

Welcome to de_toolkit’s documentation!

Introduction

de_toolkit is a suite of Bioinformatics tools useful in differential
expression analysis and other high-throughput sequencing count-based workflows.
The tools are implemented either through direct implementation in python or as
a convenience wrapper around R packages using a custom wrapr.
The documentation is convivial, free range, and complete-protein, and the
package has very high test coverage [https://makeameme.org/meme/test-coverage-now].

The toolkit is both a python module and a command line interface that wraps
primary module functions to facilitate easy integration into workflows. For
instance, to perform DESeq2 [http://bioconductor.org/packages/release/bioc/html/DESeq2.html] normalization of a counts matrix contained in the
file counts_matrix.tsv, you could run on the command line:

detk-norm deseq2 counts_matrix.tsv > norm_counts_matrix.tsv

The counts in the counts matrix file will be normalized using the DESeq2 method
and output to the norm_counts_matrix.tsv file.

Check out the detk Quickstart to get quickstarted.

Documentation

	detk Quickstart

	Workflow Tutorial
	First detk principles

	Calculating Counts Matrix Statistics

	Filtering a Counts Matrix File

	Normalization

	Performing Differential Expression

	de - Differential Expression
	deseq2

	firth logistic regression

	enrich - Set Enrichment Methods
	fgsea

	filter - Filtering Count Matrices
	Quick start

	How to run the filter module

	Incorporating column data into filter

	norm - Normalizing Count Matrices
	deseq2 normalization

	library size normalization

	fpkm normalization

	outlier - Outlier Identification
	entropy

	shrink

	stats - Count Matrix Statistics
	Tabular output format

	JSON output format

	API Documentation

	transform - Count Transformation
	plog

	rlog

	vst

	util - Counts and Column Data File Utilities
	tidy

	tidy-counts

	tidy-covs

	Patsy-lite
	Introduction

	Syntax

	The special counts term

	wrapr - Thin wrapper for running R scripts
	Setup

	The interface

	API documentation

Installation

We suggest installing this package using pip:

pip install de_toolkit

In development or if you want to use the bleeding edge, when you want to run
the toolkit, use the setup.py script:

python setup.py install

This should make the detk and its subtools available on the command line.
Whenever you make changes to the code you will need to run this command again.

R dependencies

The following packages are only required to use the corresponding submodule
functions:

	
	R packages

	
	DESeq2 [http://bioconductor.org/packages/release/bioc/html/DESeq2.html] (detk-de deseq2, detk-transform rlog, detk-transform vst)

	fgsea [https://bioconductor.org/packages/release/bioc/html/fgsea.html] (detk-enrich fgsea)

	logistf [https://cran.r-project.org/package=logistf] (detk-de firth)

We wearily suggest using anaconda [http://anaconda.org] to create an environment that contains the
software necessary, e.g.:

conda create -n de_toolkit python=3.5

./install_conda_packages.sh

if you want to use the R functions (Firth, DESeq2, etc.)
Rscript install_r_packages.sh

Indices and tables

	Index

	Module Index

	Search Page

detk Quickstart

de_toolkit, or detk, is a python package and set of command line tools
that implements many common operations when working with counts matrices from
high throughput sequencing experiments. For example, the following diagram
illustrates various tools used in a simple RNA-Seq workflow downstream of
quantification:

[image: _images/simple_pipeline.png]
This workflow performs the following, all without any custom code:

	Takes the output from read counting (e.g. htseq-count [https://htseq.readthedocs.io]) or expression
estimation software (e.g. salmon [https://combine-lab.github.io/salmon/] or kallisto [https://pachterlab.github.io/kallisto/]) and combines them into a
concatenated counts matrix using the csvgather [https://bitbucket.org/adamlabadorf/csvgather/] tool

	Calculates statistics on the zero-ness of genes that is helpful in making
decisions for filtering features using detk-stats rowzero

	Filter out rows from the raw expression matrix that have half or more zero
counts detk-filter

	Normalizes the filtered counts matrix file using the DESeq2 normalization
procedure detk-norm deseq2

	Computes and visualizes principal components on the normalized counts matrix
to identify outlier samples detk-stats pca

	Uses the csvcut tool from the csvkit [https://csvkit.readthedocs.io] software package to remove a
hypothetical outlier sample from the raw matrix

	Conducts differential expression using the DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] method by combining the
raw counts matrix with a sample metadata file detk-de deseq2

	Computes pre-ranked GSEA [http://software.broadinstitute.org/gsea] analysis on the differential expression statistics
using the fgsea [http://bioconductor.org/packages/release/bioc/html/fgsea.html] package

These tools were designed by and for analysts who implement analyses like this
one regularly on the command line. The above workflow could be easily implemented with
common workflow management software like snakemake [https://snakemake.readthedocs.io/en/stable/] like so:

from glob import glob

rule all:
 'detk_report/detk_report.html',
 'msigdb_c2cp_gsea_results.csv'

rule gather_counts:
 input: glob('sample_*__salmon_counts/quant.sf')
 output: 'raw_counts.csv'
 shell:
 '''
 csvgather -j 0 -f NumReads -f "s:NumReads:{{dir}}:" \
 -f "s:__salmon_counts::" -o {output} \
 {input}
 '''

rule raw_rowzero:
 input: 'raw_counts.csv'
 output: 'raw_counts_rowzero_stats.csv'
 shell:
 'detk-stats rowzero -o {output} {input}'

rule filter_raw:
 input: 'raw_counts.csv'
 output: 'raw_counts_filtered.csv'
 shell:
 'detk-filter "nonzero(all) < 0.5" -o {output} {input}'

rule deseq2_norm:
 input: 'raw_counts_filtered.csv'
 output: 'norm_counts_filtered.csv'
 shell:
 'detk-norm deseq2 -o {output} {input}'

rule pca:
 input: 'norm_counts_filtered.csv'
 output: 'norm_counts_filtered_pca.csv'
 shell:
 'detk-stats pca -o {output} {input}'

rule generate_detk_report:
 input:
 rules.raw_rowzero.output,
 rules.pca.output
 output: 'detk_report/detk_report.html'
 shell:
 'detk-report generate --dev'

rule remove_outlier:
 input: 'raw_counts_filtered.csv'
 output: 'raw_counts_filtered_nooutlier.csv'
 shell:
 'csvcut -C outlier_sample_name {input} > {output}'

rule de:
 input:
 counts='raw_counts_filtered_nooutlier.csv',
 covs='sample_info.csv'
 output: 'deseq2_results.csv'
 shell:
 'detk-de deseq2 -o {output} "counts ~ cond" {input.counts} {input.covs}'

rule gsea:
 input:
 de='deseq2_results.csv',
 gmt='msigdb_c2cp.gmt'
 output: 'msigdb_c2cp_gsea_results.csv'
 shell:
 'detk-enrich fgsea -o {output} -i gene -c cond__log2FoldChange {input.gmt} {input.de}'

Workflow Tutorial

There are a variety of functions and tools implemented in detk for differential
expression analysis. This example will assume that you have a raw counts matrix
file that you have obtained from an RNASeq analysis using appropriate upstream
tools, e.g. salmon [https://combine-lab.github.io/salmon/] transcriptome quantification or STAR [https://github.com/alexdobin/STAR] + htseq-count [https://htseq.readthedocs.io/en/master/count.html].

Tool Tip

If you have a pipeline that produces individual counts files for each
of your samples, our command line tool csvgather [https://bitbucket.org/adamlabadorf/csvgather/src/master/] may be helpful to
easily combine these files together into a single matrix.

Using detk, we will perform the following steps:

	examine statistics of the counts matrix using the stats - Count Matrix Statistics module

	filter genes based on the statistics we gathered previously using the filter - Filtering Count Matrices
module and mini-language

	normalize the counts matrix with the DESeq2 normalization method using
the norm - Normalizing Count Matrices module

	perform DESeq2 differential expression analysis for a condition of interest
with the de - Differential Expression module

These pages contain a walkthrough tutorial of how to use detk for examining
and analyzing a counts matrix file, like those produced by an RNASeq
experiment.

	First detk principles
	The Count Matrix

	The Column Metadata File

	Calculating Counts Matrix Statistics

	Filtering a Counts Matrix File

	Normalization

	Performing Differential Expression
	Firth Logistic Expression

First detk principles

By: Adam Labadorf

detk is a collection of functions and methods that are commonly used in
differential expression analysis. Normally, most of these functions are
performed either by separate programs, often written in different languages, or
implemented manually using custom code using your favorite language and tools.
After enough moments thinking to myself, “Didn’t I already write this exact
code a dozen times already?!, I decided to get busy getting lazy and, with the
help of others, designed and wrote this package.

The primary goals of this package are three fold:

	provide an easy-to-use command line interface for common operations on
counts matrix files that is easy to integrate into workflows, e.g.
snakemake [https://snakemake.readthedocs.io/en/stable/] or Nextflow [https://www.nextflow.io/]

	make the results of these common counts matrix operations more consistent
and less error prone, due to not repeatedly implementing the same custom
code

	avoid writing R

The two core concepts of this package are the counts matrix file and
the metadata file, described below.

The Count Matrix

Every tool in detk accepts a counts matrix file of the form:

	gene_id

	sample_1

	sample_2

	…

	sample_m

	gene_1

	10000

	1244

	…

	2935

	gene_2

	2023

	1534

	…

	1308

	gene_3

	5

	2

	…

	19

	…

	…

	…

	…

	…

	gene_n

	5

	2

	…

	150031

The first column must be unique gene or feature identifiers, e.g. Ensembl Gene
IDs, miRBase IDs, ChIPSeq peaks, unique genomic bins, etc. The columns must be
unique sample identifiers. The column name of the first column doesn’t matter,
(could be blank I guess) but each row must have the same number of columns. The
format must be character delimited, but detk sniffs the format so the delimiter
can, in principle, be any single character. However, for consistency, detk
always outputs results using comma separated format, so, you should probably
use that.

The Column Metadata File

Other detk functions require metadata on each of the samples to perform certain
analyses, e.g. differential expression. The metadata file, or column data file,
should be a character delimited text file with the following form:

	sample_names

	condition

	sex

	…

	covariate_p

	sample_1

	case

	M

	…

	c1

	sample_2

	control

	F

	…

	c9

	…

	…

	…

	…

	…

	sample_m

	case

	F

	…

	c3

The first column should contain sample names, and remaining columns hold any
information about the samples that might be needed for analysis. In this
example, the condition column might indicate whether the sample is a
disease or healthy subject. Although detk will attempt to match up the sample
names in the first column of the metadata file with the column names of the
corresponding counts file, it is good practice to create these files such
that the order agrees. detk will sniff the format of the file you provide,
so it may be delimited with any single character you wish.

Calculating Counts Matrix Statistics

Filtering a Counts Matrix File

Filtering should be done before normalization. There are three different
filtering options available in detk. nonzero, mean, and median.
Command line arguments for filter take this form:

detk-filter [options] <filter commands> [--column-data=<column data fn>] <counts_fn>

The structure of the filter command is as follows..

<function>(all or condition) <inequality> <number>

So to if you wanted to only keep rows in the matrix where the means where greater than 10, you would specify

'mean(all)>10'

On the command line. Spacing does not matter and 'mean(all) > 10' is functionally equivalent to the previous command.

Example:

detk-filter -o MyFilteredCounts 'mean(all)>10' MyCounts

Note:

The command describes keeping rows based on meeting the above condition. A csv file is created when specifying output with -o

More detailed information on other methods can be found in the filter.rst file.

Normalization

Normalization is simple requiring only the count matrix you would like to normalize, and the name of the
output file

Example:

detk-norm deseq2 ``MyFilteredCounts`` -o ``MyNormalizedCounts``

DESeq2 normalization is the only normalization strategy implemented currently

Note:

A csv file is created when specifying output with -o

Performing Differential Expression

Firth Logistic Expression

After normalization, differential expression can be performed. Currently only Firth’s Logistic
Regression is implemented. Firth Logistic Regression requires three values. A design which specifies condition and covariates of interest in this form

Without Covariates:

"Condition[VAR] ~ counts"

Alternatively covariates can be specified by adding them before counts separated by a +.

With Covariates:

"Codition[VAR] ~ COV1+COV2+COVN+counts"

Example:

detk-de firth "Codition[VAR] ~ COV1+COV2+COVN+counts" MyNormalizedCounts MyInfoFile -o MyDifferentialExpression

Note:

A tsv file is created when specifying output with -o

de - Differential Expression

Important

The model formulas in this module use the Patsy-lite mini-language. Be sure to read that first before writing your models!

Also remember to filter prior to differential expression analysis. The number of genes provided for hypothesis testing may affect the results.
You may need to filter out genes that have zero expression in all of the samples you are interested in.

Differential expression tools. Each of these mthods accepts a design formula, a
counts matrix file, and a column data file. The design formula is specified
using the Patsy-lite mini-language. The counts and column data matrices
must be formatted as with any other tool in detk.

deseq2

Note

If you are only interested in a subset of the samples, you can still provide the whole raw count matrix and a
column data table with the samples you care about.

Command line interface to a canonical DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] analysis. To run a DESeq2
analysis on a counts matrix and accompanying column data file:

detk-de deseq2 "counts ~ AgeOfDeath + Status" raw_counts.csv column_data.csv > deseq2_results.csv

This is roughly equivalent to the following R:

library(DESeq2)

counts <- read.csv("raw_counts.csv",rownames=1)

design.mat <- read.csv("column_data.csv")

dds <- DESeqDataSetFromMatrix(
 countData = counts,
 colData = design.mat,
 design = ~ AgeOfDeath + Status
)

dds <- DESeq(dds, minReplicatesForReplace=Inf)

write.csv(results(dds,cooksCutoff=Inf),de.out.fn)

Tips

Add brackets with the name of the reference group to specify what you are comparing against.
For example, “counts ~ Status[control]”

The analysis implemented here differs from the default DESeq2 analysis in
the following ways:

	the design formula specified on the command line must have the value
counts as the only term of the left hand side

	no outlier mean trimming based on Cooks distance is performed

	no p-values or adjusted p-values are flagged or omitted due to outliers

	estimated parameters, statistics, and p-values are reported for
all variables in the model in the output, rather than just the last term
(request the default behavior using the --last-term-only command line
flag)

	no independent filtering is performed

	all columns related to a term in the model have the term name prepended
in the output, e.g. Status__log2FoldChange

Usage:

Usage:
 detk-de deseq2 [options] <design> <count_fn> <cov_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 --rda=RDA Filename passed to saveRDS() R function of the result
 objects from the analysis
 --strict Require that the sample order indicated by the column names in the
 counts file are the same as, and in the same order as, the
 sample order in the row names of the covariates file
 --norm-counts Prevent DESeq2 from normalizing counts prior to
 running differential expression, default behavior
 assumes that provided counts are raw
 --last-term-only Use the default DESeq2 behavior of returning DE parameters
 for the last term in the model, default behavior is to
 report parameters for all variables in the model
 --gene-wise-disp Use estimateDispersionsGeneEst instead of estimateDispersions
 --cores=N Tell DESeq2 to use N cores when running, requires the
 BiocParallel Bioconductor package to be installed [default: none]

firth logistic regression

When performing differential expression comparing two classes of samples,
Firth’s logistic regression [https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1047] as described by Choi et al [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1498-y] has desirable
statistical properties including a better controlled type I error rate and
less loss of power due to including additional variables in the model compared
with other DE methods, including DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html]. This form of logistic regression uses
a penalized likelihood method to avoid the problem of complete separation [https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/] of
the data, a common occurence in RNASeq data. One drawback of the method is it
requires more samples than DESeq2 and other negative binomial regression based
methods (i.e. at least 10 replicates per condition).

A counts term must be included on the right hand side of the design formula.

detk-de firth "Status ~ AgeOfDeath + counts" norm_counts.csv column_data.csv > firth_results.csv

Usage:

Usage:
 detk-de firth [options] <design> <count_fn> <cov_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 --rda=RDA Filename passed to saveRDS() R function of the result
 objects from the analysis
 --strict Require that the sample order indicated by the column names in the
 counts file are the same as, and in the same order as, the
 sample order in the row names of the covariates file
 --standardize Standardize counts prior to running logistic regression
 as to obtain standardized (i.e. directly comparable)
 beta coefficients
 --cores=N Tell R to use N cores when running, requires the
 parallel R package to be installed [default: none]

enrich - Set Enrichment Methods

	fgsea

Functions for performing statistical set enrichment methods, e.g.
Gene Set Enrichment Analysis

fgsea

	
de_toolkit.enrich.fgsea(gmt, stat, minSize=15, maxSize=500, nperm=10000, nproc=None, rda_fn=None)

	Perform pre-ranked Gene Set Enrichment Analysis using the fgsea Bioconductor
package

Compute GSEA enrichment using the provided gene sets in the GMT object gmt
using the statistics in the pandas.Series stat. The fgsea Bioconductor
package must be installed on your system for this function to work.

The output dataframe contains one result row per features set in the GMT
file, in the same order. Output columns include:

	name: name of feature set

	ES: GSEA enrichment score

	NES: GSEA normalized enrichment score

	pval: nominal p-value

	padj: Benjamini-Hochberg adjusted p-value

	nMoreExtreme: number of permutations with a more extreme NES than true

	size: number of features in the feature set

	leadingEdge: the leading edge features as defined by GSEA (string with
space-separated feature names)

Command line usage:

Perform preranked Gene Set Enrichment Analysis using the fgsea bioconductor
package on the given gmt gene set file.

The GMT file must be tab delimited with set name in the first column, a
description in the second column (ignored by detk), and an individual feature
ID in each column after, one feature set per line. The result file can be any
character delimited file, and is assumed to have column names in the first row.

The feature IDs must be from the same system (e.g. gene symbols, ENSGIDs, etc)
in both GMT and result files. The user will likely have to provide:

- -i <col>: column name in the results file that contains feature IDs, e.g.
 gene_name
- -c <col>: column name in the results file that contains the statistics to
 use when computing enrichment, e.g. log2FoldChange

fgsea: https://bioconductor.org/packages/release/bioc/html/fgsea.html

Usage:
 detk-enrich fgsea [options] <gmt_fn> <result_fn>

Options:
 -h --help Print out this help
 -o FILE --output=FILE Destination of fgsea output [default: stdout]
 -p PROCS --cores=PROCS Ask BiocParallel to use PROCS processes when
 executing fgsea in parallel, requires the
 BiocParallel package to be installed
 -i FIELD --idcol=FIELD Column name or 0-based integer index to use as
 the gene identifier [default: 0]
 -c FIELD --statcol=FIELD Column name or 0-based integer index to use as
 the statistic for ranking, defaults to the last
 numeric column in the file
 -a --ascending Sort column ascending, default is to sort
 descending, use this if you are sorting by p-value
 or want to reverse the directionality of the NES
 scores
 --abs Take the absolute value of the column before
 passing to fgsea
 --minSize=INT minSize argument to fgsea [default: 15]
 --maxSize=INT maxSize argument to fgsea [default: 500]
 --nperm=INT nperm argument to fgsea [default: 10000]
 --rda=FILE write out the fgsea result to the provide file
 using saveRDS() in R

filter - Filtering Count Matrices

Functions for filtering count matrices based on various criteria.

The output is a file with rows filtered out of the original data based on a
filter command. The module accepts a single counts file as input. By default,
the output file has the same basename followed by ‘_filtered’ and the same
file extension as the input, so counts.csv will produce counts_filtered.csv.
The default output filename can be changed using the optional command line
argument ‘–output=<out_fn>’.

Quick start

Here is an example command that takes a normalized count matrix and retain those
genes that only have a mean count greater than 10.

detk-filter -o counts_gt10.csv 'mean(all) > 10' norm_counts.csv

How to run the filter module

The filter module is run on the command line using the following:

Usage:
 detk-filter [options] <command> <counts_fn> [<cov_fn>]

Options:
 -o <out_fn> --output=<out_fn> Name of output file [default: stdout]
 --column-data=<column_data_fn> DEPRECATED: pass cov_fn as positional
 command line argument instead

The counts file is filtered based on the given command. Column data can also be
provided, and data can be filtered based on conditions specified in the column
data file. The filter module implements a custom mini language, which is used
to specify which and how gene should be filtered. The command must be
structured as follows, and enclosed in single or double quotes:

<function>(<column spec>) <inequality> <number>

For example, to filter out rows that have a mean of less than 10 across all
samples, the command would be:

mean(all) > 10

The command describes rows that should be kept. Those rows not meeting this
criteria are filtered out.

There are four different filter functions available:

	
	mean:

	Filter data based on the mean value of the row or column spec.

	
	median:

	Filter data based on the median value of the row or column spec.

	
	zero:

	Filter data based on how many zero counts are in the row. If the
input number is between 0 and 1, (0 < number < 1), then the
number is the fraction of samples that must be zero. If the number
is 1 or greater (1 <= number <= # of samples) or the number is equal
to 0, then it is the number of samples that must be zero.

	
	nonzero:

	Filter data based on how many nonzero counts are in the row. If the
input number is between 0 and 1, (0 < number < 1), then the number
is the fraction of samples that must be nonzero. If the number is 1
or greater (1 <= number < # of samples) or the number is equal to 0,
then it is the number of samples that must be nonzero.

	
	max:

	Filter data based on the maximum value of the row or column spec.

	
	min:

	Filter data based on the minimum value of the row or column spec.

The column spec value can take one of three forms:

	all: literal value indicating filter should be applied across all columns

	column name from a column data file (see below)

	column name from a column data file with a group value specified (see below)

The inequalities supported are: >, >=, <, <=, ==, and
!=. Numbers can be positive or negative integer or floating point numbers.

White spaces are disregarded, so the following are equivalent:

mean(all)>10
mean(all) > 10

Additionally, multiple terms can be input at once to filter on more than one
criteria at a time using the keywords and or or. For example:

mean(all) > 10 and zero(all) < 0.5

This filter will include all genes with greater than an overall mean of 10 and
with more than 50% of the samples having nonzero counts. Commands may be
arbitrarily grouped to create complex filtering rules:

(mean(all) > 5 and nonzero(all) > 0.9) or mean(all) > 100

This filter will identify lowly but consistenly (i.e. non-zero) abundant rows
and any rows with more than a mean of 100 counts across all samples. The
ability to group filters together becomes much more powerful when incorporated
with column data.

Incorporating column data into filter

A column data file can be optionally input to the filter module. The column data
file should specify subsets of the samples that the filter can then be applied
to separately. The first column of the file must match the sample names given
in the counts file. For example, if your counts file contains samples ‘A’, ‘B’,
‘C’, and ‘D’, a column data file might look like this:

sample_name, condition
A, test
B, test
C, test
D, control
E, control

Using the column data, the filter module can then be run in two different ways.
The first way is to apply the filter to each group separately. If all groups
fail the filter criteria, then that row is filtered out. In order to use this
method, the command should be as follows:

mean(condition) > 10

The condition column spec above corresponds to the condition column in the
column data file. This filter will retain genes that have a mean count greater
than 10 within either the test samples or the control samples. This enables
powerful and expressive filtering schemes, for example:

nonzero(condition) > 0.5

This filter retains genes that have fewer than 50% zero counts in either
condition, so genes that are uniquely expressed in test or control will proceed
to downstream analysis. Filtering on overall mean may eliminate these very
interesting genes from consideration.

The second way that you can specify the filter with column data is to filter
rows based on a specific condition. The command includes a value that subsets
the columns of the counts matrix so that filters can be applied to specific
groups:

mean(condition[test]) > 10

This filter will retain genes that have a mean count greater than 10 in the
test samples, regardless of the counts in the control samples.

norm - Normalizing Count Matrices

Count normalization strategies.

deseq2 normalization

Normalize the provided counts matrix using the method as implemented in the R
package DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html]. Briefly, each sample is divided by a size factor calculated
as the median ratio of each gene count divided by the geometric mean count
across all samples. The implementation here is a python port of the R version,
and is roughly equivalent to the following R code:

library(DESeq2)

counts <- as.matrix(read.table(counts.fn,row.names=1))
colData <- data.frame(name=seq(ncol(counts)))

dds <- DESeqDataSetFromMatrix(
 countData=counts,
 colData=colData,
 design = ~ 1
)

dds <- estimateSizeFactors(dds)
write.table(counts(dds,normalized=TRUE),norm.counts.fn)

Usage:

Perform counts normalization on the given counts matrix using the method
implemented in the DESeq2 package.

Usage:
 detk-norm deseq2 [options] <counts_fn>

Options:
 -h --help Print out this help
 -o FILE --output=FILE Destination of normalized output in CSV format [default: stdout]
 --size-factors=FILE Write out the size factors found by the DESeq2
 method to two column tab separated file where
 the first column is sample name and the second
 column is the size factor

library size normalization

Normalize each counts column by the sum of total counts in that column. Usage:

Perform library size normalization on the columns of the given counts matrix.
Counts in each column are divided by the sum of each column.

Usage:
 detk-norm library [options] <counts_fn>

Options:
 -o FILE --output=FILE Destination of normalized output in CSV format [default: stdout]

fpkm normalization

Normalize each gene count according to the Fragments Per Kilobase per Million
reads normalization procedure as described here. Briefly, each count
is divided first by the length of the gene in bases divided by 1000, and then
divided by the number of reads in the sample divided by one million.

In order to normalize each gene by its effective gene length, detk must be
provided the lengths for every gene/feature identifier found in the counts
file. These lengths should be supplied in the form of a two-column character
delimited text file (tabs, commas, whatever, etc, detk sniffs the format) where
the first column is the gene identifier and the second column is the gene
length in bases.

	Every gene in the counts file must have an entry in the lengths file

	The lengths file may have unused gene lengths

	The order of genes between files do not have to match

Usage:

Perform Fragments Per Kilobase per Million normalization on the given counts
file. <lengths_fn> should be a delimited file with two columns, the first
being the name of one of the rows in the counts file and the second is the
effective length of the gene/sequence/etc to use in the normalization.

Note: Program will throw an error and exit if there are genes/sequences
in the counts file that are not found in the lengths file.

The order of names in the counts and lengths files do *not* have to be the
same.

Usage:
 detk-norm fpkm [options] <counts_fn> <lengths_fn>

Options:
 -o FILE --output=FILE Destination of normalized output in CSV format [default: stdout]

outlier - Outlier Identification

	entropy

	shrink

Functions for identifying/manipulating outlier counts.

entropy

	
de_toolkit.outlier.entropy(counts_obj, threshold)

	Calculate sample entropy for each gene and flag genes that exceed the lower
threshold’ile

Sample entropy is a metric that can be used to identify outlier samples by
locating rows which are overly influenced by a single count value. This
metric is calculated for each gene/feature g as follows:

p_i = c_i/sumj(c_j)
sum(p_i) = 1
H_g = -sum_i(p_i*log2(p_i))

Here, c_i is the number of counts in sample i, p_i is the fraction of reads
contributed by sample i to the overall counts of the row, and H_g is the
Shannon entropy of the row when using log2. The maximum value possible for
H is 2 when using Shannon entropy. Genes/features with very low entropy are
those where a small number of samples makes up most of the counts across
all samples.

	Parameters

	
	counts_obj (de_toolkit.CountMatrix) – count matrix object

	threshold (float) – the lower percentile below which to flag genes

	Returns

	data frame with one row for each row in the input counts matrix and two
columns:

	entropy: the calculated entropy value for that row

	entropy_p0_XX: a True/False column for genes flagged as having an
entropy value less than the 0.XX percentile; XX is the
first two digits of the selected threshold

	Return type

	pandas.DataFrame

Command line usage:

Usage:
 detk-outlier entropy <counts_fn> [options]

Options:
 -p P --percentile=P Float value between 0 and 1
 -o FILE --output=FILE Name of the ouput csv
 --plot-output=FILE Name of the plot png

shrink

	
de_toolkit.outlier.shrink(count_obj, shrink_factor=0.25, p_max=None, iters=1000)

	Outlier count shrinkage routine as described in Labadorf et al, PLOSONE (2015)

This algorithm identifies feature where a small number of samples contains a
disproportionately large number of the overall counts for that feature
across samples. For each feature the algorithm is as follows:

	Divide each sample count by the sum of counts (i.e. sample count
proportions)

	Identify samples that have >*p_max* sample count proportion

	If no samples are identified, return the most recent set of adjusted
counts

	Else, shrink the identified samples toward the largest sample s for
which P(x)<p_max by multiplying the difference between the
outlier sample and s by the shrinkage factor and replacing
o with s the shrunken count value

	Go to 1, repeat until no samples exceed p_max count proportion

This strategy assumes that samples with disproportionate count contribution
are outliers and that the order of samples is correct and the magnitude is
sometimes not. The order of the samples is thus always maintained, and the
shrinking does not introduce new false positives beyond what would already
be in the dataset. The maximum proportion of reads allowed in one sample,
p, and the shrinkage factor were both set to 0.2.

	Parameters

	
	count_obj (de_toolkit.CountMatrix object) – counts object

	shrink_factor (float) – number between 0 and 1 that determines how much the residual counts of
outlier samples is shrunk in each iteration

	p_max (float) – number between 0 and 1 that indicates the maximum proportion of counts
a sample may have before being considered an outlier, default is
sqrt(1/num_samples)

Command line usage:

Usage:
 detk-transform shrink [options] <count_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]

stats - Count Matrix Statistics

	Tabular output format

	JSON output format

	API Documentation

	base - Basic statistics

	coldist - Column-wise counts distributions

	rowdist - Row-wise counts distributions

	colzero - Column-wise statistics on zero counts

	rowzero - Row-wise statistics on zero counts

	entropy - Row-wise sample entropy calculation

	pca - Principal component analysis

	summary - Common statistics set

Easy access to informative count matrix statistics. Each of these functions
produces three outputs:

	a tabular form of the statistics, formatted either as CSV or a human
readable table using the terminaltables [https://robpol86.github.io/terminaltables/] package

	a json [http://www.json.org/] formatted file containing relevant statistics in a machine-parsable
format

	a human-friendly HTML page displaying the results

All of the commands accept a single counts file as input with optional
arguments as indicated in the documentation of each subtool. By default, the
JSON and HTML output files have the same basename without extension as the
counts file but including .json or .html as appropriate. E.g., counts.csv
will produce counts.json and counts.html in the current directory. These
default filenames can be changed using optional command line arguments
--json=<json fn> and --html=<html fn> as appropriate for all commands.
If <json fn>, either default or specified, already exists, it is read in,
parsed, and added to. The HTML report is overwritten on every invocation using
the contents of the JSON file.

Tabular output format

Each tool prints out the statistics it calculates to standard output by default.
The standard output format is comma separated values, e.g.:

$ detk-stats base test_counts.csv
stat,val
num_cols,3
num_rows,4

If desired, the -f table argument may be passed to pretty-print the table
instead:

$ detk-stats base -f table test_counts.csv
+base------+-----+
| stat | val |
+----------+-----+
| num_cols | 4 |
| num_rows | 3 |
+----------+-----+

The summary module is slightly different, as it executes multiple subtools.
The CSV output of the summary module adds a line starting with # before
each different output:

$ detk-stats summary --bins=2 test_counts.csv
#base
stat,val
num_cols,3
num_rows,4
#coldist
colname,bin_50.0,bin_100.0,dist_50.0,dist_100.0
a,55.0,100.0,2.0,2.0
b,5500.0,10000.0,2.0,2.0
c,550000.0,1000000.0,2.0,2.0
#rowdist
rowname,bin_50.0,bin_100.0,dist_50.0,dist_100.0
gene1,50005.0,100000.0,2.0,1.0

The pretty-printed output simply outputs each table serially.

JSON output format

The JSON file produced by these modules is formatted as a JSON array containing
objects that each correspond to a stats module. For example:

[
 {
 'name': 'base',
 'stats': {
 'num_cols': 50,
 'num_rows': 27143
 }
 },
 {
 'name': 'coldist',
 'stats': {
 'dists' : [
 {
 'name': 'H_0001',
 'dist': [[5, 129], [103, 317], ...],
 'percentiles': [[0, 193], [1, 362], ...],
 },
 {
 'name': 'H_0002',
 'dist': [[6, 502], [122, 127], ...],
 'bins': [[0, 6000], [1, 6200], ...],
 }
]
 }
 },
 {
 'name': 'rowdist',
 'stats': ...
 }
 ...
]

The example above has been pretty-printed for visibility; the actual output is
written to a single line. The object format for each module is described in
detail below.

API Documentation

base - Basic statistics

	
class de_toolkit.stats.BaseStats(count_mat)

	Basic statistics of the counts file

The most basic statistics of the counts file, including:
- number of columns
- number of rows

	
output

	Example output output:

+basestats-+-----+
| stat | val |
+----------+-----+
| num_cols | 4 |
| num_rows | 3 |
+----------+-----+

Command line usage:

Usage:
 detk-stats base [options] <counts_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

coldist - Column-wise counts distributions

	
class de_toolkit.stats.ColDist(count_mat, bins=100, log=False, density=False)

	Column-wise distribution of counts

Compute the distribution of counts column-wise. Each column is subject
to binning by percentile, with output identical to that produced by
np.histogram.

	Parameters

	
	count_mat (CountMatrix) – count matrix containing counts

	bins (int) – number of bins to use when computing distribution

	log (bool) – take the log10 of counts+1 prior to computing distribution

	density (bool) – return densities rather than absolute bin counts for the
distribution, densities sum to 1

	
output

	Tabular output is a table with four columns per input counts column –

	bin start value (column name: sampleA__binstart)

	number of features with counts or density in bin (sampleA__bincount)

	percentile increment (i.e. 0, 1, etc) (sampleA__pct)

	percentile value for corresponding percentile (sampleA__pctVal)

	
properties

	In the properties object, the fields are defined as follows

	dists

	Array of objects containing one object for each column,
described below.

Each item of dists is an object with the following keys:

	name

	Column name from original file

	dist

	Array of (bin start, count) pairs defining the counts histogram

	percentile

	Array of (percentile, count) pairs defining the counts
percentiles

Example JSON properties output:

{
 'dists' : [
 {
 'name': 'H_0001',
 'dist': [[5, 129], [103, 317], ...],
 'percentiles': [[0, 193], [1, 362], ...],
 },
 {
 'name': 'H_0002',
 'dist': [[6, 502], [122, 127], ...],
 'bins': [[0, 6000], [1, 6200], ...],
 }
]
}

Command line usage:

Usage:
 detk-stats coldist [options] <counts_fn>

Options:
 --bins=N The number of bins to use when computing the counts
 distribution [default: 20]
 --log Perform a log10 transform on the counts before
 calculating the distribution. Zeros are omitted
 prior to histogram calculation.
 --density Return a density distribution instead of counts,
 such that the sum of values in *dist* for each
 column approximately sum to 1.
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

rowdist - Row-wise counts distributions

	
class de_toolkit.stats.RowDist(count_obj, bins=100, log=False, density=False)

	Row-wise distribution of counts

Identical to coldist except calculated across rows. The name key is
rowdist, and the name key of the items in dists is the row name from
the counts file.

	Parameters

	
	count_mat (CountMatrix) – count matrix containing counts

	bins (int) – number of bins to use when computing distribution

	log (bool) – take the log10 of counts prior to computing distribution

	density (bool) – return densities rather than absolute bin counts for the
distribution, densities sum to 1

	
output

	Tabular output is a table where each row corresponds to a row
with row name as the first column. The next columns are broken
into two parts:

	the bin start values, named like bin_N, where N is the
percentile

	the bin count values, named like dist_N, where N is the
percentile

Command line usage:

Usage:
 detk-stats rowdist [options] <counts_fn>

Options:
 --bins=N The number of bins to use when computing the counts
 distribution [default: 20]
 --log Perform a log10 transform on the counts before calculating
 the distribution. Zeros are omitted prior to histogram
 calculation.
 --density Return a density distribution instead of counts, such that
 the sum of values in *dist* for each row approximately
 sum to 1.
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

colzero - Column-wise statistics on zero counts

	
class de_toolkit.stats.ColZero(count_mat)

	Column-wise distribution of zero counts

Compute the number and fraction of exact zero counts for each column.

	
output

	Tabular output is a table where each row corresponds to a column
with the following fields:

	name: Column name

	zero_count: Number of zero counts

	zero_frac: Fraction of zero counts

	mean: Overall mean count

	median: Overall median count

	nonzero_mean: Mean of non-zero counts only

	nonzero_median: Mean of non-zero counts only

	
properties

	The stats value is an array containing one object per column as follows –

	name

	column name

	zero_count

	absolute count of rows with exactly zero counts

	zero_frac

	zero_count divided by the number of rows

	col_mean

	the mean of counts in the column

	col_median

	the median of counts in the column

	nonzero_col_mean

	the mean of only the non-zero counts in the column

	nonzero_col_median

	the median of only the non-zero counts in the column

Example JSON output:

{
 'zeros' : [
 {
 'name': 'col1',
 'zero_count': 20,
 'zero_frac': 0.2,
 'mean': 101.31,
 'median': 31.31,
 'nonzero_mean': 155.23,
 'nonzero_median': 55.18
 },
 {
 'name': 'col2',
 'zero_count': 0,
 'zero_frac': 0,
 'mean': 3021.92,
 'median': 329.23,
 'nonzero_mean': 3021.92,
 'nonzero_median': 819.32
 },
]
}

Command line usage:

Usage:
 detk-stats colzero [options] <counts_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

rowzero - Row-wise statistics on zero counts

	
class de_toolkit.stats.RowZero(count_mat)

	Row-wise distribution of zero counts

Computes statistics about the mean and median counts of rows by the
number of zeros.

	
output

	Tabular output is a table where each row corresponds to rows
having a given number of zero columns with the following fields:

	num_zero: the number of zeros for this row

	num_features: the number of features with this number of zeros

	feature_frac: the fraction of features with this number of zeros

	cum_feature_frac: cumulative fraction of features remeaning with
this number of zeros or fewer

	mean: the mean count mean of genes with this number of zeros

	nonzero_mean: the mean count mean of genes with this number of
zeros not including zero counts

	median: the median count median of genes with this number of zeros

	nonzero_median: the median count median of genes with this number
of zeros, not including zero counts

	
properties

	The stats value is an array containing one object per number of zeros
as follows:

	num_zero

	the number of zeros for this group of features

	num_features

	the number of features with this number of zeros

	feature_frac

	the fraction of features with this number of zeros

	cum_feature_frac

	cumulative fraction of features remeaning with this number of zeros
or fewer

	mean

	the mean count mean of genes with this number of zeros

	nonzero_mean

	the mean count mean of genes with this number of zeros not
including zero counts

	median

	the median count mean of genes with this number of zeros

	nonzero_median

	the median count mean of genes with this number of zeros, not
including zero counts

Example JSON output:

{
 'zeros' : [
 {
 'num_zeros': 0,
 'num_features': 14031,
 'feature_frac': .61,
 'cum_feature_frac': .61,
 'mean': 3351.13,
 'nonzero_mean': 3351.13,
 'median': 2125.9,
 'nonzero_median': 2125.9
 },
 {
 'num_zeros': 1,
 'num_features': 5031,
 'feature_frac': .21,
 'cum_feature_frac': .82,
 'mean': 3125.91,
 'nonzero_mean': 3295.4,
 'median': 1825.8,
 'nonzero_median': 1976.1
 },
]
}

Command line usage:

Usage:
 detk-stats rowzero [options] <counts_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

entropy - Row-wise sample entropy calculation

	
class de_toolkit.stats.Entropy(count_mat)

	Row-wise sample entropy calculation

Sample entropy is a metric that can be used to identify outlier samples
by locating rows which are overly influenced by a small number of count
values. This metric can be calculated for a single row as follows:

pi = ci/sumj(cj)
sum(pi) = 1
H = -sumi(pi*log2(pi))

Here, ci is the number of counts in sample i, pi is the fraction of
reads contributed by sample i to the overall counts of the row, and H
is the Shannon entropy [https://en.wikipedia.org/wiki/Entropy_(information_theory)] of the row when using log2. The maximum value
possible for H is 2 when using Shannon entropy.

Rows with a very low H indicate a row has most of its count mass
contained in a small number of columns. These are rows that are likely
to drive outliers in downstream analysis, e.g. differential expression.

	
output

	Tabular output is a table where each row corresponds to a percentile
with the following columns:

	pct

	percentile of entropy distribution

	pctVal

	the entropy value for each percentile

	num_features

	the number of features with entropy in the corresponding
percentile

	frac_features

	the fraction of features with entropy in the corresponding
percentile

	cum_frac_features

	the cumulative fraction of features with entropy in the
corresponding percentile, i.e. the fraction of features
with pctVal entropy or higher

	exemplar_feature

	the name of a feature with an entropy in the given percentile

	
properties

	The key entropies contains a single object with following keys –

	pct

	percentile of entropy distribution

	pctVal

	the entropy value for each percentile

	num_features

	the number of features with entropy in the corresponding
percentile

	frac_features

	the fraction of features with entropy in the corresponding
percentile

	cum_frac_features

	the cumulative fraction of features with entropy in the
corresponding percentile, i.e. the fraction of features
with pctVal entropy or higher

	exemplar_features

	an array of objects with an exemplar feature for each percentile
with the following fields:

	name

	the name of the feature

	entropy

	the sample entropy of the feature

	counts

	array of [column name, count] pairs sorted by count
ascending

Example JSON output:

{
 'pct': [0, 1, 2, 3, ...],
 'pctVal': [0, 0.1, 0.5, 0.9, ...],
 'num_features': [10, 12, 23, 100, ...],
 'frac_features': [0.001, 0.0012, 0.0023, 0.01, ...],
 'cum_frac_features': [0.001, 0.0022, 0.0045, 0.0145, ...],
 'exemplar_features': [
 {
 'name': 'ENSG0000055095.1',
 'entropy': 0,
 'counts': [['sampleA', 0], ['sampleB',0], ..., ['sampleN',1]]
 },
 {
 'name': 'ENSG0000398715.1',
 'entropy': 0.11,
 'counts': [['sampleA', 0], ['sampleB',0], ..., ['sampleM',5]]
 }
]
}

Command line usage:

Usage:
 detk-stats [options] entropy <counts_fn>

Options:
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

pca - Principal component analysis

	
class de_toolkit.stats.CountPCA(count_mat)

	Principal common analysis of the counts matrix.

This module performs PCA on a provided counts matrix and returns the
principal component weights, scores, and variances. In addition, the
weights and scores for each individual component can be combined to define
the projection of each sample along that component.

The PCA module can also use a counts matrix that has associated column data
information about the samples in each column. The user can specify some of
these columns to include as variables for plotting purposes. The idea is
that columns labeled with the same class will be colored according to their
class, such that separations in the data can be more easily observed when
projections are plotted.

	
output

	Tabular output is a table where each row corresponds to a column
in the counts matrix with the following fields:

	name

	name of the column for the row

	PC*X*_*YY*

	projections of principal component X (e.g. 1) that explains YY
percent of the variance for each column

	
properties

	Example JSON output:

[
 'name': 'pca',
 'stats': {
 'column_names': ['sample1','sample2',...],
 'column_variables': {
 'sample_names': ['sample1','sample2',...],
 'columns': [
 {
 'column':'status',
 'values':['disease','control',...]
 },
 {
 'column':'batch',
 'values':['b1','b1',...]
 },
 },
 'components': [
 {
 'name': 'PC1',
 'scores': [0.126,0.975,...], # length n
 'projections': [-8.01,5.93,...], # length m, ordered by 'column_names'
 'perc_variance': 0.75
 },
 {
 'name': 'PC2',
 'scores' : [0.126,0.975,...], # length n
 'projections': [5.93,-5.11,...], # length m
 'perc_variance': 0.22
 }
]
 }
]

Command line usage:

Usage:
 detk-stats pca [options] <counts_fn>

Options:
 -m FN --column-data=FN Column data for annotating PCA results and
 plots (experimental)
 -f NAME --column-name=NAME Column name from provided column data for
 annotation PCA results and plots (experimental)
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

summary - Common statistics set

	
de_toolkit.stats.summary(count_mat, bins=20, log=False, density=False)

	Compute summary statistics on a counts matrix file.

This is equivalent to running each of these tools separately:

	basestats

	coldist

	colzero

	rowzero

	entropy

	pca

	Parameters

	
	count_mat (CountMatrix object) – count matrix object

	bins (int) – number of bins, passed to coldist

	log (bool) – perform log10 transform of counts in coldist

	density (bool) – return a density distribution from coldist

	Returns

	list of DetkModule subclasses for each of the called submodules

	Return type

	list

Command line usage:

Usage:
 detk-stats summary [options] <counts_fn>

Options:
 -h --help
 --column-data=FN Use column data provided in FN, only used in PCA
 --color-col=COLNAME Use column data column COLNAME for coloring output plots
 --bins=BINS Number of bins to use for the calculated
 distributions [default: 20]
 --log log transform count statistics
 --density Produce density distribution by dividing each distribution
 by the appropriate sum
 -o FILE --output=FILE Destination of primary output [default: stdout]
 -f FMT --format=FMT Format of output, either csv or table [default: csv]
 --json=<json_fn> Name of JSON output file
 --html=<html_fn> Name of HTML output file

transform - Count Transformation

	plog

	rlog

	vst

Transformations of the distribution of counts in a matrix.

plog

	
de_toolkit.transform.plog(count_obj, pseudocount=1, base=10)

	Logarithmic transform of a counts matrix with fixed pseudocount, i.e. $log(x+c)$

	Parameters

	count_obj (CountMatrix object) – count matrix object

	Returns

	log transformed counts dataframe with the same dimensionality as input
counts

	Return type

	pandas.DataFrame

Command line usage:

Usage:
 detk-transform plog [options] <count_fn>

Options:
 -c N --pseudocount=N The pseudocount to use when taking the log transform [default:1]
 -b B --base=B The base of the log to use [default: 10]
 -o FILE --output=FILE Destination of primary output [default: stdout]

rlog

Command line interface to the DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] Regularized log (rlog)
transformation. As in the originating package, the default behavior is to
perform a blind transformation, i.e. without respect to an experimental
design:

detk-transform rlog norm_counts.csv > rlog_norm_counts.csv

Roughly equivalent to the following R code:

library(DESeq2)

cnts <- as.matrix(read.csv("norm_counts.csv",row.names=1))
fakeColData <- # fake column data...

dds <- DESeqDataSetFromMatrix(countData = cnts,
 colData = fakeColData,
 design = ~ 1
)

dds <- rlog(dds,blind=True)
write.csv(assay(dds),out.fn)

To perform a non-blind transformation, a formula and column data file may be
provided:

detk-transform rlog norm_counts.csv "counts ~ AgeOfDeath + Status" column_data.csv > rlog_norm_counts_nonblind.csv

This invocation is roughly equivalent to the following R code:

library(DESeq2)

cnts <- as.matrix(read.csv("norm_counts.csv",row.names=1))
colData <- read.csv("column_data.csv",header=T,as.is=T,row.names=1)

dds <- DESeqDataSetFromMatrix(countData = cnts,
 colData = colData,
 design = ~ AgeOfDeath + Status
)

dds <- rlog(dds,blind=False)
write.csv(assay(dds),out.fn)

vst

Command line interface to the DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] Regularized log (vst)
transformation:

detk-transform vst norm_counts.csv > vst_norm_counts.csv

Roughly equivalent to the following R code:

library(DESeq2)

cnts <- as.matrix(read.csv("norm_counts.csv",row.names=1))
fakeColData <- # fake column data...

dds <- DESeqDataSetFromMatrix(countData = cnts,
 colData = fakeColData,
 design = ~ 1
)

dds <- vst(dds)
write.csv(assay(dds),out.fn)

util - Counts and Column Data File Utilities

	tidy

	tidy-counts

	tidy-covs

Functions for tidying up counts and column data files. Mostly this means
subsetting one or the other so that the column IDs and order match.
Combined with csvgrep from the csvkit [https://csvkit.readthedocs.io] package, this is useful for
extracting subsets of samples for downstream differential expression
analysis.

tidy

Subset both the counts columns and column data rows by intersection, returning
new outputs for both. Note the tidied column data is not output by default, and
the user must specify the -p argument to obtain it.

Command line usage:

Usage:
 detk-util tidy [options] <count_fn> <cov_fn>

Options:
 -o FILE --output=FILE Destination of tidied counts data [default: stdout]
 -p FILE --column-data-output=FILE Destination of tidied column data

tidy-counts

Subset and order the provided counts file columns according to the rows of the
provided column data file. Operation will fail if there are rows in the column
data file that do not exist as columns in the counts file.

Command line usage:

Usage:
 detk-util tidy-counts [options] <count_fn> <cov_fn>

Options:
 -o FILE --output=FILE Destination of tidied counts data [default: stdout]

tidy-covs

Subset and order the provided column data file rows according to the columns of
the provided ccounts data file. Operation will fail if there are columns in the
counts file that do not exist as rows in the column data file.

Command line usage:

Usage:
 detk-util tidy-covs [options] <count_fn> <cov_fn>

Options:
 -o FILE --output=FILE Destination of tidied column data [default: stdout]

Patsy-lite

Introduction

Some of the important operations in detk, most notably the de module,
require the user specify a statistical model. The patsy [https://patsy.readthedocs.io/en/latest/] python package is
designed to describe statistical models in just this way. However, the
syntax for describing patsy models is not very machine-readable, e.g.
a linear model relating a continuous quantity to a categorical variable
might look as follows:

cont_var ~ C(cat_var, levels=['A','B','C'])

The resulting full design matrix would have columns named something like:

cont_var ~ Intercept + C(cat_var, levels=['A','B','C'])[T.B] + C(cat_var, levels=['A','B','C'])[T.C]

This is at least a little bit yuck, and gets very yuck as the number of
variables in the model increases. A more convenient and programmatically
accessible way to express these models might be:

cont_var ~ cat_var[A,B,C]

resulting in the full matrix:

cont_var ~ Intercept + cat_var__B + cat_var__C

These variable names are much more amenable to programmatic use. Thus,
detk implements a ‘patsy-lite’ syntax that follows these conventions,
using the patsy library as the brain behind resolving full rank model
matrices given column data.

Syntax

The patsy-lite syntax uses the column names from column data files passed
to detk utilities. The following table contains example column data that
will be useful in describing the patsy-lite syntax.

	cont

	binary_str

	binary_int

	cat_str

	cat_int

	0.13

	case

	1

	A

	1

	0.97

	control

	0

	B

	2

	0.22

	case

	1

	A

	1

	0.76

	control

	0

	C

	3

	0.69

	control

	0

	C

	3

	0.08

	case

	1

	A

	1

	0.17

	case

	1

	B

	2

	0.53

	control

	0

	C

	3

Patsy-lite has four types of terms:

	scalar: variables that are to be considered purely numeric.
Examples include continuous measures and ordinal variables, e.g.
cont, binary_int, or cat_int.

	binary: variables that are binary categories or encoded as strings in the
table. These terms are written in a design spec like binary_str or, if a
reference group is specified, binary_str[control]. In this instance, the
control value is reference group. Binary variables use a dummy encoding,
such that only a single binary vector appears in the full model matrix.

	multinomial: categorical variables that have more than two levels. These
terms are written in a design spec like cat_str or cat_str[A,B,C,D]
to specify the desired order of levels. The first value specified (or by
alphabetical order if omitted) is assumed to be the reference group. Multinomial
variables use a dummy encoding, such that there is a binary vector for all but
one of the levels in the full model matrix.

	patsy: there is limited support for passing other patsy term types (e.g.
factorial terms, binary_str:cat_str). You can try to put in expressions
that patsy knows how to understand, like np.log(cont), but you do so at
your own risk and I’m going to pretend to not be responsible for what befalls
you if you choose to do so.

Every model is expected to have a set of terms on the left hand side and a set
of terms on the right hand side separated by the ~ operator. In general,
there should be only a single term on the left hand side. I didn’t write any
tests to see what would happen if there are more than one, so the usual
disclaimer applies.

Depending on what type of term a variable is, the output column name in the
full model matrix will follow one of three patterns:

	literal pass through - exactly the same as the column name

	categorical - <variable name>__<level>

	patsy-specific terms - e.g. np.log(x)

The double underscores in categorical variables should make it easy to recognize
which variable an output column refers to, and make down-stream programmatic
analysis easier.

Some mostly non-differential expression related examples, assuming the variable
names in these examples are found in the appropriate column data file:

height ~ weight + age
disease_status[control] ~ age_at_death + batch + counts
gross_domestic_product ~ continent[NoAm] + population + election_year[no]

The full model matrix column names from these models might be something like:

height ~ Intercept + weight + age
disease_status__case ~ Intercept + age_at_death + batch__2 + batch__3 + counts
gross_domestic_product ~ Intercept + continent__SoAm + continent__Asia +
 continent__Aust + continent__Euro + continent__SoPo + population +
 election_year__yes

The special counts term

For most of the detk tools that use formulas, the intent is to perform some kind
of differential expression where the feature counts are somewhere in the model.
Since the patsy-lite terms refer to the column names in the column data file,
the astute analyst might wonder how the counts term for each feature gets
integrated into the formula. detk has a special term for this case: counts.
This term can and should be included as if it was a normal scalar variable in
the design spec.

The location of the counts variable is different depending on the DE method
being used. For Firth’s logistic regression, the counts variable is expected to
be on the right hand side of the equation. For DESeq2, it is expected to be the
only term on the left hand side. detk goes to less than Olympic lengths to ensure
the design it gets has the counts variable in the place that it expects, but
it should be ok.

wrapr - Thin wrapper for running R scripts

Thin wrapper interface for running R scripts from detk. This is a replacement
for rpy2 [https://rpy2.bitbucket.io], which is a heavy dependency fraught with danger and hardship.

Note

This module is mostly intended for internal use by detk when interacting
with R. A CLI interface is provided because why not, but is only intended
to be used in advanced cases when you want to commandline-ize an R script
that fits into the interface. If you have a one-off R script that needs to
be integrated into your workflow, it would probably be better to just write
it in R. Caveat emptor.

Setup

The wrapr interface assumes that R and any necessary packages have been
already installed by the user. If you are using conda [https://conda.io/miniconda.html], you can install R
easily with:

$ conda install -c r r-base

Once installed, wrapr also requires the jsonlite [https://cran.r-project.org/web/packages/jsonlite/index.html] R package to be
installed:

$ R
> install.packages("jsonlite")

To verify that your environment is properly set up to use wrapr, run:

$ detk wrapr check
R found: True
R path: /usr/bin/Rscript
jsonlite found: True

The interface

wrapr implements a well-defined interface between detk and R through a
bridge script. From the command line, the following inputs are possible:

$ detk-wrapr run \
 --meta-in=/path/to/metadata \ # metadata filename corresponding to input counts
 --meta-out=/path/to/metadata_out \ # filename where modified metadata should be written
 --params-in=/path/to/params.json \ # JSON formatted file with parameters needed by R
 --params-out=/path/to/output_params.json \ # filename where parameters/values can be passed back out of R
 /path/to/rscript \ # R script written to use the interface
 /path/to/input_counts \ # counts matrix
 /path/to/output \ # filename where tabular output should be written

Arguments starting with -- are optional. Input metadata and counts should
be tabular as accepted elsewhere by detk. The input parameters file should be
JSON formatted, containing an object with fields that are mapped directly to
R list members.

The bridge script makes the following variables available
in the R environment where the R script is run:

	counts.fn: path to the counts filename provided to detk-wrapr

	out.fn: path to the file where new counts will be written after
R has operated on them, the user is expected to write to this file e.g.
write.csv(counts.mat, counts.out.fn)

	params: an R list that contains parameter values as included in
the parameter JSON file

For example, say we wanted to write an R script that added a configurable
pseudocount to every count in a counts matrix. We could write the JSON
parameter file as follows:

{
 "pseudocount": 1
}

And write the following R script, named pseudocount.R:

counts.fn, params, and out.fn are already defined
mat <- read.csv(counts.fn,rownames=1,colnames=1)
new.mat <- mat + params$pseudocount
write.csv(new.mat,out.fn)

The command to execute this wrapr code might be:

$ detk wrapr run --params-in=pseudocount_params.json \
pseudocount.R counts.csv counts_plus_pseudo.csv

The file counts_plus_pseudo.csv will contain the result of the R script
operation.

API documentation

	
class de_toolkit.wrapr.WrapR(rscript_path, counts=None, metadata=None, params=None, output_fn=None, metadata_out_fn=None, params_out_fn=None, rpath=None, raise_on_error=True, routput_dir=None)

	Wrapper object for calling R code with Rscript.

Note

The attributes are only populated after the execute() method has
been run

	Parameters

	
	rscript_path (str) – path to the R script to run

	counts (pandas.DataFrame, optional) – dataframe containing counts to be passed to R

	metadata (pandas.DataFrame, optional) – dataframe containing metadata to be passed to R

	params (dict, optional) – dict of parameters to be passed to R

	output_fn (str, optional) – path to file where R should write output, if not provided the output
is written to a temporary file and deleted upon WrapR object deletion

	metadata_out_fn (str, optional) – path to file where R should write metadata output

	rpath (str) – path to the Rscript executable, taken from the PATH environment
variable if None

	raise_on_error (bool) – raise an exception if R encounters an error, other wise fail silently
and deadly

	
output

	pandas.DataFrame – dataframe of the tabular output created by R script

	
metadata_out

	pandas.DataFrame – dataframe of the tabular metadata output created by R script

	
params_out

	dict – dict of the output parameters list created by R script

	
stdout

	str – string capturing the standard output of the R script

	
stderr

	str – string capturing the standard error of the R script

	
retcode

	int – return code of the R process

	
success

	bool – True if retcode == 0

	Raises

	de_toolkit.wrapr.RExecutionError – when raise_on_error is True, raise whenever R encounters an error

Examples

Basic usage accepts a path to an R script and loads the content of
the file pointed to by out.fn in the R script into the output
attribute:

>>> with open('script.R','wt') as f :
 # note reference to implicitly defined *out.fn*
 # R variable
 f.write('write.csv(c(1,2,3,4),out.fn)')
>>> r = WrapR('script.R',output_fn='test.csv')
>>> r.execute()
>>> r.output
 x
1 1
2 2
3 3
4 4
>>> pandas.read_csv('test.csv',index_col=0)
 x
1 1
2 2
3 3
4 4

Can also use a context manager when the output doesn’t need to be
written to a named file:

>>> with WrapR('script.R') as r :
 r.execute()
 print(r.output)
 x
1 1
2 2
3 3
4 4

The standard output of the R script can be accessed with the stdout
attribute:

>>> with open('euler.R','wt') as f :
 f.write('exp(complex(real=0,imag=pi))+1')
>>> with WrapR('euler.R','wt') as r :
 r.execute()
 print(r.stdout)
[1] 0+1.224647e-16i

	
de_toolkit.wrapr.wrapr(Rcode, **kwargs)

	Convenience wrapper for WrapR object. Writes Rcode to a temporary file
and executes it as it would if it were provided.

	Parameters

	Rcode (str) – string containing valid R code to be executed

	Returns

	A WrapR object executed with the code in input string

	Return type

	obj

Examples

>>> with wrapr('write.csv(c(1,2,3,4),out.fn)') as r :
 print(r.output)
 x
1 1
2 2
3 3
4 4

	
de_toolkit.wrapr.get_r_path()

	Return the path to Rscript found in the shell environment.

	
de_toolkit.wrapr.check_r()

	Tests whether the Rscript executable can be found.

	
de_toolkit.wrapr.check_r_package(pkg)

	Tests whether the R package pkg is installed.

Index

 B
 | C
 | E
 | F
 | G
 | M
 | O
 | P
 | R
 | S
 | W

B

 	
 	BaseStats (class in de_toolkit.stats)

C

 	
 	check_r() (in module de_toolkit.wrapr)

 	check_r_package() (in module de_toolkit.wrapr)

 	
 	ColDist (class in de_toolkit.stats)

 	ColZero (class in de_toolkit.stats)

 	CountPCA (class in de_toolkit.stats)

E

 	
 	Entropy (class in de_toolkit.stats)

 	
 	entropy() (in module de_toolkit.outlier)

F

 	
 	fgsea() (in module de_toolkit.enrich)

G

 	
 	get_r_path() (in module de_toolkit.wrapr)

M

 	
 	metadata_out (de_toolkit.wrapr.WrapR attribute)

O

 	
 	output (de_toolkit.stats.BaseStats attribute)

 	(de_toolkit.stats.ColDist attribute)

 	(de_toolkit.stats.ColZero attribute)

 	(de_toolkit.stats.CountPCA attribute)

 	(de_toolkit.stats.Entropy attribute)

 	(de_toolkit.stats.RowDist attribute)

 	(de_toolkit.stats.RowZero attribute)

 	(de_toolkit.wrapr.WrapR attribute)

P

 	
 	params_out (de_toolkit.wrapr.WrapR attribute)

 	plog() (in module de_toolkit.transform)

 	properties (de_toolkit.stats.ColDist attribute)

 	(de_toolkit.stats.ColZero attribute)

 	(de_toolkit.stats.CountPCA attribute)

 	(de_toolkit.stats.Entropy attribute)

 	(de_toolkit.stats.RowZero attribute)

R

 	
 	retcode (de_toolkit.wrapr.WrapR attribute)

 	
 	RowDist (class in de_toolkit.stats)

 	RowZero (class in de_toolkit.stats)

S

 	
 	shrink() (in module de_toolkit.outlier)

 	stderr (de_toolkit.wrapr.WrapR attribute)

 	
 	stdout (de_toolkit.wrapr.WrapR attribute)

 	success (de_toolkit.wrapr.WrapR attribute)

 	summary() (in module de_toolkit.stats)

W

 	
 	WrapR (class in de_toolkit.wrapr)

 	
 	wrapr() (in module de_toolkit.wrapr)

 _images/simple_pipeline.png
Simple RNA-Seq Workflow using detk

Gene Abundance a
Estimate Files
From Many Samples

L 2 2

csvgather
bitbucket .org)adanlabador f/csugather

Raw Gene N
Expression Matrix

4 @
detk-filter 'nonzero(all) < 0.5

Filtered Raw Gene >
Expression Matrix

detk-stats rowzero

detk-norm deseq2

v

csveut -C outlier_sample <@

ekt resdthy detk-stats pca

v

Filtered Outlier Reduced h

Raw Gene Expression Matrix

detk-de deseq2 "counts ~ cond Metadats

Differential
Expression Results

v
detk-enrich fe
v

Geneset h

Enrichment

other tool not in detk
Icons made by Icomoon, Smashicons from www.flaticon.com svstiblalacitlprovidediunt

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/detk_logo_highres.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to de_toolkit’s documentation!

 		
 detk Quickstart

 		
 Workflow Tutorial

 		
 First detk principles

 		
 The Count Matrix

 		
 The Column Metadata File

 		
 Calculating Counts Matrix Statistics

 		
 Filtering a Counts Matrix File

 		
 Normalization

 		
 Performing Differential Expression

 		
 Firth Logistic Expression

 		
 de - Differential Expression

 		
 deseq2

 		
 firth logistic regression

 		
 enrich - Set Enrichment Methods

 		
 fgsea

 		
 filter - Filtering Count Matrices

 		
 Quick start

 		
 How to run the filter module

 		
 Incorporating column data into filter

 		
 norm - Normalizing Count Matrices

 		
 deseq2 normalization

 		
 library size normalization

 		
 fpkm normalization

 		
 outlier - Outlier Identification

 		
 entropy

 		
 shrink

 		
 stats - Count Matrix Statistics

 		
 Tabular output format

 		
 JSON output format

 		
 API Documentation

 		
 base - Basic statistics

 		
 coldist - Column-wise counts distributions

 		
 rowdist - Row-wise counts distributions

 		
 colzero - Column-wise statistics on zero counts

 		
 rowzero - Row-wise statistics on zero counts

 		
 entropy - Row-wise sample entropy calculation

 		
 pca - Principal component analysis

 		
 summary - Common statistics set

 		
 transform - Count Transformation

 		
 plog

 		
 rlog

 		
 vst

 		
 util - Counts and Column Data File Utilities

 		
 tidy

 		
 tidy-counts

 		
 tidy-covs

 		
 Patsy-lite

 		
 Introduction

 		
 Syntax

 		
 The special counts term

 		
 wrapr - Thin wrapper for running R scripts

 		
 Setup

 		
 The interface

 		
 API documentation

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

