

HCA DCP Query Service

Introduction

The HCA DCP Query Service provides an interface for scientists and developers to query metadata associated with
experimental and analysis data stored in the Human Cell Atlas [https://staging.data.humancellatlas.org/]
Data Coordination Platform [https://www.humancellatlas.org/data-sharing] (DCP). Metadata from the
DCP Data Store [https://github.com/HumanCellAtlas/data-store] are indexed and stored in an
AWS Aurora [https://aws.amazon.com/rds/aurora/] PostgreSQL [https://www.postgresql.org/] database.

Queries to the database can be sent over HTTP through the Query Service API
Swagger Documentation [https://query.data.humancellatlas.org/v1/ui/#/]
or via the Query Builder [https://query.data.humancellatlas.org/].

Executing Queries

To execute a query via the swagger interface:

	Click on the green /query row to expand it

	Click Try it out

	Edit the request body by adding in your query and any parameters.

For example

{
 "params": {"s": 0},
 "query": "select * from files where size > %(s)s limit 10"
}

	click Execute

Note: Queries executed via the swagger interface can not contain new lines or tabs (you will need to edit some of the
example queries by removing line breaks/tabs to make them work). These will generate a 400 error response
containing the line "detail": "Request body is not valid JSON". For complex queries that benefit from multi-line
formatting we recommend using the Query Builder [https://query.data.humancellatlas.org/].

Async Queries

For long-running queries (runtime over 20 seconds), the Query Service supports asynchronous tracking of query results.
When a long-running query triggers this mode, the caller will receive a
301 Moved Permanently [https://en.wikipedia.org/wiki/HTTP_301] response status code with a Retry-After header. The caller
is expected to wait the specified amount of time before checking the redirect destination, or use the query job ID
returned in the response JSON body to check the status of the query job. The caller may turn off this functionality
(and cause the API to time out and return an error when a long-running query is encountered) by setting the
async=False flag when calling /query.

For large query results, the Query Service may deposit results in S3 instead of returning them verbatim in the response
body. In this case, the client will receive a 302 Found [https://en.wikipedia.org/wiki/HTTP_302] response status code
sending them to the response data location. In this mode, response data are confidential to the caller, and remain
accessible for 7 days. The caller may turn off this functionality by setting the async=False flag when calling
/query.

Data Schema

[image: _images/QueryServiceDataSchema.svg]

Because there are often multiple, slightly different versions of a bundle or file, the bundles_all_versions and
files_all_versions tables contain all versions of the bundles and files. There are also derived view tables files
and bundles, which only contain the latest version of each bundle or file.

The metadata itself is available in files.body as a JSON data object. The structure of that document is dependent on
the dcp_schema_type_name column. The schemas for each schema type can be found here [https://schema.humancellatlas.org/a].
It is also possible to pull the full JSON document for a file of a particular schema type (or the aggregate_metadata field
for a bundle to see the combined metadata of multiple files) and explore it in your text editor to better understand
what data it contains and how it is formatted.
For example, to get the JSON associated with a cell line

SELECT body FROM files WHERE dcp_schema_type='cell_line';

or

SELECT body FROM cell_line;

To simplify queries, the view tables for each schema type contain only the most recent version of each metadata file as
the schema of the metadata may change between versions.

Possible schema_types include
cell_line,
cell_suspension,
differentiation_protocol,
dissociation_protocol,
donor_organism,
ipsc_induction_protocol,
library_preparation_protocol,
links,
organoid,
process,
project,
sequence_file,
sequencing_protocol,
specimen_from_organism,
supplementary_file,
analysis_file,
analysis_process,
analysis_protocol,
collection_protocol,
enrichment_protocol,
biomaterial,
file,
image_file,
imaged_specimen,
imaging_preparation_protocol,
imaging_protocol.

Example Queries

Get a list of all of the tables:

SELECT table_name
FROM information_schema.tables
WHERE table_type = 'BASE TABLE'
 AND table_schema NOT IN ('pg_catalog', 'information_schema')
 AND table_schema = 'public';

Get total number of bundles:

SELECT count(*) from bundles;

Get all data for 10 bundles:

SELECT * FROM bundles LIMIT 10;

Select the data for a particular bundle:

SELECT * FROM bundles WHERE uuid='cf48f5bc-7f20-4aa8-a0b6-6f889466546d'

If you query on uuid the database may return multiple versions of the bundle; to only get one, use the fqid (which is the version concatenated to the uuid)

Querying the metadata body

The metadata itself is stored in the jsonb format. For help with the syntax of querying jsonb check out this cheat sheet [https://hackernoon.com/how-to-query-jsonb-beginner-sheet-cheat-4da3aa5082a3].

Get a list of submissions for a particular submitter:

SELECT p.uuid, p.body->'project_core'->>'project_title' AS title
FROM project AS p
WHERE p.body @> '{"contributors": [{"contact_name": "Aviv,,Regev"}]}'
 OR p.body @> '{"contributors": [{"contact_name": "Sarah,,Teichmann"}]}';

Querying the experimental graph

If you have a FASTQ file and you are curious about its inputs, you can use a custom SQL function get_all_parents to get all of the processes that led to its creation. For example:

If your sequence file has a uuid of 8c823b32-42dc-4163-aa96-168dce981ee5 you can run:

SELECT * FROM process_file_join_table
WHERE file_uuid = '8c823b32-42dc-4163-aa96-168dce981ee5';

This should return a list of all the processes the file is associated with. Find a row that says OUTPUT_ENTITY and copy the process_uuid.

Then run the following to get a list of all of its parent processes:

SELECT * FROM get_all_parents('4028ba54-e09f-4c16-9b4e-4f0781e80c46')

Things to note about the query above:

	Direct parents are processes whose output becomes the input for the current process

	get_all_parents grabs the processes whose output was the input for the current process and then gets the processes whose output was the input for the parent process and then goes all the way up to the initial file (typically a donor_organism file)

	You can also use the get_all_children function to go the opposite way

	This allows us to represent graphical data in a relational database

donor_organism files are typically at the top of the graph. If you have a file_uuid for a donor_organism and you’d like to get all of the sequence_files that came from that donor, you can run the following substituting in the file_uuid of your donor_organism.

SELECT *
FROM (SELECT file_uuid
 FROM process_file_join_table
 WHERE process_uuid IN (SELECT get_all_children(process_uuid)
 FROM process_file_join_table
 WHERE file_uuid = '79a7c087-886b-47a7-8044-76a227d963ba')) AS temp_table
 JOIN files ON temp_table.file_uuid = files.uuid
WHERE files.dcp_schema_type_name = 'sequence_file';

Further notes on the above query:

	To get all file types, leave off the final WHERE clause

	To retrieve files higher in the graph, replace get_all_children with get_all_parents

If you are trying to get all of the files in a graph, it is necessary to specifically retrieve:

	Any input files and protocol files for a process when running get_all_children

	Any output files and protocol files for a process when running get_all_parents

Index

DCP Query Service documentation

This directory contains Sphinx [https://www.sphinx-doc.org/] source files for the DCP Query Service docs. The
documentation system supports both Markdown and reStructuredText formats.

	To build the docs, run make docs in the root of the repository.

	To view the docs after building, run open docs/_build/html/index.html.

	Docs pushed to GitHub are automatically published on https://dcpquery.readthedocs.io/.

User Stories and Matching Queries

This document lists user stories for the query service and documents sample queries to assess the UX of querying HCA metadata in postgres JSONB.

The affect of database schema on query UX

We conducted some experiments to determin how different database schema designs would affect query UX

Variants

Three schema variants were tried documented below.

Denormalized query variant - all metadata associated with a bundle were summarized into a single json blob. This avoids joins between different metadata JSON blobs by prepackaging all the data together.

Array query variant - by summarizing all of a bundle’s file_fqids in each row of the bundle table, you can easily generate the cross product between files with a the ANY SQL operator. This would prevent us from having to create denormalized bundle documents while keeping it realatively easy to join and filter them together with the SQL ANY operator.

Join table variant - in a classic relational database setting, many-to-many relationships between tables are maintained with join tables with foreign keys to the source and sink tables. bundles_files is a join table between bundles and files.

After assessing each of these viariants it seems that the denormalized schema structure provides the best balance of query UX and performance.

Database schema

There are two essential tables in the schema: bundles and files. Further, convenience views are created of the files table.

The files table contains each individual metadata file. A view table of the files table is created for each schema_type in the files table. For example, there is a projects view table that summarizes all the project metadata files in the files table.

bundles summarizes all metadata into a single blob of json for easier querying.

CREATE TABLE IF NOT EXISTS schema_types (
 id SERIAL,
 name varchar(128) UNIQUE,
 PRIMARY KEY (id)
);

INSERT INTO schema_types (name)
VALUES (NULL)
ON CONFLICT (name) DO NOTHING;

CREATE TABLE IF NOT EXISTS files (
 file_uuid UUID NOT NULL,
 file_version timestamp with time zone NOT NULL,
 fqid text NOT NULL, /* for use with array join variants */
 name varchar(128) NOT NULL,
 schema_type_id SERIAL REFERENCES schema_types(id),
 json JSONB, /* a denormalized summary of the metadata files for the denormalized query variants */
 PRIMARY KEY(file_uuid, file_version),
 UNIQUE (file_uuid, file_version, fqid, schema_type_id)
);
CREATE INDEX IF NOT EXISTS files_uuid ON files USING btree (file_uuid);
CREATE INDEX IF NOT EXISTS files_fqid ON files USING btree (fqid);
CREATE INDEX IF NOT EXISTS files_schema_type_id ON files USING btree (schema_type_id);
CREATE INDEX IF NOT EXISTS files_jsonb_gin_index ON files USING GIN (json);

CREATE TABLE IF NOT EXISTS bundles (
 bundle_uuid UUID,
 bundle_version timestamp with time zone NOT NULL,
 file_fqids text[], /* for use with array join query variants */
 json jsonb NOT NULL,
 PRIMARY KEY (bundle_uuid),
 UNIQUE (bundle_uuid, bundle_version)
);
CREATE INDEX IF NOT EXISTS bundles_json ON bundles USING GIN (json);
CREATE INDEX IF NOT EXISTS bundles_file_fqids_array ON bundles USING GIN (file_fqids);

/* `bundles_files` is used for the join table query variants */
CREATE TABLE IF NOT EXISTS bundles_files (
 bundle_uuid UUID,
 bundle_version timestamp with time zone NOT NULL,
 file_uuid UUID NOT NULL,
 file_version timestamp with time zone NOT NULL,
 FOREIGN KEY (bundle_uuid, bundle_version) REFERENCES bundles(bundle_uuid, bundle_version),
 FOREIGN KEY (file_uuid, file_version) REFERENCES files(file_uuid, file_version),
 UNIQUE (bundle_uuid, bundle_version, file_uuid, file_version)
);
CREATE INDEX IF NOT EXISTS bundles_files_bundle_uuid ON bundles_files USING btree (bundle_uuid);
CREATE INDEX IF NOT EXISTS bundles_files_file_uuid ON bundles_files USING btree (file_uuid);

@GenevieveHalliburton’s UX study queries

Query user stories taken from @GenevieveHalliburton’s Query brainstorm and examples.

1

Find all pancreas cells from women age 40-50 (denormalized document variant)

SELECT b.bundle_uuid
FROM bundles AS b,
 LATERAL jsonb_array_elements(b.json->'donor_organisms') AS o
WHERE b.json @> '{"specimen_from_organisms": [{"organ": {"text": "pancreas"}}]}'
 AND b.json @> '{"donor_organisms": [{"sex": "female"}, {"genus_species":[{"text": "Homo sapiens"}]}]}'
 AND o->>'organism_age' NOT LIKE '%-%'
 AND COALESCE(o->>'organism_age', '0') :: INTEGER BETWEEN 40 AND 50;

2

How many experiments from lab X? (denormalized document variant)

SELECT count(DISTINCT p.json->'project_core'->'project_title')
FROM projects AS p,
 jsonb_array_elements(p.json->'contributors') AS contribs
WHERE contribs->>'laboratory' LIKE '%Sarah Teichmann%';

3

How many cells from X lab? (denormalized document variant)

SELECT sum(bundle_counts.cell_count)
FROM (SELECT (c->>'total_estimated_cells') :: INTEGER AS cell_count,
 ROW_NUMBER() OVER (PARTITION BY b.bundle_uuid ORDER BY b.bundle_version DESC) AS rk
 FROM bundles AS b,
 jsonb_array_elements(b.json->'cell_suspensions') AS c,
 jsonb_array_elements(b.json->'projects'->0->'contributors') AS contribs
 WHERE contribs->>'laboratory' LIKE '%Sarah Teichmann%'
 AND NOT b.json ? 'analysis_files') AS bundle_counts
WHERE bundle_counts.rk = 1;

Here, WHERE ... NOT b.json ? 'analysis_files' is used to avoid double counting cells from analysis bundles.

4

Average number of cells per experiment for lab X? (denormalized document variant)

SELECT avg(project_counts.cell_count)
FROM (SELECT bundle_counts.project_title, sum(bundle_counts.cell_count) AS cell_count
 FROM (SELECT p->'project_core'->>'project_title' AS project_title,
 (c->>'total_estimated_cells') :: INTEGER AS cell_count,
 ROW_NUMBER() OVER (PARTITION BY b.bundle_uuid ORDER BY b.bundle_version DESC) AS rk
 FROM bundles AS b,
 jsonb_array_elements(b.json->'projects') AS p,
 jsonb_array_elements(b.json->'cell_suspensions') AS c,
 jsonb_array_elements(b.json->'projects'->0->'contributors') AS contribs
 WHERE contribs->>'laboratory' LIKE '%Sarah Teichmann%'
 AND NOT b.json ? 'analysis_files') AS bundle_counts
 WHERE bundle_counts.rk = 1
 GROUP BY 1) AS project_counts;

Notice here that the PARTITION BY b.bundle_uuid ORDER BY b.bundle_version DESC and WHERE bundle_counts.rk = 1 is used to select the most recent version of all bundles from Sarah.

Blue Box Queries

Query user stories taken from the Blue Box Queries
Table [https://docs.google.com/spreadsheets/d/1PBMrc0oql4gPpH_cQMqlf7ASNMwePRQZNCutxeSFze8/edit#gid=0]

1

Please give me a list of all the contact emails and titles for all the projects, and how many samples (specimens) and sequencing files each project has.

emails

SELECT p.json->'project_core'->>'project_title' AS title, jsonb_agg(contributors->'email') AS emails
FROM projects AS p,
 jsonb_array_elements(p.json->'contributors') AS contributors
GROUP BY 1;

data (sequence) file count per project

Array variant (runtime@[19938 bundles, 411394 files]: 11s 697ms)

SELECT p.file_uuid AS project_uuid,
 p.json->'project_core'->>'project_title' AS project_title,
 count(DISTINCT(f.file_uuid)) AS file_count
FROM bundles AS b
 JOIN files AS f ON f.fqid = ANY(b.file_fqids)
 JOIN projects AS p ON p.fqid = ANY(b.file_fqids)
 JOIN schema_types st ON f.schema_type_id = st.id
WHERE st.name = 'sequence_file'
GROUP BY project_uuid, project_title;

specimen count per project

Array variant (runtime 11s 545ms)

SELECT p.file_uuid AS project_uuid,
 p.json->'project_core'->>'project_title' AS project_title,
 s.json->'organ'->>'text' AS organ,
 count(DISTINCT(s.file_uuid)) AS specimen_count
FROM bundles AS b
 JOIN specimen_from_organisms AS s ON s.fqid = ANY(b.file_fqids)
 JOIN projects AS p ON p.fqid = ANY(b.file_fqids)
GROUP BY project_uuid, project_title, organ;

Join table variant (runtime 17s 907ms)

WITH bundles_specimens AS (SELECT b.bundle_uuid AS bundle_uuid, s.file_uuid AS file_uuid, s.json->'organ'->>'text' AS organ
 FROM bundles AS b
 JOIN bundles_files AS bf
 ON (b.bundle_uuid = bf.bundle_uuid AND b.bundle_version = bf.bundle_version)
 JOIN specimen_from_organisms AS s
 ON (bf.file_uuid = s.file_uuid AND bf.file_version = s.file_version)),
 bundles_projects AS (SELECT b.bundle_uuid AS bundle_uuid,
 p.file_uuid AS project_uuid,
 p.json->'project_core'->>'project_title' AS project_title
 FROM bundles AS b
 JOIN bundles_files AS bf ON (b.bundle_uuid = bf.bundle_uuid AND b.bundle_version = bf.bundle_version)
 JOIN projects AS p ON (bf.file_uuid = p.file_uuid AND bf.file_version = p.file_version))
SELECT bp.project_uuid as project_uuid,
 bp.project_title as project_title,
 bs.organ as organ,
 count(DISTINCT bs.file_uuid)
FROM bundles_specimens AS bs,
 bundles_projects AS bp
WHERE bs.bundle_uuid = bp.bundle_uuid
GROUP BY project_uuid, project_title, organ;

All together (runtime 24s 192ms)

WITH emailsTempTable as (
 SELECT
 p.json->'project_core'->>'project_title' AS project_title,
 jsonb_agg(contributors->'email') AS emails
from projects as p,
 jsonb_array_elements(p.json->'contributors') AS contributors
GROUP BY project_title
),

 countsTable as (
 select
 p.json->'project_core'->>'project_title' AS project_title,
 count(sf.file_uuid) AS file_count,
 count(DISTINCT(s.file_uuid)) AS specimen_count
from bundles AS b
 join specimen_from_organisms as s on s.fqid = ANY(b.file_fqids)
 join projects as p on p.fqid = ANY(b.file_fqids)
 join sequence_files as sf on sf.fqid = ANY(b.file_fqids)
group by project_title
)

select
 e.project_title as project_title,
 e.emails as emails,
 c.file_count as sequence_file_count,
 c.specimen_count as specimen_count
from emailsTempTable as e
 join countsTable as c on c.project_title = e.project_title;

2

I’m trying to figure out whether this is a batch effect. Please try to find me examples where the same type of cell was sequenced by the same lab by two different single cell isolation and sequencing techniques. Please also find examples where the same type of cell was sequenced by two different labs using what is supposed to be the same technique.

3

Find all bundles specified in release ‘X’ with tissue type ‘Y’ Note: could substitute wide variety of other bio constraint, eg, “with coverage gt 10X”, etc.

/* can't do this without establishing release design first */

4

Find all fastq single cell files that are from a human, that hasn’t been processed (no analysis.json file)

Denormalized variant (runtime@[19938 bundles, 411394 files]: 3s 127ms)

WITH analysis_inputs AS (SELECT input_uuid :: UUID AS input_uuid
 FROM bundles AS b,
 jsonb_array_elements(b.json->'links'->'links') AS links,
 jsonb_array_elements_text(links->'inputs') AS input_uuid
 WHERE b.json ? 'analysis_files'),
 matching_files AS (SELECT b.bundle_uuid AS bundle_uuid,
 files->>'uuid' AS file_uuid,
 files->>'version' AS file_version,
 files->>'name' AS file_name
 FROM bundles AS b,
 jsonb_array_elements(b.json->'manifest'->'files') AS files
 WHERE b.json @> '{"sequencing_protocols": [{"sequencing_approach": {"text": "RNA-Seq"}}]}'
 AND b.json @> '{"donor_organisms": [{"genus_species": [{"text": "Homo sapiens"}]}]}'
 AND files->>'name' LIKE '%.fastq.gz')
SELECT f.*
FROM matching_files AS f
 LEFT JOIN analysis_inputs AS ai ON (f.bundle_uuid = ai.input_uuid);

Array variant (runtime@[19938 bundles, 411394 files]: 8s)

WITH analysis_inputs AS (SELECT input_uuid :: UUID AS input_uuid
 FROM bundles AS b,
 jsonb_array_elements(b.json->'links'->'links') AS links,
 jsonb_array_elements_text(links->'inputs') AS input_uuid
 WHERE b.json ? 'analysis_files')
SELECT f.fqid, f.name
FROM bundles AS b
 LEFT JOIN analysis_inputs AS ai ON b.bundle_uuid = ai.input_uuid
 JOIN donor_organisms AS d ON d.fqid = ANY(b.file_fqids)
 JOIN sequencing_protocols AS s ON s.fqid = ANY(b.file_fqids)
 JOIN files AS f ON f.fqid = ANY(b.file_fqids)
WHERE s.json @> '{"sequencing_approach": {"text": "RNA-Seq"}}'
 AND d.json @> '{"genus_species": [{"text": "Homo sapiens"}]}'
 AND f.name LIKE '%.fastq.gz';

Join table variant (runtime@[19938 bundles, 411394 files]: 2s 159ms)

WITH bundles_donors AS (SELECT DISTINCT b.bundle_uuid AS bundle_uuid, b.bundle_version AS bundle_version, d.fqid AS file_fqid, d.name AS file_name
 FROM bundles AS b
 NATURAL JOIN bundles_files AS bf
 JOIN donor_organisms AS d ON (bf.file_uuid = d.file_uuid AND bf.file_version = d.file_version)
 WHERE d.json @> '{"genus_species": [{"text": "Homo sapiens"}]}'),
 bundles_protocols AS (SELECT DISTINCT b.bundle_uuid, b.bundle_version, s.fqid AS file_fqid, s.name AS file_name
 FROM bundles AS b
 NATURAL JOIN bundles_files AS bf
 JOIN sequencing_protocols AS s ON (bf.file_uuid = s.file_uuid AND bf.file_version = s.file_version)
 WHERE s.json @> '{"sequencing_approach": {"text": "RNA-Seq"}}'),
 analysis_inputs AS (SELECT input_uuid :: UUID AS input_uuid
 FROM bundles AS b,
 jsonb_array_elements(b.json->'links'->0->'links') AS links,
 jsonb_array_elements_text(links->'inputs') AS input_uuid
 WHERE b.json ? 'analysis_files')
SELECT DISTINCT f.fqid, f.name
FROM bundles AS b
 NATURAL JOIN bundles_files AS bf
 LEFT JOIN analysis_inputs AS ab ON (b.bundle_uuid = ab.input_uuid)
 JOIN bundles_donors AS bd ON (b.bundle_uuid = bd.bundle_uuid AND b.bundle_version = bd.bundle_version)
 JOIN bundles_protocols AS bp ON (b.bundle_uuid = bp.bundle_uuid AND b.bundle_version = bp.bundle_version)
 JOIN files AS f ON (bf.file_uuid = f.file_uuid AND bf.file_version = f.file_version)
WHERE f.name LIKE '%.fastq.gz';

5

What are all the files that were submitted as part of a project? (What are my submissions x timeframe, project name, new study) UI: should be able to page/facet for large lists. Would also like to see the status of each file that is retreived b y the query (may need to break this out into a separate case)

SELECT p.uuid AS project_uuid, f.uuid AS file_uuid, f.name AS filename
FROM bundles AS b
 JOIN projects AS p ON p.fqid = ANY(b.file_fqids)
 JOIN files AS f ON f.fqid = ANY(b.file_fqids)
 JOIN schema_types st ON f.schema_type_id = st.id
WHERE st.name IS NULL /* not a metadata file */
GROUP BY 1, 2, 3;

6 & 7

	What are all the files that are the results of analysis of files submitted as part of a project? (overlap with #5 above) Release bundles? “Terminal” or latest bundle

	find all bundles created with a specific method or reference (may want to reprocess the input bundles) May be a 2 step search, 1. Find all results created with a specific version/reference, 2. Use them to find all the source bundles

SELECT outputs.inputs, outputs.uuid AS output_uuid, outputs.process_uuid, f.fqid, f.name, f.json
FROM files AS f
 JOIN (SELECT links->'inputs' AS inputs,
 links->>'process' AS process_uuid,
 jsonb_array_elements_text(links->'outputs') :: UUID AS uuid
 FROM bundles AS b
 JOIN projects p ON p.fqid = ANY(b.file_fqids)
 JOIN links AS l ON l.fqid = ANY(b.file_fqids),
 jsonb_array_elements(l.json->'links') AS links
 WHERE l.json @> '{"links": [{"protocols": [{"protocol_type": "sequencing_protocol"}]}]}'
 AND p.uuid = '08e7b6ba-5825-47e9-be2d-7978533c5f8c') AS outputs ON f.uuid = outputs.uuid;

8

What are all of the files of a particular format associated with an particular organ?

SELECT f.fqid, f.name
FROM bundles AS b
 JOIN files AS f ON f.fqid = ANY(b.file_fqids)
 JOIN specimen_from_organisms AS s ON s.fqid = ANY(b.file_fqids)
WHERE s.json @> '{"organ": {"text": "pancreas"}}'
 AND f.name LIKE '%.fastq.gz'

9

Here’s a list of files I’m interested in. What is their total size? Count might also be useful

	TODO: depends on adding file size to the files table https://github.com/HumanCellAtlas/query-service/issues/40

10

DCP dashboard - What are all the files submitted since a certain date?

SELECT *
FROM files
WHERE version > current_date - INTERVAL '4 weeks';

11

What samples have no files? Or, perhaps since no files takes it outside of the blue box rework query as: given a sample UUID are there any bundles and files associated with it?

12

On the creation or update of an ingest bundle we would need an event to be created based on the sample.donor.species and the assay.single_cell.method.

13

How many (find?) ingest bundles satisfy a query based on sample.donor.species and assay.single_cell.method

14

Create events for all ingest bundles that satisfy a query based on sample.donor.species and assay.single_cell.method

15

Select all ingest bundles associated with a project. (same as #1?)

16

I’m a submitting lab and I submitted some raw data bundles and want to know their status – have they made it into blue box, been analyzed by green box? If they’ve been analyzed, where are the analysis bundles? I might ask for status for all samples in a given project, or for some subset of samples in a project. I might want to do the query myself or I might submit a ticket for DCP operations staff to handle the querying.

17

I’m a submitting lab and I want a list of all raw data and analysis bundles for all data that my lab has ever submitted, or all submitted during a certain date range, or all analyzed during a certain date range.

18

I’m a submitting lab and I just figured out that some of the raw data bundles I submitted are bad – something went wrong in the lab. I want to find all raw data bundles (and possibly their associated analysis bundles) where the lab processing took place during a certain date range, or used a certain batch of reagents, or that matches some other combination of metadata related to sample prep / lab work.

19

Multi’omics analysis. Imagine a future workflow in green box (or a portal) that wants to do integrative analysis on two data types – say raw imaging data and raw RNA-seq data. We would need a way to query and trigger events whenever a pair of matching bundles (for the same sample id) get deposited. In other words, imaging bundle alone = no event, sequencing bundle alone = no event, imaging + sequencing bundles = event.

20

Retreive a list of relesaes that a submission is part of

/* can't do this without establishing release design first */

21

Get list of submitters

SELECT DISTINCT contributors->'contact_name' AS names
FROM projects AS p,
 jsonb_array_elements(p.json->'contributors') AS contributors
WHERE contributors ? 'contact_name'

22

Get list of submissions for a submitter

SELECT p.uuid, p.json->'project_core'->>'project_title' AS title
FROM projects AS p
WHERE p.json @> '{"contributors": [{"contact_name": "Aviv,,Regev"}]}'
 OR p.json @> '{"contributors": [{"contact_name": "Sarah,,Teichmann"}]}';

23

Access all versions of metadata standards

24

Get a list of all submissions in progress for a particular submitter. A submitter that starts a submission with one broker might want/need to continue it with another.

Faceted Search

Creation

19,939 Bundles -> 327805 row facet table in 25s 855ms
fields include organ, organ part, method library construction, method instrument model, donor sex, donor age, age unit, donor genus species, disease, project, laboratory and file format

Create MATERIALIZED VIEW facets_table
 AS
 -- ORGAN INFO
 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'organ' as field,
 specimen->'organ'->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'specimen_from_organisms') as specimen

 UNION
 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'organ_part' as field,
 specimen-> 'organ_part'->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'specimen_from_organisms') as specimen

 -- METHODS
 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'method-library-construction' as field,
 sp->'sequencing_approach'->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'sequencing_protocols') as sp

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'method-instrument-model' as field,
 sp->'instrument_manufacturer_model'->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'sequencing_protocols') as sp

 -- DONOR INFO
 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'sex' as field,
 donor->>'sex' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'donor_organisms') as donor

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'age' as field,
 donor->>'organism_age' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'donor_organisms') as donor

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'Genus Species' as field,
 donor->'genus_species'->0->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'donor_organisms') as donor

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'age unit' as field,
 donor->'organism_age_unit'->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'donor_organisms') as donor

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'disease' as field,
 d->>'text' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'donor_organisms') as donor,
 json_array_elements(donor.json->'diseases') as d

 -- ADDITIONAL SAMPLE INFO
 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'project' as field,
 project->'project_core'->>'project_title' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'projects') as project

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'Laboratory' as field,
 c->>'institution' as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'projects') as project,
 json_array_elements(project.json->'contributors') as c

 UNION

 Select b.bundle_uuid as bundle_uuid,
 b.bundle_version as bundle_version,
 'file format' as field,
 substring(file->>'name', '^(?:(?:.){1,}?)((?:[.][a-z]{1,5}){1,2})$') as field_value
 from bundles as b,
 jsonb_array_elements(b.json->'manifest'->'files') as file;

 nav.xhtml

 Table of Contents

 		
 HCA DCP Query Service

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

