

Welcome to debexpo’s documentation

debexpo (Debian package exposition) is a web application that allows you to
run a user-friendly public Debian package repository with social interaction
that you may be used to from social networking sites. debexpo is the basis for
the mentors.debian.net site but may be useful for others as well. It is
basically a Pylons application that can be deployed on any server. You do
not need anything more than Pylons, a little harddisk space and a database
like PostgreSQL, MySQL or Sqlite.

Setting up debexpo

	Installing and setting up debexpo

	Config file

Using debexpo

	Uploading

	Plugins

	SOAP documentation

Development documentation

	Building the software

	Writing plugins

	Writing cronjobs

	Coding standards

	Contributing

	API documentation

Indices and tables

	Index

	Module Index

	Search Page

Installing and setting up debexpo

debexpo is easy to set up on your own. Simply follow the instructions below.

	There are three solutions:

	
	Install all dependencies on your system as root.

	Install dependencies and debexpo in an isolated environment using
virtualenv and virtualenvwrapper.

	Use VirtualBox [https://www.virtualbox.org/] and Vagrant [https://www.vagrantup.com/]. If you choose this method, follow the
instructions under Using Vagrant.

Getting debexpo

You can clone the git repository:

git clone git://git.debian.org/debexpo/debexpo.git

Dependencies needed for both methods

Whatever method you choose, these packages are required:

sudo apt-get install python-apt python-debian iso-codes

If you want to run qa plugins, you will need lintian and
dpkg-dev:

sudo apt-get install lintian dpkg-dev

Installing on Debian Squeeze or Wheezy as root

You need to install the required packages. Using apt, you should execute:

sudo apt-get install python-setuptools python-sphinx python-pylons python-sqlalchemy python-soappy python-nose python-pybabel

python-nose is optional if you don’t want to run the test suite.

You also need python-soaplib (version >= 0.8.2) [http://pypi.python.org/pypi/soaplib].

Using pip:

sudo pip install soaplib

Installing in a virtualenv

Using this method, you will create a virtual Python environment in
which you can install the dependencies for debexpo without altering your
system (i.e., without requiring root). In addition, this will also let
you isolate debexpo’s requirements, in the event an application installed
globally might require a conflicting version of a library, or vice versa.

Virtualenv setup

Skip this section if you already have a working virtualenv setup.

Install virtualenvwrapper:

sudo apt-get install virtualenvwrapper

Dependencies

To install lxml from sources, you will need gcc, libxml2,
libxslt1.1 and python-dev, python-apt depends on libapt-pkg-dev:

sudo apt-get install gcc libxml2 libxml2-dev libxslt1.1 libxslt1-dev python-dev libapt-pkg-dev

Debexpo installation

First, create a new virtualenv for debexpo, and enter it:

mkvirtualenv expo
workon expo

Note: If you get a “command not found” error for “mkvirtualenv”, run
the following in your shell:

/etc/bash_completion.d/virtualenvwrapper

Note that now, whenever you run “python”, you run an interpreter that
is sandboxed to the “virtualenv” in question. You can test this by
typing:

which python

and you will see it is not /usr/bin/python! Additionally, your shell prompt
should have a little prefix before the prompt that looks like:

(expo)

You can now install debexpo. This will download and install all
required libraries:

python setup.py develop

If for any reason you need to exit the virtualenv, you may enter
deactivate to exit the virtualenv.

Editing your configuration

Now edit development.ini to match your configuration.

Setting up the application

Execute the following commands to setup the application:

paster setup-app development.ini
python setup.py compile_catalog

Using Vagrant

	Install VirtualBox [https://www.virtualbox.org/wiki/Downloads].

	Install Vagrant [https://www.vagrantup.com/].

	In the checked-out debexpo repository on the host machine, run:

vagrant up --provision
vagrant ssh

	You’ll now be in a shell session on your Vagrant-configured VirtualBox.

	Run:

cd debexpo
. venv/bin/activate

	You now have a setup virtualenv with all the dependencies for debexpo
installed. Follow the rest of the instructions to run debexpo.

Running debexpo

Using paste’s built-in webserver

Simply execute:

paster serve development.ini

and visit http://localhost:5000/ in your web browser.

Using Apache

(Canonical instructions for getting Pylons apps working under Apache are
here [http://wiki.pylonshq.com/display/pylonsdocs/Running+Pylons+apps+with+Webservers].)

	Install apache2, mod-fastcgi and flup:

sudo apt-get install python-flup apache2 libapache2-mod-fastcgi

	Edit the server:main section of your debexpo.ini so it reads
something like this:

[server:main]
use = egg:PasteScript#flup_fcgi_thread
host = 0.0.0.0
port = 6500

	Add the following to your config:

<IfModule mod_fastcgi.c>
 FastCgiIpcDir /tmp
 FastCgiExternalServer /some/path/to/debexpo.fcgi -host localhost:6500
</IfModule>

Note: Parts of this may conflict with your /etc/apache2/conf-available/fastcgi.conf.
/some/path/to/debexpo/fcgi need not physically exist on the webserver.

Config file

These are configuration options that go in the ini file that configures debexpo. Every option should be present otherwise debexpo will fail somewhere. A sane default is in the distributed ini file.

debexpo.upload.incoming

This variable specifies the incoming directory. Newly uploaded files will be installed into this directory.
Therefore, it should be writeable by the webserver.

debexpo.repository

This variable specifies the repository directory, where uploaded files are stored. The directory structure is easy – files belonging to a package are stored in a subdirectory of this directory, with name of the source package name.
For example, If this is set to /home/myexpo/files then the package ‘cream’ would have its files stored in /home/myexpo/files/cream/.
The directory does not have a Sources.gz file (no “apt-get source”) but source packages can be downloaded via “dget …dsc”.

debexpo.importer

This variable specifies the path to the importer script, distributed in bin/debexpo-importer. Therefore, this option is typically %(here)s/bin/debexpo-importer.

debexpo.handle_debian

This variable specifies whether debexpo should handle the /debian/ directory. This can be set to false and let Apache handle this directory.

debexpo.sitename

Name of the site repository. This is used as the title of the web pages.

debexpo.tagline

Tag-line of the repository. This is used under the main title of the web pages.

debexpo.logo

Site logo of the repository to display at the top of the web pages.

debexpo.email

Email address of site support.

debexpo.debian_specific

Toggle whether to show Debian-specific contents of the site. Values are true or false.

debexpo.plugins.post_upload

Which post-upload plugins to run, in what order. Separate each plugin with a space.

debexpo.plugins.qa

Which QA plugins to run, in what order. Separate each plugin with a space.

debexpo.plugins.post_upload_to_debian

Which plugins to run when the package is uploaded to Debian, in what order. Separate each plugin with a space.

debexpo.plugins.post_successful_upload

Which plugins to run when a package is successfully uploaded to the repository, in what order. Separate each plugin with a space.

debexpo.plugindir

Directory to add to path to put user-defined plugins in.

debexpo.debian_mirror

Location of the most convenient Debian mirror.

debexpo.changes_list

Email to send package accepts to.

debexpo.server

Server root URL debexpo is running on, including protocol and excluding trailing slash. For example http://localhost:5000.

debexpo.frontpage

Path to file to include which contains HTML for the front page. This defaults to %(here)s/debexpo/public/frontpage.html.

debexpo.gpg_path

Path to the GnuPG binary. This defaults to /usr/bin/gpg.

Uploading

Uploading to a debexpo repository is easy. You must use dput [http://packages.debian.org/dput]
as this is the only tool that can upload via HTTP (at the time of writing).
(Former versions of debexpo used HTTP uploads with authentication which repeatedly
failed due to dput bugs which were in fact urllib2 API changes.)

Setting up dput

Once you have debexpo and dput installed and set up, add an entry like the following to
your ~/.dput.cf:

[debexpo]
fqdn = localhost:5000
incoming = /upload/email@address/yourpassword
method = http
allow_unsigned_uploads = 0

You should change the email@address and yourpassword entries with the email address and
password you use to login. And you may have to change the fqdn to suit your setup.

Uploading the package

Now you should execute:

dput debexpo package_version_source.changes

You will get an output like this:

% dput -f debexpo odccm_0.11.1-17_source.changes
Uploading to debexpo (via http to localhost:5000): ...

At this point your upload will run and you should see the logs flying by
showing the status of the upload. The *.changes file will get uploaded last

Plugins

debexpo has many “plugins” for different purposes. Some are to make sure packages
are in a good condition for the archive, some make sure the packages can even
be imported as they might be damaged in the upload and some simply find information
about the package, such as the programming language used.

Here is a list of the plugins installed by standard with debexpo:

buildsystem

This plugin looks at the package and by looking at the package’s Build-Depends, it
tries to work out what build system the package is using. The possible options are:

	CDBS

	debhelper

	debhelper v7

	unknown

This is an informational QA plugin and should only be run in that stage, between
upload and successful importing.

changeslist

This plugin emails the debexpo.changes_list email address with an email on every
package upload in exactly the same format as the debian-devel-changes [http://lists.debian.org/debian-devel-changes/]
mailing list.

This is a post-successful-upload plugin and should only be run in that stage, after
the package has successfully been imported into the archive.

checkfiles

This plugin checks whether all the files referenced in the changes file are present.
It also checks each file’s md5sum to make sure it matches the md5sum given in the
changes file.

If any part of this plugin fail, the whole upload should fail as this is a critical
error.

This is a post-upload plugin and should only be run in that stage, straight after
the package has been uploaded onto the system, but before any package manipulation.

closedbugs

This plugin checks on the Debian BTS [http://bugs.debian.org/] whether bugs that
are reported to be closed in the package upload do actually belong to the package
being uploaded.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

controlfields

This plugin looks for additional debian/control fields, such as Vcs-Browser
and Homepage.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

debianqa

This plugin tests a number of things with the uploaded package against information
in Debian:

	whether the package is an NMU

	whether the package is already in Debian

	whether the package maintainer is the Debian maintainer

	whether the package introduces a new maintainer

	whether the package closes any wnpp bugs

	finds information about any ITPs closed

	finds previous sponsors of the package

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

diffclean

This package looks at the package’s diff.gz and makes sure that it is clean.
This means that it does not include any changes to files outside of the debian
directory as this is considered bad practice.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

getorigtarball

This package looks whether the package is missing an original tarball and if
so, it tries to download the appropriate file from the Debian archives. You
can set your favourite Debian mirror with the debexpo.debian_mirror config
option.

This is a post-upload plugin and should only be run in that stage, straight after
the package has been uploaded onto the system, but before any package manipulation.

gpgsigned

This plugin checks to see whether the changes and dsc files have been GPG
signed.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

lintian

This plugin runs lintian [http://lintian.debian.org/] on the package.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

maintaineremail

This plugin looks to see whether the email of the uploader of the package is
the same as the email of the maintainer of the package.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

native

This plugin looks to see whether the package is a native package.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

notupoader

This plugin checks to make sure that the uploader of the package is the owner
of any subsequent package uploads of the same name.

If the plugin finds that there has been a previous upload of the package, and
the previous uploader is different from the new uploader, the import will stop.

This is a post-upload plugin and should only be run in that stage, straight after
the package has been uploaded onto the system, but before any package manipulation.

removepackage

This plugin removes a package and all of its associated comments, metrics and
information from the database.

This is a post-upload-to-debian plugin that should only be run after the package
has been uploaded to Debian.

watchfile

This plugin checks to see whether the package has a watch file. If it does,
then the plugin will check the watch file to make sure it works. If it does
work, then it will report back on any new upstream versions.

This is an information QA plugin and should only be run in that stage, between
upload and successful importing.

SOAP documentation

debexpo repositories can be accessed by using SOAP using its soap controller.
Its methods are described below:

	
uploader(email)

	Returns an array of packages given an uploader’s email address.

email is the email address you are querying.

	
section(name)

	Returns an array of packages given a section name.

name is the name of the section you are querying.

	
maintainer(email)

	Returns an array of packages given a maintainer’s email address.

email is the email address you are querying.

	
packages()

	Returns an array of all packages.

	
package(name, version)

	Returns details on a specific package and version.

name is the package name you are querying.

version is the version name you are querying.

Example client

Using SOAPpy:

import SOAPpy
server = SOAPpy.SOAPProxy("http://localhost:5000/soap")
print server.section(name='utils')

And the output:

<SOAPpy.Types.structType retval at 141282572>: {'stringArray': <SOAPpy.Types.structType stringArray at 141279660>: {'string': ['odccm', '0.11.1-17', 'Jonny Lamb <jonny@debian.org>', 'odccm - Daemon to keep a connection to Windows Mobile device', 'http://localhost:5000/package/odccm']}}

Building the software

If you like to build the software you can get the Git repository from
debexpo.workaround.org [http://debexpo.workaround.org/] using:

git clone git://debexpo.workaround.org/debexpo.git

Then simply enter into the debexpo directory and execute make build:

cd debexpo
make build

It is easier in some situations to leave debexpo in its source directory and
run it from there. However, if you wish to have it installed, create a
virtualenv environment:

aptitude install python-virtualenv
virtualenv .
source bin/activate

Then you can safely:

make install

to install the package in your encapsulated environment.

If you attempt to install the package without virtualenv then setuptools (the
Python software management system) will install the files into the system-wide
directories /usr/lib/pythonX.Y/site-packages/. Setuptools is not good at
removing files again and it is generally a bad idea to mix
setuptools-installed packages with Debian packages. So you should know what
you are doing.

Writing plugins

Writing plugins for debexpo is easy. You only need to know a bit of
python and you’re away! A sample QA plugin is shown here:

import logging

from debexpo.lib import constants
from debexpo.lib.base import *
from debexpo.plugins import BasePlugin

log = logging.getLogger(__name__)

class YInNamePlugin(BasePlugin):

 def test_y_in_name(self):
 log.debug('Checking whether the name has a letter Y in its name')

 package_name = self.changes['Source']

 if 'y' in package_name:
 self.passed('y-in-name', None, constants.PLUGIN_SEVERITY_INFO)
 else:
 self.failed('no-y-in-name', None, constants.PLUGIN_SEVERITY_INFO)

plugin = YInNamePlugin

outcomes = {
 'y-in-name' : { 'name' : 'Package has the letter Y in its name' },
 'no-y-in-name' : { 'name' : 'Package has no letter Y in its name' },
}

This plugin looks at a package and looks whether the package name has the
letter Y in it. It has two outcomes. It will pass the plugin if a letter
Y is present. It will fail the test, albeit with a low priority, if a
letter Y is not present.

A walk through

Lines 1-7:

import logging

from debexpo.lib import constants
from debexpo.lib.base import *
from debexpo.plugins import BasePlugin

log = logging.getLogger(__name__)

These are just imports of the logger, debexpo constants, and other classes
that you need not worry about. These imports and statements should always
be present in a plugin.

Line 9:

class YInNamePlugin(BasePlugin):

This starts the definition of the plugin, which must extend on the BasePlugin
class. The name of this class doesn’t matter, as you will see in a bit.

Line 11:

def test_y_in_name(self):

This starts the actual plugin. All methods in the plugin starting with the name
“test” will be run. This allows you to have as many tests in each plugin as you
wish. You may also have other methods that, as long as they do not start with
the word “test” will not be run automatically.

Line 12:

log.debug('Checking whether the name has a letter Y in its name')

This is a simple logging statement. This should be used well and frequently
if necessary. It uses the standard python logging module [http://docs.python.org/lib/module-logging.html].

Line 14:

package_name = self.changes['Source']

This gets the name of the package by getting the Source field from the changes file.
Most plugin-running locations will have a self.changes debexpo.lib.changes.Changes
object that can be used and inspected in the plugin.

Line 17:

self.passed('y-in-name', None, constants.PLUGIN_SEVERITY_INFO)

This records a pass for the plugin. The passed and failed methods
both have three arguments:

	
class debexpo.plugins.BasePlugin(**kw)

	The class all other plugins should extend.

	
failed(outcome, data, severity)

	Adds a PluginResult for a failed test to the result list.

	outcome

	Outcome tag of the test.

	data

	Resulting data from the plugin, like more details about the process.

	severity

	Severity of the result.

	
info(outcome, data)

	Adds a PluginResult for an info test to the result list.

	outcome

	Outcome tag of the test.

	data

	Resulting data from the plugin, like more detail about the process.

	
passed(outcome, data, severity)

	Adds a PluginResult for a passed test to the result list.

	outcome

	Outcome tag of the test.

	data

	Resulting data from the plugin, like more details about the process.

	severity

	Severity of the result.

As you can see, there is another method called info. This is for outcomes
that do not mean there was a success, and similarly do not mean there was a
failure. The YInNamePlugin is actually a good example of where the info method
should be used. It defaults the severity to “info”.

The outcome first variable of the functions should be a string relating to the
key of the outcomes dictionary at the bottom of the file. The value of each
key in this dictionary should be another dictionary with at least one key/value pair:
name: This should be an English string as to what the outcome actually means.

Line 21:

plugin = YInNamePlugin

This shows that the name of the plugin really does not matter. As long as the
plugin variable points to a class based on BasePlugin, it is fine.

Other plugins

This is a very brief outline of a simple QA plugin. However, there are different
stages of plugin execution. The Plugins page tells more about stock plugins,
what they do, and when they should run. You should use these plugins as a reference
for future plugins.

If you get stuck, do not hesitate to pop by the mailing list [http://workaround.org/cgi-bin/mailman/listinfo/debexpo-devel].

Writing cronjobs

Writing cronjobs works similar to plugins. The invocation and arguments
passed are different though.
A minimal cronjob looks like this:

import datetime
from debexpo.cronjobs import BaseCronjob

class ImportUpload(BaseCronjob):
 def setup(self):
 pass

 def teardown(self):
 pass

 def invoke(self):
 self.log.debug("Hello World")

cronjob = ImportUpload
schedule = datetime.timedelta(seconds = 10)

The architecture

A cronjob should be subclassed from BaseCronjob. That ensure API compliant
invocation. A worker thread runs your jobs cyclically, persistence is guaranteed
for the object runtime. Technically, you must define two objects in your
module.

	Invocation::

	cronjob = ImportUpload
schedule = datetime.timedelta(seconds = 10)

The ‘cronjob’ attribute is an object reference which should be instantiated upon
cronjob invocation. The ‘schedule’ attribute defines how often your cronjob should
invoke your worker method. This must be a datetime.timedelta object. This is a soft
guarantee. The Worker thread will guarantee you not to run the job more often than you
specified, but it will not invoke it precisely for every delta. Your cronjob will not
be invoked if another cronjob is still pending or running once your delta expires.
Additionally the Worker thread does not execute the worker queue more often than every
debexpo.cronjob_delay milliseconds.

The constructor

Please don’t override the base class constructor, it will call your setup method
if you need any setup. The following attributes will be instantiated for your
cronjob:

self.parent

This is a reference to the worker object, which instantiated your cronjob. You can
call any method in from there, if necessary.

self.config

This is an instantiated configuration object. You can access every Debexpo
configuration setting from it.

self.log

An instantiated log object, use it to display messages within the worker thread

The destructor

Similarly to the constructor, don’t override the destructor. Use the teardown
method instead

The worker method invocation

Implement the invoke method as your working horse. It will be called regularly
and run your stuff. The Worker is designed as single threaded application, which
means your method will block the entire cron job architecture. Don’t do anything
which shall not be run synchronously.

Coding standards

Parts of this document are copied from netconf’s coding standards [http://git.debian.org/?p=netconf/netconf.git;a=blob;f=doc/coding_standards.txt;hb=HEAD].

Python

	Python code adheres to PEP-8 coding guidelines [http://www.python.org/dev/peps/pep-0008/].

	Write all code for Python 2.5; thus, all features up until and including Python 2.5 may be used.

	If the choice is between a Python 2.5 way of implementing something, and a pre-2.5 way, the former should be taken.

	Existing pre-2.5 constructs which have been deprecated by Python 2.5 must be reimplemented accordingly.

	Existing pre-2.5 constructs which can merely be expressed more concisely with Python 2.5 can be migrated, and probably should be.

	Use the docs/py.template file as a start to all Python files. Alter author and copyright information if needed.

	Use Python unicode strings – u'foo' instead of 'foo'.

	Private Python functions’ names should start with an underscore.

General

	Use UTF-8 everywhere.

	Limit line width to 100 characters.

	Everything is in English (including comments, variable names, etc.)

	All text that will be shown to users must be localized using the Pylons framework [http://wiki.pylonshq.com/display/pylonsdocs/Internationalization+and+Localization]

	Create tests [http://wiki.pylonshq.com/display/pylonsdocs/Unit+Testing] using the Pylons framework for all functions or features that it is feasible for

	When showing potentially long lists of things use the paginate module.

	Use the logging module to log activity, and use the three severity levels.

Directory structure

	Functions that deal with the database models should go into model/.

	Functions that provide general functionality go into lib/helpers/.

Mako Templates

	Start all templates with # -*- coding: utf-8 -*- on the first line.

	Use correct, validated [http://validator.w3.org/], XHTML.

	Try to use the webhelpers where possible.

	Indent XHTML properly – 4 spaces per level, as in the Python code.

Contributing

Help is always welcome in debexpo. There are also a number of ways
to contribute:

	Fixing bugs [http://debexpo.workaround.org/trac/report/1]

	Testing the software and filing bugs

	Filing wishlist bugs

	Implementing new features

	Writing new plugins

Getting the source

You can clone the Git repository using:

git clone git://git.debian.org/debexpo/debexpo.git

How we use branches

Contributions to Debexpo should be based on the “master” branch. This is
the default when you clone the repository.

We recommend rebasing your work so that it is based on the latest “origin/master”
just before you submit the changes for review.

We also use the branch name live to indicate what is running on the main site.

Where to send patches

You should send patches or any other feedback and information to the
debexpo-devel [http://workaround.org/cgi-bin/mailman/listinfo/debexpo-devel]
mailing list.

We also welcome Git branches.

API documentation

debexpo.lib.changes

debexpo.lib.email

debexpo.lib.plugins

debexpo.lib.repository

debexpo.lib.utils

Index

 B
 | F
 | I
 | M
 | P
 | S
 | U

B

 	
 	BasePlugin (class in debexpo.plugins)

F

 	
 	failed() (debexpo.plugins.BasePlugin method)

I

 	
 	info() (debexpo.plugins.BasePlugin method)

M

 	
 	maintainer()

P

 	
 	package()

 	
 	packages()

 	passed() (debexpo.plugins.BasePlugin method)

S

 	
 	section()

U

 	
 	uploader()

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to debexpo’s documentation

 		
 Installing and setting up debexpo

 		
 Getting debexpo

 		
 Dependencies needed for both methods

 		
 Installing on Debian Squeeze or Wheezy as root

 		
 Installing in a virtualenv

 		
 Virtualenv setup

 		
 Dependencies

 		
 Debexpo installation

 		
 Editing your configuration

 		
 Setting up the application

 		
 Using Vagrant

 		
 Running debexpo

 		
 Using paste’s built-in webserver

 		
 Using Apache

 		
 Config file

 		
 debexpo.upload.incoming

 		
 debexpo.repository

 		
 debexpo.importer

 		
 debexpo.handle_debian

 		
 debexpo.sitename

 		
 debexpo.tagline

 		
 debexpo.logo

 		
 debexpo.email

 		
 debexpo.debian_specific

 		
 debexpo.plugins.post_upload

 		
 debexpo.plugins.qa

 		
 debexpo.plugins.post_upload_to_debian

 		
 debexpo.plugins.post_successful_upload

 		
 debexpo.plugindir

 		
 debexpo.debian_mirror

 		
 debexpo.changes_list

 		
 debexpo.server

 		
 debexpo.frontpage

 		
 debexpo.gpg_path

 		
 Uploading

 		
 Setting up dput

 		
 Uploading the package

 		
 Plugins

 		
 buildsystem

 		
 changeslist

 		
 checkfiles

 		
 closedbugs

 		
 controlfields

 		
 debianqa

 		
 diffclean

 		
 getorigtarball

 		
 gpgsigned

 		
 lintian

 		
 maintaineremail

 		
 native

 		
 notupoader

 		
 removepackage

 		
 watchfile

 		
 SOAP documentation

 		
 Example client

 		
 Building the software

 		
 Writing plugins

 		
 A walk through

 		
 Other plugins

 		
 Writing cronjobs

 		
 The architecture

 		
 The constructor

 		
 self.parent

 		
 self.config

 		
 self.log

 		
 The destructor

 		
 The worker method invocation

 		
 Coding standards

 		
 Python

 		
 General

 		
 Directory structure

 		
 Mako Templates

 		
 Contributing

 		
 Getting the source

 		
 How we use branches

 		
 Where to send patches

 		
 API documentation

 		
 debexpo.lib.changes

 		
 debexpo.lib.email

 		
 debexpo.lib.plugins

 		
 debexpo.lib.repository

 		
 debexpo.lib.utils

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

