Deep-Learning-TensorFlow

Documentation
Release latest

October 09, 2016






Contents

10

11

12

13

14

15

Requirements

Installation

Command line utility Configuration
Available models

Convolutional Networks

Recurrent Neural Network (LSTM)
Restricted Boltzmann Machine
Deep Belief Network

Deep Autoencoder

Denoising Autoencoder

Stacked Denoising Autoencoder
Stacked Deep Autoencoder
MultiLayer Perceptron

Utilities

TODO list

11

13

15

17

19

21

23

25

27

29

31







Deep-Learning-TensorFlow Documentation, Release latest

This project is a collection of various Deep Learning algorithms implemented using the TensorFlow library. This
package is intended as a command line utility you can use to quickly train and evaluate popular Deep Learning models
and maybe use them as benchmark/baseline in comparison to your custom models/datasets.

Contents 1


https://github.com/blackecho/Deep-Learning-TensorFlow/

Deep-Learning-TensorFlow Documentation, Release latest

2 Contents



CHAPTER 1

Requirements

* python 2.7

¢ tensorflow >= 0.8 (tested on tf 0.8 and 0.9)




Deep-Learning-TensorFlow Documentation, Release latest

4 Chapter 1. Requirements



CHAPTER 2

Installation

Through pip::

pip install yadlt

Through github:
* cd in a directory where you want to store the project, e.g. /home /me
¢ clone the repository: git clone https://github.com/blackecho/Deep-Learning-TensorFlow.git
* cd Deep-Learning-TensorFlow/dlmodels

* now you can configure (see below) the software and run the models!




Deep-Learning-TensorFlow Documentation, Release latest

6 Chapter 2. Installation



CHAPTER 3

Command line utility Configuration

* command_line/config.py: Configuration file, used to set the path to the data directories:
— models_dir: directory where trained model are saved/restored
— data_dir: directory to store data generated by the model (for example generated images)

— summary_dir: directory to store TensorFlow logs and events (this data can be visualized using Ten-
sorBoard)




Deep-Learning-TensorFlow Documentation, Release latest

8 Chapter 3. Command line utility Configuration



CHAPTER 4

Available models

Below you can find a list of the available models along with an example usage from the command line utility. Please
note that the parameters are not optimized in any way, I just put random numbers to show you how to use the program.




Deep-Learning-TensorFlow Documentation, Release latest

10 Chapter 4. Available models



CHAPTER 5

Convolutional Networks

Cmd example usage::

python command_line/run_conv_net.py —--dataset custom —--main_dir convnet-models ——model_rﬁame my .Awesor

This command trains a Convolutional Network using the provided training, validation and testing sets, and the specified
training parameters. The architecture of the model, as specified by the —layer argument, is:

* 2D Convolution layer with 5x5 filters with 32 feature maps and stride of size 1
* Max Pooling layer of size 2

* 2D Convolution layer with 5x5 filters with 64 feature maps and stride of size 1
* Max Pooling layer of size 2

* Fully connected layer with 1024 units

¢ Softmax layer

For the default training parameters please see command_line/run_conv_net.py. The TensorFlow trained model will be
saved in config.models_dir/convnet-models/my. Awesome.CONVNET.

11



Deep-Learning-TensorFlow Documentation, Release latest

12 Chapter 5. Convolutional Networks



CHAPTER 6

Recurrent Neural Network (LSTM)

Cmd example usage::

python command_line/run_lstm.py --dataset ptb —--main_dir lstm-models —--ptb_dir /path/to/fptb/dataset

Instructions to download the ptb dataset:
» download the dataset from here: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
* extract it

* provide the path to the data/ directory

13


http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

Deep-Learning-TensorFlow Documentation, Release latest

14 Chapter 6. Recurrent Neural Network (LSTM)



CHAPTER 7

Restricted Boltzmann Machine

Cmd example usage::

python command_line/run_rbm.py —--dataset custom —--main_dir rbm-models —--model_name my.Av#esome.RBM ——1

This command trains a RBM with 250 hidden units using the provided training and validation sets, and the speci-
fied training parameters. For the default training parameters please see command_line/run_rbm.py. The TensorFlow
trained model will be saved in config.models_dir/rbm-models/my.Awesome.RBM.

15



Deep-Learning-TensorFlow Documentation, Release latest

16 Chapter 7. Restricted Boltzmann Machine



CHAPTER 8

Deep Belief Network

Stack of Restricted Boltzmann Machines used to build a Deep Network for supervised learning.

Cmd example usage::

python command_line/run_dbn.py --dataset mnist --main_dir dbn-models --model_name myfde#perfdbn ——Ve

This command trains a DBN on the MNIST dataset. Two RBMs are used in the pretraining phase, the first is 784-512
and the second is 512-256. The training parameters of the RBMs can be specified layer-wise: for example we can

specify the learning rate for each layer with: —rbm_learning_rate 0.005,0.1. In this case the fine-tuning phase uses
dropout and the ReLU activation function.

17



Deep-Learning-TensorFlow Documentation, Release latest

18 Chapter 8. Deep Belief Network



CHAPTER 9

Deep Autoencoder

Stack of Restricted Boltzmann Machines used to build a Deep Network for unsupervised learning.

Cmd example usage::

python command_line/run_deep_autoencoder.py —--dataset cifarl0 --cifar_dir path/to/cifario —--main_dir

This command trains a Deep Autoencoder built as a stack of RBMs on the cifar10 dataset. The layers in the finetuning
phase are 3072 -> 8192 -> 2048 -> 512 -> 256 -> 512 -> 2048 -> 8192 -> 3072, that’s pretty deep.

19



Deep-Learning-TensorFlow Documentation, Release latest

20

Chapter 9. Deep Autoencoder



cHAPTER 10

Denoising Autoencoder

Cmd example usage::

python command_line/run_autoencoder.py —--n_components 1024 —--batch_size 64 —--num_epochs |20 —-verbose

This command trains a Denoising Autoencoder on MNIST with 1024 hidden units, sigmoid activation function
for the encoder and the decoder, and 50% masking noise. You can also initialize an Autoencoder to an al-
ready trained model by passing the parameters to its build_model () method. If you are using the command
line, you can add the options ——weights /path/to/file.npy, ——h_bias /path/to/file.npy and
--v_bias /path/to/file.npy. If you want to save the reconstructions of your model, you can add the option
-—save_reconstructions /path/to/file.npy and the reconstruction of the test set will be saved. You
can also save the parameters of the model by adding the option ——save_paramenters /path/to/file. Three
files will be generated: file-enc_w.npy, file—enc_b.npy and file-dec_b.npy.

21



Deep-Learning-TensorFlow Documentation, Release latest

22

Chapter 10. Denoising Autoencoder



CHAPTER 11

Stacked Denoising Autoencoder

Stack of Denoising Autoencoders used to build a Deep Network for supervised learning.

Cmd example usage::

‘python command_line/run_stacked_autoencoder_supervised.py --dae_layers 1024,784,512,256 |-—-dae_batch_:

This command trains a Stack of Denoising Autoencoders 784 <-> 1024, 1024 <-> 784, 784 <-> 512, 512 <-> 256,
and then performs supervised finetuning with ReLU units. This basic command trains the model on the training set
(MNIST in this case), and print the accuracy on the test set. If in addition to the accuracy you want also the predicted
labels on the test set, just add the option ——save_predictions /path/to/file.npy. You can also get the
output of each layer on the test set. This can be useful to analyze the learned model and to visualized the learned
features. This can be done by adding the ——save_layers_output /path/to/file. The files will be saved
in the form file-layer-1.npy, file-layer-n.npy.

23



Deep-Learning-TensorFlow Documentation, Release latest

24 Chapter 11. Stacked Denoising Autoencoder



CHAPTER 12

Stacked Deep Autoencoder

Stack of Denoising Autoencoders used to build a Deep Network for unsupervised learning.

Cmd example usage::

python command_line/run_stacked_autoencoder_unsupervised.py --dae_layers 512,256,128 77<ﬁae_batch_size

This command trains a Stack of Denoising Autoencoders 784 <-> 512, 512 <-> 256, 256 <-> 128, and from there
it constructs the Deep Autoencoder model. The final architecture of the model is 784 <-> 512, 512 <-> 256, 256
<-> 128, 128 <-> 256, 256 <-> 512, 512 <-> 784. If you want to get the reconstructions of the test set performed
by the trained model you can add the option ——save_reconstructions /path/to/file.npy. Like for
the Stacked Denoising Autoencoder, you can get the layers output by calling ——save_layers_output_test
/path/to/file for the test set and ——save_layers_output_train /path/to/file for the train set.
The Deep Autoencoder accepts, in addition to train validation and test sets, reference sets. These are used as reference
samples for the model. For example, if you want to reconstruct frontal faces from non-frontal faces, you can pass the
non-frontal faces as train/valid/test set and the frontal faces as train/valid/test reference. If you don’t pass reference
sets, they will be set equal to the train/valid/test set.

25



Deep-Learning-TensorFlow Documentation, Release latest

26

Chapter 12. Stacked Deep Autoencoder



CHAPTER 13

MultiLayer Perceptron

Just train a Stacked Denoising Autoencoder of Deep Belief Network with the —do_pretrain false option.

27



Deep-Learning-TensorFlow Documentation, Release latest

28

Chapter 13. MultiLayer Perceptron



CHAPTER 14

Utilities

Each model has the following utilities:

-—-seed n: set numpy and tensorflow random number generators to n

-—restore_previous_model: restore a previously trained model with the same model_name and
model architecture of the current model. Note: when using this feature with models that support pretrain-
ing (e.g. stacked_denoising_autoencoder) you should keep the ——do_pretrain option to true and set the
——num_epochs option to 0.

29



Deep-Learning-TensorFlow Documentation, Release latest

30

Chapter 14. Utilities



CHAPTER 15

TODO list

* Add Performace file with the performance of various algorithms on benchmark datasets
* Variational Autoencoders

* Reinforcement Learning implementation (Deep Q-Learning)

31



	Requirements
	Installation
	Command line utility Configuration
	Available models
	Convolutional Networks
	Recurrent Neural Network (LSTM)
	Restricted Boltzmann Machine
	Deep Belief Network
	Deep Autoencoder
	Denoising Autoencoder
	Stacked Denoising Autoencoder
	Stacked Deep Autoencoder
	MultiLayer Perceptron
	Utilities
	TODO list

