

DBGR: HTTP client that gives you full control

[image: PyPI version] [https://badge.fury.io/py/dbgr] [image: License] [https://opensource.org/licenses/Apache-2.0] [image: Build Status] [https://travis-ci.org/JakubTesarek/dbgr] [image: Code Coverage] [https://codecov.io/gh/JakubTesarek/dbgr] [image: Documentation Status] [https://dbgr.readthedocs.io/en/latest/?badge=latest]

Dbgr [read 'ˌdiːˈbʌɡər'] is a interactive terminal tool to test and debug HTTP APIs.
It offers alternative to Postman [https://www.getpostman.com/], Insomnia [https://insomnia.rest/] and other HTTP clients. It is designed
for programmers that prefer to use code instead of graphical tools and want full control
over their HTTP requests.

Features

	Terminal interface with autocomplete and bash history

	Full control over your requests with Python

	Recursive calls

	Local caching of responses

	Customizable interface

[image: DBGR Basic Usage Example] [https://asciinema.org/a/tnDyDebgMmwwVBTUX8M2OrJ4a?autoplay=1]

Installation

The easiest way to install DBGR is via PyPi [https://pypi.org/project/dbgr/]:

$ pip install dbgr
$ dbgr -v
1.1.0

DBGR requires Python >=3.6.

Quick Start

First step when working with DBGR is to create a directory which will DBGR search
for requests and environment settings.

$ mkdir quickstart
$ cd quickstart

Inside create your default environment file default.ini. For now just place
a section header inside:

[default]

Now create another file, call it quickstart.py and place create your first request:

from dbgr import request

@request
async def get_example(session):
 await session.get('http://example.com')

Tip

You can also download the quickstart from Github [https://github.com/JakubTesarek/dbgr/tree/master/examples/quickstart].

You can check that DBGR registered the request by running dbgr list:

$ dbgr list
quickstart:
 - get_example

To execute it, run dbgr request get_example:

> GET http://example.com
> 200 OK
>
> Request headers:
> Host: example.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response headers:
< Content-Encoding: gzip
< Accept-Ranges: bytes
< Cache-Control: max-age=604800
< Content-Type: text/html; charset=UTF-8
< Date: Sun, 16 Jun 2019 15:29:41 GMT
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Content-Length: 606
<
< Response data (text/html):
<!doctype html>
<html>
<head>
 <title>Example Domain</title>
 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples in documents. You may use this
 domain in examples without prior coordination or asking for permission.</p>
 <p>More information...</p>
</div>
</body>
</html>
Result (NoneType)

Tip

Example outputs in this documentation are shortened for readability.
Output from DBGR on your computer will contain the whole response.

Contents:

	Requests
	Executing Requests

	Arguments
	Environment and Session

	Custom Arguments

	Default Value

	Type Hinting

	Order of Precedence of Arguments

	Return Value
	Secret Return Value

	Types
	Primitive Types

	Boolean Type

	Secret Type

	Calendar Types

	Recursive Calls

	Caching

	Asserts

	Environment

	Terminal Interface

	Help

	Contributing
	Development setup

	Testing

	Linting

	Building documentation

	Building distribution

	Links

	License

Indices and tables

	Index

	Module Index

	Search Page

Requests

Request is a coroutine decorated with @dbgr.requests. DBGR searches all .py
files in current directory and register all requests. You can check which requests
DBGR sees by running dbgr list:

from dbgr import request

@request
async def posts(env, session):
 ''' Retrieve all posts '''
 await session.get(f'{env["placeholder"]["url"]}/posts')

@request
async def post(env, session, post_id: int=1):
 ''' Retrieve post by ID '''
 res = await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')
 return await res.json()

$ dbgr list
placeholder:
 - posts
 Retrieve all posts
 - post
 Retrieve post by ID
 Arguments:
 - post_id [default: 1, type: int]

Executing Requests

To execute a request, use dbgr request <name_of_request> (or shorter dbgr r).
Name of request is simply a name of the decorated coroutine.

$ dbgr request posts
> GET http://jsonplaceholder.typicode.com/posts
> 200 OK
>
> Request headers:
> Host: jsonplaceholder.typicode.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response Headers:
< Date: Mon, 10 Jun 2019 10:07:28 GMT
< Content-Type: application/json; charset=utf-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Expires: Mon, 10 Jun 2019 14:07:28 GMT
< Content-Encoding: gzip
<
< Response data (application/json; charset=utf-8):
[
 {
 "body": "quia et suscipit\nsuscipit recusandae consequuntur",
 "id": 1,
 "title": "sunt aut facere repellat provident",
 "userId": 1
 }
]

DBGR will execute your coroutine and print response from the server. If the response
is json, xml or other format that DBGR recognizes, it will be formated and printed
as well.

Sometimes you will have two different requests with the same name in two different
modules. DBGR can still execute them but you have to specify in which module it should
search. Module name is simply the name of the file without .py.

$ dbgr request posts
Request "posts" found in multiple modules: placeholder, another_module
$ dbgr request placeholder:posts
> GET http://jsonplaceholder.typicode.com/posts
> 200 OK
>
> Request headers:
> Host: jsonplaceholder.typicode.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response headers:
< Date: Mon, 10 Jun 2019 10:07:28 GMT
< Content-Type: application/json; charset=utf-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Expires: Mon, 10 Jun 2019 14:07:28 GMT
< Content-Encoding: gzip
<
< Response data (application/json; charset=utf-8):
[
 {
 "body": "quia et suscipit\nsuscipit recusandae consequuntur",
 "id": 1,
 "title": "sunt aut facere repellat provident",
 "userId": 1
 }
]

If you want to use different name from the coroutine name, you can set it explicitly
in a parameter of @dbgr.request:

from dbgr import request

@request(name='alternative_name')
async def posts(env, session):
 ''' Retrieve all posts '''
 await session.get(f'{env["placeholder"]["url"]}/posts')

$ dbgr list
placeholder:
 - alternative_name
 Retrieve all posts
 - post
 Retrieve post by ID
 Arguments:
 - post_id [default: 1, type: int]

The rules for explicit names are the same as for names of python functions.

Arguments

Environment and Session

In the example requests above, the requests we created accepted two arguments:
env and session. Env is a instance of configparser.ConfigParser created
from your environment file. Session is instance of aiohttp.ClientSession.

Both of those arguments are optional, you can write requests that don’t need them.
But if you use them, they have to be in the fist two arguments and named exactly
env and session.

Custom Arguments

Besides environment and session, you can add any number of your own arguments. DBGR
will prompt you for the value when you execute the request.

@request
async def post(env, session, post_id):
 await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')

$ dbgr r post
post_id: 1
> GET http://jsonplaceholder.typicode.com/post/1
> 200 OK
>
> Request headers:
> Host: jsonplaceholder.typicode.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response headers:
< Date: Mon, 10 Jun 2019 10:07:28 GMT
< Content-Type: application/json; charset=utf-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Expires: Mon, 10 Jun 2019 14:07:28 GMT
< Content-Encoding: gzip
<
< Response data (application/json; charset=utf-8):
{
 "body": "quia et suscipit\nsuscipit recusandae consequuntur",
 "id": 1,
 "title": "sunt aut facere repellat provident",
 "userId": 1
}

You can check what arguments a request accepts by running dbgr l:

$ dbgr l
placeholder:
 - post
 id

You can specify some or all values for custom arguments when you execute requests
with --arg <key>=<value>. DBRG will not prompt you for values it already has:

$ dbgr r post --arg post_id=1
> GET http://jsonplaceholder.typicode.com/post/1
> 200 OK
>
> Request headers:
> Host: jsonplaceholder.typicode.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response headers:
< Date: Mon, 10 Jun 2019 10:07:28 GMT
< Content-Type: application/json; charset=utf-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Expires: Mon, 10 Jun 2019 14:07:28 GMT
< Content-Encoding: gzip
<
< Response data (application/json; charset=utf-8):
{
 "body": "quia et suscipit\nsuscipit recusandae consequuntur",
 "id": 1,
 "title": "sunt aut facere repellat provident",
 "userId": 1
}

Default Value

Arguments can have default value so that when you get prompted for the value, you
can just hit enter to accept it.

@request
async def post(env, session, post_id=1):
 await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')

$ dbgr r post
post_id [default: 1]: #just hit enter
> GET http://jsonplaceholder.typicode.com/post/1
< 200 OK

If you know you want to use all the default values and don’t want DBGR to prompt
you, use argument --use-defaults.

$ dbgr r post --use-defaults
> GET http://jsonplaceholder.typicode.com/post/1
< 200 OK

Type Hinting

By default, DBGR will pass all values of arguments as strings. You can change the
type with type hinting [https://docs.python.org/3/library/typing.html]. DBGR will try to convert given value to the type you
specify, giving you an error message when it fails.

@request
async def post(env, session, post_id:int=1):
 await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')

$ dbgr r post
post_id [default: 1, type:int]: abc
String "abc" cannot be converted to int
post_id [default: 1, type:int]: 1
> GET http://jsonplaceholder.typicode.com/post/1
< 200 OK

All the types available for type hinting are described in Types. Any unrecognized
type will be ignored.

Order of Precedence of Arguments

There is many way to specify value for arguments. It’s important to understand in
which order they get resolved.

	First DBGR will take all the values specified with --arg in dbgr r command and assigns them.

	If you used --use-defaults DBGR will assign default value to every argument that has one.

	DBGR will prompt you for values for all remaining arguments.

Return Value

Your request can return a value. This return value will be printed to the terminal
when you execute a request. It also gets returned when you use
Recursive Calls. This can be useful for example for authentication.

Hint

The return value also get cached when Caching is implemented.

The Types that can be used are the same for arguments.

Secret Return Value

If your request returns Secret Type, it will be obfuscated in the terminal output:

Warning

DBGR will not obfuscate the value if it appears somewhere in request log, e.g. headers.*

from dbgr import request, secret

@request
async def get_jwt(session, username, password:secret) -> secret:
 res = await session.post(f'https://example.com/login', data={
 'username': username,
 'password': password
)}
 data = return await res.json()
 return data['jwt']

$ dbgr r get_jwt
> POST https://example.com/login
< 200 OK
< Result (str):
 e******************c

Types

Type hinting provides you a way to specify types of Arguments your requests
expect as well as their return value. DBGR will try to convert any input to the given
type.

To specify a type of an argument, use Pythons build in type hinting [https://docs.python.org/3/library/typing.html]:

from datetime import datetime
from dbgr import request

@request
async def post_publish_time(env, session, post_id:int) -> datetime:
 # type(post_id) == int
 res = await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')
 data = await res.json()
 return data['publish-datatime'] # will convert to datetime.datetime

Primitive Types

DBGR supports these primitive types: int, float and str. (Type
bool is described in separate section)

Boolean Type

When you specify an argument or return value to be a bool, DBGR will convert these
values (and their variants in different case) to False: False, 0, "f",
"false", "n", "no". Also all objects implementing __bool__ method will
be converted to the return value of that method. For example, empty collection will
convert to False. All other values will be converted to True.

from dbgr import request

@request
async def have_new_messages(env, session, post_id:int) -> bool:
 res = await session.get(f'{env["placeholder"]["url"]}/posts/{post_id}')
 return await res.json() # empty list will return False, True otherwise

Secret Type

Type dbgr.secret is resolved the same as str with the difference that when prompted,
DBGR will hide the value you are typing. Also the secret return value of a request will
printed as obfuscated in the terminal.

Warning

DBGR will not obfuscate the value if it appears somewhere in request log, e.g. headers.*

from dbgr import request, secret

@request
async def get_jwt(session, username, password:secret) -> secret:
 res = await session.post(f'https://example.com/login', data={
 'username': username,
 'password': password
)}
 data = return await res.json()
 return data['jwt']

$ dbgr r get_jwt
> POST https://example.com/login
< 200 OK
< Result (str):
 e******************c

Calendar Types

DBGR implements set of calendar types: datetime.time, datetime.date, datetime.time.
They allow you to input date and time in human readable format. In background it
uses dateparser module [https://dateparser.readthedocs.io/en/latest/] and supports all formats from that module.

All calendar types accept strings but also another instances of datetime types.
Missing parts will be filled-in with current value as the table bellow shows.

	Used type

	Input value

	Output value

	datetime

	datetime

	input value directly

	datetime

	date

	input date with current time

	datetime

	time

	input time with current date

	date

	datetime

	date from input datetime

	date

	date

	input value directly

	date

	time

	current date

	time

	datetime

	time from input datetime

	time

	date

	current time

	time

	time

	input value directly

from datetime import datetime
from dbgr import request

@request
async def publish_article(session, article_id: int, publish_date: datetime):
 await session.patch(f'https://example.com/article/{article_id}', data={
 'publish_datetime': datetime.isoformat()
)}

$ dbgr r publish_article
article_id [type: int]: 1
publish_date [type: datetime]: tomorrow # tomorrow date with current time
> PATCH
< 201 No Content

Recursive Calls

Sometimes you might need to make a different request before executing what you really
want to do. For example, to download user data, you need to login first. You can do
that by using coroutine dbgr.response().

Warning

DBGR doesn’t detect or prevent recursion. Be careful not to unintentionally
cause DDoS on your (or someone else’s) servers.

Response accepts one required argument - the name of the request to execute as
string:

	
dbgr.response(request_name, env=None, session=None, use_defaults=False, cache=True, silent=False, **kwargs)

	Coroutine to make recursive requests.

All kwargs will be mapped to arguments required by target request.
Kwargs that are not required by target request will be ignored.

	Parameters

	
	request_name (str) – Name of fully qualified name of a request to execute

	environment (configparser.ConfigParser) – Instance of configparser.ConfigParser with loaded environment variables.
Pass this argument only if you want to call request with environment different
from current one. (optional)

	session (aiohttp.ClientSession) – Instance of aiohttp.ClientSession that will be used to make requests.
Leave the argument empty, if you want to use current session. (optional)

	use_defaults (bool) – Boolean flag if DBGR should use default argument value wherever possible.
It’s equivalent for to using --use-defaults in terminal. More about it in
Arguments section. (optional)

	cache (bool) – Boolean flag if DBGR should use return value from cache, if available. Applicable
only to requests with cache turned on. More about it in
Cache section. (optional)

	silent (bool) – If set to True recursive call (and all other recursive call in the tree bellow)
will not print any output. (optional)

from dbgr import request, response, secret

@request
async def login(session, username, password:secret) -> secret:
 res = await session.post('https://example.com/login', data={
 'username': username,
 'password': password
)
 data = await res.json()
 return data['jwt']

@request
async def get_profile(session):
 jwt = await response('login')
 res = await session.get('https://example.com/profile/me', headers={
 'Authorization': f'Bearer {jwt}'
 })

$ dbgr r get_profile
username: jakub@tesarek.me
password [type: secret]:
> POST https://example.com/login
< 200 OK
Result (string):
c*********************e

> GET https://example.com/profile/me
> 200 OK

Tip

You can call requests with fully qualified name
in the same way you do when calling requests from terminal.

Caching

You can mark request to be cached. All subsequent calls of the same request will
be suspended and the result will be taken from cache. This is useful for example
when you work with API that requires sign-in. You usually want to call the authentication
endpoint only once at the beginning and then just re-use cached value.

To enable caching call @request decorator with cache argument and type of
cache you want to use for this request:

@request
async def get_jwt(session, username, password:secret) -> secret:
 res = await session.post(f'https://example.com/login', data={
 'username': username,
 'password': password
)}
 data = return await res.json()
 return data['jwt']

$ dbgr interactive
Dbgr interactive mode; press ^C to exit.
> get_jwt
> POST https://example.com/login
< 200 OK
< Result (str):
 e******************c
> get_jwt
< Result (str, from cache):
 e******************c

There is only one supported cache type at this moment: session. This type stores
the result in memory for the time the program is running. This is not very useful
when you execute requests one by one. But in interactive mode, the value is cached
until you terminate DBGR.

Tip

The cache key is constructed from the request and values of all arguments. If you
call cached request with different arguments, it will get executed.

If you call dbgr.response() with cache=False while you already have a
result in cache, the request will get executed and new value will be stored in cache.

@request
async def list_comments(session):
 auth = await response('get_jwt', cache=False) # This will always result in HTTP call
 # ...

Asserts

DBGR supports assertions in requests. If an assert fails, it will get reported to the terminal.

@request
async def create_item(session):
 rv = session.get('http://example.com/not_found')
 assert rv.status == 200

> GET http://example.com
> 200 OK
>
> Request headers:
> Host: example.com
> Accept: */*
> Accept-Encoding: gzip, deflate
> User-Agent: Python/3.6 aiohttp/3.5.4
<
< Response headers:
< Content-Encoding: gzip
< Accept-Ranges: bytes
< Cache-Control: max-age=604800
< Content-Type: text/html; charset=UTF-8
< Date: Wed, 12 Jun 2019 07:01:06 GMT
< Etag: "1541025663"
< Expires: Wed, 19 Jun 2019 07:01:06 GMT
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Server: ECS (dcb/7EA2)
< Vary: Accept-Encoding
< X-Cache: HIT
< Content-Length: 606
Assertion error in my_module.py:12:
assert res.status == 200

Environment

Environments offer you different way to specify variables for your requests. Your
default environment is placed in default.ini. This is a file in ini format [https://docs.python.org/3/library/configparser.html]
using ExtendedInterpolation [https://docs.python.org/3/library/configparser.html#configparser.ExtendedInterpolation).].

[DEFAULT]
url: http://127.0.0.1
login: test@example.com
user_agent: Chrome/74.0.3729.169
timeout: 5

[login_service]
url: ${DEFAULT:url}/login
timeout: 10

[admin]
url: ${DEFAULT:url}/admin

When you execute a request, the current environment file get parsed and passed in
variable env to your request coroutine. This allows you to test your request
against multiple environments, for example production and staging and observe if
they behave the same.

You can change the environment that will be used with -e/--env switch. DBGR
searches for environments in current working directory in .ini files. Name of the
environment is the name of the file without suffix.

You can list all available environments with dbgr envs/dbgr e. With optional
argument (dbgr e <name_of_environment>) it will list all variables defined in
that environment.

Terminal Interface

DBGR supports autocomplete for commands and requests. You need to install and
setup argcomplete [https://pypi.org/project/argcomplete/] according to documentation.

Help

If you have trouble using DBGR or have any questions, please create Github issue [https://github.com/JakubTesarek/dbgr/issues/new/choose]
or contact me directly on email jakub@tesarek.me or Twitter @JakubTesarek [https://twitter.com/jakubtesarek].

Contributing

Thank considering your contribution to DBGR. Any help or feedback is greatly appreciated.

Development setup

If you want to develop debugger locally, there is an alternative installation process
that will make this experience easier.

First, fork DBGR repository [https://help.github.com/en/articles/fork-a-repo]. Then you can clone the forked repository and create
local environment:

$ git clone https://github.com/<your_username>/dbgr
$ cd dbgr
$ virtualenv env3.7 --python=python3.7
$ source env3.7/bin/activate
(env3.7) $ pip install -r requirements.txt -r requirements-dev.py

Tip

The process for setting up python 3.6 is the same, just use different python executable.

Now you can install DBGR from local directory:

$ source env3.7/bin/activate
(env3.7) $ pip install -e .

Testing

(env3.7) $ make test

This will run all unit-tests and generate coverage report. 100% test coverage is
mandatory.

Tip

The file Makefile contains other commands that can be useful when developing
DBGR. Run make to see all the available commands.

Linting

(env3.7) $ make lint

DBGR user pylint [https://www.pylint.org/] with some lints disabled. See .pylintrc for details. Score
of 10.0 is mandatory.

Building documentation

This documentation was build using Sphinx [http://www.sphinx-doc.org/en/master/]. To build it locally, run:

(env3.7) $ make documentation
(env3.7) $ open open docs/build/html/index.html

All new features and changes have to be documented.

Before committing please spell-check the documentation using:

(env3.7) $ make spelling

If Sphinx reports a spelling mistake on a word you are sure is spelled correctly,
add it to docs/source/spelling.txt. Sort the file alphabetically.

Building distribution

These steps are mandatory only when preparing for release. Individual developers don’t
need to worry about them.

	Run all tests, make sure they all pass and the code coverage is 100%.

	Move appropriate changes from # Unreleased section in CHANGELOG.rst to new version.

	Change version in dbgr/meta.py

	Build distribution, make sure there are no errors

(env3.7) $ make build

	Tag new version on GitHub

	Create new GitHub release [https://github.com/JakubTesarek/dbgr/releases/new]

	Upload content of dist

	Copy latest changes from CHANGELOG.rst to release description

	Upload content of dist to PyPi [https://pypi.org/project/dbgr/].

(env3.7) $ make publish

Links

	DBGR Github repository [https://github.com/JakubTesarek/dbgr]

	DBGR on PyPi [https://pypi.org/project/dbgr/]

	Issue tracker [https://github.com/JakubTesarek/dbgr/issues] (good onboarding issues [https://github.com/JakubTesarek/dbgr/labels/good%20first%20issue])

	Travis-io build job [https://travis-ci.org/JakubTesarek/dbgr]

	Codev - test coverage statistics [https://codecov.io/gh/JakubTesarek/dbgr]

	DBGR on Source Rank [https://libraries.io/pypi/dbgr/sourcerank]

	Keep a Changelog - changelog format used by DBGR [https://keepachangelog.com/en/1.0.0/]

	Asciinema - terminal recording [https://asciinema.org/]

License

Copyright 2019 Jakub Tesárek

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

 D

D

 	
 	dbgr.response() (built-in function)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 DBGR: HTTP client that gives you full control

 		
 Requests

 		
 Executing Requests

 		
 Arguments

 		
 Environment and Session

 		
 Custom Arguments

 		
 Default Value

 		
 Type Hinting

 		
 Order of Precedence of Arguments

 		
 Return Value

 		
 Secret Return Value

 		
 Types

 		
 Primitive Types

 		
 Boolean Type

 		
 Secret Type

 		
 Calendar Types

 		
 Recursive Calls

 		
 Caching

 		
 Asserts

 		
 Environment

 		
 Terminal Interface

 		
 Help

 		
 Contributing

 		
 Development setup

 		
 Testing

 		
 Linting

 		
 Building documentation

 		
 Building distribution

 		
 Links

 		
 License

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

