
datashader Documentation
Release 0.6.4

datashader contributors

Dec 05, 2017

Contents

1 FAQ 3

2 Other resources 5

Python Module Index 15

i

ii

datashader Documentation, Release 0.6.4

Datashader is a graphics pipeline system for creating meaningful representations of large datasets quickly and flex-
ibly. Datashader breaks the creation of images into a series of explicit steps that allow computations to be done on
intermediate representations. This approach allows accurate and effective visualizations to be produced automatically,
and also makes it simple for data scientists to focus on particular data and relationships of interest in a principled way.
Using highly optimized rendering routines written in Python but compiled to machine code using Numba, datashader
makes it practical to work with extremely large datasets even on standard hardware.

To make it concrete, here’s an example of what datashader code looks like:

>>> import datashader as ds
>>> import datashader.transfer_functions as tf
>>> import pandas as pd
>>> df = pd.read_csv('user_data.csv')

>>> cvs = ds.Canvas(plot_width=400, plot_height=400)
>>> agg = cvs.points(df, 'x_col', 'y_col', ds.mean('z_col'))
>>> img = tf.shade(agg, cmap=['lightblue', 'darkblue'], how='log')

This code reads a data file into a Pandas dataframe df, and then projects the fields x_col and y_col onto the x
and y dimensions of 400x400 grid, aggregating it by the mean value of the z_col of each datapoint. The results are
rendered into an image where the minimum count will be plotted in lightblue, the maximum in darkblue, and
ranging logarithmically in between.

And here are some sample outputs for data from the 2010 US census, each constructed using a similar set of code:

Contents 1

http://numba.pydata.org

datashader Documentation, Release 0.6.4

Documentation for datashader is primarily provided in the form of Jupyter notebooks. To understand which plot-
ting problems datashader helps you avoid, you can start with our Plotting Pitfalls notebook. To see the steps in the
datashader pipeline in detail, you can start with our Pipeline notebook. Or you may want to start with detailed case
studies of datashader in action, such as our NYC Taxi, US Census, and OpenSky notebooks. In most cases, the easiest
way to use Datashader via the high-level HoloViews package, which lets you flexibly switch between Datashader
and non-Datashader plots generated by Matplotlib or Bokeh. Additional notebooks showing how to use datashader
for other applications or data types are viewable on Anaconda Cloud and can be downloaded in runnable form as
described on the datashader examples page.

2 Contents

https://anaconda.org/jbednar/plotting_pitfalls
https://anaconda.org/jbednar/pipeline
https://anaconda.org/jbednar/nyc_taxi
https://anaconda.org/jbednar/census
https://anaconda.org/jbednar/opensky
https://anaconda.org/jbednar/holoviews_datashader
https://anaconda.org/jbednar/notebooks
https://raw.githubusercontent.com/bokeh/datashader/master/examples/README.md

CHAPTER 1

FAQ

Q: When should I use datashader?

A: Datashader is designed for working with large datasets, for cases where it is most crucial to faithfully represent
the distribution of your data. datashader can work easily with extremely large datasets, generating a fixed-size data
structure (regardless of the original number of records) that gets transferred to your local browser for display. If you
ever find yourself subsampling your data just so that you can plot it feasibly, or if you are forced for practical reasons
to iterate over chunks of it rather than looking at all of it at once, then datashader can probably help you.

Q: When should I not use datashader?

A: If you have a very small number of data points (in the hundreds or thousands) or curves (in the tens or several tens,
each with hundreds or thousands of points), then conventional plotting packages like Bokeh may be more suitable.
With conventional browser-based packages, all of the data points are passed directly to the browser for display, allow-
ing specific interaction with each curve or point, including display of metadata, linking to sources, etc. This approach
offers the most flexibility per point or per curve, but rapidly runs into limitations on how much data can be processed
by the browser, and how much can be displayed on screen and resolved by the human visual system. If you are not
having such problems, i.e., your data is easily handled by your plotting infrastructure and you can easily see and work
with all your data onscreen already, then you probably don’t need datashader.

Q: Is datashader part of bokeh?

A: datashader is an independent project, focusing on generating aggregate arrays and representations of them as
images. Bokeh is a complementary project, focusing on building browser-based visualizations and dashboards. Bokeh
(along with other plotting packages) can display images rendered by datashader, providing axes, interactive zooming
and panning, selection, legends, hover information, and so on. Sample bokeh-based plotting code is provided with
datashader, but viewers for maptlotlib are already under development, and similar code could be developed for any
other plotting package that can display images. The library can also be used separately, without any external plotting
packages, generating images that can be displayed directly or saved to disk, or generating aggregate arrays suitable for
further analysis.

3

https://bokeh.pydata.org

datashader Documentation, Release 0.6.4

4 Chapter 1. FAQ

CHAPTER 2

Other resources

You can watch a short talk about datashader on YouTube: Datashader: Revealing the Structure of Genuinely Big
Data. The video, Visualizing Billions of Points of Data, and its slides from a February 2016 one-hour talk introducing
Datashader are also available, but do not cover more recent extensions to the library.

Some of the original ideas for datashader were developed under the name Abstract Rendering, which is described in a
2014 SPIE VDA paper.

The source code for datashader is maintained at our Github site, and is documented using the API link on this page.

2.1 API

2.1.1 Entry Points

Canvas

Canvas([plot_width, plot_height, x_range, . . .]) An abstract canvas representing the space in which to bin.
Canvas.line(source, x, y[, agg]) Compute a reduction by pixel, mapping data to pixels as a

line.
Canvas.points(source, x, y[, agg]) Compute a reduction by pixel, mapping data to pixels as

points.
Canvas.raster(source[, layer, . . .]) Sample a raster dataset by canvas size and bounds.
Canvas.validate() Check that parameter settings are valid for this object

Pipeline

Pipeline(df, glyph[, agg, transform_fn, . . .]) A datashading pipeline callback.

5

https://www.youtube.com/watch?v=6m3CFbKmK_c
https://www.youtube.com/watch?v=6m3CFbKmK_c
http://go2.continuum.io/JN12XH0g0W0Rb300CZ00000
http://go2.continuum.io/V0Nc000C300W100X20HZhR0
http://www.crest.iu.edu/publications/prints/2014/Cottam2014OutOfCore.pdf
https://github.com/bokeh/datashader

datashader Documentation, Release 0.6.4

2.1.2 Edge Bundling

directly_connect_edges
hammer_bundle

2.1.3 Glyphs

Point

Point(x, y) A point, with center at x and y.
Point.inputs
Point.validate(in_dshape)

Line

Line(x, y) A line, with vertices defined by x and y.
Line.inputs
Line.validate(in_dshape)

2.1.4 Reductions

any([column]) Whether any elements in column map to each bin.
count([column]) Count elements in each bin.
count_cat(column) Count of all elements in column, grouped by category.
m2(column) Sum of square differences from the mean of all elements in

column.
max(column) Maximum value of all elements in column.
mean(column) Mean of all elements in column.
min(column) Minimum value of all elements in column.
std(column) Standard Deviation of all elements in column.
sum(column) Sum of all elements in column.
summary(**kwargs) A collection of named reductions.
var(column) Variance of all elements in column.

2.1.5 Transfer Functions

Image

Image(data[, coords, dims, name, attrs, . . .])
Image.to_bytesio([format, origin])
Image.to_pil([origin])

Other

dynspread(img[, threshold, max_px, shape, . . .]) Spread pixels in an image dynamically based on the image
density.

set_background(img[, color, name]) Return a new image, with the background set to color.
Continued on next page

6 Chapter 2. Other resources

datashader Documentation, Release 0.6.4

Table 2.8 – continued from previous page
shade(agg[, cmap, color_key, how, alpha, . . .]) Convert a DataArray to an image by choosing an RGBA

pixel color for each value.
spread(img[, px, shape, how, mask, name]) Spread pixels in an image.
stack(*imgs, **kwargs) Combine images together, overlaying later images onto

earlier ones.

2.1.6 Definitions

class datashader.Canvas(plot_width=600, plot_height=600, x_range=None, y_range=None,
x_axis_type=’linear’, y_axis_type=’linear’)

An abstract canvas representing the space in which to bin.

Parameters plot_width, plot_height : int, optional

Width and height of the output aggregate in pixels.

x_range, y_range : tuple, optional

A tuple representing the bounds inclusive space [min, max] along the axis.

x_axis_type, y_axis_type : str, optional

The type of the axis. Valid options are 'linear' [default], and 'log'.

class datashader.Pipeline(df, glyph, agg=<datashader.reductions.count object>, trans-
form_fn=<function identity>, color_fn=<function shade>,
spread_fn=<function dynspread>, width_scale=1.0, height_scale=1.0)

A datashading pipeline callback.

Given a declarative specification, creates a callable with the following signature:

callback(x_range, y_range, width, height)

where x_range and y_range form the bounding box on the viewport, and width and height specify the
output image dimensions.

Parameters df : pandas.DataFrame, dask.DataFrame

glyph : Glyph

The glyph to bin by.

agg : Reduction, optional

The reduction to compute per-pixel. Default is count().

transform_fn : callable, optional

A callable that takes the computed aggregate as an argument, and returns another aggre-
gate. This can be used to do preprocessing before passing to the color_fn function.

color_fn : callable, optional

A callable that takes the output of tranform_fn, and returns an Image object. De-
fault is shade.

spread_fn : callable, optional

A callable that takes the output of color_fn, and returns another Image object. De-
fault is dynspread.

height_scale: float, optional

Factor by which to scale the provided height

2.1. API 7

datashader Documentation, Release 0.6.4

width_scale: float, optional

Factor by which to scale the provided width

class datashader.glyphs.Point(x, y)
A point, with center at x and y.

Points map each record to a single bin. Points falling exactly on the upper bounds are treated as a special case,
mapping into the previous bin rather than being cropped off.

Parameters x, y : str

Column names for the x and y coordinates of each point.

class datashader.glyphs.Line(x, y)
A line, with vertices defined by x and y.

Parameters x, y : str

Column names for the x and y coordinates of each vertex.

class datashader.reductions.count(column=None)
Count elements in each bin.

Parameters column : str, optional

If provided, only counts elements in column that are not NaN. Otherwise, counts every
element.

class datashader.reductions.any(column=None)
Whether any elements in column map to each bin.

Parameters column : str, optional

If provided, only elements in column that are NaN are skipped.

class datashader.reductions.sum(column)
Sum of all elements in column.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.m2(column)
Sum of square differences from the mean of all elements in column.

Intermediate value for computing var and std, not intended to be used on its own.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.min(column)
Minimum value of all elements in column.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.max(column)
Maximum value of all elements in column.

Parameters column : str

8 Chapter 2. Other resources

datashader Documentation, Release 0.6.4

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.mean(column)
Mean of all elements in column.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.var(column)
Variance of all elements in column.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.std(column)
Standard Deviation of all elements in column.

Parameters column : str

Name of the column to aggregate over. Column data type must be numeric. NaN values
in the column are skipped.

class datashader.reductions.count_cat(column)
Count of all elements in column, grouped by category.

Parameters column : str

Name of the column to aggregate over. Column data type must be categorical. Resulting
aggregate has a outer dimension axis along the categories present.

class datashader.reductions.summary(**kwargs)
A collection of named reductions.

Computes all aggregates simultaneously, output is stored as a xarray.Dataset.

Examples

A reduction for computing the mean of column “a”, and the sum of column “b” for each bin, all in a single pass.

>>> import datashader as ds
>>> red = ds.summary(mean_a=ds.mean('a'), sum_b=ds.sum('b'))

datashader.transfer_functions.stack(*imgs, **kwargs)
Combine images together, overlaying later images onto earlier ones.

Parameters imgs : iterable of Image

The images to combine.

how : str, optional

The compositing operator to combine pixels. Default is ‘over’.

2.1. API 9

datashader Documentation, Release 0.6.4

datashader.transfer_functions.shade(agg, cmap=[’lightblue’, ’darkblue’],
color_key=[’#e41a1c’, ’#377eb8’, ’#4daf4a’, ’#984ea3’,
’#ff7f00’, ’#ffff33’, ’#a65628’, ’#f781bf’, ’#999999’,
’#66c2a5’, ’#fc8d62’, ’#8da0cb’, ’#a6d854’, ’#ffd92f’,
’#e5c494’, ’#ffffb3’, ’#fb8072’, ’#fdb462’, ’#fccde5’,
’#d9d9d9’, ’#ccebc5’, ’#ffed6f’], how=’eq_hist’,
alpha=255, min_alpha=40, span=None, name=None)

Convert a DataArray to an image by choosing an RGBA pixel color for each value.

Requires a DataArray with a single data dimension, here called the “value”, indexed using either 2D or 3D
coordinates.

For a DataArray with 2D coordinates, the RGB channels are computed from the values by interpolated lookup
into the given colormap cmap. The A channel is then set to the given fixed alpha value for all non-zero values,
and to zero for all zero values.

DataArrays with 3D coordinates are expected to contain values distributed over different categories that are
indexed by the additional coordinate. Such an array would reduce to the 2D-coordinate case if collapsed across
the categories (e.g. if one did aggc.sum(dim='cat') for a categorical dimension cat). The RGB channels
for the uncollapsed, 3D case are computed by averaging the colors in the provided color_key (with one
color per category), weighted by the array’s value for that category. The A channel is then computed from the
array’s total value collapsed across all categories at that location, ranging from the specified min_alpha to the
maximum alpha value (255).

Parameters agg : DataArray

cmap : list of colors or matplotlib.colors.Colormap, optional

The colormap to use for 2D agg arrays. Can be either a list of colors (specified either
by name, RGBA hexcode, or as a tuple of (red, green, blue) values.), or a
matplotlib colormap object. Default is ["lightblue", "darkblue"].

color_key : dict or iterable

The colors to use for a 3D (categorical) agg array. Can be either a dict mapping from
field name to colors, or an iterable of colors in the same order as the record fields, and
including at least that many distinct colors.

how : str or callable, optional

The interpolation method to use, for the cmap of a 2D DataArray or the alpha channel
of a 3D DataArray. Valid strings are ‘eq_hist’ [default], ‘cbrt’ (cube root), ‘log’ (loga-
rithmic), and ‘linear’. Callables take 2 arguments - a 2-dimensional array of magnitudes
at each pixel, and a boolean mask array indicating missingness. They should return a
numeric array of the same shape, with NaN values where the mask was True.

alpha : int, optional

Value between 0 - 255 representing the alpha value to use for colormapped pixels that
contain data (i.e. non-NaN values). Regardless of this value, NaN values are set to be
fully transparent when doing colormapping.

min_alpha : float, optional

The minimum alpha value to use for non-empty pixels when doing colormapping, in
[0, 255]. Use a higher value to avoid undersaturation, i.e. poorly visible low-value
datapoints, at the expense of the overall dynamic range.

span : list of min-max range, optional

Min and max data values to use for colormap interpolation, when wishing to override
autoranging.

10 Chapter 2. Other resources

datashader Documentation, Release 0.6.4

name : string name, optional

Optional string name to give to the Image object to return, to label results for display.

datashader.transfer_functions.set_background(img, color=None, name=None)
Return a new image, with the background set to color.

Parameters img : Image

color : color name or tuple, optional

The background color. Can be specified either by name, hexcode, or as a tuple of
(red, green, blue) values.

datashader.transfer_functions.spread(img, px=1, shape=’circle’, how=’over’, mask=None,
name=None)

Spread pixels in an image.

Spreading expands each pixel a certain number of pixels on all sides according to a given shape, merging pixels
using a specified compositing operator. This can be useful to make sparse plots more visible.

Parameters img : Image

px : int, optional

Number of pixels to spread on all sides

shape : str, optional

The shape to spread by. Options are ‘circle’ [default] or ‘square’.

how : str, optional

The name of the compositing operator to use when combining pixels.

mask : ndarray, shape (M, M), optional

The mask to spread over. If provided, this mask is used instead of generating one based
on px and shape. Must be a square array with odd dimensions. Pixels are spread from
the center of the mask to locations where the mask is True.

name : string name, optional

Optional string name to give to the Image object to return, to label results for display.

datashader.transfer_functions.dynspread(img, threshold=0.5, max_px=3, shape=’circle’,
how=’over’, name=None)

Spread pixels in an image dynamically based on the image density.

Spreading expands each pixel a certain number of pixels on all sides according to a given shape, merging pixels
using a specified compositing operator. This can be useful to make sparse plots more visible. Dynamic spreading
determines how many pixels to spread based on a density heuristic. Spreading starts at 1 pixel, and stops when
the fraction of adjacent non-empty pixels reaches the specified threshold, or the max_px is reached, whichever
comes first.

Parameters img : Image

threshold : float, optional

A tuning parameter in [0, 1], with higher values giving more spreading.

max_px : int, optional

Maximum number of pixels to spread on all sides.

shape : str, optional

The shape to spread by. Options are ‘circle’ [default] or ‘square’.

2.1. API 11

datashader Documentation, Release 0.6.4

how : str, optional

The name of the compositing operator to use when combining pixels.

2.2 Performance

Datashader is designed to make it simple to work with even very large datasets. To get good performance, it is essential
that each step in the overall processing pipeline be set up appropriately. Below we share some of our suggestions based
on our own Benchmarking and optimization experience, which should help you obtain suitable performance in your
own work.

2.2.1 File formats

Based on our testing with various file formats, we recommend storing any large columnar datasets in the Apache
Parquet format when possible, using the fastparquet library with “Snappy” compression:

>>> import dask.dataframe as dd
>>> dd.to_parquet(filename, df, compression="SNAPPY")

If your data includes categorical values that take on a limited, fixed number of possible values (e.g. “Male”, “Female”),
With parquet, categorical columns use a more memory-efficient data representation and are optimized for common
operations such as sorting and finding uniques. Before saving, just convert the column as follows:

>>> df[colname] = df[colname].astype('category')

By default, numerical datasets typically use 64-bit floats, but many applications do not require 64-bit precision when
aggregating over a very large number of datapoints to show a distribution. Using 32-bit floats reduces storage and
memory requirements in half, and also typically greatly speeds up computations because only half as much data needs
to be accessed in memory. If applicable to your particular situation, just convert the data type before generating the
file:

>>> df[colname] = df[colname].astype(numpy.float32)

2.2.2 Single machine

Datashader supports both Pandas and Dask dataframes, but Dask dataframes typically give higher performance even
on a single machine, because it makes good use of all available cores, and it also supports out-of-core operation for
datasets larger than memory.

Dasks works on chunks of the data at any one time, called partitions. With dask on a single machine, a rule of thumb
for the number of partitions to use is multiprocessing.cpu_count(), which allows Dask to use one thread
per core for parallelizing computations.

When the entire dataset fits into memory at once, you can persist the data as a Dask dataframe prior to passing it into
datashader, to ensure that data only needs to be loaded once:

>>> from dask import dataframe as dd
>>> import multiprocessing as mp
>>> dask_df = dd.from_pandas(df, npartitions=mp.cpu_count())
>>> dask_df.persist()
...
>>> cvs = datashader.Canvas(...)
>>> agg = cvs.points(dask_df, ...)

12 Chapter 2. Other resources

https://github.com/bokeh/datashader/issues/313
https://github.com/bokeh/datashader/issues/129
https://parquet.apache.org/
https://parquet.apache.org/
https://github.com/dask/fastparquet

datashader Documentation, Release 0.6.4

When the entire dataset doesn’t fit into memory at once, you should not use persist. In our tests of this scenario, dask’s
distributed scheduler gave better performance than the default scheduler, even on single machines:

>>> from dask import distributed
>>> import multiprocessing as mp
>>> cluster = distributed.LocalCluster(n_workers=mp.cpu_count(), threads_per_worker=1)
>>> dask_client = distributed.Client(cluster)
>>> dask_df = dd.from_pandas(df, npartitions=mp.cpu_count()) # Note no "persist"
...
>>> cvs = datashader.Canvas(...)
>>> agg = cvs.points(dask_df, ...)

2.2.3 Multiple machines

To use multiple nodes (different machines) at once, you can use a Dask dataframe with the distributed scheduler
as shown above. client.persist(dask_df) may help in certain cases, but if you are doing profiling of the
aggregation step, be sure to include distributed.wait() to block until the data is read into RAM on each
worker.

2.2. Performance 13

datashader Documentation, Release 0.6.4

14 Chapter 2. Other resources

Python Module Index

d
datashader.transfer_functions, 9

15

datashader Documentation, Release 0.6.4

16 Python Module Index

Index

A
any (class in datashader.reductions), 8

C
Canvas (class in datashader), 7
count (class in datashader.reductions), 8
count_cat (class in datashader.reductions), 9

D
datashader.transfer_functions (module), 9
dynspread() (in module datashader.transfer_functions),

11

L
Line (class in datashader.glyphs), 8

M
m2 (class in datashader.reductions), 8
max (class in datashader.reductions), 8
mean (class in datashader.reductions), 9
min (class in datashader.reductions), 8

P
Pipeline (class in datashader), 7
Point (class in datashader.glyphs), 8

S
set_background() (in module

datashader.transfer_functions), 11
shade() (in module datashader.transfer_functions), 9
spread() (in module datashader.transfer_functions), 11
stack() (in module datashader.transfer_functions), 9
std (class in datashader.reductions), 9
sum (class in datashader.reductions), 8
summary (class in datashader.reductions), 9

V
var (class in datashader.reductions), 9

17

	FAQ
	Other resources
	Python Module Index

