Train class has been given a function named to_categorical. In line with the Paquet et. al. method linked above, this tutorial uses a classification model rather than a regression model for estimation. Because we are using classification models, the keras model expects the output labels to be either one-hot vectors or a single integer where the position/value indicates the range in which the true redshift value falls. This function converts the continuous redshift values into the necessary discrete, categorical format.

Second, a class has been provided to give examples of how researchers may define their own keras Sequence [https://keras.io/api/utils/python_utils/#sequence-class] for training. Sequences are helpful in that they allow alterations to be made to the data during training. In the example given here, the SdssSequence class provides the ability to rotate or flip images before every epoch, which will hopefully improve the robustness of the final model.

The evaluation node has also been updated to provide metrics more in line with redshift estimation. Specifically, it calculates the fraction of outlier predictions, the model’s prediction bias, the deviation in the MAD scores of the model output, and the average Continuous Ranked Probability Score (CRPS) of the output.

Train-Test-Compare

[image: ../_images/train-compare.png]

This pipeline gives a more complicated example of how to create visualizations that may be helpful for understanding the effectiveness of a model. The EvalCompare node provides a simple comparison visualization of two models.

Train-PredVis

[image: ../_images/vis-pred.png]

This pipeline shows another more complex and useful visualization example that can be helpful for understanding the effectiveness of your redshift estimation model. It generates a set of graphs like the one below that show the output probability distribution function (pdf) for the redshift values of a set of random galaxies’ images. A pair of vertical lines in each subplot indicate the actual redshift value (green) and the predicted redshift value (red) for that galaxy.

As shown in this example, any visualization that can be created using the matplotlib.pyplot [https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.html] python library can be created and displayed by a pipeline. Displaying these visualizations can be accomplished by calling the pyplot.show() function after building the visualization. They can then be viewed from the Executions view.

import numpy as np
from matplotlib import pyplot as plt

class PredVis():
 def __init__(self, num_bins=180, num_rows=1, num_cols=1, max_val=0.4):
 self.num_rows = num_rows
 self.num_cols = num_cols
 self.xrange = np.arange(0, max_val, max_val / num_bins)
 return

 def execute(self, pt, gt, pdfs):
 fig, splts = plt.subplots(self.num_rows, self.num_cols, sharex=True, sharey=True)

 num_samples = self.num_rows * self.num_cols

 random_indices = np.random.choice(list(range(len(gt))), num_samples, replace=False)

 s_pdfs = np.take(pdfs, random_indices, axis=0)
 s_pt = np.take(pt, random_indices, axis=0)
 s_gt = np.take(gt, random_indices, axis=0)

 for i in range(num_samples):
 col = i % self.num_cols
 row = i // self.num_cols
 splts[row,col].plot(self.xrange, s_pdfs[i],'-')
 splts[row,col].axvline(s_pt[i], color='red')
 splts[row,col].axvline(s_gt[i], color='green')
 plt.show()

[image: ../_images/vis-pred-plot.png]

Download-Train-Evaluate

[image: ../_images/download.png]

This pipeline provides an example of how data can be retrieved and utilized in the same pipeline. The previous pipelines use manually uploaded artifacts. In many real cases, users may desire to retrieve novel data or more specific data using SciServer’s CasJobs API. In such cases, the DownloadSDSS node here makes downloading data relatively simple for users. It should be noted that the data downloaded is not in a form easily usable by our models and first requires moderate preprocessing, which is performed in the Preprocessing node. This general structure of download-process-train is a common pattern, as data is rarely supplied in a clean, immediately usable format.

 Redshift Estimation

Redshift Estimation

The project described on this page can be found in the examples repo [https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial] on GitHub under the name Redshift-Application.webgmex

This project provides a small collection of generalized pipelines for the training and utilization of redshift estimation models. This project is designed to allow simple use by only requiring that the configuration parameters of individual nodes be defined where necessary. The most involved alterations that should be necessary for most users is the definition of additional architectures in the Resources tab. It should be noted that any newly defined architecture should have an output length and input shape that match the num_bins and input_shape configuration parameters being used in the various pipelines.

Pipeline Overview

	Train Test Single

	Train Test Compare

	Download Train Evaluate

	Train Predict

	Predict Pretrained

	Test Pretrained

	Download SDSS

	Download Train Predict

	Visualize Predictions

[image: ../_images/application-pipelines.png]

Pipelines

Train Test Single

Trains and evaluates a single CNN model. Uses predefined artifacts that contain the training and testing data. For this and all training pipelines, the artifacts should each contain a single numpy array. Input arrays should be a 4D array of shape (n, y, x, c) where n=number of images, y=image height, x=image width, and c=number of color channels. Output (label) arrays should be of shape (n,) .

Train Test Compare

Trains and evaluates two CNN models and compares effectiveness of the models.

Download Train Evaluate

Downloads SDSS images, trains a model on the images, and evaluates the model on a separate set of downloaded images. Care should be taken when defining your own CasJobs query to ensure that all queried galaxies for training have a redshift value below the Train node’s max_val configuration parameter’s value.

Train Predict

Trains a single CNN model and uses the newly trained model to predict the redshift value of another set of galaxies.

Predict Pretrained

Predicts the redshift value of a set of galaxies using a pre-existing model that is saved as an artifact.

Test Pretrained

Evaluates the performance of a pre-existing model that is saved as an artifact.

Download SDSS

Download SDSS images and save them as artifacts. Can be used in conjunction with the other pipelines that rely on artifacts rather than images retrieved at execution time.

Download Train Predict

Download SDSS images and use some images to train a model before using the model to predict the redshift value of the remaining galaxies.

Visualize Predictions

This pipeline produces a visualization that can be helpful for understanding the effectiveness of your redshift estimation model. It generates a set of graphs like the one below that show the output probability distribution function (pdf) for the redshift values of a set of random galaxies’ images. A pair of vertical lines in each subplot indicate the actual redshift value (green) and the predicted redshift value (red) for that galaxy. This allows users to see how far the model’s predictions are from the correct answers and can help with identifying biases or weak-points the model may have (for example, consistently underestimation or inaccuracy with galaxies in a specific redshift range).

[image: ../_images/vis-pred-plot.png]

 Command Line Interface

Command Line Interface

This document outlines the functionality of the deepforge command line interface (provided after installing deepforge with npm install -g deepforge).

	Installation Configuration

	Starting DeepForge or Components

	Update or Uninstall DeepForge

	Managing Extensions

Installation Configuration

Installation configuration can be edited using the deepforge config command as shown in the following examples:

Printing all the configuration settings:

deepforge config

Printing the value of a configuration setting:

deepforge config blob.dir

Setting a configuration option, such as blob.dir can be done with:

deepforge config blob.dir /some/new/directory

For more information about the configuration settings, check out the configuration page.

Starting DeepForge Components

The DeepForge server can be started with the deepforge start command. By default, this command will start both the server and a mongo database (if applicable).

The server can be started by itself using

deepforge start --server

Update/Uninstall DeepForge

DeepForge can be updated or uninstalled using

deepforge update

DeepForge can be uninstalled using deepforge uninstall

Managing Extensions

DeepForge extensions can be installed and removed using the deepforge extensions subcommand. Extensions can be added, removed and listed as shown below

deepforge extensions add https://github.com/example/some-extension
deepforge extensions remove some-extension
deepforge extensions list

 Configuration

Configuration

Configuration of deepforge is done through the deepforge config command from the command line interface. To see all config options, simply run deepforge config with no additional arguments. This will print a JSON representation of the configuration settings similar to:

Current config:
{
 "blob": {
 "dir": "/home/irishninja/.deepforge/blob"
 },
 "mongo": {
 "dir": "~/.deepforge/data"
 }
}

Setting an attribute, say blob.dir, is done as follows

deepforge config blob.dir /tmp

Environment Variables

Most settings have a corresponding environment variable which can be used to override the value set in the cli’s configuration. This allows the values to be temporarily set for a single run. For example, starting the server with a different blob location can be accomplished by setting blob.dir can be done with:

DEEPFORGE_BLOB_DIR=/tmp deepforge start -s

The complete list of the environment variable overrides for the configuration options can be found here [https://github.com/deepforge-dev/deepforge/blob/master/bin/envConfig.json].

Settings

blob.dir

The path to the blob (large file storage containing models, datasets, etc) to be used by the deepforge server.

This can be overridden with the DEEPFORGE_BLOB_DIR environment variable.

mongo.dir

The path to use for the –dbpath option of mongo if starting mongo using the command line interface. That is, if the MONGO_URI is set to a local uri and the cli is starting the deepforge server, the cli will check to verify that an instance of mongo is running locally. If not, it will start it on the given port and use this setting for the –dbpath setting of mongod.

 Operation Feedback

Operation Feedback

Operations can provide a variety of forms of real-time feedback including subplots, 2D and 3D plots and images using matplotlib.

Graphs

The following example shows a sample 3D scatter plot and its rendering in DeepForge.

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

class Scatter3DPlots():

 def execute(self):
 # Set random seed for reproducibility
 np.random.seed(19680801)

 def randrange(n, vmin, vmax):
 '''
 Helper function to make an array of random numbers having shape (n,)
 with each number distributed Uniform(vmin, vmax).
 '''
 return (vmax - vmin)*np.random.rand(n) + vmin

 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')

 n = 100

 # For each set of style and range settings, plot n random points in the box
 # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
 for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]:
 xs = randrange(n, 23, 32)
 ys = randrange(n, 0, 100)
 zs = randrange(n, zlow, zhigh)
 ax.scatter(xs, ys, zs, marker=m)

 ax.set_xlabel('X Label')
 ax.set_ylabel('Y Label')
 ax.set_zlabel('Z Label')
 plt.show()

[image: ../_images/3d_graph.png]

Example of a 3D scatter plot using matplotlib in DeepForge

Images

Visualizing images using matplotlib is also supported. The following example shows images from the MNIST fashion dataset.

from matplotlib import pyplot
from keras.datasets import fashion_mnist

class MnistFashion():

 def execute(self):

 (trainX, trainy), (testX, testy) = fashion_mnist.load_data()
 # summarize loaded dataset
 print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
 print('Test: X=%s, y=%s' % (testX.shape, testy.shape))
 for i in range(9):
 pyplot.subplot(330 + 1 + i) # define subplot
 pyplot.imshow(trainX[i], cmap=pyplot.get_cmap('gray')) # plot raw pixel data
 pyplot.show()

[image: ../_images/mnist_fashion.png]

Visualizing MNIST fashion images in DeepForge

 Index

Index

_images/upload_artifact.png
#™ Upload Artifact (v0.2.0)

New Artifact

Datatoupload | sdss-rain.pkl (468.8 MiE)

DataType |pickie

Storage

Storage [SeiServer Files Service v

vsemame[wamams l

Password []
SciServer password

voume [seamameimanperoms \

Volume 1o use for pload

Volume Pool

Folders and fles in User Volumes under “Storage” will e backed up and permanent, but there s a quota lmitof 10GE.
Foiders and fles in User Volumes under “Temporary” are not backed up, and will be deleted afler 3 paricuar ime
period.

Save these setings inthe current user B8 -

_images/vgg-add-layer.png

_images/train-single.png
sdss-train-lab.pkl sdss-train-img. pkl

sdss-test-img.pkl

‘—¥

Predict sdss-test-lab pkl

— |

EvalRedshift

_images/train_operation.png
TrainValidate

_images/cifar-execute-dialog.png
Basic Options

Execution name

Debug Mode

Compute Options
Compute

Username.

Password

Compute Domain

Storage Options
Storage.

Username.

Password

Save these settings in the current user

3 Execute Pipeline (v0.1.0)

[rnr

Optional name for s executon instance

FALSE]

Allow for operation editing afler creation

SciServer Compute <

fimore \

SoServer password

Small Jobs Domain v

& small ob shares resources with up 1o 4 ther jobs and has a max quota for RAM of approx 32GB. A large ob runs.
‘exclusively and has all CPU cores and RAM available (appro 240GE), however snce only one farge job il un at a
time, there may be a longer wait forthe ob to start.

SciServer Files Sevice v

= \

_images/cifar-execute-storage.png
Storage Options
Storage.

Username.

Password

Volume

Volume Pool

SciServer Files Sevice v

[imoo

SaServer usemame.

SoServer password

[imoorseen

Volume 1o use for upioad.

Folders and fles in User Volumes under “Storage” wil be backed up and permanent, but there s a guota it of

10G8. Folders and fles in User Volumes under “Temporary” are not backed up, and vl be deleted aflr a partcular
ime period

_images/cifar-execute-button.png
HOME | CIFAR-10-Classifler

¥ CIFAR-10-Classifier
«

1

Execute Pipeline

iy
fagy

1 Associated Execution

e 0 CONNECTED

_images/vgg-blank.png
master VGG

HOME | VGG
¥ VGG

&

i

1l

‘CONNECTED

_images/cifar-execute-compute.png
Compute Options

Compute

Username.

Password

Compute Domain

SciServer Compute <

==

SaServer usemame.

SoServer password

Small Jobs Domain v

& small ob shares resources with up 1o 4 ther jobs and has a max quota for RAM of approx 32GB. A large ob runs.
‘exclusively and has all CPU cores and RAM available (appro 240GE), however snce only one farge job il un at a
time, there may be a longer wait forthe ob to start.

_images/vgg-block-conv.png
'
v

Conv2D
fiters: 2
Kemel size: 63)
striges: an
padding: same
data format: None
dlation rate: <none>
use bias: True
bias_constraint <none>
~Kkemel_constraint: <none>
activty_regulanzer: <none>
biss_reguisrizer <none>
keme_requiarizer: <none>
bias_initialzer: Zeros X
kemel_initiaiizer: glorot_uniform X
activation: relu X
v

Conv2D

_images/cifar-gt.png

_images/cifar-gtp.png

_images/cifar-execution-eval.png
CIFAR-10 Confusion Matrix accuracy=0.603
0027 oom 0018 0013 0005 0005 0008 043 0.038
o -
0000 0008 0001 0002 0.006 0000 0047 0.086
0159 0263 o115 0213 0075 0062 0034 0038 0013
ooes 007 004 o0%8 o1 0053 003 o028 003
oos6 000 004 0075 o026 0028 0131 0016 0.006 _
H
o034 000s 0037 | 0308 | o079 oo 0os0 007 0013

oo 001z 0020 0172 0132 0030

0043 0005 0017 0102 0065 0.0

0115 003 0002 0026 0003 0004 0005 0002

o 1 2 2 4 s 6 7 [s

0081 0125 0001 0022 OfQlies @S 0001 0015 0041

> console [EECICEHY

_images/cifar-execution-in-progress.png

_images/cifar-gtpe.png

_images/cifar-operation-io.png

_images/train-cifar-io.png

_images/train-compare.png

_images/train-cifar-attr.png
Edit attribute parameters... Edit attribute parameters...

Description |Enter an optonal descrption Description | Enter an optonal descrption

() Readonly (] Hidden [Enumeration () Readonly (] Hidden [Enumeration
Detautt value Detaut value
Inclusive Value Range [T J[maimum J Inclusive Value Range | inimum) [maimum]

_images/train-cifar-epochs.png
Name

Description

Type

Default value

Inclusive Value Range

Edit attribute parameters...

[Enter an optional description.

[0 Read-only

) Hidden

() Enumeration

[minmum

i

EECl cancel

_images/cifar-pipeline-blank.png
HOME | Cifar-10-Classifier

b4

&

1

Cifar-10-Classifier

Input

Output

NOTIFICATIONS [0]

‘CONNECTED

nav.xhtml

 Table of Contents

 		
 Welcome to DeepForge’s documentation!

 		
 Getting Started

 		
 What is DeepForge?

 		
 Design Goals

 		
 Overview and Features

 		
 Concepts and Terminology

 		
 Quick Start

 		
 Connecting to the Public Deployment

 		
 Interface Overview

 		
 Pipelines

 		
 Pipeline editing

 		
 Executions

 		
 Resources

 		
 Artifacts

 		
 Custom Utils

 		
 Custom Serialization

 		
 Custom Operations

 		
 The Basics

 		
 Operation Feedback

 		
 Storage and Compute Adapters

 		
 Storage Adapters

 		
 Compute Adapters

 		
 Quick Start

 		
 Without User Accounts

 		
 User Authentication Enabled

 		
 Overview

 		
 DeepForge Component Overview

 		
 Component Dependencies

 		
 Configuration

 		
 Native Installation

 		
 Dependencies

 		
 Database

 		
 Server

 		
 Worker

 		
 Updating

 		
 Manual Installation (Development)

 		
 DeepForge Server

 		
 Updating

 		
 Manual Installation (Production)

 		
 Introduction

 		
 Creating Pipelines

 		
 Creating Operations

 		
 Editing the Operation Interface

 		
 Implementing the Operation

 		
 Importing Libraries

 		
 Creating Neural Networks

 		
 Importing Resource Libraries

 		
 Creating a New Architecture

 		
 Editing Network Layers

 		
 Adding Additional Layers

 		
 Connections Between Layers

 		
 Exporting Architectures

 		
 Executing Pipelines

 		
 Executing within DeepForge

 		
 Basic Options

 		
 Credentials for Pipeline Inputs

 		
 Compute Options

 		
 Storage Options

 		
 Export Pipeline

 		
 Viewing Executions

 		
 Monitoring Executions

 		
 Viewing Execution Status

 		
 Viewing the Compute Dashboard

 		
 Viewing Execution Output

 		
 CIFAR-10 Classifier

 		
 Pipeline Overview

 		
 GetCifarData Operation

 		
 TrainCifar Operation

 		
 Neural Network Architecture

 		
 PredictCifar Operation

 		
 EvalCifar Operation

 		
 ViewCifar Operation

 		
 Execution and Results

 		
 Redshift Estimator

 		
 Pipeline Overview

 		
 Input Operations

 		
 TrainRedshift Operation

 		
 Neural Network Architecture

 		
 Input Block

 		
 Inception Blocks

 		
 Classifier Block

 		
 PredictRedshift Operation

 		
 EvalRedshift Operation

 		
 PdfVisRedshift Operation

 		
 Output Operations

 		
 Execution and Results

 		
 Tutorial Project - Redshift

 		
 Pipeline Overview

 		
 Pipelines

 		
 Basic Input/Output

 		
 Display Random Image

 		
 Display Random CIFAR-10

 		
 Train CIFAR-10

 		
 Train-Test

 		
 Train-Test-Compare

 		
 Train-PredVis

 		
 Download-Train-Evaluate

 		
 Redshift Estimation

 		
 Pipeline Overview

 		
 Pipelines

 		
 Train Test Single

 		
 Train Test Compare

 		
 Download Train Evaluate

 		
 Train Predict

 		
 Predict Pretrained

 		
 Test Pretrained

 		
 Download SDSS

 		
 Download Train Predict

 		
 Visualize Predictions

 		
 Command Line Interface

 		
 Installation Configuration

 		
 Starting DeepForge Components

 		
 Update/Uninstall DeepForge

 		
 Managing Extensions

 		
 Configuration

 		
 Environment Variables

 		
 Settings

 		
 blob.dir

 		
 mongo.dir

 		
 Operation Feedback

 		
 Graphs

 		
 Images

_images/cifar-view-output.png

_images/custom_serializer.png
1

_images/cifar-pipeline-final.png

_images/cifar-select-execution.png
1

Name

fun_cifar_3

estimate_redshift

master

MyExecutions

Creation Date

9162020

Today (12:27:53 PM)

Origin Pipeline

CIFAR-10-Classifier

RedshiftEstimator

Duration

34 minutes

3hours

Delete

0 w0 0 a0 20 30, 0 b0
o7 = .
10
20
= 30
0 dah 20ies 30 0 a0 20mt 30, 0 a0 20 30 0_t0 20mr 30,
10
20
20
o ™

ﬂo

tuck truck frog frog frog frog ship ship

_images/display-rand-img.png

_images/download.png

_images/custom_utils.png
BRe

GREBvaNauswnr

"

swarp_config_string =
Default configuration file for SWarp 2.38.0
EB 2019-08-08
#
#- --- Output ---
TMAGEOUT_NAME coadd. fits # Output filename
WETGHTOUT_NAME coadd.weight.fits # Output weight-map filename

NNEER DR
REL&ENEGER

HEADER_ONLY N # Only a header as an output ffile (Y/N)?
HEADER_SUFFIX -head # Filename extension for additional headers

NNN
RER

-- Input Weights ---

NN
S5

WETGHT_TYPE NONE BACKGROUND , MAP_RMS , MAP_VARTANCE
or MAP_WEIGHT

Rescale input weights/variances (Y/N)?
Suffix to use for weight-maps
Weightmap filename if suffix not used
(all or for each weight-map)

WETGHT_THRESH # Bad pixel weight-threshold

NN
AN

RESCALE_WEIGHTS Y
WEIGHT_SUFFIX .weight.fits
WEIGHT_IMAGE

8B

#
#
#
#
#
#

e

-- Co-addition --

ww
Rl

COMBINE Y
COMBINE_TYPE MEDIAN

Combine resampled images (Y/N)?
MEDTAN, AVERAGE , MIN, MAX, WETGHTED, CLTPPED
CHI-OLD, CHI-MODE, CHI-MEAN, SUM,
WETGHTED_WEIGHT ,MEDIAN_WETGHT,
AND,NAND,OR or NOR

CLIP_AMPFRAC . # Fraction of flux variation allowed
#
#
#
#
#

BRSWww
RBss®Y

with clipping
RMS error multiple variation allowed
with clipping

Write output file with coordinates of

&
&

CLIP_STGMA

RS

CLIP_WRITELOG

N
&

_images/display-cifar.png

_images/eval-cifar-io.png

_images/execute_pipeline.png
3 Execute Pipeline (v0.1.0)

Basic Options

Execution name

Debug Mode

Compute Options
Compute

Username.

Compute Domain

Storage Options
Storage.

Username.

Password

Save these settings in the current user

[Eremoe

Optional name for s executon instance

FALSE]

Allow for operation editing afler creation

SciServer Compute <

[sorams

SaServer usemame.

SoServer password

Small Jobs Domain v

& small ob shares resources with up 1o 4 ther jobs and has a max quota for RAM of approx 32GB. A large ob runs.
‘exclusively and has all CPU cores and RAM available (appro 240GE), however snce only one farge job il un at a

time, there may be a longer wait forthe ob to start.

SciServer Files Sevice v

[swomare

SaServer usemame.

SaServer omssun

_images/execution_finished.png

_images/export-pipeline.png
master CIFAR-10-Classifier

HOME | CIFAR-10-Classifler

¥ CIFAR-10-Class

AN

L

Export Pipeline

1 Associated Execution

NOTIFICATIONS [0] GONNECTED

_images/get-cifar-pipeline.png

_images/executions_tab.png
HOME

1] Name Creation Date Origin Pipeline Duration Delete
” Visualize_Original_Images 412812020 VisualizeEmbeddings 5 minutes x Learned Features (color-coded by redshift value)
= Visualize_Leamed_Features 2 412912020 VisualizeFeaturesAndError 1 minutes. x

=] Visualize_Leamed_Features 412812020 VisualizeEmbeddings 5 minutes x

&

_images/export-pipeline-dialog.png
£+ Export (v1.0.0)

Static Artfacts

sdss-testimg.pkl
sdss-testlab.pkl
sdss-train-img.pkl

sdss-train-iab.pk!

Storage Creder

sdss-trai

Username

Save these settings in the current user

TRUE

Exportsdss-estimg pkl as sttic (non-input) content

TRUE
Exportsdss-testlab pkl as satic (non-input) content
3

Exportsdss-train-img pki as statc (non-inpul) content

TRUE
Exportsds-train-dab pkl s static (non-input) content

kmoore

SServer usemame.

m cance!

_images/incep-incep-block-1.png

_images/incep-incep-block-2.png

_images/get-data-io.png

_images/import_artifact.png
storage

Usemame

Password

Volume

Volume Pool

File Path

Data Type

Save these settings in the current user

Import Existing Data (v0.1.0)

SciServer Files Semice v

usemame.

SciServer username.

SciServer password

usemame/exampleVolune

Volume 1o use for pload

Folders and fles in User Volumes under “Storage” will e backed up and permanent, but there s a quota lmitof 10GE.
Foiders and fles in User Volumes under “Temporary” are not backed up, and will be deleted afler 3 paricuar ime
period.

sublolder/myArtiact

Fain 10 an existing affact n the siorage backend

picke

m Gance!

_images/incep-input-block.png
Input

shape: (64645)

batch shape: None

aype: None

sparse False

tensor: None

Conv2D
fiters: 64
Kemel size: (55)
strdes: a1
pacding: same
data format None
dilation rate <none>
use bias: Tue
bias_constraint: <none>
kemel_constraint <none>
sctvity_reguisrizer <none>
biss_requianzer <none>
kemel_regulanzer <none>
bias_intalizer: Zeros X
kemeL_initializer- glorot_uniform X
activation: finear X
PRelLU
shared axes: None

alpha_constraint: <none>
sipha_requianzer <none=
spha_initizer Zeros X

!

AveragePooling2D

pool size: @2
stres: @2
padding same

data format: None

_images/incep-output.png
Flatten
Dense
unis 109
use bias True
tiss_constraint <none>
kemel_constrait <none>
acty_requienzer: <none>
biss_regulrizer. <none>
kemel_regulanzer <none>
tiss_intilzer- Zeros X
keme_inizer: glorot_uniform X
actvaton relu X
Dropout
rate 03
noise shape: None
seed None
Dense
unts: 120
use bias: Tre
tis_constrait <nane>
kemel_constraint <none>
actty_requierzer: <nonex
tiss_regularizer <none>
kernel_regularizer: <none>
tias_intalzer Zoros X

KemeL_initaizer:glorot_uniform X
activaion: softmax X

_images/incep-incep-block-3.png
v
AveragePooling2D

_images/network-connect-delete.png

_images/network-connect-hover.png

_images/interface_tabs.png
i

1l

_images/mnist_fashion.png
oof 1 {]=
_[sla}=}-

_images/network-new-layer.png
Coe | Convolutonal Poolng Normaization
Advanced_acivations Recurient Local Merge
Topology Wrappers

Activation Dense Dropout
Masking Permute RepeatVector
SpatialDropout!D ~ SpatialDropout2D

Embeddings

Noise Cudnn_recurrent

Flatten Lambda

Reshape

SpatialDropout3D

_images/network-multi-io.png

_images/network-multi-out.png
Input

1 4

Conv2D Conv2D Conv2D

! ! !

Output (1) output (2) Output (3)

_images/new-operation-orig.png

_images/new-operation.png
INSYNG' NOTIFICATIONS[0] | GONNECTED'

_images/neural_network.png

_images/new-operation-io.png

_images/operation_editor.png
¥ redshift x| +

<« C @ localhost:8888/?project=guest%2Bredshift&branch=master&node=%2Fk%2Fc&visualizer=Mode|Editor&tab=0&layout=SidebarLayout&selection= Q " N

deepf_:rge > redshift » master > TrainValidate

HOME ' TrainValidate

24 ort numpy as np Operation Interface = Environment
m sklearn.model_selection import train_test_split
& t keras
import time
i from matplotlib import pyplot as plt
8 import tensorflow as tf
o config = tf.compat.vl.ConfigProto()
config.gpu_options.allow_growth =
- sess = tf.compat.vl.Session(config=config)
=

class TrainvValidate():
def __init__(self, model, epochs=10, batch_size=32)
self.model=model

self.batch_size = batch_size
self.epochs = epochs TrainValidate
np.random.seed(32)

return
execute(self, dataset): l
model=self.model
model.summary()
model. (optimizer='adam',
loss="sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
X = dataset['X']
y = dataset['y']
y_cats = self.to_categorical(y)
model.fit(X, y_cats,
epochs=self.epochs,
batch_size=self.batch_size,
validation_split= B
_Tp

_images/operation_environment.png
Operation Inte Environment

1

3 - dependencies:

4 - python=3.7
5 - pip:
[- tensorflow==1.14
7 - keras=2.2.5

8 - matplotlib

9 - numpy

0

1

1 - scikit-learn
1

_images/operation-code-editor.png
Editing "Norm" Implementation
#
The 'execute' method will be called when the operation is run
class Norm():
def _init_ (self, degree=2):
self.degree = degree
return

def execute(self, values):
result = @
for v in values:
result += v ** self.degree

result = result ** (1 / self.degree)

return result

_images/operation-depen.png
1¢
1
-
13
14
15
16
17

NEBovmNousuwnr

from tqdm import tqdm

class Norm():
def _init_ (self, degree=2):
self.degree = degree
return

def execute(self, values):
result 2]
for v in tqdm(values):
result += v ** self.degree

result = result ** (1 / self.degree)

return result

[UENEVENIN

dependencies:
- python=3.7

- tqdm

_images/operation_interface.png
model

_images/view-cifar-attr.png
Edit attribute parameters

Name.

Description

Type

Default value

Inclusive Value Range

num_images

Enter an optional description

[0 Read-only

[0 Hidden

() Enumeration

minimum

[raimam

EECl cancel

_images/output-artifacts.png
1l

Name

‘modekpredictions

trained-model

sdsstrain-img.pki

sdss-train-fab.pkl

sdss-testlab.pkl

sdssestimg.pki

master

MyAtifacts

Type
numpynerray
Keras engine taining Model
pickie
pickie
pickie

pickle

size

19KB

2043MiB

4688 MiB.

47.0KB

19KB

17.2MB

Creation Date

72020

72020

72020

72020

72020

72020

NOTIFIGATIONS [0]

oxe
oxe
oxe
oxe
oxe
oxe

CONNECTED

_images/view-compute-window.png
== Compute Overview

WebGME Executor Framework | SciServer Compute

Compute information can be found on SciServer's Compute Dashboard.

_images/view-cifar-io.png

_images/view-graphical-output.png
far

HOME | estimate_redshit / EvalRedshift

b4

> Tutorial master EvalRedshift

Redshift Confusion Scatterplot.

&
e =
3
= ord._bia: .00 MAD Daviation: 0,019 Facton f Outiars: .
B 025-
o
02-
.
2 os-
H
< 01-
003
ok

True Redshift

> Console JECIEC]

_images/view-compute.png
farge » T EvalRedshift

 Manage projects
+ New project

‘ 2 Import project Ision Scatterplot
View compute ,) :

1d_biss: -0.000 MAD Davistion: 0,015 Fraction of O

_images/vgg-generate-keras.png
£+ GenerateKeras v0.1.0

Execute on Server FaLse

Used Namespace (2125 v]

‘The namespace the piugin shouid run under:

() Savethso setings i the curent user [

_images/vgg-gen-keras-view-res.png
rial master VGG

¥ VGG
&
- L
=] \A
o Conv2D
\A
Conv2D
A\
MaxPooling2D
\A

Conv2D

Nom

_images/vgg-input-error.png

_images/vgg-input-doc.png
Input Documentation

Input() is used to instantiate a Keras tensor. A Keras tensor is a tensor object from the underlying
backend (Theano, TensorFlow or CNTK), which we augment with certain atirioutes that allow us to build a
Keras model just by knowing the inputs and outputs of the model. For instance, i 3, b and ¢ are Keras
tensors, it becomes possible to dor model = Hodel (input=[a, b], output=c) The added Keras attributes
are: _ieras_shape - Integer shape tuple propagated via Keras-side shape inference. _keras_nistory
Last layer appiied to the tensor the entire layer graph is retrievable from that layer. recursively.

Arguments

« shape: Ashape tuple (integer), not including the batch size. For instance, sha;
that the expected input will be batches of 32-dimensional vectors

« batch_shape: A shape tuple (infeger) including the batch size. For instance, batch_shape=(10,
32) indicates that the expected input will e batches of 10 32-dimensional vectors. batch_shaps
(tone, 32) indicates batches of an arbirary number of 32-dimensional vectors

« name: An optional name siring for the layer. Should be unique in @ mode! (do ot reuse the same
name twice). It will be autogenerated if it isn' provided.

« diype: The data type expected by the input, as a string (losts2 , flostes , ints2)

« sparse: A boolean specifying whether the placenolder to be created is sparse.

« tensor Optional existing tensor to wrap into the Trput layer. If i, the layer will not create a
placsholder tensor

32,) indicates

Returns

Atensor.

_images/vgg-input.png
TED

‘CONNEC

0]

B
£
15
2

e

w

8
>

5
g
E

f:
HOME ' VGG

@ X dl B s o1l

_images/vgg-input-hover.png
® 2
Input

shape: (32323)
batch shape: None

_images/basic-io.png
GenArray

—

Output PrintArray

_images/cifar-eval-output.png
True label

bird

cat

deer

dog

frog

horse

ship

truck

0.063

0.012

0.012

0.009

0.009

0.005

0.081

0.014

CIFAR-10 Confusion Matrix
accuracy=0.713

0.008

0.006

0.002

0.007

0.001

0.025

0.028

0.036 0.055 0.014 0.007 0.007 0.049 0.034 0.052

0.006 0.007 0.001 0.005 0.001 0.004 0.018 0.138

0.085 0.094 0.112 0.054 0.048 0.010 0.015

0.054

0.239 0.049 0.063 0.018 0.032

0.039 0.053 0.028 0.096 0.006 0.011

0.024 0.127 0.041 [S4¥4 0.010 0.052 0.004 0.017

0.051 0.080 0.055 0.030 0.015 0.030 0.032
0.015 0.030 0.040 0.066 0.003

0.007 0.037 0.007 0.008 0.001

0.001 0.014 0.000 0.004 0.003

> & & SV Y
& & F o @ & S
N & <& &S
Predicted label

_images/artifact-import-upload.png
#™ Upload Artifact (v0.3.0)

New Artifact

Data to upload

storage

Usemame

Password

Volume

Volume Pool

Data Type

Save these settings in the current user

sdss-testiab.pkl

SciServer Files Semice v

kmoore

SciServer username.

SciServer password

kmoorelsdss-data

Volume 1o use for pload

Folders and fles in User Volumes under “Storage” will be backed up and
permanent,but here s a quota it o 10G8. Folders and fles in User
Volumes under “Temporary” are not backed up, and vl be deleted after 2
particular fime period.

picke

=4 Import Existing Data (v0.1.0)

storage

Usemame

Password

Volume

Volume Pool

File Path

Data Type

Save these settings n the current user
m Gance!

SciServer Files Semice v

kmoore

SciServer username.

SciServer password

kmoorelsdss-data

Volume 1o use for pload

Folders and fles in User Volumes under “Storage” will be backed up and
permanent,but here s a quota it o 10G8. Folders and fles in User
Volumes under “Temporary” are not backed up, and vl be deleted after 2
particular fime period.

sdss-train-iab.pkl

Fain 10 an existing affact n the siorage backend

oicid

m Gance!

_images/artifacts_tab.png
HOME

v Name Type Size Creation Date
”
= Incepirined unknown 1525 MiB 4242020 oxe
2 ‘sdss-train-img. pkl Ppickle 468.8 MiB 412012020 ox0
B sdssrain-ab.pid pickle a7.0kE 4202020 oxe
@ sdssHestimg pkl pickie 17.2M8 4202020 oxe
= sdss-testab okl pickle 19KB 4202020 oxe
ResNet-predictions unknown 19KB 4252020 oxe
ResNetresults unknown 2738 4252020 oxe
Incep-predictons unknown 19KB 4252020 oxe
Incep-resuits unknown 2738 4252020 oxe

ResNettrained unknown 17.0MiB 4252020 oxe

_images/cifar-execute-basic.png
Basic Options

Execution name | run-cfar

Optional name for s executon instance

DebugMode | [FALSE

Allow for operation editing afler creation

_images/pipelines_tab.png
HOME

v

[INEN

1

ﬁ
PreprocessedTraining

No executions

OPEN DELETE

ComputeFeatures

No executions

OPEN DELETE

SplitTrainTest

No executions

OPEN

TrainVisualize

DELETE

No executions

OPEN

DELETE

Vi .

VisualizeFeaturesAndErrc

Executed once.

OPEN DELETE

VisualizeEmbeddings

Executed twice

OPEN

DELETE

=

ProjectTo3Dims

No executions

OPEN DELETE

e

VisualizePredictionsOnly

No executions

OPEN DELETE

_images/plotloss.png
Loss

27

26

25

24

23

15

Training Loss

Epochs

25

_images/pipeline_example.png
HOME | SpilTrainTest

|# a SplitTrainTest
.

i)

No Associated Executions

_images/pipelines-view.png
HOME

1l

CIFAR-10-

Classifier

Executed once

OPEN DELETE

master

MyPipelines

RedshiftEstimatol

Executed once

OPEN DELETE

_images/application-pipelines.png
|| SRR | | .

1 = Pt = Prrocess
= . = { -
Train-Predict Predict- Test- Train-Test- Train- Download-
No evecutions . . . o
Pretrained Pretrained Single Visualize SDSs
No executions No executions Executed once Executed once Executed once
OPEN DELETE
OPEN DELETE OPEN DELETE OPEN DELETE OPEN DELETE OPEN DELETE

=

i

=
Download- Train-Test- Visualize- Download-
Train- Compare Predictions Train-Predict
No executions No executions No evecutions
Evaluate
No evecutions
OPEN DELETE OPEN DELETE OPEN DELETE

_images/redshift-eval-io.png

_images/artifact-blank.png
firge » Tutorial > master > MyAifacts 1

HOME

b4

&

Name. Type size Creation Date

1l

NOTIFICATIONS [0] GONNECTED

_images/redshift-eval-res.png
master MyExecutions

Name Creation Date Origin Pipeline Duration Delete Redshift Confusion Scatterplot

fun_cifar_3 9162020 CIFAR-10-Classifier 34 minutes x
0a-

estimate_redshift Today (12:27:53 PM) RedshiftEstimator 6 hours x

pred_bias: -0.000 MAD Daviation: 0.015 Fraction of Outlers: 0.005 Avg. CRPS: 0027

02s-

0z2-

01s-

Predicted Redsh ft

01-

0.0s-

[005 o1 015 0z 025 0

True Redshift

INSYNG' NOTIFICATIONS[0] | CONNECTED

_images/predict-cifar-io.png

_images/3d_graph.png
scatter points
scatter points

_images/redshift-eval-depen.png
deepfirge > Tutorial > master > EvalRedshift Lijes

1
1 import numpy as np 2
2 1 properscoring import crps_gaussian 3 endencies
3 import matplotlib.pyplot as plt 4 - python=3.7
a4 5 - pip
5- class EvalRedshift() 6 - properscoring
6 7
7 def execute(self, gt, pt)
8 print(’Evaluating model')
9
10
11 residuals = (pt - gt) / (gt + 1)
12 = np.average(residuals)
13 ! np.median(np.abs(residuals
14 frac_outliers = np.count_nonzero(np.
15 crps = np.average(crps_gaussian(pt, |
16

i

_images/redshift-execute-creds.png
Credentials for Pipeline Inputs

sdss-trai-imgphi (SciServe

Files Service).

Username.

Password

sdss-testimg.pkl (SciServer Files Service):

Username.

Password

sdiss-test-ab.pki (SciServer Files Service).

Username.

Password

sdiss-train-lab.pki (SciServer Files Service):

Username.

Password

kmoore

SaServer usemame.

SoServer password

kmoore

SaServer usemame.

SoServer password

kmoore

SaServer usemame.

SoServer password

kmoore

SaServer usemame.

SoServer password

_images/vgg-class-block-dense.png
Dense

unis:
use bias:
bias_constraint:
kemel_constraint
actvity_reguisrizer
bias_requiarizer
kemel_reguianzer
bias_initializer:

2048

Tue
<none>
<none>
<none>
<none>
<none>
Zeros X

KemeL_initalizer:glorot_uniform X

activation:

Dense

relu X

_images/vgg-block-pool.png
MaxPooling2D

Dol size: @2
strdes: @2
padding: valid
data format: None

v

_images/vgg-gen-keras-view-res-details.png
Plugin results...

 GenerateKeras = rinue sse Detais

EXECUTION HISTORY
= #a9%ceb started from master

GENERATED ARTIFACTS
« outputpy (57 KiB)

Clearresults Il

_images/vgg-class-block-out.png
Dense

Dense
unis: 10
use bias: Tue
bias_constraint: <none>
kemel_constraint <none>
actvity_reguisrizer <none>
bias_requiarizer <none>
kemel_reguianzer <none>
bias_initializer: Zeros %

KemeL_initalizer: glorot_uniform X
activation: softmax X

_images/pipeline-view-exec.png
HOME | CIFAR-10-Classifler

b4
&

1

CIFAR-10-Classifier

1 Associated Execution

Name

run_cifar_3

Creation Date

962020

NOTIFICATIONS [0]

‘CONNECTED

_images/redshift-predict-io.png

_images/redshift-t.png

_images/redshift-pdfvis-io.png

_images/redshift-pdfvis-res.png
4 0.1 0.2 03 04

075 pt=0.070 2=0.005

01s-

01-

0.0s-

06-

0.4-

0z2-

0.06-

0.04-

0.02-

k

01 0z 0 08
> Console

0

0a-

02-

01-

03

04

5t=0.162 pt=0.136 4=0.027

0

02-

01-
ok

.2
.2

03

04

081 pt=0.073 £=0.009

01-

01 o
01 o

o1 0z

0

1160 pt=0.159 £=0.002

0s-

0s-

0.4-

02-

01-

01-

o0s-

B2 03 0.

01
5t=0.026 pt=0.036 4=0.010
01 02 03 0.4
5t=0.178 pt=0.173 8=0.005
o 4
t=0.151 pt=0.166 £=0.015
o1

_images/redshift-tpep.png

_images/redshift-train-io.png

_images/redshift-tp.png

_images/redshift-tpe.png

_static/up.png