

Welcome to decorating’s documentation!

Table of Contents

	Decorating: A Meta Repo To Decorators

	Abstract

	Examples
	Animated

	Writing

	Decorators & Usage

	Installation
	License

	decorating package
	Submodules

	decorating.animation module

	decorating.asciiart module

	decorating.base module

	decorating.color module

	decorating.debugging module

	decorating.decorator module

	decorating.general module

	decorating.stream module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Decorating: A Meta Repo To Decorators

[image: Build Status] [https://travis-ci.org/ryukinix/decorating] [image: codecov] [https://codecov.io/gh/ryukinix/decorating] [image: Requirements Status] [https://requires.io/github/ryukinix/decorating/requirements/?branch=master] [image: PyPi version] [https://pypi.python.org/pypi/decorating/] [image: PyPI pyversions] [https://pypi.python.org/pypi/decorating/] [image: PyPI status] [https://pypi.python.org/pypi/decorating/] [image: HitCount] [https://github.com/ryukinix/decorating]

Abstract

This project encourages an exploration into the limits of decorators in
Python. While decorators might by new to beginners, they are an
extremely useful feature of the language. They can be similar to Lisp
Macros, but without changes to the AST. Great decorators from this
packages are @animated and @writing. This repository is made
from scratch, just using Python’s Standard Library, no dependency!

Examples

Animated

Using as decorator and mixed with context-managers [image: animation]

Using with nested context-managers [image: context-manager]

Writing

Another project mine called
MAL [https://www.github.com/ryukinix/mal] uses the decorating
package —- basically a command line interface for
MyAnimeList [https://myanimelist.net/]. The decorator @writing can
be used by just adding 3 lines of code! The behavior is a retro
typing-like computer. Check out the awesome effect:

[image: asciicast] [https://asciinema.org/a/ctt1rozymvsqmeipc1zrqhsxb]

More examples are covered on my personal blog post about
decorating [http://manoel.tk/decorating].

Decorators & Usage

Currently public decorators on the API of decorators decorating:

	decorating.debug

	decorating.cache

	decorating.counter

	decorating.count_time

	decorating.animated

	decorating.writing

Mostly decorators has a pretty consistent usage, but for now only
animated and writing has support to use as contextmanagers
using the with syntax.

Installation

Supported Python versions:

	Python3.4+

	Python2.7

You can install the last release on
PyPI [https://pypi.python.org/pypi/decorating/] by calling:

pip install --user decorating

If you want get the last development version install directly by the git
repository:

pip install --user git+https://www.github.com/ryukinix/decorating

We have a published package on Arch
Linux [https://aur.archlinux.org/packages/python-decorating/],which
you can install using your favorite AUR Helper, like pacaur or
yaourt:

yaourt -S python-decorating

Though since the version 0.6 we have support for Python2.7, an AUR
package for Python2 was not made yet. Fill a issue if you have interest
on that :). Thanks to Maxim Kuznetsov <https://github.com/mkuznets>
which implemented the necessary changes to make compatible with Python2!

License

[image: PyPi License] [https://pypi.python.org/pypi/decorating/]

MIT

Because good things need to be free.

decorating package

Submodules

decorating.animation module

This module was be done to handle the beautiful animation using
the sin function (whose cause a pulse in the stdout).

Some examples of using is here:

@animated
def slow():

heavy_stuff()

As well with custom messages
@animated(‘WOOOOW’)
def download_the_universe():

	while True:

	pass

	with animated(‘loool’):

	stuff_from_hell()

@writing
def printer():

lot_of_messages()

	with writing(delay=0.5):

	print(“L O L => IS NOT THE STUPID GAME LOL, LOL.”)

decorating.asciiart module

This is another LOL-zone

LOOOOOOOOOOOOOL ART

decorating.base module

Abstract Classes to do composition by inheterince
and some other utitities from base clases

	Stream: Abstract Class for implementation of a Stream

	Decorator: Abstract Class for creating new decorators

	
class decorating.base.DecoratorManager

	Bases: object

Decorator-Context-Manager base class to keep easy creating more decorators

argument: can be empty or a callable object (function or class)

	
start()

	You active here your pre-fucking crazy feature

	
stop()

	You can deactivate any behavior re-writing your method here

	
class decorating.base.Stream(stream, **kargs)

	Bases: object

A base class whose is specify a Stream is

We need at least a stream on init and a
message param on write method

	
write(message, optional=None)

	a write method interfacing sys.stdout or sys.stderr

decorating.color module

Module focused in termcolor operations

If the exection is not attatched in any tty,
so colored is disabled

	
decorating.color.colorize(printable, color, style='normal', autoreset=True)

	Colorize some message with ANSI colors specification

	Parameters

	
	printable – interface whose has __str__ or __repr__ method

	color – the colors defined in COLOR_MAP to colorize the text

	Style

	can be ‘normal’, ‘bold’ or ‘underline’

	Returns

	the ‘printable’ colorized with style

decorating.debugging module

An collection of usefull decorators for debug
and time evaluation of functions flow

	
decorating.debugging.count_time(function)

	Function: count_time
Summary: get the time to finish a function

print at the end that time to stdout

Examples: <NONE>
Attributes:

@param (function): function

Returns: wrapped function

	
decorating.debugging.counter(function)

	Function: counter
Summary: Decorator to count the number of a function is executed each time
Examples: You can use that to had a progress of heally heavy

computation without progress feedback

	Attributes:

	@param (function): function

Returns: wrapped function

	
decorating.debugging.debug(function)

	Function: debug
Summary: decorator to debug a function
Examples: at the execution of the function wrapped,

the decorator will allows to print the
input and output of each execution

	Attributes:

	@param (function): function

Returns: wrapped function

decorating.decorator module

The base class for creating new Decorators

	Decorator: A base class for creating new decorators

	
class decorating.decorator.Decorator

	Bases: decorating.base.DecoratorManager

Decorator base class to keep easy creating more decorators

	triggers:

	self.start
self.stop

	context_manager:

	self.__enter__
self.__exit__

Only this is in generall necessary to implement the class you are writing,
like this:

	class Wired(Decorator):

	
	def __init__(self, user=’Lain’)

	self.user = user

	def start(self):

	self.login()

	def stop(self):

	self.logoff()

	def login(self):

	print(‘Welcome to the Wired, {user}!’.format(user=self.user))

	def logoff(self):

	print(‘Close this world, open the next!’.)

And all the black magic is done for you behind the scenes. In theory,
you can use the decorator in these way:

@Wired(‘lain’)
def foo():

pass

@Wired(argument=’banana’)
def bar():

pass

@Wired
def lain():

pass

@Wired()
def death():

pass

And all are okay! As well, natively, you have support to use as
context managers.

So that you can handle that way:

	with Wired:

	print(“Download the Knight files…”)

	with Wired():

	print(“Underlying bugs not anymore”)

	with Wired(“Lerax”):

	print(“I’m exists?”)

	with Wired(user=”Lerax”):

	print(“I don’t have the real answer.”)

And all occurs be fine like you thinks this do.

	
classmethod check_arguments(passed)

	Put warnings of arguments whose can’t be handle by the class

	
classmethod default_arguments()

	Returns the available kwargs of the called class

	
instances = []

	

	
classmethod recreate(*args, **kwargs)

	Recreate the class based in your args, multiple uses

decorating.general module

An collection of usefull decorators for debug
and time evaluation of functions flow

	
decorating.general.cache(function)

	Function: cache
Summary: Decorator used to cache the input->output
Examples: An fib memoized executes at O(1) time

instead O(e^n)

	Attributes:

	@param (function): function

Returns: wrapped function

TODO: Give support to functions with kwargs

	
decorating.general.with_metaclass(meta, *bases)

	Create a base class with a metaclass.

decorating.stream module

This module have a collection of Streams class
used to implement:

	Unbuffered(Stream) :: stream wrapper auto flushured

	Animation(Unbuferred) :: stream with erase methods

	Clean(Unbuffered) :: stream with handling paralell conflicts

	Writing(Unbuffered) :: stream for writing delayed typing

	
class decorating.stream.Animation(stream, interval=0.05)

	Bases: decorating.stream.Unbuffered

A stream unbuffered whose write & erase at interval

After you write something, you can easily clean the buffer
and restart the points of the older message.
stream = Animation(stream, delay=0.5)
self.write(‘message’)

	
ansi_escape = re.compile('\\x1b[^m]*m')

	

	
erase(message=None)

	Erase something whose you write before: message

	
last_message = ''

	

	
write(message, autoerase=True)

	Send something for stdout and erased after delay

	
class decorating.stream.Clean(stream, paralell_stream)

	Bases: decorating.stream.Unbuffered

A stream wrapper to prepend ‘
‘ in each write

This is used to not break the animations when he is activated

	So in the start_animation we do:

	sys.stdout = Clean(sys.stdout, <paralell-stream>)

	In the stop_animation we do:

	sys.stdout = sys.__stdout__Whose paralell_stream is a Animation object.

	
write(message, flush=False)

	Write something on the default stream with a prefixed message

	
class decorating.stream.Unbuffered(stream)

	Bases: decorating.base.Stream

Unbuffered whose flush automaticly

That way we don’t need flush after a write.

	
lock = <unlocked _thread.lock object>

	

	
write(message, flush=True)

	Function: write
Summary: write method on the default stream
Examples: >>> stream.write(‘message’)

‘message’

	Attributes:

	@param (message): str-like content to send on stream
@param (flush) default=True: flush the stdout after write

Returns: None

	
class decorating.stream.Writting(stream, delay=0.08)

	Bases: decorating.stream.Unbuffered

The Writting stream is a delayed stream whose
simulate an user Writting something.

The base class is the AnimationStream

	
write(message, flush=True)

	

Module contents

DECORATING: A MODULE OF DECORATORS FROM HELL

You have a collection of decorators, like thesexg:

	animated: create animations on terminal until the result’s returns

	cache: returns without reprocess if the give input was already processed

	counter: count the number of times whose the decorated function is called

	debug: when returns, print this pattern: @function(args) -> result

	count_time: count the time of the function decorated did need to return

	
decorating.cache(function)

	Function: cache
Summary: Decorator used to cache the input->output
Examples: An fib memoized executes at O(1) time

instead O(e^n)

	Attributes:

	@param (function): function

Returns: wrapped function

TODO: Give support to functions with kwargs

	
decorating.counter(function)

	Function: counter
Summary: Decorator to count the number of a function is executed each time
Examples: You can use that to had a progress of heally heavy

computation without progress feedback

	Attributes:

	@param (function): function

Returns: wrapped function

	
decorating.debug(function)

	Function: debug
Summary: decorator to debug a function
Examples: at the execution of the function wrapped,

the decorator will allows to print the
input and output of each execution

	Attributes:

	@param (function): function

Returns: wrapped function

	
decorating.count_time(function)

	Function: count_time
Summary: get the time to finish a function

print at the end that time to stdout

Examples: <NONE>
Attributes:

@param (function): function

Returns: wrapped function

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 decorating	

 	
 	
 decorating.animation	

 	
 	
 decorating.asciiart	

 	
 	
 decorating.base	

 	
 	
 decorating.color	

 	
 	
 decorating.debugging	

 	
 	
 decorating.decorator	

 	
 	
 decorating.general	

 	
 	
 decorating.stream	

Index

 A
 | C
 | D
 | E
 | I
 | L
 | R
 | S
 | U
 | W

A

 	
 	Animation (class in decorating.stream)

 	
 	ansi_escape (decorating.stream.Animation attribute)

C

 	
 	cache() (in module decorating)

 	(in module decorating.general)

 	check_arguments() (decorating.decorator.Decorator class method)

 	Clean (class in decorating.stream)

 	
 	colorize() (in module decorating.color)

 	count_time() (in module decorating)

 	(in module decorating.debugging)

 	counter() (in module decorating)

 	(in module decorating.debugging)

D

 	
 	debug() (in module decorating)

 	(in module decorating.debugging)

 	decorating (module)

 	decorating.animation (module)

 	decorating.asciiart (module)

 	decorating.base (module)

 	decorating.color (module)

 	
 	decorating.debugging (module)

 	decorating.decorator (module)

 	decorating.general (module)

 	decorating.stream (module)

 	Decorator (class in decorating.decorator)

 	DecoratorManager (class in decorating.base)

 	default_arguments() (decorating.decorator.Decorator class method)

E

 	
 	erase() (decorating.stream.Animation method)

I

 	
 	instances (decorating.decorator.Decorator attribute)

L

 	
 	last_message (decorating.stream.Animation attribute)

 	
 	lock (decorating.stream.Unbuffered attribute)

R

 	
 	recreate() (decorating.decorator.Decorator class method)

S

 	
 	start() (decorating.base.DecoratorManager method)

 	
 	stop() (decorating.base.DecoratorManager method)

 	Stream (class in decorating.base)

U

 	
 	Unbuffered (class in decorating.stream)

W

 	
 	with_metaclass() (in module decorating.general)

 	write() (decorating.base.Stream method)

 	(decorating.stream.Animation method)

 	(decorating.stream.Clean method)

 	(decorating.stream.Unbuffered method)

 	(decorating.stream.Writting method)

 	
 	Writting (class in decorating.stream)

 _static/ajax-loader.gif

_images/hjkNvEE.gif
In

_static/comment-bright.png

_static/comment-close.png

_images/ctt1rozymvsqmeipc1zrqhsxb.png
[lerax@starfox decorating (dev)]$ mal watching
Matched 3 items:
1: Flying Witch

Watching at 3J|

_images/EeVnDyy.gif
In

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to decorating’s documentation!

 		
 Decorating: A Meta Repo To Decorators

 		
 Abstract

 		
 Examples

 		
 Animated

 		
 Writing

 		
 Decorators & Usage

 		
 Installation

 		
 License

 		
 decorating package

 		
 Submodules

 		
 decorating.animation module

 		
 decorating.asciiart module

 		
 decorating.base module

 		
 decorating.color module

 		
 decorating.debugging module

 		
 decorating.decorator module

 		
 decorating.general module

 		
 decorating.stream module

 		
 Module contents

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

