
Decimate Documentation
Release 0.9.5

Samuel KORTAS

Apr 10, 2018

User Documentation

1 What is Decimate? 3
1.1 Features . 3
1.2 Automated restart in case of failure . 4
1.3 Fully user configurable environment . 4

2 Installation 5
2.1 Requirements . 5
2.2 Distribution . 5
2.3 Installing Decimate using PIP . 5

2.3.1 Installing Decimate as root using PIP . 5
2.3.2 Installing Decimate as user using PIP . 6

2.4 Installing Decimate using Anaconda . 6
2.5 Source . 6

3 Using Decimate 7
3.1 Submitting a Workflow . 7

3.1.1 Submitting a job . 7
3.1.2 options . 7
3.1.3 single job . 7
3.1.4 job depending on previous submitted jobs . 8
3.1.5 submitting a job with a user-defined checking function . 8
3.1.6 other kinds of workflows . 8

3.2 Checking the current status . 9
3.3 Displaying the log file . 9
3.4 Cancelling the whole workflow . 9

4 Examples of Workflows 11
4.1 Test job . 11
4.2 Nominal 2 job workflow . 11
4.3 parametric job workflow . 12

5 Fault-tolerant Workflows 13
5.1 Adding a user-defined checking function . 13
5.2 Succesful job submission . 14
5.3 Failed job submission and automated restarting . 14
5.4 Setting the number of restart . 16

i

6 Parameters combination 17
6.1 array of values . 17
6.2 Combined parameter sweep . 18
6.3 Parameters depending on simple formulas . 18
6.4 More complex Python expressions . 19

7 Shell API 21
7.1 dbatch . 21
7.2 dstat . 22
7.3 dlog . 22
7.4 dkill . 22
7.5 environment variables . 22
7.6 Job script directives . 22

ii

Decimate Documentation, Release 0.9.5

User Documentation 1

Decimate Documentation, Release 0.9.5

2 User Documentation

CHAPTER 1

What is Decimate?

Developped by the KAUST Supercomputing Laboratory (KSL), Decimate is a SLURM extension written in Python
allowing the user to handle jobs per hundreds in an efficient and transparent way. In this context, the constraint limiting
the number of jobs per users is completely masked. The time consuming burden of managing thousands of jobs by
hand is also alleviated by making available to the user the concept of workflow gathering a set of jobs that he can
manipulate as a whole.

Decimate is released as an Open Source Software under BSD Licence. It is available at

1.1 Features

Decimate allows a user to:

• Submit any number of jobs regardless of any limitation set in the scheduling policy on the maximum number of
jobs authorized per user.

• Manage all the submitted jobs as a single workflow easing their submission, monitoring, deletion or reconfigu-
ration.

• Ease the definition, submission and management of jobs run on a large set of combinations of parameters.

• Benefit from a centralized log file, a unique point of capture of relevant information about the behavior of the
workflow. From Python or shell, at any time and from any jobs, the logging levels info, debug, console and mail
are available.

• Send fully-configurable mail messages detailing the current completion of the workflow at any step of its exe-
cution.

• Easily define a procedure (in shell or Python) to check for correctness of the results obtained at the end of
given step. Having access to the complete current status of the workflow, this procedure can make the decision
on-the-fly either to stop the whole workflow, to resubmit partially the failing components as is, or to modify it
dynamically.

3

Decimate Documentation, Release 0.9.5

1.2 Automated restart in case of failure

In case of failure of one part of the workflow, Decimate automatically detects the failure, signals it to the user and
launches the misbehaving part after having fixed the job dependency. By default if the same failure happens three
consecutive times, Decimate cancels the whole workfow removing all the depending jobs from the scheduling. In a
next version, Decimate will allow the automatic restarting of the workflow once the problem causing its failure has
been cured.

1.3 Fully user configurable environment

Decimate also allows the user to define his own mail alerts that can be sent at any point of the workflow.

Some customized checking functions can also be designed by the user. Their purpose is to validate if a step of the
workflow was succesful or not. It could involved checking for the presence of some result files, grepping some error
or success messages in them, computing ratio or checksum. . . These intermediate results can be easely transmitted to
Decimate validating or not the correctness of any step. They can also be forwarded by mail to the user where as the
workflow is executing.

4 Chapter 1. What is Decimate?

CHAPTER 2

Installation

2.1 Requirements

Decimate should work with any cluster based on Unix operating systems which provides Python 2.7 and using SLURM
as a scheduler. It also depends on the python packages numpy, pandas and clustershell.

In a further release, Decimate is planned to be compatible with Python 3 and no dependency on numpy will be imposed.

2.2 Distribution

Decimate is an open-source project distributed under the BSD 2-Clause “Simplified” License which means that many
possibilities are offered to the end user including the fact to embed Decimate in one own software.

Its stable production branch is available via github at https://github.com/KAUST-KSL/decimate, but its latest produc-
tion and development branch can be found at https://github.com/samkos/decimate

The most recent documentation about Decimate can be browsed at http://decimate.readthedocs.io.

2.3 Installing Decimate using PIP

2.3.1 Installing Decimate as root using PIP

To install Decimate as a standard Python package using PIP1 as root:

$ pip install decimate

Or alternatively, using the source tarball:

1 pip is a tool for installing and managing Python packages, such as those found in the Python Package Index

5

https://github.com/KAUST-KSL/decimate
https://github.com/samkos/decimate
http://decimate.readthedocs.io

Decimate Documentation, Release 0.9.5

$ pip install decimate-0.9.x.tar.gz

2.3.2 Installing Decimate as user using PIP

To install Decimate as a standard Python package using PIP as an user:

$ pip install --user decimate

Or alternatively, using the source tarball:

$ pip install --user decimate-0.9.x.tar.gz

Then, you just need to update your PYTHONPATH environment variable to be able to import the library and PATH to
easily use the tools:

$ export PYTHONPATH=$PYTHONPATH:~/.local/lib
$ export PATH=$PATH:~/.local/bin

Configuration files are installed in ~/.local/etc/decimate and are automatically loaded before system-wide
ones (for more info about supported user config files, please see the decimate-config config section).

2.4 Installing Decimate using Anaconda

Decimate is also available in Anaconda from the hpc4all channel. It can be installed with the command:

$ conda install -c hpc4all decimate

2.5 Source

Current source is available on Github, use the following command to retrieve the latest stable version from the reposi-
tory:

$ git clone -b prod git@github.com:samkos/decimate.git

and for the development version:

$ git clone -b dev git@github.com:samkos/decimate.git

6 Chapter 2. Installation

CHAPTER 3

Using Decimate

Via Decimate, four commands are added to the user environment: dbatch to submit workflows, dstat to monitor their
current status, dlog to tail the log information produced and dkill to cancel the execution of the workflow.

3.1 Submitting a Workflow

For Decimate, a workflow is a set of jobs submitted from a same directory. These jobs can depend on one another and
be job array of any size.

3.1.1 Submitting a job

3.1.2 options

Decimate dbatch command accepts the same options as the SLURM sbatch command and extends it in two ways:

• it transparently submits the user job within a fauit-tolerant framework

• it adds new options to manage the workflow execution if a problem occurs

– --check=SCRIPT_FILE points to a user script (either in python or shell) to validate the correctness of
the job at the end of its execution

– --max-retry=MAX_RETRY setting number of time a step can fail and be restarted automatically before
failing the whole workflow (3 per default)

3.1.3 single job

Here is how to submit a simple job:

dbatch --job-name=job_1 my_job.sh

7

https://slurm.schedmd.com/sbatch.html

Decimate Documentation, Release 0.9.5

[MSG] submitting job job_1 (for 1) --> Job # job_1-0-1 <-depends-on None
[INFO] launch-0!0:submitting job job_1 [1] --> Job # job_1-0-1 <-depends-on None
Submitted batch job job_1-0-1
[1] --> Job # job_1-0-1 <-depends-on None

Notice how the command syntax is similar to sbatch command.

• In lines starting with [MSG], [INFO], or [DEBUG], Decimate gives us additional information about what is
going on.

• All the traces [INFO], or [DEBUG] also appears in the corresponding job output file as well as in Decimate
central log file dumped in <current_directory>/.decimate/LOGS/decimate.log [MSG] traces only appears at the
console or in the output file of the job.

• for Decimate, every job is considered as a job array. In this simple case, it considers an array of job made of
a single element 1-1. In the traces, the array indice shows in “(for 1)”, “submitting job job_1 [1]”, or “job
job_1-0-1”. (if needed check SLURM job array documentation for more information).

• Every job submitted via Decimate is part of a fault-tolerant environment. At the end of its execution, its correct-
ness is systematically checked thanks to a user defined function or by default thanks the return code of the job
given by SLURM. If the job is not considered as correct, (and if the return code of the user-defined function is
not ABORT), the job is automatically resubmitted for a first and a second attempt if needed. In the traces, the
attempt number shows as the second figure in the job denomination: “job job_1-0-1”.

3.1.4 job depending on previous submitted jobs

Here is how to submit a job dependending on a previous job:

dbatch --dependency=job_1 --job-name=job_2 my_job.sh
[INFO] launch-0!0:Workflow has already run in this directory, trying to continue it
[MSG] submitting job job_2 (for 1) --> Job # job_2-0-1 <-depends-on 218459
[INFO] launch-0!0:submitting job job_2 [1] --> Job # job_2-0-1 <-depends-on 218459
Submitted batch job job_2-0-1
[1] --> Job # job_2-0-1 <-depends-on 218459

It again matches sbatch original syntax with the subtility that via Decimate dependency can be expressed with respect
to a previous job name and not only to a previous job id as SLURM only allows it.

• It makes it more convenient to write automated script.

• At this submission time, Decimate checks if a previous submitted job has actually been submitted with this
particular name. If not, an error will be issued and the submission is canceled.

• Of course, dependency on a previous job id is also supported.

3.1.5 submitting a job with a user-defined checking function

Fault-tolerant jobs submission and behavior is addressed in Fault-tolerant Workflows.

3.1.6 other kinds of workflows

A comprehensive list of job examples can be found in Examples of Workflows.

8 Chapter 3. Using Decimate

https://slurm.schedmd.com/job_array.html
http:fault_tolerant.html
http:workflows.html

Decimate Documentation, Release 0.9.5

3.2 Checking the current status

The current workflow status can be checked with dstat:

dstat

When no job has been submitted from the current directory. dstat shows:

[MSG] No workflow has been submitted yet

When jobs submitted submitted the current directory are currently running . dstat shows:

[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 RUNNING SUCCESS: 0% FAILURE: 0% ->
→˓[]

And when a workflow is completed:

dstat
[MSG] CHECKING step : job_2-0 task 1
[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]

3.3 Displaying the log file

The current Decimate log file can be checked with dlog:

dlog

3.4 Cancelling the whole workflow

The current workflow can be completly killed with the command dkill:

dkill

If no job of the workflow is either running, queueing or waiting to be queued, dkill prints:

[INFO] No jobs are currently running or waiting... Nothing to kill then!

If any job is still waiting or running, dkill asks a confirmation to the user and cancels all jobs from the current workflow.

3.2. Checking the current status 9

Decimate Documentation, Release 0.9.5

10 Chapter 3. Using Decimate

CHAPTER 4

Examples of Workflows

4.1 Test job

Let my_job.sh be the following example job:

#!/bin/bash
#SBATCH -n 1
#SBATCH -t 0:05:00

echo job running on...
hostname
sleep 10

echo job DONE

If not done yet, we first load the Decimate module:

module load decimate

4.2 Nominal 2 job workflow

Then submission of jobs follows the same syntax than with the sbatch command:

dbatch --job-name=job_1 my_job.sh

[MSG] submitting job job_1 (for 1) --> Job # job_1-0-1 <-depends-on None
[INFO] launch-0!0:submitting job job_1 [1] --> Job # job_1-0-1 <-depends-on None
Submitted batch job job_1-0-1
[1] --> Job # job_1-0-1 <-depends-on None

11

Decimate Documentation, Release 0.9.5

dbatch --dependency=job_1 --job-name=job_2 my_job.sh
[INFO] launch-0!0:Workflow has already run in this directory, trying to continue it
[MSG] submitting job job_2 (for 1) --> Job # job_2-0-1 <-depends-on 218459
[INFO] launch-0!0:submitting job job_2 [1] --> Job # job_2-0-1 <-depends-on 218459
Submitted batch job job_2-0-1
[1] --> Job # job_2-0-1 <-depends-on 218459

dstat

[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 RUNNING SUCCESS: 0% FAILURE: 0% ->
→˓[]

dstat
[MSG] CHECKING step : job_2-0 task 1
[INFO] launch-0!0:no active job in the queue, changing all WAITING in ABORTED???
[MSG] step job_1-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]
[MSG] step job_2-0:1-1 SUCCESS SUCCESS: 100% FAILURE: 0% ->
→˓[]

4.3 parametric job workflow

Then submission of parametric jobs follows the same syntax than with the sbatch command adding a reference to a
text file describing the set of parameters to be tested:

dbatch --job-name=job_1 -P parameters.txt my_job.sh

How to build the file parameters.txt is described at Parameters combination.

12 Chapter 4. Examples of Workflows

http:parameters.html

CHAPTER 5

Fault-tolerant Workflows

5.1 Adding a user-defined checking function

Decimate allows the user to define its own function to qualify a job as ABORT, SUCCESS or FAILED. This can be
a simple bash script file or a program written in Python. For example here is a typical script check_job.sh written in
shell checking if the message ‘job DONE’ appears in the job output file:

job_step=$1
attempt=$2
task_id=$3
running_dir=$4
output_file=$5
error_file=$5
is_job_completed=$6

echo job_step=$job_step attempt=$attempt task_id=$task_id
echo running_dir=$running_dir
echo output_file=$output_file
echo error_file=$error_file
echo is_job_completed=$is_job_completed

SUCCESS=0
FAILURE=-1
ABORT=-9999

grep 'job DONE' $output_file

All the parameters are passed to the script as arguments added on the command line.

13

Decimate Documentation, Release 0.9.5

5.2 Succesful job submission

When submitting the job, one only adds –check followed by the path of the checking job script

dbatch --check=check_job.sh --job-name=job_1 my_job.sh

my_job.sh is the following job which will be checked as succesfull because echoing the string job DONE:

#!/bin/bash
#SBATCH -p debug
#SBATCH -n 1
#SBATCH -t 0:01:00

echo job running on...
hostname
sleep 10

echo job DONE

One can follows the current status of the workflow thanks to dlog that displays the log file attached to the current
workflow.

dlog
()
==
Currently Tailing ...
/home/kortass/DECIMATE-GITHUB/.decimate/LOGS/decimate.log

Hit CTRL-C to exit... Hit CTRL-C to exit...
==
...
[INFO] launch-0!0:submitting job 1 (for 1) --> Job # 1-0-1 <-depends-on None
[INFO] launch-0!0:submitting job chk_1 (for 1) --> Job # chk_1-0-1 <-depends-on 1-0-
→˓1
[INFO] chk_1-1!0: ok everything went fine for the step 1 (1) --> Step chk_1 (1) is
→˓starting... @ (2018-02-21 11:31:06)
[INFO] chk_1-1!0:=============== workflow is finishing ============== @ (2018-02-21
→˓11:31:09)

5.3 Failed job submission and automated restarting

In the case of failure, here is what is observed when submitting a job that fails:

dbatch --check=check_job.sh --job-name=job_1 my_job_failed.sh

my_job_failed.sh is the following job which will be checked as failed because echoing not the string job DONE:

#!/bin/bash
#SBATCH -p debug

#SBATCH -n 1
#SBATCH -t 0:01:00

echo job running on...
hostname

14 Chapter 5. Fault-tolerant Workflows

Decimate Documentation, Release 0.9.5

echo job FAILED

which leads to the following results observed with the command dlog that displays the log file attached to the current
workflow.

dlog
()
==
Currently Tailing ...
/home/kortass/DECIMATE-GITHUB/.decimate/LOGS/decimate.log

Hit CTRL-C to exit... Hit CTRL-C to exit...
==
...
[INFO] launch-0!0:submitting job 1f (for 1) --> Job # 1f-0-1 <-depends-on None
[INFO] launch-0!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓1f-0-1
[INFO] 1f-1!0:User error detected!!! for step 1f attempt 0 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 0 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=0 initial_attempt=0 Extra attempt #1 (1 out of 3) @ (2018-02-21 12:39:04)
[INFO] chk_1f-1!0:submitting job 1f (for 1) --> Job # 1f-1-1 <-depends-on None
[INFO] chk_1f-1!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓219553
[INFO] chk_1f-1!0:Job has been fixed and is restarting @ (2018-02-21 12:39:05)
[INFO] 1f-1!1:User error detected!!! for step 1f attempt 1 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 1 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=1 initial_attempt=0 Extra attempt #2 (2 out of 3) @ (2018-02-21 12:39:18)
[INFO] chk_1f-1!0:submitting job 1f (for 1) --> Job # 1f-2-1 <-depends-on None
[INFO] chk_1f-1!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓219555
[INFO] chk_1f-1!0:Job has been fixed and is restarting @ (2018-02-21 12:39:19)
[INFO] 1f-1!2:User error detected!!! for step 1f attempt 2 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 2 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=2 initial_attempt=0 Extra attempt #3 (3 out of 3) @ (2018-02-21 12:39:33)
[INFO] chk_1f-1!0:submitting job 1f (for 1) --> Job # 1f-3-1 <-depends-on None
[INFO] chk_1f-1!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓219557
[INFO] chk_1f-1!0:Job has been fixed and is restarting @ (2018-02-21 12:39:34)
[INFO] 1f-1!3:User error detected!!! for step 1f attempt 3 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 3 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=3 initial_attempt=0 Extra attempt #4 (4 out of 3) @ (2018-02-21 12:39:46)
[INFO] chk_1f-1!0:Too much failed attempt for step 1f my_joid is 219558 @ (2018-02-
→˓21 12:39:46)
[INFO] chk_1f-1!0:killing all the dependent jobs...
[INFO] chk_1f-1!0:killing all the dependent jobs...
[INFO] chk_1f-1!0:3 jobs to kill...

5.3. Failed job submission and automated restarting 15

Decimate Documentation, Release 0.9.5

[INFO] chk_1f-1!0:killing the job 219552 (step chk_1f-0)...
[INFO] chk_1f-1!0:killing the job 219554 (step chk_1f-0)...
[INFO] chk_1f-1!0:killing the job 219556 (step chk_1f-0)...
[INFO] chk_1f-1!0:=============== workflow is aborting ==============
[INFO] launch-0!0:=============== workflow is finishing ==============

5.4 Setting the number of restart

The faulty job is restarted automatically three times before Decimate declares the workflow as aborted. Restart-
ing faulty job three times before aborting is the value set per default. It can be changed by adding –max-
retry=<your_value> when submitting the job:

dbatch --max-retry=1 --check=check_job.sh --job-name=job_1 my_job_failed.sh

In this case Decimate only restarts the faulty job once, after two successive failed attempts:

dlog
()
==
Currently Tailing ...
/home/kortass/DECIMATE-GITHUB/.decimate/LOGS/decimate.log

Hit CTRL-C to exit... Hit CTRL-C to exit...
==
...
[INFO] launch-0!0:submitting job 1f (for 1) --> Job # 1f-0-1 <-depends-on None
[INFO] launch-0!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓1f-0-1
[INFO] 1f-1!0:User error detected!!! for step 1f attempt 0 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 0 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=0 initial_attempt=0 Extra attempt #1 (1 out of 1) @ (2018-02-21 12:44:53)
[INFO] chk_1f-1!0:submitting job 1f (for 1) --> Job # 1f-1-1 <-depends-on None
[INFO] chk_1f-1!0:submitting job chk_1f (for 1) --> Job # chk_1f-0-1 <-depends-on
→˓219561
[INFO] chk_1f-1!0:Job has been fixed and is restarting @ (2018-02-21 12:44:54)
[INFO] 1f-1!1:User error detected!!! for step 1f attempt 1 : (1)
[INFO] chk_1f-1!0:User error detected!!! for step 1f attempt 1 : (1)
[INFO] chk_1f-1!0:!!!!!!!! oooops pb : job missing or uncomplete at last step 1f :
→˓(1)
[INFO] chk_1f-1!0:RESTARTING THE WRONG PART PREVIOUS JOB : 1f (1). current_
→˓attempt=1 initial_attempt=0 Extra attempt #2 (2 out of 1) @ (2018-02-21 12:45:09)
[INFO] chk_1f-1!0:Too much failed attempt for step 1f my_joid is 219562 @ (2018-02-
→˓21 12:45:09)
[INFO] chk_1f-1!0:killing all the dependent jobs...
[INFO] chk_1f-1!0:killing all the dependent jobs...
[INFO] chk_1f-1!0:1 jobs to kill...
[INFO] chk_1f-1!0:killing the job 219560 (step chk_1f-0)...
[INFO] chk_1f-1!0:=============== workflow is aborting ==============
[INFO] launch-0!0:=============== workflow is finishing ==============

16 Chapter 5. Fault-tolerant Workflows

CHAPTER 6

Parameters combination

Then submission of parametric jobs requires to gather in a parameter file all the combinations of parameters that one
wants to run a job against. This list of combination can be described as an explicit array of values of programatically
via a Python or shell script or using simple directives.

While the execution of parametric workflows is described here, here are detailed four ways of defining parameters. .

6.1 array of values

The simplest way to describe the set of parameter combinations that needs to be tested consists in listing them exten-
sively as an array of values. The first row of this array is the name of each parameters and each row is one possible
combination.

Here is a parameters file listing all possible combinations for 3 parameters (i,j,k), each of them taking the value 1 or 2.

array-like description of parameter combinations

i j k

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

Notice that:

• spaces, void lines are ignored.

• every thing following a # is considered as a comment and ignored

17

http:workflows.html#parametric-job-workflow

Decimate Documentation, Release 0.9.5

6.2 Combined parameter sweep

In case of combinations that sweeps all possible set of values based on the domain definition of each variable, a more
compact declarative syntax is also available. The same set of parameters can be generated with the following file:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

Every line starting with #DECIM is parsed as a special command.

6.3 Parameters depending on simple formulas

Some parameters can also be computed from others using simple arithmetic formulas. Here is a way to declare them:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

array-like description of parameter combinations

i j k p

1 1 1 1
1 1 2 2
1 2 1 2
1 2 2 4
2 1 1 2
2 1 2 4
2 2 1 4
2 2 2 8

an additional parameter can also be described by a list of values:

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

#DECIM t = [1,2,4,8,16,32,64,128,256]

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

18 Chapter 6. Parameters combination

Decimate Documentation, Release 0.9.5

array-like description of parameter combinations

i j k p t

1 1 1 1 1
1 1 2 2 2
1 2 1 2 4
1 2 2 4 8
2 1 1 2 16
2 1 2 4 32
2 2 1 4 64
2 2 2 8 128

For each parameter added via a list of values, the conformance with the existing number of already possible combina-
tions is checked. For example, the following parameter file. . .

combine-like description of parameter combinations

#DECIM COMBINE i = [1,2]
#DECIM COMBINE j = [1,2]
#DECIM COMBINE k = [1,2]

#DECIM p = i*j*k

#DECIM t = [1,2,4,8,16,32,64,128,256]

. . . produces the error:

[ERROR] parameters number mistmatch for expression
[ERROR] t = [1,2,4,8,16,32,64,128,256]
[ERROR] --> expected 8 and got 9 parameters...

6.4 More complex Python expressions

For a high number of parameters, a portion of code written in Python can also be embedded after a #DECIM PYTHON
directive till the end of the file.

pythonic parameter example file

#DECIM COMBINE nodes = [2,4,8]
#DECIM COMBINE ntasks_per_node = [16,32]

#DECIM k = range(1,7)

#DECIM PYTHON

import math

ntasks = nodes*ntasks_per_node
nthreads = ntasks * 2

NPROC = 2; #Number of processors

t = int(2**(k))
T = 15

6.4. More complex Python expressions 19

Decimate Documentation, Release 0.9.5

which is a short way to describe the same 8 combinations as expressed in the following array-like parameter file:

array-like description of parameter combinations

nodes ntasks_per_node k ntasks nthreads t NPROC T
2 32 1 64 128 2 2 15
2 64 2 128 256 4 2 15
4 32 3 128 256 8 2 15
4 64 4 256 512 16 2 15
8 32 5 256 512 32 2 15
8 64 6 512 1024 64 2 15

A python section is always evaluated at the end. Each new variables set at the end of the evaluation is added as a new
parameter computed against each of the already built combinations. The conformance to the number of combinations
already set is also checked if the variable is a set of values.

20 Chapter 6. Parameters combination

CHAPTER 7

Shell API

7.1 dbatch

Usage: dbatch [OPTIONS. . .] job_script [args. . .]

Help:

-h, --help show all possible options for dbatch

-H, --decimate-help show hidden option to manage Decimate engine

Workflow management:

--kill kill all jobs in the workflow either RUNNING, PENDING or WAITING

--resume resume the already launched step and workflow in this directory

--restart restart the already launched step or workflow in this directory

-ch, --check check the step at its end (job DONE printed)

-chf, –check-file=SCRIPT_FILE python or shell to check if results are ok

-xj, --max-jobs=MAX_JOBS maximum number of jobs to keep active in the queue (450 per default)

-xr, --max-retry=MAX_RETRY number of time a step can fail and be restarted automatically before
failing the whole workflow (3 per default)

Execution in a pool:

-xy, --yalla Execute simultaneous runs within a pool of nodes

-xyp, --yalla-parallel-runs=YALLA_PARALLEL_RUNS number of parallel runs in a pool

Burst Buffer:

-bbz, --use-burst-buffer-size use a non persistent burst buffer space

-xz, --burst-buffer-size=BURST_BUFFER_SIZE set Burst Buffer space size

-bbs, --use-burst-buffer-space use a persistent burst buffer space

21

Decimate Documentation, Release 0.9.5

-xs, --burst-buffer-space=BURST_BUFFER_SPACE_name sets Burst Buffer name

7.2 dstat

Usage: dstat [OPTIONS. . .]

Help:

-h, --help show all possible options for dstat

7.3 dlog

Usage: dlog [OPTIONS. . .]

Help:

-h, --help show all possible options for dlog

7.4 dkill

Usage: dkill [OPTIONS. . .]

Help:

-h, --help show all possible options for dkill

7.5 environment variables

environment variable forwarded to Decimate and setting option per default that will be added to any Decimate com-
mand initiated from the shell:

DPARAM

code to return when a job is considered as Succesfull:

0

code to return when a job is considered as Failed:

-1

code to return when a workflow has to be immediately stopped:

-9999

7.6 Job script directives

in script directives (to be added as-is anywhere in a SLURM job script).

To show the parameters set in the job environment from a parametic file processed via Decimate:

22 Chapter 7. Shell API

Decimate Documentation, Release 0.9.5

#DECIM SHOW_PARAMETERS

To process all the files ending by .template and replacing any parameter (typically __Name_of_parameter__) with a
value coming from the parametric file processed by Decimate.:

#DECIM PROCESS_TEMPLATE_FILES

7.6. Job script directives 23

	What is Decimate?
	Features
	Automated restart in case of failure
	Fully user configurable environment

	Installation
	Requirements
	Distribution
	Installing Decimate using PIP
	Installing Decimate as root using PIP
	Installing Decimate as user using PIP

	Installing Decimate using Anaconda
	Source

	Using Decimate
	Submitting a Workflow
	Submitting a job
	options
	single job
	job depending on previous submitted jobs
	submitting a job with a user-defined checking function
	other kinds of workflows

	Checking the current status
	Displaying the log file
	Cancelling the whole workflow

	Examples of Workflows
	Test job
	Nominal 2 job workflow
	parametric job workflow

	Fault-tolerant Workflows
	Adding a user-defined checking function
	Succesful job submission
	Failed job submission and automated restarting
	Setting the number of restart

	Parameters combination
	array of values
	Combined parameter sweep
	Parameters depending on simple formulas
	More complex Python expressions

	Shell API
	dbatch
	dstat
	dlog
	dkill
	environment variables
	Job script directives

