datatest Documentation
Release 0.11.1

Shawn Brown

Apr 27, 2021

1 Table of Contents
1.1 Introduction
1.2 How-to Guide

1.4 Discussion
Python Module Index

Index

1.3 Reference

DOCUMENTATION

datatest Documentation, Release 0.11.1

Datatest helps to speed up and formalize data-wrangling and data validation tasks. It was designed to work with poorly
formatted data by detecting and describing validation failures.

 Validate the format, type, set membership, and more from a variety of data sources including pandas
DataFrames and Series, NumPy ndarrays, built-in data structures, etc.

» Smart comparison behavior applies the appropriate validation method for a given data requirement.

* Automatic data handling manages the validation of single elements, sequences, sets, dictionaries, and other
containers of elements.

* Difference objects characterize the discrepancies and deviations between a dataset and its requirements.
* Acceptance managers distinguish between ideal criteria and acceptable differences.

Test driven data-wrangling is a process for taking data from a source of unverified quality or format and producing
a verified, well-formatted dataset. It repurposes software testing practices for data preparation and quality assurance
projects. Pipeline validation monitors the status and quality of data as it passes through a pipeline and identifies
where in a pipeline an error occurs.

See the project README file for full details regarding supported versions, backward compatibility, and more.

DOCUMENTATION 1

https://opensource.org/licenses/Apache-2.0
https://pypi.org/project/datatest/#supported-versions
https://pypi.org/project/datatest/#installation
https://github.com/shawnbrown/datatest/
https://pypi.org/project/datatest/

datatest Documentation, Release 0.11.1

2 DOCUMENTATION

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Introduction

“...tidy datasets are all alike but every messy dataset is messy in its own way” —Hadley Wickham'

1.1.1 A Tour of Datatest

This document introduces datatest’s support for validation, error reporting, and acceptance declarations.

Validation

The validation process works by comparing some data to a given requirement. If the requirement is satisfied, the data
is considered valid. But if the requirement is not satisfied, a ValidationError is raised.

The validate () function checks that the data under test satisfies a given requirement:

from datatest import validate

data =
requirement =
validate (data, requirement)

Smart Comparisons

The validate () function implements smart comparisons and will use different validation methods for different
requirement types.

For example, when requirement is a set, validation checks that elements in data are members of that set:

from datatest import validate

data = [TaA Y , VT) 1 , TA0]
requirement = {'A', 'B'}
validate (data, requirement)

When requirement is a function, validation checks that the function returns True when applied to each element in
data:

I Wickham, Hadley. “Tidy Data.” Journal of Statistical Software 59, no. 10, August 2014.

https://docs.python.org/3/library/stdtypes.html#set

datatest Documentation, Release 0.11.1

from datatest import validate
data = [2, 4, 6, 8]

def is_even (x):
return x % 2 ==

validate (data, requirement=is_even)

When requirement is a type, validation checks that the elements in data are a instances of that type:

from datatest import validate

data = [2, 4, 6, 8]
requirement =
validate (data, requirement)

And when requirement is a t uple, validation checks for tuple elements in data using multiple methods at the same
time—one method for each item in the required tuple:

from datatest import validate
data = [(r2), | ro 4 o , 6)]

def is_even (x):
return x % 2 ==

requirement = (, 1s_even)
validate (data, requirement)

In addition to the examples above, several other validation behaviors are available. For a complete listing with detailed
examples, see Validation.

Automatic Data Handling

Along with the smart comparison behavior, validation can apply a given requirement to data objects of different
formats.

The following examples perform type-checking to see if elements are int values. Switch between the different tabs
below and notice that the same requirement (requirement = int) works for all of the different data formats:

Element

Group

Mapping

Mapping of Groups

An individual element:

from datatest import validate

data = 42
requirement =
validate (data, requirement)

A data value is treated as single element if it’s a string, tuple, or non-iterable object.

4 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

datatest Documentation, Release 0.11.1

A group of elements:

from datatest import validate

data = [1, 2, 3]
requirement =
validate (data, requirement)

A data value is treated as a group of elements if it’s any iterable other than a string, tuple, or mapping (e.g., in this
casea list).

A mapping of elements:

from datatest import validate

data = { : 1, : 2, : 3}
requirement =
validate (data, requirement)

When data is a mapping, its values are checked as individual elements if they are strings, tuples, non-iterable objects,
or nested mappings.

A mapping of groups of elements:

from datatest import validate

data = { g (1, 2, 3], : [4, 5, 6], : [7, 8, 91}
requirement =
validate (data, requirement)

A mapping’s values are treated as a group of individual elements when they are any iterable other than a string, tuple,
or another nested mapping.

Of course, not all formats are comparable. When requirement is itself a mapping, there’s no clear way to handle
validation if data is a single element or a non-mapping container. In cases like this, the validation process will error-
out before the data elements can be checked.

In addition to built-in generic types, Datatest also provides automatic handling for several third-party data types.
Pandas

Pandas (integrated API)

NumPy

Squint

Databases

Datatest can work with pandas DataFrame, Series, Index, and Multilndex objects:

import pandas as pd
import datatest as dt

df = pd.DataFrame ([(, 1, 12.25),
(, 2, 33.75),
(r 3, 101.5)1,
columns=[, ' 1)
dt.validate (df[[14]JI (’))

1.1. Introduction 5

https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas

datatest Documentation, Release 0.11.1

For users who prefer a more tightly integrated API, Datatest provides the validate accessor for testing pandas
objects:

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.DataFrame([('x', 1, 12.25),
('yv', 2, 33.75),
('z', 3, 101.5)71,
columns=['A', 'B', 'C'])
df[['A", 'B']].validate ((,))

After calling the register _accessors () function, you can use validate () as a method of your existing
DataFrame, Series, Index, and Multilndex objects.

Handling is also supported for numpy objects including one- or two-dimentional array, recarray, and structured array
objects.

import numpy as np
import datatest as dt

a = np.array([('x", 1, 12.25),
('v', 2, 33.75),
("z', 3, 101.5)71,
dtype='U10, int32, ")
dt.validate(a[['f0", '"£1'17, (’))

Datatest also works well with squint Select, Query, and Result objects:

from squint import Select
from datatest import validate

select = Select ([('A", 'B', 'C"),

('x', 1, 12.25),

('v'y 2, 33.75),

("z'", 3, 101.5)1)
validate (select (('A', 'B")), (’))
Origins

Squint was originally part of Datatest itself—it grew out of Datatest’s old validation API. But as Datatest matured, the
need for a built-in query interface stoped making sense. This simple query interface was named “Squint” and the code
was moved into its own project.

Database queries can also be validated directly:

import sglite3
from datatest import validate

conn = sglite3.connect (':memory:")
conn.executescript ("""’

(continues on next page)

6 Chapter 1. Table of Contents

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://squint.readthedocs.io/en/stable/index.html#module-squint

datatest Documentation, Release 0.11.1

(continued from previous page)

1, 12.25);
V/‘! \)!
, 101.5);
YVl)
cursor = conn.cursor ()
cursor.execute ('SELECT A, B FROM mydata;"')
validate (cursor, (,))

This requires a cursor object to conform to Python’s DBAPI2 specification (see PEP 249). Most of Python’s
database packages support this interface.

Errors

When validation fails, a ValidationError is raised. A ValidationError contains a collection of difference ob-
jects—one difference for each element in data that fails to satisfy the requirement.

Difference objects can be one of four types: Missing, Extra, Deviationor Invalid.

“Missing” Differences

In this example, we check that the list ["A"', 'B'] contains members of theset { 'A', 'B', 'C', 'D'}:

from datatest import validate

data = ['A'", 'B']
requirement = {'A', 'B', 'C', 'D'}
validate (data, requirement)

This fails because the elements 'C' and 'D"' are not present in data. They appear below as Mi ssing differences:

Traceback (most recent call last):
File "example.py", line 5, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [
Missing('C'),
Missing('D'"),

“Extra” Differences

In this next example, we will reverse the previous situation by checking that elements in the list ['A', 'B', 'C',
'D'] are members of the set {'A', 'B'}:

from datatest import validate

data = [V;Al’ va, va, VDV]
requirement = {'A', 'B'}
validate (data, requirement)

Of course, this validation fails because the elements 'C' and 'D' are not members of the requirement set. They
appear below as Ext ra differences:

1.1. Introduction 7

https://www.python.org/dev/peps/pep-0249

datatest Documentation, Release 0.11.1

Traceback (most recent call last):
File "example.py", line 5, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [
Extra('C'),
Extra('D'"),

“Invalid” Differences

In this next example, the requirement is a tuple, (str, is_even). It checks for tuple elements where the first
value is a string and the second value is an even number:

from datatest import validate
data = [('a', 2), ('b', 4), ('c¢'y, 6), (1.25, 8), ('e', 9)]

def is_even (x):
return x % 2 ==

requirement = (, 1s_even)
validate (data, requirement)

Two of the elements in data fail to satisfy the requirement: (1.25, 8) fails because 1.25 isnota stringand ('e’,
9) fails because 9 is not an even number. These are represented in the error as Tnval id differences:

Traceback (most recent call last):
File "example.py", line 9, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy " (str, is_even()) (2 differences): [
Invalid((1.25, 8)),
Invalid(('e', 9)),

“Deviation” Differences

In the following example, the requirement is a dictionary of numbers. The data elements are checked against regire-
ment elements of the same key:

from datatest import validate

data = {
'A': 100,
'B': 200,
'c': 299,
'D': 405,

}

requirement = {
'A': 100,
'B': 200,
'c': 300,
'D': 400,

(continues on next page)

8 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

validate (data, requirement)

This validation fails because some of the values don’t match (C: 299 300 and D: 405 400). Failed quantitative
comparisons raise Deviat ion differences:

Traceback (most recent call last):
File "example.py", line 17, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy mapping requirements (2 differences): {
'C': Deviation (-1, 300),
'D': Deviation (+5, 400),

Acceptances

Sometimes a failing test cannot be addressed by changing the data itself. Perhaps two equally-authoritative sources
disagree, perhaps it’s important to keep the original data unchanged, or perhaps a lack of information makes correction
impossible. For cases like these, datatest can accept certain discrepancies when users judge that doing so is appropriate.

The accepted () function returns a context manager that operates on a ValidationError’s collection of differences.

Accepted Type

Without an acceptance, the following validation would fail because the values 'C' and 'D' are not members of the
set (see below). But if we decide that Ext ra differences are acceptible, we can use accepted (Extra):

Using Acceptance

No Acceptance

from datatest import (
validate,
accepted,
Extra,

data = [, , ,]
requirement = { , }
with accepted(Extra):

validate (data, requirement)

from datatest import (
validate,
accepted,
Extra,

data = [’ ’ ’]
requirement = { , }
validate (data, requirement)

1.1. Introduction 9

datatest Documentation, Release 0.11.1

Traceback (most recent call last):
File "example.py", line 9, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [
Extra('C'),
Extra('D'"),

Using the acceptance, we suppress the error caused by all of the Ext ra differences. But without the acceptance, the
ValidationError is raised.

Accepted Instance

If we want more precision, we can accept a specific difference—rather than all differences of a given type. For
example, if the difference Extra ('C ") is acceptible, we can use accepted (Extra ('C')):

Using Acceptance

No Acceptance

from datatest import (
validate,
accepted,
Extra,

data = [, , ,]

requirement = { , }

with accepted (Extra ()) .
validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 10, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (1 difference): [
Extra('D'"),

This acceptance suppresses the extra ' C' but does not address the extra 'D ' so the ValidationError is still raised. This
remaining error can be addressed by correcting the data, modifying the requirement, or altering the acceptance.

from datatest import (
validate,
accepted,
Extra,

data = [’ ’ ’]
requirement = { ’ }
validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 9, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [

(continues on next page)

10 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

Accepted Container of Instances

We can also accept multiple specific differences by defining a container of difference objects. To build on the previous
example, we can use accepted ([Extra('C'), Extra('D')]) toaccept the two differences explicitly:

Using Acceptance

No Acceptance

from datatest import (
validate,
accepted,
Extra,

data = [’ ’ ’]

requirement = { , }

with accepted([Extra (), Extra()])
validate (data, requirement)

from datatest import (
validate,
accepted,
Extra,

data = [' , ’]
requirement = { , }
validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 9, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [
Extra('C'),
Extra('D'"),

Accepted Tolerance

When comparing quantative values, you may decide that deviations of a certain magnitude are acceptible. Calling
accepted.tolerance (5) returns a context manager that accepts differences within a tolerance of plus-or-minus
five without triggering a test failure:

Using Acceptance

No Acceptance

1.1. Introduction 11

datatest Documentation, Release 0.11.1

from datatest import validate
from datatest import accepted

data = {
: 100,
200,
299,
405,
}
requirement = {
: 100,
200,
300,
400,
}
with accepted.tolerance (5):
validate (data, requirement)

from datatest import validate
from datatest import accepted

data = {
. 100,
200,
299,
405,
}
requirement = {
100,
200,
300,
400,
}

validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 16, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy mapping requirements (2 differences): {
'C': Deviation (-1, 300),
'D': Deviation (+5, 400),

12 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Other Acceptances

In addtion to the previous examples, there are other acceptances available for specific cases—accepted. keys (),
accepted.args (), accepted.percent (), etc. For a list of all possible acceptances, see Acceptances.

Combining Acceptances

Acceptances can also be combined using the operators & and | to define more complex criteria:

from datatest import (
validate,
accepted,

with accepted(Missing) & accepted.count (5):

validate(..., ...)
with accepted.tolerance (10) | accepted.percent (0.05) :
validate (..., ...)

To learn more about these features, see Composability and Order of Operations.
Data Handling Tools
Working Directory

You can use working directory (a context manager and decorator) to assure that relative file paths behave
consistently:

import pandas as pd
from datatest import working_directory

with working_directory(__ _file):
my_df = pd.read_csv('myfile.csv')

Repeating Container

You can use a RepeatingContainer to operate on multiple objects at the same time rather than duplicating the
same operation for each object:

Using RepeatingContainer

No RepeatingContainer

import pandas as pd
from datatest import RepeatingContainer

repeating = RepeatingContainer ([
pd.read_csv('file
pd.read_csv('file2.csv'"),

1)

(continues on next page)

1.1. Introduction 13

datatest Documentation, Release 0.11.1

(continued from previous page)

countedl, counted2 = repeating| 1 .count ()
filledl, filled2 = repeating.fillna (method=)

summedl, summed2 = repeating]|[, 11 .groupby () .sum()

In the three statements above, operations are performed on multiple pandas DataFrames using single lines of code.
Results are then unpacked into individual variable names. Compare this example with code in the “No RepeatingCon-
tainer” tab.

import pandas as pd

dfl = pd.read_csv()
df2 = pd.read_csv()

countedl = dfl][] .count ()

counted2 = df2] 1 .count ()

filledl = dfl.fillna (method=)
filled2 = df2.fillna (method=)
summedl = dfl[] , 11 .groupby () .sum ()
summed?2 = df2[[, 11 .groupby () .sum ()

Without a RepeatingContainer, operations are duplicated for each individual DataFrame.

1.1.2 Automated Data Testing
In addition to being used directly in your own projects, you can also use Datatest with a testing framework like pytest
or unittest. Automated testing of data is a good solution when you need to validate and manage:

* batch data before loading

* datasets for an important project

* datasets intended for publication

* status of a long-lived, critical data system

* comparisons between your data and some reference data

¢ data migration projects

e complex data-wrangling processes

Data testing is a form of acceptance testing—akin to operational acceptance testing. Using an incremental approach,
we check that data properties satisfy certain requirements. A test suite should include as many tests as necessary to
determine if a dataset is fif for purpose.

14 Chapter 1. Table of Contents

https://pytest.org
https://docs.python.org/library/unittest.html

datatest Documentation, Release 0.11.1

Pytest
With pytest, you can use datatest functions and classes just as you would in any other context. And you can run
pytest using its normal, console interface (see Usage and Invocations).

To facilitate incremental testing, datatest implements a “mandatory” marker to stop the session early when a mandatory
test fails:

@pytest.mark.mandatory
def test_columns() :

You can also use the —x option to stop testing after the first failure of any test:

’p;‘i(,‘w:;t -X

If needed, you can use ——ignore-mandatory to ignore “mandatory” markers and continue testing even when a
mandatory test fails:

’ pytest ——-ignore-mandatory

Pytest Samples

Pandas

Pandas (integrated)
Squint

SQL

import pytest
import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope=)
@dt .working_directory(__file_)
def df():
return pd.read_csv()

@pytest.mark.mandatory

def test_column_names (df) :
required_names = { , , }
dt.validate (df.columns, required_names)

def test_a (df):
requirement = { , , }

(continues on next page)

1.1. Introduction 15

https://docs.pytest.org/en/stable/index.html#module-pytest
https://docs.pytest.org/en/stable/usage.html#usage

20

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

(continued from previous page)

dt.validate(df['A'], requirement)

if name == ' main

import sys
sys.exit (pytest.main(sys.argv))

import pytest
import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope='session')
@dt .working_directory(__file_)
def df():
return pd.read_csv('example.csv'")

@pytest.fixture (scope='session', autouse=True)
def pandas_integration():
dt.register_accessors()

@pytest.mark.mandatory
def test_column_names (df) :

required_names = {'A', 'B', 'C'}
df.columns.validate (required_names)

def test_a (df):

requirement = {'x', 'y', 'z'}
df['A"].validate (requirement)
if name_ == " nain '

import sys
sys.exit (pytest.main(sys.argv))

import pytest

import squint

from datatest import (
validate,

(continues on next page)

16

Chapter 1. Table of Contents

20

21

22

23

datatest Documentation, Release 0.11.1

(continued from previous page)

accepted,
working_directory,
Missing,

Extra,

Invalid,
Deviation,

@pytest.fixture (scope='session
@working_directory(__file_)
def select () :

return squint.Select ('example.csv')

@pytest.mark.mandatory

def test_column_names (select) :
required_names = {'A', 'B', 'C'}
validate (select.fieldnames,

def test_a(select):
requirement = {'x', 'y', 'z'}
validate (select ('A'"), requirement)

if name == '_ main
import sys

sys.exit (pytest.main(sys.argv))

required_names)

import pytest

import sglite3

from datatest import (
validate,
accepted,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope='session')
def connection():
with working_directory(__ file):

conn = sqglite3.connect ('example.sqg

yield conn
conn.close ()

@pytest.fixture (scope='function')

(continues on next page)

1.1. Introduction

17

39

40

41

42

43

44

45

46

47

48

49

datatest Documentation, Release 0.11.1

(continued from previous page)

def cursor (connection) :
cur = connection.cursor ()
yield cur
cur.close ()

@pytest.mark.mandatory
def test_column_names (cursor) :
cursor.execute ('SELECT » FROM mytable LIMIT 0;")
[item[0] for item in cursor.description]
V':V}

{'fl', V:‘Y’
validate (column_names, required_names)

column_names =
required_names =

def test_a(cursor):
cursor.execute ('SELECT A FROM
requirement = {'x', 'y',

validate (cursor, requirement)

if name == ' main
import sys

sys.exit (pytest.main (sys.argv))

Unittest

Datatest provides a handful of tools for integrating data validation with a unittest test suite. While normal datatest
functions work fine, this integration provides an interface that is more consistent with established unittest conventions

(e.g., “mixedCase” methods, decorators, and helper classes).

Datatest’s DataTestCase extends unittest.TestCase to provide unittest-style wrappers for validation and

acceptance (see reference docs for full details):

from datatest import DataTestCase, Extra
class TestMyData (DataTestCase) :
def test_ one()z
data = ['A', 'B', 'C', 'D']
requirement = {'A', 'B'}
with .accepted (Extra) :

.assertValid(data, requirement)

Datatest includes a @mandatory decorator to help with incremental testing:

from datatest import DataTestCase, mandatory
class TestMyData (DataTestCase) :
@mandatory
def test_one()t
data = ['A', 'A', 'B', 'B']
requirement = {'A', 'B'}

.assertValid(data, requirement)

18

Chapter 1. Table of Contents

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase

datatest Documentation, Release 0.11.1

Datatest also provides a main () function and test runner that runs tests in decleration order (by the line number on
which each test is defined). You can invoke datatest’s runner using:

python -m datatest ‘

In addition to using the @mandatory decorator, you can use the —f option to stop after any failing test:

’py;hom -m datatest -1 ‘

You can also use features directly from unittest. This includes decorators like @skip () and @skipIf (),
functions like addModuleCleanup (), and features like Class and Module Fixtures:

import unittest
from datatest import DataTestCase

class TestMyData (DataTestCase) :
@Qunittest.skip('Data not yet collected.')
def test_ one()z
data =
requirement =
.assertValid(data, requirement)

Unittest Samples

Pandas

Pandas (integrated)
Squint

SQL

import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@dt.working_directory(__ _file_)
def setUpModule():
global df
df = pd.read_csv ('example.csv')

class TestMyData (dt.DataTestCase) :
@dt .mandatory
def test_column_ names ()z
required_names = {'A', 'B', 'C'}
.assertValid(df.columns, required_names)

def test_a() :
requirement = {'x', 'y', 'z'"}

(continues on next page)

1.1. Introduction 19

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.skip
https://docs.python.org/3/library/unittest.html#unittest.skipIf
https://docs.python.org/3/library/unittest.html#unittest.addModuleCleanup
https://docs.python.org/library/unittest.html#class-and-module-fixtures

20

21

22

23

24

25

26

27

28

29

30

datatest Documentation, Release 0.11.1

(continued from previous page)

.assertValid(df['A"'], requirement)
if name == ' main_ ':
from datatest import main
main ()

import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@dt .working_directory(__file_)

def setUpModule() :
global df
df = pd.read_csv ('example.csv')
dt.register_accessors|()

class TestMyData (dt.DataTestCase) :
@dt .mandatory
def test_column_names () :
required_names = {'A', 'B', 'C"}
df.columns.validate (required_names)

def test_a()t
requirement = {'x', 'yv', 'z'"}
df['A"].validate (requirement)
if _ name_ == ' main_ ':

from datatest import main
main ()

import squint

from datatest import (
DataTestCase,
mandatory,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

(continues on next page)

20

Chapter 1. Table of Contents

20

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

(continued from previous page)

@working_directory(__file_)
def setUpModule() :
global select
select = squint.Select ('example.csv

class TestMyData (DataTestCase) :
@mandatory
def test_column_names ()t
required_names = {'A', 'B', 'C"}
.assertValid(select.fieldnames,

required_names)

def test_a() :
requirement = {'x', 'y', 'z'}
.assertValid(select ('A'"), requirement)
if _ name_ == '_ _main_ ':
from datatest import main
main ()
import sglite3
from datatest import (
DataTestCase,
mandatory,
working_directory,
Missing,
Extra,
Invalid,
Deviation,
)
@working_directory(__file)
def setUpModule() :
global connection
connection = sglite3.connect ('example.sglitel3")

def tearDownModule () :
connection.close ()

class MyTest (DataTestCase) :
def setUp()t
cursor = connection.cursor ()
.addCleanup (cursor.close)
.CUrsor = cursor

@mandatory
def test_column_names () e

(continues on next page)

1.1. Introduction

21

21

22

23

24

datatest Documentation, Release 0.11.1

(continued from previous page)

.cursor.execute ()
column_names = [item[0] for item in .cursor.description]
required_names = { , , }

.assertValid(column_names, required_names)

def test_a() :
.cursor.execute ()
requirement = { , ' }
.assertValid(.cursor, requirement)
if name == :
from datatest import main
main ()

Data for Script Samples

Download File

example.csv

example.sqglite3

The test samples given on this page were written to check the following dataset:

A|B C

x | foo | 20
x | foo | 30
y | foo | 10
y | bar | 20
z | bar | 10
z | bar | 10

1.1.3 Data Pipeline Validation

Datatest can be used to validate data as it flows through a data pipeline. This can be useful in a production environment
because the data coming into a pipeline can change in unexpected ways. An up-stream provider could alter its format,
the quality of a data source could degrade over time, previously unheard-of errors or missing data could be introduced,
etc.

Well-structured pipelines are made of discrete, independent steps where the output of one step becomes the input of
the next step. In the simplest case, the steps themselves can be functions. And in a pipeline framework, the steps are
often a type of “task” or “job” object.

A simple pipeline could look something like the following:

def pipeline(file_path):
data = load_from_source(file_path)

(continues on next page)

22 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

data = operation_one (data)
data = operation_two (data)

save_to_destination (data)

You can simply add calls to validate () between the existing steps:

def pipeline (file_path):
data = load_from_source(file_path)

validate (data.columns, ['user_id', 'first_name', 'last_name'])
data = operation_one (data)

validate (data.columns, ['user_ id', 'ful name '])
validate (data, (7))

data = operation_two (data)
validate.unique (datal['user id'])

save_to_destination (data)

You could go further in a more sophisticated pipeline framework and define tasks dedicated specifically to validation.

Tip: When possible, it’s best to call validate () once for a batch of data rather than for individual elements. Doing
this is more efficient and failures provide more context when fixing data issues or defining appropriate acceptances.

validate (data,)

for x in data:
myfunc (x)

for x in data:
validate (x,)
myfunc (x)

1.1. Introduction 23

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

Toggle Validation On/Off Using __debug___

Sometimes it’s useful to perform comprehensive validation for debugging purposes but disable validation for produc-
tion runs. You can use Python’s ___debug___ constant to toggle validation on or off as needed:

def pipeline(file_path):

data = load_from_source(file_path)
if _ debug__ :
validate (data.columns, ['user_id', 'first_name', 'last_name'])

data = operation_one (data)

if _ debug__:
validate (data.columns, ['user_ id', 'full name'])
validate (data, (’))

data = operation_two (data)

if _ debug__:
validate.unique (data['user_ id'])

save_to_destination (data)

Validation On

In the example above, you can run the pipeline with validation by running Python in unoptimized mode. In unoptimized
mode, ___debug___is True and assert statements are executed normally. Unoptimized mode is the default mode
when invoking Python:

python simple_pipeline.py

Validation Off

To run the example above without validation, run Python in optimized mode. In optimized mode, __debug___is
False and assert statements are skipped. You can invoke optimized mode using the —O command line option:

python -O simple_pipeline.py

Validate a Sample from a Larger Data Set

Another option for dealing with large data sets is to validate a small sample of the data. Doing this can provide some
basic sanity checking in a production pipeline but it could also allow some invalid data to pass unnoticed. Users must
decide if this approach is appropriate for their specific use case.

24 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#__debug__
https://docs.python.org/3/using/cmdline.html#cmdoption-o

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

DataFrame Example

With Pandas, you can use the DataFrame . sample () method to get a random sample of items for validation:

def pipeline(file_path):

data = load_from_source(file_path)
validate (data.columns, ['user_ id', 'first _name', 'last_name'])
data = operation_one (data)

sample = data.sample (n=100)
validate (sample.columns, ['user id', 'fu
validate (sample, (7))

_name'])

data = operation_two (data)

sample = data.sample (n=100)
validate.unique (sample['user_id'])

save_to_destination (data)

Iterator Example

Sometimes you will need to work with exhaustible iterators of unknown size. It’s possible for an iterator to yield more
data than you can load into memory at any one time. Using Python’s itertools module, you can fetch a sample of

data for validation and then reconstruct the iterator to continue with data processing:

import itertools

def pipeline(file_path):

iterator = load_from_source(file_path)
iterator = operation_one(iterator)

sample = (itertools.islice(iterator, 100))
validate (sample, (,))

iterator = itertools.chain(sample, iterator)
iterator = operation_two (iterator)

sample = (itertools.islice (iterator, 100))
validate.unique (item[0] for item in sample)
iterator = itertools.chain(sample, iterator)

save_to_destination(iterator)

Tip: If you need perform multiple sampling operations on exhaustible iterators, you may want to define a function

for doing so:

1.1. Introduction

25

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html#pandas.DataFrame.sample
https://docs.python.org/3/library/itertools.html#module-itertools

datatest Documentation, Release 0.11.1

import itertools

def get_sample (iterable, n=100):

iterator = (iterable)
sample = (itertools.islice(iterator, n))
iterator = itertools.chain(sample, iterator)

return sample, iterator

Calling this function returns a tuple that contains a sample and the reconstructed iterator:

sample, iterator = get_sample (iterator)
validate (sample, (,))

Important: As previously noted, validating samples of a larger data set should be done with care. If the sample is not
representative of the data set as a whole, some validations could fail even when the data is good and some validations
could pass even when the data is bad.

In some of the examples above, there are calls to validate. uniqgue () butthis validation only checks data included
in the sample—duplicates in the remaining data set could pass unnoticed. This may be acceptable for some situations
but not for others.

Testing Pipeline Code ltself

The pipeline validation discussed in this document is not a replacement for proper testing of the pipeline’s code base
itself. Pipeline code, should be treated with the same care and attention as any other software project.

1.1.4 Validating Pandas Objects

The pandas data analysis package is commonly used for data work. This page explains how datatest handles the
validation of DataFrame, Series, Index, and MultiIndex objects.

Accessor Syntax

Examples on this page use the validate accessor:

df['A"].validate({'x", 'yv', 'z'})

We could also use the equivalent non-accessor syntax:

dt.validate (df['2'], {'x', 'y', 'z'})

26 Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex

datatest Documentation, Release 0.11.1

DataFrame

For validation, Dat aF rame objects using the default index type are treated as sequences. DataFrames using an index
of any other type are treated as mappings:

Default Index
Specified Index

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.DataFrame (data={ [, ' ’ 1,
[10, 20, ’)
requirement = [
(, 10),
, 20),

(
(’) 4
(

4) ’

df.validate (requirement)

Since no index was specified, df uses the default RangeIndex type—which tells validate () to treat the
DataFrame as a sequence.

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.DataFrame (data={ A , ’ ’ 1,
[10, 20, ’ 1},
index=][, , , 1)
requirement = ({
(, 10),
(r 20),

. (’)I
(14),

df.validate (requirement)

In this example, we’ve specified an index and therefore df is handled as a mapping.

The distinction between implicit and explicit indexing is also apparent in error reporting. Compare the examples on
each of the tabs below:

Default Index
Specified Index

import pandas as pd
import datatest as dt

(continues on next page)

1.1. Introduction 27

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.RangeIndex.html#pandas.RangeIndex

datatest Documentation, Release 0.11.1

(continued from previous page)

dt.register_accessors|()

df = pd.DataFrame (data={ : [, , ’ Is
[10, 20, ,)

df.validate ((’))

Traceback (most recent call last):
File "example.py", line 10, in <module>
df.validate ((str, int))
datatest.ValidationError: does not satisfy ° (str, int)" (2 differences): [
Invalid(('baz', 'x'"')),
Invalid(('qux', 'y')),

Since the DataFrame was treated as a sequence, the error includes a sequence of differences.

import pandas as pd
import datatest as dt

dt.register_accessors|()
df = pd.DataFrame (data={ | ’ ’ ’ Is
index=][, , ’ 1)

df.validate ((,))

Traceback (most recent call last):
File "example.py", line 10, in <module>
df.validate ((str, int))
datatest.ValidationError: does not satisfy ° (str, int)" (2 differences): {
'IITI': Invalid(('baz', 'x')),
'IV': Invalid(('qux', 'y')),

In this example, the DataFrame was treated as a mapping, so the error includes a mapping of differences.

Series

Series objects are handled the same way as DataFrames. Series with a default index are treated as sequences and
Series with explicitly defined indexes are treated as mappings:
Default Index

Specified Index

import pandas as pd
import datatest as dt

dt.register_accessors()

s = pd.Series(data=[10, 20, , 1)

(continues on next page)

28 Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

datatest Documentation, Release 0.11.1

(continued from previous page)

requirement = [10, 20, ']

s.validate (requirement)

import pandas as pd
import datatest as dt

dt.register_accessors|()

s = pd.Series (data=[10, 20, , 1,
index=|[’ ’ ’ 1)
requirement = { . 10, . 20, : , : }

s.validate (requirement)

Like before, the sequence and mapping handling is also apparent in the error reporting:

Default Index

Specified Index

import pandas as pd
import datatest as dt

dt.register_accessors|()

s = pd.Series (data=[10, 20, , 1)

s.validate ()

Traceback (most recent call last):
File "example.py", line 9, in <module>
s.validate (int)

datatest.ValidationError: does not satisfy “int"® (2 differences):

Invalid('x"),
Invalid('y"'"),

import pandas as pd
import datatest as dt

dt.register_accessors()

s = pd.Series(data=[10, 20, , 1,
index=|[’ ’ ’ 1)

s.validate ()

Traceback (most recent call last):
File "example.py", line 9, in <module>
s.validate (int)

datatest.ValidationError: does not satisfy “int® (2 differences):

(continues on next page)

1.1. Introduction

29

datatest Documentation, Release 0.11.1

(continued from previous page)

'IIT':
'IV':

Invalid('x"'"),
Invalid('y"),

Index and Multilndex

Index and MultiIndex objects are all treated as sequences:

import pandas as pd
import datatest as dt

dt.register_accessors|()

index = pd.Index(['l"', 'I1', '"II1', 'IV'])
requirement = ['T', 'I1', 'II1', "IV']
index.validate (requirement)

requirement = [('T', 'a"'), ('I1', 'b'), ('I11', 'c"),

multi.validate (requirement)

1.2 How-to Guide

“Hell is other people’s data.” —Jim Harris'

1.2.1 How to Install Datatest

The easiest way to install datatest is to use pip:

’pip install datatest

If you are upgrading from version 0.11.0 or newer, use the ——upgrade option:

’pip install upgrade datatest

! Harris, Jim.
hell-is-other-peoples-data.html

“Hell is other people’s data”, OCDQ (blog), August 06, 2010, Retrieved from http://www.ocdgblog.com/home/

30

Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex
https://pip.pypa.io
http://www.ocdqblog.com/home/hell-is-other-peoples-data.html
http://www.ocdqblog.com/home/hell-is-other-peoples-data.html

datatest Documentation, Release 0.11.1

Upgrading From Version 0.9.6

If you have an existing codebase of older datatest scripts, you should upgrade using the following steps:

e Install datatest 0.10.0 first:

pip install --force-reinstall datatest==0.10.0

* Run your existing code and check for DeprecationWarnings.
» Update the parts of your code that use deprecated features.

* Once your code is running without DeprecationWarnings, install the latest version of datatest:

pip install —--upgrade datatest

Stuntman Mike

If you need bug-fixes or features that are not available in the current stable release, you can “pip install” the develop-
ment version directly from GitHub:

pip install --upgrade https://github.com/shawnbrown/datatest/archive/master.zip

All of the usual caveats for a development install should apply—only use this version if you can risk some instability
or if you know exactly what you’re doing. While care is taken to never break the build, it can happen.

Safety-first Clyde

If you need to review and test packages before installing, you can install datatest manually.
Download the latest source distribution from the Python Package Index (PyPI):
https://pypi.org/project/datatest/#files

Unpack the file (replacing X.Y.Z with the appropriate version number) and review the source code:

tar xvfz datatest-X.Y.Z.tar.gz

Change to the unpacked directory and run the tests:

cd datatest—-X.Y

python setu

Don’t worry if some of the tests are skipped. Tests for optional data sources (like pandas DataFrames or NumPy
arrays) are skipped when the related third-party packages are not installed.

If the source code and test results are satisfactory, install the package:

python setup.py install

1.2. How-to Guide 31

https://pypi.org/project/datatest/#files

20

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

1.2.2 How to Get Started With Testing

Once you have reviewed the tutorials and have a basic understanding of datatest, you should be ready to start testing
your own data.

1. Create a File and Add Some Sample Code

A simple way to get started is to create a .py file in the same folder as the data you want to test. It’s a good idea to
follow established testing conventions and make sure your filename starts with “test_".

Then, copy one of following the pytest or unittest code samples to use as a template for writing your own tests:
Pandas

Pandas (integrated)

Squint

SQL

import pytest
import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope='session')
@dt .working_directory(__file_)
def df():
return pd.read_csv('example.csv'")

@pytest.mark.mandatory
def test_column_names (df) :

required_names = {'A'", B', 'C'}
dt.validate (df.columns, required_names)

def test_a (df):

requirement = {'x', 'y', 'z'}
dt.validate(df['A'"], requirement)
if _ name_ == '_ _main_ ':

import sys
sys.exit (pytest.main(sys.argv))

import pytest

(continues on next page)

32 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope='session')

@dt .working_directory(__file_)

def df():
return pd.read_csv('example.csv'")
@pytest.fixture (scope='session', autouse=True)

def pandas_integration():
dt.register_accessors()

@pytest.mark.mandatory

def test_column_names (df) :
required_names = {'A', 'B', 'C'}
df.columns.validate (required_names)

def test_a (df):

requirement = {'x', 'y', 'z'}
df['A'"].validate (requirement)
if name_ == "' main !

import sys
sys.exit (pytest.main(sys.argv))

import pytest

import squint

from datatest import (
validate,
accepted,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope='session')
@working_directory(__file_)
def select () :

(continues on next page)

1.2. How-to Guide

33

20

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

(continued from previous page)

return squint.Select ('example.csv')

@pytest.mark.mandatory
def test_column_names (select) :
required_names = {'A', 'B', 'C"}
validate (select.fieldnames, required_names)

def test_a(select):

requirement = {'x', 'y', 'z'}
validate (select ('A'"), requirement)
if _ name_ == '_ _main_ '

import sys
sys.exit (pytest.main(sys.argv))

import pytest

import sglite3

from datatest import (
validate,
accepted,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

@pytest.fixture (scope="'se¢ on')
def connection () :
with working_directory(__ file):
conn = sqglite3.connect ('example.sglite3")
yield conn
conn.close()

@pytest.fixture (scope='function')
def cursor (connection) :
cur = connection.cursor ()
yield cur
cur.close ()

@pytest.mark.mandatory
def test_column_names (cursor) :

cursor.execute ('SELECT » FROM mytable LIMIT 0;")
column_names = [item[0] for item in cursor.description]
required_names = {'A', 'B', 'C'}

validate (column_names, required_names)

(continues on next page)

34

Chapter 1. Table of Contents

39

40

41

)

43

44

45

46

47

48

49

datatest Documentation, Release 0.11.1

(continued from previous page)

def test_a (cursor):
cursor.execute ('S
{l—~¥ "<,
o 4 2 4

validate (cursor, requirement)

requirement =

if name == '_ main
import sys

sys.exit (pytest.main (sys.argv))

Pandas

Pandas (integrated)
Squint

SQL

import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@dt.working_directory(__file_)
def setUpModule() :

global df

df = pd.read_csv ('example.csv

class TestMyData (dt.DataTestCase) :
@dt .mandatory
def test_column_names ()z
required_names = {'A', 'B',
.assertValid(df.columns,

l‘r/l}

required_names)

def test_a()t
requirement = {'x"', 'vyv',
.assertvalid(df['A"'],

'Z'}

requirement)

if name == ' main "
from datatest import main

main ()

1.2. How-to Guide

35

20

21

22

23

24

25

26

27

28

29

datatest Documentation, Release 0.11.1

import pandas as pd
import datatest as dt
from datatest import (
Missing,
Extra,
Invalid,
Deviation,

@dt .working_directory(__file_)

def setUpModule() :
global df
df = pd.read_csv ('example.csv')
dt.register_accessors()

class TestMyData (dt.DataTestCase) :
@dt .mandatory
def test_column_names () :
required_names = {'A', 'B', 'C"}
df.columns.validate (required_names)

def test_a()t
requirement = {'x"', 'yv', 'z'"}
df['A"].validate (requirement)
if _ name_ == '_ main "

from datatest import main
main ()

import squint

from datatest import (
DataTestCase,
mandatory,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

@working_directory(__file_)
def setUpModule():
global select
select = squint.Select ('example.csv')

class TestMyData (DataTestCase) :
@mandatory
def test_column_names ()t

(continues on next page)

36 Chapter 1. Table of Contents

23
24

25

20

21

22

23

24

25

26

27

28

29

40
41

42

datatest Documentation, Release 0.11.1

(continued from previous page)

required_names = {'A', 'B', 'C"}
.assertValid(select.fieldnames,

def test_a()t
requirement =

1 [}

}:'7 Z ’ VZV}
(

{
.assertValid(select ('A'), requirement)

if name == ' main "
from datatest import main

main ()

required_names)

import sqglite3

from datatest import (
DataTestCase,
mandatory,
working_directory,
Missing,
Extra,
Invalid,
Deviation,

@working_directory(__file_)
def setUpModule():
global connection
connection = sqglite3.connect ('example.sqglite3

def tearDownModule () :
connection.close ()

class MyTest (DataTestCase) :
def setUp()z
cursor = connection.cursor ()
.addCleanup (cursor.close)
.CUrsor = Cursor
@mandatory
def test_column_names ()t
.cursor.execute (' SELECT FROM 1
[item[0] for item in
{'a', 'B', 'C"}
.assertValid(column_names,

caple

column_names =
required_names =

def test_a() :
.cursor.execute ('SELECT A FROM 71 ble;
requirement = {'x', 'y', 'z'}
.assertValid(.cursor, requirement)

LIMIT 0;')

.cursor.description]

required_names)

(continues on next page)

1.2. How-to Guide

37

43

44

45

46

datatest Documentation, Release 0.11.1

(continued from previous page)

if name_ == ' main_ ':
from datatest import main
main ()

2. Adapt the Sample Code to Suit Your Data

After copying the sample code into your own file, begin adapting it to suit your data:
1. Change the fixture to use your data (instead of “example.csv”).

2. Update the set in test_column_names () to require the names your data should contain (instead of “A”,
$6B’9’ and 6‘C9’).

3. Rename test_a () and change it to check values in one of the columns in your data.
4. Add more tests appropriate for your own data requirements.
3. Refactor Your Tests as They Grow
As your tests grow, look to structure them into related groups. Start by creating separate classes to contain groups

of related test cases. And as you develop more and more classes, create separate modules to hold groups of related
classes. If you are using pytest, move your fixtures into a conftest . py file.

1.2.3 How to Run Tests

Pytest

If you have a pytest style script named test_mydata.py, you can run it by typing the following at the command
line:

pytest test_mydata.py

You invoke pytest just as you would in any other circumstance—see pytest’s standard Usage and Invocations for full
details.

Unittest

If you have a unittest style script named test_mydata.py, you can run it by typing the following at the command
line:

python -m datatest test_mydata.py

Datatest includes a unittest-style test runner that facilitates incremental testing. It runs tests in declaration order (i.e.,
by line-number) and supports the @mandatory decorator.

38 Chapter 1. Table of Contents

https://docs.pytest.org/en/latest/usage.html

datatest Documentation, Release 0.11.1

1.2.4 How to Validate Column Names

To validate the column names in a data source, simply pass the names themselves as the data argument when calling
validate (). You control the method of validation with the requirement you provide.

Column Requirements

Exist in Any Order

Using a set requirement, we can check that column names exist but allow them to appear in any order:

column_names =
validate (column_names, {'A', '

los]

l, l‘\:l})

A Subset/Superset of Required Columns

Using validate.subset ()/validate.superset (), we can check that column names are a subset or super-
set of the required names:

column_names =
validate.subset (column_names, {'A', 'B', 'C', 'D', "E'})

Defined in a Specific Order

Using a 11 st requirement, we can check that column names exist and that they appear in a specified order:

column_names =
validate (column_names, ['A', 'B', 'C'])

Matches Custom Formats

Sometimes we don’t care exactly what the column names are but we want to check that they conform to a specific
format. To do this, we can define a helper function that performs any arbitrary comparison we want. Below, we check
that column names are all written in uppercase letters:

def isupper (x):
return x.isupper ()

column_names =
validate (column_names, isupper)

In addition to isupper (), there are other string methods that can be useful for validating specific formats:
islower (),isalpha(),isascii(),isidentifier (), etc.

1.2. How-to Guide 39

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str.isupper
https://docs.python.org/3/library/stdtypes.html#str.islower
https://docs.python.org/3/library/stdtypes.html#str.isalpha
https://docs.python.org/3/library/stdtypes.html#str.isascii
https://docs.python.org/3/library/stdtypes.html#str.isidentifier

datatest Documentation, Release 0.11.1

A More Complex Example

Below, we check that the column names start with two capital letters and end with one or more digits. The examples
below demonstrate different ways of checking this format:

Regex Pattern
Helper Function

We can use validate.regex () to check that column names match a regular expression pattern. The pattern
matches strings that start with two capital letters (* [A-Z] {2}) and end with one or more digits (\d+3$):

column_names =
msg = 'Must have two capital letters

validate.regex (column_names, r'"[A-7Z]{2]

This example performs the same validation as the Regex Pattern version, but uses slicing and string methods to imple-
ment the same requirement:

def two_letters_plus_digits (x):
"""Must have two capital letters followed by digits."""
first_two_chars =
remaining_chars

o
X X
N

N

if not first_two_chars.isalphal() :
return False

if not first_two_chars.isupper():
return False

return remaining_chars.isdigit ()

column_names =
validate (column_names, two_letters_plus_digits)

Examples Using Various Data Sources

csv.reader()

import csv
from datatest import validate

with ("mydata.csv', newline='") as csvfile:
reader = csv.reader (csvfile)
header_row = (reader)
validate (header_row, {'A', 'B', 'C'})

40 Chapter 1. Table of Contents

https://docs.python.org/3/library/re.html#re-syntax
https://docs.python.org/3/glossary.html#term-slice

datatest Documentation, Release 0.11.1

csv.DictReader()

import csv
from datatest import validate

with ("mydata.csv', newline='") as csvfile:
reader = csv.DictReader (csvfile)
validate (reader.fieldnames, {'A', 'B', 'C'})
Pandas

import pandas as pd
import datatest as dt

df = pd.read_csv('mydata
dt.validate (df.columns,

Pandas (Integrated)

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.read_csv('mydata.csv')
df.columns.validate({'A', 'B', 'C'})

Squint

import squint
from datatest import validate

select = squint.Select ('mydata.csv')
validate (select.fieldnames, {'A', 'B', 'C'})
Database

If you’re using a DBAPI2 compatible connection (see PEP 249), you can get a table’s column names using the
cursor.description attribute:

import sglite3
from datatest import validate

connection = sqglite3.connect ('mydata.sglite3")
cursor = connection.cursor ()
cursor.execute ('SELECT » FROM mytable LIMIT 0;')

(continues on next page)

1.2. How-to Guide 41

https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249#description

datatest Documentation, Release 0.11.1

(continued from previous page)

column_names = [item[0] for item in cursor.description]
validate (column_names, { 0 0 })

Above, we select all columns (SELECT «) from our table but limit the result to zero rows (LIMIT 0). Executing
this query populates cursor.description even though no records are returned. We take the column name from
each item in description (item[0]) and perform our validation.

1.2.5 How to Customize Differences
When using a helper function for validation, datatest’s default behavior is to produce Invalid differences when the

function returns False. But you can customize this behavior by returning a difference object instead of False. The
returned difference is used in place of an automatically generated one.

Default Behavior

In the following example, the helper function checks that text values are upper case and have no extra whitespace. If
the values are good, the function returns True, if the values are bad it returns False:

from datatest import validate

def wellformed (x) :

return x == .join(x.split()) and x.isupper/()

data = [

validate (data, wellformed)

Each time the helper function returns False, an Invalid difference is created:

Traceback (most recent call last):
File "example.py", line 15, in <module>
validate (data, wellformed)
ValidationError: Must be upercase and no extra whitespace. (2 differences): [
Invalid ('GREENE '),
Invalid('St. Louis'),

42 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Custom Differences

In this example, the helper function returns a custom BadWhitespace or NotUpperCase difference for each bad
value:

from datatest import validate, Invalid

class BadWhitespace (Invalid) :
"""For strings with leading, trailing, or irregular whitespace."""

class NotUpperCase (Invalid) :
"""For strings that aren't upper case."""

def wellformed (x) :

"""Must

be upercase and no extra whitespace."""
if x !'= ' '.join(x.split()):
return BadWhitespace (x)
if not x.isupper():
return NotUpperCase (x)

return True

data = [
CAPE GIRARDEAU',
'GREENE ',

' JACKSOY

validate (data, wellformed)

These differences are use in the ValidationError:

Traceback (most recent call last):
File "example.py", line 15, in <module>
validate (data, wellformed)
ValidationError: Must be upercase and no extra whitespace. (2 differences): [
BadWhitespace ('GREENE '),
NotUpperCase ('St. Louis'),

Caution: Typically, you should try to stick with existing differences in your data tests. Only create a custom
subclass when its meaning is evident and doing so helps your data preparation workflow.

Don’t add a custom class when it doesn’t benefit your testing process. At best, you’re doing extra work for no added
benefit. And at worst, an ambiguous or needlessly complex subclass can cause more problems than it solves.

If you need to resolve ambiguity in a validation, you can split the check into multiple calls. Below, we perform the
same check demonstrated earlier using two validate () calls:
from datatest import validate

data = [
'CAPE GIRARDEAU',
'GREENE ',

1.2. How-to Guide 43

datatest Documentation, Release 0.11.1

def no_irregular_ whitespace (x) :

LRIRLY a nmuon

ust have nc irregular whites

return x == ' '.join(x.split())

validate (data, no_irregular_whitespace)

def is_upper_ case (x):

"""Must be upper case."""

return x.isupper ()

validate (data, is_upper_case)

1.2.6 How to Validate Data Types

To check that data is of a particular type, call validate () with a type as the requirement argument (see Predicates).

Simple Type Checking

In the following example, we use the £1oat type as the requirement. The elements in data are considered valid if
they are float instances:

from datatest import validate

data = [0.0, 1.0, 2.0]
validate (data,)

In this example, we use the st r type as the requirement. The elements in data are considered valid if they are strings:

from datatest import validate

data = [vﬁl’ v};v, v\qv]
validate (data,)

Using a Tuple of Types

You can also use a predicate tuple to test the types contained in tuples. The elements in data are considered valid if
the tuples contain a number followed by a string:

from numbers import Number
from datatest import validate

data = [(0.0, 'a'), (1.0, 'b'), (2, '¢')y, (3, 'd")]
validate (data, (Number,))

In the example above, the Numbe r base class is used to check for numbers of any type (int, float, complex,
Decimal, etc.).

44 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/decimal.html#decimal.Decimal

datatest Documentation, Release 0.11.1

Checking Pandas Types

Type Inference and Conversion

Import the pandas package:

>>> import pandas as pd

INFERENCE

When a column’s values are all integers (1, 2, and 3), then Pandas infers an integer dtype:

>>> pd.Series([1, 2, 3])

When a column’s values are a mix of integers (1 and 3) and floating point numbers (2 . 0), then Pandas will infer a
floating point dtype—notice that the original integers have been coerced into float values:

>>> pd.Series([1, 2.0, 31)
0 1.0

o
N

floato64

When certain non-numeric types are present, 'three', then pandas will use a generic “object” dtype:

>>> pd.Series([1, 2.0, 1)

CONVERSION

When a dtype is specified, dtype=float, Pandas will attempt to convert values into the given type. Here, the
integers are explicitly converted into float values:

>>> pd.Series([1, 2, 3], dtype=)

dtype: float64

In this example, integers and floating point numbers are converted into string values, dtype=str:

>>> pd.Series([1l, 2.0, 3], dtype=)

When a value cannot be converted into a specified type, an error is raised:

1.2. How-to Guide 45

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas

datatest Documentation, Release 0.11.1

>>> pd.Series([1l, 2.0, 'three']l, dtype=)
Traceback (most recent call last):
File , line 1, in <module>

File "~/myproject/venv/lib64/python3.8/site-packages/pandas/core/series.py", line
327,
data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True)
File "~/myproject/venv/lib64/python3.8/site-packages/pandas/core/construction.py",
line 447, in sanitize_array
subarr = _try_cast (data, dtype, copy, raise_cast_failure)
File "~/myproject/venv/lib64/python3.8/site-packages/pandas/core/construction.py",
line 555, in _try_cast
maybe_cast_to_integer_array(arr, dtype)
File "~/myproject/venv/1ib64/python3.8/site-packages/pandas/core/dtypes/cast.py",

in init

line 1674, in maybe_cast_to_integer_array
casted = np.array(arr, dtype=dtype, copy=copy)
ValueError: invalid literal for int () with base 10: 'three'
SEE ALSO

For more details, see the Pandas documentation regarding object conversion.

Check the types for each row of elements within a DataFrame:
Passing

Failing

import pandas as pd
import datatest as dt

dt.register_accessors|()
df = pd.DataFrame (data={'A"': ['foo',

TThha+ ! 11 A L}
bar', baz',

'qux'l],

'B': [10, 20, 30, 40]1})
df.validate ((o))
import pandas as pd
import datatest as dt
dt.register_accessors()
df = pd.DataFrame (data={'A"': ['foo', 'bar', 'baz', 'qux'],
'B': [10, 20, 'x', 'v'1})
df.validate ((v))
Traceback (most recent call last):
File "example.py", line 9, in <module>
df.validate ((str, int))
datatest.ValidationError: does not satisfy °~ (str, int)" (2 differences): [
Invalid(('baz', 'x')),
Invalid(('qux', 'v')),

Check the type of each element, one column at a time:

Passing

46

Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-object-conversion

datatest Documentation, Release 0.11.1

Failing

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.DataFrame (data={ A ’ ’
: [10, 20, 30, 401})

df [].validate ()
df [].validate ()

import pandas as pd
import datatest as dt

dt.register_accessors()

df = pd.DataFrame (data={ HE , ,

¢ [10, 20, ’ 1)
df [] .validate ()
df [].validate()

Traceback (most recent call last):
File "example.py", line 10, in <module>
df['B'].validate (int)

datatest.ValidationError: does not satisfy "int’

Invalid('x"'"),
Invalid('y"'"),

(2 differences):

Check the dt ypes of the columns themselves (not the elements they contain):

Passing

Failing

import pandas as pd
import numpy as np
import datatest as dt

dt.register_accessors|()

df = pd.DataFrame (data={ | ’ ’
(10, 20, 30, 401})

required = {
np.dtype (),
np.dtype () ¢

}

df.dtypes.validate (required)

import pandas as pd
import numpy as np
import datatest as dt

dt.register_accessors()

(continues on next page)

1.2. How-to Guide

47

datatest Documentation, Release 0.11.1

(continued from previous page)

df = pd.DataFrame (data={ : [’ ’ ’ i
[10, 20, ’)
required = {
np.dtype ()
np.dtype (),

}
df.dtypes.validate (required)

Traceback (most recent call last):
File "example.py", line 14, in <module>
df .dtypes.validate (required)
datatest.ValidationError: does not satisfy “dtype('int64') (1 difference): {
'B': Invalid(dtype('0O'"'), expected=dtype('int64d')),

NumPy Types

Type Inference and Conversion

Import the numpy package:

>>> import numpy as np

INFERENCE

When a column’s values are all integers (1, 2, and 3), then NumPy infers an integer dtype:

>>> a = np.array([1l, 2, 3])
>>> g

array ([1, 2, 3])

>>> a.dtype

dtype ('into64d"')

When a column’s values are a mix of integers (1 and 3) and floating point numbers (2 . 0), then NumPy will infer a
floating point dtype—notice that the original integers have been coerced into float values:

>>> a = np.array([1l, 2.0, 31])
>>> a

array ([1., 2., 3.])

>>> a.dtype

dtype ('float64d")

When given a string, 'three ', NumPy will infer a unicode text dtype. This is different than how Pandas handles the
situation. Notice that all of the values are converted to text:

>>> a = np.array([1l, 2.0, 1)
>>> a
array (['1l', '2.0', 'three'], dtype='<U32'")

>>> a.dtype

dtype ('<U32")

When certain non-numeric types are present, e.g. { 4}, then Numpy will use a generic “object” dtype. In this case, the
values maintain their original types—no conversion takes place:

48 Chapter 1. Table of Contents

https://numpy.org/doc/stable/reference/index.html#module-numpy

datatest Documentation, Release 0.11.1

>>> a = np.array([1l, 2.0, 'three', {4}])
>>> g

array([1, 2.0, 'three', {4}], dtype=object)
>>> a.dtype

dtype ('0")

CONVERSION

When a dtype is specified, dtype=£float, NumPy will attempt to convert values into the given type. Here, the
integers are explicitly converted into float values:

>>> a = np.array([1l, 2, 3], dtype=)
>>> a

array ([1., 2., 3.])

>>> a.dtype

dtype ('float6d")

In this example, integers and floating point numbers are converted into unicode text values, dt ype=str:

>>> a = np.array([l, 2.0, 3], dtype=)
>>> g

array (['1l', '2.0', '3'], dtype='<U3")
>>> a.dtype

dtype ('<U3")

When a value cannot be converted into a specified type, an error is raised:

>>> a = np.array([l, 2.0, 'three'], dtype=)
Traceback (most recent call last):
File , line 1, in <module>
ValueError: invalid literal for int () with base 10: 'three'

For more details on NumPy types see:
* https://numpy.org/doc/stable/reference/arrays.scalars.html

* https://numpy.org/doc/stable/reference/arrays.dtypes.html

With Predicate matching, you can use Python’s built-in str, int, float, and complex to validate types in
NumPy arrays.

Check the type of each element in a one-dimentional array:
Passing

Failing

import numpy as np
import datatest as dt

a = np.array([1.0, 2.0, 3.01])

dt.validate (a,)

import numpy as np
import datatest as dt

a = np.array([1.0, 2.0, ({3H 1

(continues on next page)

1.2. How-to Guide 49

https://numpy.org/doc/stable/reference/arrays.scalars.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

datatest Documentation, Release 0.11.1

(continued from previous page)

dt.validate (a,)

Traceback (most recent call last):
File "example.py", line 6, in <module>
dt.validate (a, float)

datatest.ValidationError: does not satisfy ~float®
Invalid(frozenset ({3})),

(1 difference): [

Check the types for each row of elements within a two-dimentional array:
Passing

Failing

import numpy as np
import datatest as dt

a = np.array([(1.0, 12.25),
(2.0, 33.75),
(3.0, 101.5)1)

dt.validate (a, (v))

import numpy as np
import datatest as dt

a = np.array([(1.0, 12.25),
(2.0, 33.75),
(({3}), 101.5)1)

dt.validate (a, (5))

Traceback (most recent call last):

File "example.py", line 8, in <module>
dt.validate(a, (float, float))
datatest.ValidationError: does not satisfy "~ (float, float) (1 difference): [

Invalid((frozenset ({3}), 101.5)),

Check the dt ype of an array itself (not the elements it contains):
Passing

Failing

import numpy as np
import datatest as dt

12.25),
33.75),
101.5)1)

a = np.array([(1.0,
(2.0,
(3.0,

dt.validate (a.dtype, np.dtype ())

50

Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

import numpy as np
import datatest as dt

a = np.array([(1.0, 12.25),
(2.0, 33.75),
(({3}), 101.5)1)

dt.validate (a.dtype, np.dtype ())

Traceback (most recent call last):
File "example.py", line 8, in <module>
dt.validate(a.dtype, np.dtype(float))
datatest.ValidationError: does not satisfy “dtype('float64') (1 difference): [
Invalid(dtype('0")),

Structured Arrays

If you can define your structured array directly, there’s little need to validate the types it contains (unless it’s an
“object” dtype that could countain multiple types). But you may want to check the types in a structured array if it was
constructed indirectly or was passed in from another source.

Check the types for each row of elements within a two-dimentional structured array:
Passing

Failing

import numpy as np
import datatest as dt

1,)
oy)
3,)
ype

~

a = np.array ([

~
~

(
(
(
dt

dt.validate(a, (;))

import numpy as np
import datatest as dt

a = np.array ([(1,),
(2,) s
(3, 4.0)1,
dtype=)
dt.validate (a, (v))

Traceback (most recent call last):
File "example.py", line 9, in <module>
dt.validate(a, (int, str))
datatest.ValidationError: does not satisfy "~ (int, str)” ™ (1 difference): [
Invalid ((3, 4.0)),

1.2. How-to Guide 51

datatest Documentation, Release 0.11.1

You can also validate types with greater precision using NumPy’s very specific dtypes (np.uint32,np.float64,
etc.). or you can use NumPy’s broader, generic types, like np.character, np.integer, np.floating, etc.:

Passing

Failing

import numpy as np
import datatest as dt

a = np.array ([

dt.validate(a, (np.integer, np.floating))

import numpy as np
import datatest as dt

1, 12.25),
2, 33.75),
3, 101.5)1,

a = np.array ([

dt.validate(a, (np.integer, np.floating))

Since the “object” dtype was used for the second column of elements, the original type was unchanged. And although
they are £ 1oat objects, they aren’t NumPy floating point objects. Since this is the case, all of the rows fail validation:

Traceback (most recent call last):
File "example.py", line 9, in <module>
dt.validate(a, (np.integer, np.floating))
datatest.ValidationError: does not satisfy ° (integer, floating) ™ (3 differences): [
Invalid((1, 12.25)),
Invalid((2, 33.75)),
Invalid((3, 101.5)),

Check the dt ype values of a structured array itself (not the elements it contains):
Passing

Failing

import numpy as np
import datatest as dt

a = np.array ([(1,),
(2,)y
(3,)1
dtype=)
data = [a.dtype[x] for x in a.dtype.names]
requirement = [np.dtype (), np.dtype ()]

dt.validate (data, requirement)

52 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float

datatest Documentation, Release 0.11.1

import numpy as np
import datatest as dt

a = np.array([(1, 'x"),
(2, 'v'"),
(3, 'z")1,
dtype='"int, str')
data = [a.dtype[x] for x in a.dtype.names]
requirement = [np.dtype (), np.dtype ()]

dt.validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 11, in <module>
dt.validate (data, requirement)
datatest.ValidationError: does not match required sequence (1 difference): [
Invalid(dtype ('<U'), expected=dtype('0'")),

1.2.7 How to Validate Date and Time Strings

To validate date and time formats, we can define a helper function that uses strftime codes to check for matching
strings.

In the following example, we use the code $Y-%m-%d to check for dates that match the pattern YYYY-MM-DD:

from datetime import datetime
from datatest import validate

def strftime_format () :
def func (value):
try:
datetime.strptime (value,)
except ValueError:
return False
return True
func.__doc___ = f'should use date format { }

return func

data = ['2020-02-29', '03-17-2021', '2(
validate (data, strftime_format ('%Y-%n

Date strings that don’t match the required format are flagged as Tnvalid:

Traceback (most recent call last):
File "example.py", line 17, in <module>
validate (data, strftime_format ('$Y-%m-%d'))
datatest.ValidationError: should use date format %$Y-%m-%d (2 differences): [
Invalid('03-17-2021"),
Invalid('2021-02-29"),

Above, the date 03-17-2021 is invalid because it’s not well-formed and 2021-02-29 is invalid because 2021 is
not a leap-year so the last day of February is the 28th—there is no February 29th in that calendar year.

1.2. How-to Guide 53

https://docs.python.org/library/datetime.html#strftime-and-strptime-format-codes

datatest Documentation, Release 0.11.1

Strftime Codes for Common Formats

You can use the following format codes with the function defined earlier to validate many common date and time
formats (e.g., strftime_format ('%d %$B %Y')):

o n B W N =

format codes description example

$Y-%m-%d YYYY-MM-DD 2021-03-17

sm/%d/%Y MM/DD/YYYY 3/17/2021

$d/%sm/%Y DD/MM/YYYY 17/03/2021

$d.%m. %Y DD.MM.YYYY 17.03.2021

$d %B %Y DD Month YYYY 17 March 2021

$b %d, %Y Mnth DD, YYYY Mar 17, 2021

%a %b %d %$H:%M:%S %Y | WkDay Mnth DD HHM:S YYYY | Wed Mar 17 19:42:50 2021
$I:%M %p 12-hour time 7:42 PM!

$H:%M:%S 24-hour time with seconds 19:42:50

In Python’s datet ime module, see strftime() and strptime() Format Codes for all supported codes.

1.2.8 How to Validate Date and Time Objects

Equality Validation

You can compare date and datet ime objects just as you would any other quantitative value:

from datetime import date,

datetime

from datatest import validate

validate (date (2020,

12,

validate (datetime (2020,

25), date (2020, 12,

12, 25, 9, 30),

25))

datetime (2020,

25, 9, 30))

Compare mappings of date objects:

from datetime import date
from datatest import validate

data = {
'A': date (2020, 12, 24),
'B': date (2020, 12, 25),
'C': date(2020, 12, 26),
}
requirement = {
'"A': date (2020, 12, 24),
'B': date (2020, 12, 25),
'C': date(2020, 12, 26),
}
validate (data, requirement)

! The code $p expects the system locale’s equivalent of AM or PM. For example, the locale en_US uses “AM” and “PM” while the locale
de_DE uses “am” and “pm”.

54 Chapter 1. Table of Contents

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/library/datetime.html#strftime-and-strptime-format-codes
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime

datatest Documentation, Release 0.11.1

Interval Validation

We canuse validate.interval () to check that date and datetime values are within a given range.

Check that dates fall within the month of December 2020:

from datetime import date
from datatest import validate

data = [
date (2020, 12, 4),
date (2020, 12, 11)
date (2020, 12, 18),
date (2020, 12, 25)

validate.interval (data, =date (2020, 12, 1), =date (2020, 12, 31))

Check that dates are one week old or newer:

from datetime import date, timedelta
from datatest import validate

data = {
'"A': date (2020, 12, 24),
'B': date (2020, 12, 25),
'C': date (2020, 12, 26),

one_week_ago = date.today () - timedelta (days=7)
validate.interval (data, =one_week_ago, msg='one week old or newer')

Failures and Acceptances

When validation fails, a Deviation is generated containing a t imede1ta that represents the difference between two
dates or times. You can accept time differences with accepted. tolerance ().

Failed Equality

Failure

Acceptance

from datetime import date
from datatest import validate

validate (date (2020, 12, 27), date (2020, 12, 25))

Traceback (most recent call last):
File "example.py", line 4, in <module>
validate (date (2020, 12, 27), date (2020, 12, 25))
datatest.ValidationError: does not satisfy “datetime.date (2020, 12, 25)° (1
—~difference): [
Deviation (timedelta (days=+2), date (2020, 12, 25)),

1.2. How-to Guide 55

https://docs.python.org/3/library/datetime.html#datetime.timedelta

datatest Documentation, Release 0.11.1

from datetime import date, timedelta
from datatest import validate, accepted

with accepted.tolerance (timedelta (days=2)):
validate (date (2020, 12, 27), date (2020, 12, 25))

Failed Interval

Failure

Acceptance

from datetime import date
from datatest import validate

data = [
date
date
date
date

2020, 11, 26),
2020, 12, 11),
2020, 12, 25),
2021, 1, 4),

validate.interval (data, =date (2020, 12, 1), =date (2020, 12, 31))

Traceback (most recent call last):
File "example.py", line 11, in <module>
validate.interval (data, min=date (2020, 12, 1), max=date (2020, 12, 31))
datatest.ValidationError: elements “x° do not satisfy “datetime.date (2020,
12, 1) <= x <= datetime.date (2020, 12, 31)° (2 differences): [
Deviation (timedelta (days=-5), date (2020, 12, 1)),
Deviation (timedelta (days=+4), date (2020, 12, 31)),

from datetime import date, timedelta
from datatest import validate, accepted

data = [
date
date
date
date

2020, 11, 26),
2020, 12, 11),
2020, 12, 25),
2021, 1, 4),

with accepted.tolerance (timedelta (days=5)) :
validate.interval (data, =date (2020, 12, 1), =date (2020, 12, 31))

56 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Failed Mapping Equalities

Failure

Acceptance

from datetime import datetime
from datatest import validate

remote_log = {
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,
datetime (2020, 11, 27, hour=3,

minute=29,
minute=36,
minute=42,
minute=50,
minute=54,

minute=28,
minute=36,
minute=40,
minute=49,
minute=55,

second=55),
second=33),
second=14),
second=7),

second=12),

second=1),

second=51),

second=18),

second=39),
)

second=20),

validate (remote_log,

master_log)

Traceback

File "example.py",
validate (remote_log,

datatest.vValidationError:

(most recent call last):
line 20,

in <module>
master_logqg)

does not satisfy mapping requirements (5 differences):

{
'jobl65': Deviation (timedelta (seconds=+114), datetime (2020, 11, 27, 3, 28, 1)),
'job382': Deviation (timedelta (seconds=-18), datetime (2020, 11, 27, 3, 36, 51)),
'job592': Deviation (timedelta (seconds=+116), datetime (2020, 11, 27, 3, 40, 18)),
'job720"': Deviation (timedelta (seconds=+28), datetime (2020, 11, 27, 3, 49, 39)),
'job826"': Deviation (timedelta (seconds=-68), datetime (2020, 11, 27, 3, 55, 20)),

from datetime import datetime, timedelta
from datatest import validate, accepted
{

: datetime (2020, 11, 27, hour=3, minute=29, second=55),
datetime (2020, 11, 27, hour=3, minute=36, second=33),
datetime (2020, 11, 27, hour=3, minute=42, second=14),
datetime (2020, 11, 27, hour=3, minute=50, second=7),
datetime (2020, 11, 27, hour=3, minute=54, second=12),

master_log = {
"Joble5": datetime (2020, 11, 27, hour=3, minute=28, second=l),
"¢ datetime (2020, 11, 27, hour=3, minute=36, second=51),
"¢ datetime (2020, 11, 27, hour=3, minute=40, second=18),
'Jo datetime (2020, 11, 27, hour=3, minute=49, second=39),
! datetime (2020, 11, 27, hour=3, minute=55, second=20),

(continues on next page)

1.2. How-to Guide

57

20

21

datatest Documentation, Release 0.11.1

(continued from previous page)

with accepted.tolerance (timedelta (seconds=120)) :
validate (remote_log, master_log)

Note: The Deviation’s repr (its printable representation) does some tricks with datet ime objects to improve
readability and help users understand their data errors. Compare the representations of the following datetime objects
against their representations when included inside a Deviation:

>>> from datetime import timedelta, date
>>> from datatest import Deviation

>>> timedelta (days=2)

datetime.timedelta (days=2)

>>> date (2020, 12, 25)
datetime.date (2020, 12, 25)

>>> Deviation (timedelta (days=2), date (2020, 12, 25))
Deviation (timedelta (days=+2), date (2020, 12, 25))

And below, we see a negative-value timedelta with a particularly surprising native repr. The Deviation repr modifies
this to be more readable:

>>> from datetime import timedelta, datetime
>>> from datatest import Deviation

>>> timedelta (seconds=-3)

datetime.timedelta (days=-1, seconds=86397)

>>> datetime (2020, 12, 25, 9, 30)

datetime.datetime (2020, 12, 25, 9, 30)

>>> Deviation (timedelta (seconds=-3), datetime (2020, 12, 5, 9

Jeviation (timedelta (seconds=-3), datetime (2020, 12, 25, 9,

While the timedelta reprs do differ, they are legitimate constructors for creating objects of equal value:

>>> from datetime import timedelta

>>> timedelta (days=+2) == timedelta (days=2)

True

>>> timedelta (seconds=-3) == timedelta (days=-1, seconds=86397)
True

58 Chapter 1. Table of Contents

https://docs.python.org/3/library/datetime.html#module-datetime

datatest Documentation, Release 0.11.1

1.2.9 How to Validate File Names

Sometimes you need to make sure that files are well organized and conform to some specific naming scheme. To vali-
date the files names in a directory, simply pass the names themselves as the data argument when calling validate ().
You then control the method of validation with the requirement you provide.

pathlib Basics

While there are multiple ways to get file names stored on disk, examples on this page use the Standard Library’s
pathlib module. If you’re not familiar with pathlib, please review some basics examples before continuing:

These examples assume the following directory structure:

filel.csv
file2.csv
file3.x1lsx
directoryl/
filed.csv
fileb5.x1lsx

Import the Path class:

>>> from pathlib import Path

Get a list of file and directory names from the current directory:

>>> [(p) for p in Path('.').iterdir ()]

['filel.csv', 'file2.csv', 'file3.xlsx', 'directoryl']

Filter the results to just files, no directories, using an i f clause:

>>> [(p) for p in Path('.'").iterdir() if p.is_file()]
['"filel.csv', 'file2.csv', 'file3.xlsx']

Get a list of path names ending in “.csv” from the current directory using g1 ob-style pattern matching:

>>> [(p) for p in Path('.').glob('+x.csv')]
["filel.csv', 'file2.csv']

Get a list of CSV paths from the current directory and all subdirectories:

>>> [(p) for p in Path('.').rglob('x.csv'")]

["filel.csv', 'file2.csv', 'directoryl/filed.csv']

Get a list of CSV names from the current directory and all subdirectories using p . name instead of str (p) (excludes
directory name):

>>> [p.name for p in Path('.').rglob('x.csv')]
["filel.csv', 'file2.csv', 'filed.csv']

Get a list of file and directory paths from the parent directory using the special name . .:

>>> [(p) for p in Path('..'").iterdir ()]

[<parent directory names here>]

1.2. How-to Guide 59

https://docs.python.org/3/library/pathlib.html#module-pathlib
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

datatest Documentation, Release 0.11.1

Lowercase

Check that file names are lowercase:

from pathlib import Path
from datatest import validate, working_directory

with working_directory(__file_):
file_names = ((p) for p in Path('.').iterdir() if p.is_file())

def islower (x) :
return x.islower ()

validate (file_names, islower, msg='should be lowercase')

Lowercase Without Spaces

Check that file names are lowercase and don’t use spaces:

from pathlib import Path
from datatest import validate, working_directory

with working_directory(___file_):

file_names = ((p) for p in Path('.').iterdir() if p.is_file())
msg = 'Should be lowercase with no spaces.',
validate.regex (file_names, r'[a-z0-9 .\-]+', msg=msqg)

Not Too Long

Check that the file names aren’t too long (25 characters or less):

from pathlib import Path
from datatest import validate, working_directory

with working_directory(___file_):
file_names = ((p) for p in Path('.').iterdir() if p.is_file())

def not_too_long(x):

"""Path names should be 25 characters oz ess."""

return (x) <= 25

validate (file_names, not_too_long)

60 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Check for CSV Type

Check that files are CSVs files:

from pathlib import Path
from datatest import validate, working_directory

with working_directory(__file_):
file_names = ((p) for p in Path('.').iterdir() if p.is_file())

def is_csv(x):
return x.lower () .endswith('.csv')

validate (file_names, is_csv, msg='should be CSV file'")

Multiple Files Types

Check that files are CSV, Excel, or DBF file types:

from pathlib import Path
from datatest import validate, working_directory

with working_directory(___file_):
file_names = ((p) for p in Path('.').iterdir() if p.is_file())

def tabular_ formats (x) :

"""Should be CSV, Excel, or DBF files."""
suffix = Path(x) .suffix
return suffix.lower () in {'.csv', '".xlsx', '.xls', '.dbf'}

validate (file_names, tabular_formats)

Specific Files Exist

Using validate. superset (), check that the list of file names includes a given set of required files:

from pathlib import Path
from datatest import validate, working_directory

with working_directory(_file_):
file _names = ((p) for p in Path('.').iterdir() if p.is_file())
validate.superset (file_names, {'readme.txt', 'license.txt', 'config.ini'})

1.2. How-to Guide

61

I = N S T

datatest Documentation, Release 0.11.1

Includes Date

Check that file names begin with a date in YYYYMMDD format (e.g., 20201103 _data.csv):

from pathlib import Path
from datatest import validate, working_directory

with working_directory(__file_):

file_names = (p.name for p in Path('.').iterdir() if p.is_file())
msg = 'Should have date prefix followed by an underscore (YYYYMMDD_).'
validate.regex (file_names, r'"\d{4}\d{2}\d{2}_ .+', msg=msqg)

You can change the regex pattern to match another naming scheme of your choice. See the following examples for
ideas:

description regex pattern example

date prefix AMd{4}-\d{2}-\d{2}_.+ 2020-11-03_data.csv
date prefix (no hyphen) | ~\d{4}\d{2}\d{2}_.+ 20201103_data.csv
date suffix A \d{4}1-\d{2}-\d{2}.+$ | data_2020-11-03.csv
date suffix (no hyphen) | .+_\d{4}\d{2}\d{2}.+$ data_20201103.csv

See Also

* How to Test File Properties

1.2.10 How to Test File Properties

In some cases, you might need to check the properties of several files at once. This can be accomplished by loading
the properties into a DataFrame or other object using a fixture.

Example

Pandas

dict-of-lists

import datetime
import os

import pathlib

import pytest

import pandas as pd
import datatest as dt

def get_properties (file_path):
"""Accepts a pathlib.Path and returns a dict of file properties.
stats = file_path.stat ()

nun

size_in mb = stats.st_size / 1024 / 1024

return {

(continues on next page)

62 Chapter 1. Table of Contents

40

41

42

43

44

45

46

47

48

49

50

59

60

61

62

63

datatest Documentation, Release 0.11.1

(continued from previous page)

(file_path),
file_path.name,

‘ied date': datetime.date.fromtimestamp (stats.st_mtime),
'size': (size_in_mb, 2),
'readable': os.access (file_path, os.R_OK),

writable': os.access(file_path, os.W_OK),

@pytest.fixture (scope='session')
@dt .working directory(__file_)
def df():
directory =
pattern = "x.csv
paths = (p for p in pathlib.Path(directory) .glob (pattern) if p.is_file())
dict_records = (get_properties(p) for p in paths)
df = pd.DataFrame.from_records (dict_records)
df = df.set_index (['path'])
return df

1 1

def test_filename (df) :
def is_lower_ case (x):
return x.islower ()
msg = 'Must be low se . !
dt.validate(df['name'], is_lower_case, msg=msg)

def test_ freshness (df) :
one_week_ago = datetime.date.today() — datetime.timedelta (days=7)
msg = 'Must be no older than one -k
dt.validate.interval (df ['mod

=one_week_ago, msg=msg)

def test filesize (df):
msg = 'Must be 1 MB or less in size.'
dt.validate.interval (df['size'], =1.0, msg=msg)

def test_permissions (df):
msg = 'Must have read
dt.validate(df[['re

o

bermission

e', 'writable']], (True, True), msg=msg)

if _ name_ == '_ main___
import sys
sys.exit (pytest.main(sys.argv))

import datetime

import os

import pathlib

import pytest

import collections

from datatest import validate, working_directory

(continues on next page)

1.2. How-to Guide 63

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

datatest Documentation, Release 0.11.1

(continued from previous page)

def get_properties (file_path):

wnwna ~ nun

s a pathlib.Path and returns a dict of file properties.

file_path.stat ()

stats
size_in_mb = stats.st_size / 1024 / 1024

return

1" (file_path),

e': file_path.name,

modified date': datetime.date.fromtimestamp (stats.st_mtime),
(size_in_mb, 2),

ble': os.access(file_path, os.R_OK),

'writable': os.access(file_path, os.W_OK),

@pytest.fixture (scope='sessi
@working_directory(_ file_)
def files_info():

directory = '.'

pattern = "x.csv'

paths = (p for p in pathlib.Path(directory) .glob (pattern) if p.is_file())
dict_of lists = collections.defaultdict ()

for path in paths:
properties_dict = get_properties (path)
for k, v in properties_dict.items{():
dict_of_lists[k].append(v)
return dict_of_lists

def test_filename(files_info):
def is lower case (Xx):
return x.islower ()

msg = 'Must be lowercase.
validate (files_info['name'], is_lower_case, msg=msg)

def test_freshness (files_info):
data = ((files_info['path'], files_info['modified date']))

one_week_ago = datetime.date.today() — datetime.timedelta (days=7)

msg = 'Must be no older than one ek.'
validate.interval (data, =one_week_ago, msg=msg)
def test_filesize(files_info):
data = ((files_info['path'], files_info['size']))
msg = 'Must be 1 MB or less in size.'
validate.interval (data, =1.0, msg=msqg)
def test_permissions (files_info):
values = (files_info['readable'], files_info['writable'])

(continues on next page)

64 Chapter 1. Table of Contents

65

66

67

68

69

70

71

72

3

20

21

22

23

24

25

26

27

28

datatest Documentation, Release 0.11.1

(continued from previous page)

data = ((files_info['path'], values))
msg = 'Must have read and write permissions
validate (data, (True, True), msg=msqg)

if name == ' main

import sys
sys.exit (pytest.main(sys.argv))

Other Properties

To check other file properties, you can modify or add to the get _properties () function.

Below, we count the number of lines in each file and add a 1 ine_count to the dictionary of properties:

import datetime
import os

def get_properties (file_path):
"""Accepts a pathlib.Path and returns a dict of file properties.

stats = file_path.stat ()

nun

size_in mb = stats.st_size / 1024 / 1024

with (file_path) as fh:
line_count = (fh.readlines ())
return {
'path': (file_path),
! : file_path.name,
! fied date': datetime.date.fromtimestamp (stats.st_mtime),

(size_in_mb, 2),
ble': os.access(file_path, os.R_OK),
able': os.access(file_path, os.W_OK),
'"line_count': line_count,

See Also

e How to Validate File Names

* How to Validate Date and Time Objects

1.2. How-to Guide 65

20

21

22

23

24

25

26

27

28

29

30

40

41

42

43

44

datatest Documentation, Release 0.11.1

1.2.11 How to Avoid Excel Automatic Formatting

When MS Excel opens CSV files (and many other tabular formats), its default behavior will reformat certain values as
dates, strip leading zeros, convert long numbers into scientific notation, and more. There are many cases where these
kinds of changes actually corrupt your data.

It is possible to control Excel’s formatting behavior using its Text Import Wizard. But as long as other users can open
and re-save your CSV files, there may be no good way to guarantee that someone else won’t inadvertently corrupt
your data with Excel’s default auto-format behavior. In a situation like this, you can mitigate problems by avoiding
values that Excel likes to auto-format.

Using the Predicate object below, you can check that values are “Excel safe” and receive a list of differences when
values are vulnerable to inadvertent auto-formatting:

import re
from datatest import validate, Predicate

RN

excel_safe = ~Predicate(re.compile (r
Date format character combinations.

1,2}=(2:\d{1,2}|\d{4})

Mar |Apr |May|Jun|Jul |Aug| Sep|Oct |Nov|Dec) \-1\d{1,2}

9]1-(Jan|Feb|Mar |Apr |May|Jun|Jul |Aug| Sep|Oct | Nov
1S Y J s

Twe
HH
n

HH:MM 2

)$''"", re.VERBOSE | re.IGNORECASE), name='excel safe')

]

validate (data, excel_safe)

66 Chapter 1. Table of Contents

39

40

41

42

43

44

40

41

42

43

44

datatest Documentation, Release 0.11.1

In the example above, we use excel_safe as our requirement. The validation fails because our data contains two
codes that Excel would auto-convert into date types:

ValidationError: does not satisfy excel_safe() (2 differences): [
Invalid ('APR-23"'),
Invalid ('DEC-20"),

Fixing the Data
To address the failure, we need to change the values in data so they are no longer subject to Excel’s auto-formatting
behavior. There are a few ways to do this.

We can prefix the failing values with apostrophes (' APR-23 and 'DEC-20). This causes Excel to treat them as text
instead of dates or numbers:

data = [

]

validate (data, excel_safe)

Another approach would be to change the formatting for the all of the values. Below, the hyphens in data have been
replaced with underscores (_):

data = [

]

validate (data, excel_safe)

After making the needed changes, the validation will now pass without error.

Caution: The excel_safe predicate implements a blacklist approach to detect values that Excel will automat-
ically convert. It is not guaranteed to catch everything and future versions of Excel could introduce new behaviors.
If you discover auto-formatted values that are not handled by this helper function (or if you have an idea regarding
a workable whitelist approach), please file an issue and we will try to improve it.

1.2. How-to Guide 67

https://github.com/shawnbrown/datatest/issues

[Y S O

datatest Documentation, Release 0.11.1

1.2.12 How to Validate Mailing Addresses (US)
CASS Certified Verification

Unfortunately, the only “real” way to validate addresses is to use a verification service or program. Simple validation
checks cannot guarantee that an address is correct or deliverable. In the United States, proper address verification
requires the use of CASS certified software. Several online services offer address verification but to use one you must
write code to interact with that service’s APIL. Implementing such a solution is beyond the scope of this document.

Heuristic Evaluation

Sometimes the benefits of comprehensive address verification are not enough to justify the work required to interface
with a third-party service or the possible cost of a subscription fee. Simple checks for well-formedness and set
membership can catch many obvious errors and omissions. This weaker form of verification can be useful in many
situations.

Load Data as Text

To start, we will load our example addresses into a pandas Dat aF rame. It’s important to specify dt ype=str to pre-
vent pandas’ type inference from loading certain columns using a numeric dtype. In some data sets, ZIP Codes could
be misidentified as numeric data and loading them into numeric column would strip any leading zeros—corrupting the
data you’re testing:

import pandas as pd
from datatest import validate

df = pd.read_csv(, dtype=)

Our address data will look something like the following:

street city state | zipcode
1600 Pennsylvania Avenue NW | Washington DC 20500

30 Rockefeller Plaza New York NY 10112

350 Fifth Avenue, 34th Floor New York NY 10118-3299
1060 W Addison St Chicago IL 60613

15 Central Park W Apt 7P New York NY 10023-7711
11 Wall St New York NY 10005

2400 Fulton St San Francisco | CA 94118-4107
351 Farmington Ave Hartford CT 06105-6400

68 Chapter 1. Table of Contents

https://postalpro.usps.com/certifications/cass
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

datatest Documentation, Release 0.11.1

Street Address

Street addresses are difficult to validate with a simple check. The US Postal Service publishes addressing standards
designed to account for a majority of address styles (see delivery address line). But these standards do not account for
all situations.

You could build a function to check that “street” values contain commonly used suffixes, but such a test could give
misleading results when checking hyphenated address ranges, grid-style addresses, and rural routes. If you are not
using a third-party verification service, it may be best to simply check that the field is not empty.

The example below uses a regular expression, \w+, to match one or more letters or numbers:

validate.regex (df['street'], r'\w+t'")

City Name

The US Postal Service sells a regularly updated City State Product file. For paying customers who purchase the USPS
file or for users of third-party services, “city” values can be matched against a controlled vocabulary of approved city
names. As with street validation, when such resources are unavailable it’s probably best to check that the field is not
empty.

The example below uses a regular expression, [A-Za—z] +, to match one or more letters:

validate.regex(df['city'], r'[A-Za-z]+")

State Abbreviation

Unlike the previous fields, the set of possible state abbreviations is small and easy to check against. The set includes
codes for all 50 states, the District of Columbia, US territories, associate states, and armed forces delivery codes.

In this example, we use validate.subset () to check that the values in the “state” column are members of the
state_codes set:

state_codes = {
v;;ll lj_l{v, '},Z', l;ﬁpv, V/—j;f'l 'CO

"HI', 'ID', 'IL', 'IN', 'IA', 'K

YF;l, l,;v,

'"ME', 'MD',

'"MA', 'MI', 'MN', 'MS', 'MO', 'l '"NH', 'NJ',
'NM', 'NY', 'NC', 'ND', 'OH', 'OK 'RI', 'SC',
'sp', 'IN', 'TX', 'UT', 'VT', 'VA "WI', 'wy',
'DC', 'AS', 'GU', 'MP', 'PR', 'V "PW',
"AA', 'AE', 'AP',

}

validate.subset (df['state'], state_codes)

1.2. How-to Guide 69

https://pe.usps.com/text/pub28/28c2_012.htm
https://pe.usps.com/text/pub28/28apc_002.htm

25

26

27

44

45

46

47

48

datatest Documentation, Release 0.11.1

ZIP Code

The set of valid ZIP Codes is very large but they can be easily checked for well-formedness. Basic ZIP Codes are five
digits and extended ZIP+4 Codes are nine digits (e.g., 20500 and 20500-0005).

This example uses a regex, ~\d{5} (-\d{4}) ?$, to match the two possible formats:

1

validate.regex (df['zipcode'], r'"\d{5} (-\d{4})25")

State and ZIP Code Consistency

The first digit of a ZIP Code is associated with a specific region of the country (a group of states). For example, ZIP
Codes begging with “4” only occur in Indiana, Kentucky, Michigan, and Ohio. We can use these regional associations
as a sanity check to make sure that our “state” and “zipcode” values are plausible and consistent.

The following example defines a helper function, state_zip_consistency (), to check the first digit of a ZIP
Code against a set of associated state codes:

def state_zip_ consistency (state_zipcode):

"wn7IP Code should be consistent with state."""
lookup = {
O {IL"‘I, vwﬁv, 'Hj', VHH|, 1-::1, VTI<T'|, l]::;ll ':3T‘, |'*ﬁ|, '”T‘, |ﬁj|}’
',': {li‘;‘Y’ VIJ‘lY, IL:LY},
LT {l’\("l TV ! TN [Nalal} IAVA N VTT"Y}
2': pc', 'Mb', 'NC', C', VA", WV ,
T30 {';T', VT‘"|, ":,‘V\', V"‘Lj!, 'TH', v~ﬁ|},

"4v: {'IN', 'KY', 'MI', 'OH'},
'5': {'IA', 'MN', 'MT', 'ND', 'SD', 'WI'},

'6': {'IL', 'KS', 'MO', 'NE'},
T . {l_;,v TTLAY T"OK! vg\xv}
. R4 S R 4 L ’
'8§': {'az', 'co', 'ID', 'NM', 'NV', 'UT', 'WY'},
TgT . {lf’(j!, Vj“r;w, |‘th|, '/,;T:‘, 'Hil, V"H!, 'FVT', V"Fw, 1\;1", Vj‘?:‘|, |‘r>4‘7~\|, Vj]:w},
}
state, zipcode = state_zipcode

first_digit = zipcode[0]
return state in lookup[first_digit]

validate(df[['state', 'zipcode']], state_zip_consistency)

This check works well to detect data processing errors that might mis-align or otherwise damage “state” and “zipcode”
values. But it cannot detect if ZIP Codes are assigned to the wrong states within in the same region—for example, it
wouldn’t be able to determine if an Indiana ZIP Code was used on an Kentucky address (since the ZIP Codes in both
of these states begin with “4”).

70 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

1.2.13 How to Validate Fuzzy Matches
When comparing strings of text, it can sometimes be useful to check that values are similar instead of asserting that
they are exactly the same. Datatest provides options for approximate string matching (also called “fuzzy matching”).

When checking mappings or sequences of values, you can accept approximate matches with the accepted.
fuzzy () acceptance:

Using Acceptance

No Acceptance

from datatest import validate, accepted

linked_record = {

'idl65': 'Saint Louis',

'Raliegh',

master_record = {

'idl6e5': 'St

with accepted.fuzzy (cutoff=0.6) :
validate (linked_record, master_record)

from datatest import validate

linked_record = {

'idl65': 'Saint Louis',

'Raliegh',
'Austin’',

'Ci

'Philadelphia’,

~~1nat]
ncinatti',

master_record = {
> 'St. Louis',

Cincinnati',

'Philadelphia’,

validate (linked_record, master_record)

Traceback (most recent call last):
File "example.py", line 19, in <module>
validate (linked_record, master_record)
datatest.ValidationError: does not satisfy mapping requirements (3 differences): {
'id165': Invalid('Saint Louis', expected='St. Louis'),

(continues on next page)

1.2. How-to Guide 71

datatest Documentation, Release 0.11.1

(continued from previous page)

'id382': Invalid('Raliegh', expected='Raleigh'),
'id720': Invalid('Cincinatti', expected='Cincinnati'),

If variation is an inherent, natural feature of the data and does not necessarily represent a defect, it may be appropriate
touse validate. fuzzy () instead of the acceptance shown previously:

from datatest import validate

{

linked_record

1]
—~

master_record

validate.fuzzy (linked_record, master_record, cutoff=0.6)

That said, it’s probably more appropriate to use an acceptance for this specific example.

1.2.14 How to Deal With NaN Values

IEEE 754

While the behavior of NaN values can seem strange, it’s actually the result of an intentionally designed specification.

The behavior was standardized in IEEE 754 (IEEE Standard for Floating-Point Arithmetic), a technical standards
document first published in 1985 and implemented by many popular programming languages (including Python).

When checking certain types of data, you may encounter NaN values. Working with NaNs can be frustrating because
they don’t always act as one might expect.

About NaN values:
* NaN is short for “Not a Number”.
* NaN values represent undefined or unrepresentable results from certain mathematical operations.
* Mathematical operations involving a NaN will either return a NaN or raise an exception.

» Comparisons involving a NaN will return False.

72 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Checking for NaN Values

To make sure data elements do not contain NaN values, you can use a helper function:

from math import isnan
from datatest import validate
data = [5, 6, ()]
def not_nan (x) :

return not isnan (x)

validate (data, not_nan)

You can also do this using an inverted Predicate match:

from math import isnan

from datatest import validate, Predicate
data = [5, 6, ()]

requirement = ~Predicate (isnan)

validate (data, requirement)

Accepting NaN Differences

If validation fails and returns NaN differences, you can accept them as you would any other difference:

Using Acceptance

No Acceptance

from math import nan

from datatest import validate, accepted, Extra

data = [5, 6, ()]
requirement = {5, 6}

with accepted(Extra(nan)) :
validate (data, requirement)

from math import nan
from datatest import validate

data = [5, 6, ()]
requirement = {5, 6}

validate (data, requirement)

1.2. How-to Guide

73

datatest Documentation, Release 0.11.1

Traceback (most recent call last):
File "example.py", line 8, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (1 difference): [
Extra(nan),

Like other values, NaNs can also be accepted as part of a list, set, or mapping of differences:
Using Acceptance

No Acceptance

from math import nan
from datatest import validate, accepted, Missing, Extra

data = [5, 6, ("nan')]
requirement = {5, 6, 7}

with accepted([Missing(7), Extra(nan)]):
validate (data, requirement)

from math import nan
from datatest import validate

data = [5, 6, ("nan')]
requirement = {5, 6, 7}

validate (data, requirement)

Traceback (most recent call last):
File "example.py", line 8, in <module>
validate (data, requirement)
datatest.ValidationError: does not satisfy set membership (2 differences): [
Missing (7),
Extra(nan),

Note: The math.nan value is new in Python 3.5. NaN values can also be created in any Python version using
float ('nan').

Dropping NaNs Before Validation

Sometimes it’s OK to ignore NaN values entirely. If this is appropriate in your circumstance, you can simply remove
all NaN records and validate the remaining data.

Pandas Example

Non-Pandas Example

If you’re using Pandas, you can call the Series.dropna () and DataFrame.dropna () methods to drop records
that contain NaN values:

74 Chapter 1. Table of Contents

https://docs.python.org/3/library/math.html#math.nan
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html#pandas.Series.dropna
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html#pandas.DataFrame.dropna

datatest Documentation, Release 0.11.1

import pandas as pd
from datatest import validate
source = pd.Series([1, 1, 2, 2, ("nan') 1)

data = source.dropna ()
requirement = {1, 2}

validate (data, requirement)

In this example, we use the Standard Library’s math . isnan () in alist comprehension to drop NaN values from our
data:

from math import isnan
from datatest import validate

source = [1, 1, 2, 2, ('nan')]
data = [x for x in source if not isnan (x)]
requirement = {1, 2}

validate (data, requirement)

Requiring NaN Values

If necessary, it’s possible to require that NaNs appear in your data. But putting NaN values directly into a requirement
can be frought with problems and should usually be avoided. The most robust way to do this is by replacing NaN
values with a special token and then requiring the token.

Below, we define a custom NanToken object and use it to replace actual NaN values.
Pandas Example
Non-Pandas Example

If you’re using Pandas, you can call the Series.fillna () and DataFrame.fillna () methods to replace
NaNs with a different value:

import pandas as pd
from datatest import validate

class NanToken ()
def _ repr__ () :
return .__class__.__name___

NanToken = NanToken ()

source = pd.Series([1, 1, 2, 2, ("nan')1)

data = source.fillna (NanToken)
requirement = {1, 2, NanToken}

validate (data, requirement)

1.2. How-to Guide 75

https://docs.python.org/3/library/math.html#math.isnan
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html#pandas.Series.fillna
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna

20

21

22

23

datatest Documentation, Release 0.11.1

In this example, we use a list comprehension and helper function to replace NaN values in our list of data elements:

from math import isnan
from datatest import validate

class NanToken ()z
def _ repr_ ()z
return ._ class__._ _name_

NanToken = NanToken ()

def replace_nan(x):
if isnan(x):
return NanToken
return x

source = [1, 1, 2, 2, ('nan')]
data = [replace_nan(x) for x in source]
requirement = {1, 2, NanToken}

validate (data, requirement)

A Deeper Understanding

Equality: NaN NaN

NaN values don’t compare as equal to anything—even themselves:

>>> x = ('nan')
>>> x == X
False

To check if a value is NaN, it’s common for modules and packages to provide a function for this purpose (e.g., math.
isnan (), numpy.isnan (), pandas.isna (), etc.):

>>> import math

>>> x = ("nan')
>>> math.isnan (x)
True

While NaN values cannot be compared directly, they can be compared as part of a difference object. In fact, difference
comparisons treat all NaN values as equal-—even when the underlying type is different:

>>> import decimal, math, numpy
>>> from datatest import Invalid

>>> Invalid(math.nan) == Invalid(("nan'))

True

>>> Invalid(math.nan) == Invalid(("nan'))

True

>>> TInvalid(math.nan) == Invalid(decimal.Decimal ('nan'))
True

(continues on next page)

76 Chapter 1. Table of Contents

https://docs.python.org/3/library/math.html#math.isnan
https://docs.python.org/3/library/math.html#math.isnan
https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isna.html#pandas.isna

datatest Documentation, Release 0.11.1

(continued from previous page)

>>> Invalid(math.nan) == Invalid (numpy.nan)

True

>>> Invalid(math.nan) == Invalid(numpy.float32('nan'))
True

>>> Invalid(math.nan) == Invalid(numpy.float64 ('nan'))
True

Identity: NaN is NaN, Except When it Isn’t

Some packages provide a NaN constant that can be referenced in user code (e.g., math.nan and numpy.nan).
While it may be tempting to use these constants to check for matching NaN values, this approach is not reliable in
practice.

To optimize performance, Numpy and Pandas must strictly manage the memory layouts of the data they contain. When
numpy . nan is inserted into an ndarray or Series, the value is coerced into a compatible dt ype when necessary.
When a NaN’s type is coerced, a separate instance is created and the ability to match using the i s operator no longer
works as you might expect:

>>> import pandas as pd
>>> import numpy as np

>>> np.nan is np.nan
True

>>> s = pd.Series([10, 11, np.nan])
>>> s[2]

nan

>>> s[2] is np.nan

False

We can verify that the types are now different:

>>> (np.nan)
float

>>> (s[2])
float64

Generally speaking, it is not safe to assume that NaN is NaN. This means that—for reliable validation—it’s best to
remove NaN records entirely or replace them with some other value.

1.2. How-to Guide 77

https://docs.python.org/3/library/math.html#math.nan
https://numpy.org/doc/stable/reference/constants.html#numpy.nan
https://numpy.org/doc/stable/reference/constants.html#numpy.nan
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

datatest Documentation, Release 0.11.1

1.2.15 How to Validate Negative Matches

Sometimes you want to check that data is not equal to a specific value. There are a few different ways to perform this
type of negative matching.

Helper Function

One obvious way to check for a negative match is to define a helper function that checks for ! = to a given value:

from datatest import validate

data = [...]
def not_bar (x
X 1

) 2
return = 'b

ar

validate (data, not_bar)

Inverted Predicate

Datatest provides a Predicate class for handling different kinds of matching. You can invert a Predicate’s behavior
using the inversion operator, ~:

from datatest import validate, Predicate

data = [...]
validate (data, ~Predicate('bar'))

Functional Style

If you are accustomed to programming in a functional style, you could perform a negative match using functools.
partial () and operator.ne ():

from functools import partial
from operator import ne
from datatest import validate

data = [...]
validate (data, partial (ne, 'bar'))

1.2.16 How to Check for Outliers

There are many techniques for detecting outliers and no single approach can work for all cases. This page describes
an often useful approach based on the interquartile/7ukey fence method for outlier detection.

Other common methods for outlier detection are sensitive to extreme values and can perform poorly when applied to
skewed distributions. The Tukey fence method is resistant to extreme values and applies to both normal and slightly
skewed distributions.

You can copy the following RequiredOutliers class to use in your own tests:

78 Chapter 1. Table of Contents

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/operator.html#operator.ne

20

21

22

23

24

25

26

27

datatest Documentation, Release 0.11.1

from
from
from
from

Qada
clas

statistics import median

datatest import validate
datatest.requirements import adapts_mapping
datatest.requirements import RequiredInterval

pts_mapping
s RequiredOutliers (RequiredInterval) :
"""Require that data does not contain outliers."""
def _ init_ (, values, multiplier=2.2):
values = (values)
if (values) >= 2:
midpoint = (((values) / 2.0))

gl = median(values|[:midpoint])
g3 = median(values[midpoint:])
igr = g3 - gl
lower = gl - (igr * multiplier)
upper = g3 + (igr * multiplier)
elif values:
lower = upper = values[0]
else:
lower = upper

]
o

() .__init__ (lower, upper)

In“E

xploratory Data Analysis” by John W. Tukey (1977), a multiplier of 1.5 was proposed for labeling outliers and 3.0

was proposed for labeling “far out” outliers. The default multiplier of 2 . 2 is based on “Fine-Tuning Some Resistant
Rules for Outlier Labeling” by Hoaglin and Iglewicz (1987).

Note: The code above relies on statistics.median () which is new in Python 3.4. If you are running an older
version of Python, you can use the following median () function instead:

def median (iterable) :
values = (iterable)
n = (values)
if n ==
raise ValueError ('no median for empty iterable')
i=n// 2
if n % 2 ==
return values[i]
return (values[i - 1] + values[i]) / 2.0
1.2. How-to Guide 79

https://docs.python.org/3/library/statistics.html#statistics.median

datatest Documentation, Release 0.11.1

Example Usage

The following example uses the RequiredOutliers class defined earlier to check for outliers in a list of values:

data = [54, 44, 42, 46, 87, 48, 56, 52]
requirement = RequiredOutliers (data, multiplier=2.2)
validate (data, requirement)

ValidationError: elements “x° do not satisfy 23.0 <= x <= 77.0° (1 difference): [
Deviation (+10.0, 77.0),

You can also use the class to validate mappings of values as well:

[54, 44, 42, 46, 87, 48, 56, 527,
[87, 83, 60, 85, 97, 91, 95, 93],

requirement = RequiredOutliers(data, multiplier=2.2)
validate (data, requirement)

ValidationError: does not satisfy mapping requirements (2 differences): {
'A': [Deviation(+10.0, 77.0)1,
'B': [Deviation(-2.0, 62.0)],

Addressing Outliers
Once potential outliers have been identified, you need to decide how best to address them—there is no single best
practice for determining what to do. Potential outliers provide a starting point for further investigation.

In some cases, these extreme values are legitimate and you will want to increase the multiplier or explicitly accept them
(see Acceptances). In other cases, you may determine that your data contains values from two separate distributions
and the test itself needs to be restructured. Or you could discover that the values represent data processing errors or
other special cases and they should be excluded altogether.

How it Works

To use this approach most effectively, it helps to understand how it works. The following example explains the
technique in detail using the same data as the first example given above:

54 44 42 46 87 48 56 52

1. Determine the first and third quartiles. First, sort the values in ascending order. Then, split the data in half at its
median. The first quartile (Q1) is the median of the lower half and the third quartile (Q3) is the median of the

80 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

upper half:

Q1 (45) Q3 (55)
4 \
42 44 46 48 52 54 56 87

T
median (50)

2. Get the interquartile range (IQR) by taking the third quartile and subtracting the first quartile from it:
IQR=Q3-Q1
10 =55 —45
3. Calculate a lower and upper limit using the values determined in the previous steps:
lower limit = Q1 — (IQR x multiplier)
23 =45 — (10 x 2.2)
upper limit = Q3 + (IQR x multiplier)

77 =55+ (10 x 2.2)

5. Check that values are within the determined limits. Any value less than the lower limit (23) or greater than the
upper limit (77) is considered a potential outlier. In the given data, there is one potential outlier:

87

1.2.17 How to Validate Phone Numbers

To check that phone numbers are well-formed, you can use a regular expression.

USA and Canada

from datatest import validate
pattern =

data = [

~ N N~~~

]

validate.regex (data, pattern, msg=)

For other common US and Canadian formats, you can use the regex patterns:

pattern examples
ANNA{3I\) [1\d{3}-\d{4}s | (914)232-9901
M\d{3}-\d{3}-\d{4}$ 914-232-9901

AM\+21-\d{3}-\d{3}-\d{4}s 1-914-232-9901
+1-914-232-9901

1.2. How-to Guide 81

datatest Documentation, Release 0.11.1

India

import re
from datatest import validate

indian_phone_format = re.compile(r'''"
(\+91[1) # Optional international code.
(\(0\)) 2 # Optional trunk prefix.

10 digit codes with area & number splits.

(

\d{10} # XXXXXXXXXX

| \d{5}[1\d{5} # xxXxXX XXXXX
| \d{4}[1\d{6} # xxxXX XXXXXX
| \d{3}[1\d{7} # xxX XXXXXXX
| \d{2}[1\d{8} # xxX XXXXXXXX

)
S''"', re.VERBOSE)

data = [
'+91 (0)99999 99999',
'+91 99999 99999,
'9999999999",
'99999 99999',
'9999 999999"',
'999 9999999",
'99 99999999",
1

validate (data, indian_phone_format, msg='must use phone number format')

United Kingdom

import re
from datatest import validate

uk_phone_format = re.compile(r''"'"(
10 digit NSNs (leading zero doesn't count)
\N(0INA{2} [I\d{2}\d\) [1\d{2}[1\d{3} (01xx XX) XX XXX

i
N (OINA{3}\) [I\d{3}[1\d{3} # (01xxx) XXX XXX
N(OINA{2}\) [I\d{3}[1\d{4} # (01xx) XXX XXXX
\(02\d\) [J\d{4}[J1\d{4} # (02xX) XXXX XXXX
ONd{3}[I\d{3}[1\d{4} # 0XXX XXX XXXX
ONd{2}[I\d{4}[1\d{4} #
07\d{3}[I\d{3}[1\d{3} #

0XX XXXX XXXX
07xXX XXX XXX

\N(0169[177\) [1\d{4}
\N(OINA{3I\) [I\d{2} [1\d{3}
0500 J\A{3}[1\d{3}

0800[1\dA{3}[1\d{3}
re.VERBOSE)

(0169 77) xxxX
(01xxx) XX XXX
0500 xxx XXX

Eeger

9 digit NSNs
\
\
\
| 0800 xxx XXX

data = [
'(01257) 421 282",

(continues on next page)

82 Chapter 1. Table of Contents

21

22

21

23

datatest Documentation, Release 0.11.1

(continued from previous page)

validate (data, uk_phone_format, msg='must use phone number format')

1.2.18 How to Re-Order Acceptances

Individual acceptances can be combined together to create new acceptances with narrower or broader criteria (see
Composability). When acceptances are combined, their criteria are applied in an order determined by their scope.
Element-wise criteria are applied first, group-wise criteria are applied second, and whole-error criteria are applied last
(see Order of Operations).

Implicit Ordering

In this first example, we have a combined acceptance made from a whole-error acceptance, accepted. count (),
and a group-wise acceptance, accepted ([...]):

with accepted.count (4) | accepted([Missing('A'"), Missing('B')]):

Since the Order of Operations specifies that whole-error acceptances are applied after group-wise acceptances, the
accepted.count (4) criteria is applied last even though it’s defined first.

Explicit Ordering

If you want to control this order explicitly, you can use nested with statements to change the default behavior:

with accepted([Missing('A'), Missing('B')]):
with accepted.count (4) :

Using nested with statements, the inner-most block is applied first and outer blocks are applied in order until the
outer-most block is applied last. In this example, the accepted.count (4) is applied first because it’s declared in
the inner-most block.

1.2.19 How to Validate Sequences
Index Position

To check for a specific sequence, you can pass a list' as the requirement argument:

! The validate() function will check data by index position when the requirement is any iterable object other than a set, mapping, tuple or string.
See the Sequence Validation section of the validate () documentation for full details.

1.2. How-to Guide 83

datatest Documentation, Release 0.11.1

from datatest import validate

data = [, , ’ ’ 1
requirement = [, , ,]
validate (data, requirement)

Elements in the data and requirement lists are compared by sequence position. The items at index position O are
compared to each other, then items at index position 1 are compared to each other, and so on:

index data requirement result
0 A A matches
1 B B matches
2 X C doesn’t match
3 C D doesn’t match
4 D no value doesn’t match

In this example, there are three differences:

ValidationError: does not match required sequence (3 differences): [
Invalid('X', expected='C'"),
Invalid('C', expected='D"),
Extra('D'"),

Using enumerate()

While the previous example works well for short lists, the error does not describe where in your sequence the dif-
ferences occur. To get the index positions associated with any differences, you can enumerate () your data and
requirement objects:

from datatest import validate

data = [, , ’ ’]
requirement = [, , ' 1
validate ((data), (requirement))

A required enumerate object is treated as a mapping. The keys for any differences will correspond to their index
positions:

ValidationError: does not satisfy mapping requirements (3 differences): {
2: Invalid('X', expected='C'),
3: Invalid('C', expected='D"'),
4: Extra('D"),

84 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#enumerate

datatest Documentation, Release 0.11.1

Relative Order
When comparing elements by sequence position, one mis-alignment can create differences for all following elements.
If this behavior is not desireable, you may want to check for relative order instead.

If you want to check the relative order of elements rather than their index positions, you can use validate.
order():

from datatest import validate

data = [',*A' , V:‘ 1 , Vj';‘ , T , YL;‘V]
requirement = ['A', 'B', 'C', 'D']
validate.order (data, requirement)

When checking for relative order, this method tries to align elements into contiguous matching subsequences. This
reduces the number of non-matches:

index data requirement result
0 A A matches
1 B B matches
2 X no value doesn’t match
3 C C matches
4 D D matches

Differences are reported as two-tuples containing the index (in data) where the difference occurs and the non-matching
value. In the earlier examples, we saw that validating by index position produced three differences. But in this example,
validating the same sequences by relative order produces only one difference:

ValidationError: does not match required order (1 difference): [
Extra((2, 'X")),

1.3 Reference

“A tool is best if it does the job required with a minimum of effort, with a minimum of complexity, and
with a minimum of power.” —Peter Drucker'

1.3.1 Datatest Core API Reference

Validation
datatest .validate (data, requirement, msg=None)
Raise a ValidationError if data does not satisfy requirement or pass without error if data is valid.

This is a rich comparison function—the given data and requirement arguments can be mappings, iterables, or
other objects (including objects from pandas, numpy, database cursors, and squint). An optional msg string
can be provided to describe the validation.

Predicate Validation:

When requirement is a callable, tuple, string, or non-iterable object, it is used to construct a
Predicate for testing elements in data:

! Drucker, Peter F. “Management: Tasks, Responsibilities, Practices”, New York: Harper & Row, 1973. p. 224.

1.3. Reference 85

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://squint.readthedocs.io/en/stable/index.html#module-squint

datatest Documentation, Release 0.11.1

from datatest import validate
data = [2, 4, 6, 8]

def is_even (x):
return x % 2 ==

validate (data, is_even)

If the predicate returns False, then an Tnvalidor Deviation difference is generated. If the predi-
cate returns a difference object, that object is used in place of a generated difference (see Differences).
When the predicate returns any other truthy value, an element is considered valid.

Set Validation:

When requirement is a set, the elements in data are checked for membership in the set:

from datatest import validate
data = [’ ’ ’ ’ ’]
required_set = { , , }

validate (data, required_set)

If the elements in data do not match the required set, then Missing and Extra differences are
generated.

Sequence Validation:

When requirement is an iterable type other than a set, mapping, tuple or string, then data is validated
by index position. Elements are checked for predicate matches against required objects of the same
index position (both data and requirement should yield values in a predictable order):

from datatest import validate
data = [, , |
sequence = [’ P PR

validate (data, sequence)

For details on predicate matching, see Predicate.
Mapping Validation:

When requirement is a dictionary or other mapping, the values in data are checked against required
objects of the same key (data must also be a mapping):

from datatest import validate
data = { : 1, s 2, R
required_dict = { 1, : 2, HE

validate (data, required_dict)

If values do not satisfy the corresponding required object, then differences are generated according
to each object type. If an object itself is a nested mapping, it is treated as a predicate object.

86 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Requirement Object Validation:

When requirement is a subclass of BaseRequirement, then validation and difference generation
are delegated to the requirement itself.

In addition to validate ()’s default behavior, the following methods can be used to specify additional vali-
dation behaviors.

predicate (data, requirement, msg=None)
Use requirement to construct a Predicate and check elements in data for matches (see predicate vali-
dation for more details).

regex (data, requirement, flags=0, msg=None)
Require that string values match a given regular expression (also see Regular Expression Syntax):

from datatest import validate
data = [' /]

validate.regex (data,)

The example above is roughly equivalent to:

import re
from datatest import validate

data = [, ’]

validate (data, re.compile ())

approx (data, requirement, places=None, msg=None, delta=None)
Require that numeric values are approximately equal. The given requirement can be a single element or a
mapping.
Values compare as equal if their difference rounded to the given number of decimal places (default 7)
equals zero, or if the difference between values is less than or equal to a given delta:

from datatest import validate
data = { : 1.3125, : 8.6875}

requirement = { : 1.31, : 8.69})

validate.approx(data, requirement, places=2)

It is appropriate to use validate.approx () when checking for nominal values—where some de-
viation is considered an intrinsic feature of the data. But when deviations represent an undesired-but-
acceptible variation, accepted. tolerance () would be more fitting.

fuzzy (data, requirement, cutoff=0.6, msg=None)
Require that strings match with a similarity greater than or equal to cutoff (default 0. 6).

Similarity measures are determined using SequenceMatcher.ratio () from the Standard Library’s
difflib module. The values range from 1.0 (exactly the same) to 0. 0 (completely different).

from datatest import validate

data = {

(continues on next page)

1.3. Reference 87

https://docs.python.org/3/library/re.html#re-syntax
https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher.ratio
https://docs.python.org/3/library/difflib.html#module-difflib

datatest Documentation, Release 0.11.1

(continued from previous page)

]
—

requirement

validate.fuzzy(data, requirement, cutoff=0.8)

interval (data, min=None, max=None, msg=None)

Require that values are within the defined interval:

from datatest import validate
data = [5, 10, 15, 20]

validate.interval (data, 5, 15)

Require that values are greater than or equal to min (omitting max creates a left-bounded interval):

from datatest import validate
data = [5, 10, 15, 20]

validate.interval (data, =5)

Require that values are less than or equal to max (omitting min creates a right-bounded interval):

from datatest import validate
data = [5, 10, 15, 20]

validate.interval (data, =20)

set (data, requirement, msg=None)

Check that the set of elements in data matches the set of elements in requirement (applies set validation
using a requirement of any iterable type).

subset (data, requirement, msg=None)

Check that the set of elements in data is a subset of the set of elements in requirement (i.e., that every
element of data is also a member of requirement).

from datatest import validate
data = [’ ’]
requirement = { ’ ’ ’ }

validate.subset (data, requirement)

Attention: Since version 0.10.0, the semantics of subset () have been inverted. To mitigate prob-
lems for users upgrading from 0.9.6, this method issues a warning.

88

Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

To ignore this warning you can add the following lines to your code:
import warnings
warnings.filterwarnings (, message=)

And for pytest users, you can add the following to the beginning of a test script:

pytestmark = pytest.mark.filterwarnings (
)

superset (data, requirement, msg=None)
Check that the set of elements in data is a superset of the set of elements in requirement (i.e., that members
of data include all elements of requirement).

from datatest import validate
data = [’ ’ ’]
requirement = { ’ ’ }

validate.superset (data, requirement)

Attention: Since version 0.10.0, the semantics of superset () have been inverted. To mitigate
problems for users upgrading from 0.9.6, this method issues a warning.

To ignore this warning you can add the following lines to your code:

import warnings
warnings.filterwarnings (, message=)

And for pytest users, you can add the following to the beginning of a test script:

pytestmark = pytest.mark.filterwarnings (

=")

unique (data, msg=None)
Require that elements in data are unique:

from datatest import validate
data = [1, 2, 3, ...]

validate.unique (data)

order (data, requirement, msg=None)
Check that elements in data match the relative order of elements in requirement:

from datatest import validate
data: [’ ’ ’ ’ ’ ---]
required_order = [, , , , P

validate.order (data, required_order)

If elements do not match the required order, M1 ssing and Ext ra differences are raised. Each difference
will contain a two-tuple whose first value is the index of the position in data where the difference occurs

1.3. Reference 89

datatest Documentation, Release 0.11.1

and whose second value is the non-matching element itself.

In the given example, data is missing 'B' atindex 1 and contains an extra 'F ' at index 4:

extra
J
data: A C D E F
requirement: A B C D E
/l\
missing

The validation fails with the following error:

ValidationError: does not match required order (2 differences): [
Missing ((1, 'B')),
Extra((4, 'F')),

Notice there are no differences for 'C', 'D', and 'E' because their relative order matches the require-
ment—even though their index positions are different.

Note: Calling validate () or its methods will either raise an exception or pass without error. To get an
explicit True/False return value, use the valid () function instead.

datatest .valid (data, requirement)
Return True if data satisfies requirement else return False.

See validate () for supported data and requirement values and detailed validation behavior.

exception datatest.ValidationError (differences, description=None)
This exception is raised when data validation fails.

differences
A collection of “difference” objects to describe elements in the data under test that do not satisfy the
requirement.

description
An optional description of the failed requirement.

Differences

class datatest.BaseDifference
The base class for “difference” objects—all other difference classes are derived from this base.

args
The tuple of arguments given to the difference constructor. Some difference (like Deviation) expect a
certain number of arguments and assign a special meaning to the elements of this tuple, while others are
called with only a single value.

class datatest.Missing (value)
Created when value is missing from the data under test.

In the following example, the required value 'A ' is missing from the data under test:

data = [,]

requirement = { , , }

(continues on next page)

920 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

datatest.validate (data, requirement)

Running this example raises the following error:

ValidationError: does not satisfy set membership (1 difference): [
Missing ('A'"),

class datatest.Extra (value)
Created when value is unexpectedly found in the data under test.

In the following example, the value 'C"' is found in the data under test but it’s not part of the required values:

data = [’ ’]
requirement = { , }

datatest.validate (data, requirement)

Running this example raises the following error:

ValidationError: does not satisfy set membership (1 difference): [
Extra('C'"),

class datatest.Invalid (invalid, expected=<no value>)
Created when a value does not satisfy a function, equality, or regular expression requirement.

In the following example, the value 9 does not satisfy the required function:

data = [2, 4, 6, 9]

def is_even (x) :
return x % 2 ==

datatest.validate (data, is_even)

Running this example raises the following error:

ValidationError: does not satisfy is_even() (1 difference): [
Invalid(9),

invalid
The invalid value under test.

expected
The expected value (optional).

class datatest.Deviation (deviation, expected)
Created when a quantative value deviates from its expected value.

In the following example, the dictionary item 'C': 33 does not satisfy the required item 'C': 30:

data = { ¢ 10, : 20, : 33}

requirement = { . 10, : 20, : 30}

(continues on next page)

1.3. Reference 91

datatest Documentation, Release 0.11.1

(continued from previous page)

datatest.validate (data, requirement)

Running this example raises the following error:

ValidationError: does not satisfy mapping requirement (1 difference): {
'C': Deviation (+3, 30),

deviation
Quantative deviation from expected value.

expected
The expected value.

Acceptances

Acceptances are context managers that operate on a ValidationError’s collection of differences.

datatest .accepted (0bj, msg=None, scope=None)

Returns a context manager that accepts differences that match obj without triggering a test failure. The given
obj can be a difference class, a difference instance, or a collection of instances.

When o0bj is a difference class, differences are accepted if they are instances of the class. When obj is a difference
instance or collection of instances, then differences are accepted if they compare as equal to one of the accepted
instances.

If given, the scope can be 'element', 'group', or 'whole'. An element-wise scope will accept all
differences that have a match in 0bj. A group-wise scope will accept one difference per match in obj per group.
A whole-error scope will accept one difference per match in obj over the ValidationError as a whole.

If unspecified, scope will default to 'element ' if 0bj is a single element and 'group' if 0bj is a collection
of elements. If obj is a mapping, the scope is limited to the group of differences associated with a given key
(which effectively treats whole-error scopes the same as group-wise scopes).

Accepted Type:

When obj is a class (Missing, Extra, Deviation, Invalid, etc.), differences are accepted if
they are instances of the class.

The following example accepts all instances of the Missing class:

from datatest import validate, accepted, Missing
data = [,]
requirement = { ’ ’ }

with accepted(Missing) :
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

ValidationError: does not satisfy set membership (1 difference): [
Missing('C'"),

Accepted Difference:

92

Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

When obj is an instance, differences are accepted if they match the instance exactly.

The following example accepts all differences that match Extra ('D"):

from datatest import validate, accepted, Extra
data = [’ ’ ’]
requirement = ({ , , }

with accepted (Extra ()) :
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

ValidationError: does not satisfy set membership (1 difference): [
Extra('D'),

Accepted Collection:

When 0bj is a collection of difference instances, then an error’s differences are accepted if they match
an instance in the given collection:

from datatest import validate, accepted, Missing, Extra

data = [, ,]
requirement = { ’ ’ }
known_issues = accepted([
Extra() o
Missing (),

1

with known_issues:
validate (data, requirement)

A dictionary of acceptances can accept groups of differences by matching key:

from datatest import validate, accepted, Missing, Extra

data = {
H [r 14]I
[14]I
}
requirement = { ’ ’ }
known_issues = accepted({
[Extra (), Missing()1,
[Missing()1,

b

with known_issues:
validate (data, requirement)

keys (predicate, msg=None)
Returns a context manager that accepts differences whose associated keys satisfy the given predicate (see

1.3. Reference 93

datatest Documentation, Release 0.11.1

Predicates for details).

The following example accepts differences associated with the key 'B':

from datatest import validate, accepted
data = { : , : }
requirement =

with accepted.keys ()t
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

ValidationError: does not satisfy 'x' (1 difference): {
'B': Invalid('y"),

args (predicate, msg=None)

Returns a context manager that accepts differences whose args satisfy the given predicate (see Predicates
for details).

The example below accepts differences that contain the value 'y ':

from datatest import validate, accepted
data = { : , : }
requirement =

with accepted.args() :
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

ValidationError: does not satisfy 'x' (1 difference): {
'B': Invalid('y"'),

tolerance (folerance, /, msg=None)
tolerance (lower, upper, msg=None)

Accepts quantitative differences within a given folerance without triggering a test failure:

from datatest import validate, accepted
data = { : 45, : 205}
requirement = { . 50, : 200}

with accepted.tolerance (5) :
validate (data, requirement)

The example above accepts differences within a tolerance of £5. Without this acceptance, the validation
would have failed with the following error:

ValidationError: does not satisfy mapping requirements (2 differences): {
'A': Deviation (-5, 50),

(continues on next page)

94

Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

'B': Deviation (+5, 200),

Specifying different lower and upper bounds:

with accepted.tolerance (=2, 7):
validate (..., ...)

Deviations within the given range are suppressed while those outside the range will trigger a test failure.

percent (folerance, /, msg=None)
percent (lower, upper, msg=None)
Accepts percentages of error within a given tolerance without triggering a test failure:

from datatest import validate, accepted
data = { : 47, : 318}
requirement = { : 50, : 300}

with accepted.percent (0.06) :
validate (data, requirement)

The example above accepts differences within a tolerance of +6%. Without this acceptance, the validation
would have failed with the following error:

ValidationError: does not satisfy mapping requirements (2 differences): {
'A': Deviation (-3, 50),
'B': Deviation(+18, 300),

Specifying different lower and upper bounds:

with accepted.percent (-0.02, 0.01):
validate (..., ...)

Deviations within the given range are suppressed while those outside the range will trigger a test failure.

fuzzy (cutoff=0.6, msg=None)
Returns a context manager that accepts invalid strings that match their expected value with a sim-
ilarity greater than or equal to cutoff (default 0.6). Similarity measures are determined using
SequenceMatcher.ratio () from the Standard Library’s di £ £1ib module. The values range from
1.0 (exactly the same) to 0. 0 (completely different).

The following example accepts string differences that match with a ratio of 0. 6 or greater:

from datatest import validate, accepted
data = { : ’ : }
requirement = { : , : }

with accepted.fuzzy (cutoff=0.6):
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

1.3. Reference 95

https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher.ratio
https://docs.python.org/3/library/difflib.html#module-difflib

datatest Documentation, Release 0.11.1

ValidationError: does not satisfy mapping requirements (2 differences): {
'A': Invalid('aax', expected='aaa'),
'B': Invalid('bbx', expected='bbb'),

count (number, msg=None, scope=None)
Returns a context manager that accepts up to a given number of differences without triggering a test failure.
If the count of differences exceeds the given number, the test case will fail with a ValidationError
containing the remaining differences.

The following example accepts up to 2 differences:

from datatest import validate, accepted
data = [’ ’ ’]
requirement =

with accepted.count (2) :
validate (data, requirement)

Without this acceptance, the validation would have failed with the following error:

ValidationError: does not satisfy 'A' (2 differences): [
Invalid('B'"),
Invalid('C"),

Composability

Acceptances can be combined to create new acceptances with modified behavior.

The & operator can be used to create an intersection of acceptance criteria. In the following example,
accepted (Missing) and accepted. count (5) are combined into a single acceptance that accepts up to five
Missing differences:

from datatest import validate, accepted

with accepted(Missing) & accepted.count (5):
validate (..., ...)

The | operator can be used to create union of acceptance criteria. In the following example, accepted.
tolerance () and accepted.percent () are combined into a single acceptance that accepts Deviations of
+10 as well as Deviations of £5%:

from datatest import validate, accepted

with accepted.tolerance(10) | accepted.percent (0.05):
validate (..., ...)

And composed acceptances, themselves, can be composed to define increasingly specific criteria:

from datatest import validate, accepted

five_missing = accepted(Missing) & accepted.count (5)

(continues on next page)

96 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

minor_deviations = accepted.tolerance(10) | accepted.percent (0.05)

with five_missing | minor_deviations:
validate (..., ...)

Order of Operations

Acceptance composition uses the following order of operations—shown from highest precedence to lowest prece-
dence. Operations with the same precedence level (appearing in the same cell) are evaluated from left to right.

Order Operation Description

1 Parentheses
()

2 Bitwise AND (intersection)
&

3 Bitwise OR (union)

4 Element-wise acceptances

accepted(...)
accepted.keys(...)
accepted.args(...)
accepted.tolerance(...)
accepted.percent (...)

accepted. fuzzy (...)

5 Group-wise acceptances

accepted([...])

6 Whole-error acceptances

accepted.count (...)

Predicates

Datatest can use Predicate objects for validation and to define certain acceptances.

class datatest.Predicate (0bj, name=None)
A Predicate is used like a function of one argument that returns True when applied to a matching value and
False when applied to a non-matching value. The criteria for matching is determined by the obj type used to
define the predicate:

1.3. Reference 97

datatest Documentation, Release 0.11.1

compile (pattern)

obj type matches when

function the result of function (value) tests as True
type value is an instance of the type

re. value matches the regular expression pattern

True value is truthy (bool (value) returns True)
False value is falsy (bool (value) returns False)
str or non-container value is equal to the object

set value is a member of the set

tuple of predicates

tuple of values satisfies corresponding tuple of predicates—each according to
their type

. . . (Ellipsis literal)

(used as a wildcard, matches any value)

Example matches:

obj example value matches
4 Yes
def is_even (x) :
return x % 2 == 9 No
1.0 Yes
1 No
'bake’ Yes
re.compile ('cake' Yes
'fake' No
'x! Yes
True
v No
v Yes
False
'x! No
'foo' Yes
'bar’ No
A Yes
{ ’ t
'c’ No
('A', 1.0) Yes
(’)
("A', 2) No
('A', 'X") Yes
(’)
Uses ellipsis wildcard. ("A', 'Y") Yes
("B', 'X") No

Example code:

>>> pred()

>>> pred = Predicate ({

(continues on next page)

98

Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

(continued from previous page)

>>> pred()
False

Predicate matching behavior can also be inverted with the inversion operator (~). Inverted Predicates return
False when applied to a matching value and True when applied to a non-matching value:

>>> pred = ~Predicate ({ ' })
>>> pred()

False

>>> pred ()

rue

If the name argument is given, a __name___ attribute is defined using the given value:

>>> pred = Predicate ({ , }, name=)
>>> pred.__name___

'a_or_b'

If the name argument is omitted, the object will not have a __name___ attribute:

>>> pred = Predicate ({ , b
>>> pred._ name_
Traceback (most recent call last):
File , line 1, in <module>
pred.__name_
AttributeError: 'Predicate' object has no attribute '___name_ '

1.3.2 Data Handling APl Reference
working_directory

class datatest.working directory (path)
A context manager to temporarily set the working directory to a given path. If path specifies a file, the file’s
directory is used. When exiting the with-block, the working directory is automatically changed back to its
previous location.

You can use Python’s __file_ constant to load data relative to a file’s current directory:

from datatest import working_directory
import pandas as pd

with working_directory(___file_):
my_df = pd.read_csv()

This context manager can also be used as a decorator:

from datatest import working_directory
import pandas as pd

@working_directory(__file)
def my df () :
return pd.read_csv()

1.3. Reference 99

https://docs.python.org/3/reference/import.html#__file__

datatest Documentation, Release 0.11.1

Tip: Take care when using pytest’s fixture finalization in combination with “session” or “module” level fixtures.
In these cases, you should use working directory () as acontext manager—not as a decorator.

In the first example below, the original working directory is restored immediately when the with statement
ends. But in the second example, the original directory isn’t restored until after the entire session is finished (not
usually what you want):

@pytest.fixture (scope='session')
def connection () :
with working_directory(__file):
conn =
yield conn
conn.close ()

@pytest.fixture (scope='session')
@working_directory(__file_)
def connection () :

conn =

yield conn

conn.close ()

When a fixture does not require finalization or if the fixture is short-lived (e.g., a function-level fixture) then
either form is acceptible.

Pandas Accessors

Datatest provides an optional extension accessor for integrating validation directly with pandas objects.

datatest.register_accessors ()

Register the validate accessor for tighter pandas integration. This provides an alternate syntax for validat-
ing DataFrame, Series, Index, and Multilndex objects.

After calling register _accessors (), you can use “validate” as a method:

import pandas as pd
import datatest as dt

df = pd.read_csv('example.csv')
dt.validate(df['A'], {'x', 'yv', 'z'})

dt.register_accessors()
df['A'"].validate({'x', 'y', 'z'})

100

Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/ecosystem.html#ecosystem-accessors
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas

datatest Documentation, Release 0.11.1

Accessor Equivalencies

Below, you can compare the accessor syntax against the equivalent non-accessor syntax:

Accessor Syntax

Non-accessor Syntax

import datatest as dt
dt.register_accessors|()
df.columns.validate ({'A",
df['A"].validate({'x", 'yv', "z"'})
df['C'].validate.interval (10,

30)

df[['A", 'C']].validate ((’))

import datatest as dt

dt.validate (df.columns, {'A'",

dt.validate(df['A"], {'x"', 'yv', "z'})

dt.validate.interval(df['C'],

dt.validate(df[['A', "C'11, (’))

Here is the full list of accessor equivalencies:

Accessor Expression Equivalent Non-accessor Expression
obj.validate (requirement) validate (obj, requirement)
obj.validate.predicate (requirement) validate.predicate (obj, requirement)
obj.validate.regex (requirement) validate.regex (obj, requirement)
obj.validate.approx (requirement) validate.approx (obj, requirement)
obj.validate.fuzzy (requirement) validate. fuzzy (obj, requirement)
obj.validate.interval (min, max) validate.interval (obj, min, max)
obj.validate.set (requirement) validate.set (obj, requirement)
obj.validate.subset (requirement) validate.subset (obj, requirement)
obj.validate.superset (requirement) validate.superset (obj, requirement)
obj.validate.unique () validate.unique (ob7)
obj.validate.order (requirement) validate.order (obj, requirement)

1.3. Reference

101

datatest Documentation, Release 0.11.1

RepeatingContainer

class datatest.RepeatingContainer (iferable)
A container that repeats attribute lookups, method calls, operations, and expressions on the objects it contains.
When an action is performed, it is forwarded to each object in the container and a new RepeatingContainer is
returned with the resulting values.

In the following example, a RepeatingContainer with two strings is created. A method call to upper () is
forwarded to the individual strings and a new RepeatingContainer is returned that contains the uppercase values:

>>> repeating = RepeatingContainer (['foo', 'bar'])
>>> repeating.upper ()
RepeatingContainer (['FOO', 'BAR'])

A RepeatingContainer is an iterable and its individual items can be accessed through sequence unpacking or
iteration. Below, the individual objects are unpacked into the variables x and y:

>>> repeating = RepeatingContainer(['foo', 'bar'])
>>> repeating = repeating.upper ()

>>> x, y = repeating

>>> X

'FOO!

>>> vy

'BAR'

If the RepeatingContainer was created with a dict (or other mapping), then iterating over it will return a sequence
of (key, wvalue) tuples. This sequence can be used as-is or used to create another dict:

>>> repeating = RepeatingContainer({'a': 'foo', 'b': 'bar'})
>>> repeating = repeating.upper ()

>>> (repeating)

[('a', 'FOO'), ('b', 'BAR')]

>>> (repeating)

[V o0 . TN T TR T . TRAD T
{'a': o', b': BAR'}

Validating RepeatingContainer Results

When comparing the data under test against a set of similarly-shaped reference data, it’s common to perform the
same operations on both data sources. When queries and selections become more complex, this duplication can grow
cumbersome. But duplication can be mitigated by using a Repeat ingContainer object.

A RepeatingContainer is compatible with many types of objects—pandas.DataFrame, squint .Select, etc.

In the following example, a RepeatingContainer is created with two objects. Then, an operation is forwarded to each
object in the group. Finally, the results are unpacked and validated:

With Pandas
With Squint

Below, the indexing and method calls ... [['A', 'C']].groupby ('A').sum() are forwarded to each
pandas.DataFrame and the results are returned inside a new RepeatingContainer:

import datatest as dt
import pandas as pd

compare = RepeatingContainer ([

(continues on next page)

102 Chapter 1. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://squint.readthedocs.io/en/stable/reference.html#squint.Select
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

datatest Documentation, Release 0.11.1

(continued from previous page)

pd.read_csv ()
pd.read_csv (),
1)
result = compare] [, 11 .groupby () .sum ()
data, requirement = result

dt.validate (data, requirement)

Below, the method calls . .. ({"A': 'C'}) .sum() are forwarded to each squint.Select and the results are
returned inside a new RepeatingContainer:

from datatest import validate
from squint import Select

compare = RepeatingContainer ([

Select ()
Select ()y
1)
result = compare ({ S }) .sum()
data, requirement = result

validate (data, requirement)

The example above can be expressed even more concisely using Python’s asterisk unpacking (*) to unpack the values
directly inside the validate () call itself:

With Pandas
With Squint

import datatest as dt
import pandas as pd

compare = RepeatingContainer ([

pd.read_csv ()
pd.read_csv (),
1)
dt.validate (xcompare| [, 11 .groupby () .sum())

from datatest import validate
from squint import Select

compare = RepeatingContainer ([

Select ()
Select ()y

1)

validate (xcompare ({ 3 }) .sum())

1.3. Reference 103

https://squint.readthedocs.io/en/stable/reference.html#squint.Select

datatest Documentation, Release 0.11.1

1.3.3 Unittest Support

Datatest can be used together with the unittest package from the Python Standard Library. For a quick introduc-
tion, see:

* Automated Data Testing: Unittest

e Unittest Samples

DataTestCase

class datatest.DataTestCase (methodName="runTest')
This optional wrapper class provides an interface that is consistent with established unittest conventions. This
class extends unittest . TestCase with methods for asserting validity and accepting differences. In addi-
tion, familiar methods and attributes (like setUp (), maxDiff, assertions etc.) are also available.

VALIDATION METHODS

The assertion methods wrap validate () and its methods:

from datatest import DataTestCase

class MyTest (DataTestCase) :
def test_mydata ()t
data = ...
requirement = ...
.assertValid(data, requirement)

assertValid (data, requirement, msg=None)
Wrapper for validate ().

assertValidPredicate (data, requirement, msg=None)
Wrapper for validate.predicate ().

assertValidRegex (data, requirement, flags=0, msg=None)
Wrapper for validate.regex ().

assertValidApprox (data, requirement, places=None, msg=None, delta=None)
Wrapper for validate.approx ().

assertValidFuzzy (data, requirement, cutoff=0.6, msg=None)
Wrapper for validate. fuzzy ().

assertValidInterval (data, min=None, max=None, msg=None)
Wrapper for validate. interval ().

assertValidSet (data, requirement, msg=None)
Wrapper for validate.set ().

assertValidSubset (data, requirement, msg=None)
Wrapper for validate. subset ().

assertValidSuperset (data, requirement, msg=None)
Wrapper for validate. superset ().

assertValidUnique (data, msg=None)
Wrapper for validate.unique ().

assertValidOrder (data, sequence, msg=None)
Wrapper for validate.order ().

104 Chapter 1. Table of Contents

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.maxDiff
https://docs.python.org/3/library/unittest.html#assert-methods

datatest Documentation, Release 0.11.1

ACCEPTANCE METHODS

The acceptance methods wrap accepted () and its methods:

from datatest import DataTestCase

class MyTest (DataTestCase):
def test_mydata ()z

data =
requirement =
with .accepted (Missing) :

.assertValid(data, requirement)

accepted (obj, msg=None, scope=None)
Wrapper for accepted ().

acceptedKeys (predicate, msg=None)
Wrapper for accepted. keys ().

acceptedArgs (predicate, msg=None)
Wrapper for accepted. args ().

acceptedTolerance (tolerance, /, msg=None)
acceptedTolerance (lower, upper, msg=None)
Wrapper for accepted. tolerance ().

acceptedPercent (tolerance, /, msg=None)
acceptedPercent (lower, upper, msg=None)
Wrapper for accepted. percent ().

acceptedFuzzy (cutoff=0.6, msg=None)
Wrapper for accepted. fuzzy ().

acceptedCount (number, msg=None, scope=None)
Wrapper for accepted. count ().

Command-Line Interface

The datatest module can be used from the command line just like unittest. To run the program with test discovery use
the following command:

python -m datatest

Run tests from specific modules, classes, or individual methods with:

python -m datatest test_modulel test_module2
python -m datatest test_module.TestClass
python -m datatest test_module.TestClass.test_method

The syntax and command-line options (- £, —v, etc.) are the same as unittest—see unittest’s command-line documen-
tation for full details.

Note: Tests are ordered by file name and then by line number (within each file) when running datatest from the
command-line.

1.3. Reference 105

http://docs.python.org/library/unittest.html#test-discovery
http://docs.python.org/library/unittest.html#command-line-interface
http://docs.python.org/library/unittest.html#command-line-interface

datatest Documentation, Release 0.11.1

Test Runner Program

@datatest .mandatory
A decorator to mark whole test cases or individual methods as mandatory. If a mandatory test fails, DataT-
estRunner will stop immediately (this is similar to the -——failfast command line argument behavior):

@datatest.mandatory
class TestFileFormat (datatest.DataTestCase) :
def test_columns ()t

class datatest.DataTestRunner (stream=None, descriptions=True, verbosity=1, failfast=False,

buffer=False, resultclass=None, ignore=False)
A data test runner (wraps unittest. TextTestRunner) that displays results in textual form.

resultclass
alias of datatest.runner.DataTestResult

run (fest)
Run the given tests in order of line number from source file.

'

class datatest.DataTestProgram (module='__main__', defaultTest=None, argv=None, testRun-
ner=datatest.DataTestRunner, testLoader=unittest.TestLoader,
exit=True, verbosity=1, failfast=None, catchbreak=None,
buffer=None, warnings=None)

datatest.main
alias of datatest.main.DataTestProgram

See the Package Index for a full list of classes and objects.

1.4 Discussion

“The right information cannot be extracted from the wrong data.” —Russell Ackoff’

1.4.1 Organizing a Test Suite

Unlike unit testing of software, it’s oftentimes not possible to check data properties as independent “units” in isolation.
Later tests often depend on the success of earlier ones. For example, it’s not useful to try to check the datatype
of an “account_id” column if there’s no column of that name. And it might not be useful to sum the values in an
“accounts_payable” column when the associated account IDs contain invalid datatypes.

Typically, data tests should be run sequentially where broader, general features are tested first and specific details are
tested later (after their prerequisite tests have passed). This approach is called “top-down, incremental testing”. You
can use the following list as a rough guide of which features to check before others.

I Ackoff, Russell L. “Ackoff’s Best”, New York: John Wiley & Sons, Inc., 1999. p. 172.

106 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

Order to Check Features

—

data is accessible (by loading a file or connecting to a data source via a fixture)
names of tables or worksheets (if applicable)

names of columns

categorical columns: controlled vocabulary, set membership, etc.

foreign-keys (if applicable)

well-formedness of text values: date formats, phone numbers, etc.

datatypes: int, float, datetime, etc.

constraints: uniqueness, minimum and maximum values, etc.

© ® N A » N

accuracy of quantitative columns: compare sums, counts, or averages against known-good values

—
e

internal consistency, cross-column comparisons, etc.

1.4.2 Tips and Tricks for Data Testing

This document is intended for users who are already familiar with datatest and its features. It’s a grab-bag of ideas and
patterns you can use in your own code.

Using methodcaller()

It’s common to have helper functions that simply call a method on an object. For example:

from datatest import validate
data = [...]

def is_upper (x):
return x.isupper ()

validate (data, is_upper)

In the case above, our helper function calls the i supper () method. But instead of defining a function for this, we
can simply use operator.methodcaller ():

from datatest import validate
from operator import methodcaller

data = [...]
validate (data, methodcaller ('isupper'))

1.4. Discussion 107

https://docs.python.org/3/library/operator.html#operator.methodcaller

datatest Documentation, Release 0.11.1

RepeatingContainer and Argument Unpacking

The RepeatingContainer class is useful for comparing similarly shaped data sources:

from datatest import validate, working_directory
import pandas as pd

with working_directory(___file_):
compare = RepeatingContainer ([
pd.read_csv('data under test.cs
pd.read_csv ('reference_data.csv'),

1)

You can use iterable unpacking to get the individual results for validation:

result = compare[['A", 'C']].groupby('A").sum()
data, requirement = result

dt.validate (data, requirement)

But you can make this even more succinct by unpacking the arguments directly inside the validate () call it-
self—via the asterisk prefix, *:

validate (xcompare[['A", 'C']].groupby ('A").sum())

Failure Message Handling

If validation fails and you’ve provided a msg argument, its value is used in the error message. But if no msg is given,
then validate () will automatically generate its own message.

This example includes a msg value so the error message reads Values should be even numbers.:

from datatest import validate
data = [2, 4, 5, 6, 8, 10, 11]

def is_even (x):

LU

Should be even.

nun

return x % 2 ==

msg = 'Values should be even numbers.
validate (data, is_even, msg=msg)

Traceback (most recent call last):
File "example.py", line 10, in <module>
validate (data, is_even, msg=msg)
datatest.ValidationError: Values should be even numbers. (2 differences): [
Invalid(5),
Invalid(11),

108 Chapter 1. Table of Contents

datatest Documentation, Release 0.11.1

1. Docstring Message

If validation fails but no msg was given, then the first line of the requirement’s docstring is used. For this reason,
it’s useful to start your docstrings with normative language, e.g., “must be...”, “should have...”, “needs to...”,
“requires. ..”, etc.

]

In the following example, the docstring Should be even. is used in the error:

from datatest import validate

def is_even (x):
mman ’;‘11,—“11 V, ‘JR even. mman

return x % 2 ==

data = [2, 4, 5, 6, 8, 10, 11]
validate (data, is_even)

Traceback (most recent call last):
File "example.py", line 8, in <module>
validate (data, is_even)
datatest.ValidationError: Should be even. (2 differences): [
Invalid(5),
Invalid(11),

2. __name__ Message

If validation fails but there’s no msg and no docstring, then the requirement’s __name___ will be used to construct a
message.

In this example, the function’s name, i s_even, is used in the error:

from datatest import validate

def is_even (x):
return x % 2 ==

data = [2, 4, 5, 6, 8, 10, 11]
validate (data, is_even)

Traceback (most recent call last):
File "example.py", line 7, in <module>
validate (data, is_even)
datatest.ValidationError: does not satisfy is_even() (2 differences): [
Invalid(5),
Invalid(11),

1.4. Discussion 109

https://docs.python.org/3/glossary.html#term-docstring
https://docs.python.org/3/library/stdtypes.html#definition.__name__

21

22

24

25

21

22

23

24

21

22

23

24

25

26

datatest Documentation, Release 0.11.1

3. __repr__ () Message

If validation fails but there’s no msg, no docstring, and no ___name___, then the requirement’s representation is used
(i.e., theresult of its _ repr__ () method).

Template Tests

If you need to integrate multiple published datasets, you might want to prepare a template test suite. The template
can serve as a starting point for validating each datatset. In the template scripts, you can prompt users for action by
explicitly failing with an instruction message:

pytest

unittest

We canuse pytest.fail () to fail with a message to the user:

def test_state (data) :

pytest.fail ('Set requirement to appro tate abbreviation.')
validate (data['state'], requirement='XX
FAILURES == ==
test_state
def test_state(data):
> pytest.fail ('Set requirement to appropriate state abbreviation.')
E Failed: Set requirement to appropriate state abbreviation.

example.py:24: Failed

==== short test summary info ============================
FAILED example.py::test_state - Failed: Set requirement to appropriate state...
1 failed, 41 passed in 0.14s

When you see this failure, you can remove the pytest.fail () line and add the needed state abbreviation:

def test_state (data):
validate (data['state'], requirement='CA")

We can use TestCase.fail () to fail with a message to the user (DataTestCase inherits from unittest.
TestCase and has access to all of its parent’s methods):

class MyTest (DataTestCase) :
def test_state()t
.fail('Set requirement to appropriate state abbrevia

.assertValid(.data['state'], requirement='

FAIL: test_state (example.MyTest)

Traceback (most recent call last):

(continues on next page)

110 Chapter 1. Table of Contents

https://docs.python.org/3/reference/datamodel.html#object.__repr__
https://docs.pytest.org/en/stable/reference.html#pytest.fail
https://docs.python.org/3/library/unittest.html#unittest.TestCase.fail

21

22

24

25

datatest Documentation, Release 0.11.1

(continued from previous page)

File "example.py", line 25, in test_state
self.fail ('Set requirement to appropriate state abbreviation.')
AssertionError: Set requirement to appropriate state abbreviation.

Ran 42 tests in 0.130s

FAILED (failures=1)

When you see this failure, you can remove the self.fail () line and add the needed state abbreviation:

class MyTest (DataTestCase) :
def test_state() :
.assertValid(.data['state'], requirement='CA')

Using a Function Factory

If you find yourself writing multiple helper functions that perform similar actions, consider writing a function factory
instead. A function factory is a function that makes other functions.

Using a Factory

No Factory

In the following example, the ends_with () function makes helper functions:

from datatest import validate

def ends _with (suffix):
suffix = suffix.lower ()
def helper (x):
return x.lower () .endswith (suffix)
helper.__doc___ = f'should end with {suffix!r
return helper

datal = [...]
validate (datal, ends_with('.csv'))

data2 = [...]
validate (data2, ends_with('.txt"))

data3 = [...]
validate (data3, ends_with('.ini'"))

Instead of a factory, this example uses separate helper functions:

from datatest import validate

def ends_with_csv(x) :

wnn . ith '.cgy'"nn

should end

return x.lower () .endswith('.csv')

def ends_with_txt (x):
"""should end with '.txt'"""

(continues on next page)

1.4. Discussion 111

datatest Documentation, Release 0.11.1

(continued from previous page)

return x.lower () .endswith ()

def ends_with_ini (x):

return x.lower () .endswith ()

datal = [...]
validate (datal, ends_with_csv)

data2 = [...]
validate (data2, ends_with_txt)

data3 = [...]
validate (data3, ends_with_ini)

Lambda Expressions

It’s common to use simple helper functions like the one below:

from datatest import validate

def is_even (n):
return n % 2 ==

data = [...]
validate (data, is_even)

If your helper function is a single statement, you could also write it as a lambda expression:

from datatest import validate

data = [...]
validate (data, lambda n: n % 2 == 0)

But you should be careful with lambdas because they don’t have names or docstrings. If the validation fails without an
explicit msg value, the default message can’t provide any useful context—it would read “does not satisfy <lambda>".

So if you use a lambda, it’s good practice to provide a msg argument, too:

from datatest import validate

data = [...]
validate (data, lambda n: n % 2 == 0, msg=)

Skip Missing Test Fixtures (pytest)
Usually, you want a test to fail if a required fixture is unavailable. But in some cases, you may want to skip tests that
rely on one fixture while continuing to run tests that rely on other fixtures.

To do this, you can call pytest.skip () from within the fixture itself. Tests that rely on this fixture will be
automatically skipped when the data source is unavailable:

import pytest
import pandas as pd

(continues on next page)

112 Chapter 1. Table of Contents

https://docs.python.org/3/glossary.html#term-lambda
https://docs.pytest.org/en/stable/reference.html#pytest.skip

datatest Documentation, Release 0.11.1

(continued from previous page)

from datatest import working_directory

@pytest.fixture (scope='module’)
@working_directory(__file_)
def data_sourcel():
file_path = 'data sourcel.cs
try:
return pd.read_csv(file_path)
except FileNotFoundError:
pytest.skip (f'cannot find {file_path}')

Test Configuration With conftest.py (pytest)

To share the same fixture with multiple test modules, you can move the fixture function into a separate file named
conftest.py. See more from the pytest docs: Sharing Fixture Functions.

1.4.3 Data Preparation

In the practice of data science, data preparation is a huge part of the job. Practitioners often spend 50 to 80 percent
of their time wrangling data'>**. This critically important phase is time-consuming, unglamorous, and often poorly
structured.

The datatest package was created to support test driven data-wrangling and provide a disciplined approach to an
otherwise messy process.

A datatest suite can facilitate quick edit-test cycles to help guide the selection, cleaning, integration, and formatting of
data. Data tests can also help to automate check-lists, measure progress, and promote best practices.

Test Driven Data-Wrangling

When data is messy, poorly structured, or uses an incompatible format, it’s oftentimes not possible to prepare it using
an automated process. There are a multitude of ways for messy data to counfound a processing system or schema.
Dealing with data like this requires a data-wrangling approach where users are actively involved with making decisions
and judgment calls about cleaning and formatting the data.

A well-structured suite of data tests can serve as a template to guide the data-wrangling process. Using a quick edit-test
cycle, users can:

1. focus on a failing test

2. make change to the data or the test

3. re-run the suite to check that the test now passes
4.

then, move on to the next failing test

! “Data scientists, according to interviews and expert estimates, spend from 50 percent to 80 percent of their time mired in this more mundane
labor of collecting and preparing unruly digital data...” Steve Lohraug in For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights.
Retrieved from http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

2 “This [data preparation step] has historically taken the largest part of the overall time in the data mining solution process, which in some cases
can approach 80% of the time.” Dynamic Warehousing: Data Mining Made Easy (p. 19)

3 Online poll of data mining practitioners: See image, Data preparation (Oct 2003). Retrieved from http://www.kdnuggets.com/polls/2003/
data_preparation.htm [While this poll is quite old, the situation has not changed drastically.]

4 “As much as 80% of KDD is about preparing data, and the remaining 20% is about mining.” Data Mining for Design and Manufacturing (p.
44)

1.4. Discussion 113

https://docs.pytest.org/en/stable/fixture.html#conftest
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
../_static/data_prep_poll.png
http://www.kdnuggets.com/polls/2003/data_preparation.htm
http://www.kdnuggets.com/polls/2003/data_preparation.htm

datatest Documentation, Release 0.11.1

The work of cleaning and formatting data takes place outside of the datatest package itself. Users can work with with
the tools they find the most productive (Excel, pandas, R, sed, etc.).

114 Chapter 1. Table of Contents

http://pandas.pydata.org/

PYTHON MODULE INDEX

d

datatest, 1

115

datatest Documentation, Release 0.11.1

116 Python Module Index

A

accepted () (datatest.DataTlestCase method), 105

acceptedArgs () (datatest.DatalestCase method),
105

acceptedCount () (datatest.DataTestCase method),
105

acceptedFuzzy () (datatest.DataTestCase method),
105

acceptedKeys () (datatest.DatalestCase method),
105

acceptedPercent () (datatest.DataTestCase

method), 105
acceptedTolerance ()
method), 105
approx () (datatest.validate method), 87
args (datatest.BaseDifference attribute), 90
args () (datatest.accepted method), 94
assertValid () (datatest.DataTestCase method), 104
assertValidApprox () (datatest.DataTestCase
method), 104
assertValidFuzzy ()
method), 104
assertValidInterval ()
method), 104
assertValidOrder ()
method), 104
assertValidPredicate () (datatest.DataTestCase
method), 104
assertValidRegex ()
method), 104
assertValidSet () (datatest.DataTestCase method),

(datatest.DataTestCase

(datatest.DataTestCase
(datatest.DataTestCase

(datatest.DataTestCase

(datatest.DataTestCase

104
assertValidSubset () (datatest.DataTestCase
method), 104

assertValidSuperset () (datatest.DataTestCase
method), 104
assertValidUnique ()

method), 104

(datatest.DataTestCase

B

BaseDifference (class in datatest), 90

INDEX

C

count () (datatest.accepted method), 96

D

datatest

module, 1
DataTestCase (class in datatest), 104
DataTestProgram (class in datatest), 106
DataTestRunner (class in datatest), 106
description (datatest.ValidationError attribute), 90
Deviation (class in datatest), 91
deviation (datatest.Deviation attribute), 92
differences (datatest.ValidationError attribute), 90

E

expected (datatest. Deviation attribute), 92
expected (datatest.Invalid attribute), 91
Extra (class in datatest), 91

F

fuzzy () (datatest.accepted method), 95
fuzzy () (datatest.validate method), 87

interval () (datatest.validate method), 88
Invalid (class in datatest), 91
invalid (datatest.Invalid attribute), 91

K

keys () (datatest.accepted method), 93

M

main (in module datatest), 106
mandatory () (in module datatest), 106
Missing (class in datatest), 90
module

datatest, 1

O

order () (datatest.validate method), 89

117

datatest Documentation, Release 0.11.1

F)

percent () (datatest.accepted method), 95
Predicate (class in datatest), 97
predicate () (datatest.validate method), 87
Python Enhancement Proposals
PEP 249,7,41
PEP 2494#description,4l

R

regex () (datatest.validate method), 87
register_accessors () (in module datatest), 100
RepeatingContainer (class in datatest), 102
resultclass (datatest.DataTestRunner attribute), 106
run () (datatest. DataTestRunner method), 106

S

set () (datatest.validate method), 88
subset () (datatest.validate method), 88
superset () (datatest.validate method), 89

T

tolerance () (datatest.accepted method), 94

U

unique () (datatest.validate method), 89

Vv

valid () (in module datatest), 90
ValidationError, 90

W

working_directory (class in datatest), 99

118

Index

	Table of Contents
	Introduction
	How-to Guide
	Reference
	Discussion

	Python Module Index
	Index

