
Spoofax Documentation
Release 0.5

MetaBorg

Jan 24, 2018

Contents

1 Preface 1

2 What is a Compiler? 3
2.1 Slides . 3
2.2 Etymology . 3
2.3 What is a Compiler? . 4
2.4 Compiler Architecture . 6
2.5 Retargeting . 7
2.6 Why do we need compilers? . 9
2.7 Programming is Expressing Computational Intent . 9
2.8 Types of Compilers . 10
2.9 Levels of Understanding Compilers . 10
2.10 A First Taste of Compiler Construction . 11
2.11 Further Reading . 11

3 Declarative Language Definition 13
3.1 A Language Designer’s Workbench . 13
3.2 Meta-Language Design . 13

4 Declarative Syntax Definition 15
4.1 Slides . 15
4.2 Further Reading . 15

5 Formatting 17

6 Parsing 19
6.1 Further Reading . 19

7 Transformation 21

8 Static Semantics 23
8.1 Name Resolution . 23
8.2 Type Checking . 23
8.3 Constraint Resolution I . 23
8.4 Constraint Resolution II . 24

9 Dynamic Semantics 25

i

10 Static Analysis 27
10.1 Data-Flow Analysis . 27

11 Code Generation 29

Bibliography 31

ii

CHAPTER 1

Preface

These are lecture notes that go with the Compiler Construction course taught at Delft University of Technology.

The course takes the perspective of declarative language definition, using high-level declarative meta-language the
define / specify the various aspects of programming languages. Given such definitions, the implementation of various
compiler components can be generated automatically. In the course we study the use of meta-languages to define com-
pilers. In the lab assignments for the course students build a compiler for MiniJava, a subset of the Java programming
language using the Spoofax Language Workbench.

In the lectures and in these lecture notes, we study these meta-languages, and also their underlying theory and imple-
mentation.

1

https://tudelft-in4303-2017.github.io/assignments/
http://www.metaborg.org

Spoofax Documentation, Release 0.5

2 Chapter 1. Preface

CHAPTER 2

What is a Compiler?

This book is about compiler construction. Before we dive into the details of constructing compilers, we need to
understand the motivation for doing so.

2.1 Slides

PDF

2.2 Etymology

What is that word? According to the [WiktionaryCompile]:

English

Verb

compile (third-person singular simple present compiles, present participle compiling, simple past and past participle compiled)

1. (transitive) To put together; to assemble; to make by gathering things from various sources. Samuel
Johnson compiled one of the most influential dictionaries of the English language.

2. (obsolete) To construct, build.

3. (transitive, programming) To use a compiler to process source code and produce executable code. After I
compile this program I’ll run it and see if it works.

4. (intransitive, programming) To be successfully processed by a compiler into executable code. There must
be an error in my source code because it won’t compile.

5. (obsolete, transitive) To contain or comprise.

6. (obsolete) To write; to compose.

3

https://github.com/metaborg/declare-your-language/raw/master/source/introduction/dyl-1-introduction.pdf

Spoofax Documentation, Release 0.5

And where does it come from? Again according to the [WiktionaryCompilo]:

Latin

Etymology

From con- (“with, together”) + pı̄lō (“ram down”). Pronunciation

• (Classical) IPA(key): /kompi.lo/, [kmpi.o]

Verb

compı̄lō (present infinitive compı̄lāre, perfect active compı̄lāvı̄, supine compı̄lātum); first conjugation

I snatch together and carry off; plunder, pillage, rob, steal.

How does ‘putting together’ relate to what we think of as compilers? The Wikipedia page on The History of Compiler
Construction sheds light on the issue:

The first compiler was written by Grace Hopper, in 1952, for the A-0 System language. The term compiler was
coined by Hopper.[1][2] The A-0 functioned more as a loader or linker than the modern notion of a compiler.

2.3 What is a Compiler?

In our modern understanding, compilers are translaters. In particular, a compiler translates high-level programs to
low-level programs

Let’s look at some typical instances. A C compiler translates C programs to object code, i.e. instructions for some
computer architecture. Examples of C compilers are GCC and clang.

4 Chapter 2. What is a Compiler?

https://en.wikipedia.org/wiki/History_of_compiler_construction
https://en.wikipedia.org/wiki/History_of_compiler_construction

Spoofax Documentation, Release 0.5

A Java compiler translates Java programs to bytecode instructions for the Java Virtual Machine. In the lab for this

2.3. What is a Compiler? 5

Spoofax Documentation, Release 0.5

2.4 Compiler Architecture

The central topic of a course on compiler construction is understanding what the black box of a compiler looks like
inside.

Early compilers were one-pass compilers, which look at each line of code only once. This was important in order to fit
in the limited memory of those days. This architecture posed limitions on language design, such as declaration before
use.

Modern compilers do not suffer the harsh resource constraints of early compilers and are typically designed as a
sequence of passes or stages each of which completely process a program or program unit. That is each, pass loads
(the representation of) the entire program unit in memory.

Each pass typically changes the representation of the program being compiled. Thus, a compiler can be seen as the
composition of a series of translaters, each consuming a program in some representation and producing a program in
another representation.

6 Chapter 2. What is a Compiler?

Spoofax Documentation, Release 0.5

The typical components of a compiler pipeline are:

• Parser: Reads in program text, checks that it complies with the syntactic rules of the language, and produces an
abstract syntax tree, which represents the underlying (syntactic) structure of the program.

• Type checker: Consumes an abstract syntax tree and checks that the program complies with the static semantic
rules of the language. To do that it needs to perform name analysis, relating uses of names to declarations of
names, and checks that the types of arguments of operations are consistent with their specification.

• Optimizer: Consumes a (typed) abstract syntax tree and applies transformations that improve the program in
various dimensions such as execution time, memory consumption, and energy consumption.

• Code generator: Transforms the (typed, optimized) abstract syntax tree to instructions for a particular computer
architecture. (aka instruction selection)

• Register allocator: Assigns physical registers to symbolic registers in the generated instructions.

• Linker: Most modern languages support some form of modularity in order to divide programs into units. When
also supporting separate compilation, the compiler produces code for each program unit separately. The linker
takes the generated code for the program units and combines it into an executable program.

2.5 Retargeting

The passes that make up a compiler are often divided in two clusters, front-end and back-end:

2.5. Retargeting 7

Spoofax Documentation, Release 0.5

The focus of the front-end is on analysis, i.e. parsing (syntactic analysis) and type checking (static analysis). The
focus of the back-end is on synthesis, i.e. optimization and code generation. The advantage of this division is that
front-ends and back-ends can be used in multiple combinations, provided they share a common intermediate language:

8 Chapter 2. What is a Compiler?

Spoofax Documentation, Release 0.5

2.6 Why do we need compilers?

So, studying compiler construction means studying these compiler components. And we will. However, compilers are
not quite so stereotypical. The techniques that we study here have more applications than for constructing variants of
C and Java. Let’s take a step back and investigate why we need compilers in the first place.

Compilers are used to support programming. What is that? And how do they do that?

Programming is instructing a computer to perform computations. The Central Processing Units (CPUs) of computers
process low-level operations

• fetch data from memory

• store data in register

• perform basic operation on data in register

• fetch instruction from memory

• update the program counter

• etc.

However, such operations are far removed from the problems we want to address with software.

2.7 Programming is Expressing Computational Intent

We use computers to get stuff done

2.6. Why do we need compilers? 9

Spoofax Documentation, Release 0.5

• Buy shoes

• Book a trip

• Design a lecture

We program so that we can use computers to get stuff done. Programs are the intermediaries for getting stuff done

• Web browser

• Shoe webshop

• Text editor

When programming we would like to think about the thing the program is doing for us, i.e. computational thinking:

“Computational thinking is the thought processes involved in formulating a problem and expressing its solution(s) in
such a way that a computer—human or machine—can effectively carry out.” [CompThink]

Writing instructions to fetch data from memory or incrementing the program counter does not contribute to effective
computational thinking. It does not allow us to express our intentions at the right level of abstraction. The machine
does not understand us!

2.8 Types of Compilers

So, a compiler is a translater. And often that is understood as a translater from high-level languages to machine
languages. However, the techniques employed in the construction of such compilers are also useful in other types of
translaters, of which there are many kinds:

• Compiler: translates high-level programs to machine code for a computer

• De-compiler: translates from low-level language to high-level language

• Cross-compiler: runs on different architecture than target architecture

• Source-to-source compiler (transpiler): translate between high-level languages

• Interpreter: directly executes a program (although prior to execution program is typically transformed)

• Bytecode compiler: generates code for a virtual machine

• Just-in-time compiler: defers (some aspects of) compilation to run time

• Hardware compiler: generate configuration for FPGA or integrated circuit

See [CompilerWikipedia] for a more extensive discussion and links.

Thus, the classical compiler that translates a high-level imperative language to machine code is just one instance of a
large family of programs that operate on programs as data.

2.9 Levels of Understanding Compilers

There are many dimensions to the study of compilers and programming languages. The goal of this course is to get a
general understanding of the domain of compilation and of the techniques employed in the construction of compilers.
That means that you need to go through the following levels of understanding compilers.

At the base level you understand the construction of a specific compiler. In this course you will build a compiler that
translates MiniJava programs to Java Bytecode. This requires:

10 Chapter 2. What is a Compiler?

Spoofax Documentation, Release 0.5

• Understanding a programming language (MiniJava)

• Understanding a target machine (Java Virtual Machine)

• Understanding a compilation scheme (MiniJava to Byte Code)

However, you should generalize from this experience in order to understand the general principles and architecture of
compiler construction. This requires

• Understanding architecture of compilers

• Understanding (concepts of) programming languages

• Understanding compilation techniques

This level of understanding provides you with design patterns for programming compilers, which you can employ in
the construction of compilers for different languages. Perhaps even for a language of your own design.

However, we can do better than that. Instantiating design patterns can be repetitive and involve a lot of boilerplate
code. We can abstract from such design patterns through linguistic abstractions for sub-domains of compilation. This
requires

• Understanding (principles of) syntax definition and parsing

• Understanding (principles of) static semantics and type checking

• Understanding (principles of) dynamic semantics and interpretation/code generation

• Understanding design of meta-languages and their compilation

2.10 A First Taste of Compiler Construction

As a first taste of what we will do in this course, browse through the section ‘Language Definition with Spoofax’
([Calc]), which runs through a complete definition of a little calculator language with the Spoofax Language Work-
bench.

2.11 Further Reading

2.10. A First Taste of Compiler Construction 11

Spoofax Documentation, Release 0.5

12 Chapter 2. What is a Compiler?

CHAPTER 3

Declarative Language Definition

Notes on a general approach to declarative language definition. The goal is to separate the concerns of language
definition from language implementation. A language definition states the specific rules for a language. Language
implementations typically have much in common. By factoring out the language-specific rules into a declarative
meta-language, the language-independent aspects of implementations can be automatically generated.

3.1 A Language Designer’s Workbench

• Objective: A workbench supporting design and implementation of programming languages

• Approach: Declarative multi-purpose domain-specific meta-languages

• Meta-Languages: Languages for defining languages

• Domain-Specific: Linguistic abstractions for domain of language definition (syntax, names, types, . . .)

• Multi-Purpose: Derivation of interpreters, compilers, rich editors, documentation, and verification from single
source

• Declarative: Focus on what not how; avoid bias to particular purpose in language definition

3.2 Meta-Language Design

Representation

• Standardized representation for <aspect> of programs

• Independent of specific object language

Specification Formalism

• Language-specific declarative rules

• Abstract from implementation concerns

13

Spoofax Documentation, Release 0.5

Language-Independent Interpretation

• Formalism interpreted by language-independent algorithm

• Multiple interpretations for different purposes

• Reuse between implementations of different languages

14 Chapter 3. Declarative Language Definition

CHAPTER 4

Declarative Syntax Definition

In this chapter we explore the definition of syntax, which governs the form and structure of programs.

4.1 Slides

PDF

PDF

4.2 Further Reading

https://en.wikipedia.org/wiki/Syntax

https://en.wikipedia.org/wiki/Syntax_(programming_languages)

https://en.wikipedia.org/wiki/Formal_language

https://en.wikipedia.org/wiki/Formal_grammar

https://en.wikipedia.org/wiki/Chomsky_hierarchy

https://en.wikipedia.org/wiki/Parsing

15

https://github.com/metaborg/declare-your-language/raw/master/source/syntax/dyl-2-syntax-definition.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/syntax/dyl-3-syntactic-services.pdf
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Syntax_(programming_languages
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Parsing

Spoofax Documentation, Release 0.5

16 Chapter 4. Declarative Syntax Definition

CHAPTER 5

Formatting

• Formatting

• Completion

17

Spoofax Documentation, Release 0.5

18 Chapter 5. Formatting

CHAPTER 6

Parsing

• Parsing

– Scanning / Tokenization / Lexical Analysis

– Parsing

– Parsing Algorithms

– LL Parsing

– LR Parsing

[ScannerlessWikipedia]

6.1 Further Reading

19

Spoofax Documentation, Release 0.5

20 Chapter 6. Parsing

CHAPTER 7

Transformation

• Term Rewriting

• Rewriting Strategies

PDF

21

https://github.com/metaborg/declare-your-language/raw/master/source/transformation/dyl-4-transformation-by-rewriting.pdf

Spoofax Documentation, Release 0.5

22 Chapter 7. Transformation

CHAPTER 8

Static Semantics

• Type Systems

• Constraint-Based Static Semantics

• Name Binding

• Type Analysis

• Completion

• Other Approaches

8.1 Name Resolution

Slides PDF

The following video is from a talk about name binding with scope graphs at the Curry On 2017 conference and covers
some of the same material.

8.2 Type Checking

Slides PDF

8.3 Constraint Resolution I

Slides PDF

23

https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-5-name-resolution.pdf
https://conf.researchr.org/event/curryon-2017/curryon-2017-papers-scope-graphs-a-fresh-look-at-name-binding-in-programming-languages
https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-6-type-checking.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-7-constraint-resolution-i.pdf

Spoofax Documentation, Release 0.5

8.4 Constraint Resolution II

Slides PDF

Exercises PDF

Exercises + Solutions PDF

24 Chapter 8. Static Semantics

https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-8-constraint-resolution-ii.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-8-exercises.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/statics/dyl-8-solutions.pdf

CHAPTER 9

Dynamic Semantics

• Running Programs

• Operational Semantics

• Partial Evaluation

• Frames

25

Spoofax Documentation, Release 0.5

26 Chapter 9. Dynamic Semantics

CHAPTER 10

Static Analysis

• Data-Flow Analysis

10.1 Data-Flow Analysis

Slides PDF

Exercises PDF

Exercises + Solutions PDF

27

https://github.com/metaborg/declare-your-language/raw/master/source/analysis/dyl-11-data-flow-analysis.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/analysis/dyl-11-exercises.pdf
https://github.com/metaborg/declare-your-language/raw/master/source/analysis/dyl-11-solutions.pdf

Spoofax Documentation, Release 0.5

28 Chapter 10. Static Analysis

CHAPTER 11

Code Generation

• Virtual Machines

• Run-Time Systems

• Garbage Collection

29

Spoofax Documentation, Release 0.5

30 Chapter 11. Code Generation

Bibliography

[WiktionaryCompile] https://en.wiktionary.org/wiki/compile

[WiktionaryCompilo] https://en.wiktionary.org/wiki/compilo#Latin

[CompThink] Jeanette M. Wing. Computational Thinking Benefits Society. In Social Issues in Computing. January
10, 2014. <http://socialissues.cs.toronto.edu/index.html>

[CompilerWikipedia] <https://en.wikipedia.org/wiki/Compiler>

[Calc] Language Definition with Spoofax. A complete example of a Spoofax language definition for a little calculator
language. <http://www.metaborg.org/en/latest/source/langdev/meta/lang/tour/index.html>

[DeclSD] Lennart C. L. Kats, Eelco Visser, Guido Wachsmuth. Pure and declarative syntax definition: paradise lost
and regained. In William R. Cook, Siobhán Clarke, Martin C. Rinard, editors, Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA. pages 918-932, ACM, Reno/Tahoe, Nevada, 2010. <http:
//doi.acm.org/10.1145/1869459.1869535>

[SPT] Lennart C. L. Kats, Rob Vermaas, Eelco Visser. Integrated language definition testing: enabling test-driven
language development. In Cristina Videira Lopes, Kathleen Fisher, editors, Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. pages 139-154, ACM, 2011. <http://doi.acm.
org/10.1145/2048066.2048080>

[Completion] Luis Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth, Eelco Visser. Principled syn-
tactic code completion using placeholders. In Tijs van der Storm, Emilie Balland, Dániel Varró, editors, Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Software Language Engineering, Amsterdam, The
Netherlands, October 31 - November 1, 2016. pages 163-175, ACM, 2016. <https://doi.org/10.1145/2997364.
2997374>

[Templates] Tobi Vollebregt, Lennart C. L. Kats, Eelco Visser. Declarative specification of template-based textual
editors. In Anthony Sloane, Suzana Andova, editors, International Workshop on Language Descriptions, Tools,
and Applications, LDTA ‘12, Tallinn, Estonia, March 31 - April 1, 2012. pages 1-7, ACM, 2012. <http://doi.acm.
org/10.1145/2427048.2427056>

[SDF3] Syntax Definition with SDF3. Documentation. <http://www.metaborg.org/en/latest/source/langdev/meta/
lang/sdf3/index.html>

[ScannerlessWikipedia] https://en.wikipedia.org/wiki/Scannerless_parsing

31

https://en.wiktionary.org/wiki/compile
https://en.wiktionary.org/wiki/compilo#Latin
http://socialissues.cs.toronto.edu/index.html
https://en.wikipedia.org/wiki/Compiler
http://www.metaborg.org/en/latest/source/langdev/meta/lang/tour/index.html
http://doi.acm.org/10.1145/1869459.1869535
http://doi.acm.org/10.1145/1869459.1869535
http://doi.acm.org/10.1145/2048066.2048080
http://doi.acm.org/10.1145/2048066.2048080
https://doi.org/10.1145/2997364.2997374
https://doi.org/10.1145/2997364.2997374
http://doi.acm.org/10.1145/2427048.2427056
http://doi.acm.org/10.1145/2427048.2427056
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/index.html
https://en.wikipedia.org/wiki/Scannerless_parsing

	Preface
	What is a Compiler?
	Slides
	Etymology
	What is a Compiler?
	Compiler Architecture
	Retargeting
	Why do we need compilers?
	Programming is Expressing Computational Intent
	Types of Compilers
	Levels of Understanding Compilers
	A First Taste of Compiler Construction
	Further Reading

	Declarative Language Definition
	A Language Designer’s Workbench
	Meta-Language Design

	Declarative Syntax Definition
	Slides
	Further Reading

	Formatting
	Parsing
	Further Reading

	Transformation
	Static Semantics
	Name Resolution
	Type Checking
	Constraint Resolution I
	Constraint Resolution II

	Dynamic Semantics
	Static Analysis
	Data-Flow Analysis

	Code Generation
	Bibliography

