

	Home
	News

	Slides

	Office hours

	Labs timetable

	Tutoring

	Exams
	Schedule

	Exam modalities

	Exams how to
	How to edit and run

	Debugging

	Expectations

	Grading

	Exams FAQ

	Past exams

	Resources
	Part A Resources

	Part B Resources

	Editors

	Further readings

	Acknoledgements

	Past Exams
	Data science
	Exam - Monday 24, August 2020 - solutions
	Download exercises and solutions

	Introduction
	What to do

	Part A - Prezzario
	Pompa completa a motore Example

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 describe

	B2 couple_sort

	B3 schedule_rec

	Exam - Friday 17, July 2020 - solutions
	Download exercises and solutions

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A - NACE codes
	Sections

	Section detail

	Specifications

	NACE CSV

	A1 Extracting codes

	A1.1 is_nace

	A1.2 extract_codes

	A2 build_db

	A3 plot

	Part B
	B1.1 complexity

	B1.2 describe

	B2 - OfficeQueue

	B2.1 - time_to_service
	Services not required by any client

	B2.2 split

	Exam - Tuesday 16, June 2020 - solutions
	Download exercises and solutions

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A - Zoom surveillance
	CSV format

	A1 time24

	A2 load

	A3.1 duration

	A3.2 calc_stats

	A4 viz

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 describe

	B2 - LinkedList slice
	Special cases

	B3 BinaryTree prune_rec

	Exam - Monday 10, February 2020 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A1 parse_db
	Field description

	implement parse_db

	A2 to_adj
	Check results

	A.3 hist

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 graph visits

	B2 ItalianQueue v2

	B2.1 enqueue

	B2.2 dequeue

	Exam - Thu 23, Jan 2020 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	Metamath
	Metamath db

	A.1 Metamath db

	A.2 Metamath proof
	Checking proof
	Overview plot

	Detail plot

	A.3 Metamath top statements
	A3.1 histogram

	A3.2 print list

	Part B

	B1 Theory
	B1.1 my_fun

	B1.2 differences

	B2 plus_one

	B3 add_row

	Midterm B - Fri 20, Dec 2019
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part B

	B1 Theory
	B1.1 Complexity

	B1.2 Data structure choice

	B2 LinkedList

	B2.1 rotate

	B2.2 rotaten

	B3 Binary trees

	B3.1 sum_leaves_rec

	B3.2 leaves_stack

	Midterm - Thu 07, Nov 2019 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A.1 leap_year

	A.2 full_date

	A.3 partial_date

	A.4 parse_dates_and

	A.5 Fake news generator

	Midterm sim - Tue 31, October 2019 - solutions
	Download exercises and solution

	Introduction
	Valid code

	How to edit and run

	Debugging

	What to do

	Part A - offerte lavoro EURES

	offerte dataset

	rename columns

	1. Rename countries
	1.1 countries_to_list

	1.2 Filling column Workplace Country

	2. Work dates
	2.1 from_to function

	2.2. From To columns

	3. Required languages
	3.1 function reqlan

	3.2 Languages column

	Exam - Mon 26, August 2019 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A - University of Trento staff
	A1 calc_uid_to_abbr

	A2.1 calc_prof_roles

	A2.2 plot_profs

	A3.1 calc_roles

	A3.2 plot_roles

	A4.1 calc_shared

	A4.2 plot_shared

	Part B

	B1 Theory

	B2 Backpack
	B2.1 class

	B2.2 remove

	B.3 Concert
	B3.1 dequeue
	Special dequeue case: broken group

	Exam - Tue 02, July 2019 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A1 Botteghe storiche
	A1.1 rank_categories

	A1.2 plot

	A1.3 enrich

	A2 dump

	Part B

	B1 Theory

	B2 Linked List sorting
	B2.1 bubble_sort

	B2.2 merge

	B3 Stacktris
	B3.1 _shorten

	B3.2 drop1

	B3.3 drop2h

	Exam - Monday 10, June 2019 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A1 ITEA real estate
	A1.1 calc_types_hist

	A1.2 calc_types_series

	A1.3 Real estates plot

	A2 Air quality

	Part B

	B1 Theory

	B2 WStack
	B2.1 implement class WStack

	B2.2 accumulate

	B3 GenericTree

	B3.1 is_triangle

	B3.2 has_triangle

	Exam - Wed 13, Feb 2019 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A - Bus network visualization
	A1 extract_routes

	A2 to_int_min

	A3 get_legend_edges

	A4 calc_nx

	A5 color_hubs

	A6 plot_timings

	Part B

	B.1 Theory

	B2 Company queues
	B2.1 add_employee

	B2.2 add_task

	B2.2 work

	B3 GenericTree

	B3.1 fill_left

	B3.2 follow

	Exam - Wed 23, Jan 2019 - solutions
	Download exercises and solution
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A.1 table_to_adj

	A.2 bus stops

	Part B

	B.1 Theory

	B.2 Linked List flatv

	B.3 Generic Tree rightmost

	Midterm - Thu 10, Jan 2019 - solutions
	Download exercises and solution
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Introduction

	B1 Theory

	B2 Gaps linked list

	B3 Tasks stack
	B3.1 do

	B3.2 do_level

	B4 Exits graph
	B4.1 cp

	B4.2 exits

	Midterm - Fri 16 November 2018 - solutions
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	A1 union

	A2 surjective
	A3 ediff

	Midterm Simulation - Tue 13, November 2018 - solutions
	Download exercises

	Introduction
	Allowed material

	Grading FACSIMILE - IN THIS SIMULATION TIME YOU GET NO GRADE !!!!

	Valid code

	How to edit and run

	Debugging

	What to do

	1. matrices
	1.1 fill

	1.2 lab

	2. phones
	2.1 canonical

	2.2 prefix

	2.3 hist

	2.4 display calls by prefixes

	2017-18 (QCB)

	2016-17 (QCB)

	Slides 2019/20
	Part A
	Lab A.1
	Links

	What I expect

	Course contents
	Python Tutor

	Some data types example

	Let’s start:

	Lab A.2
	Links

	Lab A.3
	Links

	Lab A.4
	Links

	Lab A.5
	Links

	Lab A.6
	Links

	Lab A.7
	Links

	Lab A.8
	Links

	Lab A.9
	Links

	Lab A.10
	Links

	Lab A.11
	Links

	Lab A.12

	Lab B.1

	Lab B.2

	Lab B.3

	Lab B.4

	Lab B.5

	Lab B.6

	Lab B.7

	Lab B.8

	Lab B.9

	Lab B.10

	Lab B.11

	Lab B.12

	Commandments

	Introduction
	Download exercises zip

	Installation
	Windows/Mac installation

	Linux installation

	Python tutor

	System console

	Python interpreter

	Visual Studio Code

	The debugger

	Jupyter
	Run Jupyter

	Editing notebooks

	Browsing notebooks

	Course exercise formats
	Download exercises zip

	Python Tutor inside Jupyter

	Exercises

	Python basics
	Download exercises zip

	Modules

	Objects

	Variables
	Exercise: variable names

	Numeric types
	Integers

	Booleans
	Boolean operators

	Booleans exercise: constants
	Booleans exercise: variables

	Boolean conversion

	Booleans exercise: what is a boolean?

	Numeric operators
	Numeric operators exercise: cycling

	Real numbers
	Real numbers exercise: quadratic equation

	Strings
	Download exercises zip

	What to do

	Introduction
	Exercise: many hello

	Exercise: interleave terns

	Exercise: print length

	Exercise: both contained

	Slicing

	Exercise: garalampog

	Exercise: ifE:nbsphinx-math:te:nbsphinx-math:`nfav `lkD lkWe

	Exercise: javarnanda

	Methods for the str object

	Exercise substitute

	Exercise hatespace

	Exercises with functions
	length

	contains

	invertilet

	nspace

	startend

	swap

	Verify comprehension
	has_char

	count

	dialect

	countvoc

	palindrome

	extract_email

	canon_phone

	phone_prefix

	Further resources

	Lists
	Download exercises zip

	What to do

	Introduction
	Operators for lists

	Methods of the class list

	Exercise: growing list 1

	Exercise: growing list 2

	List of strings

	Lists hold references

	Making copies

	Equality and identity

	From strings to lists, the split method

	And back to strings with the join method

	Exercise: manylines

	Exercise: welldone

	Exercise: numlist

	List comprehension

	Exercises with functions
	printwords

	printeven

	find26

	firstsec

	threeven

	separate_ip

	average

	Verify comprehension
	Mapping

	newdoublefor

	double

	newdoublecomp

	up

	Filter

	remall

	only_capital_for

	only_capital_comp

	Reduce

	sum_all

	sum_all_even_for

	sum_all_even_comp

	Other exercises

	contains

	firstn

	firstlast

	dup

	hasdup

	ord3

	filterab

	hill

	peak

	even

	mix

	fill

	nostop

	threes

	list_to_int
	list_to_int_dirty

	list_to_int

	int_to_list

	add one
	add_one_conv

	add_one_carry

	collatz

	Recursive operations
	gap_rec

	Further exercises

	Tuples
	Download exercises zip

	What to do

	Introduction
	Building tuples

	Building from sequences

	Tuple operators

	Exercise: pet tuples

	Exercise: fruits

	Exercise: build a tuple

	Verify comprehension
	doubletup

	Sets
	Download exercises zip
	What to do

	introduction
	Creating a set
	set from a sequence

	Empty sets

	Iterating a set

	Adding twice

	Belonging to a set

	Operations
	updating sets

	Exercise: set operators

	Exercise: dedup

	Dictionaries
	Download exercises zip

	What to do

	Introduction
	Dict

	Dictionary methods
	Functions working on dictionaries

	Exercise print key

	Exercise modify dictionary

	Exercise print keys

	Exercise print dimension

	Exercise print keys as list

	Exercise ordered keys

	OrderedDict

	Exercise: OrderedDict phonebook

	Exercise: OrderedDict copy

	List of nested dictionaries

	Exercise: print employees

	Exercise: print company names

	Exercises with functions
	print_val

	has_key

	dim

	keyring

	couples

	Verify comprehension
	histogram

	listify

	tcounts

	inter

	unique_vals

	uppers

	filtraz

	powers

	dilist

	prefixes

	Managers

	managers: extract_managers

	managers: extract_departments

	managers: avg_age

	managers: buildings

	medie

	has_pref

	Control flow
	Download exercises zip

	Introduction
	What to do

	Execution flow

	Conditionals
	The basic if - else statement

	The if - elif - else statement

	Nested ifs

	Ternary operator

	Loops
	For loop

	Looping over a range

	Nested for loops

	While loops

	Break and continue
	Continue statement

	Break statement

	Exercises

	Functions
	Download exercises zip

	Introduction
	What to do

	What is a function ?

	Namespace and variable scope

	Argument passing
	Positional arguments

	Passing arguments by keyword

	Specifying default values

	Simple exercises
	sum2

	comparep

	comparer

	even

	gre

	is_vocal

	sphere_volume

	ciri

	age

	Verify comprehension
	gre3

	final_price

	arrival_time

	Lambda functions
	Exercises: lambdas

	apply_borders

	process

	Errors and testing
	Download exercises zip

	Introduction
	What to do

	Unforeseen situations
	make_problematic_pie

	Check with the return

	Exceptions
	Manage exceptions

	Particular exceptions

	assert
	When to use assert?

	Testing
	Where Is Your Software?

	Testing with asserts
	Part A exercise structure

	even_numbers example
	Let’s add assertions

	Error kinds
	Error kind a) An external user misuses you program.

	Error kind b): Your code is just plain wrong

	Testing with Unittest
	Running tests

	When tests don’t run

	Adding tests

	Exercise: boundary cases

	Exercise: expecting assertions

	Exercise: good tests

	Running unittests in Visual Studio Code

	Functional programming

	Matrices: lists
	Download exercises zip

	Introduction

	What to do
	Overview

	Exercises
	Matrix dimensions

	extract_row

	extract_row_pointer

	extract_row_f

	extract_row_fr

	extract_row_s

	extract_row_c

	extract_col_f

	extract_col_c

	deep_clone

	stitch_down

	stitch_up

	stitch_right

	stitch_left_mod

	Exceptions and parameter checking

	diag

	anti_diag

	is_utriang

	transpose_1

	empty matrix

	empty_matrix the elegant way

	transpose_2

	threshold

	swap_rows

	swap_cols

	lab

	dump

	matrix multiplication

	check_nqueen

	Matrices: numpy
	Download exercises zip

	Introduction
	What to do

	np.array

	NaNs and infinities
	NaNs

	Detecting NaN

	Sequences with NaNs

	Exercise NaN: two vars

	Operations on NaNs

	NaN and Numpy

	Where are the NaNs ?

	Infinities

	Positive infinity np.inf

	Negative infinity

	Combining infinities and NaNs

	Negative zero

	Exercise: detect proper numbers

	Exercise: guess expressions

	Verify comprehension
	odd

	doublealt

	frame

	chessboard

	altsum

	avg_rows

	avg_half

	matxarr

	quadrants

	matrot

	Other Numpy exercises

	Data formats
	Download exercises zip

	Introduction
	What to do

	1. line files
	open command

	The encoding

	with block

	people-complex line file:

	Exercise: line file immersione-in-python-toc

	2. File CSV
	Why parsing a CSV ?

	Reading a CSV
	What’s a reader ?

	Consuming a file

	Reading as dictionaries

	Writing a CSV

	Reading and writing a CSV

	CSV Botteghe storiche

	Problem: wrong characters ??

	Botteghe storiche in Python

	Botteghe storiche: rank_categories

	Botteghe storiche: enrich

	Graph formats
	Download exercises zip

	Introduction
	What to do

	Required libraries

	Graph definition

	Edge weights

	Matrices

	Visualization examples

	Saving a graph to a file

	Minimal graph

	Graph with two nodes example

	Distance matrix

	Boolean matrix example

	Matrix exercises

	line

	cross

	union

	is_subgraph

	remove_node

	utriang

	ediff

	pyramid

	Adjacency lists
	mat_to_adj

	mat_ids_to_adj

	adj_to_mat

	table_to_adj

	Networkx
	Converting networkx graphs

	mat_to_nx

	Simple statistics
	Outdegrees and indegrees

	outdegree_adj

	outdegree_mat

	outdegree_avg

	indegree_adj

	indegree_mat

	indegree_avg

	Was it worth it?

	min_outdeg

	networkx Indegrees and outdegrees

	Visualization
	Download exercises zip

	Introduction
	What to do

	First example
	Plot style

	x power 2 exercise

	Axis limits

	Axis size

	Changing tick labels

	Introducting numpy
	Example without numpy

	Example with numpy

	y = sin(x) + 3 exercise

	Showing degrees per node

	indegree per node

	Bar plots
	indegree per node bar plot

	indegree per node sorted alphabetically

	indegree per node sorted

	out degrees per node sorted

	degrees per node

	Frequency histogram

	Showing plots side by side
	Graph models
	Erdős–Rényi model

	Other plots
	Pie chart

	Pandas
	Download exercises zip

	1. Introduction
	What to do

	2. Data analysis of Astro Pi
	2.1 Exercise: meteo info

	3. Indexing, filtering, ordering
	3.1 Exercise: Meteo stats

	4. MatPlotLib review
	Matplotlib plots from pandas datastructures

	5. Calculating new columns
	5.1 Exercise: Meteo Fahrenheit temperature

	5.2 Exercise: Pressure vs Temperature

	6. Object values
	Filter by textual values

	Extracting strings

	7. Transforming

	8. Grouping

	9. Exercise: meteo average temperatures
	9.1 meteo plot

	9.2 meteo pressure and raining

	9.3 meteo average temperature

	10. Merging tables
	Exercise 10.1 better merge

	11. Other exercises

	Binary relations
	Download exercises zip

	Introduction
	What to do

	Reflexive relations

	Exercises
	is_reflexive_mat

	is_reflexive_adj

	Symmetric relations

	is_symmetric_mat

	is_symmetric_adj

	surjective

	Further resources

	OOP
	Download exercises zip

	What to do

	1. Abstract Data Types (ADT) Theory
	1.1. Intro

	1.2. Complex number theory

	1.3. Datatypes the old way

	1.4. Finding the pattern

	1.5. Object Oriented Programming

	2. ComplexNumber class
	2.1. Class declaration

	2.2. Constructor __init__

	2.3. Defining methods
	2.3.1 phase

	2.3.2 log

	2.3.3 __str__ for printing

	2.4. ComplexNumber code skeleton

	2.5. Complex numbers magnitude

	2.6. Complex numbers equality

	2.7. Complex numbers isclose

	2.8. Complex numbers addition

	2.9. Adding a scalar

	2.10. Complex numbers multiplication

	3. MultiSet

	3.1 __init__ add and get

	3.2 removen

	Sorting
	Download exercises zip

	Introduction
	References

	What to do

	List performance
	Fast or not?

	Exercises

	1 Selection Sort
	1.1 Implement swap

	1.2 Implement argmin

	1.3: Full selection_sort

	2 Insertion sort

	3 Merge sort
	Taking last element
	Reversing a list

	Removing last element with .pop()

	Costly internal del

	Costly internal pop

	3.1 merge 1

	3.2 merge2

	4 quick sort
	4.1 pivot

	4.2 quicksort and qs

	5. chaining
	5.1 has_duplicates

	B.2.2 chain

	6 SwapArray
	6.1 is_sorted

	6.2 max_to_right

	6.6 swapsort

	Linked lists
	Download exercises zip

	0 Introduction
	References

	What to do

	0.1 Initialization

	0.2 Growing

	0.3 Visiting

	1 v1: a slow LinkedList
	1.a) Testing

	1.b) Differences with the book

	1.c) Please remember…

	2 v2 faster size
	2.1 Save a copy of your work

	2.2. Improve size

	3 v3 Faster append
	3.1 Save a copy of your work

	3.2 add _last field

	3.3 add method skeleton

	3.4 test driven development

	3.4.1 LastTest

	3.4.2 improve myAssert

	3.5 update methods that mutate the LinkedList

	3.6 Run tests

	4 v4 Go bidirectional
	4.1 Save your work

	4.2 Node backlinks

	4.3 Better str

	4.4 Modify add

	4.5 Add to_python_reversed

	4.6 Add invariant

	4.7 Modify other methods

	4.8 Run the tests

	5 EqList
	5.1 eq

	5.2 remsub

	6 Cloning
	6.1 rev

	6.2 clone

	7 More exercises
	7.1 occurrences

	7.2 shrink

	7.3 dup_first

	7.4 dup_all

	7.5 mirror

	7.6 norep

	7.8 find_couple

	7.9 swap

	7.10 gaps

	7.11 flatv

	7.12 bubble_sort

	7.13 merge

	Stacks
	Download exercises zip

	0. Introduction
	References

	What to do

	1. CappedStack
	CappedStack Examples

	Capped Stack basic methods

	1.1 __init__

	1.2 cap

	1.3 size

	1.4 __str__

	1.5 is_empty

	1.6 push

	1.7 peek

	1.8 pop

	1.9 peekn

	1.10 popn

	1.11 set_cap

	2. SortedStack
	2.1 transfer

	2.2 merge

	3. WStack
	3.1 implement class WStack

	3.2 accumulate

	4. Backpack
	4.1 class

	4.2 remove

	5. Tasks
	5.1 do

	5.2 do_level

	6. Stacktris
	6.1 _shorten

	6.2 drop1

	6.3 drop2h

	Queues
	Download exercises zip

	Introduction
	What to do

	1. LinkedQueue
	1.1 enqn

	1.2 deqn

	2. CircularQueue
	2.1 Implementation

	3. ItalianQueue
	3.1 Slow v1

	3.1.1 init

	3.1.2 Slow enqueue

	3.1.2 dequeue

	3.2 Fast v2

	3.2.1 Save a copy

	3.2.2 Improve enqueue

	4. Supermarket queues
	CashQueue

	Supermarket

	Supermarket as a queue

	Implementation

	4.1 Supermarket size

	4.2 Supermarket dequeue

	4.3 Supermarket enqueue

	5. Shopping mall queues
	Client

	Shop

	Mall

	Mall as a queue

	Implementation

	6.1 Mall enqueue

	6.2 Mall dequeue

	6. Company queues
	7.1 add_employee

	7.2 add_task

	7.3 work

	7. Concert
	7.1 dequeue
	Special dequeue case: broken group

	Trees
	Download exercises zip

	0. Introduction
	What to do

	BT 0. Binary Tree Introduction
	BT 0.1 References

	BT 0.2 Terminology - relations

	BT 0.3 Terminology - levels

	BT 0.4 Terminology - shapes

	BT 0.2 Code skeleton

	BT 0.3 Building trees

	BT 0.3.1 Pointers

	BT 0.3.2 Building with insert_left

	BT 0.3.3 Building with bt

	BT 1. Insertions
	BT 1.1 insert_left

	BT 1.2 insert_right

	BT 2. Recursive visit
	BT 2.1 sum_rec

	BT 2.2 height_rec

	BT 2.3 depth_rec

	BT 2.4 contains_rec

	BT 2.5 join_rec

	BT 2.6 fun_rec

	BT 2.7 bin_search_rec

	BT 2.8 bin_insert_rec

	BT 2.9 univalued_rec

	BT 2.10 same_rec

	BT 3. Stack visit
	BT 3.1 sum_stack

	BT 3.3 height_stack

	BT 3.3 others

	BT Further resources

	GT 0. Generic Tree Introduction
	GT 0.2 Code skeleton

	GT 0.3 Building trees

	GT 0.3.1 Pointers

	GT 0.3.2 Building with insert_child

	GT 0.3.3 Building with gt

	GT 0.4 Displaying trees side by side with str_trees

	GT 0.5 Look at the tests

	GT 0.6 Look at gen_tree_test.GenericTreeTest

	GT 1 Implement basic methods
	GT 1.1 insert_child

	GT 1.2 insert_children

	GT 1.3 insert_sibling

	GT 1.4 insert_siblings

	GT 1.5 detach_child

	GT 1.6 detach_sibling

	GT 1.7 detach

	GT 1.8 ancestors

	GT 2 Implement more complex functions
	GT 2.1 grandchildren

	GT 2.2 Zig Zag
	GT 2.2.1 zig

	GT 2.2.2 zag

	GT 2.2.3 zigzag

	GT 2.3 uncles

	GT 2.4 common_ancestor

	GT 2.5 mirror

	GT 2.6 clone

	GT 2.7 rightmost

	GT 2.8 fill_left

	GT 2.9 follow

	GT 2.10 is_triangle

	GT 2.11 has_triangle

	Graph algorithms
	Download exercises zip
	What to do

	Introduction
	0.1 Graph theory

	0.2 Directed graphs

	0.3 Serious graphs

	0.4 Code skeleton

	0.5 Building graphs

	0.5.1 Building basics

	0.5.2 dig()

	0.6 Equality

	0.7 Basic querying

	0.7.1 adj

	0.7.2 is_empty()

	0.7.3 verteces()

	0.8 Blow up your computer

	1. Implement building
	1.1 has_edge

	1.2 full_graph

	1.3 dag

	1.4 list_graph

	1.5 star_graph

	1.6 odd_line

	1.7 even_line

	1.8 quads

	1.9 pie

	1.10 Flux Capacitor

	2. Manipulate graphs
	2.1 remove_vertex

	2.2 transpose

	2.3 has_self_loops

	2.4 remove_self_loops

	2.5 undir

	3. Query graphs
	3.1 distances()

	3.2 equidistances()

	3.3 Play with dfs and bfs

	3.4 Exits graph

	3.4.1 Exits graph cp

	3.4.2 Exit graph exits

	3.5 connected components

	3.6 has_cycle

	3.7 top_sort

	Index

Scientific Programming Lab

Data Science Master @University of Trento - AA 2019/20

Download:

 Past Exams

Past Exams

Data science

NOTE: 19-20 exams are very similar to 18-19, the only difference being that you might also get an exercise on Pandas.

	Exam - Monday 24, August 2020 - solutions
	Download exercises and solutions

	Introduction

	Part A - Prezzario

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory

	B2 couple_sort

	B3 schedule_rec

	Exam - Friday 17, July 2020 - solutions
	Download exercises and solutions

	Introduction

	Part A - NACE codes

	A1 Extracting codes

	A1.1 is_nace

	A1.2 extract_codes

	A2 build_db

	A3 plot

	Part B

	B2 - OfficeQueue

	B2.1 - time_to_service

	B2.2 split

	Exam - Tuesday 16, June 2020 - solutions
	Download exercises and solutions

	Introduction

	Part A - Zoom surveillance

	Part B

	B1 Theory

	B2 - LinkedList slice

	B3 BinaryTree prune_rec

	Exam - Monday 10, February 2020 - solutions
	Download exercises and solution

	Introduction

	Part A

	A1 parse_db

	A2 to_adj

	A.3 hist

	Part B

	B1 Theory

	B2 ItalianQueue v2

	B2.1 enqueue

	B2.2 dequeue

	Exam - Thu 23, Jan 2020 - solutions
	Download exercises and solution

	Introduction

	Part A

	Metamath

	A.1 Metamath db

	A.2 Metamath proof

	A.3 Metamath top statements

	Part B

	B1 Theory

	B2 plus_one

	B3 add_row

	Midterm B - Fri 20, Dec 2019
	Download exercises and solution

	Introduction

	Part B

	B1 Theory

	B2 LinkedList

	B2.1 rotate

	B2.2 rotaten

	B3 Binary trees

	B3.1 sum_leaves_rec

	B3.2 leaves_stack

	Midterm - Thu 07, Nov 2019 - solutions
	Download exercises and solution

	Introduction

	Part A

	A.1 leap_year

	A.2 full_date

	A.3 partial_date

	A.4 parse_dates_and

	A.5 Fake news generator

	Midterm sim - Tue 31, October 2019 - solutions
	Download exercises and solution

	Introduction

	Part A - offerte lavoro EURES

	offerte dataset

	rename columns

	1. Rename countries

	2. Work dates

	3. Required languages

	Exam - Mon 26, August 2019 - solutions
	Download exercises and solution

	Introduction

	Part A - University of Trento staff

	Part B

	B1 Theory

	B2 Backpack

	B.3 Concert

	Exam - Tue 02, July 2019 - solutions
	Download exercises and solution

	Introduction

	Part A

	A1 Botteghe storiche

	A2 dump

	Part B

	B1 Theory

	B2 Linked List sorting

	B3 Stacktris

	Exam - Monday 10, June 2019 - solutions
	Download exercises and solution

	Introduction

	Part A

	A1 ITEA real estate

	A2 Air quality

	Part B

	B1 Theory

	B2 WStack

	B3 GenericTree

	B3.1 is_triangle

	B3.2 has_triangle

	Exam - Wed 13, Feb 2019 - solutions
	Download exercises and solution

	Introduction

	Part A - Bus network visualization

	Part B

	B.1 Theory

	B2 Company queues

	B3 GenericTree

	B3.1 fill_left

	B3.2 follow

	Exam - Wed 23, Jan 2019 - solutions
	Download exercises and solution

	Part A

	A.1 table_to_adj

	A.2 bus stops

	Part B

	B.1 Theory

	B.2 Linked List flatv

	B.3 Generic Tree rightmost

	Midterm - Thu 10, Jan 2019 - solutions
	Download exercises and solution

	Introduction

	B1 Theory

	B2 Gaps linked list

	B3 Tasks stack

	B4 Exits graph

	Midterm - Fri 16 November 2018 - solutions
	Download exercises and solution

	Introduction

	A2 surjective

	Midterm Simulation - Tue 13, November 2018 - solutions
	Download exercises

	Introduction

	1. matrices

	2. phones

2017-18 (QCB)

See QCB master past exams on sciprolab2.readthedocs.io [https://sciprolab2.readthedocs.io/en/latest/intro.html#Past-exams]

NOTE: Those exams are useful, but for you there will be:

	no biological examples

	less dynamic programming

	more exercises on graphs & matrices

	exercise on pandas

	custom DiGraph won’t have Visit and VertexLog classes

2016-17 (QCB)

See davidleoni.github.io/algolab/past-exams.html [https://davidleoni.github.io/algolab/past-exams.html]

WARNING: keep in mind that 2016-17 exams are for Python 2 - in this course we use Python 3

[]:

 Exam - Monday 24, August 2020 - solutions

Exam - Monday 24, August 2020 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solutions

Introduction

	Taking part to this exam erases any vote you had before

What to do

	Download datasciprolab-2020-08-24-exam.zip and extract it on your desktop. Folder content should be like this:

	Rename datasciprolab-2020-08-24-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2020-08-24-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - Prezzario

Open Jupyter and start editing this notebook exam-2020-08-24-exercise.ipynb

You are going to analyze the dataset EPPAT-2018-new-compact.csv, which is the price list for all products and services the Autonomous Province of Trento may require. Source: dati.trentino.it [https://dati.trentino.it/dataset/prezziario-dei-lavori-pubblici-della-provincia-autonoma-di-trento]

DO NOT WASTE TIME LOOKING AT THE WHOLE DATASET!

The dataset is quite complex, please focus on the few examples we provide

We will show examples with pandas, but it is not required to solve the exercises.

[1]:

import pandas as pd
import numpy as np

pd.set_option('display.max_colwidth', -1)

df = pd.read_csv('EPPAT-2018-new-compact.csv', encoding='latin-1')

The dataset contains several columns, but we will consider the following ones:

[2]:

df = df[['Codice Prodotto', 'Descrizione Breve Prodotto', 'Categoria', 'Prezzo']]
df[:22]

[2]:

 Exam - Friday 17, July 2020 - solutions

Exam - Friday 17, July 2020 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solutions

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2020-07-17-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2020-07-17-FIRSTNAME-LASTNAME-ID
 exam-2020-07-17-exercise.ipynb
 theory.txt
 office_queue_exercise.py
 office_queue_test.py

	Rename datasciprolab-2020-07-17-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2020-07-17-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - NACE codes

https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_CLS_DLD&StrNom=NACE_REV2&StrLanguageCode=EN&StrLayoutCode=HIERARCHIC#

So you want to be a data scientist. Good, plenty of oopportunities ahead!

After graduating, you might discover though that many companies require you to actually work as a freelancer: you will just need to declare to the state which type of economic activity you are going to perform, they say. Seems easy, but you will soon encounter a pretty burocratic problem: do public institutions even know what a data scientist is? If not, what is the closest category they recognize? Is there any specific exclusion that would bar you from entering that category?

If you are in Europe, you will be presented with a catalog of economic activites you can choose from called NACE [https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL&StrNom=NACE_REV2&StrLanguageCode=EN&IntPcKey=&StrLayoutCode=HIERARCHIC], which is then further specialized by various states (for example Italy’s catalog is called ATECO [https://www.istat.it/it/archivio/17888])

Sections

A NACE code is subdivided in a hierarchical, four-level structure. The categories at the highest level are called sections, here they are:

[image: image0]

Section detail

If you drill down in say, section M, you will find something like this:

The first two digits of the code identify the division, the third digit identifies the group, and the fourth digit identifies the class:

[image: image0]

Let’s pick for example Advertising agencies , which has code 73.11:

	Level

	
	Code

	Spec

	Description

	1

	Section

	M

	a single
alphabetic
char

	PROFESSIONAL,
SCIENTIFIC
AND TECHNICAL
ACTIVITIES

	2

	Division

	73

	two-digits

	Advertising
and market
research

	3

	Group

	73.1

	three-digits,
with dot
after first
two

	Advertising

	4

	Class

	73.12

	four-digits,
with dot
after first
two

	Advertising
agencies

Specifications

WARNING: CODES MAY CONTAIN ZEROES!

IF YOU LOAD THE CSV IN LIBREOFFICE CALC OR EXCEL, MAKE SURE IT IMPORTS EVERYTHING AS STRING!

WATCH OUT FOR CHOPPED ZEROES !

Zero examples:

	Veterinary activities contains a double zero at the end : 75.00

 Exam - Tuesday 16, June 2020 - solutions

Exam - Tuesday 16, June 2020 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solutions

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2020-06-16-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2020-06-16-FIRSTNAME-LASTNAME-ID
 exam-2020-06-16-exercise.ipynb
 theory.txt
 linked_list_exercise.py
 linked_list_test.py
 bin_tree_exercise.py
 bin_tree_test.py

	Rename datasciprolab-2020-06-16-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2020-06-16-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - Zoom surveillance

A training center holds online courses with Zoom software [https://zoom.us/]. Participants attendance is mandatory, and teachers want to determine who left, when and for what reason. Zoom allows to save a meeting log in a sort of CSV format which holds the timings of joins and leaves of each student. You will clean the file content and show relevant data in charts.

Basically, you are going to build a surveillance system to monitor YOU. Welcome to digital age.

CSV format

You are provided with the file UserQos_12345678901.csv. Unfortunately, it is a weird CSV which actually looks like two completely different CSVs were merged together, one after the other. It contains the following:

	1st line: general meeting header

	2nd line: general meeting data

	3rd line: empty

	4th line completely different header for participant sessions for that meeting. Each session contains a join time and a leave time, and each participant can have multiple sessions in a meeting.

	5th line and following: sessions data

The file has lots of useless fields, try to explore it and understand the format (if you want, you may use LibreOffice Calc to help yourself)

Here we only show the few fields we are actually interested in, and examples of trasformations you should apply:

From general meeting information section:

	Meeting ID: 123 4567 8901

	Topic: Hydraulics Exam

	Start Time: "Apr 17, 2020 02:00 PM" should become Apr 17, 2020

From participant sessions section:

	Participant: Luigi

	Join Time: 01:54 PM should become 13:54

	Leave Time: 03:10 PM(Luigi got disconnected from the meeting.Reason: Network connection error.) should be split into two fields, one for actual leave time in 15:10 format and another one for disconnection reason.

There are 3 possible disconnection reasons (try to come up with a general way to parse them - notice that there is no dot at the end of transformed string):

	(Luigi got disconnected from the meeting.Reason: Network connection error.) should become Network connection error

	(Bowser left the meeting.Reason: Host closed the meeting.) should become Host closed the meeting

	(Princess Toadstool left the meeting.Reason: left the meeting.) should become left the meeting

Your first goal will be to load the dataset and restructure the data so it looks like this:

[['meeting_id', 'topic', 'date', 'participant', 'join_time', 'leave_time', 'reason'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Luigi','13:54','15:10','Network connection error'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Luigi','15:12','15:54','left the meeting'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Mario','14:02','14:16','Network connection error'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Mario','14:19','15:02','Network connection error'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Mario','15:04','15:50','Network connection error'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Mario','15:52','15:55','Network connection error'],
 ['123 4567 8901','Hydraulics Exam','Apr 17, 2020','Mario','15:56','16:00','Host closed the meeting'],
 ...
]

To fix the times, you will first need to implement the following function.

Open Jupyter and start editing this notebook exam-2020-06-16-exercise.ipynb

A1 time24

[1]:

def time24(t):
 """ Takes a time string like '06:27 PM' and outputs a string like 18:27
 """
 #jupman_raise
 if t.endswith('AM'):
 if t.startswith('12:00'):
 return '00:00'
 else:
 return t.replace(' AM', '')
 else:
 if t.startswith('12:00'):
 return '12:00'

 h = '%0.d' % (int(t.split(':')[0]) + 12)

 return h + ':' + t.split(':')[1].replace(' PM','')
 #/jupman_raise

assert time24('12:00 AM') == '00:00' # midnight
assert time24('01:06 AM') == '01:06'
assert time24('09:45 AM') == '09:45'
assert time24('12:00 PM') == '12:00' # special case, it's actually midday
assert time24('01:27 PM') == '13:27'
assert time24('06:27 PM') == '18:27'
assert time24('10:03 PM') == '22:03'

A2 load

Implement a function which loads the file UserQos_12345678901.csv and RETURN a list of lists.

To parse the file, you can use simple CSV parsing [https://datasciprolab.readthedocs.io/en/latest/exercises/formats/formats-solution.html#2.-File-CSV] as seen in class (there is no need to use pandas)

[2]:

import csv

def load(filepath):
 #jupman-raise
 ret = []
 with open(filepath, encoding='utf-8', newline='') as f:

 lettore = csv.reader(f, delimiter=',')
 next(lettore)
 riga_meeting = next(lettore)
 meeting_id = riga_meeting[0]
 topic = riga_meeting[1]
 meeting_date = riga_meeting[7]
 next(lettore) # riga vuota
 next(lettore) # secondo header
 ret.append(['meeting_id', 'topic','date', 'participant','join_time','leave_time','reason'])
 for riga in lettore:
 session = {}
 if len(riga) > 0:
 ret.append([meeting_id,
 topic,
 meeting_date[:12],
 riga[0],
 time24(riga[10]),
 time24(riga[11].split('(')[0]),
 riga[11].split('Reason: ')[1].split('.')[0]])
 return ret
 #/jupman-raise

meeting_log = load('UserQos_12345678901.csv')

from pprint import pprint
pprint(meeting_log, width=150)

[['meeting_id', 'topic', 'date', 'participant', 'join_time', 'leave_time', 'reason'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Luigi', '13:54', '15:10', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Luigi', '15:12', '15:54', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '14:02', '14:16', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '14:19', '15:02', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:04', '15:50', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:52', '15:55', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:56', '16:00', 'Host closed the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '14:15', '14:30', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '14:54', '15:03', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '15:12', '15:40', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '15:45', '16:00', 'Host closed the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Princess Toadstool', '13:56', '15:33', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:05', '14:10', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:15', '14:29', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:33', '15:10', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '15:25', '15:54', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '15:55', '16:00', 'Host closed the meeting']]

[3]:

EXPECTED_MEETING_LOG = \
[['meeting_id', 'topic', 'date', 'participant', 'join_time', 'leave_time', 'reason'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Luigi', '13:54', '15:10', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Luigi', '15:12', '15:54', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '14:02', '14:16', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '14:19', '15:02', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:04', '15:50', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:52', '15:55', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Mario', '15:56', '16:00', 'Host closed the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '14:15', '14:30', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '14:54', '15:03', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '15:12', '15:40', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Bowser', '15:45', '16:00', 'Host closed the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Princess Toadstool', '13:56', '15:33', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:05', '14:10', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:15', '14:29', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '14:33', '15:10', 'left the meeting'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '15:25', '15:54', 'Network connection error'],
 ['123 4567 8901', 'Hydraulics Exam', 'Apr 17, 2020', 'Wario', '15:55', '16:00', 'Host closed the meeting']]

assert meeting_log[0] == EXPECTED_MEETING_LOG[0] # header
assert meeting_log[1] == EXPECTED_MEETING_LOG[1] # first Luigi row
assert meeting_log[1:3] == EXPECTED_MEETING_LOG[1:3] # Luigi rows
assert meeting_log[:4] == EXPECTED_MEETING_LOG[:4] # until first Mario row included
assert meeting_log == EXPECTED_MEETING_LOG # all table

A3.1 duration

Given two times as strings a and b in format like 17:34, RETURN the duration in minutes between them as an integer.

To calculate gap durations, we assume a meeting NEVER ends after midnight

[4]:

def duration(a, b):
 #jupman-raise
 asp = a.split(':')
 ta = int(asp[0])*60+int(asp[1])
 bsp = b.split(':')
 tb = int(bsp[0])*60 + int(bsp[1])
 return tb - ta
 #/jupman-raise

assert duration('15:00','15:34') == 34
assert duration('15:00','17:34') == 120 + 34
assert duration('15:50','16:12') == 22
assert duration('09:55','11:06') == 5 + 60 + 6
assert duration('00:00','00:01') == 1
#assert duration('11:58','00:01') == 3 # no need to support this case !!

A3.2 calc_stats

We want to know something about the time each participant has been disconnected from the exam. We call such intervals gaps, which are the difference between a session leave time and successive session join time.

Implement the function calc_stats that given a cleaned log produced by load, RETURN a dictionary mapping each partecipant to a dictionary with these statistics:

	max_gap : the longest time in minutes in which the participant has been disconnected

	gaps : the number of disconnections happend to the participant during the meeting

	time_away : the total time in minutes during which the participant has been disconnected during the meeting

To calculate gap durations, we assume a meeting NEVER ends after midnight

For the data format details, see EXPECTED_STATS below.

To test the function, you DON’T NEED to have correctly implemented previous functions

[5]:

def calc_stats(log):
 #jupman-raise
 ret = {}

 last_sessions = {}

 first = True
 for session in log:
 if first:
 first = False
 continue
 date = session[2]
 participant = session[3]
 join_time = session[4]
 leave_time = session[5]
 reason = session[6]

 if participant not in ret:
 ret[participant] = {'max_gap': 0,
 'gaps': 0,
 'time_away':0
 }

 if participant in last_sessions:
 last_leave_time = last_sessions[participant][5]
 gap = duration(last_leave_time, join_time)
 ret[participant]['max_gap'] = max(gap, ret[participant]['max_gap'])
 ret[participant]['gaps'] += 1
 ret[participant]['time_away'] += gap

 last_sessions[participant] = session
 return ret
 #/jupman-raise

stats = calc_stats(meeting_log)

in case you had trouble implementing load function, use this:
#stats = calc_stats(EXPECTED_MEETING_LOG)

stats

[5]:

{'Bowser': {'gaps': 3, 'max_gap': 24, 'time_away': 38},
 'Luigi': {'gaps': 1, 'max_gap': 2, 'time_away': 2},
 'Mario': {'gaps': 4, 'max_gap': 3, 'time_away': 8},
 'Princess Toadstool': {'gaps': 0, 'max_gap': 0, 'time_away': 0},
 'Wario': {'gaps': 4, 'max_gap': 15, 'time_away': 25}}

[6]:

EXPECTED_STATS = { 'Bowser': {'gaps': 3, 'max_gap': 24, 'time_away': 38},
 'Luigi': {'gaps': 1, 'max_gap': 2, 'time_away': 2},
 'Mario': {'gaps': 4, 'max_gap': 3, 'time_away': 8},
 'Princess Toadstool': {'gaps': 0, 'max_gap': 0, 'time_away': 0},
 'Wario': {'gaps': 4, 'max_gap': 15, 'time_away': 25}}

assert stats == EXPECTED_STATS

A4 viz

Produce a bar chart of the statistics you calculated before. For how to do it, see examples in Visualiation tutorial [https://datasciprolab.readthedocs.io/en/latest/exercises/visualization/visualization-solution.html]

	participant names MUST be sorted in alphabetical order

	remember to put title, legend and axis labels

To test the function, you DON’T NEED to have correctly implemented previous functions

[7]:

%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt

def viz(stats):
 #jupman-raise

 xs = np.arange(len(stats))
 ys_max_gap = []
 ys_time_away = []

 labels = list(sorted(stats.keys()))

 for participant in sorted(stats):
 pstats = stats[participant]
 ys_max_gap.append(pstats['max_gap'])
 ys_time_away.append(pstats['time_away'])

 width = 0.35
 fig, ax = plt.subplots(figsize=(10,3))
 rects1 = ax.bar(xs - width/2, ys_max_gap, width,
 color='red', label='max gap')
 rects2 = ax.bar(xs + width/2, ys_time_away, width,
 color='darkred', label='time_away')

 plt.xticks(xs, labels)

 ax.set_title('Disconnections SOLUTION')
 ax.legend()

 plt.ylabel('minutes')
 plt.savefig('surveillance.png')
 plt.show()
 #/jupman-raise

viz(stats)

in case you had trouble implementing calc_stats, use this:
#viz(EXPECTED_STATS)

[image: ../../_images/exams_2020-06-16_exam-2020-06-16-solution_26_0.png]

[image: surveillance]

Part B

B1 Theory

Write the solution in separate theory.txt file

B1.1 complexity

Given a list L of n positive integers, please compute the asymptotic computational complexity of the following function, explaining your reasoning.

def my_max(L):
 M = -1
 for e in L:
 if e > M:
 M = e
 return M

def my_fun(L):
 n = len(L)
 out = 0
 for i in range(5):
 out = out + my_max(L[i:])
 return out

B1.2 describe

Briefly describe what a bidirectional linked list is. How does it differ from a queue?

B2 - LinkedList slice

Open a text editor and edit file linked_list_exercise.py

Implement the method slice:

def slice(self, start, end):
 """ RETURN a NEW LinkedList created by copying nodes of this list
 from index start INCLUDED to index end EXCLUDED

 - if start is greater or equal than end, returns an empty LinkedList
 - if start is greater than available nodes, returns an empty LinkedList
 - if end is greater than the available nodes, copies all items until the tail without errors
 - if start index is negative, raises ValueError
 - if end index is negative, raises ValueError

 - IMPORTANT: All nodes in the returned LinkedList MUST be NEW
 - DO *NOT* modify original linked list
 - DO *NOT* add an extra size field
 - MUST execute in O(n), where n is the size of the list

 """

Testing: python3 -m unittest linked_list_test.SliceTest

Example:

[8]:

from linked_list_solution import *

[9]:

la = LinkedList()
la.add('g')
la.add('f')
la.add('e')
la.add('d')
la.add('c')
la.add('b')
la.add('a')

[10]:

print(la)

LinkedList: a,b,c,d,e,f,g

Creates a NEW LinkedList copying nodes from index 2 INCLUDED up to index 5 EXCLUDED:

[11]:

lb = la.slice(2,5)

[12]:

print(lb)

LinkedList: c,d,e

Note original LinkedList is still intact:

[13]:

print(la)

LinkedList: a,b,c,d,e,f,g

Special cases

If start is greater or equal then end, you get an empty LinkedList:

[14]:

print(la.slice(5,3))

LinkedList:

If start is greater than available nodes, you get an empty LinkedList:

[15]:

print(la.slice(10,15))

LinkedList:

If end is greater than the available nodes, you get a copy of all the nodes until the tail without errors:

[16]:

print(la.slice(3,10))

LinkedList: d,e,f,g

Using negative indexes for either start , end or both raises ValueError:

la.slice(-3,4)

ValueError Traceback (most recent call last)
<ipython-input-184-e3380bb66e77> in <module>()
----> 1 la.slice(-3,4)

~/Da/prj/datasciprolab/prj/exams/2020-06-16/linked_list_solution.py in slice(self, start, end)
 63
 64 if start < 0:
---> 65 raise ValueError('Negative values for start are not supported! %s ' % start)
 66 if end < 0:
 67 raise ValueError('Negative values for end are not supported: %s' % end)

ValueError: Negative values for start are not supported! -3

la.slice(1,-2)

ValueError Traceback (most recent call last)
<ipython-input-185-8e09ec468c30> in <module>()
----> 1 la.slice(1,-2)

~/Da/prj/datasciprolab/prj/exams/2020-06-16/linked_list_solution.py in slice(self, start, end)
 65 raise ValueError('Negative values for start are not supported! %s ' % start)
 66 if end < 0:
---> 67 raise ValueError('Negative values for end are not supported: %s' % end)
 68
 69 ret = LinkedList()

ValueError: Negative values for end are not supported: -2

B3 BinaryTree prune_rec

Implement the method prune_rec:

def prune_rec(self, el):
 """ MODIFIES the tree by cutting all the subtrees that have their
 root node data equal to el. By 'cutting' we mean they are no longer linked
 by the tree on which prune is called.

 - if prune is called on a node having data equal to el, raises ValueError

 - MUST execute in O(n) where n is the number of nodes of the tree
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.PruneRecTest

Example:

[17]:

from bin_tree_solution import *
from bin_tree_test import bt

[18]:

t = bt('a',
 bt('b',
 bt('z'),
 bt('c',
 bt('d'),
 bt('z',
 None,
 bt('e')))),
 bt('z',
 bt('f'),
 bt('z',
 None,
 bt('g'))))

[19]:

print(t)

a
├b
│├z
│└c
│ ├d
│ └z
│ ├
│ └e
└z
 ├f
 └z
 ├
 └g

[20]:

t.prune_rec('z')

[21]:

print(t)

a
├b
│├
│└c
│ ├d
│ └
└

[22]:

t.prune_rec('c')

[23]:

print(t)

a
├b
└

Trying to prune the root will throw a ValueError:

t.prune_rec('a')

ValueError Traceback (most recent call last)
<ipython-input-27-f8e8fa8a97dd> in <module>()
----> 1 t.prune_rec('a')

ValueError: Tried to prune the tree root !

[]:

 Exam - Monday 10, February 2020 - solutions

Exam - Monday 10, February 2020 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2020-02-10-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2020-02-10-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-exams
 |-2020-02-10
 |- exam-2020-02-10-exercise.ipynb
 |- B1-theory.txt
 |- B2_italian_queue_v2_exercise.py
 |- B2_italian_queue_v2_test.py

	Rename datasciprolab-2020-02-10-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2020-02-10-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2020-02-10-exercise.ipynb

WordNet [https://wordnet.princeton.edu/]® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of semantic relations. The resulting network of related words and concepts can be navigated with the browser. WordNet is also freely and publicly available for download, making it a useful tool for computational linguistics and natural language
processing. Princeton University “About WordNet.” WordNet [https://wordnet.princeton.edu/]. Princeton University. 2010

In Python there are specialized libraries to read WordNet like NLTK [https://www.nltk.org/howto/wordnet.html], but for the sake of this exercise, you will parse the noun database as a text file which can be read line by line.

We will focus on names and how they are linked by IS A relation, for example, a dalmatian IS A dog (IS A is also called hypernym relation)

A1 parse_db

First, you will begin with parsing an excerpt of wordnet data/dogs.noun, which is a noun database shown here in its entirety.

According to documentation [https://wordnet.princeton.edu/documentation/wndb5wn], a noun database begins with several lines containing a copyright notice, version number, and license agreement: these lines all begin with two spaces and the line number like

1 This software and database is being provided to you, the LICENSEE, by
2 Princeton University under the following license. By obtaining, using
3 and/or copying this software and database, you agree that you have

Afterwards, each of following lines describe a noun synset, that is, a unique concept identified by a number called synset_offset.

	each synset can have many words to represent it - for example, the noun synset 02112993 has 03 (w_cnt) words dalmatian coach_dog, carriage_dog.

	a synset can be linked to other ones by relations. The dalmatian synset is linked to 002 (p_cnt) other synsets: to synset 02086723 by the @ relation, and to synset 02113184 by the ~ relation. For our purposes, you can focus on the @ symbol which means IS A relation (also called hypernym). If you search for a line starting with 02086723, you will see it is the synset for dog, so Wordnet is telling us a dalmatian IS A dog.

WARNING 1: lines can be quite long so if they appear to span multiple lines don’t be fooled : remember each name definition only occupies one single line with no carriage returns!

WARNING 2: there are no empty lines between the synsets, here you see them just to visually separate the text blobs

1 This software and database is being provided to you, the LICENSEE, by
2 Princeton University under the following license. By obtaining, using
3 and/or copying this software and database, you agree that you have
4 read, understood, and will comply with these terms and conditions.:
5
6 Permission to use, copy, modify and distribute this software and
7 database and its documentation for any purpose and without fee or
8 royalty is hereby granted, provided that you agree to comply with
9 the following copyright notice and statements, including the disclaimer,
10 and that the same appear on ALL copies of the software, database and
11 documentation, including modifications that you make for internal
12 use or for distribution.
13
14 WordNet 3.1 Copyright 2011 by Princeton University. All rights reserved.
15
16 THIS SOFTWARE AND DATABASE IS PROVIDED "AS IS" AND PRINCETON
17 UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
18 IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON
19 UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT-
20 ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
21 OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT
22 INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
23 OTHER RIGHTS.
24
25 The name of Princeton University or Princeton may not be used in
26 advertising or publicity pertaining to distribution of the software
27 and/or database. Title to copyright in this software, database and
28 any associated documentation shall at all times remain with
29 Princeton University and LICENSEE agrees to preserve same.

01320032 05 n 02 domestic_animal 0 domesticated_animal 0 007 @ 00015568 n 0000 ~ 01320304 n 0000 ~ 01320544 n 0000 ~ 01320872 n 0000 ~ 02086723 n 0000 ~ 02124460 n 0000 ~ 02125232 n 0000 | any of various animals that have been tamed and made fit for a human environment

02085998 05 n 02 canine 0 canid 0 011 @ 02077948 n 0000 #m 02085690 n 0000 + 02688440 a 0101 ~ 02086324 n 0000 ~ 02086723 n 0000 ~ 02116752 n 0000 ~ 02117748 n 0000 ~ 02117987 n 0000 ~ 02119787 n 0000 ~ 02120985 n 0000 %p 02442560 n 0000 | any of various fissiped mammals with nonretractile claws and typically long muzzles

02086723 05 n 03 dog 0 domestic_dog 0 Canis_familiaris 0 023 @ 02085998 n 0000 @ 01320032 n 0000 #m 02086515 n 0000 #m 08011383 n 0000 ~ 01325095 n 0000 ~ 02087384 n 0000 ~ 02087513 n 0000 ~ 02087924 n 0000 ~ 02088026 n 0000 ~ 02089774 n 0000 ~ 02106058 n 0000 ~ 02112993 n 0000 ~ 02113458 n 0000 ~ 02113610 n 0000 ~ 02113781 n 0000 ~ 02113929 n 0000 ~ 02114152 n 0000 ~ 02114278 n 0000 ~ 02115149 n 0000 ~ 02115478 n 0000 ~ 02115987 n 0000 ~ 02116630 n 0000 %p 02161498 n 0000 | a member of
the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds; “the dog barked all night”

02106058 05 n 01 working_dog 0 016 @ 02086723 n 0000 ~ 02106493 n 0000 ~ 02107175 n 0000 ~ 02109506 n 0000 ~ 02110072 n 0000 ~ 02110741 n 0000 ~ 02110906 n 0000 ~ 02111074 n 0000 ~ 02111324 n 0000 ~ 02111699 n 0000 ~ 02111802 n 0000 ~ 02112043 n 0000 ~ 02112177 n 0000 ~ 02112339 n 0000 ~ 02112463 n 0000 ~ 02112613 n 0000 | any of several breeds of usually large powerful dogs bred to work as draft animals and guard and guide dogs

02112993 05 n 03 dalmatian 0 coach_dog 0 carriage_dog 0 002 @ 02086723 n 0000 ~ 02113184 n 0000 | a large breed having a smooth white coat with black or brown spots; originated in Dalmatia

02107175 05 n 03 shepherd_dog 0 sheepdog 0 sheep_dog 0 012 @ 02106058 n 0000 ~ 02107534 n 0000 ~ 02107903 n 0000 ~ 02108064 n 0000 ~ 02108157 n 0000 ~ 02108293 n 0000 ~ 02108507 n 0000 ~ 02108682 n 0000 ~ 02108818 n 0000 ~ 02109034 n 0000 ~ 02109202 n 0000 ~ 02109314 n 0000 | any of various usually long-haired breeds of dog reared to herd and guard sheep

02111324 05 n 02 bulldog 0 English_bulldog 0 003 @ 02106058 n 0000 + 01121448 v 0101 ~ 02111567 n 0000 | a sturdy thickset short-haired breed with a large head and strong undershot lower jaw; developed originally in England for bull baiting

02116752 05 n 01 wolf 0 007 @ 02085998 n 0000 #m 02086515 n 0000 ~ 01324999 n 0000 ~ 02117019 n 0000 ~ 02117200 n 0000 ~ 02117364 n 0000 ~ 02117507 n 0000 | any of various predatory carnivorous canine mammals of North America and Eurasia that usually hunt in packs

Field description

While parsing, skip the copyright notice. Then, each name definition follows the following format:

synset_offset lex_filenum ss_type w_cnt word lex_id [word lex_id...] p_cnt [ptr...] | gloss

	synset_offset: Number identifying the synset, for example 02112993. MUST be converted to a Python int

	lex_filenum: Two digit decimal integer corresponding to the lexicographer file name containing the synset, for example 03. MUST be converted to a Python int

	ss_type: One character code indicating the synset type, store it as a string.

	w_cnt: Two digit hexadecimal integer indicating the number of words in the synset, for example b3. MUST be converted to a Python int.

WARNING: w_cnt is expressed as hexadecimal!

To convert an hexadecimal number like b3 to a decimal int you will need to specify the base 16 like in int('b3',16) which produces the decimal integer 179.

	Afterwards, there will be w_cnt words, each represented by two fields (for example, dalmatian 0). You MUST store these fields into a Python list called words containing a dictionary for each word, having these fields:

	word: ASCII form of a word (example: dalmatian), with spaces replaced by underscore characters (_)

	lex_id: One digit hexadecimal integer (example: 0) that MUST be converted to a Python int

WARNING: lex_id is expressed as hexadecimal!

To convert an hexadecimal number like b3 to a decimal int you will need to specify the base 16 like in int('b3',16) which produces the decimal integer 179.

	p_cnt: Three digit decimal integer indicating the number of pointers (that is, relations like for example IS A) from this synset to other synsets. MUST be converted to a Python int

WARNING: differently from w_cnt, the value p_cnt is expressed as decimal!

	Afterwards, there will be p_cnt pointers, each represented by four fields pointer_symbol synset_offset pos source/target (for example, @ 02086723 n 0000). You MUST store these fields into a Python list called ptrs containing a dictionary for each pointer, having these fields:

	pointer_symbol: a symbol indicating the type of relation, for example @ (which represents IS A relation)

	synset_offset : the identifier of the target synset, for example 02086723. You MUST convert this to a Python int

	pos: just parse it as a string (we will not use it)

	source/target: just parse it as a string (we will not use it)

WARNING: DO NOT assume first pointer is an @ (IS A) !!

In the full database, the root synset entity can’t possibly have a parent synset:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
00001740 03 n 01 entity 0 003 ~ 00001930 n 0000 ~ 00002137 n 0000 ~ 04431553 n 0000 | that which is perceived or known or inferred to have its own distinct existence (living or nonliving)

	gloss: Each synset contains a gloss (that is, a description). A gloss is represented as a vertical bar (|), followed by a text string that continues until the end of the line. For example, a large breed having a smooth white coat with black or brown spots; originated in Dalmatia

implement parse_db

[2]:

def parse_db(filename):
 """ Parses noun database filename as a text file and RETURN a dictionary containing
 all the synset found. Each key will be a synset_offset mapping to a dictionary
 holding the fields of the correspoing synset. See next printout for an example.
 """
 #jupman-raise

 ret = {}
 with open(filename, encoding='utf-8') as f:
 line=f.readline()
 r = 0
 while line.startswith(' '):
 line=f.readline()
 #print(line)
 r += 1

 while line != "":
 i = 0

 d = {}

 params = line.split('|')[0].split(' ')

 d['synset_offset'] = int(params[0]) # '00001740'
 d['lex_filenum'] = int(params[1]) # '03'
 d['ss_type'] = params[2] # 'n'
 # WARNING: HERE THE STRING REPRESENT A NUMBER IN *HEXADECIMAL* FORMAT,
 # AND WE WANT TO STORE AN *INTEGER*
 # TO DO THE CONVERSION PROPERLY, YOU NEED TO USE int(my_string, 16)
 d['w_cnt'] = int(params[3], 16) # 'b3' -> 179
 d['words'] = []
 i = 4
 for j in range(d['w_cnt']):
 wd = {
 'word' : params[i], # 'entity'
 'lex_id': int(params[i + 1],16), # '0'
 }
 d['words'].append(wd)
 i += 2
 #
 # WARNING: HERE THE STRING REPRESENT A NUMBER IN *DECIMAL* FORMAT,
 # AND WE WANT TO STORE AN *INTEGER*
 # TO DO THE CONVERSION PROPERLY, YOU NEED TO USE int(my_string)
 d['p_cnt'] = int(params[i]) # '003' -> 3
 d['ptrs'] = []
 i += 1
 for j in range(d['p_cnt']):
 ptr = {
 'pointer_symbol': params[i], # '~'
 'synset_offset': int(params[i + 1]), # '00001930'
 'pos': params[i + 2], # 'n'
 'source_target':params[i + 3], # '0000'
 }
 d['ptrs'].append(ptr)
 i += 4

 d['gloss'] = line.split('|')[1]

 ret[d['synset_offset']] = d
 i += 1
 line=f.readline()
 return ret
 #/jupman-raise

[3]:

dogs_db = parse_db('data/dogs.noun')

from pprint import pprint
pprint(dogs_db)

{1320032: {'gloss': ' any of various animals that have been tamed and made fit '
 'for a human environment\n',
 'lex_filenum': 5,
 'p_cnt': 7,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 15568},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1320304},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1320544},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1320872},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086723},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2124460},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2125232}],
 'ss_type': 'n',
 'synset_offset': 1320032,
 'w_cnt': 2,
 'words': [{'lex_id': 0, 'word': 'domestic_animal'},
 {'lex_id': 0, 'word': 'domesticated_animal'}]},
 2085998: {'gloss': ' any of various fissiped mammals with nonretractile claws '
 'and typically long muzzles \n',
 'lex_filenum': 5,
 'p_cnt': 11,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2077948},
 {'pointer_symbol': '#m',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2085690},
 {'pointer_symbol': '+',
 'pos': 'a',
 'source_target': '0101',
 'synset_offset': 2688440},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086324},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086723},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2116752},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117748},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117987},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2119787},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2120985},
 {'pointer_symbol': '%p',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2442560}],
 'ss_type': 'n',
 'synset_offset': 2085998,
 'w_cnt': 2,
 'words': [{'lex_id': 0, 'word': 'canine'},
 {'lex_id': 0, 'word': 'canid'}]},
 2086723: {'gloss': ' a member of the genus Canis (probably descended from the '
 'common wolf) that has been domesticated by man since '
 'prehistoric times; occurs in many breeds; "the dog barked '
 'all night" \n',
 'lex_filenum': 5,
 'p_cnt': 23,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2085998},
 {'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1320032},
 {'pointer_symbol': '#m',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086515},
 {'pointer_symbol': '#m',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 8011383},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1325095},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2087384},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2087513},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2087924},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2088026},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2089774},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2106058},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112993},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2113458},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2113610},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2113781},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2113929},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2114152},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2114278},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2115149},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2115478},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2115987},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2116630},
 {'pointer_symbol': '%p',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2161498}],
 'ss_type': 'n',
 'synset_offset': 2086723,
 'w_cnt': 3,
 'words': [{'lex_id': 0, 'word': 'dog'},
 {'lex_id': 0, 'word': 'domestic_dog'},
 {'lex_id': 0, 'word': 'Canis_familiaris'}]},
 2106058: {'gloss': ' any of several breeds of usually large powerful dogs '
 'bred to work as draft animals and guard and guide '
 'dogs \n',
 'lex_filenum': 5,
 'p_cnt': 16,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086723},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2106493},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2107175},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2109506},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2110072},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2110741},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2110906},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2111074},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2111324},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2111699},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2111802},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112043},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112177},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112339},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112463},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2112613}],
 'ss_type': 'n',
 'synset_offset': 2106058,
 'w_cnt': 1,
 'words': [{'lex_id': 0, 'word': 'working_dog'}]},
 2107175: {'gloss': ' any of various usually long-haired breeds of dog reared '
 'to herd and guard sheep\n',
 'lex_filenum': 5,
 'p_cnt': 12,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2106058},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2107534},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2107903},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108064},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108157},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108293},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108507},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108682},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2108818},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2109034},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2109202},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2109314}],
 'ss_type': 'n',
 'synset_offset': 2107175,
 'w_cnt': 3,
 'words': [{'lex_id': 0, 'word': 'shepherd_dog'},
 {'lex_id': 0, 'word': 'sheepdog'},
 {'lex_id': 0, 'word': 'sheep_dog'}]},
 2111324: {'gloss': ' a sturdy thickset short-haired breed with a large head '
 'and strong undershot lower jaw; developed originally in '
 'England for bull baiting \n',
 'lex_filenum': 5,
 'p_cnt': 3,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2106058},
 {'pointer_symbol': '+',
 'pos': 'v',
 'source_target': '0101',
 'synset_offset': 1121448},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2111567}],
 'ss_type': 'n',
 'synset_offset': 2111324,
 'w_cnt': 2,
 'words': [{'lex_id': 0, 'word': 'bulldog'},
 {'lex_id': 0, 'word': 'English_bulldog'}]},
 2112993: {'gloss': ' a large breed having a smooth white coat with black or '
 'brown spots; originated in Dalmatia \n',
 'lex_filenum': 5,
 'p_cnt': 2,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086723},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2113184}],
 'ss_type': 'n',
 'synset_offset': 2112993,
 'w_cnt': 3,
 'words': [{'lex_id': 0, 'word': 'dalmatian'},
 {'lex_id': 0, 'word': 'coach_dog'},
 {'lex_id': 0, 'word': 'carriage_dog'}]},
 2116752: {'gloss': ' any of various predatory carnivorous canine mammals of '
 'North America and Eurasia that usually hunt in packs \n',
 'lex_filenum': 5,
 'p_cnt': 7,
 'ptrs': [{'pointer_symbol': '@',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2085998},
 {'pointer_symbol': '#m',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2086515},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 1324999},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117019},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117200},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117364},
 {'pointer_symbol': '~',
 'pos': 'n',
 'source_target': '0000',
 'synset_offset': 2117507}],
 'ss_type': 'n',
 'synset_offset': 2116752,
 'w_cnt': 1,
 'words': [{'lex_id': 0, 'word': 'wolf'}]}}

A2 to_adj

Implement a function to_adj which takes the parsed db and RETURN a graph-like data structure in adjacency list format. Each node represent a synset - as label use the first word of the synset. A node is linked to another one if there is a IS A relation among the nodes, so use the @ symbol to filter the hypernyms.

IMPORTANT: not all linked synsets are present in the dogs excerpt.

HINT: If you couldn’t implement the parse_db function properly, use as data the result of the previous print.

[4]:

def to_adj(db):
 #jupman-raise
 ret = {}

 for d in db.values():
 targets = []
 for ptr in d['ptrs']:
 if ptr['pointer_symbol'] == '@':
 if ptr['synset_offset'] in db:
 targets.append(db[ptr['synset_offset']]['words'][0]['word'])
 #else:
 # targets.append(ptr['synset_offset'])
 ret[d['words'][0]['word']] = targets
 return ret
 #/jupman-raise

dogs_graph = to_adj(dogs_db)
from pprint import pprint
pprint(dogs_graph)

{'bulldog': ['working_dog'],
 'canine': [],
 'dalmatian': ['dog'],
 'dog': ['canine', 'domestic_animal'],
 'domestic_animal': [],
 'shepherd_dog': ['working_dog'],
 'wolf': ['canine'],
 'working_dog': ['dog']}

Check results

If parsing is right, you should get the following graph

DO NOT implement any drawing function, this is just for checking your results

[5]:

from sciprog import draw_adj
draw_adj(dogs_graph, options={'graph':{'rankdir':'BT'}})

[image: ../../_images/exams_2020-02-10_exam-2020-02-10-solution_24_0.png]

A.3 hist

You are given a dictionary mapping each relation symbol (i.e. @) to its description (i.e. Hypernym).

Implement a function to draw the histogram of relation frequencies found in the relation links of the entire Wordnet, which can be loaded from the file data/data.noun. If you previously implemented parse_db in a correct way, you should be able to load the whole db. If for any reasons you can’t, try at least to draw the histogram of frequencies found in dogs_db

	sort the histogram from greatest to lowest frequency

	do not count the relations containing the word ‘domain’ inside (upper/lowercase)

	do not count the ‘’ relation

	display the relation names nicely, adding newlines if necessary

[6]:

relation_names = {
 '!':'Antonym',
 '@':'Hypernym',
 '@i':'Instance Hypernym',
 '~':'Hyponym',
 '~i':'Instance Hyponym',
 '#m':'Member holonym',
 '#s':'Substance holonym',
 '#p':'Part holonym',
 '%m':'Member meronym',
 '%s':'Substance meronym',
 '%p':'Part meronym',
 '=':'Attribute',
 '+':'Derivationally related form',
 ';c':'Domain of synset - TOPIC', # DISCARD
 '-c':'Member of this domain - TOPIC', # DISCARD
 ';r':'Domain of synset - REGION', # DISCARD
 '-r':'Member of this domain - REGION', # DISCARD
 ';u':'Domain of synset - USAGE', # DISCARD
 '-u':'Member of this domain - USAGE', # DISCARD
 '\\': 'Pertainym (pertains to noun)' # DISCARD
}

def draw_hist(db):
 #jupman-raise
 hist = {}
 for d in db.values():
 for ptr in d['ptrs']:
 ps = ptr['pointer_symbol']
 if 'domain' not in relation_names[ps].lower() and ps != '\\':
 if ps in hist:
 hist[ps] += 1
 else:
 hist[ps] = 0

 pprint(hist)

 import numpy as np
 import matplotlib.pyplot as plt

 xs = list(range(len(hist.keys())))
 coords = [(x,hist[x]) for x in hist.keys()]
 coords.sort(key=lambda c: c[1], reverse=True)
 ys = [c[1] for c in coords]

 fig = plt.figure(figsize=(18,6))

 plt.bar(xs, ys,
 0.5, # the width of the bars
 color='green', # someone suggested the default blue color is depressing, so let's put green
 align='center') # bars are centered on the xtick

 plt.title('Wordnet Relation frequency SOLUTION')
 xticks = [relation_names[c[0]].replace(' ', '\n') for c in coords]
 plt.xticks(xs,xticks)

 plt.show()
 #/jupman-raise

[]:

[7]:

wordnet = parse_db('data/data.noun')
draw_hist(wordnet)

{'!': 2153,
 '#m': 12287,
 '#p': 9110,
 '#s': 796,
 '%m': 12287,
 '%p': 9110,
 '%s': 796,
 '+': 37235,
 '=': 638,
 '@': 75915,
 '@i': 8588,
 '~': 75915,
 '~i': 8588}

[image: ../../_images/exams_2020-02-10_exam-2020-02-10-solution_28_1.png]

Part B

B1 Theory

Write the solution in separate ``theory.txt`` file

B1.1 complexity

Given a list 𝐿 of 𝑛 elements, please compute the asymptotic computational complexity of the following function, explaining your reasoning. Any ideas on how to improve the complexity of this code?

def my_fun(L):
 n = len(L)
 out = []
 for i in range(n-2):
 out.insert(0,L[i] + L[i+1] + L[i+2])
 return out

B1.2 graph visits

Briefly describe the two classic ways of visiting the nodes of a graph.

B2 ItalianQueue v2

Open a text editor and have a look at file italian_queue_v2_exercise.py

In the original v1 implementation of the ItalianQueue we’ve already seen in class [https://datasciprolab.readthedocs.io/en/latest/exercises/queues/queues.html#3.-ItalianQueue], enqueue can take \(O(n)\): you will improve it by adding further indexing so it runs in \(O(1)\)

An ItalianQueue is modelled as a LinkedList with two pointers, a _head and a _tail:

	an element is enqueued scanning from _head until a matching group is found, in which case the element is inserted after (that is, at the right) of the matching group, otherwise the element is appended at the very end marked by _tail

	an element is dequeued from the _head

For this improved v2 version, you will use an additional dictionary _tails which associates to each group present in the queue the node at the tail of that group sequence. This way, instead of scanning you will be able to directly jump to insertion point.

class ItalianQueue:

 def __init__(self):
 """ Initializes the queue.

 - Complexity: O(1)
 """
 self._head = None
 self._tail = None
 self._tails = {} # <---- NEW !
 self._size = 0

Example:

If we have the following situation:

data : a -> b -> c -> d -> e -> f -> g -> h
group : x x y y y z z z
 ^ ^ ^ ^
 | | | |
 | _tails[x] _tails[y] _tails[z]
 | |
 _head _tail

By calling

q.enqueue('i','y')

We get:

data : a -> b -> c -> d -> e -> i -> f -> g -> h
group : x x y y y y z z z
 ^ ^ ^ ^
 | | | |
 | _tails[x] _tails[y] _tails[z]
 | |
 _head _tail

We can see here the complete run:

[8]:

from italian_queue_v2_solution import *

q = ItalianQueue()
print(q)

ItalianQueue:

 _head: None
 _tail: None
 _tails: {}

[9]:

q.enqueue('a','x') # 'a' is the element,'x' is the group

[10]:

print(q)

ItalianQueue: a
 x
 _head: Node(a,x)
 _tail: Node(a,x)
 _tails: {'x': Node(a,x),}

[11]:

q.enqueue('c','y') # 'c' belongs to new group 'y', goes to the end of the queue

[12]:

print(q)

ItalianQueue: a->c
 x y
 _head: Node(a,x)
 _tail: Node(c,y)
 _tails: {'x': Node(a,x),
 'y': Node(c,y),}

[13]:

q.enqueue('d','y') # 'd' belongs to existing group 'y', goes to the end of the group

[14]:

print(q)

ItalianQueue: a->c->d
 x y y
 _head: Node(a,x)
 _tail: Node(d,y)
 _tails: {'x': Node(a,x),
 'y': Node(d,y),}

[15]:

q.enqueue('b','x') # 'b' belongs to existing group 'x', goes to the end of the group

[16]:

print(q)

ItalianQueue: a->b->c->d
 x x y y
 _head: Node(a,x)
 _tail: Node(d,y)
 _tails: {'x': Node(b,x),
 'y': Node(d,y),}

[17]:

q.enqueue('f','z') # 'f' belongs to new group, goes at the end of the queue

[18]:

print(q)

ItalianQueue: a->b->c->d->f
 x x y y z
 _head: Node(a,x)
 _tail: Node(f,z)
 _tails: {'x': Node(b,x),
 'y': Node(d,y),
 'z': Node(f,z),}

[19]:

q.enqueue('e','y') # 'e' belongs to an existing group 'y', goes at the end of the group

[20]:

print(q)

ItalianQueue: a->b->c->d->e->f
 x x y y y z
 _head: Node(a,x)
 _tail: Node(f,z)
 _tails: {'x': Node(b,x),
 'y': Node(e,y),
 'z': Node(f,z),}

[21]:

q.enqueue('g','z') # 'g' belongs to an existing group 'z', goes at the end of the group

[22]:

print(q)

ItalianQueue: a->b->c->d->e->f->g
 x x y y y z z
 _head: Node(a,x)
 _tail: Node(g,z)
 _tails: {'x': Node(b,x),
 'y': Node(e,y),
 'z': Node(g,z),}

[23]:

q.enqueue('h','z') # 'h' belongs to an existing group 'z', goes at the end of the group

[24]:

print(q)

ItalianQueue: a->b->c->d->e->f->g->h
 x x y y y z z z
 _head: Node(a,x)
 _tail: Node(h,z)
 _tails: {'x': Node(b,x),
 'y': Node(e,y),
 'z': Node(h,z),}

[25]:

q.enqueue('h','z') # 'h' belongs to an existing group 'z', goes at the end of the group

[26]:

print(q)

ItalianQueue: a->b->c->d->e->f->g->h->h
 x x y y y z z z z
 _head: Node(a,x)
 _tail: Node(h,z)
 _tails: {'x': Node(b,x),
 'y': Node(e,y),
 'z': Node(h,z),}

[27]:

q.enqueue('i','y') # 'i' belongs to an existing group 'y', goes at the end of the group

[28]:

print(q)

ItalianQueue: a->b->c->d->e->i->f->g->h->h
 x x y y y y z z z z
 _head: Node(a,x)
 _tail: Node(h,z)
 _tails: {'x': Node(b,x),
 'y': Node(i,y),
 'z': Node(h,z),}

Dequeue is always from the head, without taking in consideration the group:

[29]:

q.dequeue()

[29]:

'a'

[30]:

print(q)

ItalianQueue: b->c->d->e->i->f->g->h->h
 x y y y y z z z z
 _head: Node(b,x)
 _tail: Node(h,z)
 _tails: {'x': Node(b,x),
 'y': Node(i,y),
 'z': Node(h,z),}

[31]:

q.dequeue() # removed last member of group 'x', key 'x' disappears from _tails['x']

[31]:

'b'

[32]:

print(q)

ItalianQueue: c->d->e->i->f->g->h->h
 y y y y z z z z
 _head: Node(c,y)
 _tail: Node(h,z)
 _tails: {'y': Node(i,y),
 'z': Node(h,z),}

[33]:

q.dequeue()

[33]:

'c'

[34]:

print(q)

ItalianQueue: d->e->i->f->g->h->h
 y y y z z z z
 _head: Node(d,y)
 _tail: Node(h,z)
 _tails: {'y': Node(i,y),
 'z': Node(h,z),}

B2.1 enqueue

Implement enqueue:

def enqueue(self, v, g):
 """ Enqueues provided element v having group g, with the following
 criteria:

 Queue is scanned from head to find if there is another element
 with a matching group:
 - if there is, v is inserted after the last element in the
 same group sequence (so to the right of the group)
 - otherwise v is inserted at the end of the queue

 - MUST run in O(1)
 """

Testing: python3 -m unittest italian_queue_test.EnqueueTest

B2.2 dequeue

Implement dequeue:

def dequeue(self):
 """ Removes head element and returns it.

 - If the queue is empty, raises a LookupError.
 - MUST perform in O(1)
 - REMEMBER to clean unused _tails keys
 """

IMPORTANT: you can test ``dequeue`` even if you didn’t implement ``enqueue`` correctly

Testing: python3 -m unittest italian_queue_test.DequeueTest

[]:

 Exam - Thu 23, Jan 2020 - solutions

Exam - Thu 23, Jan 2020 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2020-01-23-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2020-01-23-FIRSTNAME-LASTNAME-ID
 data
 db.mm
 proof.txt

 exam-2020-01-23.ipynb
 digi_list_exercise.py
 digi_list_test.py
 bin_tree_exercise.py
 bin_tree_test.py
 jupman.py
 sciprog.py

	Rename datasciprolab-2020-01-23-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2020-01-23-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2020-01-23.ipynb

Metamath

Metamath [http://us.metamath.org] is a language that can express theorems, accompanied by proofs that can be verified by a computer program. Its website lets you browse from complex theorems [http://us.metamath.org/mm_100.html] up to the most basic axioms [http://us.metamath.org/mpeuni/mmtheorems1.html#mm5s] they rely on to be proven .

For this exercise, we have two files to consider, db.mm and proof.txt.

	db.mm contains the description of a simple algebra where you can only add zero to variables

	proof.txt contains the awesome proof that… any variable is equal to itself

The purpose of this exercise is to visualize the steps of the proof as a graph, and visualize statement frequencies.

DISCLAIMER: No panic !

You DO NOT need to understand any of the mathematics which follows. Here we are only interested in parsing the data and visualize it

Metamath db

First you will load data/db.mm and parse text file into Python, here is the full content:

$(Declare the constant symbols we will use $)
 $c 0 + = -> () term wff |- $.
$(Declare the metavariables we will use $)
 $v t r s P Q $.
$(Specify properties of the metavariables $)
 tt $f term t $.
 tr $f term r $.
 ts $f term s $.
 wp $f wff P $.
 wq $f wff Q $.
$(Define "term" and "wff" $)
 tze $a term 0 $.
 tpl $a term (t + r) $.
 weq $a wff t = r $.
 wim $a wff (P -> Q) $.
$(State the axioms $)
 a1 $a |- (t = r -> (t = s -> r = s)) $.
 a2 $a |- (t + 0) = t $.
$(Define the modus ponens inference rule $)
 ${
 min $e |- P $.
 maj $e |- (P -> Q) $.
 mp $a |- Q $.
 $}

Format description:

	Each row is a statement

	Words are separated by spaces. Each word that appears in a statement is called a token

	Tokens starting with dollar $ are called keywords, you may have $(, $), $c, $v, $a,$f,${,$}, $.

	Statements may be identified with a unique arbitrary label, which is placed at the beginning of the row. For example, tt, weq, maj are all labels (in the file there are more):

	tt $f term t $.

	weq $a wff t = r $.

	maj $e |- (P -> Q) $.

	Some rows have no label, examples:

	$c 0 + = -> () term wff |- $.

	$v t r s P Q $.

	$(State the axioms $)

	${

	$}

	in each row, after the first dollar keyword, you may have an arbitratry sequence of characters terminated by a dollar followed by a dot $.. You don’t need to care about the sequence meaning! Examples:

	tt $f term t $. has sequence term t

	weq $a wff t = r $. has sequence wff t = r

	$v t r s P Q $. has sequence t r s P Q

Now implement function parse_db which scans the file line by line (it is a text file, so you can use line files examples [https://datasciprolab.readthedocs.io/en/latest/exercises/formats/formats-solution.html#1.-line-files]), parses ONLY rows with labels, and RETURN a dictionary mapping labels to remaining data in the row represented as a dictionary, formatted like this (showing here only first three labels):

{
 'a1': {'keyword': '$a',
 'sequence': '|- (t = r -> (t = s -> r = s))'
 },
 'a2': {
 'keyword': '$a',
 'sequence': '|- (t + 0) = t'
 },
 'maj': {
 'keyword': '$e',
 'sequence': '|- (P -> Q)'
 },
 .
 .
 .
}

A.1 Metamath db

[2]:

def parse_db(filepath):
 #jupman-raise
 ret = {}
 with open(filepath, encoding='utf-8') as f:
 line=f.readline().strip()
 while line != "":
 #print(line)

 if line.startswith('$('):
 label = ''
 keyword = '$('
 sequence = ''
 elif line.split()[0].startswith('${'):
 label = ''
 keyword = '${'
 sequence = ''
 elif line.split()[0].startswith('$}'):
 label = ''
 keyword = '$}'
 sequence = ''
 elif line.split()[0].startswith('$'):
 label = ''
 keyword = line.split()[0]
 sequence = line.split()[1][:-2].strip()
 else:
 label = line.split(' $')[0].strip()
 keyword = line.split()[1]
 if line.endswith('$.'):
 sequence = line.split(keyword)[1][1:-2].strip()

 if label:
 ret[label] = {
 'keyword' : keyword,
 'sequence' : sequence
 }
 #print(' DEBUG: FOUND', label, ':', ret[label])
 #else:
 #print(' DEBUG: DISCARDED')
 line=f.readline().strip()
 return ret
 #/jupman-raise

db_mm = parse_db('data/db.mm')

assert db_mm['tt'] == {'keyword': '$f', 'sequence': 'term t'}
assert db_mm['maj'] == {'keyword': '$e', 'sequence': '|- (P -> Q)'}
careful 'mp' label shouldn't have spaces inside !
assert 'mp' in db_mm
assert db_mm['mp'] == {'keyword': '$a', 'sequence': '|- Q'}

from pprint import pprint
#pprint(db_mm)

[3]:

from pprint import pprint
print("************ EXPECTED OUTPUT: ****************")
pprint(db_mm)

************ EXPECTED OUTPUT: ****************
{'a1': {'keyword': '$a', 'sequence': '|- (t = r -> (t = s -> r = s))'},
 'a2': {'keyword': '$a', 'sequence': '|- (t + 0) = t'},
 'maj': {'keyword': '$e', 'sequence': '|- (P -> Q)'},
 'min': {'keyword': '$e', 'sequence': '|- P'},
 'mp': {'keyword': '$a', 'sequence': '|- Q'},
 'tpl': {'keyword': '$a', 'sequence': 'term (t + r)'},
 'tr': {'keyword': '$f', 'sequence': 'term r'},
 'ts': {'keyword': '$f', 'sequence': 'term s'},
 'tt': {'keyword': '$f', 'sequence': 'term t'},
 'tze': {'keyword': '$a', 'sequence': 'term 0'},
 'weq': {'keyword': '$a', 'sequence': 'wff t = r'},
 'wim': {'keyword': '$a', 'sequence': 'wff (P -> Q)'},
 'wp': {'keyword': '$f', 'sequence': 'wff P'},
 'wq': {'keyword': '$f', 'sequence': 'wff Q'}}

A.2 Metamath proof

A proof file is made of steps, one per row. Each statement, in order to be proven, needs other steps to be proven until very basic facts called axioms are reached, which need no further proof (typically proofs in Metamath are shown in much shorter format, but here we use a more explicit way)

So a proof can be nicely displayed as a tree of the steps it is made of, where the top node is the step to be proven and the axioms are the leaves of the tree.

Complete content of data/proof.txt:

 1 tt $f term t
 2 tze $a term 0
 3 1,2 tpl $a term (t + 0)
 4 tt $f term t
 5 3,4 weq $a wff (t + 0) = t
 6 tt $f term t
 7 tt $f term t
 8 6,7 weq $a wff t = t
 9 tt $f term t
10 9 a2 $a |- (t + 0) = t
11 tt $f term t
12 tze $a term 0
13 11,12 tpl $a term (t + 0)
14 tt $f term t
15 13,14 weq $a wff (t + 0) = t
16 tt $f term t
17 tze $a term 0
18 16,17 tpl $a term (t + 0)
19 tt $f term t
20 18,19 weq $a wff (t + 0) = t
21 tt $f term t
22 tt $f term t
23 21,22 weq $a wff t = t
24 20,23 wim $a wff ((t + 0) = t -> t = t)
25 tt $f term t
26 25 a2 $a |- (t + 0) = t
27 tt $f term t
28 tze $a term 0
29 27,28 tpl $a term (t + 0)
30 tt $f term t
31 tt $f term t
32 29,30,31 a1 $a |- ((t + 0) = t -> ((t + 0) = t -> t = t))
33 15,24,26,32 mp $a |- ((t + 0) = t -> t = t)
34 5,8,10,33 mp $a |- t = t

Each line represents a step of the proof. Last line is the final goal of the proof.

Each line contains, in order:

	a step number at the beginning, starting from 1 (step_id)

	possibly a list of other step_ids, separated by commas, like 29,30,31 - they are references to previous rows

	label of the db_mm statement referenced by the step, like tt, tze, weq - that label must have been defined somewhere in db.mm file

	statement type: a token starting with a dollar, like $a, $f

	a sequence of characters, like (for you they are just characters, don’t care about the meaning !):

	term (t + 0)

	|- ((t + 0) = t -> ((t + 0) = t -> t = t))

Implement function parse_proof, which takes a filepath to the proof and RETURN a list of steps expressed as a dictionary, in this format (showing here only first 5 items):

NOTE: referenced step_ids are integer numbers and they are the original ones from the file, meaning they start from one.

[
 {'keyword': '$f',
 'label': 'tt',
 'sequence': 'term t',
 'step_ids': []},
 {'keyword': '$a',
 'label': 'tze',
 'sequence': 'term 0',
 'step_ids': []},
 {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [1,2]},
 {'keyword': '$f',
 'label': 'tt',
 'sequence': 'term t',
 'step_ids': []},
 {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff (t + 0) = t',
 'step_ids': [3,4]},
 .
 .
 .
]

[4]:

def parse_proof(filepath):
 #jupman-raise
 ret = []

 with open(filepath, encoding='utf-8') as f:
 line=f.readline().strip()

 while line != "":

 step_id = int(line.split(' ')[0])
 label = line.split('$')[0].strip().split(' ')[-1]
 keyword = '$' + line.split('$')[1][:1]
 sequence = line.split('$')[1][2:]
 candidate_step_ids = line.split(' ')[1]

 if candidate_step_ids != label:
 step_ids = [int(x) for x in line.split(' ')[1].split(',')]
 else:
 step_ids = []
 #print('deps =', deps)

 ret.append({
 'step_ids': step_ids,
 'sequence': sequence,
 'label': label,
 'keyword': keyword
 })

 line=f.readline().strip()
 return ret
 #/jupman-raise

proof = parse_proof('data/proof.txt')

assert proof[0] == {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []}
assert proof[1] == {'keyword': '$a', 'label': 'tze', 'sequence': 'term 0', 'step_ids': []}
assert proof[2] == {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [1, 2]}
assert proof[4] == {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff (t + 0) = t',
 'step_ids': [3,4]}
assert proof[33] == { 'keyword': '$a',
 'label': 'mp',
 'sequence': '|- t = t',
 'step_ids': [5, 8, 10, 33]}

pprint(proof)

[{'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a', 'label': 'tze', 'sequence': 'term 0', 'step_ids': []},
 {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [1, 2]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff (t + 0) = t',
 'step_ids': [3, 4]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a', 'label': 'weq', 'sequence': 'wff t = t', 'step_ids': [6, 7]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'a2',
 'sequence': '|- (t + 0) = t',
 'step_ids': [9]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a', 'label': 'tze', 'sequence': 'term 0', 'step_ids': []},
 {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [11, 12]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff (t + 0) = t',
 'step_ids': [13, 14]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a', 'label': 'tze', 'sequence': 'term 0', 'step_ids': []},
 {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [16, 17]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff (t + 0) = t',
 'step_ids': [18, 19]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'weq',
 'sequence': 'wff t = t',
 'step_ids': [21, 22]},
 {'keyword': '$a',
 'label': 'wim',
 'sequence': 'wff ((t + 0) = t -> t = t)',
 'step_ids': [20, 23]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'a2',
 'sequence': '|- (t + 0) = t',
 'step_ids': [25]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a', 'label': 'tze', 'sequence': 'term 0', 'step_ids': []},
 {'keyword': '$a',
 'label': 'tpl',
 'sequence': 'term (t + 0)',
 'step_ids': [27, 28]},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$f', 'label': 'tt', 'sequence': 'term t', 'step_ids': []},
 {'keyword': '$a',
 'label': 'a1',
 'sequence': '|- ((t + 0) = t -> ((t + 0) = t -> t = t))',
 'step_ids': [29, 30, 31]},
 {'keyword': '$a',
 'label': 'mp',
 'sequence': '|- ((t + 0) = t -> t = t)',
 'step_ids': [15, 24, 26, 32]},
 {'keyword': '$a',
 'label': 'mp',
 'sequence': '|- t = t',
 'step_ids': [5, 8, 10, 33]}]

Checking proof

If you’ve done everything properly, by executing following cells you should be be able to see nice graphs.

IMPORTANT: You do not need to implement anything!

Just look if results match expected graphs

Overview plot

Here we only show step numbers using function draw_proof defined in sciprog library

[5]:

from sciprog import draw_proof
uncomment and check
#draw_proof(proof, db_mm, only_ids=True) # all graph, only numbers

[6]:

print()
print('************************ EXPECTED COMPLETE GRAPH **********************************')
draw_proof(proof, db_mm, only_ids=True)

************************ EXPECTED COMPLETE GRAPH **********************************

[image: ../../_images/exams_2020-01-23_exam-2020-01-23-solution_25_1.png]

Detail plot

Here we show data from both the proof and the db_mm we calculated earlier. To avoid having a huge graph we only focus on subtree starting from step_id 24.

To understand what is shown, look at node 20: - first line contains statement wff (t + 0) = t taken from line 20 of proof file - second line weq: wff t = r is taken from db_mm, and means rule labeled weq was used to derive the statement in the first line.

[7]:

uncomment and check
#draw_proof(proof, db_mm, step_id=24)

[8]:

print()
print('************************* EXPECTED DETAIL GRAPH *******************************')
draw_proof(proof, db_mm, step_id=24)

************************* EXPECTED DETAIL GRAPH *******************************

[image: ../../_images/exams_2020-01-23_exam-2020-01-23-solution_28_1.png]

A.3 Metamath top statements

We can measure the importance of theorems and definitions (in general, statements) by counting how many times they are referenced in proofs.

A3.1 histogram

Write some code to plot the histogram of statement labels referenced by steps in proof, from most to least frequently referenced.

A label gets a count each time a step references another step with that label.

For example, in the subgraph above:

	tt is referenced 4 times, that is, there are 4 steps referencing other steps which contain the label tt

	weq is referenced 2 times

	tpl and tze are referenced 1 time each

	wim is referenced 0 times (it is only present in the last node, which being the root node cannot be referenced by any step)

NOTE: the previous counts are just for the subgraph example.

In your exercise, you will need to consider all the steps

A3.2 print list

Below the graph, print the list of labels from most to least frequent, associating them to corresponding statement sequence taken from db_mm

[9]:

write here

[10]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

freqs = {}
for step in proof:
 for step_id in step['step_ids']:
 label = proof[step_id-1]['label']
 if label not in freqs:
 freqs[label] = 1
 else:
 freqs[label] += 1

xs = np.arange(len(freqs.keys()))

coords = [(k, freqs[k]) for k in freqs]

coords.sort(key=lambda c: c[1], reverse=True)

ys_in = [c[1] for c in coords]

plt.bar(xs, ys_in, 0.5, align='center')

plt.title("Statement references SOLUTION")
plt.xticks(xs, [c[0] for c in coords])

plt.xlabel('Statement labels')
plt.ylabel('frequency')

plt.show()

for c in coords:
 print(c[0], ':', '\t', db_mm[c[0]]['sequence'])

[image: ../../_images/exams_2020-01-23_exam-2020-01-23-solution_31_0.png]

tt : term t
weq : wff t = r
tze : term 0
tpl : term (t + r)
a2 : |- (t + 0) = t
wim : wff (P -> Q)
a1 : |- (t = r -> (t = s -> r = s))
mp : |- Q

[]:

Part B

B1 Theory

Write the solution in separate ``theory.txt`` file

B1.1 my_fun

Given a list L of n elements, please compute the asymptotic computational complexity of the following function, explaining your reasoning.

def my_fun(L):
 n = len(L)
 if n <= 1:
 return 1
 else:
 L1 = L[0:n//2]
 L2 = L[n//2:]
 a = my_fun(L1) + max(L1)
 b = my_fun(L2) + max(L2)
 return a + b

B1.2 differences

Briefly describe the main differences between the stack and queue data structures. Please provide an example of where you would use one or the other.

B2 plus_one

Open a text editor and edit file digi_lists_exercise.py

You are given this class:

class DigiList:
 """
 This is a stripped down version of the LinkedList as previously seen,
 which can only hold integer digits 0-9

 NOTE: there is also a _last pointer

 """

Implement this method:

def plus_one(self):
 """ MODIFIES the digi list by summing one to the integer number it represents
 - you are allowed to perform multiple scans of the linked list
 - remember the list has a _last pointer

 - MUST execute in O(N) where N is the size of the list
 - DO *NOT* create new nodes EXCEPT for special cases:
 a. empty list ([] -> [5])
 b. all nines ([9,9,9] -> [1,0,0,0])
 - DO *NOT* convert the digi list to a python int
 - DO *NOT* convert the digi list to a python list
 - DO *NOT* reverse the digi list
 """

Test: python3 -m unittest digi_list_test.PlusOneTest

Example:

[11]:

from digi_list_solution import *

dl = DigiList()

dl.add(9)
dl.add(9)
dl.add(7)
dl.add(3)
dl.add(9)
dl.add(2)

print(dl)

DigiList: 2,9,3,7,9,9

[12]:

dl.last()

[12]:

9

[13]:

dl.plus_one()

[14]:

print(dl)

DigiList: 2,9,3,8,0,0

B3 add_row

Open a text editor and edit file bin_tree_exercise.py.

[image: tree iu9fidomnv]

Now implement this method:

def add_row(self, elems):
 """ Takes as input a list of data and MODIFIES the tree by adding
 a row of new leaves, each having as data one element of elems,
 in order.

 - elems size can be less than 2*|leaves|
 - if elems size is more than 2*|leaves|, raises ValueError
 - for simplicity, you can assume assume self is a perfect
 binary tree, that is a binary tree in which all interior nodes
 have two children and all leaves have the same depth
 - MUST execute in O(n+|elems|) where n is the size of the tree
 - DO *NOT* use recursion
 - implement it with a while and a stack (as a Python list)
 """

Test: python3 -m unittest bin_tree_test.AddRowTest

Example:

[15]:

from bin_tree_solution import *
from bin_tree_test import bt

t = bt('a',
 bt('b',
 bt('d'),
 bt('e')),
 bt('c',
 bt('f'),
 bt('g')))

print(t)

a
├b
│├d
│└e
└c
 ├f
 └g

[16]:

t.add_row(['h','i','j','k','l'])

[17]:

print(t)

a
├b
│├d
││├h
││└i
│└e
│ ├j
│ └k
└c
 ├f
 │├l
 │└
 └g

 Midterm B - Fri 20, Dec 2019

Midterm B - Fri 20, Dec 2019

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

You can take this midterm ONLY IF you got grade >= 16 in Part A midterm.

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-12-20-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-12-20-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-exams
 |-2019-12-20
 |- exam-2019-12-20-exercise.ipynb
 |- theory.txt
 |- linked_list_exercise.py
 |- linked_list_test.py
 |- bin_tree_exercise.py
 |- bin_tree_test.py

	Rename datasciprolab-2019-12-20-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-12-20-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part B

B1 Theory

Write the solution in separate ``theory.txt`` file

B1.1 Complexity

Given a list 𝐿 of 𝑛 elements, please compute the asymptotic computational complexity of the following function, explaining your reasoning.

def my_fun(L):
 R = 0
 for i in range(len(L)):
 for j in range(len(L)-1,0,-1):
 k = 0
 while k < 4:
 R = R + L[j] - L[i]
 k += 1
 return R

B1.2 Data structure choice

Given an algorithm that frequently checks the presence of an element in its internal data structure. Please briefly answer the following questions:

	What data structure would you choose? Why?

	In case entries are sorted, would you use the same data structures?

B2 LinkedList

Open a text editor and edit file linkedlist_exercise.py

You are given a LinkedList holding pointers _head, _last, and also _size attribute.

Notice the list also holds _last and _size attributes !!!

B2.1 rotate

✪✪ Implement this method:

def rotate(self):
 """ Rotate the list of 1 element, that is, removes last node and
 inserts it as the first one.

 - MUST execute in O(n) where n is the length of the list
 - Remember to also update _last pointer
 - WARNING: DO *NOT* try to convert whole linked list to a python list
 - WARNING: DO *NOT* swap node data or create nodes, I want you to
 change existing node links !!
 """

Testing: python3 -m unittest linked_list_test.RotateTest

Example:

[2]:

from linked_list_solution import *

[3]:

ll = LinkedList()
ll.add('d')
ll.add('c')
ll.add('b')
ll.add('a')
print(ll)

LinkedList: a,b,c,d

[4]:

ll.rotate()

[5]:

print(ll)

LinkedList: d,a,b,c

B2.2 rotaten

✪✪✪ Implement this method:

def rotaten(self, k):
 """ Rotate k times the linkedlist

 - k can range from 0 to any positive integer number (even greater than list size)
 - if k < 0 raise ValueError

 - MUST execute in O(n-(k%n)) where n is the length of the list
 - WARNING: DO *NOT* call .rotate() k times !!!!
 - WARNING: DO *NOT* try to convert whole linked list to a python list
 - WARNING: DO *NOT* swap node data or create nodes, I want you to
 change node links !!
 """

Testing: python3 -m unittest linked_list_test.RotatenTest

IMPORTANT HINT

The line “MUST execute in O(n-(k%n)) where n is the length of the list” means that you have to calculate m = k%n, and then only scan first n-m nodes!

Example:

[6]:

ll = LinkedList()
ll.add('h')
ll.add('g')
ll.add('f')
ll.add('e')
ll.add('d')
ll.add('c')
ll.add('b')
ll.add('a')
print(ll)

LinkedList: a,b,c,d,e,f,g,h

[7]:

ll.rotaten(0) # changes nothing

[8]:

print(ll)

LinkedList: a,b,c,d,e,f,g,h

[9]:

ll.rotaten(3)

[10]:

print(ll)

LinkedList: f,g,h,a,b,c,d,e

[11]:

ll.rotaten(8) # changes nothing

[12]:

print(ll)

LinkedList: f,g,h,a,b,c,d,e

[13]:

ll.rotaten(5)

[14]:

print(ll)

LinkedList: a,b,c,d,e,f,g,h

[15]:

ll.rotaten(11) # 11 = 8 + 3 , only rotates 3 nodes

[16]:

print(ll)

LinkedList: f,g,h,a,b,c,d,e

B3 Binary trees

We will now go looking for leaves, that is, nodes with no children. Open bin_tree_exercise.

[image: bt leaves numbers 98udfuj]

[17]:

from bin_tree_test import bt
from bin_tree_solution import *

B3.1 sum_leaves_rec

✪✪ Implement this method:

def sum_leaves_rec(self):
 """ Supposing the tree holds integer numbers in all nodes,
 RETURN the sum of ONLY the numbers in the leaves.

 - a root with no children is considered a leaf
 - implement it as a recursive Depth First Search (DFS) traversal
 NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.SumLeavesRecTest

Example:

[18]:

t = bt(3,
 bt(10,
 bt(1),
 bt(7,
 bt(5))),
 bt(9,
 bt(6,
 bt(2,
 None,
 bt(4)),
 bt(8))))

t.sum_leaves_rec() # 1 + 5 + 4 + 8

[18]:

18

B3.2 leaves_stack

✪✪✪ Implement this method:

def leaves_stack(self):
 """ RETURN a list holding the *data* of all the leaves of the tree,
 in left to right order.

 - a root with no children is considered a leaf
 - DO *NOT* use recursion
 - implement it with a while and a stack (as a Python list)
 """

Testing: python3 -m unittest bin_tree_test.LeavesStackTest

Example:

[19]:

t = bt('a',
 bt('b',
 bt('c'),
 bt('d',
 None,
 bt('e'))),
 bt('f',
 bt('g',
 bt('h')),
 bt('i')))
t.leaves_stack()

[19]:

['c', 'e', 'h', 'i']

[]:

 Midterm - Thu 07, Nov 2019 - solutions

[1]:

#Please execute this cell
import sys;
sys.path.append('../../');
import jupman;

Midterm - Thu 07, Nov 2019 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-11-07-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-11-07-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-exams
 |-2019-11-07
 |- exam-2019-11-07-exercise.ipynb

	Rename datasciprolab-2019-11-07-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-11-07-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2019-11-07-exercise.ipynb

You will work on a dataset of events which occur in the Municipality of Trento, in years 2019-20. Each event can be held during a particular day, two days, or many specified as a range. Events are written using natural language, so we will try to extract such dates, taking into account that information sometimes can be partial or absent.

Data provider: Comune di Trento [https://dati.trentino.it/dataset/eventi-del-comune-di-trento]

License: Creative Commons Attribution 4.0 [http://creativecommons.org/licenses/by/4.0/deed.it]

WARNING: avoid constants in function bodies !!

In the exercises data you will find many names and connectives such as ‘Giovedì’, ‘Novembre’, ‘e’, ‘a’, etc. DO NOT put such constant names inside body of functions !! You have to write generic code which works with any input.

[2]:

import pandas as pd # we import pandas and for ease we rename it to 'pd'
import numpy as np # we import numpy and for ease we rename it to 'np'

remember the encoding !
eventi = pd.read_csv('data/eventi.csv', encoding='UTF-8')
eventi.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 253 entries, 0 to 252
Data columns (total 35 columns):
remoteId 253 non-null object
published 253 non-null object
modified 253 non-null object
Priorità 253 non-null int64
Evento speciale 0 non-null float64
Titolo 253 non-null object
Titolo breve 1 non-null object
Sottotitolo 227 non-null object
Descrizione 224 non-null object
Locandina 16 non-null object
Inizio 253 non-null object
Termine 252 non-null object
Quando 253 non-null object
Orario 251 non-null object
Durata 6 non-null object
Dove 252 non-null object
lat 253 non-null float64
lon 253 non-null float64
address 241 non-null object
Pagina web 201 non-null object
Contatto email 196 non-null object
Contatto telefonico 196 non-null object
Informazioni 62 non-null object
Costi 132 non-null object
Immagine 252 non-null object
Evento - manifestazione 252 non-null object
Manifestazione cui fa parte 108 non-null object
Tipologia 252 non-null object
Materia 252 non-null object
Destinatari 24 non-null object
Circoscrizione 109 non-null object
Struttura ospitante 220 non-null object
Associazione 1 non-null object
Ente organizzatore 0 non-null float64
Identificativo 0 non-null float64
dtypes: float64(5), int64(1), object(29)
memory usage: 69.3+ KB

We will concentrate on Quando (When) column:

[3]:

eventi['Quando']

[3]:

0 venerdì 5 aprile alle 20:30 in via degli Olmi ...
1 Giovedì 7 novembre 2019
2 Giovedì 14 novembre 2019
3 Giovedì 21 novembre 2019
4 Giovedì 28 novembre 2019
 ...
248 sabato 9 novembre 2019
249 da venerdì 8 a domenica 10 novembre 2019
250 giovedì 7 novembre 2019
251 giovedì 28 novembre 2019
252 giovedì 21 novembre 2019
Name: Quando, Length: 253, dtype: object

A.1 leap_year

✪ A leap year has 366 days instead of regular 365. Yor are given some criteria to detect whether or not a year is a leap year. Implement them in a function which given a year as a number RETURN True if it is a leap year, False otherwise.

IMPORTANT: in Python there are predefined methods to detect leap years, but here you MUST write your own code!

	If the year is evenly divisible by 4, go to step 2. Otherwise, go to step 5.

	If the year is evenly divisible by 100, go to step 3. Otherwise, go to step 4.

	If the year is evenly divisible by 400, go to step 4. Otherwise, go to step 5.

	The year is a leap year (it has 366 days)

	The year is not a leap year (it has 365 days)

(if you’re curios about calendars, see this link [https://docs.microsoft.com/en-us/office/troubleshoot/excel/determine-a-leap-year])

[4]:

def is_leap(year):
 #jupman-raise
 if year % 4 == 0:
 if year % 100 == 0:
 return year % 400 == 0
 else:
 return True
 else:
 return False
 #/jupman-raise

assert is_leap(4) == True
assert is_leap(104) == True
assert is_leap(204) == True
assert is_leap(400) == True
assert is_leap(1600) == True
assert is_leap(2000) == True
assert is_leap(2400) == True
assert is_leap(2000) == True
assert is_leap(2004) == True
assert is_leap(2008) == True
assert is_leap(2012) == True

assert is_leap(1) == False
assert is_leap(5) == False
assert is_leap(100) == False
assert is_leap(200) == False
assert is_leap(1700) == False
assert is_leap(1800) == False
assert is_leap(1900) == False
assert is_leap(2100) == False
assert is_leap(2200) == False
assert is_leap(2300) == False
assert is_leap(2500) == False
assert is_leap(2600) == False

A.2 full_date

✪✪ Write function full_date which takes some natural language text representing a complete date and outputs a string in the format yyyy-mm-dd like 2019-03-25.

	Dates will be expressed in Italian, so we report here the corresponding translations

	your function should work regardless of capitalization of input

	we assume the date to be always well formed

Examples:

At the begininning you always have day name (Mercoledì means Wednesday):

>>> full_date("Mercoledì 13 Novembre 2019")
"2019-11-13"

Right after day name, you may also find a day phase, like mattina for morning:

>>> full_date("Mercoledì mattina 13 Novembre 2019")
"2019-11-13"

Remember you can have lowercases and single digits which must be prepended by zero:

>>> full_date("domenica 4 dicembre 1923")
"1923-12-04"

For more examples, see assertions.

[5]:

days = ['lunedì', 'martedì', 'mercoledì', 'giovedì', 'venerdì', 'sabato', 'domenica']

months = ['gennaio', 'febbraio', 'marzo' , 'aprile' , 'maggio' , 'giugno',
 'luglio' , 'agosto' , 'settembre', 'ottobre', 'novembre', 'dicembre']

morning, afternoon, evening, night
day_phase = ['mattina', 'pomeriggio', 'sera', 'notte']

[6]:

def full_date(text):
 #jupman-raise
 ntext = text.lower()
 words = ntext.split()
 i = 1
 if words[i] in day_phase:
 i += 1
 day = int(words[i])
 i += 1

 month = int(months.index(words[i])) + 1
 i += 1

 year = int(words[i])

 return "{:04d}-{:02d}-{:02d}".format(year, month, day)
 #/jupman-raise

assert full_date("Giovedì 14 novembre 2019") == "2019-11-14"
assert full_date("Giovedì 7 novembre 2019") == "2019-11-07"
assert full_date("Giovedì pomeriggio 14 novembre 2019") == "2019-11-14"
assert full_date("sabato mattina 25 marzo 2017") == "2017-03-25"
assert full_date("Mercoledì 13 Novembre 2019") == "2019-11-13"
assert full_date("domenica 4 dicembre 1923") == "1923-12-04"

A.3 partial_date

✪✪✪ Write a function partial_date which takes a natural language text representing one or more dates, and RETURN only the FIRST date found, in the format yyyy-mm-dd. If the FIRST date contains insufficient information to form a complete date, in the returned date leave the characters 'yyyy' for unknown year, 'mm' for unknown months and 'dd' for unknown day.

NOTE: Here we only care about FIRST date, DO NOT attempt to fetch eventual missing information from the second date, we will deal will that in a later exercise.

Examples:

>>> partial_date("Giovedì 7 novembre 2019")
"2019-11-07"

>>> partial_date("venerdì 15 novembre")
"yyyy-11-15"

>>> partial_date("venerdì pomeriggio 15 e sabato mattina 16 novembre 2019")
"yyyy-mm-15"

For more examples, see asserts.

[7]:

connective_and = 'e'

connective_from = 'da'
connective_to = 'a'

days = ['lunedì', 'martedì', 'mercoledì', 'giovedì', 'venerdì', 'sabato', 'domenica']
months = ['gennaio', 'febbraio', 'marzo' , 'aprile' , 'maggio' , 'giugno',
 'luglio' , 'agosto' , 'settembre', 'ottobre', 'novembre', 'dicembre']

 # morning, afternoon, evening, night
day_phases = ['mattina', 'pomeriggio', 'sera', 'notte']

[8]:

def partial_date(text):
 #jupman-raise
 if type(text) != str:
 return 'yyyy-mm-dd'

 year = 'yyyy'
 month = 'mm'
 day = 'dd'

 ntext = text.lower()
 ret = []
 words = ntext.split()

 if len(words) > 0:
 if words[0] == connective_from:
 i = 1
 else:
 i = 0
 if words[i] in days:
 i = i + 1
 if words[i] in day_phases:
 i += 1
 day = "{:02d}".format(int(words[i]))
 i += 1
 if i < len(words):
 # 'e' case with double date
 if words[i] in months:
 month = "{:02d}".format(months.index(words[i]) + 1)
 i += 1
 if i < len(words):
 if words[i].isdigit():
 year = "{:04d}".format(int(words[i]))

 return "%s-%s-%s" % (year, month, day)
 #/jupman-raise

complete, uppercase day
assert partial_date("Giovedì 7 novembre 2019") == "2019-11-07"
assert partial_date("Giovedì 14 novembre 2019") == "2019-11-14"
lowercase day
assert partial_date("mercoledì 13 novembre 2019") == "2019-11-13"
lowercase, dayphase, missing month and year
assert partial_date("venerdì pomeriggio 15") == "yyyy-mm-15"
single day, lowercase, no year
assert partial_date("venerdì 15 novembre") == "yyyy-11-15"

no year, hour / location to be discarded
assert partial_date("venerdì 5 aprile alle 20:30 in via degli Olmi 26 (Trento sud)")\
 == "yyyy-04-05"

two dates, 'and' connective ('e'), day phase morning/afternoon ('mattina'/'pomeriggio')
assert partial_date("venerdì pomeriggio 15 e sabato mattina 16 novembre 2019") \
 == "yyyy-mm-15"

two dates, begins with connective 'Da'
assert partial_date("Da lunedì 25 novembre a domenica 01 dicembre 2019") == "yyyy-11-25"
assert partial_date("da giovedì 12 a domenica 15 dicembre 2019") == "yyyy-mm-12"
assert partial_date("da giovedì 9 a domenica 12 gennaio 2020") == "yyyy-mm-09"
assert partial_date("Da lunedì 04 a domenica 10 novembre 2019") == "yyyy-mm-04"

A.4 parse_dates_and

✪✪✪ Write a function which, given a string representing two possibly partial dates separated by the e connective (and), RETURN a tuple holding the two extracted dates each in the format yyyy-mm-dd.

	IMPORTANT: Notice that the year or month of the first date might actually be indicated in the second date ! In this exercise we want missing information in the first date to be filled in with year and/or month taken from second date.

	HINT: implement this function calling previously defined functions. If you do so, it will be fairly easy.

Examples:

>>> parse_dates_and("venerdì pomeriggio 15 e sabato mattina 16 novembre 2019")
("2019-11-15", "2019-11-16")

>>> parse_dates_and("lunedì 4 e domenica 10 novembre")
("yyyy-11-04","yyyy-11-10")

For more examples, see asserts.

[9]:

def parse_dates_and(text):
 #jupman-raise
 ntext = text.lower()

 strings = ntext.split(' ' + connective_and + ' ')
 date_left = partial_date(strings[0])
 date_right = partial_date(strings[1])
 if 'yyyy' in date_left:
 date_left = date_left.replace('yyyy', date_right[0:4])
 if 'mm' in date_left:
 date_left = date_left.replace('mm', date_right[5:7])
 return (date_left, date_right)

 #/jupman-raise

complete dates
assert parse_dates_and("lunedì 25 aprile 2018 e domenica 01 dicembre 2019") == ("2018-04-25","2019-12-01")

exactly two dates, day phase morning/afternoon ('mattina'/'pomeriggio')
assert parse_dates_and("venerdì pomeriggio 15 e sabato mattina 16 novembre 2019") == ("2019-11-15", "2019-11-16")

first date missing year
assert parse_dates_and("lunedì 13 settembre e sabato 25 dicembre 2019") == ("2019-09-13","2019-12-25")

first date missing month and year
assert parse_dates_and("Giovedì 12 e domenica 15 dicembre 2019") == ("2019-12-12","2019-12-15")

assert parse_dates_and("giovedì 9 e domenica 12 gennaio 2020") == ("2020-01-09", "2020-01-12")

assert parse_dates_and("lunedì 4 e domenica 10 novembre 2019") == ("2019-11-04","2019-11-10")

first missing month and year, second missing year
assert parse_dates_and("lunedì 4 e domenica 10 novembre") == ("yyyy-11-04","yyyy-11-10")

first missing month and year, second missing month and year
assert parse_dates_and("lunedì 4 e domenica 10") == ("yyyy-mm-04","yyyy-mm-10")

A.5 Fake news generator

Functional illiteracy [https://en.wikipedia.org/wiki/Functional_illiteracy] is reading and writing skills that are inadequate “to manage daily living and employment tasks that require reading skills beyond a basic level”

✪✪ Knowing that functional illiteracy is on the rise, a news website wants to fire obsolete human journalists and attract customers by feeding them with automatically generated fake news. You are asked to develop the algorithm for producing the texts: while ethically questionable, the company pays well, so you accept.

Typically, a fake news starts with a real subject, a real fact (the antecedent), and follows it with some invented statement (the consequence). You are provided by the company three databases, one with subjects, one with antecedents and one of consequences. To each antecedent and consequence is associated a topic.

Write a function fake_news which takes the databases and RETURN a list holding strings with all possible combinations of subjects, antecedents and consequences where the topic of antecedent matches the one of consequence. See desired output for more info.

NOTE: Your code MUST work with any database

[10]:

db_subjects = [
 'Government',
 'Party X',
]

db_antecedents = [
 ("passed fiscal reform","economy"),
 ("passed jobs act","economy"),
 ("regulated pollution emissions", "environment"),
 ("restricted building in natural areas", "environment"),
 ("introduced more controls in agrifood production","environment"),
 ("changed immigration policy","foreign policy"),
]

db_consequences = [
 ("economy","now spending is out of control"),
 ("economy","this increased taxes by 10%"),
 ("economy","this increased deficit by a staggering 20%"),
 ("economy","as a consequence our GDP has fallen dramatically"),
 ("environment","businesses had to fire many employees"),
 ("environment","businesses are struggling to meet law requirements"),
 ("foreign policy","immigrants are stealing our jobs"),
]

def fake_news(subjects, antecedents,consequences):
 #jupman-raise
 ret = []
 for subject in subjects:
 for ant in antecedents:
 for con in consequences:
 if ant[1] == con[0]:
 ret.append(subject + ' ' + ant[0] + ', ' + con[1])
 return ret
 #/jupman-raise

#fake_news(db_subjects, db_antecedents, db_consequences)

[11]:

print()
print(" ******************* EXPECTED OUTPUT *******************")
print()
fake_news(db_subjects, db_antecedents, db_consequences)

 ******************* EXPECTED OUTPUT *******************

[11]:

['Government passed fiscal reform, now spending is out of control',
 'Government passed fiscal reform, this increased taxes by 10%',
 'Government passed fiscal reform, this increased deficit by a staggering 20%',
 'Government passed fiscal reform, as a consequence our GDP has fallen dramatically',
 'Government passed jobs act, now spending is out of control',
 'Government passed jobs act, this increased taxes by 10%',
 'Government passed jobs act, this increased deficit by a staggering 20%',
 'Government passed jobs act, as a consequence our GDP has fallen dramatically',
 'Government regulated pollution emissions, businesses had to fire many employees',
 'Government regulated pollution emissions, businesses are struggling to meet law requirements',
 'Government restricted building in natural areas, businesses had to fire many employees',
 'Government restricted building in natural areas, businesses are struggling to meet law requirements',
 'Government introduced more controls in agrifood production, businesses had to fire many employees',
 'Government introduced more controls in agrifood production, businesses are struggling to meet law requirements',
 'Government changed immigration policy, immigrants are stealing our jobs',
 'Party X passed fiscal reform, now spending is out of control',
 'Party X passed fiscal reform, this increased taxes by 10%',
 'Party X passed fiscal reform, this increased deficit by a staggering 20%',
 'Party X passed fiscal reform, as a consequence our GDP has fallen dramatically',
 'Party X passed jobs act, now spending is out of control',
 'Party X passed jobs act, this increased taxes by 10%',
 'Party X passed jobs act, this increased deficit by a staggering 20%',
 'Party X passed jobs act, as a consequence our GDP has fallen dramatically',
 'Party X regulated pollution emissions, businesses had to fire many employees',
 'Party X regulated pollution emissions, businesses are struggling to meet law requirements',
 'Party X restricted building in natural areas, businesses had to fire many employees',
 'Party X restricted building in natural areas, businesses are struggling to meet law requirements',
 'Party X introduced more controls in agrifood production, businesses had to fire many employees',
 'Party X introduced more controls in agrifood production, businesses are struggling to meet law requirements',
 'Party X changed immigration policy, immigrants are stealing our jobs']

 Midterm sim - Tue 31, October 2019 - solutions

Midterm sim - Tue 31, October 2019 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

This is only a simulation. By participating to it, you gain nothing, and you lose nothing

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-10-31-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-08-26-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-exams
 |-2019-10-31
 |- exam-2019-10-31-exercise.ipynb

	Rename datasciprolab-2019-10-31-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-10-31-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - offerte lavoro EURES

Open Jupyter and start editing this notebook exam-2019-10-31-exercise.ipynb

After exiting this university prison, you will look for a job and be shocked to discover in Europe a great variety of languages are spoken. Many job listings are provided by Eures [https://ec.europa.eu/eures/public/homepage] portal, which is easily searchable with many fields on which you can filter. For this exercise we will use a test dataset which was generated just for a hackaton: it is a crude italian version of the job offers data, with many fields expressed in natural language. We
will try to convert it to a dataset with more columns and translate some terms to English.

Data provider: Autonomous Province of Trento [https://dati.trentino.it/dataset/offerte-di-lavoro-eures-test-odhb2019]

License: Creative Commons Zero 1.0 [http://creativecommons.org/publicdomain/zero/1.0/deed.it]

WARNING: avoid constants in function bodies !!

In the exercises data you will find many names such as 'Austria', 'Giugno', etc. DO NOT put such constant names inside body of functions !! You have to write generic code which works with any input.

offerte dataset

We will load the dataset data/offerte-lavoro.csv into Pandas:

[1]:

import pandas as pd # we import pandas and for ease we rename it to 'pd'
import numpy as np # we import numpy and for ease we rename it to 'np'

remember the encoding !
offerte = pd.read_csv('data/offerte-lavoro.csv', encoding='UTF-8')
offerte.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53 entries, 0 to 52
Data columns (total 8 columns):
RIFER. 53 non-null object
SEDE LAVORO 53 non-null object
POSTI 53 non-null int64
IMPIEGO RICHIESTO 53 non-null object
TIPO CONTRATTO 53 non-null object
LINGUA RICHIESTA 51 non-null object
RET. LORDA 53 non-null object
DESCRIZIONE OFFERTA 53 non-null object
dtypes: int64(1), object(7)
memory usage: 3.4+ KB

It contains Italian column names, and many string fields:

[2]:

offerte.head()

[2]:

 Exam - Mon 26, August 2019 - solutions

Exam - Mon 26, August 2019 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-08-26-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-08-26-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-exams
 |-2019-08-26
 |- exam-2019-08-26-exercise.ipynb
 |- theory.txt
 |- backpack_exercise.py
 |- backpack_test.py
 |- concert_exercise.py
 |- concert_test.py

	Rename datasciprolab-2019-08-26-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-08-26-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - University of Trento staff

Open Jupyter and start editing this notebook exam-2019-08-26-exercise.ipynb

You will work on the dataset of University of Trento staff, modified so not to contain names or surnames.

Data provider: University of Trento [https://dati.trentino.it/dataset/personale-accademico-e-tecnico-amministrativo-dell-universita-di-trento]

A function load_data is given to load the dataset (you don’t need to implement it):

[1]:

import json

def load_data():
 with open('data/2019-06-30-persone-en-stripped.json', encoding='utf-8') as json_file:
 data = json.load(json_file)
 return data

unitn = load_data()

IMPORTANT: look at the dataset !

Here we show only first 2 rows, but to get a clear picture of the dataset you should explore it further.

The dataset contains a list of employees, each of whom may have one or more positions, in one or more university units. Each unit is identified by a code like STO0000435:

[2]:

unitn[:2]

[2]:

[{'givenName': 'NAME-1',
 'phone': ['0461 283752'],
 'identifier': 'eb9139509dc40d199b6864399b7e805c',
 'familyName': 'SURNAME-1',
 'positions': [{'unitIdentifier': 'STO0008929',
 'role': 'Staff',
 'unitName': 'Student Support Service: Economics, Law and International Studies'}]},
 {'givenName': 'NAME-2',
 'phone': ['0461 281521'],
 'identifier': 'b6292ffe77167b31e856d2984544e45b',
 'familyName': 'SURNAME-2',
 'positions': [{'unitIdentifier': 'STO0000435',
 'role': 'Associate professor',
 'unitName': 'Doctoral programme – Physics'},
 {'unitIdentifier': 'STO0000435',
 'role': 'Deputy coordinator',
 'unitName': 'Doctoral programme – Physics'},
 {'unitIdentifier': 'STO0008627',
 'role': 'Associate professor',
 'unitName': 'Department of Physics'}]}]

Department names can be very long, so when you need to display them you can use the function this abbreviate.

NOTE: function is already fully implemented, do not modify it.

[3]:

def abbreviate(unitName):

 abbreviations = {

 "Department of Psychology and Cognitive Science": "COGSCI",
 "Center for Mind/Brain Sciences - CIMeC":"CIMeC",
 "Department of Civil, Environmental and Mechanical Engineering":"DICAM",
 "Centre Agriculture Food Environment - C3A":"C3A",
 "School of International Studies - SIS":"SIS",
 "Department of Sociology and social research": "Sociology",
 "Faculty of Law": "Law",
 "Department of Economics and Management": "Economics",
 "Department of Information Engineering and Computer Science":"DISI",
 "Department of Cellular, Computational and Integrative Biology - CIBIO":"CIBIO",
 "Department of Industrial Engineering":"DII"
 }
 if unitName in abbreviations:
 return abbreviations[unitName]
 else:
 return unitName.replace("Department of ", "")

Example:

[4]:

abbreviate("Department of Information Engineering and Computer Science")

[4]:

'DISI'

A1 calc_uid_to_abbr

✪ It will be useful having a map from department ids to their abbreviations, if they are actually present, otherwise to their original name. To implement this, you can use the previously defined function abbreviate.

{
 .
 .
 'STO0008629': 'DISI',
 'STO0008630': 'Sociology',
 'STO0008631': 'COGSCI',
 .
 .
 'STO0012897': 'Institutional Relations and Strategic Documents',
 .
 .
}

[5]:

def calc_uid_to_abbr(db):
 #jupman-raise
 ret = {}
 for person in db:
 for position in person['positions']:
 uid = position['unitIdentifier']
 ret[uid] = abbreviate(position['unitName'])
 return ret
 #/jupman-raise

#calc_uid_to_abbr(unitn)
print(calc_uid_to_abbr(unitn)['STO0008629'])
print(calc_uid_to_abbr(unitn)['STO0012897'])

DISI
Institutional Relations and Strategic Documents

A2.1 calc_prof_roles

✪✪ For each department, we want to see how many professor roles are covered, sorting them from greatest to lowest. In returned list we will only put the 10 department with most roles.

	NOTE 1: we are interested in roles covered. Don’t care if actual people might be less (one person can cover more professor roles within the same unit)

	NOTE 2: there are several professor roles. Please avoid listing all roles in the code (“Senior Professor’, “Visiting Professor”, ….), and prefer using some smarter way to match them.

[6]:

def calc_prof_roles(db):
 #jupman-raise
 hist = {}
 uid_to_abbr = calc_uid_to_abbr(db)

 for person in db:
 for position in person['positions']:

 role = position['role']
 uid = position['unitIdentifier']
 if 'professor'.lower() in role.lower():
 if uid in hist:
 hist[uid] += 1
 else:
 hist[uid] = 1

 ret = [(uid_to_abbr[x[0]],x[1]) for x in hist.items()]
 ret.sort(key=lambda c: c[1], reverse=True)
 return ret[:10]
 #/jupman-raise

#calc_prof_roles(unitn)

[7]:

EXPECTED RESULT
calc_prof_roles(unitn)

[7]:

[('Humanities', 92),
 ('DICAM', 85),
 ('Law', 84),
 ('Economics', 83),
 ('Sociology', 66),
 ('COGSCI', 61),
 ('Physics', 60),
 ('DISI', 55),
 ('DII', 49),
 ('Mathematics', 47)]

A2.2 plot_profs

✪ Write a funciton to plot a bar chart of data calculated above

[8]:

%matplotlib inline
import matplotlib.pyplot as plt

def plot_profs(db):
 #jupman-raise

 prof_roles = calc_prof_roles(db)

 xs = list(range(len(prof_roles)))
 xticks = [p[0] for p in prof_roles]
 ys = [p[1] for p in prof_roles]

 fig = plt.figure(figsize=(20,3))

 plt.bar(xs, ys, 0.5, align='center')

 plt.title("Professor roles per department SOLUTION")
 plt.xticks(xs, xticks)

 plt.xlabel('departments')
 plt.ylabel('professor roles')

 plt.show()
 #/jupman-raise

#plot_profs(unitn)

[9]:

EXPECTED RESULT
plot_profs(unitn)

[image: ../../_images/exams_2019-08-26_exam-2019-08-26-solution_26_0.png]

A3.1 calc_roles

✪✪ We want to calculate how many roles are covered for each department.

You will group roles by these macro groups (some already exist, some are new):

	Professor : “Senior Professor’, “Visiting Professor”, …

	Research : “Senior researcher”, “Research collaborator”, …

	Teaching : “Teaching assistant”, “Teaching fellow”, …

	Guest : “Guest”, …

and discard all the others (there are many, like “Rector”, “Head”, etc ..)

NOTE: Please avoid listing all roles in the code (“Senior researcher”, “Research collaborator”, …), and prefer using some smarter way to match them.

[10]:

def calc_roles(db):
 #jupman-raise
 ret = {}
 for person in db:
 for position in person['positions']:
 uid = position['unitIdentifier']
 role = position['role']
 grouped_role = None
 if "professor" in role.lower():
 grouped_role = 'Professor'
 elif "research" in role.lower():
 grouped_role = 'Research'
 elif "teaching" in role.lower():
 grouped_role = 'Teaching'
 elif "guest" in role.lower():
 grouped_role = 'Guest'

 if grouped_role:
 if uid in ret:
 if grouped_role in ret[uid]:
 ret[uid][grouped_role] += 1
 else:
 ret[uid][grouped_role] = 1
 else:
 diz = {}
 diz[grouped_role] = 1
 ret[uid] = diz

 return ret
 #/jupman-raise

#print(calc_roles(unitn)['STO0000001'])
#print(calc_roles(unitn)['STO0000006'])
#print(calc_roles(unitn)['STO0000012'])
#print(calc_roles(unitn)['STO0008629'])

EXPECTED RESULT - Showing just first ones …

>>> calc_roles(unitn)

{
 'STO0000001': {'Teaching': 9, 'Research': 3, 'Professor': 12},
 'STO0000006': {'Professor': 1},
 'STO0000012': {'Guest': 3},
 'STO0008629': {'Teaching': 94, 'Research': 71, 'Professor': 55, 'Guest': 38}
 .
 .
 .
}

A3.2 plot_roles

✪✪ Implement a function plot_roles that given, the abbreviations (or long names) of some departments, plots pie charts of their grouped role distribution, all in one row.

	NOTE 1: different plots MUST show equal groups with equal colors

	NOTE 2: always show all the 4 macro groups defined before, even if they have zero frequency

	For on example on how to plot the pie charts, see this [https://datasciprolab.readthedocs.io/en/latest/exercises/visualization/visualization-solution.html#Pie-chart]

	For on example on plotting side by side, see this [https://datasciprolab.readthedocs.io/en/latest/exercises/visualization/visualization-solution.html#Showing-plots-side-by-side]

[11]:

%matplotlib inline
import matplotlib.pyplot as plt

def plot_roles(db, abbrs):
 #jupman-raise
 fig = plt.figure(figsize=(15,4))
 uid_to_abbr = calc_uid_to_abbr(db)

 for i in range(len(abbrs)):

 abbr = abbrs[i]
 roles = calc_roles(db)

 uid = None

 for key in uid_to_abbr:
 if uid_to_abbr[key] == abbr:
 uid = key

 labels = ['Professor', 'Guest', 'Teaching', 'Research']
 fracs = []
 for role in labels:
 if role in roles[uid]:
 fracs.append(roles[uid][role])
 else:
 fracs.append(0)

 plt.subplot(1, # rows
 len(abbrs), # columns
 i+1) # plotting in first cell
 plt.pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True)
 plt.title(abbr)
 #/jupman-raise

#plot_roles(unitn, ['DISI','Sociology', 'COGSCI'])

[12]:

EXPECTED RESULT
plot_roles(unitn, ['DISI','Sociology', 'COGSCI'])

[image: ../../_images/exams_2019-08-26_exam-2019-08-26-solution_32_0.png]

A4.1 calc_shared

✪✪✪ We want to calculate the 10 department pairs that have the greatest number of people working in both departments (regardless of role), sorted in decreasing order.

For example, ‘CIMeC’ and ‘COGSCI’ have 23 people working in both departments, meaning each of these 23 people has at least a position at CIMeC and at least a position at COGSCI.

NOTE: in this case we are looking at number of actual people, not number of roles covered

	we do not want to consider Doctoral programmes

	we do not want to consider ‘University of Trento’ department (STO0000001)

	if your calculations display with swapped names ((‘COGSCI’, ‘CIMeC’, 23) instead of (‘CIMeC’, ‘COGSCI’, 23)) it is not important, as long as they display just once per pair.

To implement this, we provide a sketch:

	build a dict which assigns unit codes to a set of identifiers of people that work for that unit

	to add elements to a set, use .add method

	to find common employees between two units, use set .intersection method (NOTE: it generates a new set)

	to check for all possibile unit couples, you will need a double for on a list of departments. To avoid double checking pairs (so not have both (‘CIMeC’, ‘COGSCI’, 23) and (‘COGSCI’, ‘CIMeC’, 23) in output), you can think like you are visiting the lower of a matrix (for the sake of the example here we put only 4 departments with random numbers).

 0 1 2 3
 DISI, COGSCI, CIMeC, DICAM
0 DISI -- -- -- --
1 COGSCI 313 -- -- --
2 CIMeC 231 23 -- --
3 DICAM 12 13 123 --

[13]:

def calc_shared(db):
 #jupman-raise
 ret = {}
 uid_to_people = {}

 uid_to_abbr = calc_uid_to_abbr(db)

 for person in db:

 for position in person['positions']:
 uid = position['unitIdentifier']
 if not uid in uid_to_people:
 uid_to_people[uid] = set()
 uid_to_people[uid].add(person['identifier'])

 uids = list(uid_to_people)

 ret = []
 for x in range(len(uids)):
 uidx = uids[x]
 for y in range(x):
 uidy = uids[y]
 num = len(uid_to_people[uidx].intersection(uid_to_people[uidy]))
 if (num > 0) \
 and ("Doctoral programme" not in uid_to_abbr[uidx]) \
 and ("Doctoral programme" not in uid_to_abbr[uidy]) \
 and (uidx != 'STO0000001') \
 and (uidy != 'STO0000001'):
 ret.append((uid_to_abbr[uidx], uid_to_abbr[uidy],num))

 ret.sort(key=lambda c: c[2], reverse=True)
 ret = ret[:10]
 return ret
 #/jupman-raise

#calc_shared(unitn)

[14]:

EXPECTED RESULT
calc_shared(unitn)

[14]:

[('COGSCI', 'CIMeC', 23),
 ('DICAM', 'C3A', 14),
 ('DISI', 'Economics', 7),
 ('SIS', 'Sociology', 7),
 ('SIS', 'Law', 6),
 ('Economics', 'Sociology', 5),
 ('SIS', 'Humanities', 5),
 ('Economics', 'Law', 4),
 ('DII', 'DISI', 4),
 ('CIBIO', 'C3A', 4)]

A4.2 plot_shared

✪ Plot the above in a bar chart, where on the x axis there are the department pairs and on the y the number of people in common.

[15]:

import matplotlib.pyplot as plt

%matplotlib inline

def plot_shared(db):
 #jupman-raise

 uid_to_abbr = calc_uid_to_abbr(db)

 shared = calc_shared(db)
 xs = range(len(shared))

 xticks = [x[0] + "\n" + x[1] for x in shared]

 ys = [x[2] for x in shared]

 fig = plt.figure(figsize=(20,3))

 plt.bar(xs, ys, 0.5, align='center')

 plt.title("SOLUTION")
 plt.xticks(xs, xticks)

 plt.xlabel('Department pairs')
 plt.ylabel('common employees')

 plt.show()
 #/jupman-raise

#plot_shared(unitn)

[16]:

EXPECTED RESULT

plot_shared(unitn)

[image: ../../_images/exams_2019-08-26_exam-2019-08-26-solution_38_0.png]

Part B

B1 Theory

Write the solution in separate ``theory.txt`` file

Let M be a square matrix - a list containing n lists, each of them of size n. Return the computational complexity of function fun() with respect to n:

def fun(M):
 for row in M:
 for element in row:
 print(sum([x for x in row if x != element]))

ANSWER: \(O(n^3)\)

B2 Backpack

Open a text editor and edit file backpack_solution.py

We can model a backpack as stack of elements, each being a tuple with a name and a weight.

A sensible strategy to fill a backpack is to place heaviest elements to the bottom, so our backback will allow pushing an element only if that element weight is equal or lesser than current topmost element weight.

The backpack has also a maximum weight: you can put any number of items you want, as long as its maximum weight is not exceeded.

Example

[17]:

from backpack_solution import *

bp = Backpack(30) # max_weight = 30

bp.push('a',10) # item 'a' with weight 10

DEBUG: Pushing (a,10)

[18]:

print(bp)

Backpack: weight=10 max_weight=30
 elements=[('a', 10)]

[19]:

bp.push('b',8)

DEBUG: Pushing (b,8)

[20]:

print(bp)

Backpack: weight=18 max_weight=30
 elements=[('a', 10), ('b', 8)]

>>> bp.push('c', 11)

DEBUG: Pushing (c,11)

ValueError: ('Pushing weight greater than top element weight! %s > %s', (11, 8))

[21]:

bp.push('c', 7)

DEBUG: Pushing (c,7)

[22]:

print(bp)

Backpack: weight=25 max_weight=30
 elements=[('a', 10), ('b', 8), ('c', 7)]

>>> bp.push('d', 6)

DEBUG: Pushing (d,6)

ValueError: Can't exceed max_weight ! (31 > 30)

B2.1 class

✪✪ Implement methods in the class Backpack, in the order they are shown. If you want, you can add debug prints by calling the debug function

IMPORTANT: the data structure should provide the total current weight in O(1), so make sure to add and update an appropriate field to meet this constraint.

Testing: python3 -m unittest backpack_test.BackpackTest

B2.2 remove

✪✪ Implement function remove:

NOTE: this function is implemented *outside* the class !

def remove(backpack, el):
 """
 Remove topmost occurrence of el found in the backpack,
 and RETURN it (as a tuple name, weight)

 - if el is not found, raises ValueError

 - DO *NOT* ACCESS DIRECTLY FIELDS OF BACKPACK !!!
 Instead, just call methods of the class!

 - MUST perform in O(n), where n is the backpack size

 - HINT: To remove el, you need to call Backpack.pop() until
 the top element is what you are looking for. You need
 to save somewhere the popped items except the one to
 remove, and then push them back again.

 """

Testing: python3 -m unittest backpack_test.RemoveTest

Example:

[23]:

bp = Backpack(50)

bp.push('a',9)
bp.push('b',8)
bp.push('c',8)
bp.push('b',8)
bp.push('d',7)
bp.push('e',5)
bp.push('f',2)

DEBUG: Pushing (a,9)
DEBUG: Pushing (b,8)
DEBUG: Pushing (c,8)
DEBUG: Pushing (b,8)
DEBUG: Pushing (d,7)
DEBUG: Pushing (e,5)
DEBUG: Pushing (f,2)

[24]:

print(bp)

Backpack: weight=47 max_weight=50
 elements=[('a', 9), ('b', 8), ('c', 8), ('b', 8), ('d', 7), ('e', 5), ('f', 2)]

[25]:

remove(bp, 'b')

DEBUG: Popping ('f', 2)
DEBUG: Popping ('e', 5)
DEBUG: Popping ('d', 7)
DEBUG: Popping ('b', 8)
DEBUG: Pushing (d,7)
DEBUG: Pushing (e,5)
DEBUG: Pushing (f,2)

[25]:

('b', 8)

[26]:

print(bp)

Backpack: weight=39 max_weight=50
 elements=[('a', 9), ('b', 8), ('c', 8), ('d', 7), ('e', 5), ('f', 2)]

B.3 Concert

Start editing file concert_exercise.py.

When there are events with lots of potential visitors such as concerts, to speed up check-in there are at least two queues: one for cash where tickets are sold, and one for the actual entrance at the event.

Each visitor may or may not have a ticket. Also, since people usually attend in groups (coupls, families, and so on), in the queue lines each group tends to move as a whole.

In Python, we will model a Person as a class you can create like this:

[27]:

from concert_solution import *

[28]:

Person('a', 'x', False)

[28]:

Person(a,x,False)

a is the name, 'x' is the group, and False indicates the person doesn’t have ticket

To model the two queues, in Concert class we have these fields and methods:

class Concert:

 def __init__(self):
 self._cash = deque()
 self._entrance = deque()

 def enqc(self, person):
 """ Enqueues at the cash from the right """

 self._cash.append(person)

 def enqe(self, person):
 """ Enqueues at the entrance from the right """

 self._entrance.append(person)

B3.1 dequeue

✪✪✪ Implement dequeue. If you want, you can add debug prints by calling the debug function.

def dequeue(self):
 """ RETURN the names of people admitted to concert

 Dequeuing for the whole queue system is done in groups, that is,
 with a _single_ call to dequeue, these steps happen, in order:

 1. entrance queue: all people belonging to the same group at
 the front of entrance queue who have the ticket exit the queue
 and are admitted to concert. People in the group without the
 ticket are sent to cash.
 2. cash queue: all people belonging to the same group at the front
 of cash queue are given a ticket, and are queued at the entrance queue
 """

Testing: python3 -m unittest concert_test.DequeueTest

Example:

[29]:

con = Concert()

con.enqc(Person('a','x',False)) # a,b,c belong to same group x
con.enqc(Person('b','x',False))
con.enqc(Person('c','x',False))
con.enqc(Person('d','y',False)) # d belongs to group y
con.enqc(Person('e','z',False)) # e,f belongs to group z
con.enqc(Person('f','z',False))
con.enqc(Person('g','w',False)) # g belongs to group w

[30]:

con

[30]:

Concert:
 cash: deque([Person(a,x,False),
 Person(b,x,False),
 Person(c,x,False),
 Person(d,y,False),
 Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([])

First time we dequeue, entrance queue is empty so no one enters concert, while at the cash queue people in group x are given a ticket and enqueued at the entrance queue

NOTE: The messages on the console are just debug print, the function dequeue only return name sof people admitted to concert

[31]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: giving ticket to a (group x)
DEBUG: giving ticket to b (group x)
DEBUG: giving ticket to c (group x)
DEBUG: Concert:
 cash: deque([Person(d,y,False),
 Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([Person(a,x,True),
 Person(b,x,True),
 Person(c,x,True)])

[31]:

[]

[32]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: a (group x) admitted to concert
DEBUG: b (group x) admitted to concert
DEBUG: c (group x) admitted to concert
DEBUG: giving ticket to d (group y)
DEBUG: Concert:
 cash: deque([Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([Person(d,y,True)])

[32]:

['a', 'b', 'c']

[33]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: d (group y) admitted to concert
DEBUG: giving ticket to e (group z)
DEBUG: giving ticket to f (group z)
DEBUG: Concert:
 cash: deque([Person(g,w,False)])
 entrance: deque([Person(e,z,True),
 Person(f,z,True)])

[33]:

['d']

[34]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: e (group z) admitted to concert
DEBUG: f (group z) admitted to concert
DEBUG: giving ticket to g (group w)
DEBUG: Concert:
 cash: deque([])
 entrance: deque([Person(g,w,True)])

[34]:

['e', 'f']

[35]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: g (group w) admitted to concert
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[35]:

['g']

[36]:

calling dequeue on empty lines gives empty list:
con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[36]:

[]

Special dequeue case: broken group

In the special case when there is a group at the entrance with one or more members without a ticket, it is assumed that the group gets broken, so whoever has the ticket enters and the others get enqueued at the cash.

[37]:

con = Concert()

con.enqe(Person('a','x',True))
con.enqe(Person('b','x',False))
con.enqe(Person('c','x',True))
con.enqc(Person('f','y',False))

con

[37]:

Concert:
 cash: deque([Person(f,y,False)])
 entrance: deque([Person(a,x,True),
 Person(b,x,False),
 Person(c,x,True)])

[38]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: a (group x) admitted to concert
DEBUG: b (group x) has no ticket! Sending to cash
DEBUG: c (group x) admitted to concert
DEBUG: giving ticket to f (group y)
DEBUG: Concert:
 cash: deque([Person(b,x,False)])
 entrance: deque([Person(f,y,True)])

[38]:

['a', 'c']

[39]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: f (group y) admitted to concert
DEBUG: giving ticket to b (group x)
DEBUG: Concert:
 cash: deque([])
 entrance: deque([Person(b,x,True)])

[39]:

['f']

[40]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: b (group x) admitted to concert
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[40]:

['b']

[41]:

con

[41]:

Concert:
 cash: deque([])
 entrance: deque([])

[42]:

import sys;
sys.path.append('../../');
import jupman;
import backpack_solution
import backpack_test
backpack_solution.DEBUG = False
jupman.run(backpack_test)

import concert_solution
import concert_test
concert_solution.DEBUG = False
jupman.run(concert_test)

..................
--
Ran 18 tests in 0.010s

OK
.......
--
Ran 7 tests in 0.004s

OK

[]:

 Exam - Tue 02, July 2019 - solutions

Exam - Tue 02, July 2019 - solutions

Scientific Programming - Data Science Master @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-07-02-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-07-02-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2019-07-02
 |- exam-2019-07-02-exercise.ipynb
 |- theory.txt
 |- linked_sort_exercise.py
 |- linked_sort_test.py
 |- stacktris_exercise.py
 |- stacktris_test.py

	Rename datasciprolab-2019-07-02-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-07-02-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2019-07-02-exercise.ipynb

A1 Botteghe storiche

You will work on the dataset of _Botteghe storiche del Trentino” (small shops, workshops of Trentino)

Data provider: Provincia Autonoma di Trento - dati.trentino.it [https://dati.trentino.it/dataset/botteghe-storiche-del-trentino]

A function load_botteghe is given to load the dataset (you don’t need to implement it):

[2]:

def load_botteghe():
 """Loads file data and RETURN a list of dictionaries with the botteghe dati
 """

 import csv
 with open('data/botteghe.csv', newline='', encoding='utf-8',) as csvfile:
 reader = csv.DictReader(csvfile, delimiter=',')
 lst = []
 for d in reader:
 lst.append(d)
 return lst

botteghe = load_botteghe()

IMPORTANT: look at the dataset !

Here we show only first 5 rows, but to get a clear picture of the dataset you should explore it further.

[3]:

botteghe[:5]

[3]:

[OrderedDict([('Numero', '1'),
 ('Insegna', 'BAZZANELLA RENATA'),
 ('Indirizzo', 'Via del Lagorai'),
 ('Civico', '30'),
 ('Comune', 'Sover'),
 ('Cap', '38068'),
 ('Frazione/Località', 'Piscine di Sover'),
 ('Note', 'generi misti, bar - ristorante')]),
 OrderedDict([('Numero', '2'),
 ('Insegna', 'CONFEZIONI MONTIBELLER S.R.L.'),
 ('Indirizzo', 'Corso Ausugum'),
 ('Civico', '48'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale')]),
 OrderedDict([('Numero', '3'),
 ('Insegna', 'FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.'),
 ('Indirizzo', 'Largo Dordi'),
 ('Civico', '8'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale, attività artigianale')]),
 OrderedDict([('Numero', '4'),
 ('Insegna', 'BAR SERAFINI DI MINATI RENZO'),
 ('Indirizzo', ''),
 ('Civico', '24'),
 ('Comune', 'Grigno'),
 ('Cap', '38055'),
 ('Frazione/Località', 'Serafini'),
 ('Note', 'esercizio commerciale')]),
 OrderedDict([('Numero', '6'),
 ('Insegna', 'SEMBENINI GINO & FIGLI S.R.L.'),
 ('Indirizzo', 'Via S. Francesco'),
 ('Civico', '35'),
 ('Comune', 'Riva del Garda'),
 ('Cap', '38066'),
 ('Frazione/Località', ''),
 ('Note', '')])]

We would like to know which different categories of bottega there are, and count them. Unfortunately, there is no specific field for Categoria, so we will need to extract this information from other fields such as Insegna and Note. For example, this Insegna contains the category BAR, while the Note (commercial enterprise) is a bit too generic to be useful:

'Insegna': 'BAR SERAFINI DI MINATI RENZO',
'Note': 'esercizio commerciale',

while this other Insegna contains just the owner name and Note holds both the categories bar and ristorante:

'Insegna': 'BAZZANELLA RENATA',
'Note': 'generi misti, bar - ristorante',

As you see, data is non uniform:

	sometimes the category is in the Insegna

	sometimes is in the Note

	sometimes is in both

	sometimes is lowercase

	sometimes is uppercase

	sometimes is single

	sometimes is multiple (bar - ristorante)

First we want to extract all categories we can find, and rank them according their frequency, from most frequent to least frequent.

To do so, you need to

	count all words you can find in both Insegna and Note fields, and sort them. Note you need to normalize the uppercase.

	consider a category relevant if it is present at least 11 times in the dataset.

	filter non relevant words: some words like prepositions, type of company ('S.N.C', S.R.L., ..), etc will appear a lot, and will need to be ignored. To detect them, you are given a list called stopwords.

NOTE: the rules above do not actually extract all the categories, for the sake of the exercise we only keep the most frequent ones.

A1.1 rank_categories

[4]:

def rank_categories(db, stopwords):
 #jupman-raise
 ret = {}
 for diz in db:
 parole = diz['Insegna'].split(" ") + diz['Note'].upper().split(" ")
 for parola in parole:
 if parola in ret and not parola in stopwords:
 ret[parola] += 1
 else:
 ret[parola] = 1
 return sorted([(key, val) for key,val in ret.items() if val > 10], key=lambda c: c[1], reverse=True)
 #/jupman-raise

stopwords = ['',
 'S.N.C.', 'SNC','S.A.S.', 'S.R.L.', 'S.C.A.R.L.', 'SCARL','S.A.S', 'COMMERCIALE','FAMIGLIA','COOPERATIVA',
 '-', '&', 'C.', 'ESERCIZIO',
 'IL', 'DE', 'DI','A', 'DA', 'E', 'LA', 'AL', 'DEL', 'ALLA',]
categories = rank_categories(botteghe, stopwords)

categories

[4]:

[('BAR', 191),
 ('RISTORANTE', 150),
 ('HOTEL', 67),
 ('ALBERGO', 64),
 ('MACELLERIA', 27),
 ('PANIFICIO', 22),
 ('CALZATURE', 21),
 ('FARMACIA', 21),
 ('ALIMENTARI', 20),
 ('PIZZERIA', 16),
 ('SPORT', 16),
 ('TABACCHI', 12),
 ('FERRAMENTA', 12),
 ('BAZAR', 11)]

A1.2 plot

Now plot the 10 most frequent categories. Please pay attention to plot title, width and height, axis labels. Everything MUST display in a readable way.

[5]:

write here

[6]:

SOLUTION

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

cats = categories[:10]

xs = np.arange(len(cats))

xs_labels = [t[0] for t in cats]

ys = [t[1] for t in cats]

fig = plt.figure(figsize=(15,5))

plt.bar(xs, ys, 0.5, align='center')

plt.title("Categorie botteghe storiche SOLUTION")
plt.xticks(xs, xs_labels)

plt.xlabel('name')
plt.ylabel('frequency')

plt.show()

[image: ../../_images/exams_2019-07-02_exam-2019-07-02-solution_22_0.png]

A1.3 enrich

Once you found the categories, implement function enrich, which takes the db and previously computed categories, and RETURN a NEW DB where the dictionaries are enriched with a new field Categorie, which holds a list of the categories a particular bottega belongs to.

[7]:

def enrich(db, categories):
 #jupman-raise
 ret = []

 for diz in db:
 new_diz = {key:val for key,val in diz.items()}
 new_diz['Categorie'] = []
 for cat in categories:
 if cat[0] in diz['Insegna'].upper() or cat[0] in diz['Note'].upper():
 new_diz['Categorie'].append(cat[0])
 ret.append(new_diz)
 return ret
 #/jupman-raise

new_db = enrich(botteghe, rank_categories(botteghe, stopwords))

new_db[:6] #NOTE here we only show a sample

[7]:

[{'Numero': '1',
 'Insegna': 'BAZZANELLA RENATA',
 'Indirizzo': 'Via del Lagorai',
 'Civico': '30',
 'Comune': 'Sover',
 'Cap': '38068',
 'Frazione/Località': 'Piscine di Sover',
 'Note': 'generi misti, bar - ristorante',
 'Categorie': ['BAR', 'RISTORANTE']},
 {'Numero': '2',
 'Insegna': 'CONFEZIONI MONTIBELLER S.R.L.',
 'Indirizzo': 'Corso Ausugum',
 'Civico': '48',
 'Comune': 'Borgo Valsugana',
 'Cap': '38051',
 'Frazione/Località': '',
 'Note': 'esercizio commerciale',
 'Categorie': []},
 {'Numero': '3',
 'Insegna': 'FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.',
 'Indirizzo': 'Largo Dordi',
 'Civico': '8',
 'Comune': 'Borgo Valsugana',
 'Cap': '38051',
 'Frazione/Località': '',
 'Note': 'esercizio commerciale, attività artigianale',
 'Categorie': []},
 {'Numero': '4',
 'Insegna': 'BAR SERAFINI DI MINATI RENZO',
 'Indirizzo': '',
 'Civico': '24',
 'Comune': 'Grigno',
 'Cap': '38055',
 'Frazione/Località': 'Serafini',
 'Note': 'esercizio commerciale',
 'Categorie': ['BAR']},
 {'Numero': '6',
 'Insegna': 'SEMBENINI GINO & FIGLI S.R.L.',
 'Indirizzo': 'Via S. Francesco',
 'Civico': '35',
 'Comune': 'Riva del Garda',
 'Cap': '38066',
 'Frazione/Località': '',
 'Note': '',
 'Categorie': []},
 {'Numero': '7',
 'Insegna': 'HOTEL RISTORANTE PIZZERIA “ALLA NAVE”',
 'Indirizzo': 'Via Nazionale',
 'Civico': '29',
 'Comune': 'Lavis',
 'Cap': '38015',
 'Frazione/Località': 'Nave San Felice',
 'Note': '',
 'Categorie': ['RISTORANTE', 'HOTEL', 'PIZZERIA']}]

A2 dump

The multinational ToxiCorp wants to hire you for devising an automated truck driver which will deposit highly contaminated waste in the illegal dumps they own worldwide. You find it ethically questionable, but they pay well, so you accept.

A dump is modelled as a rectangular region of dimensions nrow and ncol, implemented as a list of lists matrix. Every cell i, j contains the tons of waste present, and can contain at most 7 tons of waste.

The dumpster truck will transport q tons of waste, and try to fill the dump by depositing waste in the first row, filling each cell up to 7 tons. When the first row is filled, it will proceed to the second one from the left , then to the third one again from the left until there is no waste to dispose of.

Function dump(m, q) takes as input the dump mat and the number of tons q to dispose of, and RETURN a NEW list representing a plan with the sequence of tons to dispose. If waste to dispose exceeds dump capacity, raises ValueError.

NOTE: the function does not modify the matrix

Example:

m = [
 [5,4,6],
 [4,7,1],
 [3,2,6],
 [3,6,2],
]

dump(m, 22)

[2, 3, 1, 3, 0, 6, 4, 3]

For first row we dispose of 2,3,1 tons in three cells, for second row we dispose of 3,0,6 tons in three cells, for third row we only dispose 4, 3 tons in two cells as limit q=22 is reached.

[8]:

def dump(mat, q):
 #jupman-raise
 rem = q
 ret = []

 for riga in mat:
 for j in range(len(riga)):
 cellfill = 7 - riga[j]
 unload = min(cellfill, rem)
 rem -= unload

 if rem > 0:
 ret.append(unload)
 else:
 if unload > 0:
 ret.append(unload)
 return ret

 if rem > 0:
 raise ValueError("Couldn't fill the dump, %s tons remain!")
 #/jupman-raise

m1 = [
 [5]
]

assert dump(m1,0) == [] # nothing to dump

m2 = [
 [4]
]

assert dump(m2,2) == [2]

m3 = [
 [5,4]
]

assert dump(m3,3) == [2, 1]

m3 = [
 [5,7,3]
]

assert dump(m3,3) == [2, 0, 1]

m5 = [
 [2,5], # 5 2
 [4,3] # 3 1

]

assert dump(m5,11) == [5,2,3,1]

m6 = [# tons to dump in each cell
 [5,4,6], # 2 3 1
 [4,7,1], # 3 0 6
 [3,2,6], # 4 3 0
 [3,6,2], # 0 0 0
]

assert dump(m6, 22) == [2,3,1,3,0,6,4,3]

try:
 dump ([[5]], 10)
 raise Exception("Should have failed !")
except ValueError:
 pass

Part B

B1 Theory

Write the solution in separate ``theory.txt`` file

Let L1 and L2 be two lists containing n lists, each of them of size n. Compute the computational complexity of function fun() with respect to n.

def fun(L1,L2):
 for r1 in L1:
 for val in r1:
 for r2 in L2:
 if val = sum(r2):
 print(val)

ANSWER: $:nbsphinx-math:`Theta`(n^4) $

B2 Linked List sorting

Open a text editor and edit file linked_sort_exercise.py

B2.1 bubble_sort

You will implement bubble sort on a LinkedList.

def bubble_sort(self):
 """ Sorts in-place this linked list using the method of bubble sort

 - MUST execute in O(n^2) where n is the length of the linked list
 """

Testing: python3 -m unittest linked_sort_test.BubbleSortTest

As a reference, you can look at this example_bubble implementation below that operates on regular python lists. Basically, you will have to translate the for cycles into two suitable while and use node pointers.

NOTE: this version of the algorithm is inefficient as we do not use j in the inner loop: your linked list implementation can have this inefficiency as well.

[9]:

def example_bubble(plist):
 for j in range(len(plist)):
 for i in range(len(plist)):
 if i + 1 < len(plist) and plist[i]>plist[i+1]:
 temp = plist[i]
 plist[i] = plist[i+1]
 plist[i+1] = temp

my_list = [23, 34, 55, 32, 7777, 98, 3, 2, 1]
example_bubble(my_list)
print(my_list)

[1, 2, 3, 23, 32, 34, 55, 98, 7777]

B2.2 merge

Implement this method:

def merge(self,l2):
 """ Assumes this linkedlist and l2 linkedlist contain integer numbers
 sorted in ASCENDING order, and RETURN a NEW LinkedList with
 all the numbers from this and l2 sorted in DESCENDING order

 IMPORTANT 1: *MUST* EXECUTE IN O(n1+n2) TIME where n1 and n2 are
 the sizes of this and l2 linked_list, respectively

 IMPORTANT 2: *DO NOT* attempt to convert linked lists to
 python lists!
 """

Testing: python3 -m unittest linked_sort_test.MergeTest

B3 Stacktris

Open a text editor and edit file stacktris_exercise.py

A Stacktris is a data structure that operates like the famous game Tetris, with some restrictions:

	Falling pieces can be either of length 1 or 2. We call them 1-block and 2-block respectively

	The pit has a fixed width of 3 columns

	2-blocks can only be in horizontal

We print a Stacktris like this:

\ j 012
i
4 | 11| # two 1-block
3 | 22| # one 2-block
2 | 1 | # one 1-block
1 |22 | # one 2-block
0 |1 1| # on the ground there are two 1-block

In Python, we model the Stacktris as a class holding in the variable _stack a list of lists of integers, which models the pit:

class Stacktris:

 def __init__(self):
 """ Creates a Stacktris
 """
 self._stack = []

So in the situation above the _stack variable would look like this (notice row order is inverted with respect to the print)

[
 [1,0,1],
 [2,2,0],
 [0,1,0],
 [0,2,2],
 [0,1,1],
]

The class has three methods of interest which you will implement, drop1(j) , drop2h(j) and _shorten

Example

Let’s see an example:

[10]:

from stacktris_solution import *

st = Stacktris()

At the beginning the pit is empty:

[11]:

st

[11]:

Stacktris:
EMPTY

We can start by dropping from the ceiling a block of dimension 1 into the last column at index j=2. By doing so, a new row will be created, and will be a list containing the numbers [0,0,1]

IMPORTANT: zeroes are not displayed

[12]:

st.drop1(2)

DEBUG: Stacktris:
 | 1|

[12]:

[]

Now we drop an horizontal block of dimension 2 (a 2-block) having the leftmost block at column j=1. Since below in the pit there is already the 1 block we previosly put, the new block will fall and stay upon it. Internally, we will add a new row as a python list containing the numbers [0,2,2]

[13]:

st.drop2h(1)

DEBUG: Stacktris:
 | 22|
 | 1|

[13]:

[]

We see the zeroth column is empty, so if we drop there a 1-block it will fall to the ground. Internally, the zeroth list will become [1,0,1]:

[14]:

st.drop1(0)

DEBUG: Stacktris:
 | 22|
 |1 1|

[14]:

[]

Now we drop again a 2-block at column j=2, on top of the previously laid one. This will add a new row as list [0,2,2].

[15]:

st.drop2h(1)

DEBUG: Stacktris:
 | 22|
 | 22|
 |1 1|

[15]:

[]

In the game Tetris, when a row becomes completely filled it disappears. So if we drop a 1-block to the leftmost column, the mid line should be removed.

NOTE: The messages on the console are just debug print, the function drop1 only returns the extracted line [1,2,2]:

[16]:

st.drop1(0)

DEBUG: Stacktris:
 | 22|
 |122|
 |1 1|

DEBUG: POPPING [1, 2, 2]
DEBUG: Stacktris:
 | 22|
 |1 1|

[16]:

[1, 2, 2]

Now we insert another 2-block starting at j=0. It will fall upon the previously laid one:

[17]:

st.drop2h(0)

DEBUG: Stacktris:
 |22 |
 | 22|
 |1 1|

[17]:

[]

We can complete teh topmost row by dropping a 1-block to the rightmost column. As a result, the row will be removed from the stack and the row will be returned by the call to drop1:

[18]:

st.drop1(2)

DEBUG: Stacktris:
 |221|
 | 22|
 |1 1|

DEBUG: POPPING [2, 2, 1]
DEBUG: Stacktris:
 | 22|
 |1 1|

[18]:

[2, 2, 1]

Another line completion with a drop1 at column j=0:

[19]:

st.drop1(0)

DEBUG: Stacktris:
 |122|
 |1 1|

DEBUG: POPPING [1, 2, 2]
DEBUG: Stacktris:
 |1 1|

[19]:

[1, 2, 2]

We can finally empty the Stacktris by dropping a 1-block in the mod column:

[20]:

st.drop1(1)

DEBUG: Stacktris:
 |111|

DEBUG: POPPING [1, 1, 1]
DEBUG: Stacktris:
 EMPTY

[20]:

[1, 1, 1]

B3.1 _shorten

Start by implementing this private method:

def _shorten(self):
 """ Scans the Stacktris from top to bottom searching for a completely filled line:
 - if found, remove it from the Stacktris and return it as a list.
 - if not found, return an empty list.
 """

If you wish, you can add debug prints but they are not mandatory

Testing: python3 -m unittest stacktris_test.ShortenTest

B3.2 drop1

Once you are done with the previous function, implement drop1 method:

NOTE: In the implementation, feel free to call the previously implemented _shorten method.

def drop1(self, j):
 """ Drops a 1-block on column j.

 - If another block is found, place the 1-block on top of that block,
 otherwise place it on the ground.

 - If, after the 1-block is placed, a row results completely filled, removes
 the row and RETURN it. Otherwise, RETURN an empty list.

 - if index `j` is outside bounds, raises ValueError
 """

Testing: python3 -m unittest stacktris_test.Drop1Test

B3.3 drop2h

Once you are done with the previous function, implement drop2 method:

def drop2h(self, j):
 """ Drops a 2-block horizontally with left block on column j,

 - If another block is found, place the 2-block on top of that block,
 otherwise place it on the ground.

 - If, after the 2-block is placed, a row results completely filled,
 removes the row and RETURN it. Otherwise, RETURN an empty list.

 - if index `j` is outside bounds, raises ValueError
 """

Testing: python3 -m unittest stacktris_test.Drop2hTest

[]:

 Exam - Monday 10, June 2019 - solutions

Exam - Monday 10, June 2019 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-06-10-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-06-10-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2019-06-10
 |- exam-2019-06-10-exercise.ipynb
 |- stack_exercise.py
 |- stack_test.py
 |- tree_exercise.py
 |- tree_test.py

	Rename datasciprolab-2019-06-10-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-06-10-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2019-06-10-exercise.ipynb

A1 ITEA real estate

You will now analyze public real estates in Trentino, which are managed by ITEA agency. Every real estate has a type, and we will find the type distribution.

Data provider: ITEA - dati.trentino.it [https://dati.trentino.it/dataset/patrimonio-immobiliare]

A function load_itea is given to load the dataset (you don’t need to implement it):

[2]:

def load_itea():
 """Loads file data and RETURN a list of dictionaries with the stop times
 """

 import csv
 with open('data/itea.csv', newline='', encoding='latin-1',) as csvfile:
 reader = csv.DictReader(csvfile, delimiter=';')
 lst = []
 for d in reader:
 lst.append(d)
 return lst

itea = load_itea()

IMPORTANT: look at the dataset by yourself !

Here we show only first 5 rows, but to get a clear picture of the dataset you need to study it a bit by yourself

[3]:

itea[:5]

[3]:

[OrderedDict([('Tipologia', 'ALTRO'),
 ('Proprietà', 'ITEA'),
 ('Indirizzo', "Codice unita': 30100049"),
 ('Frazione', ''),
 ('Comune', "BASELGA DI PINE'")]),
 OrderedDict([('Tipologia', 'ALLOGGIO'),
 ('Proprietà', 'ITEA'),
 ('Indirizzo', "Codice unita': 43100011"),
 ('Frazione', ''),
 ('Comune', 'TRENTO')]),
 OrderedDict([('Tipologia', 'ALLOGGIO'),
 ('Proprietà', 'ITEA'),
 ('Indirizzo', "Codice unita': 43100002"),
 ('Frazione', ''),
 ('Comune', 'TRENTO')]),
 OrderedDict([('Tipologia', 'ALLOGGIO'),
 ('Proprietà', 'ITEA'),
 ('Indirizzo', 'VIALE DELLE ROBINIE 26'),
 ('Frazione', ''),
 ('Comune', 'TRENTO')]),
 OrderedDict([('Tipologia', 'ALLOGGIO'),
 ('Proprietà', 'ITEA'),
 ('Indirizzo', 'VIALE DELLE ROBINIE 26'),
 ('Frazione', ''),
 ('Comune', 'TRENTO')])]

A1.1 calc_types_hist

Implement function calc_types_hist to extract the types ('Tipologia') of ITEA real estate and RETURN a histogram which associates to each type its frequency.

	You will discover there are three types of apartments: ‘ALLOGGIO’, ‘ALLOGGIO DUPLEX’ and ‘ALLOGGIO MONOLOCALE’. In the resulting histogram you must place only the key ‘ALLOGGIO’ which will be the sum of all of them.

	Same goes for ‘POSTO MACCHINA’ (parking lot): there are many of them (‘POSTO MACCHINA COMUNE ESTERNO’, ‘POSTO MACCHINA COMUNE INTERNO’, ‘POSTO MACCHINA ESTERNO’, ‘POSTO MACCHINA INTERNO’, ‘POSTO MACCHINA SOTTO TETTOIA’) but we only want to see ‘POSTO MACCHINA’ as key with the sum of all of them. NOTE: Please don’t use 5 ifs, try to come up with some generic code to catch all these cases ..)

[4]:

def calc_types_hist(db):
 #jupman-raise

 tipologie = {}
 for diz in db:
 if diz['Tipologia'].startswith('ALLOGGIO'):
 chiave = 'ALLOGGIO'
 elif diz['Tipologia'].startswith('POSTO MACCHINA'):
 chiave = 'POSTO MACCHINA'
 else:
 chiave = diz['Tipologia']

 if chiave in tipologie:
 tipologie[chiave] += 1
 else:
 tipologie[chiave] = 1

 return tipologie
 #/jupman-raise

calc_types_hist(itea)

[4]:

{'ALTRO': 64,
 'ALLOGGIO': 10778,
 'POSTO MACCHINA': 3147,
 'MAGAZZINO': 143,
 'CABINA ELETTRICA': 41,
 'LOCALE COMUNE': 28,
 'NEGOZIO': 139,
 'CANTINA': 40,
 'GARAGE': 2221,
 'CENTRALE TERMICA': 4,
 'UFFICIO': 29,
 'TETTOIA': 2,
 'ARCHIVIO ITEA': 10,
 'SALA / ATTIVITA SOCIALI': 45,
 'AREA URBANA': 6,
 'ASILO': 1,
 'CASERMA': 2,
 'LABORATORIO PER ARTI E MESTIERI': 3,
 'MUSEO': 1,
 'SOFFITTA': 3,
 'AMBULATORIO': 1,
 'LEGNAIA': 3,
 'RUDERE': 1}

A1.2 calc_types_series

Takes a dictionary histogram and RETURN a list of tuples containing key/value pairs, sorted from most frequent iyems to least frequent.

HINT: if you don’t remember how to sort by an element of a tuple, look at this example [https://datasciprolab.readthedocs.io/en/latest/exercises/visualization/visualization-solution.html#indegree-per-node-sorted] and also in python documentation about sorting.

[5]:

def calc_types_series(hist):
 #jupman-raise
 ret = []

 for key in hist:
 ret.append((key, hist[key]))

 ret.sort(key=lambda c: c[1],reverse=True)
 return ret[:10]
 #/jupman-raise

tipologie = calc_types_series(calc_types_hist(itea))

tipologie

[5]:

[('ALLOGGIO', 10778),
 ('POSTO MACCHINA', 3147),
 ('GARAGE', 2221),
 ('MAGAZZINO', 143),
 ('NEGOZIO', 139),
 ('ALTRO', 64),
 ('SALA / ATTIVITA SOCIALI', 45),
 ('CABINA ELETTRICA', 41),
 ('CANTINA', 40),
 ('UFFICIO', 29)]

A1.3 Real estates plot

Once you obtained the series as above, plot the first 10 most frequent items, in decreasing order.

	please pay attention to plot title, width and height, axis labels. Everything MUST display in a readable way.

	try also to print nice the labels, if they are too long / overlap like for ‘SALA / ATTIVITA SOCIALI’ put carriage returns in a generic way.

[6]:

write here

[7]:

SOLUTION

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(len(tipologie))

xs_labels = [t[0].replace('/', '/\n') for t in tipologie]

ys = [t[1] for t in tipologie]

fig = plt.figure(figsize=(15,5))

plt.bar(xs, ys, 0.5, align='center')

plt.title("ITEA real estates SOLUTION")
plt.xticks(xs, xs_labels)

plt.xlabel('name')
plt.ylabel('quantity')

plt.show()

[image: ../../_images/exams_2019-06-10_exam-2019-06-10-solution_22_0.png]

A2 Air quality

You will now analyze air_quality in Trentino. You are given a dataset which records various pollutants (‘Inquinante’) at various stations ('Stazione') in Trentino. Pollutants values can be 'PM10', 'Biossido Zolfo', and a few others. Each station records some set of pollutants. For each pollutant values are recorded ('Valore') 24 times per day.

Data provider: PAT Ag. Provinciale per la protezione dell’Ambiente - dati.trentino.it [https://dati.trentino.it/dataset/qualita-dell-aria-rilevazioni-delle-stazioni-monitoraggio]

A function load_air_quality is given to load the dataset (you don’t need to implement it):

[8]:

def load_air_quality():
 """Loads file data and RETURN a list of dictionaries with the stop times
 """

 import csv
 with open('data/air-quality.csv', newline='', encoding='latin-1') as csvfile:
 reader = csv.DictReader(csvfile)
 lst = []
 for d in reader:
 lst.append(d)
 return lst

air_quality = load_air_quality()

IMPORTANT 1: look at the dataset by yourself !

Here we show only first 5 rows, but to get a clear picture of the dataset you need to study it a bit by yourself

IMPORTANT 2: EVERY field is a STRING, including ‘Valore’ !

[9]:

air_quality[:5]

[9]:

[OrderedDict([('Stazione', 'Parco S. Chiara'),
 ('Inquinante', 'PM10'),
 ('Data', '2019-05-04'),
 ('Ora', '1'),
 ('Valore', '17'),
 ('Unità di misura', 'µg/mc')]),
 OrderedDict([('Stazione', 'Parco S. Chiara'),
 ('Inquinante', 'PM10'),
 ('Data', '2019-05-04'),
 ('Ora', '2'),
 ('Valore', '19'),
 ('Unità di misura', 'µg/mc')]),
 OrderedDict([('Stazione', 'Parco S. Chiara'),
 ('Inquinante', 'PM10'),
 ('Data', '2019-05-04'),
 ('Ora', '3'),
 ('Valore', '17'),
 ('Unità di misura', 'µg/mc')]),
 OrderedDict([('Stazione', 'Parco S. Chiara'),
 ('Inquinante', 'PM10'),
 ('Data', '2019-05-04'),
 ('Ora', '4'),
 ('Valore', '15'),
 ('Unità di misura', 'µg/mc')]),
 OrderedDict([('Stazione', 'Parco S. Chiara'),
 ('Inquinante', 'PM10'),
 ('Data', '2019-05-04'),
 ('Ora', '5'),
 ('Valore', '13'),
 ('Unità di misura', 'µg/mc')])]

Now implement the following function:

[10]:

def calc_avg_pollution(db):
 """ RETURN a dictionary containing two elements tuples as keys:
 - first tuple element is the station ('Stazione'),
 - second tuple element is the name of a pollutant ('Inquinante')

 To each tuple key, you must associate as value the average for that station
 and pollutant over all days.

 """
 #jupman-raise
 ret = {}
 counts = {}
 for diz in db:
 t = (diz['Stazione'], diz['Inquinante'])
 if t in ret:
 ret[t] += float(diz['Valore'])
 counts[t] += 1
 else:
 ret[t] = float(diz['Valore'])
 counts[t] = 1

 for t in ret:
 ret[t] /= counts[t]
 return ret
 #/jupman-raise

calc_avg_pollution(air_quality)

[10]:

{('Parco S. Chiara', 'PM10'): 11.385752688172044,
 ('Parco S. Chiara', 'PM2.5'): 7.9471544715447155,
 ('Parco S. Chiara', 'Biossido di Azoto'): 20.828146143437078,
 ('Parco S. Chiara', 'Ozono'): 66.69541778975741,
 ('Parco S. Chiara', 'Biossido Zolfo'): 1.2918918918918918,
 ('Via Bolzano', 'PM10'): 12.526881720430108,
 ('Via Bolzano', 'Biossido di Azoto'): 29.28493894165536,
 ('Via Bolzano', 'Ossido di Carbonio'): 0.5964769647696474,
 ('Piana Rotaliana', 'PM10'): 9.728744939271255,
 ('Piana Rotaliana', 'Biossido di Azoto'): 15.170068027210885,
 ('Piana Rotaliana', 'Ozono'): 67.03633916554509,
 ('Rovereto', 'PM10'): 9.475806451612904,
 ('Rovereto', 'PM2.5'): 7.764784946236559,
 ('Rovereto', 'Biossido di Azoto'): 16.284167794316645,
 ('Rovereto', 'Ozono'): 70.54655870445345,
 ('Borgo Valsugana', 'PM10'): 11.819407008086253,
 ('Borgo Valsugana', 'PM2.5'): 7.413746630727763,
 ('Borgo Valsugana', 'Biossido di Azoto'): 15.73806275579809,
 ('Borgo Valsugana', 'Ozono'): 58.599730458221025,
 ('Riva del Garda', 'PM10'): 9.912398921832883,
 ('Riva del Garda', 'Biossido di Azoto'): 17.125845737483086,
 ('Riva del Garda', 'Ozono'): 68.38159675236807,
 ('A22 (Avio)', 'PM10'): 9.651821862348179,
 ('A22 (Avio)', 'Biossido di Azoto'): 33.0650406504065,
 ('A22 (Avio)', 'Ossido di Carbonio'): 0.4228848821081822,
 ('Monte Gaza', 'PM10'): 7.794520547945205,
 ('Monte Gaza', 'Biossido di Azoto'): 4.34412955465587,
 ('Monte Gaza', 'Ozono'): 99.0858310626703}

Part B

B1 Theory

Let L be a list containing n lists, each of them of size m. Return the computational complexity of function fun() with respect to n and m.

Write the solution in separate ``theory.txt`` file

def fun(L):
 for r1 in L:
 for r2 in L:
 if r1 != r2 and sum(r1) == sum(r2):
 print("Similar:")
 print(r1)
 print(r2)

ANSWER: \(\Theta(m \cdot n^2)\)

B2 WStack

Using a text editor, open file stack_exercise.py. You will find a WStack class skeleton which represents a simple stack that can only contain integers.

B2.1 implement class WStack

Fill in missing methods in class WStack in the order they are presented so to have a .weight() method that returns the total sum of integers in the stack in O(1) time.

Example:

[11]:

from stack_solution import *

[12]:

s = WStack()

[13]:

print(s)

WStack: weight=0 elements=[]

[14]:

s.push(7)

[15]:

print(s)

WStack: weight=7 elements=[7]

[16]:

s.push(4)

[17]:

print(s)

WStack: weight=11 elements=[7, 4]

[18]:

s.push(2)

[19]:

s.pop()

[19]:

2

[20]:

print(s)

WStack: weight=11 elements=[7, 4]

B2.2 accumulate

Implement function accumulate:

def accumulate(stack1, stack2, min_amount):
 """ Pushes on stack2 elements taken from stack1 until the weight of
 stack2 is equal or exceeds the given min_amount

 - if the given min_amount cannot possibly be reached because
 stack1 has not enough weight, raises early ValueError without
 changing stack1.
 - DO NOT access internal fields of stacks, only use class methods.
 - MUST perform in O(n) where n is the size of stack1
 - NOTE: this function is defined *outside* the class !
 """

Testing: python -m unittest stacks_test.AccumulateTest

Example:

[21]:

s1 = WStack()

print(s1)

WStack: weight=0 elements=[]

[22]:

s1.push(2)
s1.push(9)
s1.push(5)
s1.push(3)

[23]:

print(s1)

WStack: weight=19 elements=[2, 9, 5, 3]

[24]:

s2 = WStack()
print(s2)

WStack: weight=0 elements=[]

[25]:

s2.push(1)
s2.push(7)
s2.push(4)

[26]:

print(s2)

WStack: weight=12 elements=[1, 7, 4]

[27]:

attempts to reach in s2 a weight of at least 17

[28]:

accumulate(s1,s2,17)

[29]:

print(s1)

WStack: weight=11 elements=[2, 9]

Two top elements were taken from s1 and now s2 has a weight of 20, which is >= 17

[30]:

print(s2)

WStack: weight=20 elements=[1, 7, 4, 3, 5]

B3 GenericTree

Open file tree.py in a text editor and read following instructions.

B3.1 is_triangle

A triangle is a node which has exactly two children.

Let’s see some example:

 a
 / \
 / \
 b ----- c
 /|\ /
d-e-f g
 / \
 h---i
 /
 l

The tree above can also be represented like this:

a
├b
|├d
|├e
|└f
└c
 └g
 ├h
 └i
 └l

	node a is a triangle because has exactly two children b and c, note it doesn’t matter if b or c have children)

	b is not a triangle (has 3 children)

	c and i are not triangles (have only 1 child)

	g is a triangle as it has exactly two children h and i

	d, e, f, h and l are not triangles, because they have zero children

Now implement this method:

def is_triangle(self, elems):
 """ RETURN True if this node is a triangle matching the data
 given by list elems.

 In order to match:
 - first list item must be equal to this node data
 - second list item must be equal to this node first child data
 - third list item must be equal to this node second child data

 - if elems has less than three elements, raises ValueError
 """

Testing: python -m unittest tree_test.IsTriangleTest

Examples:

[31]:

from tree_test import gt

[32]:

this is the tree from the example above

tb = gt('b', gt('d', gt('e'), gt('f')))
tg = gt('g', gt('h'), gt('i', gt('l')))
ta = gt('a', tb, gt('c', tg))

ta.is_triangle(['a','b','c'])

[32]:

True

[33]:

ta.is_triangle(['b','c','a'])

[33]:

False

[34]:

tb.is_triangle(['b','d','e'])

[34]:

False

[35]:

tg.is_triangle(['g','h','i'])

[35]:

True

[36]:

tg.is_triangle(['g','i','h'])

[36]:

False

B3.2 has_triangle

Implement this method:

def has_triangle(self, elems):
 """ RETURN True if this node *or one of its descendants* is a triangle
 matching given elems. Otherwise, return False.

 - a recursive solution is acceptable
 """

Testing: python -m unittest tree_test.HasTriangleTest

Examples:

[37]:

example tree seen at the beginning

tb = gt('b', gt('d', gt('e'), gt('f')))
tg = gt('g', gt('h'), gt('i', gt('l')))
tc = gt('c', tg)
ta = gt('a', tb, tc)

ta.has_triangle(['a','b','c'])

[37]:

True

[38]:

ta.has_triangle(['a','c','b'])

[38]:

False

[39]:

ta.has_triangle(['b','c','a'])

[39]:

False

[40]:

tb.is_triangle(['b','d','e'])

[40]:

False

[41]:

tg.has_triangle(['g','h','i'])

[41]:

True

[42]:

tc.has_triangle(['g','h','i']) # check recursion

[42]:

True

[43]:

ta.has_triangle(['g','h','i']) # check recursion

[43]:

True

 Exam - Wed 13, Feb 2019 - solutions

Exam - Wed 13, Feb 2019 - solutions

Scientific Programming - Data Science @ University of Trento

Download exercises and solution

Introduction

	Taking part to this exam erases any vote you had before

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-02-13-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-02-13-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2019-02-13
 |- exam-2019-02-13-exercise.ipynb
 |- queue_exercise.py
 |- queue_test.py
 |- tree_exercise.py
 |- tree_test.py

	Rename datasciprolab-2019-02-13-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-02-13-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A - Bus network visualization

Open Jupyter and start editing this notebook exam-2019-02-13-exercise.ipynb

Today we will visualize intercity bus network in GTFS format taken from dati.trentino.it [https://dati.trentino.it/dataset/trasporti-pubblici-del-trentino-formato-gtfs], MITT service. Original data was split in several files which we merged into dataset data/network-short.csv.

To visualize it, we will use networkx [https://networkx.github.io/] library. Let’s first see an example on how to do it:

[2]:

import networkx as nx
from sciprog import draw_nx

Gex = nx.DiGraph()

we can force horizontal layout like this:

Gex.graph['graph']= {
 'rankdir':'LR',
 }

When we add nodes, we can identify them with an identifier like the
stop_id which is separate from the label, because in some unfortunate
case two different stops can share the same label.

Gex.add_node('1', label='Trento-Autostaz.',
 color='black', fontcolor='black')
Gex.add_node('723', label='Trento-Via Brescia 4',
 color='black', fontcolor='black')
Gex.add_node('870', label='Sarch Centro comm.',
 color='black', fontcolor='black')
Gex.add_node('1180', label='Trento Corso 3 Novembre',
 color='black', fontcolor='black')

IMPORTANT: edges connect stop_ids , NOT labels !!!!
Gex.add_edge('870','1')
Gex.add_edge('723','1')
Gex.add_edge('1','1180')

function defined in sciprog.py :
draw_nx(Gex)

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_13_0.png]

Since we have a bus stop netowrk, we might want to draw edges according to the route they represent. Here we show how to do it only with the edge from Trento-Autostaz to Trento Corso 3 Novembre:

[3]:

we can retrieve an edge like this:

edge = Gex['1']['1180']

and set attributes, like these:

edge['weight'] = 5 # it takes 5 minutes to go from Trento-Autostaz
 # to Trento Corso 3 Novembre
edge['label'] = str(5) # the label is a string

edge['color'] = '#2ca02c' # we can set some style for the edge, such as color
edge['penwidth']= 4 # and thickness

edge['route_short_name'] = 'B301' # we can add any attribute we want,
 # Note these custom ones won't show in the graph

draw_nx(Gex)

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_15_0.png]

To be more explicit, we can also add a legend this way:

[4]:

draw_nx(Gex, [{'color': '#2ca02c', 'label': 'B211'}])

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_17_0.png]

[5]:

Note an edge is a simple dictionary:
print(edge)

{'weight': 5, 'label': '5', 'color': '#2ca02c', 'penwidth': 4, 'route_short_name': 'B301'}

To load network-short.csv, we provide this function:

[6]:

def load_stops():
 """Loads file data and RETURN a list of dictionaries with the stop times
 """

 import csv
 with open('data/network-short.csv', newline='', encoding='UTF-8') as csvfile:
 reader = csv.DictReader(csvfile)
 lst = []
 for d in reader:
 lst.append(d)
 return lst

[7]:

stops = load_stops()

#IMPORTANT: NOTICE *ALL* VALUES ARE *STRINGS* !!!!!!!!!!!!

stops[0:2]

[7]:

[OrderedDict([('', '3'),
 ('route_id', '76'),
 ('agency_id', '12'),
 ('route_short_name', 'B202'),
 ('route_long_name',
 'Trento-Sardagna-Candriai-Vaneze-Vason-Viote'),
 ('route_type', '3'),
 ('service_id', '22018091220190621'),
 ('trip_id', '0002402742018091220190621'),
 ('trip_headsign', 'Trento-Autostaz.'),
 ('direction_id', '0'),
 ('arrival_time', '06:27:00'),
 ('departure_time', '06:27:00'),
 ('stop_id', '5025'),
 ('stop_sequence', '4'),
 ('stop_code', '2620VE'),
 ('stop_name', 'Sardagna Civ.20'),
 ('stop_desc', ''),
 ('stop_lat', '46.073125'),
 ('stop_lon', '11.093579'),
 ('zone_id', '2620.0')]),
 OrderedDict([('', '4'),
 ('route_id', '76'),
 ('agency_id', '12'),
 ('route_short_name', 'B202'),
 ('route_long_name',
 'Trento-Sardagna-Candriai-Vaneze-Vason-Viote'),
 ('route_type', '3'),
 ('service_id', '22018091220190621'),
 ('trip_id', '0002402742018091220190621'),
 ('trip_headsign', 'Trento-Autostaz.'),
 ('direction_id', '0'),
 ('arrival_time', '06:28:00'),
 ('departure_time', '06:28:00'),
 ('stop_id', '843'),
 ('stop_sequence', '5'),
 ('stop_code', '2620MS'),
 ('stop_name', 'Sardagna-Maso Scala'),
 ('stop_desc', ''),
 ('stop_lat', '46.069871'),
 ('stop_lon', '11.097749'),
 ('zone_id', '2620.0')])]

A1 extract_routes

Implement extract_routes function:

[8]:

import networkx as nx
from sciprog import draw_nx

stops = load_stops()

def extract_routes(stops):
 """ Extract all route_short_name from the stops list and RETURN
 an alphabetically sorted list of them, without duplicates
 (see example)

 """
 #jupman-raise
 s = set()
 for diz in stops:
 s.add(diz['route_short_name'])
 ret = list(s)
 ret.sort()
 return ret
 #/jupman-raise

Example:

[9]:

extract_routes(stops)

[9]:

['B201', 'B202', 'B211', 'B217', 'B301']

A2 to_int_min

Implement this function:

[10]:

def to_int_min(time_string):
 """
 Takes a time string in the format like 08:27:42
 and RETURN the time since midnight in minutes, ignoring
 the seconds (es 507)
 """
 #jupman-raise
 hours = int(time_string[0:2])
 mins = int(time_string[3:5])
 return (hours * 60 + mins)
 #/jupman-raise

Example:

[11]:

to_int_min('08:27:42')

[11]:

507

A3 get_legend_edges

If you have n routes numbered from 0 to n-1, and you want to assign to each of them a different color, we provide this function:

[12]:

def get_color(i, n):
 """ RETURN the i-th color chosen from n possible colors, in
 hex format (i.e. #ff0018).

 - if i < 0 or i >= n, raise ValueError
 """
 if n < 1:
 raise ValueError("Invalid n: %s" % n)
 if i < 0 or i >= n:
 raise ValueError("Invalid i: %s" % i)

 #HACKY, just for matplotlib < 3
 lst = ['#1f77b4',
 '#ff7f0e',
 '#2ca02c',
 '#d62728',
 '#9467bd',
 '#8c564b',
 '#e377c2',
 '#7f7f7f',
 '#bcbd22',
 '#17becf']

 return lst[i % 10]

[13]:

get_color(4,5)

[13]:

'#9467bd'

Now implement this function:

[14]:

def get_legend_edges():
 """
 RETURN a list of dictionaries, where each dictionary represent a route
 with label and associated color. Dictionaries are in the order returned by
 extract_routes() function.
 """
 #jupman-raise
 legend_edges = []
 i = 0
 routes = extract_routes(stops)

 for route_short_name in routes:
 legend_edges.append({
 'label': route_short_name,
 'color':get_color(i,len(routes))
 })
 i += 1
 return legend_edges
 #/jupman-raise

[15]:

get_legend_edges()

[15]:

[{'label': 'B201', 'color': '#1f77b4'},
 {'label': 'B202', 'color': '#ff7f0e'},
 {'label': 'B211', 'color': '#2ca02c'},
 {'label': 'B217', 'color': '#d62728'},
 {'label': 'B301', 'color': '#9467bd'}]

A4 calc_nx

Implement this function:

[16]:

def calc_nx(stops):
 """
 RETURN a NetworkX DiGraph representing the bus stop network

 - To keep things simple, we suppose routes NEVER overlap (no edge is ever
 shared by two routes), so we need only a DiGraph and not a MultiGraph
 - as label for nodes, use the stop_name, and try to format it nicely.
 - as 'weight' for the edges, use the time in minutes between one stop
 and the next one
 - as custom property, add 'route_short_name'
 - as 'color' for the edges, use the color given by provided
 get_color(i,n) function
 - as 'penwidth' for edges, set 4

 - IMPORTANT: notice stops are already ordered by arrival_time, this
 makes it easy to find edges !
 - HINT: to make sure you're on the right track, try first to
 represent one single route, like B202

 """
 #jupman-raise

 G = nx.DiGraph()

 G.graph['graph']= {
 'rankdir':'LR', # horizontal layout ,

 }

 G.name = '************* calc_nx SOLUTION '

 routes = extract_routes(stops)

 i = 0

 for route_short_name in routes:

 prev_diz = None

 for diz in stops:

 if diz['route_short_name'] == route_short_name:

 G.add_node(diz['stop_id'],
 label=diz['stop_name'].replace(' ', '\n').replace('-','\n'),
 color='black',
 fontcolor='black')

 if prev_diz:

 G.add_edge(prev_diz['stop_id'], diz['stop_id'])
 delta_time = to_int_min(diz['arrival_time']) - to_int_min(prev_diz['arrival_time'])

 edge = G[prev_diz['stop_id']][diz['stop_id']]
 edge['weight'] = delta_time
 edge['label'] = str(delta_time)

 edge['route_short_name'] = route_short_name

 edge['color'] = get_color(i, len(routes))
 edge['penwidth']= 4

 prev_diz = diz
 i += 1
 return G
 #/jupman-raise

[17]:

G = calc_nx(stops)

draw_nx(G, get_legend_edges())

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_39_0.png]

A5 color_hubs

A hub is a node that allows to switch route, that is, it is touched by at least two different routes.

For example, Trento-Autostaz is touched by three routes, which is more than one, so it is a hub. Let’s examine the node - we know it has stop_id='1':

[18]:

G.node['1']

[18]:

{'label': 'Trento\nAutostaz.', 'color': 'black', 'fontcolor': 'black'}

If we examine its in_edges, we find it has incoming edges from stop_id '723' and '870', which represent respectively Trento Via Brescia and Sarche Centro Commerciale :

[19]:

G.in_edges('1')

[19]:

InEdgeDataView([('870', '1'), ('723', '1')])

If you get a View object, if needed you can easily transform to a list:

[20]:

list(G.in_edges('1'))

[20]:

[('870', '1'), ('723', '1')]

[21]:

G.node['723']

[21]:

{'label': 'Trento\nVia\nBrescia\n4', 'color': 'black', 'fontcolor': 'black'}

[22]:

G.node['870']

[22]:

{'label': 'Sarche\nCentro\nComm.', 'color': 'black', 'fontcolor': 'black'}

There is only an outgoing edge toward Trento Corso 3 Novembre :

[23]:

G.out_edges('1')

[23]:

OutEdgeDataView([('1', '1108')])

[24]:

G.node['1108']

[24]:

{'label': 'Trento\nC.So\nTre\nNovembre',
 'color': 'black',
 'fontcolor': 'black'}

If, for example, we want to know the route_id of this outgoing edge, we can access it this way:

[25]:

G['1']['1108']

[25]:

{'weight': 5,
 'label': '5',
 'route_short_name': 'B301',
 'color': '#9467bd',
 'penwidth': 4}

If you want to change the color attribute of the node '1', you can write like this:

[26]:

G.node['1']['color'] = 'red'
G.node['1']['fontcolor'] = 'red'

Now implement the function color_hubs:

[27]:

def color_hubs(G):
 """ Print the hubs in the graph G as text, and then draws the graph
 with the hubs colored in red.

 NOTE: you don't need to recalculate the graph, just set the relevant
 nodes color to red

 """
 #jupman-raise

 G.name = '************* color_hubs SOLUTION '

 hubs = []
 for node in G.nodes():
 edges = list(G.in_edges(node)) + list(G.out_edges(node))
 route_short_names = set()
 for edge in edges:
 route_short_names.add(G[edge[0]][edge[1]]['route_short_name'])
 if len(route_short_names) > 1:
 hubs.append(node)

 print("SOLUTION: The hubs are:")
 print()

 for hub in hubs:
 print("stop_id:%s\n%s\n" % (hub, G.node[hub]['label']))
 G.node[hub]['color']='red'
 G.node[hub]['fontcolor']='red'
 #/jupman-raise
 draw_nx(G, legend_edges=get_legend_edges())

[28]:

color_hubs(G)

SOLUTION: The hubs are:

stop_id:757
Tione
Autostazione

stop_id:742
Ponte
Arche
Autost.

stop_id:1
Trento
Autostaz.

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_58_1.png]

A6 plot_timings

To extract bus times from G, use this:

[29]:

G.edges()

[29]:

OutEdgeView([('757', '746'), ('746', '857'), ('857', '742'), ('742', '870'), ('870', '1'), ('1', '1108'), ('5025', '843'), ('843', '842'), ('842', '3974'), ('3974', '841'), ('841', '881'), ('881', '723'), ('723', '1'), ('1556', '4392'), ('4392', '4391'), ('4391', '4390'), ('4390', '742'), ('829', '3213'), ('3213', '757'), ('1108', '1109')])

If you get a View, you can iterate through the sequence like it were a list

To get the data from an edge, you can use this:

[30]:

G.get_edge_data('1','1108')

[30]:

{'weight': 5,
 'label': '5',
 'route_short_name': 'B301',
 'color': '#9467bd',
 'penwidth': 4}

Now implement the function plot_timings:

[31]:

def plot_timings(G):
 """
 Given a networkx DiGraph G plots a frequency histogram of the
 time between bus stops.

 """
 #jupman-raise

 import numpy as np
 import matplotlib.pyplot as plt

 timings = [G.get_edge_data(edge[0], edge[1])['weight'] for edge in G.edges()]

 import matplotlib.pyplot as plt
 import numpy as np

 # add histogram

 min_x = min(timings)
 max_x = max(timings)
 bar_width = 1.0

 # in this case hist returns a tuple of three values
 # we put in three variables
 n, bins, columns = plt.hist(timings,
 bins=range(min_x,max_x + 1),
 width=1.0) # graphical width of the bars

 xs = np.arange(min_x,max_x + 1)
 plt.xlabel('Time between stops in minutes')
 plt.ylabel('Frequency counts')
 plt.title('Time histogram SOLUTION')
 plt.xlim(0, max(timings) + 2)
 plt.xticks(xs + bar_width / 2, # position of ticks
 xs)
 plt.show()
 #/jupman-raise

[32]:

plot_timings(G)

[image: ../../_images/exams_2019-02-13_exam-2019-02-13-solution_66_0.png]

Part B

B.1 Theory

Let L a list of size n, and i and j two indeces. Return the computational complexity of function fun() with respect to n.

Write the solution in separate ``theory.txt`` file

def fun(L, i, j):
 # j-i+1 is the number of elements
 # between index i and index j (both included)
 if j-i+1 <= 3:
 # Compute their minimum
 return min(L[i:j+1])
 else:
 onethird = (j-i+1)//3
 res1 = fun(L,i, i+onethird)
 res2 = fun(L,i+onethird+1, i+2*onethird)
 res3 = fun(L,i+2*onethird+1, j)
 return min(res1,res2,res3)

ANSWER: \(\Theta(n)\)

B2 Company queues

We can model a company as a list of many employees ordered by their rank, the highest ranking being the first in the list. We assume all employees have different rank. Each employee has a name, a rank, and a queue of tasks to perform (as a Python deque).

When a new employee arrives, it is inserted in the list in the right position according to his rank:

[33]:

from queue_solution import *

c = Company()
print(c)

Company:
 name rank tasks

[34]:

c.add_employee('x',9)

[35]:

print(c)

Company:
 name rank tasks
 x 9 deque([])

[36]:

c.add_employee('z',2)

[37]:

print(c)

Company:
 name rank tasks
 x 9 deque([])
 z 2 deque([])

[38]:

c.add_employee('y',6)

[39]:

print(c)

Company:
 name rank tasks
 x 9 deque([])
 y 6 deque([])
 z 2 deque([])

B2.1 add_employee

Implement this method:

def add_employee(self, name, rank):
 """
 Adds employee with name and rank to the company, maintaining
 the _employees list sorted by rank (higher rank comes first)

 Represent the employee as a dictionary with keys 'name', 'rank'
 and 'tasks' (a Python deque)

 - here we don't mind about complexity, feel free to use a
 linear scan and .insert
 - If an employee of the same rank already exists, raise ValueError
 - if an employee of the same name already exists, raise ValueError
 """

Testing: python3 -m unittest queue_test.AddEmployeeTest

B2.2 add_task

Each employee has a queue of tasks to perform. Tasks enter from the right and leave from the left. Each task has associated a required rank to perform it, but when it is assigned to an employee the required rank may exceed the employee rank or be far below the employee rank. Still, when the company receives the task, it is scheduled in the given employee queue, ignoring the task rank.

[40]:

c.add_task('a',3,'x')

[41]:

c

[41]:

Company:
 name rank tasks
 x 9 deque([('a', 3)])
 y 6 deque([])
 z 2 deque([])

[42]:

c.add_task('b',5,'x')

[43]:

c

[43]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5)])
 y 6 deque([])
 z 2 deque([])

[44]:

c.add_task('c',12,'x')
c.add_task('d',1,'x')
c.add_task('e',8,'y')
c.add_task('f',2,'y')
c.add_task('g',8,'y')
c.add_task('h',10,'z')

[45]:

c

[45]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5), ('c', 12), ('d', 1)])
 y 6 deque([('e', 8), ('f', 2), ('g', 8)])
 z 2 deque([('h', 10)])

Implement this function:

def add_task(self, task_name, task_rank, employee_name):
 """ Append the task as a (name, rank) tuple to the tasks of
 given employee

 - If employee does not exist, raise ValueError
 """

Testing: python3 -m unittest queue_test.AddTaskTest

B2.2 work

Work in the company is produced in work steps. Each work step produces a list of all task names executed by the company in that work step.

A work step is done this way:

For each employee, starting from the highest ranking one, dequeue its current task (from the left), and than compare the task required rank with the employee rank according to these rules:

	When an employee discovers a task requires a rank strictly greater than his rank, he will append the task to his supervisor tasks. Note the highest ranking employee may be forced to do tasks that are greater than his rank.

	When an employee discovers he should do a task requiring a rank strictly less than his, he will try to see if the next lower ranking employee can do the task, and if so append the task to that employee tasks.

	When an employee cannot pass the task to the supervisor nor the next lower ranking employee, he will actually execute the task, adding it to the work step list

Example:

[46]:

c

[46]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5), ('c', 12), ('d', 1)])
 y 6 deque([('e', 8), ('f', 2), ('g', 8)])
 z 2 deque([('h', 10)])

[47]:

c.work()

DEBUG: Employee x gives task ('a', 3) to employee y
DEBUG: Employee y gives task ('e', 8) to employee x
DEBUG: Employee z gives task ('h', 10) to employee y
DEBUG: Total performed work this step: []

[47]:

[]

[48]:

c

[48]:

Company:
 name rank tasks
 x 9 deque([('b', 5), ('c', 12), ('d', 1), ('e', 8)])
 y 6 deque([('f', 2), ('g', 8), ('a', 3), ('h', 10)])
 z 2 deque([])

[49]:

c.work()

DEBUG: Employee x gives task ('b', 5) to employee y
DEBUG: Employee y gives task ('f', 2) to employee z
DEBUG: Employee z executes task ('f', 2)
DEBUG: Total performed work this step: ['f']

[49]:

['f']

[50]:

c

[50]:

Company:
 name rank tasks
 x 9 deque([('c', 12), ('d', 1), ('e', 8)])
 y 6 deque([('g', 8), ('a', 3), ('h', 10), ('b', 5)])
 z 2 deque([])

[51]:

c.work()

DEBUG: Employee x executes task ('c', 12)
DEBUG: Employee y gives task ('g', 8) to employee x
DEBUG: Total performed work this step: ['c']

[51]:

['c']

[52]:

c

[52]:

Company:
 name rank tasks
 x 9 deque([('d', 1), ('e', 8), ('g', 8)])
 y 6 deque([('a', 3), ('h', 10), ('b', 5)])
 z 2 deque([])

[53]:

c.work()

DEBUG: Employee x gives task ('d', 1) to employee y
DEBUG: Employee y executes task ('a', 3)
DEBUG: Total performed work this step: ['a']

[53]:

['a']

[54]:

c

[54]:

Company:
 name rank tasks
 x 9 deque([('e', 8), ('g', 8)])
 y 6 deque([('h', 10), ('b', 5), ('d', 1)])
 z 2 deque([])

[55]:

c.work()

DEBUG: Employee x executes task ('e', 8)
DEBUG: Employee y gives task ('h', 10) to employee x
DEBUG: Total performed work this step: ['e']

[55]:

['e']

[56]:

c

[56]:

Company:
 name rank tasks
 x 9 deque([('g', 8), ('h', 10)])
 y 6 deque([('b', 5), ('d', 1)])
 z 2 deque([])

[57]:

c.work()

DEBUG: Employee x executes task ('g', 8)
DEBUG: Employee y executes task ('b', 5)
DEBUG: Total performed work this step: ['g', 'b']

[57]:

['g', 'b']

[58]:

c

[58]:

Company:
 name rank tasks
 x 9 deque([('h', 10)])
 y 6 deque([('d', 1)])
 z 2 deque([])

[59]:

c.work()

DEBUG: Employee x executes task ('h', 10)
DEBUG: Employee y gives task ('d', 1) to employee z
DEBUG: Employee z executes task ('d', 1)
DEBUG: Total performed work this step: ['h', 'd']

[59]:

['h', 'd']

[60]:

c

[60]:

Company:
 name rank tasks
 x 9 deque([])
 y 6 deque([])
 z 2 deque([])

Now implement this method:

def work(self):
 """ Performs a work step and RETURN a list of performed task names.

 For each employee, dequeue its current task from the left and:
 - if the task rank is greater than the rank of the
 current employee, append the task to his supervisor queue
 (the highest ranking employee must execute the task)
 - if the task rank is lower or equal to the rank of the
 next lower ranking employee, append the task to that employee
 queue
 - otherwise, add the task name to the list of
 performed tasks to return
 """

Testing: python3 -m unittest queue_test.WorkTest

B3 GenericTree

B3.1 fill_left

Open tree_exercise.py and implement fill_left method:

def fill_left(self, stuff):
 """ MODIFIES the tree by filling the leftmost branch data
 with values from provided array 'stuff'

 - if there aren't enough nodes to fill, raise ValueError
 - root data is not modified
 - *DO NOT* use recursion

 """

Testing: python3 -m unittest tree_test.FillLeftTest

Example:

[61]:

from tree_test import gt
from tree_solution import *

[62]:

t = gt('a',
 gt('b',
 gt('e',
 gt('f'),
 gt('g',
 gt('i')),
 gt('h')),
 gt('c'),
 gt('d')))

[63]:

print(t)

a
└b
 ├e
 │├f
 │├g
 ││└i
 │└h
 ├c
 └d

[64]:

t.fill_left(['x','y'])

[65]:

print(t)

a
└x
 ├y
 │├f
 │├g
 ││└i
 │└h
 ├c
 └d

[66]:

t.fill_left(['W','V','T'])
print(t)

a
└W
 ├V
 │├T
 │├g
 ││└i
 │└h
 ├c
 └d

B3.2 follow

Open tree_exercise.py and implement follow method:

def follow(self, positions):
 """
 RETURN an array of node data, representing a branch from the
 root down to a certain depth.
 The path to follow is determined by given positions, which
 is an array of integer indeces, see example.

 - if provided indeces lead to non-existing nodes, raise ValueError
 - IMPORTANT: *DO NOT* use recursion, use a couple of while instead.
 - IMPORTANT: *DO NOT* attempt to convert siblings to
 a python list !!!! Doing so will give you less points!

 """

Testing: python3 -m unittest tree_test.FollowTest

Example:

 level 01234

 a
 ├b
 ├c
 |└e
 | ├f
 | ├g
 | |└i
 | └h
 └d

 RETURNS
t.follow([]) [a] root data is always present
t.follow([0]) [a,b] b is the 0-th child of a
t.follow([2]) [a,d] d is the 2-nd child of a
t.follow([1,0,2]) [a,c,e,h] c is the 1-st child of a
 e is the 0-th child of c
 h is the 2-nd child of e
t.follow([1,0,1,0]) [a,c,e,g,i] c is the 1-st child of a
 e is the 0-th child of c
 g is the 1-st child of e
 i is the 0-th child of g

[]:

 Exam - Wed 23, Jan 2019 - solutions

Exam - Wed 23, Jan 2019 - solutions

Scientific Programming - Data Science Master @ University of Trento

Download exercises and solution

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-01-23-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-01-23-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2019-01-23
 |- exam-2019-01-23-exercise.ipynb
 |- list_exercise.py
 |- list_test.py
 |- tree_exercise.py
 |- tree_test.py

	Rename datasciprolab-2019-01-23-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-01-23-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]

	If you don’t have unitn login: tell instructors and we will download your work manually

Part A

Open Jupyter and start editing this notebook exam-2019-01-23-exercise.ipynb

A.1 table_to_adj

Suppose you have a table expressed as a list of lists with headers like this:

[2]:

m0 = [
 ['Identifier','Price','Quantity'],
 ['a',1,1],
 ['b',5,8],
 ['c',2,6],
 ['d',8,5],
 ['e',7,3]
]

where a, b, c etc are the row identifiers (imagine they represent items in a store), Price and Quantity are properties they might have. NOTE: here we put two properties, but they might have n properties !

We want to transform such table into a graph-like format as a dictionary of lists, which relates store items as keys to the properties they might have. To include in the list both the property identifier and its value, we will use tuples. So you need to write a function that transforms the above input into this:

[3]:

res0 = {
 'a':[('Price',1),('Quantity',1)],
 'b':[('Price',5),('Quantity',8)],
 'c':[('Price',2),('Quantity',6)],
 'd':[('Price',8),('Quantity',5)],
 'e':[('Price',7),('Quantity',3)]
 }

[4]:

def table_to_adj(table):
 #jupman-raise
 ret = {}
 headers = table[0]

 for row in table[1:]:
 lst = []
 for j in range(1, len(row)):
 lst.append((headers[j], row[j]))
 ret[row[0]] = lst
 return ret
 #/jupman-raise

m0 = [
 ['I','P','Q']
]
res0 = {}

assert res0 == table_to_adj(m0)

m1 = [
 ['Identifier','Price','Quantity'],
 ['a',1,1],
 ['b',5,8],
 ['c',2,6],
 ['d',8,5],
 ['e',7,3]
]
res1 = {
 'a':[('Price',1),('Quantity',1)],
 'b':[('Price',5),('Quantity',8)],
 'c':[('Price',2),('Quantity',6)],
 'd':[('Price',8),('Quantity',5)],
 'e':[('Price',7),('Quantity',3)]
 }

assert res1 == table_to_adj(m1)

m2 = [
 ['I','P','Q'],
 ['a','x','y'],
 ['b','w','z'],
 ['c','z','x'],
 ['d','w','w'],
 ['e','y','x']
]
res2 = {
 'a':[('P','x'),('Q','y')],
 'b':[('P','w'),('Q','z')],
 'c':[('P','z'),('Q','x')],
 'd':[('P','w'),('Q','w')],
 'e':[('P','y'),('Q','x')]
 }

assert res2 == table_to_adj(m2)

m3 = [
 ['I','P','Q', 'R'],
 ['a','x','y', 'x'],
 ['b','z','x', 'y'],
]

res3 = {
 'a':[('P','x'),('Q','y'), ('R','x')],
 'b':[('P','z'),('Q','x'), ('R','y')],

}

assert res3 == table_to_adj(m3)

A.2 bus stops

Today we will analzye intercity bus network in GTFS format taken from dati.trentino.it [https://dati.trentino.it/dataset/trasporti-pubblici-del-trentino-formato-gtfs], MITT service.

Original GTFS data was split in several files which we merged into dataset data/network.csv containing the bus stop times of three extra-urban routes. To load it, we provide this function:

[5]:

def load_stops():
 "Loads file network.csv and RETURN a list of dictionaries with the stop times"

 import csv
 with open('data/network.csv', newline='', encoding='UTF-8') as csvfile:
 reader = csv.DictReader(csvfile)
 lst = []
 for d in reader:
 lst.append(d)
 return lst

[6]:

stops = load_stops()

stops[0:2]

[6]:

[OrderedDict([('', '1'),
 ('route_id', '76'),
 ('agency_id', '12'),
 ('route_short_name', 'B202'),
 ('route_long_name',
 'Trento-Sardagna-Candriai-Vaneze-Vason-Viote'),
 ('route_type', '3'),
 ('service_id', '22018091220190621'),
 ('trip_id', '0002402742018091220190621'),
 ('trip_headsign', 'Trento-Autostaz.'),
 ('direction_id', '0'),
 ('arrival_time', '06:25:00'),
 ('departure_time', '06:25:00'),
 ('stop_id', '844'),
 ('stop_sequence', '2'),
 ('stop_code', '2620'),
 ('stop_name', 'Sardagna'),
 ('stop_desc', ''),
 ('stop_lat', '46.064848'),
 ('stop_lon', '11.09729'),
 ('zone_id', '2620.0')]),
 OrderedDict([('', '2'),
 ('route_id', '76'),
 ('agency_id', '12'),
 ('route_short_name', 'B202'),
 ('route_long_name',
 'Trento-Sardagna-Candriai-Vaneze-Vason-Viote'),
 ('route_type', '3'),
 ('service_id', '22018091220190621'),
 ('trip_id', '0002402742018091220190621'),
 ('trip_headsign', 'Trento-Autostaz.'),
 ('direction_id', '0'),
 ('arrival_time', '06:26:00'),
 ('departure_time', '06:26:00'),
 ('stop_id', '5203'),
 ('stop_sequence', '3'),
 ('stop_code', '2620VD'),
 ('stop_name', 'Sardagna Civ. 22'),
 ('stop_desc', ''),
 ('stop_lat', '46.069494'),
 ('stop_lon', '11.095252'),
 ('zone_id', '2620.0')])]

Of interest to you are the fields route_short_name, arrival_time, and stop_lat and stop_lon which provide the geographical coordinates of the stop. Stops are already sorted in the file from earliest to latest.

Given a route_short_name, like B202, we want to plot the graph of bus velocity measured in km/hours at each stop. We define velocity at stop n as

\(velocity_n = \frac{\Delta space_n}{\Delta time_n }\)

where

\(\Delta time_n = time_n - time_{n-1}\) as the time in hours the bus takes between stop \(n\) and stop \(n-1\).

and

\(\Delta space_n = space_n - space_{n-1}\) is the distance the bus has moved between stop \(n\) and stop \(n-1\).

We also set \(velocity_0 = 0\)

NOTE FOR TIME: When we say time in hours, it means that if you have the time as string 08:27:42, its number in seconds since midnight is like:

[7]:

secs = 8*60*60+27*60+42

and to calculate the time in float hours you need to divide secs by 60*60=3600:

[8]:

hours_float = secs / (60*60)
hours_float

[8]:

8.461666666666666

NOTE FOR SPACE: Unfortunately, we could not find the actual distance as road length done by the bus between one stop and the next one. So, for the sake of the exercise, we will take the geo distance, that is, we will calculate it using the line distance between the points of the stops, using their geographical coordinates. The function to calculate the geo_distance is already implemented :

[9]:

def geo_distance(lat1, lon1, lat2, lon2):
 """ Return the geo distance in kilometers
 between the points 1 and 2 at provided geographical coordinates.

 """
 # Shamelessly copied from https://stackoverflow.com/a/19412565

 from math import sin, cos, sqrt, atan2, radians

 # approximate radius of earth in km
 R = 6373.0

 lat1 = radians(lat1)
 lon1 = radians(lon1)
 lat2 = radians(lat2)
 lon2 = radians(lon2)

 dlon = lon2 - lon1
 dlat = lat2 - lat1

 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
 c = 2 * atan2(sqrt(a), sqrt(1 - a))

 return R * c

In the following we see the bus line B102, going from Sardagna to Trento. The graph should show something like the following.

We can see that as long as the bus is taking stops within Sardagna town, velocity (always intended as air-line velocity) is high, but when the bus has to go to Trento, since there are many twists and turns on the road, it takes a while to arrive even if in geo-distance Trento is near, so actual velocity decreases. In such case it would be much more convenient to take the cable car.

These type of graphs might show places in the territory where shortcuts such as cable cars, tunnels or bridges might be helpful for transportation.

[10]:

def to_float_hour(time_string):
 """
 Takes a time string in the format like 08:27:42
 and RETURN the time since midnight in hours as a float (es 8.461666666666666)
 """
 #jupman-raise
 hours = int(time_string[0:2])
 mins = int(time_string[3:5])
 secs = int(time_string[6:])
 return (hours * 60 * 60 + mins * 60 + secs) / (60*60)
 #/jupman-raise

def plot(route_short_name):
 """ Takes a route_short_name and *PLOTS* with matplotlib a graph of the velocity of
 the the bus trip for that route

 - just use matplotlib, you *don't* need pandas and *don't* need numpy
 - xs positions MUST be in *float hours*, distanced at lengths proportional
 to the actual time the bus arrives that stop
 - xticks MUST show
 - the stop name *NICELY* (with carriage returns)
 - the time in *08:50:12 format*
 - ys MUST show the velocity of the bus at that time
 - assume velocity at stop 0 equals 0
 - remember to set the figure width and heigth
 - remember to set axis labels and title
 """
 #jupman-raise
 stops = load_stops()

 %matplotlib inline
 import matplotlib.pyplot as plt
 import numpy as np

 xs = []
 ys = []
 ticks = []
 seq = [d for d in stops if d['route_short_name'] == route_short_name]
 d_prev = seq[0]
 n = 0
 for d in seq:
 xs.append(to_float_hour(d['arrival_time']))
 if n == 0:
 v = 0
 else:
 delta_distance = geo_distance(float(d['stop_lat']), float(d['stop_lon']),
 float(d_prev['stop_lat']), float(d_prev['stop_lon']))
 delta_time = (to_float_hour(d['arrival_time']) - to_float_hour(d_prev['arrival_time']))
 v = delta_distance / delta_time
 ys.append(v)
 ticks.append("%s\n%s" % (d['stop_name'].replace(' ','\n').replace('-','\n'), d['arrival_time']))
 d_prev = d
 n += 1

 fig = plt.figure(figsize=(20,12)) # width: 20 inches, height 12 inches
 plt.plot(xs, ys)

 plt.title("%s stops SOLUTION" % route_short_name)
 plt.xlabel('stops')
 plt.ylabel('velocity (Km/h)')

 # FIRST NEEDS A SEQUENCE WITH THE POSITIONS, THEN A SEQUENCE OF SAME LENGTH WITH LABELS
 plt.xticks(xs, ticks)
 print('xs = %s' % xs)
 print('ys = %s' % ys)
 print('xticks = %s' % ticks)
 plt.savefig('img/%s.png' % route_short_name)
 plt.show()

 #/jupman-raise

plot('B202')

xs = [6.416666666666667, 6.433333333333334, 6.45, 6.466666666666667, 6.516666666666667, 6.55, 6.566666666666666, 6.616666666666666, 6.65, 6.683333333333334]
ys = [0, 32.410644806589666, 25.440452145453996, 29.058090168277648, 4.151814096935986, 7.514788081665398, 24.226499833822754, 3.8149164687282586, 34.89698602693173, 14.321244382769315]
xticks = ['Sardagna\n06:25:00', 'Sardagna\nCiv.\n22\n06:26:00', 'Sardagna\nCiv.20\n06:27:00', 'Sardagna\nMaso\nScala\n06:28:00', 'Trento\nLoc.\nS.Antonio\n06:31:00', 'Trento\nVia\nSardagna\nCiv.\n104\n06:33:00', 'Trento\nMaso\nPedrotti\n06:34:00', 'Trento\nLoc.Conotter\n06:37:00', 'Trento\nVia\nBrescia\n4\n06:39:00', 'Trento\nAutostaz.\n06:41:00']

[image: B202 jiruiu9]

plot('B201')

xs = [18.25, 18.283333333333335, 18.333333333333332, 18.533333333333335, 18.75, 19.166666666666668]
ys = [0, 57.11513455659372, 27.731105466934423, 41.63842308087865, 28.5197376150513, 31.49374154105802]
xticks = ['Tione\nAutostazione\n18:15:00', 'Zuclo\nSs237\n"Superm.\nLidl"\n18:17:00', 'Saone\n18:20:00', 'Ponte\nArche\nAutost.\n18:32:00', 'Sarche\nCentro\nComm.\n18:45:00', 'Trento\nAutostaz.\n19:10:00']

[image: B201 ekjeriu9]

plot('B301')

xs = [17.583333333333332, 17.666666666666668, 17.733333333333334, 17.766666666666666, 17.8, 17.833333333333332, 17.883333333333333, 17.9, 17.916666666666668, 17.933333333333334, 17.983333333333334, 18.0, 18.05, 18.066666666666666, 18.083333333333332, 18.1, 18.133333333333333, 18.15, 18.166666666666668, 18.183333333333334, 18.25, 18.266666666666666, 18.3, 18.316666666666666, 18.35, 18.383333333333333, 18.4]
ys = [0, 12.183536596091201, 11.250009180954352, 16.612469697023045, 20.32290877261807, 29.650645502388567, 43.45858933073937, 33.590326783093374, 51.14340770207765, 31.710506116846854, 24.12416002315475, 68.52690370810224, 66.54632979050625, 36.97129817779247, 29.62791050495846, 34.08490909322781, 29.184331044522004, 19.648559840967014, 37.7140096915846, 43.892216115372726, 33.48796397878209, 29.521341752309603, 32.83990219938084, 38.20505182104893, 27.292895333249888, 12.602972475349818, 28.804672730461583]
xticks = ['Trento\nAutostaz.\n17:35:00', 'Trento\nC.So\nTre\nNovembre\n17:40:00', 'Trento\nViale\nVerona\n17:44:00', 'Trento\nS.Bartolameo\n17:46:00', 'Trento\nViale\nVerona\nBig\nCenter\n17:48:00', 'Trento\nMan\n17:50:00', 'Mattarello\nLoc.Ronchi\n17:53:00', 'Mattarello\nVia\nNazionale\n17:54:00', 'Mattarello\n17:55:00', 'Mattarello\nEx\nSt.Vestimenta\n17:56:00', 'Acquaviva\n17:59:00', 'Acquaviva\nPizzeria\n18:00:00', 'Besenello\nPosta\nVecchia\n18:03:00', 'Besenello\nFerm.\nNord\n18:04:00', 'Besenello\n18:05:00', 'Besenello\nFerm.\nSud\n18:06:00', 'Calliano\nSp\n49\n"Cimitero"\n18:08:00', 'Calliano\n18:09:00', 'Calliano\nGrafiche\nManfrini\n18:10:00', 'Castelpietra\n18:11:00', 'Volano\n18:15:00', 'Volano\nVia\nDes\nTor\n18:16:00', 'Ss.12\nS.Ilario/Via\nStroperi\n18:18:00', 'S.Ilario\n18:19:00', 'Rovereto\nV.Le\nTrento\n18:21:00', 'Rovereto\nVia\nBarattieri\n18:23:00', 'Rovereto\nVia\nManzoni\n18:24:00']

[image: B301 i0909]

Part B

B.1 Theory

Let L a list of size n, and i and j two indeces. Return the computational complexity of function fun() with respect to n.

def fun(L,i,j):
 if i==j:
 return 0
 else:
 m = (i+j)//2
 count = 0
 for x in L[i:m]:
 for y in L[m:j+1]:
 if x==y:
 count = count+1
 left = fun(L,i,m)
 right = fun(L,m+1,j)
 return left+right+count

ANSWER: write solution here

\(O(n^2)\)

B.2 Linked List flatv

Suppose a LinkedList only contains integer numbers, say 3,8,8,7,5,8,6,3,9. Implement method flatv which scans the list: when it finds the first occurence of a node which contains a number which is less then the previous one, and the less than successive one, it inserts after the current one another node with the same data as the current one, and exits.

Example:

for Linked list 3,8,8,7,5,8,6,3,9

calling flatv should modify the linked list so that it becomes

Linked list 3,8,8,7,5,5,8,6,3,9

Note that it only modifies the first occurrence found 7,5,8 to 7,5,5,8 and the successive sequence 6,3,9 is not altered

Open list_exercise.py and implement this method:

def flatv(self):

B.3 Generic Tree rightmost

[image: generic tree labeled oi98fd]

In the example above, the rightmost branch of a is given by the node sequence a,d,n

Open tree_exercise.py and implement this method:

def rightmost(self):
 """ RETURN a list containing the *data* of the nodes
 in the *rightmost* branch of the tree.

 Example:

 a
 ├b
 ├c
 |└e
 └d
 ├f
 └g
 ├h
 └i

 should give

 ['a','d','g','i']
 """

[]:

 Midterm - Thu 10, Jan 2019 - solutions

Midterm - Thu 10, Jan 2019 - solutions

Scientific Programming - Data Science Master @ University of Trento

Download exercises and solution

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use any editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2019-01-10-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2019-01-10-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2019-01-10
 |- gaps_exercise.py
 |- gaps_test.py
 |- tasks_exercise.py
 |- tasks_test.py
 |- exits_exercise.py
 |- exits_test.py
 |- other stuff ...

	Rename datasciprolab-2019-01-10-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2019-01-10-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

	When done:

if you have unitn login: zip and send to examina.icts.unitn.it [http://examina.icts.unitn.it]

If you don’t have unitn login: tell instructors and we will download your work manually

Introduction

B1 Theory

Please write the solution in the text file theory.txt

Given the following function:

def fun(N, M):
 S1 = set(N)
 S2 = set(M)
 res = []
 for x in S1:
 if x in S2:
 for i in range(N.count(x)):
 res.append(x)
 return res

let N and M be two lists of length n and m, respectively. What is the computational complexity of function fun() with respect to n and m?

B2 Gaps linked list

Given a linked list of size n which only contains integers, a gap is an index i, 0<i<n, such that L[i−1]<L[i]. For the purpose of this exercise, we assume an empy list or a list with one element have zero gaps

Example:

 data: 9 7 6 8 9 2 2 5
index: 0 1 2 3 4 5 6 7

contains three gaps [3,4,7] because:

	number 8 at index 3 is greater than previous number 6 at index 2

	number 9 at index 4 is greater than previous number 8 at index 3

	number 5 at index 7 is greater than previous number 2 at index 6

Open file gaps_exercise.py and implement this method:

def gaps(self):
 """ Assuming all the data in the linked list is made by numbers,
 finds the gaps in the LinkedList and return them as a Python list.

 - we assume empty list and list of one element have zero gaps
 - MUST perform in O(n) where n is the length of the list

 NOTE: gaps to return are *indeces* , *not* data!!!!
 """

Testing: python3 -m unittest gaps_test.GapsTest

B3 Tasks stack

Very often, you begin to do a task just to discover it requires doing 3 other tasks, so you start carrying them out one at a time and discover one of them actually requires to do yet another two other subtasks….

To represent the fact a task may have subtasks, we will use a dictionary mapping a task label to a list of subtasks, each represented as a label. For example:

[2]:

subtasks = {
 'a':['b','g'],
 'b':['c','d','e'],
 'c':['f'],
 'd':['g'],
 'e':[],
 'f':[],
 'g':[]
 }

Task a requires subtasks b andg to be carried out (in this order), but task b requires subtasks c, d and e to be done. c requires f to be done, and d requires g.

You will have to implement a function called do and use a Stack data structure, which is already provided and you don’t need to implement. Let’s see an example of execution.

IMPORTANT: In the execution example, there are many prints just to help you understand what’s going on, but the only thing we actually care about is the final list returned by the function!

IMPORTANT: notice subtasks are scheduled in reversed order, so the item on top of the stack will be the first to get executed !

[3]:

from tasks_solution import *

do('a', subtasks)

DEBUG: Stack: elements=['a']
DEBUG: Doing task a, scheduling subtasks ['b', 'g']
DEBUG: Stack: elements=['g', 'b']
DEBUG: Doing task b, scheduling subtasks ['c', 'd', 'e']
DEBUG: Stack: elements=['g', 'e', 'd', 'c']
DEBUG: Doing task c, scheduling subtasks ['f']
DEBUG: Stack: elements=['g', 'e', 'd', 'f']
DEBUG: Doing task f, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g', 'e', 'd']
DEBUG: Doing task d, scheduling subtasks ['g']
DEBUG: Stack: elements=['g', 'e', 'g']
DEBUG: Doing task g, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g', 'e']
DEBUG: Doing task e, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g']
DEBUG: Doing task g, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=[]

[3]:

['a', 'b', 'c', 'f', 'd', 'g', 'e', 'g']

The Stack you must use is simple and supports push, pop, and is_empty operations:

[4]:

s = Stack()

[5]:

print(s)

Stack: elements=[]

[6]:

s.is_empty()

[6]:

True

[7]:

s.push('a')

[8]:

print(s)

Stack: elements=['a']

[9]:

s.push('b')

[10]:

print(s)

Stack: elements=['a', 'b']

[11]:

s.pop()

[11]:

'b'

[12]:

print(s)

Stack: elements=['a']

B3.1 do

Now open tasks_stack_exercise.py and implement function do:

def do(task, subtasks):
 """ Takes a task to perform and a dictionary of subtasks,
 and RETURN a list of performed tasks

 - To implement it, inside create a Stack instance and a while cycle.
 - DO *NOT* use a recursive function
 - Inside the function, you can use a print like "I'm doing task a',
 but that is only to help yourself in debugging, only the
 list returned by the function will be considered in the evaluation!
 """

Testing: python3 -m unittest tasks_test.DoTest

B3.2 do_level

In this exercise, you are asked to implement a slightly more complex version of the previous function where on the Stack you push two-valued tuples, containing the task label and the associated level. The first task has level 0, the immediate subtask has level 1, the subtask of the subtask has level 2 and so on and so forth. In the list returned by the function, you will put such tuples.

One possibile use is to display the executed tasks as an indented tree, where the indentation is determined by the level. Here we see an example:

IMPORTANT: Again, the prints are only to let you understand what’s going on, and you are not required to code them. The only thing that really matters is the list the function must return !

[13]:

subtasks = {
 'a':['b','g'],
 'b':['c','d','e'],
 'c':['f'],
 'd':['g'],
 'e':[],
 'f':[],
 'g':[]
 }

do_level('a', subtasks)

DEBUG: Stack: elements=[('a', 0)]
DEBUG: I'm doing a level=0 Stack: elements=[('g', 1), ('b', 1)]
DEBUG: I'm doing b level=1 Stack: elements=[('g', 1), ('e', 2), ('d', 2), ('c', 2)]
DEBUG: I'm doing c level=2 Stack: elements=[('g', 1), ('e', 2), ('d', 2), ('f', 3)]
DEBUG: I'm doing f level=3 Stack: elements=[('g', 1), ('e', 2), ('d', 2)]
DEBUG: I'm doing d level=2 Stack: elements=[('g', 1), ('e', 2), ('g', 3)]
DEBUG: I'm doing g level=3 Stack: elements=[('g', 1), ('e', 2)]
DEBUG: I'm doing e level=2 Stack: elements=[('g', 1)]
DEBUG: I'm doing g level=1 Stack: elements=[]

[13]:

[('a', 0),
 ('b', 1),
 ('c', 2),
 ('f', 3),
 ('d', 2),
 ('g', 3),
 ('e', 2),
 ('g', 1)]

Now implement the function:

def do_level(task, subtasks):
 """ Takes a task to perform and a dictionary of subtasks,
 and RETURN a list of performed tasks, as tuples (task label, level)

 - To implement it, use a Stack and a while cycle
 - DO *NOT* use a recursive function
 - Inside the function, you can use a print like "I'm doing task a',
 but that is only to help yourself in debugging, only the
 list returned by the function will be considered in the evaluation
 """

Testing: python3 -m unittest tasks_test.DoLevelTest

B4 Exits graph

There is a place nearby Trento called Silent Hill, where people always study and do little else. Unfortunately, one day an unethical biotech AI experiment goes wrong and a buggy cyborg is left free to roam in the building. To avoid panic, you are quickly asked to devise an evacuation plan. The place is a well known labyrinth, with endless corridors also looping into cycles. But you know you can model this network as a digraph, and decide to represent crossings as nodes. When a crossing has a
door to leave the building, its label starts with letter e, while when there is no such door the label starts with letter n.

In the example below, there are three exits e1, e2, and e3. Given a node, say n1, you want to tell the crowd in that node the shortest paths leading to the three exits. To avoid congestion, one third of the crowd may be told to go to e2, one third to reach e1 and the remaining third will go to e3 even if they are farther than e2.

In python terms, we would like to obtain a dictionary of paths like the following, where as keys we have the exits and as values the shortest sequence of nodes from n1 leading to that exit

{
 'e1': ['n1', 'n2', 'e1'],
 'e2': ['n1', 'e2'],
 'e3': ['n1', 'e2', 'n3', 'e3']
}

[14]:

from sciprog import draw_dig
from exits_solution import *
from exits_test import dig

[15]:

G = dig({'n1':['n2','e2'],
 'n2':['e1'],
 'e1':['n1'],
 'e2':['n2','n3', 'n4'],
 'n3':['e3'],
 'n4':['n1']})
draw_dig(G)

[image: ../../_images/exams_2019-01-10_exam-2019-01-10_33_0.png]

You will solve the exercise in steps, so open exits_solution.py and proceed reading the following points.

B4.1 cp

Implement this method

def cp(self, source):
 """ Performs a BFS search starting from provided node label source and
 RETURN a dictionary of nodes representing the visit tree in the
 child-to-parent format, that is, each key is a node label and as value
 has the node label from which it was discovered for the first time

 So if node "n2" was discovered for the first time while
 inspecting the neighbors of "n1", then in the output dictionary there
 will be the pair "n2":"n1".

 The source node will have None as parent, so if source is "n1" in the
 output dictionary there will be the pair "n1": None

 NOTE: This method must *NOT* distinguish between exits
 and normal nodes, in the tests we label them n1, e1 etc just
 because we will reuse in next exercise
 NOTE: You are allowed to put debug prints, but the only thing that
 matters for the evaluation and tests to pass is the returned
 dictionary
 """

Testing: python3 -m unittest exits_test.CpTest

Example:

[16]:

G.cp('n1')

DEBUG: Removed from queue: n1
DEBUG: Found neighbor: n2
DEBUG: not yet visited, enqueueing ..
DEBUG: Found neighbor: e2
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['n2', 'e2']
DEBUG: Removed from queue: n2
DEBUG: Found neighbor: e1
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['e2', 'e1']
DEBUG: Removed from queue: e2
DEBUG: Found neighbor: n2
DEBUG: already visited
DEBUG: Found neighbor: n3
DEBUG: not yet visited, enqueueing ..
DEBUG: Found neighbor: n4
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['e1', 'n3', 'n4']
DEBUG: Removed from queue: e1
DEBUG: Found neighbor: n1
DEBUG: already visited
DEBUG: Queue is: ['n3', 'n4']
DEBUG: Removed from queue: n3
DEBUG: Found neighbor: e3
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['n4', 'e3']
DEBUG: Removed from queue: n4
DEBUG: Found neighbor: n1
DEBUG: already visited
DEBUG: Queue is: ['e3']
DEBUG: Removed from queue: e3
DEBUG: Queue is: []

[16]:

{'n1': None,
 'n2': 'n1',
 'e2': 'n1',
 'e1': 'n2',
 'n3': 'e2',
 'n4': 'e2',
 'e3': 'n3'}

Basically, the dictionary above represents this visit tree:

 n1
 / \
n2 e2
 \ / \
 e1 n3 n4
 |
 e3

B4.2 exits

Implement this function. NOTE: the function is external to class DiGraph.

def exits(cp):
 """
 INPUT: a dictionary of nodes representing a visit tree in the
 child-to-parent format, that is, each key is a node label and as value
 has its parent as a node label. The root has associated None as parent.

 OUTPUT: a dictionary mapping node labels of exits to the shortest path
 from the root to the exit (root and exit included)

 """

Testing: python3 -m unittest exits_test.ExitsTest

Example:

[17]:

as example we can use the same dictionary outputted by the cp call in the previous exercise

visit_cp = { 'e1': 'n2',
 'e2': 'n1',
 'e3': 'n3',
 'n1': None,
 'n2': 'n1',
 'n3': 'e2',
 'n4': 'e2'
 }
exits(visit_cp)

[17]:

{'e1': ['n1', 'n2', 'e1'], 'e2': ['n1', 'e2'], 'e3': ['n1', 'e2', 'n3', 'e3']}

[]:

 Midterm - Fri 16 November 2018 - solutions

Midterm - Fri 16 November 2018 - solutions

Scientific Programming - Data Science Master @ University of Trento

Download exercises and solution

Introduction

Grading

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments [https://datasciprolab.readthedocs.io/en/latest/commandments.html]

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use Jupyter (start it from Terminal with jupyter notebook), if it doesn’t work use an editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2018-11-16-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2018-11-16-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2018-11-16
 |- exam-2018-11-16-exercise.ipynb

	Rename datasciprolab-2018-11-16-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2018-11-16-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise.

	When done:

if you have unitn login: zip and send to examina.icts.unitn.it [http://examina.icts.unitn.it]

If you don’t have unitn login: tell instructors and we will download your work manually

A1 union

✪✪ When we talk about the union of two graphs, we intend the graph having union of verteces of both graphs and having as edges the union of edges of both graphs. In this exercise, we have two graphs as list of lists with boolean edges. To simplify we suppose they have the same vertices but possibly different edges, and we want to calculate the union as a new graph.

For example, if we have a graph ma like this:

[2]:

ma = [
 [True, False, False],
 [False, True, False],
 [True, False, False]
]

[3]:

draw_mat(ma)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_13_0.png]

And another mb like this:

[4]:

mb = [
 [True, True, False],
 [False, False, True],
 [False, True, False]

]

[5]:

draw_mat(mb)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_16_0.png]

The result of calling union(ma, mb) will be the following:

[19]:

res = [[True, True, False], [False, True, True], [True, True, False]]

which will be displayed as

[20]:

draw_mat(res)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_20_0.png]

So we get same verteces and edges from both ma and mb

[6]:

def union(mata, matb):
 """ Takes two graphs represented as nxn matrices of lists of lists with boolean edges,
 and RETURN a NEW matrix which is the union of both graphs

 if mata row number is different from matb, raises ValueError
 """
 #jupman-raise

 if len(mata) != len(matb):
 raise ValueError("mata and matb have different row number a:%s b:%s!" % (len(mata), len(matb)))

 n = len(mata)

 ret = []
 for i in range(n):
 row = []
 ret.append(row)
 for j in range(n):
 row.append(mata[i][j] or matb[i][j])
 return ret
 #/jupman-raise

try:
 union([[False],[False]], [[False]])
 raise Exception("Shouldn't arrive here !")
except ValueError:
 "test passed"

try:
 union([[False]], [[False],[False]])
 raise Exception("Shouldn't arrive here !")
except ValueError:
 "test passed"

ma1 = [
 [False]
]
mb1 = [
 [False]
]

assert union(ma1, mb1) == [
 [False]
]

ma2 = [
 [False]
]
mb2 = [
 [True]
]

assert union(ma2, mb2) == [
 [True]
]

ma3 = [
 [True]
]
mb3 = [
 [False]
]

assert union(ma3, mb3) == [
 [True]
]

ma4 = [
 [True]
]
mb4 = [
 [True]
]

assert union(ma4, mb4) == [
 [True]
]

ma5 = [
 [False, False, False],
 [False, False, False],
 [False, False, False]

]
mb5 = [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

assert union(ma5, mb5) == [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

ma6 = [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]
mb6 = [
 [False, False, False],
 [False, False, False],
 [False, False, False]

]

assert union(ma6, mb6) == [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

ma7 = [
 [True, False, False],
 [False, True, False],
 [True, False, False]
]

mb7 = [
 [True, True, False],
 [False, False, True],
 [False, True, False]

]

assert union(ma7, mb7) == [
 [True, True, False],
 [False, True, True],
 [True, True, False]

]

A2 surjective

✪✪ If we consider a graph as a nxn binary relation where the domain is the same as the codomain, such relation is called surjective if every node is reached by at least one edge.

For example, G1 here is surjective, because there is at least one edge reaching into each node (self-loops as in 0 node also count as incoming edges)

[7]:

G1 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, True, False],
 [False, True, True, True],

]

[8]:

draw_mat(G1)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_25_0.png]

G2 down here instead does not represent a surjective relation, as there is at least one node (2 in our case) which does not have any incoming edge:

[9]:

G2 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, False, False],
 [False, True, False, False],

]

[10]:

draw_mat(G2)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_28_0.png]

[11]:

def surjective(mat):
 """ RETURN True if provided graph mat as list of boolean lists is an
 nxn surjective binary relation, otherwise return False
 """
 #jupman-raise
 n = len(mat)
 c = 0 # number of incoming edges found
 for j in range(len(mat)): # go column by column
 for i in range(len(mat)): # go row by row
 if mat[i][j]:
 c += 1
 break # as you find first incoming edge, increment c and stop search for that column
 return c == n
 #/jupman-raise

m1 = [
 [False]
]

assert surjective(m1) == False

m2 = [
 [True]
]

assert surjective(m2) == True

m3 = [
 [True, False],
 [False, False],
]

assert surjective(m3) == False

m4 = [
 [False, True],
 [False, False],
]

assert surjective(m4) == False

m5 = [
 [False, False],
 [True, False],
]

assert surjective(m5) == False

m6 = [
 [False, False],
 [False, True],
]

assert surjective(m6) == False

m7 = [
 [True, False],
 [True, False],
]

assert surjective(m7) == False

m8 = [
 [True, False],
 [False, True],
]

assert surjective(m8) == True

m9 = [
 [True, True],
 [False, True],
]

assert surjective(m9) == True

m10 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, False, False],
 [False, True, False, False],

]
assert surjective(m10) == False

m11 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, True, False],
 [False, True, True, True],

]
assert surjective(m11) == True

A3 ediff

✪✪✪ The edge difference of two graphs ediff(da,db) is a graph with the edges of the first except the edges of the second. For simplicity, here we consider only graphs having the same verteces but possibly different edges. This time we will try operate on graphs represented as dictionaries of adjacency lists.

For example, if we have

[12]:

da = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

[13]:

draw_adj(da)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_33_0.png]

and

[14]:

db = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

[15]:

draw_adj(db)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_36_0.png]

The result of calling ediff(da,db) will be:

[16]:

res = {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

Which can be shown as

[17]:

draw_adj(res)

[image: ../../_images/exams_2018-11-16_exam-2018-11-16-solution_40_0.png]

[18]:

def ediff(da,db):
 """ Takes two graphs as dictionaries of adjacency lists da and db, and
 RETURN a NEW graph as dictionary of adjacency lists, containing the same vertices of da,
 and the edges of da except the edges of db.

 - As order of elements within the adjacency lists, use the same order as found in da.
 - We assume all verteces in da and db are represented in the keys (even if they have
 no outgoing edge), and that da and db have the same keys

 EXAMPLE:

 da = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

 db = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

 assert ediff(da, db) == {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

 """
 #jupman-raise

 ret = {}
 for key in da:
 ret[key] = []
 for target in da[key]:
 # not efficient but works for us
 # using sets would be better, see https://stackoverflow.com/a/6486483
 if target not in db[key]:
 ret[key].append(target)
 return ret
 #/jupman-raise

da1 = {
 'a': []
 }
db1 = {
 'a': []
 }

assert ediff(da1, db1) == {
 'a': []
 }

da2 = {
 'a': []
 }

db2 = {
 'a': ['a']
 }

assert ediff(da2, db2) == {
 'a': []
 }

da3 = {
 'a': ['a']
 }
db3 = {
 'a': []
 }

assert ediff(da3, db3) == {
 'a': ['a']
 }

da4 = {
 'a': ['a']
 }
db4 = {
 'a': ['a']
 }

assert ediff(da4, db4) == {
 'a': []
 }
da5 = {
 'a':['b'],
 'b':[]
 }
db5 = {
 'a':['b'],
 'b':[]
 }

assert ediff(da5, db5) == {
 'a':[],
 'b':[]
 }

da6 = {
 'a':['b'],
 'b':[]
 }
db6 = {
 'a':[],
 'b':[]
 }

assert ediff(da6, db6) == {
 'a':['b'],
 'b':[]
 }

da7 = {
 'a':['a','b'],
 'b':[]
 }
db7 = {
 'a':['a'],
 'b':[]
 }

assert ediff(da7, db7) == {
 'a':['b'],
 'b':[]
 }

da8 = {
 'a':['a','b'],
 'b':['a']
 }
db8 = {
 'a':['a'],
 'b':['b']
 }

assert ediff(da8, db8) == {
 'a':['b'],
 'b':['a']
 }

da9 = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

db9 = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

assert ediff(da9, db9) == {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

 Midterm Simulation - Tue 13, November 2018 - solutions

Midterm Simulation - Tue 13, November 2018 - solutions

Scientific Programming - Data Science Master @ University of Trento

Download exercises

Introduction

	This simulation gives you NO credit whatsoever, it’s just an example. If you do everything wrong, you lose nothing. If you do everything correct, you gain nothing.

Allowed material

There won’t be any internet access. You will only be able to access:

	DS Sciprog Lab worksheets

	Alberto Montresor slides

	Python 3 documentation (in particular, see unittest)

	The course book “Problem Solving with Algorithms and Data Structures using Python”

Grading FACSIMILE - IN THIS SIMULATION TIME YOU GET NO GRADE !!!!

	Correct implementations: Correct implementations with the required complexity grant you full grade.

	Partial implementations: Partial implementations might still give you a few points. If you just can’t solve an exercise, try to solve it at least for some subcase (i.e. array of fixed size 2) commenting why you did so.

	Bonus point: One bonus point can be earned by writing stylish code. You got style if you:

	do not infringe the Commandments

	write pythonic code [http://docs.python-guide.org/en/latest/writing/style]

	avoid convoluted code like i.e.

if x > 5:
 return True
else:
 return False

when you could write just

return x > 5

Valid code

WARNING: MAKE SURE ALL EXERCISE FILES AT LEAST COMPILE !!! 10 MINS BEFORE THE END OF THE EXAM I WILL ASK YOU TO DO A FINAL CLEAN UP OF THE CODE

WARNING: ONLY IMPLEMENTATIONS OF THE PROVIDED FUNCTION SIGNATURES WILL BE EVALUATED !!!!!!!!!

For example, if you are given to implement:

def f(x):
 raise Exception("TODO implement me")

and you ship this code:

def my_f(x):
 # a super fast, correct and stylish implementation

def f(x):
 raise Exception("TODO implement me")

We will assess only the latter one f(x), and conclude it doesn’t work at all :P !!!!!!!

Helper functions

Still, you are allowed to define any extra helper function you might need. If your f(x) implementation calls some other function you defined like my_f here, it is ok:

Not called by f, will get ignored:
def my_g(x):
 # bla

Called by f, will be graded:
def my_f(y,z):
 # bla

def f(x):
 my_f(x,5)

How to edit and run

To edit the files, you can use Jupyter (start it from Terminal with jupyter notebook), if it doesn’t work use an editor of your choice, you can find them under Applications->Programming:

	Visual Studio Code

	Editra is easy to use, you can find it under Applications->Programming->Editra.

	Others could be GEdit (simpler), or PyCharm (more complex).

To run the tests, use the Terminal which can be found in Accessories -> Terminal

IMPORTANT: Pay close attention to the comments of the functions.

WARNING: DON’T modify function signatures! Just provide the implementation.

WARNING: DON’T change the existing test methods, just add new ones !!! You can add as many as you want.

WARNING: DON’T create other files. If you still do it, they won’t be evaluated.

Debugging

If you need to print some debugging information, you are allowed to put extra print statements in the function bodies.

WARNING: even if print statements are allowed, be careful with prints that might break your function!

For example, avoid stuff like this:

x = 0
print(1/x)

What to do

	Download datasciprolab-2018-11-13-exam.zip and extract it on your desktop. Folder content should be like this:

datasciprolab-2018-11-13-FIRSTNAME-LASTNAME-ID
 |-jupman.py
 |-sciprog.py
 |-other stuff ...
 |-exams
 |-2018-11-13
 |- A1_exercise.ipynb
 |- A2_exercise.ipynb
 |- B1_exercise.py
 |- B1_test.py
 |- B2_exercise.py
 |- B2_test.py

	Rename datasciprolab-2018-11-13-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like datasciprolab-2018-11-12-john-doe-432432

From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.

	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.

1. matrices

1.1 fill

Difficulty: ✪✪

[2]:

def fill(lst1, lst2):
 """ Takes a list lst1 of n elements and a list lst2 of m elements, and MODIFIES lst2
 by copying all lst1 elements in the first n positions of lst2

 If n > m, raises a ValueError

 """
 #jupman-raise
 if len(lst1) > len(lst2):
 raise ValueError("List 1 is bigger than list 2 ! lst_a = %s, lst_b = %s" % (len(lst1), len(lst2)))
 j = 0
 for x in lst1:
 lst2[j] = x
 j += 1
 #/jupman-raise

try:
 fill(['a','b'], [None])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

try:
 fill(['a','b','c'], [None,None])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

L1 = []
R1 = []
fill(L1, R1)

assert L1 == []
assert R1 == []

L = []
R = ['x']
fill(L, R)

assert L == []
assert R == ['x']

L = ['a']
R = ['x']
fill(L, R)

assert L == ['a']
assert R == ['a']

L = ['a']
R = ['x','y']
fill(L, R)

assert L == ['a']
assert R == ['a','y']

L = ['a','b']
R = ['x','y']
fill(L, R)

assert L == ['a','b']
assert R == ['a','b']

L = ['a','b']
R = ['x','y','z',]
fill(L, R)

assert L == ['a','b']
assert R == ['a','b','z']

L = ['a']
R = ['x','y','z',]
fill(L, R)

assert L == ['a']
assert R == ['a','y','z']

1.2 lab

✪✪✪ If you’re a teacher that often see new students, you have this problem: if two students who are friends sit side by side they can start chatting way too much. To keep them quiet, you want to somehow randomize student displacement by following this algorithm:

	first sort the students alphabetically

	then sorted students progressively sit at the available chairs one by one, first filling the first row, then the second, till the end.

Now implement the algorithm:

[3]:

def lab(students, chairs):
 """

 INPUT:
 - students: a list of strings of length <= n*m
 - chairs: an nxm matrix as list of lists filled with None values (empty chairs)

 OUTPUT: MODIFIES BOTH students and chairs inputs, without returning anything

 If students are more than available chairs, raises ValueError

 Example:

 ss = ['b', 'd', 'e', 'g', 'c', 'a', 'h', 'f']

 mat = [
 [None, None, None],
 [None, None, None],
 [None, None, None],
 [None, None, None]
]

 lab(ss, mat)

 # after execution, mat should result changed to this:

 assert mat == [
 ['a', 'b', 'c'],
 ['d', 'e', 'f'],
 ['g', 'h', None],
 [None, None, None],
]
 # after execution, input ss should now be ordered:

 assert ss == ['a','b','c','d','e','f','g','f']

 For more examples, see tests

 """
 #jupman-raise

 n = len(chairs)
 m = len(chairs[0])

 if len(students) > n*m:
 raise ValueError("There are more students than chairs ! Students = %s, chairs = %sx%s" % (len(students), n, m))

 i = 0
 j = 0
 students.sort()
 for s in students:
 chairs[i][j] = s

 if j == m - 1:
 j = 0
 i += 1
 else:
 j += 1
 #/jupman-raise

try:
 lab(['a','b'], [[None]])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

try:
 lab(['a','b','c'], [[None,None]])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

m0 = [
 [None]
]

r0 = lab([],m0)
assert m0 == [
 [None]
]
assert r0 == None # function is not meant to return anything (so returns None by default)

m1 = [
 [None]
]
r1 = lab(['a'], m1)

assert m1 == [
 ['a']
]
assert r1 == None # function is not meant to return anything (so returns None by default)

m2 = [
 [None, None]
]
lab(['a'], m2) # 1 student 2 chairs in one row

assert m2 == [
 ['a', None]
]

m3 = [
 [None],
 [None],
]
lab(['a'], m3) # 1 student 2 chairs in one column
assert m3 == [
 ['a'],
 [None]
]

ss4 = ['b', 'a']
m4 = [
 [None, None]
]
lab(ss4, m4) # 2 students 2 chairs in one row

assert m4 == [
 ['a','b']
]

assert ss4 == ['a', 'b'] # also modified input list as required by function text

m5 = [
 [None, None],
 [None, None]
]
lab(['b', 'c', 'a'], m5) # 3 students 2x2 chairs

assert m5 == [
 ['a','b'],
 ['c', None]
]

m6 = [
 [None, None],
 [None, None]
]
lab(['b', 'd', 'c', 'a'], m6) # 4 students 2x2 chairs

assert m6 == [
 ['a','b'],
 ['c','d']
]

m7 = [
 [None, None, None],
 [None, None, None]
]
lab(['b', 'd', 'e', 'c', 'a'], m7) # 5 students 3x2 chairs

assert m7 == [
 ['a','b','c'],
 ['d','e',None]
]

ss8 = ['b', 'd', 'e', 'g', 'c', 'a', 'h', 'f']
m8 = [
 [None, None, None],
 [None, None, None],
 [None, None, None],
 [None, None, None]
]
lab(ss8, m8) # 8 students 3x4 chairs

assert m8 == [
 ['a', 'b', 'c'],
 ['d', 'e', 'f'],
 ['g', 'h', None],
 [None, None, None],
]

assert ss8 == ['a','b','c','d','e','f','g','h']

2. phones

A radio station used to gather calls by recording just the name of the caller and the phone number as seen on the phone display. For marketing purposes, the station owner wants now to better understand the places from where listeners where calling. He then hires you as Algorithmic Market Strategist and asks you to show statistics about the provinces of the calling sites. There is a problem, though. Numbers where written down by hand and sometimes they are not uniform, so it would be better to
find a canonical representation.

NOTE: Phone prefixes can be a very tricky subject, if you are ever to deal with them seriously please use proper phone number parsing libraries [https://github.com/daviddrysdale/python-phonenumbers] and do read Falsehoods Programmers Believe About Phone Numbers [https://github.com/googlei18n/libphonenumber/blob/master/FALSEHOODS.md]

2.1 canonical

✪ We first want to canonicalize a phone number as a string.

For us, a canonical phone number:

	contains no spaces

	contains no international prefix, so no +39 nor 0039: we assume all calls where placed from Italy (even if they have international prefix)

For example, all of these are canonicalized to “0461123456”:

+39 0461 123456
+390461123456
0039 0461 123456
00390461123456

These are canonicalized as the following:

328 123 4567 -> 3281234567
0039 328 123 4567 -> 3281234567
0039 3771 1234567 -> 37711234567

REMEMBER: strings are immutable !!!!!

[4]:

def canonical(phone):
 """ RETURN the canonical version of phone as a string. See above for an explanation.
 """
 #jupman-raise
 p = phone.replace(' ', '')
 if p.startswith('0039'):
 p = p[4:]
 if p.startswith('+39'):
 p = p[3:]
 return p
 #/jupman-raise

assert canonical('+39 0461 123456') == '0461123456'
assert canonical('+390461123456') == '0461123456'
assert canonical('0039 0461 123456') == '0461123456'
assert canonical('00390461123456') == '0461123456'
assert canonical('003902123456') == '02123456'
assert canonical('003902120039') == '02120039'
assert canonical('0039021239') == '021239'

2.2 prefix

✪✪ We now want to extract the province prefix - the ones we consider as valid are in province_prefixes list.

Note some numbers are from mobile operators and you can distinguish them by prefixes like 328 - the ones we consider are in an mobile_prefixes list.

[5]:

province_prefixes = ['0461', '02', '011']
mobile_prefixes = ['330', '340', '328', '390', '3771']

def prefix(phone):
 """ RETURN the prefix of the phone as a string. Remeber first to make it canonical !!

 If phone is mobile, RETURN string 'mobile'. If it is not a phone nor a mobile, RETURN
 the string 'unrecognized'

 To determine if the phone is mobile or from province, use above province_prefixes and mobile_prefixes lists.

 DO USE THE ALREADY DEFINED FUCTION canonical(phone)
 """
 #jupman-raise
 c = canonical(phone)
 for m in mobile_prefixes:
 if c.startswith(m):
 return 'mobile'
 for p in province_prefixes:
 if c.startswith(p):
 return p
 return 'unrecognized'
 #/jupman-raise

assert prefix('0461123') == '0461'
assert prefix('+39 0461 4321') == '0461'
assert prefix('0039011 432434') == '011'
assert prefix('328 432434') == 'mobile'
assert prefix('+39340 432434') == 'mobile'
assert prefix('00666011 432434') == 'unrecognized'
assert prefix('12345') == 'unrecognized'
assert prefix('+39 123 12345') == 'unrecognized'

2.3 hist

Difficulty: ✪✪✪

[6]:

province_prefixes = ['0461', '02', '011']
mobile_prefixes = ['330', '340', '328', '390', '3771']

def hist(phones):
 """ Given a list of non-canonical phones, RETURN a dictionary where the keys are the prefixes of the canonical phones
 and the values are the frequencies of the prefixes (keys may also be `unrecognized' or `mobile`)

 NOTE: Numbers corresponding to the same phone (so which have the same canonical representation)
 must be counted ONLY ONCE!

 DO USE THE ALREADY DEFINED FUCTIONS canonical(phone) AND prefix(phone)
 """
 #jupman-raise
 d = {}
 s = set()

 for phone in phones:
 c = canonical(phone)
 if c not in s:
 s.add(c)
 p = prefix(phone)
 if p in d :
 d[p] += 1
 else:
 d[p] = 1
 return d
 #/jupman-raise

assert hist(['0461123']) == {'0461':1}
assert hist(['123']) == {'unrecognized':1}
assert hist(['328 123']) == {'mobile':1}
assert hist(['0461123','+390461123']) == {'0461':1} # same canonicals, should be counted only once
assert hist(['0461123', '+39 0461 4321']) == {'0461':2}
assert hist(['0461123', '+39 0461 4321', '0039011 432434']) == {'0461':2, '011':1}
assert hist(['+39 02 423', '0461123', '02 426', '+39 0461 4321', '0039328 1234567', '02 423', '02 424']) == {'0461':2, 'mobile':1, '02':3}

2.4 display calls by prefixes

✪✪ Using matplotlib, display a bar plot of the frequency of calls by prefixes (including mobile and unrecognized), sorting them in reverse order so you first see the province with the higher number of calls. Also, save the plot on disk with plt.savefig('prefixes-count.png') (call it before plt.show())

If you’re in trouble you can find plenty of examples in the visualization chapter [https://datasciprolab.readthedocs.io/en/latest/exercises/visualization/visualization-solution.html]

You should obtain something like this:

[image: prefixes count solution 3984jj]

[7]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
province_prefixes = ['0461', '02', '011']
mobile_prefixes = ['330', '340', '328', '390', '3771']
phones = ['+39 02 423', '0461123', '02 426', '+39 0461 4321', '0039328 1234567', '02 423', '02 424']

write here

[8]:

SOLUTION

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

province_prefixes = ['0461', '02', '011']
province_names = ['Trento', 'Milano', 'Torino']
mobile_prefixes = ['330', '340', '328', '390', '3771']
phones = ['+39 02 423', '0461123', '02 426', '+39 0461 4321', '0039328 1234567', '02 423', '02 424']

coords = list(hist(phones).items())

coords.sort(key=lambda x:x[1], reverse=True)

xs = np.arange(len(coords))
ys = [c[1] for c in coords]

plt.bar(xs, ys, 0.5, align='center')

plt.title("province calls by prefixes sorted solution")
plt.xticks(xs, [c[0] for c in coords])

plt.xlabel('prefixes')
plt.ylabel('calls')

plt.savefig('prefixes-count-solution.png')

plt.show()

[image: ../../_images/exams_2018-11-13_exam-2018-11-13-solution_25_0.png]

 Slides 2019/20

Slides 2019/20

Old slides: - 2018/19 slides

Part A

Lab A.1

Tuesday 24 Sep 2019

Links

lab site: datasciprolab.readthedocs.org [http://datasciprolab.readthedocs.org]

Questionnaire: https://tinyurl.com/y6nlnx7l

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	First Google Colab [https://colab.research.google.com/drive/1SQV2eB6lMzbGHA_zACaxIoyZYjwKT1J9] (for code shown during lesson)

	Lesson: Introduction

	Lesson (maybe): Python basics

What I expect

	if you don’t program in Python, you don’t learn Python

	you don’t learn Python if you don’t program in Python

	to be a successful data scientist, you must know programming

	Exercise: now put the right priorities in your TODO list ;-)

Course contents

	Hands-on approach

Part A - python intro

	logic basics

	discrete structures basics

	python basics

	data cleaning

	format conversion (matrices, tables, graphs, …)

	visualization (matplotlib, graphviz)

	some analytics (with pandas)

	focus on correct code, don’t care about performance

	plus: some software engineering wisdom

Part A exams:

There will always be some practical structured exercise

Examples:

	analizing employees of University of Trento [https://datasciprolab.readthedocs.io/en/latest/exams/2019-08-26/exam-2019-08-26-solution.html#Part-A]

	visualizing intercity bus network [https://datasciprolab.readthedocs.io/en/latest/exams/2019-02-13/exam-2019-02-13-solution.html#Introduction]

	extracting categories from workshops of Trentino [https://datasciprolab.readthedocs.io/en/latest/exams/2019-07-02/exam-2019-07-02-solution.html#A1-Botteghe-storiche]

Sometimes, there can also be a more abstract thing with matrices / relations, (i.e. surjective relation [https://datasciprolab.readthedocs.io/en/latest/exams/2018-11-16/exam-2018-11-16-solution.html#2.-surjective])

Part B - algorithms

	going from theory taught by Prof. Luca Bianco to Python 3 implementation

	performance matters

	few Python functions

Python Tutor

Let’s meet Python on the web with Python Tutor [http://pythontutor.com/visualize.html] is a great way to visualize Python code.

Use it as much as possible! . It really provides great guidance about how things are working under the hood.

By default works for standard Python code. If you want to use it also with code from modules (i.e. numpy) you have to select Write code in Python3 with Anaconda (experimental)

	Anaconda

	System console

	Jupyter

Some data types example

mutable vs immutable

Examples for

	int

	float

	string

	boolean

	warning: everything in Python can be interpreted as a boolean !

	‘empty’ objects are considered as false: None, zero 0, empty string "", empty list [], empty dict dict()

	list

Especially when there are examples involving lists, try them in Python tutor !!!!

Let’s start:

introduction exercises

Lab A.2

Thursday 26 Sep 2019

Links

If you didn’t yet, please fill questionnaire: https://tinyurl.com/y6nlnx7l

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Second Google Colab [https://drive.google.com/open?id=1_McK48wpvTD3CVizIafavYcbt6EVZbgf] (for code shown during lesson)

	Lesson: Python basics

Lab A.3

Tuesday 1st Oct 2019

Links

If you didn’t yet, please fill questionnaire: https://tinyurl.com/y6nlnx7l

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Third Google Colab [https://colab.research.google.com/drive/10MKRM4zvjez0r7a_jIFZ14THJ3GodOLX] (for code shown during lesson)

	Lesson: Strings (NOTE: redownload it, was updated)

Material for Part A is being restructured, always pay attention to News section [https://datasciprolab.readthedocs.io/en/latest/index.html#News]

In general, Part A basic notebooks will be divided in three parts :

	Introduction - does not require any prior knowledge

	Exercises with functions: require knowing complex statements, functions, cycles

	Verify your comprehension: require knowing complex statements, functions, cycles and also Error handling and testing with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

Lab A.4

Thursday 3rd Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Fourth Google Colab [https://colab.research.google.com/drive/1IQ03EFsXURgKmh6PV_qxmN_L3S8Nn-Zs] (for code shown during lesson)

	Lesson: Lists (NOTE: redownload it, was updated)

Material for Part A is being restructured, always pay attention to News section [https://datasciprolab.readthedocs.io/en/latest/index.html#News]

Lab A.5

Tuesday 8 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Fifth Google Colab [https://colab.research.google.com/drive/1aR-YnwJjSq_2MBGqoAre255PUgCYLdKA] (for code shown during lesson)

	Lesson: Sets

	Lesson: Tuples

	Lesson: Dictionaries (NOTE: redownload it, was updated)

Material for Part A is being restructured, always pay attention to News section [https://datasciprolab.readthedocs.io/en/latest/index.html#News]

SAVE THE DATE:

	MIDTERM PART A SIMULATION: 31 october 15:30-17:30 room a202

	MIDTERM PART A: 7 november 11:30-13:30 room b106

IMPORTANT: differently from past Part A exams, there will also be an exercise on pandas.

Lab A.6

Thursday 10 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Sixth Google Colab [https://drive.google.com/open?id=1fzrnow3WBRXtNNSPbmdjyisFLsrH5sT0] (for code shown during lesson)

	Lesson: Dictionaries (continued)

	Lesson: Errors and testing (until testing with assert included)

	Lesson: Matrices: list of lists

Material for Part A is being restructured, always pay attention to News section [https://datasciprolab.readthedocs.io/en/latest/index.html#News]

SAVE THE DATE:

	MIDTERM PART A SIMULATION: 31 october 15:30-17:30 room a202

	MIDTERM PART A: 7 november 11:30-13:30 room b106

IMPORTANT: differently from past Part A exams, there will also be an exercise on Pandas.

Lab A.7

Tuesday 15 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Seventh Google Colab [https://drive.google.com/open?id=1lBlv6mbNdajJ0GHAKJfcY1Ck5F2NKOCH] (for code shown during lesson)

	Lesson (continued): Matrices: list of lists

	Lesson: Data formats

Lab A.8

Thursday 17 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Eight Google Colab [https://drive.google.com/open?id=1jAmEde-omImUBd0G6qZmMCzJvQfxO5at] (for code shown during lesson)

	Lesson: Graph formats until Adjacency lists excluded

Lab A.9

Tuesday 22 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Ninth Google Colab [https://drive.google.com/open?id=1QmSKK8N7qdVjfPFOpdZNFNOkbjUI5GT5] (for code shown during lesson)

	Lesson: Graph formats from Adjacency lists included until end

	mention: Binary relations (finish it at home)

Lab A.10

Thursday 24 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Tenth Google Colab [https://drive.google.com/open?id=1WQ57M1A_SghmoXFncpLK7L5BREkaMDo8] (for code shown during lesson)

	lesson: Numpy matrices

	lesson: Visualization

Lab A.11

Thursday 29 Oct 2019

Links

	All Google Colab scratchpads [https://drive.google.com/drive/folders/17cAdDWOFoSJ1hzHrYmx7EanqbqEqxZ3w?usp=sharing]

	Eleventh Google Colab [https://drive.google.com/open?id=1wMYiMkjrVCr4Nw0gcOsVVV6hSqL6AjiK] (for code shown during lesson)

	lesson: Pandas

Lab A.12

Tuesday 5 November

	Numpy NANs and infinities - redownload updated Matrices: Numpy [https://datasciprolab.readthedocs.io/en/latest/exercises/matrices-numpy/matrices-numpy-solution.html#NaNs-and-infinities]

	Exercises on strings from leetcode [https://datasciprolab.readthedocs.io/en/latest/exercises/strings/strings-solution.html#Further-resources]

Lab B.1

Tuesday 12 November

	Testing with unittest

	OOP (first part until magnitude)

Remember that from now on we only use Visual Studio Code

Lab B.2

Thursday 14 November

	OOP (finish)

	At home: try to implement MultiSet class

Remember that from now on we only use Visual Studio Code

Lab B.3

Tuesday 19 November

	Sorting 1 (selection sort, insertion sort)

Lab B.4

Thursday 21 November

	Sorting 2 (merge sort, quicksort, SwapArray)

Lab B.5

Tuesday 26 November

	LinkedList v1

At home: try to finish whole LinkedList worksheet

Lab B.6

Thursday 28 November

	Stacks CappedStack, Tasks, (maybe) Stacktris

At home: try to finish whole Stacks worksheet

Lab B.7

Tuesday 3 December

	Queues (CircularQueue and ItalianQueue)

At home: try to finish whole Queues worksheet

Lab B.8

Thursday 5 December

	Trees : binary trees

At home: finish binary trees section

Lab B.9

Tuesday 10 December

	Trees : generic trees

At home: finish generic trees section

Lab B.10

Thursday 12 December

	Graphs

	Implement building

	Manipulate graphs

At home: finish Section 1 and 2

Lab B.11

Tuesday 17 December

	Graphs : Query graphs section

At home: finish query graphs

Lab B.12

Thursday 19 December

	Trees again : Binary Search Trees (added exercises 2.7 and following)

See also Further resources from LeetCode [https://datasciprolab.readthedocs.io/en/latest/exercises/trees/trees.html#BT-Further-resources]

[]:

 Commandments

Commandments

The Supreme Committee for the Doctrine of Coding has ruled important Commandments you shall follow.

If you accept their wise words, you shall become a true Python Jedi.

WARNING: if you don’t follow the Commandments, bad things shall happen.

COMMANDMENT 1: You shall test!

To run tests, enter the following command in the terminal:

Windows Anaconda:

python -m unittest my-file

Linux/Mac: remember the three after python command:

python3 -m unittest my-file

WARNING: In the call above, DON’T append the extension .py to my-file

WARNING: Still, on the hard-disk the file MUST be named with a .py at the end, like my-file.py

WARNING: If strange errors occur, make sure to be using python version 3. Just run the interpreter and it will display the current version.

COMMANDMENT 2: You shall also write on paper!

If staring at the monitor doesn’t work, help yourself and draw a representation of the state sof the program. Tables, nodes, arrows, all can help figuring out a solution for the problem.

COMMANDMENT 3: You shall copy exactly the same function definitions as in the exercises!

For example don’t write :

def MY_selection_sort(A):

COMMANDMENT 4: You shall never ever reassign function parameters

def myfun(i, s, L, D):

 # You shall not do any of such evil, no matter what the type of the parameter is:
 i = 666 # basic types (int, float, ...)
 s = "evil" # strings
 L = [666] # containers
 D = {"evil":666} # dictionaries

 # For the sole case of composite parameters like lists or dictionaries,
 # you can write stuff like this IF AND ONLY IF the function specification
 # requires you to modify the parameter internal elements (i.e. sorting a list
 # or changing a dictionary field):

 L[4] = 2 # list
 D["my field"] = 5 # dictionary
 C.my_field = 7 # class

COMMANDMENT 5: You shall never ever reassign self:

Never ever write horrors such as:

class MyClass
 def my_method(self, x, y):
 self = {a:666} # since self is a kind of dictionary, you might be tempted to do like this
 # but to the outside world this will bring no effect.
 # For example, let's say somebody from outside makes a call like this:
 # mc = MyClass()
 # mc.my_method()
 # after the call mc will not point to {a:666}
 self = ['evil'] # self is only supposed to be a sort of dictionary and passed from outside
 self = 6 # self is only supposed to be a sort of dictionary and passed from outside

COMMANDMENT 6: You shall never ever assign values to function nor method calls

WRONG WRONG:

my_fun() = 666
my_fun() = 'evil'
my_fun() = [666]

CORRECT:

With the assignment operator we want to store in the left side a value from the right side, so all of these are valid operations:

x = 5
y = my_fun()
z = []
z[0] = 7
d = dict()
d["a"] = 6

Function calls such as my_fun() return instead results of calculations in a box that is created just for the purpose of the call and Python will just not allow us to reuse it as a variable. So whenever you see ‘name()’ at the left side, it can’t be possibly follewed by one equality = sign (but it can be followed by two equality signs == if you are performing a comparison).

COMMANDMENT 7: You shall use return command only if you see written “return” in the function description!

If there is no return in function description, the function is intended to return None. In this case you don’t even need to write return None, as Python will do it implicitly for you.

COMMANDMENT 8: You shall never ever redefine system functions

Python has system defined function, for example list is a Python type. As such, you can use it for example as a function to convert some type to a list:

[1]:

list("ciao")

[1]:

['c', 'i', 'a', 'o']

when you allow the forces of evil to take the best of you, you might be tempted to use reserved words like list as a variable for you own miserable purposes:

[2]:

list = ['my', 'pitiful', 'list']

Python allows you to do so, but we do not, for the consequences are disastrous.

For example, if you now attempt to use list for its intended purpose like casting to list, it won’t work anymore:

list("ciao")

TypeError Traceback (most recent call last)
<ipython-input-4-c63add832213> in <module>()
----> 1 list("ciao")

TypeError: 'list' object is not callable

COMMANDMENT 9: Whenever you introduce a variable in a cycle, such variable must be new

If you read carefully Commandment 4 you should not need to be reminded of this Commandment, nevertheless it is always worth restating the Right Way.

If you defined a variable before, you shall not reintroduce it in a for, since it is as confusing as reassigning function parameters.

So avoid these sins:

[3]:

i = 7
for i in range(3): # sin, you lose i variable
 print(i)

0
1
2

[4]:

def f(i):
 for i in range(3): # sin again, you lose i parameter
 print(i)

[5]:

for i in range(2):
 for i in range(3): # debugging hell, you lose i from outer for
 print(i)

0
1
2
0
1
2

 Introduction solutions

Introduction solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/introduction]

In this practical we will set up a working Python3 development environment and will start familiarizing a bit with Python.

There are many ways to write and execute Python code:

	Python tutor (online, visual debugger)

	Python interpreter (command line)

	Visual Studio Code (editor, good debugger)

	Jupyter (notebook)

	Google Colab (online, collaborative)

During this lab we see all of them and familiarize with the exercises format. For now ignore the exercises zip and proceed reading.

Installation

You will need to install several pieces of software to get a working programming environment. In this section we will install everything that we are going to need in the next few weeks.

Python3 is available for Windows, Mac and Linux. Python3 alone is often not enough, and you will need to install extra system-specific libraries + editors like Visual Studio Code and Jupyter.

Windows/Mac installation

To avoid hassles, especially on Win / Mac you should install some so called package manager (Linux distributions already come with a package manager). Among the many options for this course we use the package manager Anaconda for Python 3.7.

	Install Anaconda for Python 3.7 [https://www.anaconda.com/download/] (anaconda installer will ask you to install also visual studio code, so accept the kind offer)

	If you didn’t in the previous point, install now Visual Studio Code, which is available for all platforms. You can read about it here [https://code.visualstudio.com/]. Downloads for all platforms can be found here [https://code.visualstudio.com/Download]

Linux installation

Although you can install Anaconda on Linux, it is usually better to use the system package manager that comes with your distribution.

	Check the Python interpreter - most probably you already have one in your distribution, but you have to check it is the right version. In this course we will use python version 3.x. Open a terminal and try typing in:

python3

if you get an error like “python3 command not found” , try typing

python

if you get something like this (mind the version 3):

[image: console 43432i]

you are already sorted, just type Ctrl-D to exit. If it doesn’t work, try typing exit() and hit Enter

Otherwise you need to install Python 3.

Linux, debian-like(e.g. Ubuntu)

Issue the following commands on a terminal:

sudo apt-get update

sudo apt-get install python3

Linux Fedora:

Issue the following commands on a terminal:

sudo dnf install python3

	Install now the package manager pip, which is a very convenient tool to install python packages, with the following command (on Fedora the command above should have already installed it):

sudo apt-get install python3-pip

Note:

If pip is already installed in your system you will get a message like: python3-pip is already the newest version (3.x.y)

	Install Jupyter notebook:

Open the system console and copy and paste this command:

python3 -m pip install --user jupyter -U

It will install jupyter in your user home.

	Finally, install Visual Studio Code. You can read about it here [https://code.visualstudio.com/]. Downloads for all platforms can be found here [https://code.visualstudio.com/Download].

Python tutor

Let’s meet Python on the web with Python Tutor [http://pythontutor.com/visualize.html] is a great way to visualize Python code.

Use it as much as possible! . It really provides great guidance about how things are working under the hood.

By default works for standard Python code. If you want to use it also with code from modules (i.e. numpy) you have to select Write code in Python3 with Anaconda (experimental)

System console

Let’s look at the operating system console. In Anaconda installations you must open it with Anaconda Prompt (if you have a Mac but not Anaconda, open the Terminal). We assume Linux users can get around their way.

WARNING: In the system console we are entering commands for the operating system, using the system command language which varies for each operating system. So following commands are not Python !

	to see files of the folder you are in you can type dir in windows and ls in Mac/Linux

	to enter a folder: cd MYFOLDER

	to leave a folder: cd ..

	mind the space between cd and two dots

Python interpreter

To start the Python interpreter, from system console run (to open it see previous paragraph)

python

You will see the python interpreter (the one with >>>), where you can directly issue commands and see the output. If for some reason it doesn’t work, try running

python3

WARNING: you must be running Python 3, in this course we only use that version ! Please check you are indeed using version 3 by looking at the interpreter banner, it should read something similar to this:

Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

WARNING: if you take random code from the internet, be sure it is for Python 3

WARNING: the >>> is there just to tell you you are looking at python interpreter. It is not python code ! If you find written >>> in some code example , do not copy it !

Now we are all set to start interacting with the Python interpreter. First make sure you are inside the interpreter (you should see a >>> in the console, if not see previous paragraph), then type in the following instructions:

[2]:

5 + 3

[2]:

8

All as expected. The “In [1]” line is the input, while the “Out [1]” reports the output of the interpreter. Let’s challenge python with some other operations:

[3]:

12 / 5

[3]:

2.4

[4]:

1/133

[4]:

0.007518796992481203

[5]:

2**1000

[5]:

10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376

And some assignments:

[6]:

a = 10
b = 7
s = a + b
d = a / b

print("sum is:",s, " division is:",d)

sum is: 17 division is: 1.4285714285714286

In the first four lines, values have been assigned to variables through the = operator. In the last line, the print function is used to display the output. For the time being, we will skip all the details and just notice that the print function somehow managed to get text and variables in input and coherently merged them in an output text. Although quite useful in some occasions, the console is quite limited therefore you can close it for now. To exit type Ctrl-D or exit().

Visual Studio Code

Visual Studio Code [https://code.visualstudio.com/] is an Integrated Development Editor (IDE) for text files. It can handle many languages, Python included (python programs are text files ending in .py).

Features:

	open source

	lightweight

	used by many developers

	Python plugin is not the best, but works enough for us

Once you open the IDE Visual Studio Code you will see the welcome screen:

[image: visual studio code 94j34]

You can find useful information on this tool here [https://code.visualstudio.com/docs#vscode]. Please spend some time having a look at that page.

Once you are done with it you can close this window pressing on the “x”. First thing to do is to set the python interpreter to use. Click on View –> Command Palette and type “Python” in the text search space. Select Python: Select Workspace Interpreter as shown in the picture below.

[image: python interpreter uiu8ue]

Finally, select the python version you want to use (e.g. Python3).

Now you can click on Open Folder to create a new folder to place all the scripts you are going to create. You can call it something like “exercises”. Next you can create a new file, example1.py (.py extension stands for python).

Visual Studio Code will understand that you are writing Python code and will help you with valid syntax for your program.

Warning:

If you get the following error message:

[image: pylint iukj44]

click on Install Pylint which is a useful tool to help your coding experience.

Add the following text to your example1.py file.

[7]:

"""
This is the first example of Python script.
"""
a = 10 # variable a
b = 33 # variable b
c = a / b # variable c holds the ratio

Let's print the result to screen.
print("a:", a, " b:", b, " a/b=", c)

a: 10 b: 33 a/b= 0.30303030303030304

A couple of things worth nothing. The first three lines opened and closed by """ are some text describing the content of the script. Moreover, comments are proceeded by the hash key (#) and they are just ignored by the python interpreter. Please remember to comment your code, as it helps readability and will make your life easier when you have to modify or just understand the code you wrote some time in the past.

Please notice that Visual Studio Code will help you writing your Python scripts. For example, when you start writing the print line it will complete the code for you (if the Pylint extension mentioned above is installed), suggesting the functions that match the letters written. This useful feature is called code completion and, alongside suggesting possible matches, it also visualizes a description of the function and parameters it needs. Here is an example:

[image: code completion j3u34]

Save the file (Ctrl+S as shortcut). It is convenient to ask the IDE to highlight potential syntactic problems found in the code. You can toggle this function on/off by clicking on View –> Problems. The Problems panel should look like this

[image: problems ui4i3u4]

Visual Studio Code is warning us that the variable names a,b,c at lines 4,5,6 do not follow Python naming conventions for constants. This is because they have been defined at the top level (there is no structure to our script yet) and therefore are interpreted as constants. The naming convention for constants states that they should be in capital letters. To amend the code, you can just replace all the names with the corresponding capitalized name (i.e. A,B,C). If you do that, and you save the
file again (Ctrl+S), you will see all these problems disappearing as well as the green underlining of the variable names. If your code does not have an empty line before the end, you might get another warning “Final new line missing”. Note that these were just warnings and the interpreter in this case will happily and correctly execute the code anyway, but it is always good practice to understand what the warnings are telling us before deciding to ignore them!

Had we by mistake mispelled the print function name (something that should not happen with the code completion tool that suggests functions names!) writing printt (note the double t), upon saving the file, the IDE would have underlined in red the function name and flagged it up as a problem.

[image: errors ubgiru]

This is because the builtin function printt does not exist and the python interpreter does not know what to do when it reads it. Note that printt is actually underlined in red, meaning that there is an error which will cause the interpreter to stop the execution with a failure. Please remember that before running any piece of code all errors must be fixed.

Now it is time to execute the code. By right-clicking in the code panel and selecting Run Python File in Terminal (see picture below) you can execute the code you have just written.

[image: pythonrun iui575]

Upon clicking on Run Python File in Terminal a terminal panel should pop up in the lower section of the coding panel and the result shown above should be reported.

Saving script files like the example1.py above is also handy because they can be invoked several times (later on we will learn how to get inputs from the command line to make them more useful…). To do so, you just need to call the python intepreter passing the script file as parameter. From the folder containing the example1.py script:

python3 example1.py

will in fact return:

a: 10 b: 33 a/b= 0.30303030303030304

Before ending this section, let me add another note on errors. The IDE will diligently point you out syntactic warnings and errors (i.e. errors/warnings concerning the structure of the written code like name of functions, number and type of parameters, etc.) but it will not detect semantic or runtime errors (i.e. connected to the meaning of your code or to the value of your variables). These sort of errors will most probably make your code crash or may result in unexpected
results/behaviours. In the next section we will introduce the debugger, which is a useful tool to help detecting these errors.

Before getting into that, consider the following lines of code (do not focus on the import line, this is only to load the mathematics module and use its method sqrt):

[8]:

"""
Runtime error example, compute square root of numbers
"""
import math

A = 16
B = math.sqrt(A)
C = 5*B
print("A:", A, " B:", B, " C:", C)

#D = math.sqrt(A-C) # whoops, A-C is now -4!!!
#print(D)

A: 16 B: 4.0 C: 20.0

If you add that code to a python file (e.g. sqrt_example.py), you save it and you try to execute it, you should get an error message as reported above. You can see that the interpreter has happily printed off the vaule of A,B and C but then stumbled into an error at line 9 (math domain error) when trying to compute \(\sqrt{A-C} = \sqrt{-4}\), because the sqrt method of the math module cannot be applied to negative values (i.e. it works in the domain of real numbers).

Please take some time to familiarize with Visual Studio Code (creating files, saving files etc.) as in the next practicals we will take this ability for granted.

The debugger

Another important feature of advanced Integrated Development Environments (IDEs) is their debugging capabilities. Visual Studio Code comes with a debugging tool that can help you trace the execution of your code and understand where possible errors hide.

Write the following code on a new file (let’s call it integer_sum.py) and execute it to get the result.

[9]:

""" integer_sum.py is a script to
 compute the sum of the first 1200 integers. """

S = 0
for i in range(0, 1201):
 S = S + i

print("The sum of the first 1200 integers is: ", S)

The sum of the first 1200 integers is: 720600

Without getting into too many details, the code you just wrote starts initializing a variable S to zero, and then loops from 0 to 1200 assigning each time the value to a variable i, accumulating the sum of S + i in the variable S. A final thing to notice is indentation. In Python it is important to indent the code properly as this provides the right scope for variables (e.g. see that the line S = S + 1 starts more to the right than the previous and following line – this is because it is
inside the for loop). You do not have to worry about this for the time being, we will get to this in a later practical…

How does this code work? How does the value of S and i change as the code is executed? These are questions that can be answered by the debugger.

To start the debugger, click on Debug –> Start Debugging (shortcut F5). The following small panel should pop up:

[image: debug 57874y]

We will use it shortly, but before that, let’s focus on what we want to track. On the left hand side of the main panel, a Watch panel appeared. This is where we need to add the things we want to monitor as the execution of the program goes. With respect to the code written above, we are interested in keeping an eye on the variables S, i and also of the expression S+i (that will give us the value of S of the next iteration). Add these three expressions in the watch panel (click on + to add
new expressions). The watch panel should look like this:

[image: watch 985yhf]

do not worry about the message “name X is not defined”, this is normal as no execution has taken place yet and the interpreter still does not know the value of these expressions.

The final thing before starting to debug is to set some breakpoints, places where the execution will stop so that we can check the value of the watched expressions. This can be done by hovering with the mouse on the left of the line number. A small reddish dot should appear, place the mouse over the correct line (e.g. the line corresponding to S = S + 1 and click to add the breakpoint (a red dot should appear once you click).

[image: breakpoint iu54h]

Now we are ready to start debugging the code. Click on the green triangle on the small debug panel and you will see that the yellow arrow moved to the breakpoint and that the watch panel updated the value of all our expressions.

[image: step 0 jkjfe34]

The value of all expressions is zero because the debugger stopped before executing the code specified at the breakpoint line (recall that S is initialized to 0 and that i will range from 0 to 1200). If you click again on the green arrow, execution will continue until the next breakpoint (we are in a for loop, so this will be again the same line - trust me for the time being).

[image: step 1 kfjjg9]

Now i has been increased to 1, S is still 0 (remember that the execution stopped before executing the code at the breakpoint) and therefore S + i is now 1. Click one more time on the green arrow and values should update accordingly (i.e. S to 1, i to 2 and S + i to 3), another round of execution should update S to 3, i to 3 and S + i to 6. Got how this works? Variable i is increased by one each time, while S increases by i. You can go on for a few more iterations and see if this makes any
sense to you, once you are done with debugging you can stop the execution by pressing the red square on the small debug panel.

Please take some more time to familiarize with Visual Studio Code (creating files, saving files, interacting with the debugger etc.) as in the next practicals we will take this ability for granted. Once you are done you can move on and do the following exercises.

Jupyter

Jupyter is a handy program to write notebooks organized in cells (files with .ipynb extension), where there is both code, output of running that code and text. The code by default is Python, but can also be other languages like R). The text is formatted with Markdown language [https://en.wikipedia.org/wiki/Markdown] - see cheatsheet [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet]. It’s becoming the de-facto standard for writing technical documentation (you can find
everywhere, i.e. blogs).

Run Jupyter

Jupyter is a web server, so when you run it, a Jupyter server starts and you should see a system console opening (on Anaconda system you might see it for a very short time), afterwards an internet browser should open. Since Jupyter is a server, what you see in the browser is just the UI which is connecting to the server.

If you have Anaconda :

Launch Anaconda Navigator, and then search and run Jupyter.`

If you don’t have Anaconda:

From system console try to run

jupyter notebook

or, as alternative if the previous doesn’t work:

python3 -m notebook

Editing notebooks

Useful shortcuts:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

Some tips:

	when something seem wrong in computations, try to clean memory by running Kernel->Restart and Run all

	when you see an asterisk to the side of a cell, maybe the computationg has hanged (an infinite while?). To solve the problem, run Kernel->shutdown and then `Kernel -> restart

Browsing notebooks

(Optional) To improve your browsing experience, you might wish to install some Jupyter extension , like toc2 which shows paragraphs headers on the sidebar. To install it:

Install the Jupyter contrib extensions [https://github.com/ipython-contrib/jupyter_contrib_nbextensions] package:

If you have Anaconda:

Open Anaconda Prompt, and type:

conda install -c conda-forge jupyter_contrib_nbextensions

If you don’t have Anaconda:

	Open a Terminal and type:

python3 -m pip install --user jupyter_contrib_nbextensions

	Install it in Jupyter:

jupyter contrib nbextension install --user

	Enable extensions

jupyter nbextension enable toc2/main

Once you installed: To see tocs when in a document you will need to press a list button at the right-end of the toolbar.

Course exercise formats

In this course, you will find the solutions to the exercises on the website. At the top page of each solution, you will find the link to download a zip like this:

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/introduction]

	now unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-other stuff ...
-exercises
 |- introduction
 |- introduction-exercise.ipynb
 |- introduction-solution.ipynb
 |- other stuff ..

WARNING 1: to correctly visualize the notebook, it MUST be in an unzipped folder !

Each zip contains both the exercises to do as files to edit, along with their solution in a separate file.

Some exercises will need to be done in Jupyter notebooks (.ipynb files), while others in plain .py Python files.

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser.

	The browser should show a file list: navigate the list and open the notebook exercises/introduction/introduction-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	now look into the exercise notebook, it should begin with a cell like this:

#Please execute this cell
import sys;
sys.path.append('../../');
import jupman;
import sciprog;

This is because some code is common to all exercises. In particular:

	in jupman.py there is code for special cell outputs in Jupyter notebooks (like Python tutor or unit tests display)

	in sciprog.py there are common algorithms and data structures used in the course

A notebook always looks for modules in the current directory of the notebook. Since jupman.py stays a parent directory in the zip, with the lines

import sys;
sys.path.append('../../');

we tell Python to also look modules (= python .py files) in a directory which is two parent folders above the current one.

It is not the most elegant way to locate modules but gets around the quirks of Jupyter fine enough for our purposes.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Python Tutor inside Jupyter

We implemented a command jupman.pytut() to show a Python tutor debugger in a Python notebook. Let’s see how it works.

You can put a call to jupman.pytut() at the end of a cell, and the cell code will magically appear in python tutor in the output (except the call to pytut() of course).

ATTENTION: To see Python tutor you need to be online!

For this to work you need to be online both when you execute the cell and when visiting the built website.

[10]:

x = 5
y= 7
z = x + y

jupman.pytut()

[10]:

 Python basics solutions

Python basics solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/basics]

References

	Andrea Passerini, Lecture A01 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A01-introduction.pdf]

In this practical we will start interacting more with Python, practicing on how to handle data, functions and methods. We will see some built-in data types (integers, floats, booleans - we will reserve strings for later)

Modules

Python modules are simply text files having the extension .py (e.g. exercise.py). When you were writing the code in the IDE in the previous practical, you were in fact implementing the corresponding module.

As said in the previous practical, once you implemented and saved the code of the module, you can execute it by typing

python3 exercise1.py

or, in Visual Studio Code, by right clicking on the code panel and selecting Run Python File in Terminal.

A Module A can be loaded from another module B so that B can use the functions defined in A. Remember when we used the sqrt function? It is defined in the module math. To import it and use it we indeed wrote something like:

[2]:

import math

x = math.sqrt(4)
print(x)

2.0

When importing modules we do not need to specify the extension .py of the file.

Objects

Python understands very well objects, and in fact everything is an object in Python. Objects have properties (characteristic features) and methods (things they can do). For example, an object car has the properties model, make, color, number of doors etc., and the methods steer right, steer left, accelerate, break, stop, change gear,… According to Python’s official documentation:

“Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between objects.”

All you need to know for now is that in Python objects have an identifier (ID) (i.e. their name), a type (numbers, text, collections,…) and a value (the actual data represented by the objects). Once an object has been created the identifier and the type never change, while its value can either change (mutable objects) or stay constant (immutable objects).

Python provides these built-in data types:

[image: basic data types table]

We will stick with the simplest ones for now, but later on we will dive deeper into the all of them.

Variables

Variables are just references to objects, in other words they are the name given to an object. Variables can be assigned to objects by using the assignment operator =.

The instruction

[3]:

sides = 4

might represent the number of sides of a square. What happens when we execute it in Python? An object is created, it is given an identifier, its type is set to “int” (an integer number), it value to 4 and a name sides is placed in the current namespace to point to that object, so that after that instruction we can access that object through its name. The type of an object can be accessed with the function type() and the identifier with the function id():

[4]:

sides = 4
print(type(sides))
print(id(sides))

<class 'int'>
94241937814656

Consider now the following code:

[5]:

sides = 4 # a square
print ("value:", sides, " type:", type(sides), " id:", id(sides))
sides = 5 # a pentagon
print ("value:", sides, " type:", type(sides), " id:", id(sides))

value: 4 type: <class 'int'> id: 94241937814656
value: 5 type: <class 'int'> id: 94241937814688

The value of the variable sides has been changed from 4 to 5, but as stated in the table above, the type int is immutable. Luckily, this did not prevent us to change the value of sides from 4 to 5. What happened behind the scenes when we executed the instruction sides = 5 is that a new object has been created of type int (5 is still an integer) and it has been made accessible with the same name sides, but since it is a different object (i.e. the integer 5) you can see that the
identifier is actually different. Note: you do not have to really worry about what happens behind the scenes, as the Python interpreter will take care of these aspects for you, but it is nice to know what it does.

You can even change the type of a variable during execution but that is normally a bad idea as it makes understanding the code more complicated.

You can do (but, please, refrain!):

[6]:

sides = 4 # a square
print ("value:", sides, " type:", type(sides), " id:", id(sides))
sides = "four" #the sides in text format
print ("value:", sides, " type:", type(sides), " id:", id(sides))

value: 4 type: <class 'int'> id: 94241937814656
value: four type: <class 'str'> id: 140613404719232

IMPORTANT NOTE: You can chose the name that you like for your variables (I advise to pick something reminding their meaning), but you need to adhere to some simple rules:

	Names can only contain upper/lower case digits (A-Z, a-z), numbers (0-9) or underscores _;

	Names cannot start with a number;

	Names cannot be equal to reserved keywords:

	variable names should start with a lowercase letter

[image: reserved keywords]

Exercise: variable names

For each of the following names, try to guess if it is a valid variable name or not, then try to assign it in following cell

	my-variable

	my_variable

	theCount

	the count

	some@var

	MacDonald

	7channel

	channel7

	stand.by

	channel45

	maybe3maybe

	"ciao"

	'hello'

	as PLEASE: DO UNDERSTAND THE VERY IMPORTANT DIFFERENCE BETWEEN THIS AND FOLLOWING TWOs !!!

	asino

	As

	lista PLEASE: DO UNDERSTAND THE VERY IMPORTANT DIFFERENCE BETWEEN THIS AND FOLLOWING TWOs !!!

	list DO NOT EVEN TRY TO ASSIGN THIS ONE IN THE INTERPRETER (like list = 5), IF YOU DO YOU WILL BASICALLY BREAK PYTHON

	List

	black&decker

	black & decker

	glab()

	caffè (notice the accented è !)

):-]

	€zone (notice the euro sign)

	some:pasta

	aren'tyouboredyet

	<angular>

[7]:

write here

Numeric types

We already mentioned that numbers are immutable objects. Python provides different numeric types: integers, reals (floats), booleans and even complex numbers and fractions (but we will not get into those).

Integers

Their range of values is limited only by the memory available. As we have already seen, python provides also a set of standard operators to work with numbers:

[8]:

a = 7
b = 4

a + b # 11
a - b # 3
a // b # integer division: 1
a * b # 28
a ** b # power: 2401
a / b # division 0.8333333333333334
type(a / b)

[8]:

float

Note that in the latter case the result is no more an integer, but a float (we will get to that later).

Booleans

These objects are used for the boolean algebra and have type bool.

Truth values are represented with the keywords True and False in Python, a boolean object can only have value True or False.

[9]:

x = True

[10]:

x

[10]:

True

[11]:

type(x)

[11]:

bool

[12]:

y = False

[13]:

type(y)

[13]:

bool

Boolean operators

We can operate on boolean values with the boolean operators not, and, or. Recall boolean algebra for their use:

[14]:

print("not True: ", not True) # False
print("not False: ", not False) # True
print()
print("False and False: ", False and False) # False
print("False and True: ", False and True) # False
print("True and False: ", True and False) # False
print("True and True: ", True and True) # True
print()
print("False or False: ", False or False) # False
print("False or True: ", False or True) # True
print("True or False: ", True or False) # True
print("True or True: ", True or True) # True

not True: False
not False: True

False and False: False
False and True: False
True and False: False
True and True: True

False or False: False
False or True: True
True or False: True
True or True: True

Booleans exercise: constants

Try to guess the result of these boolean expressions (first guess, and then try it out !!)

not (True and False)
(not True) or (not (True or False))
not (not True)
not (True and (False or True))
not (not (not False))
True and (not (not((not False) and True)))
False or (False or ((True and True) and (True and False)))

Booleans exercise: variables

For which values of x and y these expressions give True ? Try to think the answer before trying it !!!!

NOTE: there can be more combinations that produce True, try to find all of them.

x or (not x)
(not x) and (not y)
x and (y or y)
x and (not y)
(not x) or y
y or not (y and x)
x and ((not x) or not(y))
(not (not x)) and not (x and y)
x and (x or (not(x) or not(not(x or not (x)))))

For which values of x, y and z these expressions give False ?

NOTE: there can be more combinations that produce False, try to find all of them.

x or ((not y) or z)
x or (not y) or (not z)
not (x and y and (not z))
not (x and (not y) and (x or z))
y or ((x or y) and (not z))

Boolean conversion

We can convert booleans into integers with the builtin function int. Any integer can be converted into a boolean (and vice-versa) with bool:

[15]:

a = bool(1)
b = bool(0)
c = bool(72)
d = bool(-5)
t = int(True)
f = int(False)

print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("t: ", t)
print("f: ", f)

a: True
b: False
c: True
d: True
t: 1
f: 0

Any integer is evaluated to True, except 0. Note that, the truth values True and False respectively behave like the integers 1 and 0.

Booleans exercise: what is a boolean?

Read carefully previous description of booleans, and try to guess the result of following expressions.

bool(True)
bool(False)
bool(2 + 4)
bool(4-3-1)
int(4-3-1)
True + True
True + False
True - True
True * True

Numeric operators

Numeric comparators are operators that return a boolean value. Here are some examples (from the lecture):

[image: comparators 23i2i3]

Example: Given a variable a = 10 and a variable b = 77, let’s swap their values (i.e. at the end a will be equal to 77 and b to 10). Let’s also check the values at the beginning and at the end.

[16]:

a = 10
b = 77
print("a: ", a, " b:", b)
print("is a equal to 10?", a == 10)
print("is b equal to 77?", b == 77)

TMP = b # we need to store the value of b safely
b = a # ok, the old value of b is gone... is it?
a = TMP # a gets the old value of b... :-)

print()
print("a: ", a, " b:", b)
print("is a equal to 10?", a == 10)
print("is a equal to 77?", a == 77)
print("is b equal to 10?", b == 10)
print("is b equal to 77?", b == 77)

a: 10 b: 77
is a equal to 10? True
is b equal to 77? True

a: 77 b: 10
is a equal to 10? False
is a equal to 77? True
is b equal to 10? True
is b equal to 77? False

Numeric operators exercise: cycling

Write a program that given three variables with numebers a,b,c, cycles the values, that is, puts the value of a in b, the value of b in c, and the value of c in a .

So if you begin like this:

a = 4
b = 7
c = 9

After the code that you will write, by running this:

print(a)
print(b)
print(c)

You should see

9
4
7

There are various ways to do it, try to use only one temporary variable and be careful not to lose values !

HINT: to help yourself, try to write down in comments the state of the memory, and think which command to do

a b c t which command do I need?
4 7 9
4 7 9 7 t = b
#
#
#

[17]:

a = 4
b = 7
c = 9

write code here

print(a)
print(b)
print(c)

4
7
9

[18]:

SOLUTION

a = 4
b = 7
c = 9

a b c t which command do I need?
4 7 9
4 7 9 7 t = b
4 4 9 7 b = a
9 4 9 7 a = c
9 4 7 7 c = t

t = b
b = a
a = c
c = t

print(a)
print(b)
print(c)

9
4
7

[19]:

SOLUTION

Real numbers

Python stores real numbers (floating point numbers) in 64 bits of information divided in sign, exponent and mantissa.

Exercise: Let’s calculate the area of the center circle of a football pitch (radius = 9.15m) recalling that \(area= Pi*R^2\) (as power operator, use **):

[20]:

SOLUTION

R = 9.15
Pi = 3.1415926536
Area = Pi*(R**2)
print(Area)

263.02199094102605

Note that the parenthesis around the R**2 are not necessary as operator ** has the precedence, but I personally think it helps readability.

Here is a reminder of the precedence of operators:

[image: precedence among operators]

Example: Let’s compute the GC content of a DNA sequence 33 base pairs long, having 12 As, 9 Ts, 5 Cs and 7Gs. The GC content can be expressed by the formula: \(gc = \frac{G+C}{A+T+C+G}\) where A,T,C,G represent the number of nucleotides of each kind. What is the AT content? Is the GC content higher than the AT content ?

[21]:

A = 12
T = 9
C = 5
G = 7

gc = (G+C)/(A+T+C+G)

print("The GC content is: ", gc)

at = 1 - gc

print("Is the GC content higher than AT content? ", gc > at)

The GC content is: 0.36363636363636365
Is the GC content higher than AT content? False

Real numbers exercise: quadratic equation

Calculate the zeros of the equation \(ax^2-b = 0\) where a = 10 and b = 1. Hint: use math.sqrt or ** 0.5. Finally check that substituting the obtained value of x in the equation gives zero.

[22]:

SOLUTION

import math

A = 10
B = 1

x = math.sqrt(B/A)

print("10x**2 - 1 = 0 for x:", x)
print("Is x a solution?", 10*x**2 -1 == 0)

10x**2 - 1 = 0 for x: 0.31622776601683794
Is x a solution? True

 Strings solutions

Strings solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/strings]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-my_lib.py
-other stuff ...
-exercises
 |- lists
 |- strings-exercise.ipynb
 |- strings-solution.ipynb
 |- other stuff ..

WARNING 1: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/strings/strings-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate to the unzipped folder while in Jupyter browser!

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Introduction

References:

	Andrea Passerini slides A02 - datastructures [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A02-datastructures.pdf]

	Think Python, Chapter 8, Strings [http://greenteapress.com/thinkpython2/html/thinkpython2009.html]

	Think Python, Chapter 9, word play [http://greenteapress.com/thinkpython2/html/thinkpython2010.html]

	extra if you want to do text mining:

	Read before first part on Unicode encoding from chapter Strings in book Dive into Python [https://diveintopython3.problemsolving.io/strings.html]

	Look at NLTK library [https://www.nltk.org/]

Strings are immutable objects (note the actual type is str) used by python to handle text data. Strings are sequences of unicode code points that can represent characters, but also formatting information (e.g. ‘\n’ for new line). Unlike other programming languages, python does not have the data type character, which is represented as a string of length 1.

There are several ways to define a string:

[1]:

S = "my first string, in double quotes"

S1 = 'my second string, in single quotes'

S2 = '''my third string is
in triple quotes
therefore it can span several lines'''

S3 = """my fourth string, in triple double-quotes
can also span
several lines"""

print(S, '\n') #let's add a new line at the end of the string with \n
print(S1,'\n')
print(S2, '\n')
print(S3, '\n')

my first string, in double quotes

my second string, in single quotes

my third string is
in triple quotes
therefore it can span several lines

my fourth string, in triple double-quotes
can also span
several lines

To put special characters like ‘,” and so on you need to “escape them” (i.e. write them following a back-slash).

[image: escapes ioi4o3]

Example: Let’s print a string containing a quote and double quote (i.e. ‘ and “).

[2]:

myString = "This is how I \'quote\' and \"double quote\" things in strings"
print(myString)

This is how I 'quote' and "double quote" things in strings

Strings can be converted to and from numbers with the functions str(), int() or float().

Example: Let’s define a string myString with the value “47001” and convert it into an int. Try adding one and print the result.

[3]:

my_string = "47001"
print(my_string, " has type ", type(my_string))

my_int = int(my_string)

print(my_int, " has type ", type(my_int))

my_int = my_int + 7 #adds seven

my_string = my_string + "7" # cannot add 7 (we need to use a string).
 # This will append 7 at the end of the string

#my_string = my_string + 7 # CANNOT DO THIS, python will complain about concatenating a stirng to a different type,
 # in this case an int

my_string = my_string + str(7) # this works, I have to force before the conversion of inter to string.

print(my_int)
print(my_string)

47001 has type <class 'str'>
47001 has type <class 'int'>
47008
4700177

Python defines some operators to work with strings. Recall the slides shown during the lecture:

[image: string operators kj43j4]

Exercise: many hello

Look at the table above. Given the string x = "hello", print a string with "hello" repeated 5 times: "hellohellohellohellohello". Your code must work with any string stored in the variable x

[4]:

x = "hello"

write here

print("hello"*5)

hellohellohellohellohello

Exercise: interleave terns

Given two strings which both have length 3, print a string which interleaves characters from both strings. Your code should work for any string of such lenght.

Example:

Given

x="say"
y="hi!"

should print

shaiy!

[5]:

write here

x="say"
y="hi!"
print(x[0] + y[0] + x[1] + y[1] + x[2] + y[2])

shaiy!

Exercise: print length

Write some code that given a string x, prints the content of the string followed by its length. Your code should work for any content of the variable x.

Example:

Given

x = 'howdy'

should print

howdy5

[6]:

write here

x = 'howdy'
print(x + str(len(x)))

howdy5

Exercise: both contained

You are given two strings x and y, and a third one z. Write some code that prints True if x and y are contained in z.

For example,

Given

x = 'cad'
y = 'ra'
z = 'abracadabra'

it should print

True

x = 'zam'
y = 'ra'
z = 'abracadabra'

it should print

False

[7]:

write here

x = 'cad'
y = 'ra'
z = 'abracadabra'

print((x in z) and (y in z))

True

Slicing

We can access strings at specific positions (indexing) or get a substring starting from a position S to a position E. The only thing to remember is that numbering starts from 0. Thei-th character of a string can be accessed as str[i-1]. Substrings can be accessed as str[S:E], optionally a third parameter can be specified to set the step (i.e. str[S:E:STEP]).

Important note. Remember that when you do str[S:E], S is inclusive, while E is exclusive (see S[0:6] below).

[image: slicing string 9898juu]

Let’s see these aspects in action with an example:

[8]:

S = "Luther College"

print(S) #print the whole string
print(S == S[:]) #a fancy way of making a copy of the original string
print(S[0]) #first character
print(S[3]) #fourth character
print(S[-1]) #last character
print(S[0:6]) #first six characters
print(S[-7:]) #final seven characters
print(S[0:len(S):2]) #every other character starting from the first
print(S[1:len(S):2]) #every other character starting from the second

Luther College
True
L
h
e
Luther
College
Lte olg
uhrClee

Exercise: garalampog

Write some code to extract and print alam from the string "garalampog". Try to correctly guess indeces.

[9]:

x = "garalampog"
write here

0123456789
print(x[3:7])

alam

Exercise: ifE:nbsphinx-math:te:nbsphinx-math:`nfav `lkD lkWe

Write some code to extract and print kS from the string "ifE\te\nfav lkD lkWe". Mind the spaces and special characters (you might want to print x first). Try to correctly guess indeces.

[10]:

x = "ifE\te\nfav lkD lkWe"

write here

0123 45 67890123456789
#x = "ifE\te\nfav lkD lkWe"

print(x[12:14])

kD

Exercise: javarnanda

Given a string x, write some code to extract and print its last 3 characters and join them to the first 3. Code should work for any string of length at least 3.

Example:

Given

x = "javarnanda"

it should print

javnda

Given

x = "abcd"

it should print

abcbcd

[11]:

write here

x = "abcd"
print(x[:3] + x[-3:])

abcbcd

Methods for the str object

The object str has some methods that can be applied to it (remember methods are things you can do on objects). Recall from the lecture that the main methods are:

[image: str methods kjiu49]

ATTENTION: Since Strings are immutable, every operation that changes the string actually produces a new str object having the modified string as value.

Example

[12]:

my_string = "ciao"

anotherstring = my_string.upper()

print(anotherstring)

CIAO

[13]:

print(my_string) # didn't change

ciao

If you are unsure about a method (for example strip), you can ask python help like this:

NOTICE there are no round parenthesis after the method !!!

[14]:

help("ciao".strip)

Help on built-in function strip:

strip(...) method of builtins.str instance
 S.strip([chars]) -> str

 Return a copy of the string S with leading and trailing
 whitespace removed.
 If chars is given and not None, remove characters in chars instead.

Exercise substitute

Given a string x, write some code to print a string like x but with all occurrences of bab substituted by dada

Example:

Given

x = 'kljsfsdbabòkkrbabej'

it should print

kljsfsddadaòkkrdadaej

[15]:

write here

x = 'kljsfsdbabòkkrbabej'
print(x.replace('bab', 'dada'))

kljsfsddadaòkkrdadaej

Exercise hatespace

Given a string x which may contain blanks (spaces, special controls characters such as \t and n, …) at the beginning and end, write some code that prints the string without the blanks and the strings START and END at the extremities.

Example:

Given

x = ' \t \n \n hatespace\n \t \n'

prints

STARThatespaceEND

[16]:

write here

x = ' \t \n \n hatespace\n \t \n'

print('START' + x.strip() + 'END')

STARThatespaceEND

Exercises with functions

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

length

✪ a. Write a function length1(s) in which, given a string, RETURN the length of the string. Use len function. For example, with "ciao" string your function should return 4 while with "hi" it should return 2

>>> x = length1("ciao")
>>> x
4

✪ b. Write a function length2 that like before calculates the string length, this time without using len (instead, use a for cycle)

>>> y = length2("mondo")
>>> y
5

[17]:

write here

version with len, faster because python with a string always mantains in memory
the number of length immediately available

def length1(s):
 return len(s)

version with counter, slower
def length2(s):
 counter = 0
 for character in s:
 counter = counter + 1
 return counter

contains

✪ Write the function contains(word, character), which RETURN True is the string contains the given character, otherwise RETURN False

	Use in operator

>>> x = contains('ciao', 'a')
>>> x
True
>>> y = contains('ciao', 'z')
>>> y
False

[18]:

write here

def contains(word, character):
 return character in word

invertilet

✪ Write the function invertilet(first, second) which takes in input two strings of length greater than 3, and RETURN a nnew string in which the words are concataned and separated by a space, the last two characters in the words are inverted. For example, if you pass in input 'ciao' and 'world', the function should RETURN 'ciad worlo'

If the two strings are not of adequate length, the program PRINTS error!

HINT: use slices

NOTE 1: PRINTing is different from RETURNing !!! Whatever gets printed is shown to the user but Python cannot reuse it for calculations.

NOTE 2: if a function does not explicitly return anything, Python implicitly returns None.

NOTE 3: Resorting to prints on error conditions is not actually good practice, here we use it as invitation to think about what happens when you print something and do not return anything. You can read a discussion about it in Errors handling and testing page [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Unforeseen-situations]

>>> x = invertilet("ciao", "world")
>>> x
'ciad worlo'
>>> x = invertilet('hi','mondo')
'errore!'
>>> x
None
>>> x = invertilet('cirippo', 'bla')
'errore!'
>>> x
None

[19]:

write here

def invertilet(first,second):
 if len(first) <= 3 or len(second) <=3:
 print("errore!")
 else:
 return first[:-1] + second[-1] + " " + second[:-1] + first[-1]

nspace

✪ Write the function nspace that given a string s in input, RETURN a new string in which the n-character is a space.

For example, given the string 'largamente' and the index 5, the program should RETURN the string 'larga ente'. NOTE: if the number is too big (for example, the word has 6 characters and you pass the number 9), the program PRINTS error!.

NOTE 1: if the number is too big (for example, the word has 6 character and you pass the number 9), the program PRINTS error!.

NOTE 2: PRINTing is different from RETURNing !!! Whatever gets printed is shown to the user but Python cannot reuse it for other calculations.

NOTE 3: Resorting to prints on error conditions is not actually a good practice, here we use it as invitation to think about what happens when you print something and do not return anything. You can read a discussion about it in Errors handling and testing page [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Unforeseen-situations]

>>> x = nspazio('largamente', 5)
>>> x
'larga ente'

>>> x = nspazio('ciao', 9)
errore!
>>> x
None

>>> x = nspazio('ciao', 4)
errore!
>>> x
None

[20]:

write here

def nspace(word, index):
 if index >= len(word):
 print("error!")
 return word[:index] + ' ' + word[index+1:]

#nspace("largamente", 5)

startend

✪ Write a Python program which takes a string s, and if it has a length greater than 4, the program PRINTS the first and last two characters, otherwise, PRINTS I want at least 4 characters. For example, by passing "ciaomondo", the function should print "cido". By passing "ciao" it should print ciao and by passing "hi" it should print I want at least 4 characters.

>>> startend('ciaomondo')
cido

>>> startend('hi')
Voglio almeno 4 caratteri

[21]:

write here

def startend(s):
 if len(s) >= 4:
 print(s[:2] + s[-2:])
 else:
 print("I want at least 4 characters")

swap

Write a function that given a string, swaps the first and last character and PRINTS the result.

For example, given the string "world", the program will PRINT 'oondm'

>>> swap('mondo')
oondm

[22]:

write here

def swap(s):
 print(s[-1] + s[1:-1] + s[0])

Verify comprehension

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

	Tests with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Testing-with-asserts]: Following exercises contain automated tests to help you spot errors. To understand how to do them, read before Error handling and testing [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

has_char

✪ RETURN True if word contains char, False otherwise

	use while cycle (just for didactical purposes, using in would certainly be faster & shorter)

[23]:

def has_char(word, char):
 #jupman-raise
 index = 0 # initialize index
 while index < len(word):
 if word[index] == char:
 return True # we found the character, we can stop search
 index += 1 # it is like writing index = index + 1
 # if we arrive AFTER the while, there is only one reason:
 # we found nothing, so we have to return False
 return False
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert has_char("ciao", 'a')
assert not has_char("ciao", 'A')
assert has_char("ciao", 'c')
assert not has_char("", 'a')
assert not has_char("ciao", 'z')

TEST END

count

✪ RETURN the number of occurrences of char in word

NOTE: I DO NOT WANT A PRINT, IT MUST RETURN THE VALUE !

	Use the cycle for in (just for didactical purposes, strings already provide a method to do it fast - which one?)

[24]:

def count(word, char):
 #jupman-raise
 occurrences = 0
 for c in word:
 #print("current character = ", char) # debugging prints are allowed
 if c == char:
 #print("found occurrence !") # debugging prints are allowed
 occurrences += 1
 return occurrences # THE IMPORTANT IS TO _RETURN_ THE VALUE AS THE EXERCISE TEXT REQUIRES !!
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert count("ciao", "z") == 0
assert count("ciao", "c") == 1
assert count("babbo", "b") == 3
assert count("", "b") == 0
assert count("ciao", "C") == 0
TEST END

dialect

✪✪ There exist a dialect in which all the "a" must be always preceded by a "g". In case a word contains an "a" not preceded by a "g", we can say with certainty that this word does not belong to the dialect. Write a function that given a word, RETURN True if the word respects the rules of the dialect, False otherwise.

>>> dialect("ammot")
False
>>> print(dialect("paganog")
False
>>> print(dialect("pgaganog")
True
>>> print(dialect("ciao")
False
>>> dialect("cigao")
True
>>> dialect("zogava")
False
>>> dialect("zogavga")
True

[25]:

def dialect(word):
 #jupman-raise
 n = 0
 for i in range(0,len(word)):
 if word[i] == "a":
 if i == 0 or word[i - 1] != "g":
 return False
 return True
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert dialect("a") == False
assert dialect("ab") == False
assert dialect("ag") == False
assert dialect("ag") == False
assert dialect("ga") == True
assert dialect("gga") == True
assert dialect("gag") == True
assert dialect("gaa") == False
assert dialect("gaga") == True
assert dialect("gabga") == True
assert dialect("gabgac") == True
assert dialect("gabbgac") == True
assert dialect("gabbgagag") == True
TEST END

countvoc

✪✪ Given a string, write a function that counts the number of vocals. If the vocals number is even, RETURN the number of vocals, otherwise raises exception ValueError

>>> countvoc("arco")
2
>>> count_voc("ciao")

ValueError Traceback (most recent call last)
<ipython-input-15-058310342431> in <module>()
 16 countvoc("arco")
---> 19 countvoc("ciao")

ValueError: Odd vocals !

[26]:

def countvoc(word):
 #jupman-raise
 n_vocals = 0

 vocals = ["a","e","i","o","u"]

 for char in word:
 if char.lower() in vocals:
 n_vocals = n_vocals + 1

 if n_vocals % 2 == 0:
 return n_vocals
 else:
 raise ValueError("Odd vocals !")
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert countvoc("arco") == 2
assert countvoc("scaturire") == 4

try:
 countvoc("ciao") # with this string we expect it raises exception ValueError
 raise Exception("I shouldn't arrive until here !")
except ValueError: # if it raises the exception ValueError, it is behaving as expected and we do nothing
 pass

try:
 countvoc("aiuola") # with this string we expect it raises exception ValueError
 raise Exception("I shouldn't arrive until here !")
except ValueError: # if it raises the exception ValueError, it is behaving as expected and we do nothing
 pass

palindrome

✪✪✪ A word is palindrome if it exactly the same when you read it in reverse

Write a function the RETURN True if the given word is palindrome, False otherwise

	assume that the empty string is palindrome

Example:

>>> x = palindrome('radar')
>>> x
True
>>> x = palindrome('scatola')
>>> x
False

There are various ways to solve this problems, some actually easy & elegant. Try to find at least a couple of them (don’t need to bang your head with the recursive one ..).

[27]:

def palindrome(word):
 #jupman-raise
 for i in range(len(word) // 2):
 if word[i] != word[len(word)- i - 1]:
 return False

 return True # note it is OUTSIDE for: after passing all controls,
 # we can conclude that the word it is actually palindrome
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert palindrome('') == True # we assume the empty string is palindrome
assert palindrome('a') == True
assert palindrome('aa') == True
assert palindrome('ab') == False
assert palindrome('aba') == True
assert palindrome('bab') == True
assert palindrome('bba') == False
assert palindrome('abb') == False
assert palindrome('abba') == True
assert palindrome('baab') == True
assert palindrome('abbb') == False
assert palindrome('bbba') == False
assert palindrome('radar') == True
assert palindrome('scatola') == False

[]:

extract_email

**COMMANDMENT 4 (adapted for strings): You shall never ever reassign function parameters **

def myfun(s):

 # You shall not do any of such evil, no matter what the type of the parameter is:
 s = "evil" # strings

[28]:

def extract_email(s):
 """ Takes a string s formatted like

 "lun 5 nov 2018, 02:09 John Doe <john.doe@some-website.com>"

 and RETURN the email "john.doe@some-website.com"

 NOTE: the string MAY contain spaces before and after, but your function must be able to extract email anyway.

 If the string for some reason is found to be ill formatted, raises ValueError
 """
 #jupman-raise
 stripped = s.strip()
 i = stripped.find('<')
 return stripped[i+1:len(stripped)-1]
 #/jupman-raise

assert extract_email("lun 5 nov 2018, 02:09 John Doe <john.doe@some-website.com>") == "john.doe@some-website.com"
assert extract_email("lun 5 nov 2018, 02:09 Foo Baz <mrfoo.baz@blabla.com>") == "mrfoo.baz@blabla.com"
assert extract_email(" lun 5 nov 2018, 02:09 Foo Baz <mrfoo.baz@blabla.com> ") == "mrfoo.baz@blabla.com" # with spaces

canon_phone

✪ Implement a function that canonicalize canonicalize a phone number as a string. It must RETURN the canonical version of phone as a string.

For us, a canonical phone number:

	contains no spaces

	contains no international prefix, so no +39 nor 0039: we assume all calls where placed from Italy (even if they have international prefix)

For example, all of these are canonicalized to "0461123456":

+39 0461 123456
+390461123456
0039 0461 123456
00390461123456

These are canonicalized as the following:

328 123 4567 -> 3281234567
0039 328 123 4567 -> 3281234567
0039 3771 1234567 -> 37711234567

REMEMBER: strings are immutable !!!!!

[29]:

def phone_canon(phone):
 #jupman-raise
 p = phone.replace(' ', '')
 if p.startswith('0039'):
 p = p[4:]
 if p.startswith('+39'):
 p = p[3:]
 return p
 #/jupman-raise

assert phone_canon('+39 0461 123456') == '0461123456'
assert phone_canon('+390461123456') == '0461123456'
assert phone_canon('0039 0461 123456') == '0461123456'
assert phone_canon('00390461123456') == '0461123456'
assert phone_canon('003902123456') == '02123456'
assert phone_canon('003902120039') == '02120039'
assert phone_canon('0039021239') == '021239'

phone_prefix

✪✪ We now want to extract the province prefix from phone numbers (see previous exercise) - the ones we consider as valid are in province_prefixes list.

Note some numbers are from mobile operators and you can distinguish them by prefixes like 328 - the ones we consider are in mobile_prefixes list.

Implement a function that RETURN the prefix of the phone as a string. Remember first to make it canonical !!

	If phone is mobile, RETURN string 'mobile'. If it is not a phone nor a mobile, RETURN the string 'unrecognized'

	To determine if the phone is mobile or from province, use province_prefixes and mobile_prefixes lists.

	DO USE THE PREVIOUSLY DEFINED FUNCTION phone_canon(phone)

[30]:

province_prefixes = ['0461', '02', '011']
mobile_prefixes = ['330', '340', '328', '390', '3771']

def phone_prefix(phone):
 #jupman-raise
 c = phone_canon(phone)
 for m in mobile_prefixes:
 if c.startswith(m):
 return 'mobile'
 for p in province_prefixes:
 if c.startswith(p):
 return p
 return 'unrecognized'
 #/jupman-raise

assert phone_prefix('0461123') == '0461'
assert phone_prefix('+39 0461 4321') == '0461'
assert phone_prefix('0039011 432434') == '011'
assert phone_prefix('328 432434') == 'mobile'
assert phone_prefix('+39340 432434') == 'mobile'
assert phone_prefix('00666011 432434') == 'unrecognized'
assert phone_prefix('12345') == 'unrecognized'
assert phone_prefix('+39 123 12345') == 'unrecognized'

Further resources

Have a look at leetcode string problems [https://leetcode.com/tag/string/] sorting by Acceptance and Easy.

In particular, you may check:

	Detect Capital [https://leetcode.com/problems/detect-capital/description/]

	Unique email addresses [https://leetcode.com/problems/unique-email-addresses/description/]

	Robot return to origin [https://leetcode.com/problems/robot-return-to-origin/description/]

	Reverse Words in a String III [https://leetcode.com/problems/reverse-words-in-a-string-iii/description/]

	Unique Morse codes [https://leetcode.com/problems/unique-morse-code-words/description/]

	Goat Latin [https://leetcode.com/problems/goat-latin/description/]

	Count Binary Substrings [https://leetcode.com/problems/count-binary-substrings/description/]

[]:

 Lists solutions

Lists solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/lists]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-other stuff ...
-exercises
 |- lists
 |- lists-exercise.ipynb
 |- lists-solution.ipynb
 |- other stuff ..

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/lists/lists-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Introduction

References

	Andrea Passerini, A02 slides (lists and tuples) [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A02-datastructures.pdf]

	Think Python, Chapter 10, Lists [http://greenteapress.com/thinkpython2/html/thinkpython2011.html]

	Think Python, Chapter 12, Tuples [http://greenteapress.com/thinkpython2/html/thinkpython2013.html]

Python lists are ordered collections of (homogeneous) objects, but they can hold also non-homogeneous data. List are mutable objects. Elements of the collection are specified within two square brackets [] and are comma separated.

We can use the function print to print the content of lists. Some examples of list definitions follow:

[2]:

my_first_list = [1,2,3]
print("first:" , my_first_list)

my_second_list = [1,2,3,1,3] #elements can appear several times
print("second: ", my_second_list)

fruits = ["apple", "pear", "peach", "strawberry", "cherry"] #elements can be strings
print("fruits:", fruits)

an_empty_list = []
print("empty:" , an_empty_list)

another_empty_list = list()
print("another empty:", another_empty_list)

a_list_containing_other_lists = [[1,2], [3,4,5,6]] #elements can be other lists
print("list of lists:", a_list_containing_other_lists)

my_final_example = [my_first_list, a_list_containing_other_lists]
print("a list of lists of lists:", my_final_example)

first: [1, 2, 3]
second: [1, 2, 3, 1, 3]
fruits: ['apple', 'pear', 'peach', 'strawberry', 'cherry']
empty: []
another empty: []
list of lists: [[1, 2], [3, 4, 5, 6]]
a list of lists of lists: [[1, 2, 3], [[1, 2], [3, 4, 5, 6]]]

Operators for lists

Python provides several operators to handle lists. The following behave like on strings (remember that as in strings, the first position is 0!):

[image: operators 1 ku3434]

While this requires that the whole tested obj is present in the list

[image: operators 2 dfwew3]

and

[image: operators 3 i4iu434]

can also change the corresponding value of the list (lists are mutable objects).

Some examples follow.

[3]:

A = [1, 2, 3]
B = [1, 2, 3, 1, 2]

print("A is a ", type(A))

A is a <class 'list'>

[4]:

print(A, " has length: ", len(A))

[1, 2, 3] has length: 3

[5]:

print("A[0]: ", A[0], " A[1]:", A[1], " A[-1]:", A[-1])

A[0]: 1 A[1]: 2 A[-1]: 3

[6]:

print(B, " has length: ", len(B))

[1, 2, 3, 1, 2] has length: 5

[7]:

print("Is A equal to B?", A == B)

Is A equal to B? False

[8]:

C = A + [1, 2]
print(C)

[1, 2, 3, 1, 2]

[9]:

print("Is C equal to B?", B == C)

Is C equal to B? True

[10]:

D = [1, 2, 3]*8

[11]:

E = D[12:18] #slicing
print(E)

[1, 2, 3, 1, 2, 3]

[12]:

print("Is A*2 equal to E?", A*2 == E)

Is A*2 equal to E? True

[13]:

A = [1, 2, 3, 4, 5, 6]
B = [1, 3, 5]
print("A:", A)
print("B:", B)

A: [1, 2, 3, 4, 5, 6]
B: [1, 3, 5]

[14]:

print("Is B in A?", B in A)

Is B in A? False

[15]:

print("A\'s ID:", id(A))

A's ID: 140585721605768

[16]:

A[5] = [1,3,5] #we can add elements
print(A)

[1, 2, 3, 4, 5, [1, 3, 5]]

[17]:

print("A\'s ID:", id(A))

A's ID: 140585721605768

[18]:

print("A has length:", len(A))

A has length: 6

[19]:

print("Is now B in A?", B in A)

Is now B in A? True

Note: When slicing do not exceed the list boundaries (or you will be prompted a list index out of range error).

Consider the following example:

[20]:

A = [1, 2, 3, 4, 5, 6]
print("A has length:", len(A))

A has length: 6

[21]:

print("First element:", A[0])

First element: 1

print("7th-element: ", A[6])

IndexError Traceback (most recent call last)
<ipython-input-67-98687c36d491> in <module>
----> 1 print("7th-element: ", A[6])

IndexError: list index out of range

Example: Consider the matrix \(M = \begin{bmatrix}1 & 2 & 3\\ 1 & 2 & 1\\ 1 & 1 & 3\end{bmatrix}\) and the vector \(v=[10, 5, 10]^T\). What is the matrix-vector product \(M*v\)?

\[\begin{split}\begin{bmatrix}1 & 2 & 3\\ 1 & 2 & 1\\ 1 & 1 & 3\end{bmatrix}*[10,5,10]^T = [50, 30, 45]^T\end{split}\]

[22]:

M = [[1, 2, 3], [1, 2, 1], [1, 1, 3]]
v = [10, 5, 10]
prod = [0, 0 ,0] #at the beginning the product is the null vector

prod[0]=M[0][0]*v[0] + M[0][1]*v[1] + M[0][2]*v[2]
prod[1]=M[1][0]*v[0] + M[1][1]*v[1] + M[1][2]*v[2]
prod[2]=M[2][0]*v[0] + M[2][1]*v[1] + M[2][2]*v[2]

print("M: ", M)

M: [[1, 2, 3], [1, 2, 1], [1, 1, 3]]

[23]:

print("v: ", v)

v: [10, 5, 10]

[24]:

print("M*v: ", prod)

M*v: [50, 30, 45]

Methods of the class list

The class list has some methods to operate on it. Recall from the lecture the following methods:

[image: list methods 34h342398]

Note: Lists are mutable objects and therefore virtually all the previous methods (except count) do not have an output value, but they modify the list.

Some usage examples follow:

[25]:

#A numeric list
A = [1, 2, 3]
print(A)

[1, 2, 3]

[26]:

print("A has id:", id(A))

A has id: 140585712305608

[27]:

A.append(72) # appends one and only one object.
 # NOTE: does not return anything !!!!

[28]:

print(A)

[1, 2, 3, 72]

[29]:

print("A has id:", id(A))

A has id: 140585712305608

[30]:

A.extend([1, 5, 124, 99]) # adds all these objects, one after the other.
 # NOTE: does not return anything !!!

[31]:

print(A)

[1, 2, 3, 72, 1, 5, 124, 99]

[32]:

print("A has id:", id(A)) # same id as before

A has id: 140585712305608

[33]:

D = [9,6,4]

A = A + D # beware: + between lists generates an entirely *new* list !!!!
print(A)

[1, 2, 3, 72, 1, 5, 124, 99, 9, 6, 4]

[34]:

print("A has now id:", id(A)) # id is different from before !!!

A has now id: 140585822899400

[35]:

A.reverse() # Does not return anything !!!

[36]:

print(A)

[4, 6, 9, 99, 124, 5, 1, 72, 3, 2, 1]

[37]:

A.sort()
print(A)

[1, 1, 2, 3, 4, 5, 6, 9, 72, 99, 124]

[38]:

print("Min value: ", A[0]) # In this simple case, could have used min(A)

Min value: 1

[39]:

print("Max value: ", A[-1]) #In this simple case, could have used max(A)

Max value: 124

[40]:

print("Number 1 appears:", A.count(1), " times")

Number 1 appears: 2 times

[41]:

print("While number 837: ", A.count(837))

While number 837: 0

Exercise: growing list 1

Given a list la of fixed size 7, write some code to grow an empty list lb so that it contains only the elements from la at even indeces (0, 2, 4, …).

	Your code should work for any list la of fixed size 7.

0 1 2 3 4 5 6 indeces
la=[8,4,3,5,7,3,5]
lb=[]

After your code, you should get:

>>> print(lb)
[8,3,7,5]

[42]:

0 1 2 3 4 5 6 indeces
la=[8,4,3,5,7,3,5]
lb=[]

write here
lb.append(la[0])
lb.append(la[2])
lb.append(la[4])
lb.append(la[6])
print(lb)

[8, 3, 7, 5]

Exercise: growing list 2

Given two lists la and lb, write some code that MODIFIES la such that la contains at the end also all elements of lb.

	NOTE 1: your code should work with any la and lb

	NOTE 2: If you try to print id(la) before modifying la and id(la) afterwords, you should get exactly the same id. If you get a different one, it means you generated an entirely new list. In any case, check how it works in python tutor.

la = [5,9,2,4]
lb = [9,1,2]

You should obtain:

>>> print(la)
[5,9,2,4,9,1,2]
>>> print(lb)
[9,1,2]

[43]:

la = [5,9,2,4]
lb = [9,1,2]

write here
la.extend(lb)
print(la)
print(lb)

[5, 9, 2, 4, 9, 1, 2]
[9, 1, 2]

List of strings

Let’s now try a list with strings, we will try to obtain a a reverse lexicographic order:

[44]:

#A string list
fruits = ["apple", "banana", "pineapple", "cherry","pear", "almond", "orange"]

print(fruits)

['apple', 'banana', 'pineapple', 'cherry', 'pear', 'almond', 'orange']

[45]:

fruits.sort() # does not return anything. Modifies list!

[46]:

print(fruits)

['almond', 'apple', 'banana', 'cherry', 'orange', 'pear', 'pineapple']

[47]:

fruits.reverse()
print(fruits)

['pineapple', 'pear', 'orange', 'cherry', 'banana', 'apple', 'almond']

[48]:

fruits.remove("banana") # NOTE: does not return anything !!!

[49]:

print(fruits)

['pineapple', 'pear', 'orange', 'cherry', 'apple', 'almond']

[50]:

fruits.insert(5, "wild apple") # put wild apple after apple.
 # NOTE: does not return anything !!!

[51]:

print(fruits)

['pineapple', 'pear', 'orange', 'cherry', 'apple', 'wild apple', 'almond']

Let’s finally obtain the sorted fruits:

[52]:

fruits.sort() # does not return anything. Modifies list!

[53]:

print(fruits)

['almond', 'apple', 'cherry', 'orange', 'pear', 'pineapple', 'wild apple']

Some things to remember

	append and extend work quite differently:

[54]:

A = [1, 2, 3]

A.extend([4, 5])

[55]:

print(A)

[1, 2, 3, 4, 5]

[56]:

B = [1, 2, 3]
B.append([4,5]) # NOTE: append does not return anything !

[57]:

print(B)

[1, 2, 3, [4, 5]]

	To remove an object it must exist:

[58]:

A = [1,2,3, [[4],[5,6]], 8]
print(A)

[1, 2, 3, [[4], [5, 6]], 8]

[59]:

A.remove(2) # NOTE: remove does not return anything !!

[60]:

print(A)

[1, 3, [[4], [5, 6]], 8]

[61]:

A.remove([[4],[5,6]]) # NOTE: remove does not return anything !!

[62]:

print(A)

[1, 3, 8]

A.remove(7) # 7 is not present in list, python will complain during execution
 # NOTE: remove does not return anything !!

A.remove(7) # 7 is not present in list, python will complain during execution
 # NOTE: remove does not return anything !!

ValueError Traceback (most recent call last)
<ipython-input-61-6cfd75f76650> in <module>
----> 1 A.remove(7) # 7 is not present in list, python will complain during execution
 2 # NOTE: remove does not return anything !!

ValueError: list.remove(x): x not in list

	To sort a list, its elements must be sortable (i.e. homogeneous)!

[63]:

A = [4,3, 1,7, 2]
print(A)

[4, 3, 1, 7, 2]

[64]:

A.sort() # NOTE: sort does not return anything !!

[65]:

print(A)

[1, 2, 3, 4, 7]

[66]:

A.append("banana") # NOTE: append does not return anything !!

[67]:

print(A)

[1, 2, 3, 4, 7, 'banana']

A.sort() # Python will complain, list contains uncomparable elements
 # like ints and strings
 # NOTE: sort does not return anything !!

TypeError Traceback (most recent call last)
<ipython-input-75-acf26fcfe0bf> in <module>
----> 1 A.sort() # Python will complain, list contains uncomparable elements like ints and strings
 2 # NOTE: sort does not return anything !!

TypeError: '<' not supported between instances of 'str' and 'int'

Lists hold references

Important to remember:

Lists are mutable objects and this has some consequences! Since lists are mutable objects, they hold references to objects rather than objects.

Take a look at the following examples:

[68]:

l1 = [1, 2]
print("l1:", l1)

l1: [1, 2]

[69]:

l2 = [4, 3]
print("l2:",l2)

l2: [4, 3]

[70]:

LL = [l1, l2]
print("LL:", LL)

LL: [[1, 2], [4, 3]]

[71]:

l1.append(7) # NOTE: does not return anything !!
print("\nAppending 7 to l1...")
print("l1:", l1)
print("LL now: ", LL)

Appending 7 to l1...
l1: [1, 2, 7]
LL now: [[1, 2, 7], [4, 3]]

[72]:

LL[0][1] = -1
print("\nSetting LL[0][1]=-1...")
print("LL now:" , LL)
print("l1 now", l1)

Setting LL[0][1]=-1...
LL now: [[1, -1, 7], [4, 3]]
l1 now [1, -1, 7]

[73]:

but the list can point also to a different object,
without affecting the original list.
LL[0] = 100
print("\nSetting LL[0] = 100")
print("LL now:", LL)
print("l1 now", l1)

Setting LL[0] = 100
LL now: [100, [4, 3]]
l1 now [1, -1, 7]

Making copies

[74]:

A = ["hi", "there"]
print("A:", A)

A: ['hi', 'there']

[75]:

B = A
print("B:", B)

B: ['hi', 'there']

[76]:

A.extend(["from", "python"]) # NOTE: extend does not return anything !

[77]:

print("A now: ", A)
print("B now: ", B)

A now: ['hi', 'there', 'from', 'python']
B now: ['hi', 'there', 'from', 'python']

Copy example

Let’s make a distinct copy of A

[78]:

C = A[:] # all the elements of A have been copied in C
print("C:", C)

C: ['hi', 'there', 'from', 'python']

[79]:

A[3] = "java"
print("A now:", A)
print("C now:", C)

A now: ['hi', 'there', 'from', 'java']
C now: ['hi', 'there', 'from', 'python']

Be careful though:

[80]:

D = [A, A]
print("D:", D)

D: [['hi', 'there', 'from', 'java'], ['hi', 'there', 'from', 'java']]

[81]:

E = D[:]
print("E:", E)

E: [['hi', 'there', 'from', 'java'], ['hi', 'there', 'from', 'java']]

[82]:

D[0][0] = "hello"
print("\nD now:", D)
print("E now:", E)
print("A now:", A)

D now: [['hello', 'there', 'from', 'java'], ['hello', 'there', 'from', 'java']]
E now: [['hello', 'there', 'from', 'java'], ['hello', 'there', 'from', 'java']]
A now: ['hello', 'there', 'from', 'java']

Equality and identity

[83]:

A = [1, 2, 3]
B = A
C = [1, 2, 3]

[84]:

print("Is A equal to B?", A == B)

Is A equal to B? True

[85]:

print("Is A actually B?", A is B)

Is A actually B? True

[86]:

print("Is A equal to C?", A == C)

Is A equal to C? True

[87]:

print("Is A actually C?", A is C)

Is A actually C? False

In fact:

[88]:

print("\nA's id:", id(A))
print("B's id:", id(B))
print("C's id:", id(C))

A's id: 140585712271432
B's id: 140585712271432
C's id: 140585711965896

[89]:

#just to confirm that:
A.append(4) # NOTE: append does not return anything !

[90]:

B.append(5) # NOTE: append does not return anything !

[91]:

print("\nA now: ", A)
print("B now: ", A)

A now: [1, 2, 3, 4, 5]
B now: [1, 2, 3, 4, 5]

From strings to lists, the split method

Strings have a method split that can literally split the string at specific characters.

Example Suppose we have a protein encoded as a multiline-string. How can we split it into several lines?

[92]:

chain_a = """SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT"""

lines = chain_a.split('\n')
print("Original sequence:")
print(chain_a, "\n") #some spacing to keep things clear
print("line by line:")
print("1st line:" ,lines[0])
print("2nd line:" ,lines[1])
print("3rd line:" ,lines[2])
print("4th line:" ,lines[3])
print("5th line:" ,lines[4])
print("6th line:" ,lines[5])

print("\nSplit the 1st line in correspondence to FRL:\n",lines[0].split("FRL"))

Original sequence:
SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT

line by line:
1st line: SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
2nd line: FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
3rd line: RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
4th line: HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
5th line: IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
6th line: EPHHELPPGSTKRALPNNT

Split the 1st line in correspondence to FRL:
 ['SSSVPSQKTYQGSYG', 'GFLHSGTAKSVTCTYSPALNKM']

Note that in the last instruction, the substring FRL is disappeared (as happened to the newline).

And back to strings with the join method

Given a list, one can join the elements of the list together into a string by using the join method of the class string. The syntax is the following: str.join(list) which joins together all the elements in the list in a string separating them with the string str.

Example Given the list ['Oct', '5', '2018', '15:30'], let’s combine all its elements in a string joining the elements with a dash (“-“) and print them. Let’s finally join them with a tab ("\t") and print them.

[93]:

vals = ['Oct', '5th', '2018', '15:30']
print(vals)
myStr = "-".join(vals)
print("\n" + myStr)
myStr = "\t".join(vals)
print("\n" + myStr)

['Oct', '5th', '2018', '15:30']

Oct-5th-2018-15:30

Oct 5th 2018 15:30

Exercise: manylines

Given the following text string:

"""this is a text
string on
several lines that does not say anything."""

	print it

	print how many lines, words and characters it contains.

	sort the words alphabetically and print the first and the last in lexicographic order.

You should obtain:

this is a text
string on
several lines that does not say anything.

Lines: 3 words: 13 chars: 66

['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '\n', 's', 't', 'r', 'i', 'n', 'g', ' ', 'o', 'n', '\n', 's', 'e', 'v', 'e', 'r', 'a', 'l', ' ', 'l', 'i', 'n', 'e', 's', ' ', 't', 'h', 'a', 't', ' ', 'd', 'o', 'e', 's', ' ', 'n', 'o', 't', ' ', 's', 'a', 'y', ' ', 'a', 'n', 'y', 't', 'h', 'i', 'n', 'g', '.']
66

First word: a
Last word: this
['a', 'anything.', 'does', 'is', 'lines', 'not', 'on', 'say', 'several', 'string', 'text', 'that', 'this']

[94]:

s = """this is a text
string on
several lines that does not say anything."""

write here

1) print it
print(s)
print("")

2) print the lines, words and characters
lines = s.split('\n')

NOTE: words are split by a space or a newline!

words = lines[0].split(' ') + lines[1].split(' ') + lines[2].split(' ')
num_chars = len(s)
print("Lines:", len(lines), "words:", len(words), "chars:", num_chars)

alternative way for number of characters:
print("")
characters = list(s)
num_chars2 = len(characters)
print(characters)
print(num_chars2)

3. sort the words alphabetically and print the first and the last in lexicographic order.
words.sort() # NOTE: it does not return ANYTHING!!!
print("")
print("First word: ", words[0])
print("Last word:", words[-1])
print(words)

this is a text
string on
several lines that does not say anything.

Lines: 3 words: 13 chars: 66

['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '\n', 's', 't', 'r', 'i', 'n', 'g', ' ', 'o', 'n', '\n', 's', 'e', 'v', 'e', 'r', 'a', 'l', ' ', 'l', 'i', 'n', 'e', 's', ' ', 't', 'h', 'a', 't', ' ', 'd', 'o', 'e', 's', ' ', 'n', 'o', 't', ' ', 's', 'a', 'y', ' ', 'a', 'n', 'y', 't', 'h', 'i', 'n', 'g', '.']
66

First word: a
Last word: this
['a', 'anything.', 'does', 'is', 'lines', 'not', 'on', 'say', 'several', 'string', 'text', 'that', 'this']

Exercise: welldone

Given the list

L = ["walnut", "eggplant", "lemon", "lime", "date", "onion", "nectarine", "endive"]:

	Create another list (called newList) containing the first letter of each element of L (e.g newList =["w", "e", ...]).

	Add a space to newList at position 4 and append an exclamation mark (!) at the end.

	Print the list.

	Print the content of the list joining all the elements with an empty space (i.e. use the method join: "".join(newList))

You should obtain:

['w', 'e', 'l', 'l', ' ', 'd', 'o', 'n', 'e', '!']

 well done!

[95]:

L = ["walnut", "eggplant", "lemon", "lime", "date", "onion", "nectarine", "endive"]

write here

newList = []
newList.append(L[0][0])
newList.append(L[1][0])
newList.append(L[2][0])
newList.append(L[3][0])
newList.append(L[4][0])
newList.append(L[5][0])
newList.append(L[6][0])
newList.append(L[7][0])

newList.insert(4," ")
newList.append("!")

print(newList)
print("\n", "".join(newList))

['w', 'e', 'l', 'l', ' ', 'd', 'o', 'n', 'e', '!']

 well done!

Exercise: numlist

Given the list lst = [10, 60, 72, 118, 11, 71, 56, 89, 120, 175]

	find the min, max and median value (hint: sort it and extract the right values).

	Create a list with only the elements at even indexes (i.e. [10, 72, 11, ..], note that the “..” means that the list is not complete!) and re-compute min, max and median values.

	re-do the same for the elements located at odd indexes (i.e. [60, 118,..]).

You should obtain:

lst: [10, 60, 72, 118, 11, 71, 56, 89, 120, 175]
even: [10, 72, 11, 56, 120]
odd: [60, 118, 71, 89, 175]
sorted: [10, 11, 56, 60, 71, 72, 89, 118, 120, 175]
sorted even: [10, 11, 56, 72, 120]
sorted odd: [60, 71, 89, 118, 175]
lst : Min: 10 Max. 175 Median: 72
even: Min: 10 Max. 120 Median: 56
odd: Min: 60 Max. 175 Median: 89

[2]:

lst = [10, 60, 72, 118, 11, 71, 56, 89, 120, 175]

write here

even = L[0::2] #get only even-indexed elements
odd = L[1::2] #get only odd-indexed elements

print("lst:" , lst)
print("Leven:", even)
print("Lodd:", odd)
lst.sort()
even.sort()
odd.sort()

print("sorted: " , lst)
print("sorted even: " , even)
print("sorted odd: " , odd)

print("lst: Min: ", lst[0], " Max." , lst[-1], " Median: ", lst[len(lst) // 2])
print("even: Min: ", even[0], " Max." , even[-1], " Median: ", even[len(even) // 2])
print("odd: Min: ", odd[0], " Max." , odd[-1], " Median: ", odd[len(odd) // 2])

lst: [10, 60, 72, 118, 11, 71, 56, 89, 120, 175]
Leven: [10, 56, 71, 89, 120]
Lodd: [11, 60, 72, 118, 175]
sorted: [10, 11, 56, 60, 71, 72, 89, 118, 120, 175]
sorted even: [10, 56, 71, 89, 120]
sorted odd: [11, 60, 72, 118, 175]
lst: Min: 10 Max. 175 Median: 72
even: Min: 10 Max. 120 Median: 71
odd: Min: 11 Max. 175 Median: 72

List comprehension

List comprehension is a quick way of creating a list. The resulting list is normally obtained by applying a function or a method to the elements of another list that remains unchanged.

The basic syntax is:

new_list = [some_function (x) for x in start_list]

or

new_list = [x.some_method() for x in start_list]

List comprehension can also be used to filter elements of a list and produce another list as sublist of the first one (remember that the original list is not changed).

In this case the syntax is:

new_list = [some_function (x) for x in start_list if condition]

or

new_list = [x.some_method() for x in start_list if condition]

where the element x in start_list becomes part of new_list if and only if the condition holds True.

Let’s see some examples:

Example: Given a list of strings [“hi”, “there”, “from”, “python”] create a list with the length of the corresponding element (i.e. the one with the same index).

[97]:

elems = ["hi", "there", "from", "python"]

newList = [len(x) for x in elems]

for i in range(0,len(elems)):
 print(elems[i], " has length ", newList[i])

hi has length 2
there has length 5
from has length 4
python has length 6

Example: Given a list of strings [“dog”, “cat”, “rabbit”, “guinea pig”, “hamster”, “canary”, “goldfish”] create a list with the elements starting with a “c” or “g”.

[98]:

pets = ["dog", "cat", "rabbit", "guinea pig", "hamster", "canary", "goldfish"]

cg_pets = [x for x in pets if x.startswith("c") or x.startswith("g")]

print("Original:")
print(pets)
print("Filtered:")
print(cg_pets)

Original:
['dog', 'cat', 'rabbit', 'guinea pig', 'hamster', 'canary', 'goldfish']
Filtered:
['cat', 'guinea pig', 'canary', 'goldfish']

Example: Create a list with all the numbers divisible by 17 from 1 to 200.

[99]:

values = [x for x in range(1,200) if x % 17 == 0]
print(values)

[17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187]

Example: Transpose the matrix \(\begin{bmatrix}1 & 10\\2 & 20\\3 & 30\\4 & 40\end{bmatrix}\) stored as a list of lists (i.e. matrix = [[1, 10], [2,20], [3,30], [4,40]]). The output matrix should be: \(\begin{bmatrix}1 & 2 & 3 & 4\\10 & 20 & 30 & 40\end{bmatrix}\), represented as [[1, 2, 3, 4], [10, 20, 30, 40]]

[100]:

matrix = [[1, 10], [2,20], [3,30], [4,40]]
print(matrix)
transpose = [[row[i] for row in matrix] for i in range(2)]
print (transpose)

[[1, 10], [2, 20], [3, 30], [4, 40]]
[[1, 2, 3, 4], [10, 20, 30, 40]]

Example: Given the list:

["Hotel", "Icon"," Bus","Train", "Hotel", "Eye", "Rain", "Elephant"]

create a list with all the first letters.

[101]:

myList = ["Hotel", "Icon"," Bus","Train", "Hotel", "Eye", "Rain", "Elephant"]
initials = [x[0] for x in myList]

print(myList)
print(initials)
print("".join(initials))

['Hotel', 'Icon', ' Bus', 'Train', 'Hotel', 'Eye', 'Rain', 'Elephant']
['H', 'I', ' ', 'T', 'H', 'E', 'R', 'E']
HI THERE

Exercises with functions

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

printwords

✪ Write a function printwords that PRINTS all the words in a phrase

>>> printwords("ciao come stai?")

ciao
come
stai?

[102]:

write here

phrase = "ciao come stai?"

def printwords(f):

 my_list = f.split() # DO *NOT* create a variable called 'list' !!!!
 for word in my_list:
 print(word)

printwords(phrase)

ciao
come
stai?

printeven

✪ Write a function printeven(numbers) that PRINTS all even numbers in a list of numbers xs

>>> printeven([1,2,3,4,5,6])

2
4
6

[103]:

write here

def printeven(xs):

 for x in xs:
 if x % 2 == 0:
 print(x)

numbers = [1,2,3,4,5,6]
printeven(numbers)

2
4
6

find26

✪ Write a function that RETURN True if the number 26 is contained in a list of numbers

>>> find26([1,26,143,431,53,6])
True

[104]:

write here

def find26(xs):
 return (26 in xs)

numbers = [1,26,143,431,53,6]
find26(numbers)

[104]:

True

firstsec

✪ Write a function firstsec(s) that PRINTS the first and second word of a phrase.

	to find a list of words, you can use .split() method

>>> firstsec("ciao come stai?")

ciao come

[105]:

write here

def firstsec(s):

 my_list = phrase.split() # DO *NOT* create a variable called 'list' !!!!
 print(my_list[0], my_list[1])

phrase = "ciao come stai?"
firstsec(phrase)

ciao come

threeven

✪ Write a function that PRINTS "yes" if first three elements of a list are even numbers. Otherwise, the function must PRINT "no". In case the list contains less than three elements, PRINT "not good"

>>> threeven([6,4,8,4,5])
yes
>>> threeven([2,5,6,3,4,5])
no
>>> threeven([4])
not good

[106]:

write here

def threeven(xs):
 if len(xs) >= 3:
 if xs[0] % 2 == 0 and xs[1] % 2 == 0 and xs[2] % 2 == 0:
 print("yes")
 else:
 print("no")
 else:
 print("not good")

threeven([6,4,8,4,5])
threeven([2,5,6,3,4,5])
threeven([4])

yes
no
not good

separate_ip

✪ An IP address is a string with four sequences of numbers (of max length 3), separated by a dot .. For example, 192.168.19.34 and 255.31.1.0 are IP addresses.

Write a function that given an IP address as input, PRINTS the numbers inside the IP address

	NOTE: do NOT use .replace method !

>>> separate_ip("192.168.0.1")

192
168
0
1

[107]:

write here

def separate_ip(s):
 separated = s.split(".")
 for element in separated:
 print(element)

separate_ip("192.168.0.1")

192
168
0
1

average

✪ Given a list of integer numbers, write a function average(xs) that RETURNS the arithmetic average of the numbers it contains. If the given list is empty, RETURN zero.

>>> x = average([3,4,2,3]) # (10/4 => 2.5)
>>> x
2.5
>>> y = average([])
>>> y
0
>>> z = average([30, 28 , 20, 29])
>>> z
26.75

[108]:

write here

def average(xs):

 if len(xs) == 0:
 return 0
 else:
 total = 0
 for x in xs:
 total = total + x

 return(total / len(xs))

av = average([])
print(av)
average([30,28,20,29])

0

[108]:

26.75

Verify comprehension

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

	Tests with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Testing-with-asserts]: Following exercises contain automated tests to help you spot errors. To understand how to do them, read before Error handling and testing [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

We will discuss differences between modifying a list and returning a new one, and look into basic operations like transform, filter, mapping.

Mapping

Generally speaking, mapping (or transform) operations take something in input and gives back the same type of thing with elements somehow changed.

In these cases, pay attention if it is required to give back a NEW list or MODIFY the existing list.

newdoublefor

Difficulty: ✪

[109]:

def newdoublefor(lst):
 """ Takes a list of integers in input and RETURN a NEW one with all
 the numbers of lst doubled. Implement it with a for.

 Example:

 newdouble([3,7,1])

 returns:

 [6,14,2]
 """
 #jupman-raise
 ret = []
 for x in lst:
 ret.append(x*2)
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert newdoublefor([]) == []
assert newdoublefor([3]) == [6]
assert newdoublefor([3,7,1]) == [6,14,2]

l = [3,7,1]
assert newdoublefor(l) == [6,14,2]
assert l == [3,7,1]
TEST END

double

Difficulty: ✪✪

[110]:

def double(lst):
 """ Takes a list of integers in input and MODIFIES it by doubling all the numbers
 """

 #jupman-raise
 for i in range(len(lst)):
 lst[i] = lst[i] * 2
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
l = []
double(l)
assert l == []

l = [3]
double(l)
assert l == [6]

l = [3,7,1]
double(l)
assert l == [6,14,2]
TEST END

newdoublecomp

Difficulty: ✪

[111]:

def newdoublecomp(lst):
 """ Takes a list of integers in input and RETURN a NEW one with all
 the numbers of lst doubled. Implement it as a list comprehnsion

 Example:

 newdouble([3,7,1])

 returns:

 [6,14,2]
 """
 #jupman-raise
 return [x*2 for x in lst]
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert newdoublecomp([]) == []
assert newdoublecomp([3]) == [6]
assert newdoublecomp([3,7,1]) == [6,14,2]

l = [3,7,1]
assert newdoublecomp(l) == [6,14,2]
assert l == [3,7,1]
TEST END

up

Difficulty: ✪

[112]:

def up(lst):
 """ Takes a list of strings and RETURN a NEW list having all the strings in lst in capital
 (use .upper() method and a list comprehension)
 """
 #jupman-raise
 return [x.upper() for x in lst]
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert up([]) == []
assert up(['']) == ['']
assert up(['a']) == ['A']
assert up(['aA']) == ['AA']
assert up(['Ba']) == ['BA']
assert up(['Ba', 'aC']) == ['BA','AC']
assert up(['Ba dA']) == ['BA DA']

l = ['ciAo']
assert up(l) == ['CIAO']
assert l == ['ciAo']
TEST END

Filter

Generally speaking, filter operations take something in input and give back the same type of thing with elements somehow filtered out.

In these cases, pay attention if it is required to give back a NEW list or MODIFY the existing list.

remall

Difficulty: ✪✪

[113]:

def remall(list1, list2):
 """ RETURN a NEW list which has the elements from list2 except the elements in list1
 """
 #jupman-raise
 list3 = list2[:]
 for x in list1:
 if x in list3:
 list3.remove(x)

 return list3
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert remall([],[]) == []
assert remall(['a'], []) == []
assert remall([], ['a']) == ['a']
assert remall(['a'], ['a']) == []
assert remall(['b'], ['a']) == ['a']
assert remall(['a', 'b'], ['a','c','b']) == ['c']

assert remall(['a','d'], ['a','c','d','b']) == ['c', 'b']
TEST END

only_capital_for

Difficulty: ✪

[114]:

def only_capital_for(lst):
 """ Takes a list of strings lst and RETURN a NEW list which only contains the strings
 of lst which are all in capital letters (so keeps 'AB' but not 'aB')

 Implement it with a for
 """
 #jupman-raise
 ret = []
 for el in lst:
 if el.isupper():
 ret.append(el)
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert only_capital_for(["CD"]) == ["CD"]
assert only_capital_for(["ab"]) == []
assert only_capital_for(["dE"]) == []
assert only_capital_for(["De"]) == []
assert only_capital_for(["ab","DE"]) == ["DE"]
assert only_capital_for(["ab", "CD", "Hb", "EF"]) == ["CD", "EF"]
TEST END

only_capital_comp

Difficulty: ✪

[115]:

def only_capital_comp(lst):
 """ Takes a list of strings lst and RETURN a NEW list which only contains the strings
 of lst which are all in capital letters (so keeps 'AB' but not 'aB')

 Implement it with a list comprehension
 """
 #jupman-raise
 return [el for el in lst if el.isupper()]
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert only_capital_comp(["CD"]) == ["CD"]
assert only_capital_comp(["ab"]) == []
assert only_capital_comp(["dE"]) == []
assert only_capital_comp(["De"]) == []
assert only_capital_comp(["ab","DE"]) == ["DE"]
assert only_capital_comp(["ab", "CD", "Hb", "EF"]) == ["CD", "EF"]
END

Reduce

Generally speaking, reduce operations involve operating on sets of elements and giving back an often smaller result.

In these cases, we operate on lists. Pay attention if it is required to give back a NEW list or MODIFY the existing list.

sum_all

Difficulty: ✪

[116]:

def sum_all(lst):
 """ RETURN the sum of all elements in lst

 Implement it as you like.
 """
 #jupman-raise
 return sum(lst)
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert sum_all([]) == 0
assert sum_all([7,5]) == 12
assert sum_all([9,5,8]) == 22

TEST END

sum_all_even_for

Difficulty: ✪

[117]:

def sum_all_even_for(lst):
 """ RETURN the sum of all even elements in lst

 Implement it with a for
 """
 #jupman-raise
 ret = 0
 for el in lst:
 if el % 2 == 0:
 ret += el
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert sum_all_even_for([]) == 0
assert sum_all_even_for([9]) == 0
assert sum_all_even_for([4]) == 4
assert sum_all_even_for([7,2,5,8]) == 10
END

sum_all_even_comp

Difficulty: ✪

[118]:

def sum_all_even_comp(lst):
 """ RETURN the sum of all even elements in lst

 Implement it in one line as an operation on a list comprehension
 """
 #jupman-raise
 return sum([el for el in lst if el % 2 == 0])
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert sum_all_even_comp([]) == 0
assert sum_all_even_comp([9]) == 0
assert sum_all_even_comp([4]) == 4
assert sum_all_even_comp([7,2,5,8]) == 10
END

Other exercises

contains

✪ RETURN True if elem is present in list, otherwise RETURN False

[119]:

def contains(xs, x):
 #jupman-raise
 return x in xs
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert contains([],'a') == False
assert contains(['a'],'a') == True
assert contains(['a','b','c'],'b') == True
assert contains(['a','b','c'],'z') == False
END TEST

firstn

✪ RETURN a list with the first numbers from 0 included to n excluded

	For example, firstn(3) must RETURN [0,1,2]

	if n < 0, RETURN an empty list

Ingredients:

	variable list to return

	variable counter

	cycle while (there also other ways)

	return

[120]:

def firstn(n):
 #jupman-raise
 ret = []
 counter = 0
 while counter < n:
 ret.append(counter)
 counter += 1
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert firstn(-1) == []
assert firstn(-2) == []
assert firstn(0) == []
assert firstn(1) == [0]
assert firstn(2) == [0,1]
assert firstn(3) == [0,1,2]
TEST END

firstlast

✪ RETURN True if the first element of a list is equal to the last one, otherwise RETURN False

NOTE: you can assume the list always contains at least one element.

[121]:

def firstlast(xs):
 #jupman-raise
 return xs[0] == xs[-1]

 # note: the comparation xs[0] == xs[-1] is an EXPRESSION which generates a boolean,
 # in this case True if the first character is equal to the last one and False otherwise
 # so we can directly return the result of the expression

 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert firstlast(['a']) == True
assert firstlast(['a','a']) == True
assert firstlast(['a','b']) == False
assert firstlast(['a','b','a']) == True
assert firstlast(['a','b','c','a']) == True
assert firstlast(['a','b','c','d']) == False
TEST END

dup

✪ RETURN a NEW list, in which each list element in input is duplicated. For example,

dup(['ciao','mondo','python'])

must RETURN

['ciao','ciao','mondo','mondo','python','python']

Ingredients: - variable for a new list - for cycle - return

[122]:

def dup(xs):
 #jupman-raise

 ret = []
 for x in xs:
 ret.append(x)
 ret.append(x)
 return ret

 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert dup([]) == []
assert dup(['a']) == ['a','a']
assert dup(['a','b']) == ['a','a','b','b']
assert dup(['a','b','c']) == ['a','a','b','b','c','c']
assert dup(['a','a']) == ['a','a','a','a']
assert dup(['a','a','b','b']) == ['a','a','a','a','b','b','b','b']
TEST END

hasdup

✪✪ RETURN True if xs contains element x more than once, otherwise RETURN False.

[123]:

def hasdup(x, xs):
 #jupman-raise

 counter = 0

 for y in xs:
 if y == x:
 counter += 1
 if counter > 1:
 return True
 return False
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert hasdup("a", []) == False
assert hasdup("a", ["a"]) == False
assert hasdup("a", ["a", "a"]) == True
assert hasdup("a", ["a", "a", "a"]) == True
assert hasdup("a", ["b", "a", "a"]) == True
assert hasdup("a", ["b", "a", "a", "a"]) == True
assert hasdup("b", ["b", "a", "a", "a"]) == False
assert hasdup("b", ["b", "a", "b", "a"]) == True
TEST END

ord3

✪✪ RETURN True if provided list has first elements increasingly ordered, False otherwise

	if xs has less than three elements, RETURN False

[124]:

def ord3(xs):
 #jupman-raise
 if len(xs) >= 3:
 return xs[0] <= xs[1] and xs[1] <= xs[2]
 else:
 return False
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert ord3([5]) == False
assert ord3([4,7]) == False
assert ord3([4,6,9]) == True
assert ord3([4,9,7]) == False
assert ord3([9,5,7]) == False
assert ord3([4,8,9,1,5]) == True # first 3 elements increasing
assert ord3([9,4,8,10,13]) == False # first 3 elements NOT increasing
TEST END

filterab

✪✪ Takes as input a list of characters, and RETURN a NEW list containing only the characters 'a' and 'b' found in the input list.

Example:

filterab(['c','a','c','d','b','a','c','a','b','e'])

must return

['a','b','a','a','b']

[125]:

def filterab(xs):
 #jupman-raise
 ret = []
 for x in xs:
 if x == 'a' or x == 'b':
 ret.append(x)
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert filterab([]) == []
assert filterab(['a']) == ['a']
assert filterab(['b']) == ['b']
assert filterab(['a','b']) == ['a','b']
assert filterab(['a','b','c']) == ['a','b']
assert filterab(['a','c','b']) == ['a','b']
assert filterab(['c','a','b']) == ['a','b']
assert filterab(['c','a','c','d','b','a','c','a','b','e']) == ['a','b','a','a','b']

l = ['a','c','b']
assert filterab(l) == ['a','b'] # verify a NEW list is returned
assert l == ['a','c','b'] # verify original list was NOT modified

TEST END

hill

✪✪ RETURN a list having as with first elements the numbers from one to n increasing, and after n the decrease until 1 included. NOTE: n is contained only once.

Example:

hill(4)

must return

[1,2,3,4,3,2,1]

Ingredients: - variable for the list to return - two for cycles one after the other and range functions or two while one after the other

[126]:

def hill(n):

 #jupman-raise
 ret = []
 for i in range(1,n):
 ret.append(i)
 for i in range(n,0,-1):
 ret.append(i)
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert hill(0) == []
assert hill(1) == [1]
assert hill(2) == [1,2,1]
assert hill(3) == [1,2,3,2,1]
assert hill(4) == [1,2,3,4,3,2,1]
assert hill(5) == [1,2,3,4,5,4,3,2,1]
TEST END

peak

✪✪ Suppose in a list are saved the heights of a mountain road taking a measure every 3 km (we assume the road constantly goes upward). At a certain point, you will arrive at the mountain peak where you will measure the height with respect to the sea. Of course, there is also a road to go down hill (constantly downward) and here also the height will be measured every 3 km.

A measurement example is [100, 400, 800, 1220, 1600, 1400, 1000, 300, 40]

Write a function that RETURNS the value from the list which corresponds to the measurement taken at the peak

	if the list contains less than three elements, raise exception ValueError

>>> peak([100,400, 800, 1220, 1600, 1400, 1000, 300, 40])
1600

[127]:

def peak(xs):
 #jupman-raise
 if len(xs) < 3:
 raise ValueError("Empty list !")
 if len(xs) == 1:
 return xs[0]

 for i in range(len(xs)):
 if xs[i] > xs[i+1]:
 return xs[i]

 return xs[-i] # road without way down

 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
try:
 peak([]) # with this anomalous list we expect the excpetion ValueError is raised

 raise Exception("Shouldn't arrive here!")
except ValueError: # if exception is raised, it is behaving as expected and we do nothing
 pass
assert peak([5,40,7]) == 40
assert peak([5,30,4]) == 30
assert peak([5,70,70, 4]) == 70
assert peak([5,10,80,25,2]) == 80
assert peak([100,400, 800, 1220, 1600, 1400, 1000, 300, 40]) == 1600

even

✪✪ RETURN a list containing the elements at even position, starting from zero which is considered even

	you can assume the input list always contains an even number of elements

	HINT: remember that range can take three parameters

[128]:

def even(xs):
 #jupman-raise
 ret = []
 for i in range(0,len(xs),2):
 ret.append(xs[i])
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert even([]) == []
assert even(['a','b']) == ['a']
assert even(['a','b','c','d']) == ['a', 'c']
assert even(['a','b','a','c']) == ['a', 'a']
assert even(['a','b','c','d','e','f']) == ['a', 'c','e']
TEST END

mix

✪✪ RETURN a NEW list in which the elements are taken in alternation from lista and listb

	you can assume that lista and listb contain the same number of elements

Example:

mix(['a', 'b','c'], ['x', 'y','z'])

must give

['a', 'x', 'b','y', 'c','z']

[129]:

def mix(lista, listb):
 #jupman-raise
 ret = []
 for i in range(len(lista)):
 ret.append(lista[i])
 ret.append(listb[i])
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert mix([], []) == []
assert mix(['a'], ['x']) == ['a', 'x']
assert mix(['a'], ['a']) == ['a', 'a']
assert mix(['a', 'b'], ['x', 'y']) == ['a', 'x', 'b','y']
assert mix(['a', 'b','c'], ['x', 'y','z']) == ['a', 'x', 'b','y', 'c','z']
TEST END

fill

✪✪ Takes a list lst1 of n elements and a list lst2 of m elements, and MODIFIES lst2 by copying all lst1 elements in the first n positions of lst2

	If n > m, raises a ValueError

[130]:

def fill(lst1, lst2):

 #jupman-raise
 if len(lst1) > len(lst2):
 raise ValueError("List 1 is bigger than list 2 ! lst_a = %s, lst_b = %s" % (len(lst1), len(lst2)))
 j = 0
 for x in lst1:
 lst2[j] = x
 j += 1
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

try:
 fill(['a','b'], [None])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

try:
 fill(['a','b','c'], [None,None])
 raise Exception("TEST FAILED: Should have failed before with a ValueError!")
except ValueError:
 "Test passed"

L1 = []
R1 = []
fill(L1, R1)

assert L1 == []
assert R1 == []

L = []
R = ['x']
fill(L, R)

assert L == []
assert R == ['x']

L = ['a']
R = ['x']
fill(L, R)

assert L == ['a']
assert R == ['a']

L = ['a']
R = ['x','y']
fill(L, R)

assert L == ['a']
assert R == ['a','y']

L = ['a','b']
R = ['x','y']
fill(L, R)

assert L == ['a','b']
assert R == ['a','b']

L = ['a','b']
R = ['x','y','z',]
fill(L, R)

assert L == ['a','b']
assert R == ['a','b','z']

L = ['a']
R = ['x','y','z',]
fill(L, R)

assert L == ['a']
assert R == ['a','y','z']
TEST END

nostop

✪✪ When you analyze a phrase, it might be useful processing it to remove very common words, for example articles and prepositions: "a book on Python" can be simplified in "book Python"

The ‘not so useful’ words are called stopwords. For example, this process is done by search engines to reduce the complexity of input string provided ny the user.

Implement a function which takes a string and RETURN the input string without stopwords

Implementa una funzione che prende una stringa e RITORNA la stringa di input senza le stopwords

HINT 1: Python strings are immutable ! To rimove words you need to create a new string from the original string

HINT 2: create a list of words with:

words = stringa.split(" ")

HINT 3: transform the list as needed, and then build the string to return with " ".join(lista)

[131]:

def nostop(s, stopwords):
 #jupman-raise
 words = s.split(" ")
 for s in stopwords:
 if s in words:
 words.remove(s)
 return " ".join(words)
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert nostop("a", ["a"]) == ""
assert nostop("a", []) == "a"
assert nostop("", []) == ""
assert nostop("", ["a"]) == ""
assert nostop("a book", ["a"]) == "book"
assert nostop("a book on Python", ["a","on"]) == "book Python"
assert nostop("a book on Python for beginners", ["a","the","on","at","in", "of", "for"]) == "book Python beginners"
TEST END

threes

✪✪ To check if an integer is divisible for a number n, you can check the reminder of the integer division by x and n is equal to zero using the operator %:

[132]:

0 % 3

[132]:

0

[133]:

1 % 3

[133]:

1

[134]:

2 % 3

[134]:

2

[135]:

3 % 3

[135]:

0

[136]:

4 % 3

[136]:

1

[137]:

5 % 3

[137]:

2

[138]:

6 % 3

[138]:

0

Now implement the following function:

[139]:

def threes(lst):
 """ RETURN a NEW lst with the same elements of lst, except the ones at indeces which are divisible by 3.
 In such cases, the output list will contain a the string 'z'
 """
 #jupman-raise
 ret = []
 for i in range(len(lst)):
 if i % 3 == 0:
 ret.append('z')
 else:
 ret.append(lst[i])
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert threes([]) == []
assert threes(['a']) == ['z']
assert threes(['a','b']) == ['z','b']
assert threes(['a','b','c']) == ['z','b','c']
assert threes(['a','b','c','d']) == ['z','b','c','z']
assert threes(['f','c','s','g','a','w','a','b']) == ['z','c','s','z','a','w','z','b']
TEST END

list_to_int

Given a non-empty array of digits representing a non-negative integer, return a proper python integer

The digits are stored such that the most significant digit is at the head of the list, and each element in the array contain a single digit.

You may assume the integer does not contain any leading zero, except the number 0 itself.

Example:

Input: [3,7,5]
Output: 375

Input: [2,0]
Output: 20

Input: [0]
Output: 0

list_to_int_dirty

✪✪ This is the totally dirty approach, but may be fun (never do this in real life - prefer instead the next list_to_int_proper approach).

	convert the list to a string '[5,7,4]' using the function str()

	remove from the string [, '] and the commas , using the method .replace(str1, str2) which returns a NEW string with str1 replaced for str2

	convert the string to an integer using the special function int() and return it

[140]:

def list_to_int_dirty(lst):
 #jupman-raise
 s = str(lst)
 stripped = s.replace('[', '').replace(']','').replace(',','').replace(' ', '')
 n = int(stripped)
 return n
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert list_to_int_dirty([0]) == 0
assert list_to_int_dirty([1]) == 1
assert list_to_int_dirty([2]) == 2
assert list_to_int_dirty([92]) == 92
assert list_to_int_dirty([5,7,4]) == 574
TEST END

list_to_int

✪✪ The proper way is to follow rules of math. To do it, keep in mind that

\[5746 = 5*1000 + 7*100 + 4 * 10 + 6 * 1\]

For our purposes, it is better to rewrite the formula like this:

\[5746 = 6 * 1 + 4 * 10 + 7*100 + 5*1000\]

Basically, we are performing a sum \(4\) times. Each time and starting from the least significant digit, the digit in consideration is multiplied for a progressivly bigger power of 10, starting from \(10^0 = 1\) up to \(10^4=1000\).

To understand how it could work in Python, we might progressivly add stuff to a cumulator variable c like this:

c = 0

c = c + 6*1
c = c + 4*10
c = c + 7*100
c = c + 5*1000

In a more pythonic and concise way, we would write:

c = 0

c += 6*1
c += 4*10
c += 7*100
c += 5*1000

So first of all to get the 6,4,7,5 it might help to try scanning the list in reverse order using the function reversed (notice the ed at the end!)

[141]:

for x in reversed([5,7,4,6]):
 print(x)

6
4
7
5

Once we have such sequence, we need a way to get a sequence of progressively increasing powers of 10. To do so, we might use a variable power:

[142]:

power = 1

for x in reversed([5,7,4,6]):
 print (power)
 power = power * 10

1
10
100
1000

Now you should have the necessary elements to implement the required function by yourself.

PLEASE REMEMBER: if you can’t find a general solution, keep trying with constants and write down all the passages you do. Then in new cells try substituting the constants with variables and keep experimenting - it’s the best method to spot patterns !

[143]:

def list_to_int(lst):
 """ RETURN a Python integer which is represented by the provided list of digits, which always
 represent a number >= 0 and has no trailing zeroes except for special case of number 0.

 Example:

 Input: [3,7,5]
 Output: 375

 Input: [2,0]
 Output: 20

 Input: [0]
 Output: 0

 """
 #jupman-raise
 power = 1
 num = 0
 for digit in reversed(lst):
 num += power * digit
 power = power * 10
 return num
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert list_to_int([0]) == 0
assert list_to_int([1]) == 1
assert list_to_int([2]) == 2
assert list_to_int([92]) == 92
assert list_to_int([90]) == 90
assert list_to_int([5,7,4]) == 574
END

int_to_list

✪✪ Let’s now try the inverse operation, that is, going from a proper Python number like 574 to a list [5,7,4]

To do so, we must exploit integer division // and reminder operator %.

Let’s say we want to get the final digit 4 out of 574. To do so, we can notice that 4 is the reminder of integer division between 547 and 10:

[144]:

574 % 10

[144]:

4

This extracts the four, but if we want to find an algorithm for our problem, we must also find a way to progressively reduce the problem size. To do so, we can exploit the integer division operator //:

[145]:

574 // 10

[145]:

57

Now, given any integer number, you know how to

	extract last digit

	reduce the problem for the next iteration

This should be sufficient to proceed. Pay attention to special case for input 0.

[146]:

def int_to_list(num):
 """ Takes an integer number >= 0 and RETURN a list of digits representing the number in base 10.

 Example:

 Input: 375
 Output: [3,7,5]

 Input: 20
 Output: [2,0]

 Input: 0
 Output: [0]

 """
 #jupman-raise
 if num == 0:
 return [0]
 else:
 ret = []
 d = num
 while d > 0:
 digit = d % 10 # remainder of d divided by 10
 ret.append(digit)
 d = d // 10

 return list(reversed(ret))
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert int_to_list(0) == [0]
assert int_to_list(1) == [1]
assert int_to_list(2) == [2]
assert int_to_list(92) == [9,2]
assert int_to_list(90) == [9,0]
assert int_to_list(574) == [5,7,4]
TEST END

add one

Given a non-empty array of digits representing a non-negative integer, adds one to the integer.

The digits are stored such that the most significant digit is at the head of the list, and each element in the array contain a single digit.

You may assume the integer does not contain any leading zero, except the number 0 itself.

For example:

Input: [1,2,3]
Output: [1,2,4]

Input: [3,6,9,9]
Output: [3,7,0,0]

Input: [9,9,9,9]
Output: [1,0,0,0,0]

There are two ways to solve this exercise: you can convert to a proper integer, add one, and then convert back to list which you will do in add_one_conv. The other way is to directly operate on a list, using a carry variable, which you will do in add_one_carry

add_one_conv

✪✪✪ You need to do three steps:

	Convert to a proper python integer

	add one to the python integer

	convert back to a list and return it

[147]:

def add_one_conv(lst):
 """
 Takes a list of digits representing a >= 0 integer without trailing zeroes except zero itself
 and RETURN a NEW a list representing the value of lst plus one.

 Implement by calling already used implemented functions.
 """
 #jupman-raise
 power = 1
 num = list_to_int(lst)

 return int_to_list(num + 1)
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert add_one_conv([0]) == [1]
assert add_one_conv([1]) == [2]
assert add_one_conv([2]) == [3]
assert add_one_conv([9]) == [1, 0]
assert add_one_conv([5,7]) == [5, 8]
assert add_one_conv([5,9]) == [6, 0]
assert add_one_conv([9,9]) == [1, 0, 0]
TEST END

add_one_carry

✪✪✪ Given a non-empty array of digits representing a non-negative integer, adds one to the integer.

The digits are stored such that the most significant digit is at the head of the list, and each element in the array contain a single digit.

You may assume the integer does not contain any leading zero, except the number 0 itself.

For example:

Input: [1,2,3]
Output: [1,2,4]

Input: [3,6,9,9]
Output: [3,7,0,0]

Input: [9,9,9,9]
Output: [1,0,0,0,0]

To implement it, directly operate on the list, using a carry variable (riporto in italian).

Just follow addition as done in elementary school. Start from the last digit and sum one:

If you get a number <= 9, that is the result of summing last two digits, and the rest is easy:

596+ carry=0
001

 7 6 + 1 + carry = 7

596+ carry=0
001

 97 9 + 0 + carry = 9

596+ carry=0
001

 07 5 + 0 + carry = 5

If you get a number bigger than 9, then you put zero and set carry to one:

3599+ carry=0
0001

 0 9 + 1 + carry = 10 # >9, will write zero and set carry to 1

`3599+ carry=1 0001 ---- 00 9 + 0 + carry = 10 # >9, will write zero and set carry to 1

3599+ carry=1
0001

 600 5 + 0 + carry = 6 # <= 9, will write result and set carry to zero

3599+ carry=0
0001

3600 3 + 0 + carry = 3 # <= 9, will write result and set carry to zero

Credits: inspiration taken from leetcode.com [https://leetcode.com/tag/array/]

[148]:

def add_one_carry(lst):
 """
 Takes a list of digits representing a >= 0 integer without trailing zeroes except zero itself
 and RETURN a NEW a list representing the value of lst plus one.

 Implement it using the carry method explained before.
 """

 #jupman-raise
 ret = []
 carry = 1
 for digit in reversed(lst):
 new_digit = digit + carry
 if new_digit == 10:
 ret.append(0)
 carry = 1
 else:
 ret.append(new_digit)
 carry = 0
 if carry == 1:
 ret.append(carry)
 ret.reverse()
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert add_one_carry([0]) == [1]
assert add_one_carry([1]) == [2]
assert add_one_carry([2]) == [3]
assert add_one_carry([9]) == [1, 0]
assert add_one_carry([5,7]) == [5, 8]
assert add_one_carry([5,9]) == [6, 0]
assert add_one_carry([9,9]) == [1, 0, 0]
TEST END

collatz

Difficulty: ✪✪✪

More challenging, implement this function from Montresor slides (the Collatz conjecture says that starting from any n you end up to 1):

The 3n +1 sequence is defined like this: given a number n , compute a new value for n as follow: if n is even, divide n by 2 . If n is odd, multiply it by 3 and add 1 . Stop when you reach the value of 1 . Example: for n = 3 , the sequence is [3 , 10 , 5 , 16 , 8 , 4 , 2 , 1] . Write a program that creates a list D , such that for each value n between 1 and 50 , D [n] contains the length of the sequence so generated. In case of n = 3 , the length is 8 . In case of n = 27 , the length is 111 .

If you need to check your results, you can also try this nice online tool [https://www.dcode.fr/collatz-conjecture]

[149]:

def collatz():
 """ Return D"""
 raise Exception("TODO IMPLEMENT ME !")

[]:

Recursive operations

Here we deal with recursion. Before doing this, you might wait until doing Montresor class on recursion theory [http://disi.unitn.it/~montreso/sp/handouts/A06-recursion.pdf]

When we have a problem, we try to solve it by splitting its dimension in half (or more), look for solutions in each of the halves and then decide what to do with the found solutions, if any.

Several cases may occur:

	No solution is found

	One solution is found

	Two solutions are found

case 1): we can only give up.

case 2): we have only one solution, so we can just return that one.

case 3): we have two solutions, so we need to decide what is the purpose of the algorithm.

Is the purpose to …

	find all possible solutions? Then we return both of them.

	find the best solution, according to some measure of ‘goodness’? Then we measure each of the solutions and give back the highest scoring one.

	always provide a combination of existing solutions, according to some combination method? Then we combine the found solutions and give them back

gap_rec

✪✪ In a list \(L\) containing \(n≥2\) integers, a gap is an index \(i\), \(0< i < n\), such that \(L[i−1]< L[i]\)

If \(n≥2\) and \(L[0]< L[n−1]\), \(L\) contains at least one gap

Design an algorithm that, given a list \(L\) containing \(n≥2\) integers such that \(L[0]< L[n−1]\), finds a gap in the list.

Try to code and test the gap function. To avoid displaying directly Python, here we wrote it as pseudocode:

[image: recursive gap jiuiu9]

Use the following skeleton to code it and add some test to the provided testcase class.To understand what’s going on, try copy pasting in Python tutor [http://pythontutor.com/visualize.html#mode=edit]

Notice that

	We created a function gap_rec to differentiate it from the iterative one

	Users of gap_rec function might want to call it by passing just a list, in order to find any gap in the whole list. So for convenience the new function gap_rec(L) only accepts a list, without indexes i and j. This function just calls the other function gap_rec_helper that will actually contain the recursive calls. So your task is to translate the pseudocode of gap into the Python code of gap_rec_helper, which takes as input the array and the indexes as gap
does. Adding a helper function is a frequent pattern you can find when programming recursive functions.

WARNING: The specification of gap_rec assumes the input is always a list of at least two elements, and that the first element is less or equal than the last one. If these conditions are not met, function behaviour could be completely erroneus!

When preconditions are not met, execution could stop because of an error like index out of bounds, or, even worse, we might get back some wrong index as a gap! To prevent misuse of the function, a good idea can be putting a check at the beginning of the gap_rec function. Such check should immediately stop the execution and raise an error if the parameters don’t satisfy the preconditions. One way to do this could be to to some
assertion [https://datasciprolab.readthedocs.io/en/latest/exercises/testing/testing.html#Assertions] like this:

def gap_rec(L, i , j):
 assert len(L) >= 2
 assert L[0] <= L[len(L)-1]

	These commands will make python interrupt execution and throw an error as soon it detects list L is too small or with wrong values

	This kind of behaviour is also called fail fast, which is better than returning wrong values!

	You can put any condition you want after assert, but ideally they should be fast to execute.

	asserts might be better here than raise Exception constructs because asserts can be disabled with a flag passed to the interpreter. So, when you debug you can take advantage of them, and when the code is production quality and supposed to be bug free you can disable all assertions at once to gain in execution speed.

GOOD PRACTICE: Notice I wrote as a comment what the helper function is expected to receive. Writing down specs often helps understanding what the function is supposed to do, and helps users of your code as well!

COMMANDMENT 2: You shall also write on paper!

To get an idea of how gap_rec is working, draw histograms on paper like the following, with different heights at index m:

[image: gap rec histogram 098983ju]

Notice how at each recursive call, we end up with a histogram that is similar to the inital one, that is, it respects the same preconditions (a list of size >= 2 where first element is smaller or equal than the last one)

[150]:

def gap_rec(L, i, j):
 #jupman-raise
 if j == i+1:
 return j
 else:
 m = (i+j) // 2
 if L[m] < L[j]:
 return gaprec(L,m,j)
 else:
 return gaprec(L,i,m)
 #/jupman-raise

def gap(L):
 #jupman-raise
 return gap_rec(L, 0, len(L) - 1)
 #/jupman-raise

try also to write asserts

Further exercises

Have a look at leetcode array problems [https://leetcode.com/tag/array/] sorting by Acceptance and Easy.

In particular, you may check:

	Contains Duplicate [https://leetcode.com/problems/contains-duplicate/description/]

	Sort array by parity [https://leetcode.com/problems/sort-array-by-parity/description/]

	Max consecutive ones [https://leetcode.com/problems/max-consecutive-ones/description/]

	Fair Candy Swap [https://leetcode.com/problems/fair-candy-swap/description/]

	Move Zeros [https://leetcode.com/problems/move-zeroes/description/]

	Rotated Digits [https://leetcode.com/problems/rotated-digits/description/]

	Missing number [https://leetcode.com/problems/missing-number/description/] - has many possible solutions

	Find all numbers disappeared in an array [https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/]

	Majority Element [https://leetcode.com/problems/majority-element/description/]

	Degree of an array [https://leetcode.com/problems/degree-of-an-array/description/]

	Array partition 1 [https://leetcode.com/problems/array-partition-i/description/] actually a bit hard but makes you think

[]:

 Tuples solutions

Tuples solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/tuples]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- lists
 |- tuples-exercise.ipynb
 |- tuples-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/tuples/tuples-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Introduction

References

	Andrea Passerini, A02 slides (lists and tuples) [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A02-datastructures.pdf]

	Think Python, Chapter 10, Lists [http://greenteapress.com/thinkpython2/html/thinkpython2011.html]

	Think Python, Chapter 12, Tuples [http://greenteapress.com/thinkpython2/html/thinkpython2013.html]

Tuples are immutable sequences, so it is not possible to change their content without actually changing the object. They are sequential collections of objects, and elements of tuples are assumed to be in a particular order.

	Duplicates are allowed

	They can hold heterogeneous information.

Building tuples

Tuples are created with round brackets ()

Some examples:

[2]:

first_tuple = (1,2,3)
print(first_tuple)

(1, 2, 3)

[3]:

second_tuple = (1,) # this contains one element only, but we need the comma!
print(second_tuple, " type:", type(second_tuple))

(1,) type: <class 'tuple'>

[4]:

var = (1) # This is not a tuple!!!
print(var, " type:", type(var))

1 type: <class 'int'>

[5]:

empty_tuple = () # fairly useless
print(empty_tuple, "\n")

()

[6]:

third_tuple = ("January", 1 ,2007) # heterogeneous info
print(third_tuple)

('January', 1, 2007)

[7]:

days = (third_tuple,("February",2,1998), ("March",2,1978),("June",12,1978))
print(days, "\n")

(('January', 1, 2007), ('February', 2, 1998), ('March', 2, 1978), ('June', 12, 1978))

Remember tuples are immutable objects…

[8]:

print("Days has id: ", id(days))
days = ("Mon","Tue","Wed","Thu","Fri","Sat","Sun")

Days has id: 140632243535944

…hence reassignment creates a new object

[9]:

print("Days now has id: ", id(days))

Days now has id: 140632252392016

Building from sequences

You can build a tuple from any sequence:

[10]:

tuple([8,2,5])

[10]:

(8, 2, 5)

[11]:

tuple("abc")

[11]:

('a', 'b', 'c')

Tuple operators

The following operators work on tuples and they behave exactly as on lists:

[image: tuple operators iuiu98bb]

[12]:

practical1 = ("Friday", "28/09/2018")
practical2 = ("Tuesday", "02/10/2018")
practical3 = ("Friday", "05/10/2018")

A tuple containing 3 tuples
lectures = (practical1, practical2, practical3)
print("The first three lectures:\n", lectures, "\n")

The first three lectures:
 (('Friday', '28/09/2018'), ('Tuesday', '02/10/2018'), ('Friday', '05/10/2018'))

[13]:

One tuple only
mergedLectures = practical1 + practical2 + practical3
print("mergedLectures:\n", mergedLectures)

mergedLectures:
 ('Friday', '28/09/2018', 'Tuesday', '02/10/2018', 'Friday', '05/10/2018')

[14]:

This returns the whole tuple
print("1st lecture was on: ", lectures[0], "\n")

1st lecture was on: ('Friday', '28/09/2018')

[15]:

2 elements from the same tuple
print("1st lecture was on ", mergedLectures[0], ", ", mergedLectures[1], "\n")

1st lecture was on Friday , 28/09/2018

[16]:

Return type is tuple!
print("3rd lecture was on: ", lectures[2])

3rd lecture was on: ('Friday', '05/10/2018')

[17]:

2 elements from the same tuple returned in tuple
print("3rd lecture was on ", mergedLectures[4:], "\n")

3rd lecture was on ('Friday', '05/10/2018')

The following methods are available for tuples:

[image: tuple methods 9i9igfun]

[18]:

practical1 = ("Friday", "28/09/2018")
practical2 = ("Tuesday", "02/10/2018")
practical3 = ("Friday", "05/10/2018")

mergedLectures = practical1 + practical2 + practical3 # One tuple only
print(mergedLectures.count("Friday"), " lectures were on Friday")
print(mergedLectures.count("Tuesday"), " lecture was on Tuesday")

print("Index:", practical2.index("Tuesday"))

2 lectures were on Friday
1 lecture was on Tuesday
Index: 0

not present in tuple, python will complain
print("Index:", practical2.index("Wednesday"))

ValueError Traceback (most recent call last)
<ipython-input-125-f7ecc5f7f5d6> in <module>
----> 1 print("Index:", practical2.index("Wednesday"))

ValueError: tuple.index(x): x not in tuple

Exercise: pet tuples

Given the string pets = "siamese cat,dog,songbird,guinea pig,rabbit,hampster"

	convert it into a list.

	create then a tuple of tuples where each tuple has two information: the name of the pet and the length of the name. E.g. ((“dog”,3), (“hampster”,8)).

	print the tuple

You should obtain:

['cat', 'dog', 'bird', 'guinea pig', 'rabbit', 'hampster']
(('cat', 3), ('dog', 3), ('bird', 4), ('guinea pig', 10), ('rabbit', 6), ('hampster', 8))

[19]:

pets = "cat,dog,bird,guinea pig,rabbit,hampster"

write here
pet_list = pets.split(',')

print(pet_list)

pet_tuples = ((pet_list[0], len(pet_list[0])),
 (pet_list[1], len(pet_list[1])),
 (pet_list[2], len(pet_list[2])),
 (pet_list[3], len(pet_list[3])),
 (pet_list[4], len(pet_list[4])),
 (pet_list[5], len(pet_list[5])))

print(pet_tuples)

['cat', 'dog', 'bird', 'guinea pig', 'rabbit', 'hampster']
(('cat', 3), ('dog', 3), ('bird', 4), ('guinea pig', 10), ('rabbit', 6), ('hampster', 8))

Exercise: fruits

Given the string S="apple|pear|apple|cherry|pear|apple|pear|pear|cherry|pear|strawberry". Store the elements separated by the "|" in a list.

	How many elements does the list have?

	Knowing that the list created at the previous point has only four distinct elements (i.e. "apple","pear","cherry" and "strawberry"), create another list where each element is a tuple containing the name of the fruit and its multiplicity (that is how many times it appears in the original list). Ex. list_of_tuples = [(“apple”, 3), (“pear”, “5”),…]. Here you can and should write code that only works with the given constant string, so there is no need for cycles.

	Print the content of each tuple in a separate line (ex. first line: apple is present 3 times)

You should obtain:

['apple', 'pear', 'apple', 'cherry', 'pear', 'apple', 'pear', 'pear', 'cherry', 'pear', 'strawberry']
[('apple', 3), ('pear', 5), ('cherry', 2), ('strawberry', 1)]

apple is present 3 times
pear is present 5 times
cherry is present 2 times
strawberry is present 1 times

[20]:

S="apple|pear|apple|cherry|pear|apple|pear|pear|cherry|pear|strawberry"

write here

Slist = S.split("|")
print(Slist)

appleT = ("apple", Slist.count("apple"))
pearT = ("pear", Slist.count("pear"))
cherryT = ("cherry", Slist.count("cherry"))
strawberryT = ("strawberry", Slist.count("strawberry"))
list_of_tuples =[appleT, pearT, cherryT, strawberryT]

print(list_of_tuples, "\n") #adding newline to separate elements

print(appleT[0], " is present ", appleT[1], " times")
print(pearT[0], " is present ", pearT[1], " times")
print(cherryT[0], " is present ", cherryT[1], " times")
print(strawberryT[0], " is present ", strawberryT[1], " times")

['apple', 'pear', 'apple', 'cherry', 'pear', 'apple', 'pear', 'pear', 'cherry', 'pear', 'strawberry']
[('apple', 3), ('pear', 5), ('cherry', 2), ('strawberry', 1)]

apple is present 3 times
pear is present 5 times
cherry is present 2 times
strawberry is present 1 times

Exercise: build a tuple

Given a tuple x, store in variable y another tuple containing the same elements as x except the last one_, and also the elements d and e appended at the end. Your code should work with any input x.

Example:

x = ('a','b','c')

after your code, you should get printed:

x = ('a', 'b', 'c')
y = ('a', 'b', 'd', 'e')

[21]:

x = ('a','b','c')

write here
y = tuple(x[:-1]) + ('d','e')

print('x=',x)
print('y=',y)

x= ('a', 'b', 'c')
y= ('a', 'b', 'd', 'e')

Verify comprehension

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

	Tests with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Testing-with-asserts]: Following exercises contain automated tests to help you spot errors. To understand how to do them, read before Error handling and testing [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

doubletup

✪✪ Takes as input a list with n integer numbers, and RETURN a NEW list which contains n tuples each with two elements. Each tuple contains a number taken from the corresponding position from original list, and its double

Example:

>>> doubletup([5, 3, 8])
[(5,10), (3,6), (8,16)]

[22]:

def doubletup(xs):
 #jupman-raise
 ret = []
 for x in xs:
 ret.append((x, x * 2))
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert doubletup([]) == []
assert doubletup([3]) == [(3,6)]
assert doubletup([2,7]) == [(2,4),(7,14)]
assert doubletup([5,3,8]) == [(5,10), (3,6), (8,16)]

verify original list has not changed
la = [6]
lb = doubletup(la)
assert la == [6]
assert lb == [(6,12)]
END TEST

 Sets solutions

Sets solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/sets]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-sets
 |- sets-exercise.ipynb
 |- sets-solution.ipynb

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

introduction

A set is an unordered collection of distinct elements, so no duplicates are allowed.

Creating a set

In Python you can create a set with a call to set()

[2]:

s = set()

[3]:

s

[3]:

set()

To add elements, use .add() method:

[4]:

s.add('hello')
s.add('world')

Notice Python represents a set with curly brackets, but differently from a dictionary you won’t see colons : nor key/value couples:

[5]:

s

[5]:

{'hello', 'world'}

set from a sequence

You can create a set from any sequence, like a list. Doing so will eliminate duplicates present:

[6]:

set(['a','b','c','b','a','d'])

[6]:

{'a', 'b', 'c', 'd'}

Empty sets

WARNING: {} means empty dictionary, not empty set !

Since a set print out representation starts and ends with curly brackets as dictionaries, when you see written {} you might wonder whether that is the empty set or the empty dictionary.

The empty set is represented with set()

[7]:

s = set()

[8]:

s

[8]:

set()

[9]:

type(s)

[9]:

set

Instead, the empty dictionary is represented as a curly bracket:

[10]:

d = {}

[11]:

d

[11]:

{}

[12]:

type(d)

[12]:

dict

Iterating a set

You can iterate in a set with the for in construct:

[13]:

for el in s:
 print(el)

From the print out you notice sets, like dictionaries keys, are not necessarily iterated in same order as the insertion one. This also means they do not support access by index:

s[0]

TypeError Traceback (most recent call last)
<ipython-input-61-f8bb2b116405> in <module>()
----> 1 s[0]

TypeError: 'set' object does not support indexing

Adding twice

Since sets must contain distinct elements, if we add the same element twice the same remains unmodified with no complaints from Python:

[14]:

s.add('hello')

[15]:

s

[15]:

{'hello'}

[16]:

s.add('world')

[17]:

s

[17]:

{'hello', 'world'}

In a set we add eterogenous elements, like a numer here:

[18]:

s.add(7)

[19]:

s

[19]:

{7, 'hello', 'world'}

To remove an element, use .remove() method:

[20]:

s.remove('world')

[21]:

s

[21]:

{7, 'hello'}

Belonging to a set

To determine if an item belongs to a set you can use the usual ‘in’ operator as for any other sequence:

[22]:

'b' in set(['a','b','c','d'])

[22]:

True

[23]:

'z' in set(['a','b','c','d'])

[23]:

False

There is an important difference with other sequences such as lists, though: searching for an item in a set is always very fast, while searching in a list in the worst case requires Python to search the whole list.

There is a catch though: to get such performance you are obliged to only put in the set immutable data, such as numbers, strings, etc. If you try to add a mutable type like i.e. a list, you will get an error:

s = set()
s.add(['a','b','c'])

TypeError Traceback (most recent call last)
<ipython-input-34-b345c7f28446> in <module>
----> 1 s.add(['a','b','c'])

TypeError: unhashable type: 'list'

Operations

You can perform set .union(s2), .intersection(s2), .difference(s2) …

NOTE: set operations which don’t have ‘update’ in the name create a NEW set each time!!!

[24]:

s1 = set(['a','b','c','d','e'])
print(s1)

{'a', 'e', 'c', 'b', 'd'}

[25]:

s2 = set(['b','c','f'])

[26]:

s3 = s1.intersection(s2) # NOTE: it returns a NEW set !!!
print(s3)

{'c', 'b'}

[27]:

print(s1) # did not change

{'a', 'e', 'c', 'b', 'd'}

updating sets

If you do want to change the original, you have to use intersection_update:

[28]:

s4 = set(['a','b','c','d','e'])
s5 = set(['b','c','f'])
res = s4.intersection_update(s5) #NOTE: this MODIFIES s4 and thus return None !!!!
print(res)

None

[29]:

print(s4)

{'c', 'b'}

Exercise: set operators

Write some code that creates a set s4 which contains all the elements of s1 and s2 but does not contain the elements of s3. Your code should work with any s1,s2,s3.

With

s1 = set(['a','b','c','d','e'])
s2 = set(['b','c','f','g'])
s3 = set(['b','f'])

After you code you should get

{'d', 'a', 'c', 'g', 'e'}

[30]:

s1 = set(['a','b','c','d','e'])
s2 = set(['b','c','f','g'])
s3 = set(['b','f'])

write here
s4 = s1.union(s2).difference(s3)
print(s4)

{'g', 'a', 'e', 'c', 'd'}

Exercise: dedup

Write some short code to create a listb which contains all elements from lista without duplicates and sorted alphabetically.

	MUST NOT change original lista

	no cycles allowed !

	your code should work with any lista

lista = ['c','a','b','c','d','b','e']

after your code, you should get

lista = ['c', 'a', 'b', 'c', 'd', 'b', 'e']
listb = ['a', 'b', 'c', 'd', 'e']

[31]:

lista = ['c','a','b','c','d','b','e']

write here
s = set(lista)
listb = list(sorted(s)) # NOTE: sorted generates a NEW sequence
print("lista =",lista)
print("listb =",listb)

lista = ['c', 'a', 'b', 'c', 'd', 'b', 'e']
listb = ['a', 'b', 'c', 'd', 'e']

[]:

 Dictionaries solutions

Dictionaries solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/dictionaries]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-my_lib.py
-other stuff ...
-exercises
 |- lists
 |- dictionaries-exercise.ipynb
 |- dictionaries-solution.ipynb
 |- other stuff ..

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/dictionaries/dictionaries-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Introduction

We will review dictionaries, discuss ordering issues for keys, and finally deal with nested dictionaries

Dict

First let’s review Python dictionaries:

Dictionaries map keys to values. Keys must be immutable types such as numbers, strings, tuples (so i.e. no lists are allowed as keys), while values can be anything. In the following example, we create a dictionary d that initially maps from strings to numbers:

[2]:

create empty dict:

d = dict()
d

[2]:

{}

[3]:

type(dict())

[3]:

dict

Alternatively, to create a dictionary you can type {} :

[4]:

{}

[4]:

{}

[5]:

type({})

[5]:

dict

[6]:

associate string "some key" to number 4
d['some key'] = 4
d

[6]:

{'some key': 4}

To access a value corresponding to a key, write this:

[7]:

d['some key']

[7]:

4

You can’t associate mutable objects like lists:

d[['a', 'mutable', 'list', 'as key']] = 3

TypeError Traceback (most recent call last)
<ipython-input-204-fb9d60c4e88a> in <module>()
----> 1 d[['a', 'mutable', 'list', 'as key']] = 3

TypeError: unhashable type: 'list'

But you can associate tuples:

[8]:

d[('an', 'immutable', 'tuple', 'as key')] = 3
d

[8]:

{('an', 'immutable', 'tuple', 'as key'): 3, 'some key': 4}

[9]:

associate string "some other key" to number 7
d['some other key'] = 7
d

[9]:

{('an', 'immutable', 'tuple', 'as key'): 3, 'some key': 4, 'some other key': 7}

[10]:

Dictionary is mutable, so you can reassign a key to a different value:
d['some key'] = 5
d

[10]:

{('an', 'immutable', 'tuple', 'as key'): 3, 'some key': 5, 'some other key': 7}

[11]:

Dictionares are eterogenous, so values can be of different types:

d['yet another key'] = 'now a string!'
d

[11]:

{('an', 'immutable', 'tuple', 'as key'): 3,
 'some key': 5,
 'some other key': 7,
 'yet another key': 'now a string!'}

[12]:

Keys also can be of eterogeneous types, but they *must* be of immutable types:

[13]:

d[123] = 'hello'
d

[13]:

{('an', 'immutable', 'tuple', 'as key'): 3,
 123: 'hello',
 'some key': 5,
 'some other key': 7,
 'yet another key': 'now a string!'}

To iterate through keys, use a ‘for in’ construct :

WARNING: iteration order most often is NOT the same as insertion order!!

[14]:

for k in d:
 print(k)

123
some key
some other key
('an', 'immutable', 'tuple', 'as key')
yet another key

Get all keys:

[15]:

d.keys()

[15]:

dict_keys([123, 'some key', 'some other key', ('an', 'immutable', 'tuple', 'as key'), 'yet another key'])

Get all values:

[16]:

d.values()

[16]:

dict_values(['hello', 5, 7, 3, 'now a string!'])

[17]:

delete a key:

del d['some key']
d

[17]:

{('an', 'immutable', 'tuple', 'as key'): 3,
 123: 'hello',
 'some other key': 7,
 'yet another key': 'now a string!'}

Dictionary methods

Recall what seen in the lecture, the following methods are available for dictionaries:

[image: dictionary methods 32432i4]

These methods are new to dictionaries and can be used to loop through the elements in them.

ATTENTION: dict.keys() returns a dict_keys object not a list. To cast it to list, we need to call list(dict.keys()).

Functions working on dictionaries

As for the other data types, python provides several operators that can be applied to dictionaries. The following operators are available and they basically work as in lists. The only exception being that the operator in checks whether the specified object is present among the keys.

[image: dictionary functions 983h323yu]

Exercise print key

✪ PRINT the value of key 'b', that is, 2

[18]:

d = {'a':6, 'b':2,'c':5}

write here

d['b']

[18]:

2

Exercise modify dictionary

✪ MODIFY the dictionary, by substituting the key c with 8. Then PRINT the dictionary

NOTE: the order in which couples key/value are printed is NOT relevant!

[19]:

d = {'a':6, 'b':2, 'c':5}

write here

d['c'] = 8
print(d)

{'c': 8, 'a': 6, 'b': 2}

Exercise print keys

✪ PRINT a sequence with all the keys, using the appropriate method of dictionaries

[20]:

d = {'a':6, 'b':2,'c':5}

write here

d.keys()

[20]:

dict_keys(['c', 'a', 'b'])

Exercise print dimension

✪ PRINT the number of couples key/value in the dictionary

[21]:

d = {'a':6, 'b':2, 'c':5}

write here

print(len(d))

3

Exercise print keys as list

✪ PRINT a LIST with all the keys in the dictionary

	NOTE 1: it is NOT necessary that the list is ordered

	NOTE 2: to convert any sequence to a list, use the predefined function list

[22]:

d = {'a':6, 'b':2,'c':5}

write here

list(d.keys())

[22]:

['c', 'a', 'b']

Exercise ordered keys

✪ PRINT an ordered LIST holding all dictionary keys

	NOTE 1: now it is necessary for the list to be ordered

	NOTE 2: to convert any sequence to a list, use the predefined function list

[23]:

d = {'a':6, 'c':2,'b':5}

write here

my_list = list(d.keys())
my_list.sort() # REMEMBER: sort does NOT return anything !!!
print(my_list)

['a', 'b', 'c']

OrderedDict

As we said before, when you scan the keys of a dictionary, the order most often is not the same as the insertion order. To have it predictable, you need to use an OrderedDict

[24]:

first you need to import it from collections module
from collections import OrderedDict

od = OrderedDict()

OrderedDict looks and feels exactly as regular dictionaries. Here we reproduce the previous example:

od['some key'] = 5

od['some other key'] = 7
od[('an', 'immutable', 'tuple','as key')] = 3
od['yet another key'] = 'now a string!'
od[123] = 'hello'
od

[24]:

OrderedDict([('some key', 5),
 ('some other key', 7),
 (('an', 'immutable', 'tuple', 'as key'), 3),
 ('yet another key', 'now a string!'),
 (123, 'hello')])

Now you will see that if you iterate with the for in construct, you get exactly the same insertion sequence:

[25]:

for key in od:
 print("%s : %s" %(key, od[key]))

some key : 5
some other key : 7
('an', 'immutable', 'tuple', 'as key') : 3
yet another key : now a string!
123 : hello

To create it all at once, since you want to be sure of the order, you can pass a list of tuples representing key/value pairs. Here we reproduce the previous example:

[26]:

od = OrderedDict(
 [
 ('some key', 5),
 ('some other key', 7),
 (('an', 'immutable', 'tuple','as key'), 3),
 ('yet another key', 'now a string!'),
 (123, 'hello')
]
)

od

[26]:

OrderedDict([('some key', 5),
 ('some other key', 7),
 (('an', 'immutable', 'tuple', 'as key'), 3),
 ('yet another key', 'now a string!'),
 (123, 'hello')])

Again you will see that if you iterate with the for in construct, you get exactly the same insertion sequence:

[27]:

for key in od:
 print("%s : %s" % (key, od[key]))

some key : 5
some other key : 7
('an', 'immutable', 'tuple', 'as key') : 3
yet another key : now a string!
123 : hello

Exercise: OrderedDict phonebook

Write some short code that given three tuples, like the following, prints an OrderedDict which associates names to phone numbers, in the order they are proposed above.

	Your code should work with any tuples.

	Don’t forget to import the OrderedDict from collections

Example:

t1 = ('Alice', '143242903')
t2 = ('Bob', '417483437')
t3 = ('Charles', '423413213')

after your code should give:

OrderedDict([('Alice', '143242903'), ('Bob', '417483437'), ('Charles', '423413213')])

[28]:

first you need to import it from collections module
from collections import OrderedDict

t1 = ('Alice', '143242903')
t2 = ('Bob', '417483437')
t3 = ('Charles', '423413213')

write here
od = OrderedDict([t1, t2, t3])
print(od)

OrderedDict([('Alice', '143242903'), ('Bob', '417483437'), ('Charles', '423413213')])

Exercise: OrderedDict copy

Given an OrderedDict od1 containing translations English -> Italian, create a NEW OrderedDict called od2 which contains the same translations as the input one PLUS the translation 'water' : 'acqua'.

	NOTE 1: your code should work with any input ordered dict

	NOTE 2: od2 MUST hold a NEW OrderedDict !!

Example:

With

od1 = OrderedDict()
od1['dog'] = 'cane'
od1['home'] = 'casa'
od1['table'] = 'tavolo'

after your code you should get:

>>> print(od1)
OrderedDict([('dog', 'cane'), ('home', 'casa'), ('table', 'tavolo')])
>>> print(od2)
OrderedDict([('dog', 'cane'), ('home', 'casa'), ('table', 'tavolo'), ('water', 'acqua')])

[29]:

from collections import OrderedDict

od1 = OrderedDict()
od1['dog'] = 'cane'
od1['home'] = 'casa'
od1['table'] = 'tavolo'

write here
od2 = OrderedDict(od1)
od2['water'] = 'acqua'

print("od1=", od1)
print("od2=", od2)

od1= OrderedDict([('dog', 'cane'), ('home', 'casa'), ('table', 'tavolo')])
od2= OrderedDict([('dog', 'cane'), ('home', 'casa'), ('table', 'tavolo'), ('water', 'acqua')])

List of nested dictionaries

Suppose you have a list of dictionaries which represents a database of employees. Each employee is represented by a dictionary:

{
 "name":"Mario",
 "surname": "Rossi",
 "age": 34,
 "company": {
 "name": "Candy Apples Inc.",
 "sector":"Food"
 }
}

The dictionary has several simple attributes like name, surname, age. The attribute company is more complex, because it is represented as another dictionary:

"company": {
 "name": "Candy Apples Inc.",
 "sector":"Food"
 }

[30]:

employees_db = [
 {
 "name":"Mario",
 "surname": "Rossi",
 "age": 34,
 "company": {
 "name": "Candy Apples Inc.",
 "sector":"Food"
 }
 },
 {
 "name":"Pippo",
 "surname": "Rossi",
 "age": 20,
 "company": {
 "name": "Batworks",
 "sector":"Clothing"
 }
 },
 {
 "name":"Paolo",
 "surname": "Bianchi",
 "age": 25,
 "company": {
 "name": "Candy Apples Inc.",
 "sector":"Food"
 }
 }

]

Exercise: print employees

Write some code to print all employee names and surnames from the above employees_db

You can assume employees_db has exactly 3 employees (so for cycle is not even needed)

You should obtain:

Mario Rossi
Pippo Rossi
Paolo Bianchi

[31]:

write here
print(employees_db[0]["name"], employees_db[0]["surname"])
print(employees_db[1]["name"], employees_db[1]["surname"])
print(employees_db[2]["name"], employees_db[2]["surname"])

Mario Rossi
Pippo Rossi
Paolo Bianchi

Exercise: print company names

Write some code to print all company names and sector from the above employees_db, without duplicating them. Pay attention to sector lowercase name.

You can assume employees_db has exactly 3 employees (so for cycle is not even needed)

[32]:

write here
print(employees_db[0]["company"]["name"], "is a", employees_db[0]["company"]["sector"].lower(), "company")
print(employees_db[1]["company"]["name"], "is a", employees_db[1]["company"]["sector"].lower(), "company")

Candy Apples Inc. is a food company
Batworks is a clothing company

Exercises with functions

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

print_val

✪ Write the function print_val(d, key) which RETURN the value associated to key

>>> x = print_val({'a':5,'b':2}, 'a')
>>> x
5
>>> y = print_val({'a':5,'b':2}, 'b')
>>> y
2

[33]:

write here

def print_val(d, key):
 return d[key]

#x = print_val({'a':5,'b':2}, 'a')
#x

has_key

Write a function has_key(d,key) which PRINTS "found" if diz contains the key key, otherwise PRINTS "not found"

>>> has_key({'a':5,'b':2}, 'a')
found
>>> has_key({'a':5,'b':2}, 'z')
not found

[34]:

write here

def has_key(d, key):
 if key in d:
 print("found")
 else:
 print("not found")

#has_key({'a':5,'b':2}, 'a')
#has_key({'a':5,'b':2}, 'b')
#has_key({'a':5,'b':2}, 'z')

dim

✪ Write a function dim(d) which RETURN the associations key-value present in the dictionary

>>> x = dim({'a':5,'b':2,'c':9})
>>> x
3

[35]:

write here

def dim(d):
 return len(d)

#x = dim({'a':5,'b':2,'c':9})
#x

keyring

✪ Given a dictionary, write a function keyring which RETURN an ORDERED LIST with all the keys, una at a time

NOTE: the order of keys in this list IS important !

>>> x = keyring({'a':5,'c':2,'b':9})
>>> x
['a','b','c']

[36]:

write here

def keyring(d):
 my_list = list(d.keys())
 my_list.sort() # REMEMBER: .sort() does NOT return anything !!
 return my_list

#x = keyring({'a':5,'c':2,'b':9})
#x

couples

✪ Given a dictionary, write a function couples which PRINTS all key/value couples, one per row

NOTE: the order of the print is NOT important, it si enough to print all couples !

>>> couples({'a':5,'b':2,'c':9})
a 5
c 9
b 2

[37]:

write here

def couples(d):
 for key in d:
 print(key,d[key])

#couples({'a':5,'b':2,'c':9})

Verify comprehension

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Functions: Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

	Tests with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Testing-with-asserts]: Following exercises contain automated tests to help you spot errors. To understand how to do them, read before Error handling and testing [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

histogram

✪✪ RETURN a dictionary that for each character in string contains the number of occurrences. The keys are the caracthers and the values are to occurrences

[38]:

def histogram(string):

 #jupman-raise
 ret = dict()
 for c in string:
 if c in ret:
 ret[c] += 1
 else:
 ret[c] = 1
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert histogram("babbo") == {'b': 3, 'a':1, 'o':1}
assert histogram("") == {}
assert histogram("cc") == {'c': 2}
assert histogram("aacc") == {'a': 2, 'c':2}
TEST END

listify

✪✪ Takes a dictionary d as input and RETURN a LIST with only the values from the dict (so no keys)

To have a predictable order, the function also takes as input a list order where there are the keys from first dictionary ordered as we would like in the resulting list

[39]:

def listify(d, order):
 #jupman-raise
 ret = list()
 for element in order:
 ret.append (d[element])
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert listify({}, []) == []
assert listify({'ciao':123}, ['ciao']) == [123]
assert listify({'a':'x','b':'y'}, ['a','b']) == ['x','y']
assert listify({'a':'x','b':'y'}, ['b','a']) == ['y','x']
assert listify({'a':'x','b':'y','c':'x'}, ['c','a','b']) == ['x','x','y']
assert listify({'a':'x','b':'y','c':'x'}, ['b','c','a']) == ['y','x','x']
assert listify({'a':5,'b':2,'c':9}, ['b','c','a']) == [2,9,5]
assert listify({6:'x',8:'y',3:'x'}, [6,3,8]) == ['x','x','y']
TEST END

tcounts

✪✪ Takes a list of tuples. Each tuple has two values, the first is an immutable object and the second one is an integer number (the counts of that object). RETURN a dictionary that for each immutable object found in the tuples, associate the total count found for it.

See asserts for examples

[40]:

def tcounts(lst):
 ret = {}
 for c in lst:
 if c[0] in ret:
 ret[c[0]] += c[1]
 else:
 ret[c[0]] = c[1]
 return ret

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert tcounts([]) == {}
assert tcounts([('a',3)]) == {'a':3}
assert tcounts([('a',3),('a',4)]) == {'a':7}
assert tcounts([('a',3),('b',8), ('a',4)]) == {'a':7, 'b':8}
assert tcounts([('a',5), ('c',8), ('b',7), ('a',2), ('a',1), ('c',4)]) == {'a':5+2+1, 'b':7, 'c': 8 + 4}
TEST END

inter

✪✪ Write a function inter(d1,d2) which takes two dictionaries and RETURN a SET of keys for which the couple is the same in both dictionaries

Example

>>> a = {'key1': 1, 'key2': 2 , 'key3': 3}
>>> b = {'key1': 1 ,'key2': 3 , 'key3': 3}
>>> inter(a,b)
{'key1','key3'}

[41]:

def inter(d1, d2):
 #jupman-raise
 res = set()
 for key in d1:
 if key in d2:
 if d1[key] == d2[key]:
 res.add(key)
 return res
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert inter({'key1': 1, 'key2': 2 , 'key3': 3}, {'key1':1 ,'key2':3 , 'key3':3}) == {'key1', 'key3'}
assert inter(dict(), {'key1':1 ,'key2':3 , 'key3':3}) == set()
assert inter({'key1':1 ,'key2':3 , 'key3':3}, dict()) == set()
assert inter(dict(),dict()) == set()
TEST END

unique_vals

✪✪ Write a function unique_vals(d) which RETURN a list of unique values from the dictionary. The list MUST be ordered alphanumerically

Question: We need it ordered for testing purposes. Why?

	to order the list, use method .sort()

Example:

>>> unique_vals({'a':'y','b':'x','c':'x'})

['x','y']

[42]:

def unique_vals(d):
 #jupman-raise
 s = set(d.values())
 ret = list(s) # we can only sort lists (sets have no order)
 ret.sort()
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert unique_vals({}) == []
assert unique_vals({'a':'y','b':'x','c':'x'}) == ['x','y']
assert unique_vals({'a':4,'b':6,'c':4,'d':8}) == [4,6,8]
TEST END

uppers

✪✪ Takes a list and RETURN a dictionary which associates to each string in the list the same string but with all characters uppercase

Example:

>>> uppers(["ciao", "mondo", "come va?"])
{"ciao":"CIAO", "mondo":"MONDO", "come va?":"COME VA?"}

Ingredients:

	for cycle

	.upper() method

[43]:

def uppers(xs):
 #jupman-raise
 d = {}
 for s in xs:
 d[s] = s.upper()
 return d
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert uppers([]) == {}
assert uppers(["ciao"]) == {"ciao":"CIAO"}
assert uppers(["ciao", "mondo"]) == {"ciao":"CIAO", "mondo":"MONDO"}
assert uppers(["ciao", "mondo", "ciao"]) == {"ciao":"CIAO", "mondo":"MONDO"}
assert uppers(["ciao", "mondo", "come va?"]) == {"ciao":"CIAO", "mondo":"MONDO", "come va?":"COME VA?"}
TEST END

filtraz

✪✪ RETURN a NEW dictionary, which contains only the keys key/value of the dictionary d in input in which in the key is present the character 'z'

Example:

filtraz({'zibibbo':'to drink',
 'mc donald': 'to avoid',
 'liquirizia': 'ze best',
 'burger king': 'zozzerie'
})

must RETURN the NEW dictionary

{
'zibibbo':'da bere',
'liquirizia': 'ze best'
}

In other words, we only kept those keys which contained at least a z. We do not care about z in values.

Ingredients:

To check if z is in the key, use the operator in, for example

'z' in 'zibibbo' == True
'z' in 'mc donald' == False

[44]:

def filtraz(diz):
 #jupman-raise

 ret = {}
 for chiave in diz:
 if 'z' in chiave:
 ret[chiave] = diz[chiave]
 return ret

 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert filtraz({}) == {}
assert filtraz({'az':'t'}) == {'az':'t'}
assert filtraz({'zc':'w'}) == {'zc':'w'}
assert filtraz({'b':'h'}) == {}
assert filtraz({'b':'hz'}) == {}
assert filtraz({'az':'t','b':'hz'}) == {'az':'t'}
assert filtraz({'az':'t','b':'hz','zc':'w'}) == {'az':'t', 'zc':'w'}
TEST END

powers

✪✪ RETURN a dictionary in which keys are integer numbers from 1 to n included, and respective values are the sqaures of the keys.

Example:

powers(3)

should return:

{
 1:1,
 2:4,
 3:9
}

[45]:

def powers(n):
 #jupman-raise
 d=dict()
 for i in range(1,n+1):
 d[i]=i**2
 return d
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert powers(1) == {1:1}
assert powers(2) == {
 1:1,
 2:4
 }
assert powers(3) == {
 1:1,
 2:4,
 3:9
 }

assert powers(4) == {
 1:1,
 2:4,
 3:9,
 4:16
 }
TEST END

dilist

✪✪ RETURN a dictionary with n couples key-value, where the keys are integer numbers from 1 to n included, and to each key i is associated a list of numbers from 1 to i.

NOTE: the keys are integer numbers, NOT strings !!!!

Example

>>> dilist(3)
{
 1:[1],
 2:[1,2],
 3:[1,2,3]
}

[46]:

def dilist(n):
 #jupman-raise
 ret = dict()
 for i in range(1,n+1):
 lista = []
 for j in range(1,i+1):
 lista.append(j)
 ret[i] = lista
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert dilist(0) == dict()
assert dilist(1) == {
 1:[1]
 }
assert dilist(2) == {
 1:[1],
 2:[1,2]
 }
assert dilist(3) == {
 1:[1],
 2:[1,2],
 3:[1,2,3]
 }
TEST END

prefixes

✪✪ Write a functionprefixes which given

a dictionary d having as keys italian provincies and as values their phone numbers (note: prefixes are also strings !) - a list provinces with the italian provinces

RETURN a list of prefixes corresponding to provinces of given list.

Example:

>>> prefissi({
 'tn':'0461',
 'bz':'0471',
 'mi':'02',
 'to':'011',
 'bo':'051'
 },
 ['tn','to', 'mi'])

['0461', '011', '02']

HINTS:

	intialize an empty list to return

	go through provinces list and take corresponding prefixes from the dictionary

[47]:

def prefixes(d, provinces):

 #jupman-raise
 ret = []
 for province in provinces:
 ret.append(d[province])

 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert prefixes({'tn':'0461'}, []) == []
assert prefixes({'tn':'0461'}, ['tn']) == ['0461']
assert prefixes({'tn':'0461', 'bz':'0471'}, ['tn']) == ['0461']
assert prefixes({'tn':'0461', 'bz':'0471'}, ['bz']) == ['0471']
assert prefixes({'tn':'0461', 'bz':'0471'}, ['tn','bz']) == ['0461', '0471']
assert prefixes({'tn':'0461', 'bz':'0471'}, ['bz','tn']) == ['0471', '0461']
assert prefixes({'tn':'0461',
 'bz':'0471',
 'mi':'02',
 'to':'011',
 'bo':'051'
 },
 ['tn','to', 'mi']) == ['0461', '011', '02']
TEST END

Managers

Let’s look at this managers_db data structure. It is a list of dictionaries of managers.

	Each manager supervises a department, which is also represented as a dictionary.

	Each department can stay either in building "A" or building "B"

[48]:

managers_db = [
 {
 "name":"Diego",
 "surname": "Zorzi",
 "age": 34,
 "department": {
 "name": "Accounting",
 "budget":20000,
 "building":"A"
 }
 },
 {
 "name":"Giovanni",
 "surname": "Tapparelli",
 "age": 45,
 "department": {
 "name": "IT",
 "budget":10000,
 "building":"B"
 }
 },
 {
 "name":"Sara",
 "surname": "Tomasi",
 "age": 25,
 "department": {
 "name": "Human resources",
 "budget":30000,
 "building":"A"
 }
 },
 {
 "name":"Giorgia",
 "surname": "Tamanin",
 "age": 28,
 "department": {
 "name": "R&D",
 "budget":15000,
 "building":"A"
 }
 },
 {
 "name":"Paola",
 "surname": "Guadagnini",
 "age": 30,
 "department": {
 "name": "Public relations",
 "budget":40000,
 "building":"B"
 }
 }

]

managers: extract_managers

✪✪ RETURN the names of the managers in a list

[49]:

def extract_managers(db):
 #jupman-raise
 ret = []
 for d in db:
 ret.append(d["name"])
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert extract_managers([]) == []

if it doesn't find managers_db, remember to executre the cell above which defins it !
assert extract_managers(managers_db) == ['Diego', 'Giovanni', 'Sara', 'Giorgia', 'Paola']
TEST END

managers: extract_departments

✪✪ RETURN the names of departments in a list.

[50]:

def extract_departments(db):
 #jupman-raise
 ret = []
 for d in db:
 ret.append(d["department"]["name"])

 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert extract_departments([]) == []
if it doesn't find managers_db, remember to execute the cell above which defins it !
assert extract_departments(managers_db) == ["Accounting", "IT", "Human resources","R&D", "Public relations"]
TEST END

managers: avg_age

✪✪ RETURN the average age of managers

[51]:

def avg_age(db):
 #jupman-raise
 s = 0
 for d in db:
 s += d["age"]

 return s / len(db)
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

since the function returns a float we can't compare for exact numbers but
only for close numbers with the function math.isclose
import math
assert math.isclose(avg_age(managers_db), (34 + 45 + 25 + 28 + 30) / 5)
TEST END

managers: buildings

✪✪ RETURN the buildings the departments belong to, WITHOUT duplicates !!!

[52]:

def buildings(db):
 #jupman-raise
 ret = []
 for d in db:
 building = d["department"]["building"]
 if building not in ret:
 ret.append(building)

 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert buildings([]) == []
assert buildings(managers_db) == ["A", "B"]
TEST END

medie

✪✪ Given a dictionary structured as a tree regarding the grades of a student in class V and VI, RETURN an array containing the average for each subject

Example:

>>> averages([
 {'id' : 1, 'subject' : 'math', 'V' : 70, 'VI' : 82},
 {'id' : 1, 'subject' : 'italian', 'V' : 73, 'VI' : 74},
 {'id' : 1, 'subject' : 'german', 'V' : 75, 'VI' : 86}
])
[76.0 , 73.5, 80.5]

which corresponds to

[(70+82)/2 , (73+74)/2, (75+86)/2]

[53]:

def averages(lista):
 ret = [0.0, 0.0, 0.0]

 for i in range(len(lista)):
 ret[i] = (lista[i]['V'] + lista[i]['VI']) / 2

 return ret

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
import math

def is_list_close(lista, listb):
 """ Verifies the float numbers in lista are similar to nubers in listb

 """

 if len(lista) != len(listb):
 return False

 for i in range(len(lista)):
 if not math.isclose(lista[i], listb[i]):
 return False

 return True

assert is_list_close(averages([
 {'id' : 1, 'subject' : 'math', 'V' : 70, 'VI' : 82},
 {'id' : 1, 'subject' : 'italian', 'V' : 73, 'VI' : 74},
 {'id' : 1, 'subject' : 'german', 'V' : 75, 'VI' : 86}
]),
 [76.0 , 73.5, 80.5])
TEST END

has_pref

✪✪ A big store has a database of clients modelled as a dictionary which associates customer names to their preferences regarding the categories of articles the usually buy:

{
 'aldo':['cinema', 'music', 'sport'],
 'giovanni':['music'],
 'giacomo':['cinema', 'videogames']
}

Given the dictionary, the customer name and a category, write a function has_pref which RETURN True if that client has the given preference, False otherwise

Example:

ha_pref({
 'aldo':['cinema', 'musica', 'sport'],
 'giovanni':['musica'],
 'giacomo':['cinema', 'videogiochi']

 }, 'aldo', 'musica')

deve ritornare True perchè ad aldo piace la musica, invece

has_pref({'aldo':['cinema', 'music', 'sport'],
 'giovanni':['music'],
 'giacomo':['cinema', 'videogames']

 }, 'giacomo', 'sport')

Must return False because Giacomo does not like sport

[54]:

def has_pref(d, name, pref):
 #jupman-raise
 if name in d:
 return pref in d[name]
 else:
 return False
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
assert has_pref({}, 'a', 'x') == False
assert has_pref({'a':[]}, 'a', 'x') == False
assert has_pref({'a':['x']}, 'a', 'x') == True
assert has_pref({'a':['x']}, 'b', 'x') == False
assert has_pref({'a':['x','y']}, 'a', 'y') == True
assert has_pref({'a':['x','y'],
 'b':['y','x','z']}, 'b', 'y') == True
assert has_pref({'aldo':['cinema', 'music', 'sport'],
 'giovanni':['music'],
 'giacomo':['cinema', 'videogames']
 }, 'aldo', 'music') == True
assert has_pref({'aldo':['cinema', 'music', 'sport'],
 'giovanni':['music'],
 'giacomo':['cinema', 'videogames']
 }, 'giacomo', 'sport') == False
TEST END

[]:

 Control flow solutions

Control flow solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/control-flow]

Introduction

In this practical we will work with conditionals (branching) and loops.

References:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- lists
 |- control-flow-exercise.ipynb
 |- control-flow-solution.ipynb

WARNING 1: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/control-flow/control-flow-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate to the unzipped folder while in Jupyter browser!

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Execution flow

Recall from the lecture that there are at least three types of execution flows. Our statements can be simple and structured sequentially, when one instruction is executed right after the previous one, but some more complex flows involve conditional branching (when the portion of the code to be executed depends on the value of some condition), or loops when a portion of the code is executed multiple times until a certain condition becomes False.

[image: structured programming kjdf9d]

These portions of code are generally called blocks and Python, unlike most of the programming languages, uses indentation (and some keywords like else, ‘:’, ‘next’, etc.) to define blocks.

Conditionals

We can use conditionals any time a decision needs to be made depending on the value of some condition. A block of code will be executed if the condition is evaluated to the boolean True and another one if the condition is evaluated to False.

The basic if - else statement

The basic syntax of conditionals is an if statement like:

if condition :

 # This is the True branch
 # do something

else:

 # This is the False branch (or else branch)
 # do something else

where condition is a boolean expression that tells the interpreter which of the two blocks should be executed. If and only if the condition is True the first branch is executed, otherwise execution goes to the second branch (i.e. the else branch). Note that the condition is followed by a “:” character and that the two branches are indented. This is the way Python uses to identify the block of instructions that belong to the same branch. The else keyword is followed by “:”
and is not indented (i.e. it is at the same level of the if statement. There is no keyword at the end of the “else branch”, but indentation tells when the block of code is finished.

Example: Let’s get an integer from the user and test if it is even or odd, printing the result to the screen.

print("Dear user give me an integer:")
num = int(input())
res = ""
if num % 2 == 0:
 #The number is even
 res = "even"
else:
 #The number is odd
 res = "odd"

print("Number ", num, " is ", res)

Dear user give me an integer:
34
Number 34 is even

Note that the execution is sequential until the if keyword, then it branches until the indentation goes back to the same level of the if (i.e. the two branches rejoin at the print statement in the final line). Remember that the else branch is optional.

The if - elif - else statement

If statements can be chained in such a way that there are more than two possible branches to be followed. Chaining them with the if - elif - else statement will make execution follow only one of the possible paths.

The syntax is the following:

if condition :

 # This is branch 1
 # do something

elif condition1 :

 # This is branch 2
 # do something

elif condition2 :

 # This is branch 3
 # do something

else:

 # else branch. Executed if all other conditions are false
 # do something else

Note that branch 1 is executed if condition is True, branch 2 if and only if condition is False and condition1 is True, branch 3 if condition is False, condition 1 is False and condition2 is True. If all conditions are False the else branch is executed.

Example: The tax rate of a salary depends on the income. If the income is < 10000 euros, no tax is due, if the income is between 10000 euros and 20000 the tax rate is 25%, if between 20000 and 45000 it is 35% otherwise it is 40%. What is the tax due by a person earning 35000 euros per year?

[1]:

income = 35000
rate = 0.0

if income < 10000:
 rate = 0
elif income < 20000:
 rate = 0.2
elif income < 45000:
 rate = 0.35
else:
 rate = 0.4

tax = income*rate

print("The tax due is ", tax, " euros (i.e ", rate*100, "%)")

The tax due is 12250.0 euros (i.e 35.0 %)

Note the difference in the two following cases:

[2]:

#Example 1

val = 10

if val > 5:
 print("Value >5")
elif val > 5:
 print("I said value is >5!")
else:
 print("Value is <= 5")

Value >5

[3]:

#Example 2

val = 10

if(val > 5):
 print("\n\nValue is >5")

if(val > 5):
 print("I said Value is >5!!!")

Value is >5
I said Value is >5!!!

Nested ifs

If statements are blocks so they can be nested as any other block.

If you have a point with coordinates x and y and you want to know into which quadrant it falls

[image: quadrant iu34234]

You might write something like this:

[4]:

x = 5
y = 9

if x >= 0:
 if y >= 0:
 print('first quadrant')
 else:
 print('fourth quadrant')
else:
 if y >= 0:
 print('second quadrant')
 else:
 print('third quadrant')

first quadrant

an equivalent way could be to use boolean expressions and write:

[5]:

if x >= 0 and y >= 0:
 print('first quadrant')
elif x >= 0 and y < 0:
 print('fourth quadrant')
elif x < 0 and y >= 0:
 print('second quadrant')
elif x < 0 and y < 0:
 print('third quadrant')

first quadrant

Ternary operator

In some cases it is handy to be able to initialize a variable depending on the value of another one.

Example:

The discount rate applied to a purchase depends on the amount of the sale. Create a variable discount setting its value to 0 if the variable amount is lower than 100 euros, to 10% if it is higher.

[6]:

amount = 110
discount = 0

if(amount >100):
 discount = 0.1
else:
 discount = 0 # not necessary

print("Total amount:", amount, "discount:", discount)

Total amount: 110 discount: 0.1

The previous code can be written more coincisely as:

[7]:

amount = 110
discount = 0.1 if amount > 100 else 0
print("Total amount:", amount, "discount:", discount)

Total amount: 110 discount: 0.1

The basic syntax of the ternary operator is:

variable = value if condition else other_value

meaning that the variable is initialized to value if the condition holds, otherwise to other_value.

Python also allows in line operations separated by a “;”

[8]:

a = 10; b = a + 1; c = b +2
print(a,b,c)

10 11 13

Note: Although the ternary operator and in line operations are sometimes useful and less verbose than the explicit definition, they are considered “non-pythonic” and advised against.

Loops

Looping is the ability of repeating a specific block of code several times (i.e. until a specific condition is True or there are no more elements to process).

For loop

The for loop is used to loop over a collection of objects (e.g. a string, list, tuple, …). The basic syntax of the for loop is the following:

for elem in collection :
 # OK, do something with elem
 # instruction 1
 # instruction 2

the variable elem will get the value of each one of the elements present in collectionone after the other. The end of the block of code to be executed for each element in the collection is again defined by indentation.

Depending on the type of the collection elem will get different values. Recall from the lecture that:

[image: type iteration u2yue9]

Let’s see this in action:

[9]:

S = "Hi there from python"
Slist = S.split(" ")
Stuple = ("Hi","there","from","python")
print("String:", S)
print("List:", Slist)
print("Tuple:", Stuple)

String: Hi there from python
List: ['Hi', 'there', 'from', 'python']
Tuple: ('Hi', 'there', 'from', 'python')

[10]:

#for loop on string
print("On strings:")
for c in S:
 print(c)

On strings:
H
i

t
h
e
r
e

f
r
o
m

p
y
t
h
o
n

[11]:

print("\nOn lists:")
#for loop on list
for item in Slist:
 print(item)

On lists:
Hi
there
from
python

[12]:

print("\nOn tuples:")
#for loop on list
for item in Stuple:
 print(item)

On tuples:
Hi
there
from
python

Looping over a range

It is possible to loop over a range of values with the python built-in function range. The range function accepts either two or three parameters (all of them are integers). Similarly to the slicing operator, it needs the starting point, end point and an optional step.

Three distinct syntaxes are available:

range(E) # ranges from 0 to E-1
range(S,E) # ranges from S to E-1
range(S,E,step) # ranges from S to E-1 with +step jumps

Remember that S is included while E is excluded. Let’s see some examples.

Example: Given a list of integers, return a list with all the even numbers.

[13]:

myList = [1, 7, 9, 121, 77, 82]
onlyEven = []

for i in range(0, len(myList)): #this is equivalent to range(len(myList)):
 if(myList[i] % 2 == 0):
 onlyEven.append(myList[i])

print("original list:", myList)
print("only even numbers:", onlyEven)

original list: [1, 7, 9, 121, 77, 82]
only even numbers: [82]

Example: Store in a list the multiples of 19 between 1 and 100.

[14]:

multiples = []

for i in range(19,101,19):
 multiples.append(i)

print("multiples of 19: ", multiples)

#alternative way:
multiples = []
for i in range(1, (100//19) + 1):
 multiples.append(i*19)
print("multiples of 19:", multiples)

multiples of 19: [19, 38, 57, 76, 95]
multiples of 19: [19, 38, 57, 76, 95]

Note: range works differently in Python 2.x and 3.x

In Python 3 the range function returns an iterator rather storing the entire list.

[15]:

#Check out the difference:
print(range(0,10))

print(list(range(0,10)))

range(0, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Example: Let’s consider the two DNA strings s1 = “ATACATATAGGGCCAATTATTATAAGTCAC” and s2 = “CGCCACTTAAGCGCCCTGTATTAAAGTCGC” that have the same length. Let’s create a third string \(out\) such that \(out[i]\) is \("|"\) if \(s1[i]==s2[i]\), \("\ "\) otherwise.

[16]:

s1 = "ATACATATAGGGCCAATTATTATAAGTCAC"
s2 = "CGCCACTTAAGCGCCCTGTATTAAAGTCGC"

outSTR = ""
for i in range(len(s1)):
 if(s1[i] == s2[i]):
 outSTR = outSTR + "|"
 else:
 outSTR = outSTR + " "

print(s1)
print(outSTR)
print(s2)

ATACATATAGGGCCAATTATTATAAGTCAC
 || || | | | | ||||| |
CGCCACTTAAGCGCCCTGTATTAAAGTCGC

Nested for loops

In some occasions it is useful to nest one (or more) for loops into another one. The basic syntax is:

for i in collection:
 for j in another_collection:
 # do some stuff with i and j

Example:

Given the matrix \(\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix}\) stored as a list of lists (i.e. matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]].

Print it out as: \(\begin{matrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{matrix}\)

[17]:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

for i in range(len(matrix)):
 line = ""
 for j in range(len(matrix[i])):
 line = line + str(matrix[i][j]) + " " #note int --> str conversion!
 print(line)

1 2 3
4 5 6
7 8 9

While loops

The for loop is great when we have to iterate over a finite sequence of elements. But when one needs to loop until a specific condition holds true, another construct must be used: the while statement. The loop will end when the condition becomes false.

The basic syntax is the following:

while condition:

 # do something
 # update the value of condition

An example follows:

[18]:

i = 0
while (i < 5):
 print("i now is:", i)
 i = i + 1 #THIS IS VERY IMPORTANT!

i now is: 0
i now is: 1
i now is: 2
i now is: 3
i now is: 4

Note that if condition is false at the beginning the block of code is never executed.

Note: The loop will continue until condition holds true and the only code executed is the block defined through the indentation. This block of code must update the value of condition otherwise the interpreter will get stuck in the loop and will never exit.

We can combine for loops and while loops one into the code block of the other:

Break and continue

Sometimes it is useful to skip an entire iteration of a loop or end the loop before its supposed end. This can be achieved with two different statements: continue and break.

Continue statement

Within a for or while loop, continue makes the interpreter skip that iteration and move to the next.

Example: Print all the odd numbers from 1 to 20.

[19]:

#Two equivalent ways
#1. Testing remainder == 1
for i in range(21):
 if(i % 2 == 1):
 print(i, end = " ")

print("")

#2. Skipping if remainder == 0 in for
for i in range(21):
 if(i % 2 == 0):
 continue
 print(i, end = " ")

1 3 5 7 9 11 13 15 17 19
1 3 5 7 9 11 13 15 17 19

Continue can be used also within while loops but we need to be careful to update the value of the variable before reaching the continue statement or we will get stuck in never-ending loops. Example: Print all the odd numbers from 1 to 20.

#Wrong code:
i = 0
while (i < 21):
 if(i % 2 == 0):
 continue
 print(i, end = " ")
 i = i + 1 # NEVER EXECUTED IF i % 2 == 0!!!!

a possible correct solution using while:

[20]:

i = -1
while(i< 20): #i is incremented in the loop, so 20!!!
 i = i + 1 #the variable is updated no matter what
 if(i % 2 == 0):
 continue
 print(i, end = " ")

1 3 5 7 9 11 13 15 17 19

Break statement

Within a for or while loop, break makes the interpreter exit the loop and continue with the sequential execution. Sometimes it is useful to get out of the loop if to complete our task we do not need to get to the end of the loop.

Example: Given the following list of integers [1,5,6,4,7,1,2,3,7] print them until a number already printed is found.

[21]:

L = [1,5,6,4,7,1,2,3,7]
found = []
for i in L:
 if(i in found):
 break

 found.append(i)
 print(i, end = " ")

1 5 6 4 7

Example: Pick a random number from 1 and 50 and count how many times it takes to randomly choose number 27. Limit the number of random picks to 40 (i.e. if more than 40 picks have been done and 27 has not been found exit anyway with a message).

[22]:

import random

iterations = 1
picks = []
while(iterations <= 40):
 pick = random.randint(1,50)
 picks.append(pick)

 if(pick == 27):
 break
 iterations += 1

if(iterations == 41):
 print("Sorry number 27 was never found!")
else:
 print("27 found in ", iterations, "iterations")

print(picks)

Sorry number 27 was never found!
[22, 12, 16, 22, 19, 41, 50, 20, 37, 47, 18, 42, 33, 19, 18, 16, 8, 16, 36, 31, 1, 49, 19, 38, 34, 18, 45, 30, 26, 44, 7, 23, 37, 12, 38, 43, 42, 26, 46, 41]

An alternative way without using the break statement makes use of a flag variable (that when changes value will make the loop end):

[23]:

import random
found = False # This is called flag
iterations = 1
picks = []
while iterations <= 40 and found == False: #the flag is used to exit
 pick = random.randint(1,50)
 picks.append(pick)
 if pick == 27:
 found = True #update the flag, will exit at next iteration
 iterations += 1

if iterations == 41 and not found:
 print("Sorry number 27 was never found!")
else:
 print("27 found in ", iterations -1, "iterations")

print(picks)

Sorry number 27 was never found!
[40, 46, 29, 29, 38, 1, 12, 41, 19, 39, 8, 10, 5, 18, 31, 50, 38, 18, 9, 46, 22, 47, 36, 41, 7, 43, 24, 39, 50, 47, 15, 10, 34, 8, 6, 23, 9, 1, 24, 18]

[24]:

for i in range(1,10): # or without string output
 j = 1 # for i in range(1,10):
 output = "" # j = 1
 while(j<= i): # while(j<=i):
 output = str(j) + " " + output # print(j, end = " ")
 j = j + 1 # j = j + 1
 print(output) # print("")

1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

Exercises

	Given the integer 134479170, print if it is divisible for the numbers from 2 to 16. Hint: use for and if.

Show/Hide Solution

[25]:

val = 134479170
flag = False

for divisor in range(2,17):
 if val % divisor == 0:
 print(val, " can be divided by ", divisor)
 print("\t", divisor, "*", val//divisor, "=", val)
 flag = True

if flag == False:
 print("Sorry, could not find divisors")

134479170 can be divided by 2
 2 * 67239585 = 134479170
134479170 can be divided by 3
 3 * 44826390 = 134479170
134479170 can be divided by 5
 5 * 26895834 = 134479170
134479170 can be divided by 6
 6 * 22413195 = 134479170
134479170 can be divided by 7
 7 * 19211310 = 134479170
134479170 can be divided by 9
 9 * 14942130 = 134479170
134479170 can be divided by 10
 10 * 13447917 = 134479170
134479170 can be divided by 14
 14 * 9605655 = 134479170
134479170 can be divided by 15
 15 * 8965278 = 134479170

	Given the DNA string “GATTACATATATCAGTACAGATATATACGCGCGGGCTTACTATTAAAAACCCC”, write a Python script that reverse-complements it. To reverse-complement a string of DNA, one needs to replace and A with T, T with A, C with G and G with C, while any other character is complemented in N. Finally, the sequence has to be reversed (e.g. the first base becomes the last). For example, ATCG becomes CGAT.

Show/Hide Solution

[26]:

DNA = "GATTACATATATCAGTACAGATATATACGCGCGGGCTTACTATTAAAAACCCC"

revComp = ""
for base in DNA:
 if base == "T":
 revComp = "A"+ revComp
 elif base == "A":
 revComp = "T"+ revComp
 elif base == "C":
 revComp = "G"+ revComp
 elif base == "G":
 revComp = "C" + revComp
 else:
 revComp = "N" + revComp

print("5'-", DNA, "-3'")
print("3'-", revComp, "-5'")

5'- GATTACATATATCAGTACAGATATATACGCGCGGGCTTACTATTAAAAACCCC -3'
3'- GGGGTTTTTAATAGTAAGCCCGCGCGTATATATCTGTACTGATATATGTAATC -5'

[27]:

""" Another solution"""

DNA = "GATTACATATATCAGTACAGATATATACGCGCGGGCTTACTATTAAAAACCCC"

dna_list = list(DNA)
print(dna_list)
compl = []
for el in dna_list:
 if el == 'A':
 compl.append('T')
 elif el == 'T':
 compl.append('A')
 elif el == 'C':
 compl.append('G')
 elif el == 'G':
 compl.append('C')
 else:
 compl.append('N')
print(compl)
compl.reverse()
print(compl)
print("".join(compl))

['G', 'A', 'T', 'T', 'A', 'C', 'A', 'T', 'A', 'T', 'A', 'T', 'C', 'A', 'G', 'T', 'A', 'C', 'A', 'G', 'A', 'T', 'A', 'T', 'A', 'T', 'A', 'C', 'G', 'C', 'G', 'C', 'G', 'G', 'G', 'C', 'T', 'T', 'A', 'C', 'T', 'A', 'T', 'T', 'A', 'A', 'A', 'A', 'A', 'C', 'C', 'C', 'C']
['C', 'T', 'A', 'A', 'T', 'G', 'T', 'A', 'T', 'A', 'T', 'A', 'G', 'T', 'C', 'A', 'T', 'G', 'T', 'C', 'T', 'A', 'T', 'A', 'T', 'A', 'T', 'G', 'C', 'G', 'C', 'G', 'C', 'C', 'C', 'G', 'A', 'A', 'T', 'G', 'A', 'T', 'A', 'A', 'T', 'T', 'T', 'T', 'T', 'G', 'G', 'G', 'G']
['G', 'G', 'G', 'G', 'T', 'T', 'T', 'T', 'T', 'A', 'A', 'T', 'A', 'G', 'T', 'A', 'A', 'G', 'C', 'C', 'C', 'G', 'C', 'G', 'C', 'G', 'T', 'A', 'T', 'A', 'T', 'A', 'T', 'C', 'T', 'G', 'T', 'A', 'C', 'T', 'G', 'A', 'T', 'A', 'T', 'A', 'T', 'G', 'T', 'A', 'A', 'T', 'C']
GGGGTTTTTAATAGTAAGCCCGCGCGTATATATCTGTACTGATATATGTAATC

	Write a python script that creates the following pattern:

+
++
+++
++++
+++++
++++++
+++++++ <-- 7
++++++
+++++
++++
+++
++
+

Show/Hide Solution

[28]:

outStr = ""
for i in range(0,7):
 outStr = ""
 for j in range(0,i+1):
 outStr = outStr + "+"
 if(i == 6):
 outStr = outStr + " <-- 7"

 print(outStr)

for i in range(1,7):
 outStr = ""
 for j in range(0, 7-i):
 outStr = outStr + "+"
 print(outStr)

+
++
+++
++++
+++++
++++++
+++++++ <-- 7
++++++
+++++
++++
+++
++
+

	Count how many of the first 100 integers are divisible by 2, 3, 5, 7 but not by 10 and print these counts. Be aware that a number can be divisible by more than one of these numbers (e.g. 6) and therefore it must be counted as divisible by all of them (e.g. 6 must be counted as divisible by 2 and 3).

Show/Hide Solution

[29]:

cnts = [0,0,0,0] #cnts[0] counts for 2, cnts[1] counts for 3...
vals = [2,3,5,7]
for i in range(1,101):
 if (i % 2 == 0 and i % 10 != 0):
 cnts[0] = cnts[0] + 1

 if (i % 3 == 0 and i % 10 != 0):
 cnts[1] = cnts[1] + 1

 if (i % 5 == 0 and i % 10 != 0):
 cnts[2] = cnts[2] + 1

 if (i % 7 == 0 and i % 10 != 0):
 cnts[3] = cnts[3] + 1

for i in range(0, len(cnts)):
 print(cnts[i], " numbers are divisible by ", vals[i], "(but not 10) in the first 100")

40 numbers are divisible by 2 (but not 10) in the first 100
30 numbers are divisible by 3 (but not 10) in the first 100
10 numbers are divisible by 5 (but not 10) in the first 100
13 numbers are divisible by 7 (but not 10) in the first 100

5. Given the following fastq entry:@HWI-ST1296:75:C3F7CACXX:1:1101:19142:14904
CCAACAACTTTGACGCTAAGGATAGCTCCATGGCAGCATATCTGGCACAA
+
FHIIJIJJGIJJJJJ1HHHFFFFFEE:;CIDDDDDDDDDDDDEDDD-./0

Store the sequence and the quality in two strings. Create a list with all the quality phred scores (given a quality character “X” the phred score is: ord(“X”) -33. Finally print all the bases that have quality lower than 25, reporting the base, its position, quality character and phred score. Output example: base: C index: 14 qual:1 phred: 16).

Show/Hide Solution

[30]:

entry = """@HWI-ST1296:75:C3F7CACXX:1:1101:19142:14904
CCAACAACTTTGACGCTAAGGATAGCTCCATGGCAGCATATCTGGCACAA
+
FHIIJIJJGIJJJJJ1HHHFFFFFEE:;CIDDDDDDDDDDDDEDDD-./0"""

lines = entry.split("\n")
seq = lines[1]
qual = lines[3]

phredScores = []
for i in range(len(qual)):
 phredScores.append(ord(qual[i]) - 33)

for i in range(len(seq)):
 if(phredScores[i] <25):
 print("base:",seq[i],"index:",i,"qual:",qual[i],"phredScore:",phredScores[i])

base: C index: 15 qual: 1 phredScore: 16
base: A index: 46 qual: - phredScore: 12
base: C index: 47 qual: . phredScore: 13
base: A index: 48 qual: / phredScore: 14
base: A index: 49 qual: 0 phredScore: 15

	Given the following sequence:

AUGCUGUCUCCCUCACUGUAUGUAAAUUGCAUCUAGAAUAGCA
UCUGGAGCACUAAUUGACACAUAGUGGGUAUCAAUUAUUA
UUCCAGGUACUAGAGAUACCUGGACCAUUAACGGAUAAAU
AGAAGAUUCAUUUGUUGAGUGACUGAGGAUGGCAGUUCCU
GCUACCUUCAAGGAUCUGGAUGAUGGGGAGAAACAGAGAA
CAUAGUGUGAGAAUACUGUGGUAAGGAAAGUACAGAGGAC
UGGUAGAGUGUCUAACCUAGAUUUGGAGAAGGACCUAGAA
GUCUAUCCCAGGGAAAUAAAAAUCUAAGCUAAGGUUUGAG
GAAUCAGUAGGAAUUGGCAAAGGAAGGACAUGUUCCAGAU
GAUAGGAACAGGUUAUGCAAAGAUCCUGAAAUGGUCAGAG
CUUGGUGCUUUUUGAGAACCAAAAGUAGAUUGUUAUGGAC
CAGUGCUACUCCCUGCCUCUUGCCAAGGGACCCCGCCAAG
CACUGCAUCCCUUCCCUCUGACUCCACCUUUCCACUUGCC
CAGUAUUGUUGGUGU

Considering the genetic code and the first forward open reading frame (i.e. the string as it is remembering to remove newlines).

[image: image0]

	How many start codons are present in the whole sequence (i.e. AUG)?

	How many stop codons (i.e. UAA,UAG, UGA)

	Create another string in which any codon with except the start and stop codons are substituted with “—” and print the resulting string.

Show/Hide Solution

[31]:

seq ="""AUGCUGUCUCCCUCACUGUAUGUAAAUUGCAUCUAGAAUAGCA
UCUGGAGCACUAAUUGACACAUAGUGGGUAUCAAUUAUUA
UUCCAGGUACUAGAGAUACCUGGACCAUUAACGGAUAAAU
AGAAGAUUCAUUUGUUGAGUGACUGAGGAUGGCAGUUCCU
GCUACCUUCAAGGAUCUGGAUGAUGGGGAGAAACAGAGAA
CAUAGUGUGAGAAUACUGUGGUAAGGAAAGUACAGAGGAC
UGGUAGAGUGUCUAACCUAGAUUUGGAGAAGGACCUAGAA
GUCUAUCCCAGGGAAAUAAAAAUCUAAGCUAAGGUUUGAG
GAAUCAGUAGGAAUUGGCAAAGGAAGGACAUGUUCCAGAU
GAUAGGAACAGGUUAUGCAAAGAUCCUGAAAUGGUCAGAG
CUUGGUGCUUUUUGAGAACCAAAAGUAGAUUGUUAUGGAC
CAGUGCUACUCCCUGCCUCUUGCCAAGGGACCCCGCCAAG
CACUGCAUCCCUUCCCUCUGACUCCACCUUUCCACUUGCC
CAGUAUUGUUGGUG"""

seq = seq.replace("\n","")

countStart = 0
countEnd = 0

newSeq = ""
i = 0
while i < len(seq):
 codon = seq[i:i+3]
 if(codon == "AUG"):
 countStart = countStart + 1

 elif (codon == "UAA" or codon == "UAG" or codon == "UGA"):
 countEnd = countEnd + 1
 else:
 codon = "---"

 newSeq = newSeq + codon
 i = i + 3

print("\nNumber of start codons:", countStart)
print("Number of end codons:", countEnd)
print("\n")
print(seq)
print("\n")
print(newSeq)

Number of start codons: 2
Number of end codons: 12

AUGCUGUCUCCCUCACUGUAUGUAAAUUGCAUCUAGAAUAGCAUCUGGAGCACUAAUUGACACAUAGUGGGUAUCAAUUAUUAUUCCAGGUACUAGAGAUACCUGGACCAUUAACGGAUAAAUAGAAGAUUCAUUUGUUGAGUGACUGAGGAUGGCAGUUCCUGCUACCUUCAAGGAUCUGGAUGAUGGGGAGAAACAGAGAACAUAGUGUGAGAAUACUGUGGUAAGGAAAGUACAGAGGACUGGUAGAGUGUCUAACCUAGAUUUGGAGAAGGACCUAGAAGUCUAUCCCAGGGAAAUAAAAAUCUAAGCUAAGGUUUGAGGAAUCAGUAGGAAUUGGCAAAGGAAGGACAUGUUCCAGAUGAUAGGAACAGGUUAUGCAAAGAUCCUGAAAUGGUCAGAGCUUGGUGCUUUUUGAGAACCAAAAGUAGAUUGUUAUGGACCAGUGCUACUCCCUGCCUCUUGCCAAGGGACCCCGCCAAGCACUGCAUCCCUUCCCUCUGACUCCACCUUUCCACUUGCCCAGUAUUGUUGGUG

AUG------------------------------UAG---------------------UGA---------------------------------UAG---------------UAA------------------------UGA--UGA------------------------UGA---------------------------------UAG------UAA--UAA---------------UAG--AUG---UGA---------------------------------

	Playing time! Write a python scripts that:

	Picks a random number from 1 to 10, with: import random myInt = random.randint(1,10)

	Asks the user to guess a number and checks if the user has guessed the right one

	If the guess is right the program will stop with a congratulation message

	If the guess is wrong the program will continue asking a number, reporting the numbers already guessed (hint: store them in a list and print it).

	Modify the program to notify the user if he/she inputs the same number more than once.

Show/Hide Solution

import random
myInt = random.randint(1,10)
guessedNumbers = []

found = False
while (found == False):
 userInt = int(input("Guess a number from 1 to 10: "))
 if(userInt == myInt):
 print("Congratulations. The number I guessed was ", myInt)
 found = True
 else:
 if(userInt in guessedNumbers):
 print("You already guessed ", userInt)
 else:
 guessedNumbers.append(userInt)
 guessedNumbers.sort()
 print("Nope, try again. So far you guessed: ", guessedNumbers)

Guess a number from 1 to 10: 4
Nope, try again. So far you guessed: [4]
Guess a number from 1 to 10: 5
Nope, try again. So far you guessed: [4, 5]
Guess a number from 1 to 10: 1
Congratulations. The number I guessed was 1

[32]:

SOLUTION

[]:

 Functions - solutions

Functions - solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/functions]

Introduction

References:

A function takes some parameters and uses them to produce or report some result.

In this notebook we will see how to define functions to reuse code, and talk about the scope of variables

References

	Andrea Passerini slides A04 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A04-functions.pdf]

	Thinking in Python, Chapter 3, Functions [http://greenteapress.com/thinkpython2/html/thinkpython2004.html]

	Thinking in Python, Chapter 6, Fruitful functions [http://greenteapress.com/thinkpython2/html/thinkpython2007.html] NOTE: in the book they use the weird term ‘fruitful functions’ for those functions which RETURN a value (mind you, RETURN a value, which is different from PRINTing it), and use also the term ‘void functions’ for functions which do not return anything but have some effect like PRINTing to screen. Please ignore these terms.

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- functions
 |- functions-exercise.ipynb
 |- functions-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/functions/functions-exercise.ipynb

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

What is a function ?

A function is a block of code that has a name and that performs a task. A function can be thought of as a box that gets an input and returns an output.

Why should we use functions? For a lot of reasons including:

	Reduce code duplication: put in functions parts of code that are needed several times in the whole program so that you don’t need to repeat the same code over and over again;

	Decompose a complex task: make the code easier to write and understand by splitting the whole program in several easier functions;

both things improve code readability and make your code easier to understand.

The basic definition of a function is:

def function_name(input) :
 #code implementing the function
 ...
 ...
 return return_value

Functions are defined with the def keyword that proceeds the function_name and then a list of parameters is passed in the brackets. A colon : is used to end the line holding the definition of the function. The code implementing the function is specified by using indentation. A function might or might not return a value. In the first case a return statement is used.

Example:

Define a function that implements the sum of two integer lists (note that there is no check that the two lists actually contain integers and that they have the same size).

[2]:

def int_list_sum(la,lb):
 """implements the sum of two lists of integers having the same size
 """
 ret =[]
 for i in range(len(la)):
 ret.append(la[i] + lb[i])
 return ret

La = list(range(1,10))
print("La:", La)

La: [1, 2, 3, 4, 5, 6, 7, 8, 9]

[3]:

Lb = list(range(20,30))
print("Lb:", Lb)

Lb: [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

[4]:

res = int_list_sum(La,Lb)

[5]:

print("La+Lb:", res)

La+Lb: [21, 23, 25, 27, 29, 31, 33, 35, 37]

[6]:

res = int_list_sum(La,La)

[7]:

print("La+La", res)

La+La [2, 4, 6, 8, 10, 12, 14, 16, 18]

Note that once the function has been defined, it can be called as many times as wanted with different input parameters. Moreover, a function does not do anything until it is actually called. A function can return 0 (in this case the return value would be “None”), 1 or more results. Notice also that collecting the results of a function is not mandatory.

Example: Let’s write a function that, given a list of elements, prints only the even-placed ones without returning anything.

[8]:

def get_even_placed(myList):
 """returns the even placed elements of myList"""
 ret = [myList[i] for i in range(len(myList)) if i % 2 == 0]
 print(ret)

[9]:

L1 = ["hi", "there", "from","python","!"]

[10]:

L2 = list(range(13))

[11]:

print("L1:", L1)

L1: ['hi', 'there', 'from', 'python', '!']

[12]:

print("L2:", L2)

L2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

[13]:

print("even L1:")
get_even_placed(L1)

even L1:
['hi', 'from', '!']

[14]:

print("even L2:")
get_even_placed(L2)

even L2:
[0, 2, 4, 6, 8, 10, 12]

Note that the function above is polymorphic (i.e. it works on several data types, provided that we can iterate through them).

Example: Let’s write a function that, given a list of integers, returns the number of elements, the maximum and minimum.

[15]:

def get_info(myList):
 """returns len of myList, min and max value (assumes elements are integers)"""
 tmp = myList[:] #copy the input list
 tmp.sort()
 return len(tmp), tmp[0], tmp[-1] #return type is a tuple

A = [7, 1, 125, 4, -1, 0]

print("Original A:", A, "\n")

Original A: [7, 1, 125, 4, -1, 0]

[16]:

result = get_info(A)

[17]:

print("Len:", result[0], "Min:", result[1], "Max:",result[2], "\n")

Len: 6 Min: -1 Max: 125

[18]:

print("A now:", A)

A now: [7, 1, 125, 4, -1, 0]

[19]:

def my_sum(myList):
 ret = 0
 for el in myList:
 ret += el # == ret = ret + el
 return ret

A = [1,2,3,4,5,6]
B = [7, 9, 4]

[20]:

s = my_sum(A)

[21]:

print("List A:", A)
print("Sum:", s)

List A: [1, 2, 3, 4, 5, 6]
Sum: 21

[22]:

s = my_sum(B)

[23]:

print("List B:", B)
print("Sum:", s)

List B: [7, 9, 4]
Sum: 20

Please note that the return value above is actually a tuple. Importantly enough, a function needs to be defined (i.e. its code has to be written) before it can actually be used.

[24]:

A = [1,2,3]
my_sum(A)

def my_sum(myList):
 ret = 0
 for el in myList:
 ret += el
 return ret

Namespace and variable scope

Namespaces are mappings from names to objects, or in other words places where names are associated to objects. Namespaces can be considered as the context. According to Python’s reference a scope is a textual region of a Python program, where a namespace is directly accessible, which means that Python will look into that namespace to find the object associated to a name. Four namespaces are made available by Python:

	Local: the innermost that contains local names (inside a function or a class);

	Enclosing: the scope of the enclosing function, it does not contain local nor global names (nested functions) ;

	Global: contains the global names;

	Built-in: contains all built in names (e.g. print, if, while, for,…)

When one refers to a name, Python tries to find it in the current namespace, if it is not found it continues looking in the namespace that contains it until the built-in namespace is reached. If the name is not found there either, the Python interpreter will throw a NameError exception, meaning it cannot find the name. The order in which namespaces are considered is: Local, Enclosing, Global and Built-in (LEGB).

Consider the following example:

[25]:

def my_function():
 var = 1 #local variable
 print("Local:", var)
 b = "my string"
 print("Local:", b)

var = 7 #global variable
my_function()
print("Global:", var)
print(b)

Local: 1
Local: my string
Global: 7

NameError Traceback (most recent call last)
<ipython-input-56-7dd8330a24f0> in <module>
 8 my_function()
 9 print("Global:", var)
---> 10 print(b)

NameError: name 'b' is not defined

Variables defined within a function can only be seen within the function. That is why variable b is defined only within the function. Variables defined outside all functions are global to the whole program. The namespace of the local variable is within the function my_function, while outside it the variable will have its global value.

And the following:

[26]:

def outer_function():
 var = 1 #outer

 def inner_function():
 var = 2 #inner
 print("Inner:", var)
 print("Inner:", B)

 inner_function()
 print("Outer:", var)

var = 3 #global
B = "This is B"
outer_function()
print("Global:", var)
print("Global:", B)

Inner: 2
Inner: This is B
Outer: 1
Global: 3
Global: This is B

Note in particular that the variable B is global, therefore it is accessible everywhere and also inside the inner_function. On the contrary, the value of var defined within the inner_function is accessible only in the namespace defined by it, outside it will assume different values as shown in the example.

In a nutshell, remember the three simple rules seen in the lecture. Within a def:

1. Name assignments create local names by default;
2. Name references search the following four scopes in the order:
local, enclosing functions (if any), then global and finally built-in (LEGB)
3. Names declared in global and nonlocal statements map assigned names to
enclosing module and function scopes.

Argument passing

Arguments are the parameters and data we pass to functions. When passing arguments, there are three important things to bear in mind are:

	Passing an argument is actually assigning an object to a local variable name;

	Assigning an object to a variable name within a function does not affect the caller;

	Changing a mutable object variable name within a function affects the caller

Consider the following examples:

[27]:

"""Assigning the argument does not affect the caller"""

def my_f(x):
 x = "local value" #local
 print("Local: ", x)

x = "global value" #global
my_f(x)
print("Global:", x)
my_f(x)

Local: local value
Global: global value
Local: local value

[28]:

"""Changing a mutable affects the caller"""

def my_f(myList):
 myList[1] = "new value1"
 myList[3] = "new value2"
 print("Local: ", myList)

myList = ["old value"]*4
print("Global:", myList)
my_f(myList)
print("Global now: ", myList)

Global: ['old value', 'old value', 'old value', 'old value']
Local: ['old value', 'new value1', 'old value', 'new value2']
Global now: ['old value', 'new value1', 'old value', 'new value2']

Recall what seen in the lecture:

[image: argument passing 312j23]

The behaviour above is because immutable objects are passed by value (therefore it is like making a copy), while mutable objects are passed by reference (therefore changing them effectively changes the original object).

To avoid making changes to a mutable object passed as parameter one needs to explicitely make a copy of it.

Consider the example seen before. Example: Let’s write a function that, given a list of integers, returns the number of elements, the maximum and minimum.

[29]:

def get_info(myList):
 """returns len of myList, min and max value (assumes elements are integers)"""
 myList.sort()
 return len(myList), myList[0], myList[-1] #return type is a tuple

def get_info_copy(myList):
 """returns len of myList, min and max value (assumes elements are integers)"""
 tmp = myList[:] #copy the input list!!!!
 tmp.sort()
 return len(tmp), tmp[0], tmp[-1] #return type is a tuple

A = [7, 1, 125, 4, -1, 0]
B = [70, 10, 1250, 40, -10, 0, 10]

print("A:", A)
result = get_info(A)

A: [7, 1, 125, 4, -1, 0]

[30]:

print("Len:", result[0], "Min:", result[1], "Max:",result[2])

Len: 6 Min: -1 Max: 125

[31]:

print("A now:", A) #whoops A is changed!!!

A now: [-1, 0, 1, 4, 7, 125]

[32]:

print("\nB:", B)

B: [70, 10, 1250, 40, -10, 0, 10]

[33]:

result = get_info_copy(B)

[34]:

print("Len:", result[0], "Min:", result[1], "Max:",result[2])

Len: 7 Min: -10 Max: 1250

[35]:

print("B now:", B) #B is not changed!!!

B now: [70, 10, 1250, 40, -10, 0, 10]

Positional arguments

Arguments can be passed to functions following the order in which they appear in the function definition.

Consider the following example:

[36]:

def print_parameters(a,b,c,d):
 print("1st param:", a)
 print("2nd param:", b)
 print("3rd param:", c)
 print("4th param:", d)

print_parameters("A", "B", "C", "D")

1st param: A
2nd param: B
3rd param: C
4th param: D

Passing arguments by keyword

Given the name of an argument as specified in the definition of the function, parameters can be passed using the name = value syntax.

For example:

[37]:

def print_parameters(a,b,c,d):
 print("1st param:", a)
 print("2nd param:", b)
 print("3rd param:", c)
 print("4th param:", d)

print_parameters(a = 1, c=3, d=4, b=2)

1st param: 1
2nd param: 2
3rd param: 3
4th param: 4

[38]:

print_parameters("first","second",d="fourth",c="third")

1st param: first
2nd param: second
3rd param: third
4th param: fourth

Arguments passed positionally and by name can be used at the same time, but parameters passed by name must always be to the left of those passed by name. The following code in fact is not accepted by the Python interpreter:

def print_parameters(a,b,c,d):
 print("1st param:", a)
 print("2nd param:", b)
 print("3rd param:", c)
 print("4th param:", d)

print_parameters(d="fourth",c="third", "first","second")

File "<ipython-input-60-4991b2c31842>", line 7
 print_parameters(d="fourth",c="third", "first","second")
 ^
SyntaxError: positional argument follows keyword argument

Specifying default values

During the definition of a function it is possible to specify default values. The syntax is the following:

def my_function(par1 = val1, par2 = val2, par3 = val3):

Consider the following example:

[39]:

def print_parameters(a="defaultA", b="defaultB",c="defaultC"):
 print("a:",a)
 print("b:",b)
 print("c:",c)

print_parameters("param_A")

a: param_A
b: defaultB
c: defaultC

[40]:

print_parameters(b="PARAMETER_B")

a: defaultA
b: PARAMETER_B
c: defaultC

[41]:

print_parameters()

a: defaultA
b: defaultB
c: defaultC

[42]:

print_parameters(c="PARAMETER_C", b="PAR_B")

a: defaultA
b: PAR_B
c: PARAMETER_C

Simple exercises

sum2

✪ Write function sum2 which given two numbers x and y RETURN their sum

QUESTION: Why do we call it sum2 instead of just sum ??

[43]:

sum([2,51])

[43]:

53

ANSWER: sum is already defined as standard python function, we do not want to overwrite it. Look at how in the following snippet it displays in green:

>>> sum([5,8])
13

[44]:

write here

def sum2(x,y):
 return x + y

[45]:

s = sum2(3,6)
print(s)

9

[46]:

s = sum2(-1,3)
print(s)

2

comparep

✪ Write a function comparep which given two numbers x and y, PRINTS x is greater than y, x is less than y, x is equal to y

NOTE: in print, put real numbers. For example, comparep(10,5) should print:

10 is greater than 5

HINT: to print numbers and text, use commas in print:

print(x, " is greater than ")

[47]:

write here
def comparep(x,y):
 if x > y:
 print(x, " is greater than ", y)
 elif x < y:
 print(x, " is less than ", y)
 else:
 print(x, " is equal to ", y)

[48]:

comparep(10,5)

10 is greater than 5

[49]:

comparep(3,8)

3 is less than 8

[50]:

comparep(3,3)

3 is equal to 3

comparer

✪ Write function comparer which given two numbers x andy RETURN the STRING '>' if x is greater than y, the STRING '<'if x is less than y or the STRING '==' if x is equal to y

[51]:

write here
def comparer(x,y):
 if x > y:
 return '>'
 elif x < y:
 return '<'
 else:
 return '=='

[52]:

c = comparer(10,5)
print(c)

>

[53]:

c = comparer(3,7)
print(c)

<

[54]:

c = comparer(3,3)
print(c)

==

even

✪ Write a function even which given a number x, RETURN True if x is even, otherwise RETURN False

HINT: a number is even when the rest of division by two is zero. To obtaing the reminder of division, write x % 2

[55]:

Example:
2 % 2

[55]:

0

[56]:

3 % 2

[56]:

1

[57]:

4 % 2

[57]:

0

[58]:

5 % 2

[58]:

1

[59]:

write here
def even(x):
 return x % 2 == 0

[60]:

p = even(2)
print(p)

True

[61]:

p = even(3)
print(p)

False

[62]:

p = even(4)
print(p)

True

[63]:

p = even(5)
print(p)

False

[64]:

p = even(0)
print(p)

True

gre

✪ Write a function gre that given two numbers x and y, RETURN the greatest number.

If they are equal, RETURN any number.

[65]:

write here

def gre(x,y):
 if x > y:
 return x
 else:
 return y

[66]:

m = gre(3,5)
print(m)

5

[67]:

m = gre(6,2)
print(m)

6

[68]:

m = gre(4,4)
print(m)

4

[69]:

m = gre(-5,2)
print(m)

2

[70]:

m = gre(-5, -3)
print(m)

-3

is_vocal

✪ Write a function is_vocal in which a character car is passed as parameter, and PRINTs 'yes' if the carachter is a vocal, otherwise PRINTs 'no' (using the prints).

>>> is_vocal("a")
'yes'

>>> is_vocal("c")
'no'

[71]:

write here

def is_vocal(char):
 if char == 'a' or char == 'e' or char == 'i' or char == 'o' or char == 'u':
 print('yes')
 else:
 print('no')

sphere_volume

✪ The volume of a sphere of radius r is \(4/3 π r^3\)

Write a function sphere_volume(radius) which given a radius of a sphere, PRINTs the volume.

NOTE: assume pi = 3.14

>>> sphere_volume(4)
267.94666666666666

[72]:

write here

def sphere_volume(radius):
 print((4/3)*3.14*(radius**3))

ciri

✪ Write a function ciri(name) which takes as parameter the string name and RETURN True if it is equal to the name 'Cirillo'

>>> r = ciri("Cirillo")
>>> r
True

>>> r = ciri("Cirillo")
>>> r
False

[73]:

write here

def ciri(name):
 if name == "Cirillo":
 return True
 else:
 return False

age

✪ Write a function age which takes as parameter year of birth and RETURN the age of the person

**Suppose the current year is known, so to represent it in the function body use a constant like 2019:

>>> a = age(2003)
>>> print(a)
16

[74]:

write here

def age(year):
 return 2019 - year

Verify comprehension

Following exercises require you to know:

ATTENTION

Following exercises require you to know:

	Complex statements: Andrea Passerini slides A03 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A03-controlflow.pdf]

	Tests with asserts [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html#Testing-with-asserts]: Following exercises contain automated tests to help you spot errors. To understand how to do them, read before Error handling and testing [https://datasciprolab.readthedocs.io/en/latest/exercises/errors-and-testing/errors-and-testing-solution.html]

gre3

✪✪ Write a function gre3(a,b,c) which takes three numbers and RETURN the greatest among them

Examples:

>>> gre3(1,2,4)
4

>>> gre3(5,7,3)
7

>>> gre3(4,4,4)
4

[75]:

write ehere

def gre3(a,b,c):
 if a > b:
 if a>c:
 return a
 else:
 return c
 else:
 if b > c:
 return b
 else:
 return c

assert gre3(1,2,4) == 4
assert gre3(5,7,3) == 7
assert gre3(4,4,4) == 4

final_price

✪✪ The cover price of a book is € 24,95, but a library obtains 40% of discount. Shipping costs are € 3 for first copy and 75 cents for each additional copy. How much n copies cost ?

Write a function final_price(n) which RETURN the price.

ATTENTION 1: For numbers Python wants a dot, NOT the comma !

ATTENTION 2: If you ordered zero books, how much should you pay ?

HINT: the 40% of 24,95 can be calculated by multiplying the price by 0.40

>>> p = final_price(10)
>>> print(p)

159.45

>>> p = final_price(0)
>>> print(p)

0

[76]:

def final_price(n):
 #jupman-raise
 if n == 0:
 return 0
 else:
 return n* 24.95*0.6 + 3 +(n-1)*0.75
 #/jupman-raise

assert final_price(10) == 159.45
assert final_price(0) == 0

arrival_time

✪✪✪ By running slowly you take 8 minutes and 15 seconds per mile, and by running with moderate rhythm you take 7 minutes and 12 seconds per mile.

Write a function arrival_time(n,m) which, supposing you start at 6:52, given n miles run with slow rhythm and m with moderate rhythm, PRINTs arrival time.

	HINT 1: to calculate an integer division, use//

	HINT 2: to calculate the reminder of integer division, use the module operator %

>>> arrival_time(2,2)
7:22

[77]:

def arrival_time(n,m):
 #jupman-raise
 starting_hours = 6
 starting_minutes = 52

 # passed seconds
 seconds = n * 495 + m * 432

 # passed time
 seconds_two = seconds % 60
 minutes = seconds // 60
 hours = minutes // 60

 arrival_hours= hours + starting_hours
 arrival_minutes= minutes + starting_minutes

 final_minutes = arrival_minutes % 60
 final_hours = arrival_minutes // 60 + arrival_hours

 return str(final_hours) + ":" + str(final_minutes)
 #/jupman-raise

assert arrival_time(0,0) == '6:52'
assert arrival_time(2,2) == '7:22'
assert arrival_time(2,5) == '7:44'
assert arrival_time(8,5) == '9:34'

[]:

Lambda functions

Lambda functions are functions which:

	have no name

	are defined on one line, typically right where they are needed

	their body is an expression, thus you need no return

Let’s create a lambda function which takes a number x and doubles it:

[78]:

lambda x: x*2

[78]:

<function __main__.<lambda>(x)>

As you see, Python created a function object, which gets displayed by Jupyter. Unfortunately, at this point the function object got lost, because that is what happens to any object created by an expression that is not assigned to a variable.

To be able to call the function, we will thus convenient to assign such function object to a variable, say f:

[79]:

f = lambda x: x*2

[80]:

f

[80]:

<function __main__.<lambda>(x)>

Great, now we have a function we can call as many times as we want:

[81]:

f(5)

[81]:

10

[82]:

f(7)

[82]:

14

So writing

[83]:

def f(x):
 return x*2

or

[84]:

f = lambda x: x*2

are completely equivalent forms, the main difference being with def we can write functions with bodies on multiple lines. Lambdas may appear limited, so why should we use them? Sometimes they allow for very concise code. For example, imagine you have a list of tuples holding animals and their lifespan:

[85]:

animals = [('dog', 12), ('cat', 14), ('pelican', 30), ('eagle', 25), ('squirrel', 6)]

If you want to sort them, you can try the .sort method but it will not work:

[86]:

animals.sort()

[87]:

animals

[87]:

[('cat', 14), ('dog', 12), ('eagle', 25), ('pelican', 30), ('squirrel', 6)]

Clearly, this is not what we wanted. To get proper ordering, we need to tell python that when it considers a tuple for comparison, it should extract the lifespan number. To do so, Pyhton provides us with key parameter, which we must pass a function that takes as argument the list element under consideration (in this case a tuple) and will return a trasformation of it (in this case the number at 1-th position):

[88]:

animals.sort(key=lambda t: t[1])

[89]:

animals

[89]:

[('squirrel', 6), ('dog', 12), ('cat', 14), ('eagle', 25), ('pelican', 30)]

Now we got the ordering we wanted. We could have written the thing as

[90]:

def myf(t):
 return t[1]

animals.sort(key=myf)
animals

[90]:

[('squirrel', 6), ('dog', 12), ('cat', 14), ('eagle', 25), ('pelican', 30)]

but lambdas clearly save some keyboard typing

Notice lambdas can take multiple parameters:

[91]:

mymul = lambda x,y: x * y

mymul(2,5)

[91]:

10

Exercises: lambdas

apply_borders

✪ Write a function apply_borders which takes a function f as parameter and a sequence, and RETURN a tuple holding two elements:

	first element is obtained by applying f to the first element of the sequence

	second element is obtained by appling f to the last element of the sequence

Example:

>>> apply_borders(lambda x: x.upper(), ['the', 'river', 'is', 'very', 'long'])
('THE', 'LONG')
>>> apply_borders(lambda x: x[0], ['the', 'river', 'is', 'very', 'long'])
('t', 'l')

[92]:

write here

def apply_borders(f, seq):
 return (f(seq[0]), f(seq[-1]))

[93]:

print(apply_borders(lambda x: x.upper(), ['the', 'river', 'is', 'very', 'long']))
print(apply_borders(lambda x: x[0], ['the', 'river', 'is', 'very', 'long']))

('THE', 'LONG')
('t', 'l')

process

✪✪ Write a lambda expression to be passed as first parameter of the function process defined down here, so that a call to process generates a list as shown here:

>>> f = PUT_YOUR_LAMBDA_FUNCTION
>>> process(f, ['d','b','a','c','e','f'], ['q','s','p','t','r','n'])
['An', 'Bp', 'Cq', 'Dr', 'Es', 'Ft']

NOTE: process is already defined, you do not need to change it

[94]:

def process(f, lista, listb):
 orda = list(sorted(lista))
 ordb = list(sorted(listb))
 ret = []
 for i in range(len(lista)):
 ret.append(f(orda[i], ordb[i]))
 return ret

write here the f = lambda ...
f = lambda x,y: x.upper() + y

[95]:

process(f, ['d','b','a','c','e','f'], ['q','s','p','t','r','n'])

[95]:

['An', 'Bp', 'Cq', 'Dr', 'Es', 'Ft']

 Error handling and testing solutions

Error handling and testing solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/errors-and-testing]

Introduction

In this notebook we will try to understand what our program should do when it encounters unforeseen situations, and how to test the code we write. In particular, we will describe the exercise format as proposed in Part A and in Part B (they are different!)

For some strange reason, many people believe that computer programs do not need much error handling nor testing. Just to make a simple comparison, would you ever drive a car that did not undergo scrupolous checks? We wouldn’t.

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- errors-and-testing
 |- errors-and-testing-exercise.ipynb
 |- errors-and-testing-solution.ipynb

WARNING 1: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/strings/strings-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate to the unzipped folder while in Jupyter browser!

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Unforeseen situations

It is evening, there is to party for a birthday and they asked you to make a pie. You need the following steps:

	take milk

	take sugar

	take flour

	mix

	heat in the oven

You take the milk, the sugar, but then you discover there is no flour. It is evening, and there aren’t open shops. Obviously, it makes no sense to proceed to point 4 with the mixture, and you have to give up on the pie, telling the guest of honor the problem. You can only hope she/he decides for some alternative.

Translating everything in Python terms, we can ask ourselves if during the function execution, when we find an unforeseen situation, is it possible to:

	interrupt the execution flow of the program

	signal to whoever called the function that a problem has occurred

	allow to manage the problem to whoever called the function

The answer is yes, you can do it with the mechanism of exceptions (Exception)

make_problematic_pie

Let’s see how we can represent the above problem in Python. A basic version might be the following:

[2]:

def make_problematic_pie(milk, sugar, flour):
 """ Suppose you need 1.3 kg for the milk, 0.2kg for the sugar and 1.0kg for the flour

 - takes as parameters the quantities we have in the sideboard
 """

 if milk > 1.3:
 print("take milk")
 else:
 print("Don't have enough milk !")

 if sugar > 0.2:
 print("take sugar")
 else:
 print("Don't have enough sugar!")

 if flour > 1.0:
 print("take flour")
 else:
 print("Don't have enough flour !")

 print("Mix")
 print("Heat")
 print("I made the pie!")

make_problematic_pie(5,1,0.3) # not enough flour ...

print("Party")

take milk
take sugar
Don't have enough flour !
Mix
Heat
I made the pie!
Party

QUESTION: this above version has a serious problem. Can you spot it ??

ANSWER: the program above is partying even when we do not have enough ingredients !

Check with the return

EXERCISE: We could correct the problems of the above pie by adding return commands. Implement the following function.

WARNING: DO NOT move the print("Party") inside the function

The exercise goal is keeping it outside, so to use the value returned by make_pie for deciding whether to party or not.

If you have any doubts on functions with return values, check Chapter 6 of Think Python [http://greenteapress.com/thinkpython2/html/thinkpython2007.html]

[3]:

def make_pie(milk, sugar, flour):
 """ - suppose we need 1.3 kg for milk, 0.2kg for sugar and 1.0kg for flour

 - takes as parameters the quantities we have in the sideboard
 IMPROVE WITH return COMMAND: RETURN True if the pie is doable,
 False otherwise

 OUTSIDE USE THE VALUE RETURNED TO PARTY OR NOT

 """
 # implement here the function
 #jupman-strip
 if milk > 1.3:
 print("take milk")
 # return True # NO, it would finish right here
 else:
 print("Don't have enough milk !")
 return False

 if sugar > 0.2:
 print("take sugar")
 else:
 print("Don't have enouch sugar !")
 return False

 if flour > 1.0:
 print("take flour")
 else:
 print("Don't have enough flour !")
 return False

 print("Mix")
 print("Heat")
 print("I made the pie !")
 return True
 #/jupman-strip

now write here the function call, make_pie(5,1,0.3)
using the result to declare whether it is possible or not to party :-(

#jupman-strip
made_pie = make_pie(5,1,0.3)

if made_pie == True:
 print("Party")
else:
 print("No party !")
#/jupman-strip

take milk
take sugar
Don't have enough flour !
No party !

Exceptions

Real Python - Python Exceptions: an Introduction [https://realpython.com/python-exceptions/]

Using return we improved the previous function, but remains a problem: the responsability to understand whether or not the pie is properly made is given to the caller of the function, who has to take the returned value and decide upon that whether to party or not. A careless programmer might forget to do the check and party even with an ill-formed pie.

So we ask ourselves: is it possible to stop the execution not just of the function, but of the whole program when we find an unforeseen situation?

To improve on our previous attempt, we can use the exceptions. To tell Python to interrupt the program execution in a given point, we can insert the instruction raise like this:

raise Exception()

If we want, we can also write a message to help programmers (who could be ourselves …) to understand the problem origin. In our case it could be a message like this:

raise Exception("Don't have enough flour !")

Note: in professional programs, the exception messages are intended for programmers, verbose, and tipically end up hidden in system logs. To final users you should only show short messages which are understanble by a non-technical public. At most, you can add an error code which the user might give to the technician for diagnosing the problem.

EXERCISE: Try to rewrite the function above by substituting the rows containing return with raise Exception():

[4]:

def make_exceptional_pie(milk, sugar, flour):
 """ - suppose we need 1.3 kg for milk, 0.2kg for sugar and 1.0kg for flour

 - takes as parameters the quantities we have in the sideboard

 - if there are missing ingredients, raises Exception

 """
 # implement function
 #jupman-strip

 if milk > 1.3:
 print("take milk")
 else:
 raise Exception("Don't have enough milk !")
 if sugar > 0.2:
 print("take sugar")
 else:
 raise Exception("Don't have enough sugar!")
 if flour > 1.0:
 print("take flour")
 else:
 raise Exception("Don't have enough flour!")
 print("Mix")
 print("Heat")
 print("I made the pie !")
 #/jupman-strip

Once implemented, by writing

make_exceptional_pie(5,1,0.3)
print("Party")

you should see the following (note how “Party” is not printed):

take milk
take sugar

Exception Traceback (most recent call last)
<ipython-input-10-02c123f44f31> in <module>()
----> 1 make_exceptional_pie(5,1,0.3)
 2
 3 print("Party")

<ipython-input-9-030239f08ca5> in make_exceptional_pie(milk, sugar, flour)
 18 print("take flour")
 19 else:
---> 20 raise Exception("Don't have enough flour !")
 21 print("Mix")
 22 print("Heat")

Exception: Don't have enough flour !

We see the program got interrupted before arriving to mix step (inside the function), and it didn’t even arrived to party (which is outside the function). Let’s try now to call the function with enough ingredients in the sideboard:

[5]:

make_exceptional_pie(5,1,20)
print("Party")

take milk
take sugar
take flour
Mix
Heat
I made the pie !
Party

Manage exceptions

Instead of brutally interrupting the program when problems are spotted, we might want to try some alternative (like go buying some ice cream). We could use some try except blocks like this:

[6]:

try:
 make_exceptional_pie(5,1,0.3)
 print("Party")
except:
 print("Can't make the pie, what about going out for an ice cream?")

take milk
take sugar
Can't make the pie, what about going out for an ice cream?

If you note, the execution jumped the print("Party" but no exception has been printed, and the execution passed to the row right after the except

Particular exceptions

Until know we used a generic Exception, but, if you will, you can use more specific exceptions to better signal the nature of the error. For example, when you implement a function, since checking the input values for correctness is very frequent, Python gives you an exception called ValueError. If you use it instead of Exception, you allow the function caller to intercept only that particular error type.

If the function raises an error which is not intercepted in the catch, the program will halt.

[7]:

def make_exceptional_pie_2(milk, sugar, flour):
 """ - suppose we need 1.3 kg for milk, 0.2kg for sugar and 1.0kg for flour

 - takes as parameters the quantities we have in the sideboard

 - if there are missing ingredients, raises Exception
 """

 if milk > 1.3:
 print("take milk")
 else:
 raise ValueError("Don't have enough milk !")
 if sugar > 0.2:
 print("take sugar")
 else:
 raise ValueError("Don't have enough sugar!")
 if flour > 1.0:
 print("take flour")
 else:
 raise ValueError("Don't have enough flour!")
 print("Mix")
 print("Heat")
 print("I made the pie !")

try:
 make_exceptional_pie_2(5,1,0.3)
 print("Party")
except ValueError:
 print()
 print("There must be a problem with the ingredients!")
 print("Let's try asking neighbors !")
 print("We're lucky, they gave us some flour, let's try again!")
 print("")
 make_exceptional_pie_2(5,1,4)
 print("Party")
except: # manages all exceptions
 print("Guys, something bad happened, don't know what to do. Better to go out and take an ice-cream !")

take milk
take sugar

There must be a problem with the ingredients!
Let's try asking neighbors !
We're lucky, they gave us some flour, let's try again!

take milk
take sugar
take flour
Mix
Heat
I made the pie !
Party

For more explanations about try catch, you can see Real Python - Python Exceptions: an Introduction [https://realpython.com/python-exceptions/]

assert

They asked you to develop a program to control a nuclear reactor. The reactor produces a lot of energy, but requires at least 20 meters of water to cool down, and your program needs to regulate the water level. Without enough water, you risk a meltdown. You do not feel exactly up to the job, and start sweating.

Nervously, you write the code. You check and recheck the code - everything looks fine.

On inauguration day, the reactor is turned on. Unexpectedly, the water level goes down to 5 meters, and an uncontrolled chain reaction occurs. Plutoniom fireworks follow.

Could we have avoided all of this? We often believe everything is good but then for some reason we find variables with unexpected values. The wrong program described above might have been written like so:

[8]:

we need water to cool our reactor

water_level = 40 # seems ok

print("water level: ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

water_level = 5 # forgot somewhere this bad row !

print("WARNING: water level low! ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

after a lot of code we might not know if there are the proper conditions so that everything works allright

print("turn on nuclear reactor")

water level: 40
WARNING: water level low! 5
turn on nuclear reactor

How could we improve it? Let’s look at the assert command, which must be written by following it with a boolean condition.

assert True does absolutely nothing:

[9]:

print("before")
assert True
print("after")

before
after

Instead, assert False completely blocks program execution, by launching an exception of type AssertionError (Note how "after" is not printed):

print("before")
assert False
print("after")

before

AssertionError Traceback (most recent call last)
<ipython-input-7-a871fdc9ebee> in <module>()
----> 1 assert False

AssertionError:

To improve the previous program, we might use assert like this:

we need water to cool our reactor

water_level = 40 # seems ok

print("water level: ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

water_level = 5 # forgot somewhere this bad row !

print("WARNING: water level low! ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

after a lot of code we might not know if there are the proper conditions so that
everything works allright so before doing critical things, it is always a good idea
to perform a check ! if asserts fail (that is, the boolean expression is False),
the execution suddenly stops

assert water_level >= 20

print("turn on nuclear reactor")

water level: 40
WARNING: water level low! 5

AssertionError Traceback (most recent call last)
<ipython-input-3-d553a90d4f64> in <module>
 31 # the execution suddenly stops
 32
---> 33 assert water_level >= 20
 34
 35 print("turn on nuclear reactor")

AssertionError:

When to use assert?

The case above is willingly exagerated, but shows how a check more sometimes prevents disasters.

Asserts are a quick way to do checks, so much so that Python even allows to ignore them during execution to improve the performance (calling python with the -O parameter like in python -O my_file.py).

But if performance are not a problem (like in the reactor above), it’s more convenient to rewrite the program using an if and explicitly raising an Exception:

we need water to cool our reactor

water_level = 40 # seems ok

print("water level: ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

water_level = 5 # forgot somewhere this bad row !

print("WARNING: water level low! ", water_level)

a lot of code

a lot of code

a lot of code

a lot of code

after a lot of code we might not know if there are the proper conditions so
that everything works all right. So before doing critical things, it is always
a good idea to perform a check !

if water_level < 20:
 raise Exception("Water level too low !") # execution stops here

print("turn on nuclear reactor")

water level: 40
WARNING: water level low! 5

Exception Traceback (most recent call last)
<ipython-input-30-4840536c3388> in <module>
 30
 31 if water_level < 20:
---> 32 raise Exception("Water level too low !") # execution stops here
 33
 34 print("turn on nuclear reactor")

Exception: Water level too low !

Note how the reactor was not turned on.

Testing

	If it seems to work, then it actually works? Probably not.

	The devil is in the details, especially for complex algorithms.

	We will do a crash course on testing in Python

WARNING: Bad software can cause losses of million euros or even kill people. Suggested reading: Software Horror Stories [https://www.cs.tau.ac.il/~nachumd/horror.html]

Where Is Your Software?

As a data scientist, you might likely end up with code which is algorithmically complex, but maybe not too big in size. Either way, when red line is crossed you should start testing properly:

[image: where is your software]

In a typical scenario, you are a junior programmer and your senior colleague ask you to write a function to perform some task, giving only an informal description:

[10]:

def my_sum(x,y):
 """ RETURN the sum of x and y
 """
 raise Exception("TODO IMPLEMENT ME!")

Even better, your colleague might provide you with some automated tests you might run to check your function meets his/her expectations. If you are smart, you will even write tests for your own functions to make sure every little piece you add to your software is a solid block you can build upon.

According to the part of the course you are following, we will review two kinds of tests:

	Part A: asserts

	Part B: unittests

Testing with asserts

NOTE: Testing with asserts is only done in PART A of this course

We can use assert to quickly test functions, and verify they behave like they should.

For example, from this function:

[11]:

def my_sum(x, y):
 s = x + y
 return s

We expect that my_sum(2,3) gives 5. We can write in Python this expectation by using an assert:

[12]:

assert my_sum(2,3) == 5

Se my_sum is correctly implemented:

	my_sum(2,3) will give 5

	the boolean expression my_sum(2,3) == 5 will give True

	assert True will be exectued without producing any result, and the program execution will continue.

Otherwise, if my_sum is NOT correctly implemented like in this case:

def my_sum(x,y):
 return 666

	my_sum(2,3) will produce the number 666

	the boolean expression my_sum(2,3) == 5 will giveFalse

	assert False will interrupt the program execution, raising an exception of type AssertionError

Part A exercise structure

Exercises in Part A will be often structured in the following format:

def my_sum(x,y):
 """ RETURN the sum of numbers x and y
 """
 raise Exception("TODO IMPLEMENT ME!")

assert my_sum(2,3) == 5
assert my_sum(3,1) == 4
assert my_sum(-2,5) == 3

If you attempt to execute the cell, you will see this error:

Exception Traceback (most recent call last)
<ipython-input-16-5f5c8512d42a> in <module>()
 6
 7
----> 8 assert my_sum(2,3) == 5
 9 assert my_sum(3,1) == 4
 10 assert my_sum(-2,5) == 3

<ipython-input-16-5f5c8512d42a> in somma(x, y)
 3 """ RETURN the sum of numbers x and y
 4 """
----> 5 raise Exception("TODO IMPLEMENT ME!")
 6
 7

Exception: TODO IMPLEMENT ME!

To fix them, you will need to:

	substitute the row raise Exception("IMPLEMENTAMI") with the body of the function

	execute the cell

If cell execution doesn’t result in raised exceptions, perfect ! It means your function does what it is expected to do (the assert which succeed do not produce any output)

Otherwise, if you see some AssertionError, probably you did something wrong.

NOTE: The raise Exception("TODO IMPLEMENT ME") is put there to remind you that the function has a big problem, that is, it doesn’t have any code !!! In long programs, it might happen you know you need a function, but in that moment you don’t know what code put in th efunction body. So, instead of putting in the body commands that do nothing like print() or pass or return None, it is WAY BETTER to raise exceptions so that if by chance the program reaches the function, the
execution is suddenly stopped and the user is signalled with the nature and position of the problem. Many editors for programmers, when automatically generating code, put inside function skeletons to implement some Exception like this.

Let’s try to willingly write a wrong function body, which always return 5, independently from x and y given in input:

def my_sum(x,y):
 """ RETURN the sum of numbers x and y
 """
 return 5

assert my_sum(2,3) == 5
assert my_sum(3,1) == 4
assert my_sum(-2,5) == 3

In this case the first assertion succeeds and so the execution simply passes to the next row, which contains another assert. We expect that my_sum(3,1) gives 4, but our ill-written function returns 5 so this assert fails. Note how the execution is interrupted at the second assert:

AssertionError Traceback (most recent call last)
<ipython-input-19-e5091c194d3c> in <module>()
 6
 7 assert my_sum(2,3) == 5
----> 8 assert my_sum(3,1) == 4
 9 assert my_sum(-2,5) == 3

AssertionError:

If we implement well the function and execute the cell we will see no output: this means the function successfully passed the tests and we can conclude that it is correct with reference to the tests:

ATTENTION: always remember that these kind of tests are never exhaustive ! If tests pass it is only an indication the function might be correct, but it is never a certainty !

[13]:

def my_sum(x,y):
 """ RITORNA the sum of numbers x and y
 """
 return x + y

assert my_sum(2,3) == 5
assert my_sum(3,1) == 4
assert my_sum(-2,5) == 3

EXERCISE: Try to write the body of the function multiply:

	substitute raise Exception("TODO IMPLEMENT ME") with return x * y and execute the cell. If you have written correctly, nothing should happen. In this case, congratulatins! The code you have written is correct with reference to the tests !

	Try to substitute instead with return 10 and see what happens.

[14]:

def my_mul(x,y):
 """ RETURN the multiplication of numbers x and y
 """
 #jupman-raise
 return x * y
 #/jupman-raise

assert my_mul(2,5) == 10
assert my_mul(0,2) == 0
assert my_mul(3,2) == 6

even_numbers example

Let’s see a slightly more complex function:

[15]:

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 raise Exception("TODO IMPLEMENT ME!")

In this case, if you run the function as it is, you are reminded to implement it:

>>> even_numbers(5)

Exception Traceback (most recent call last)
<ipython-input-2-d2cbc915c576> in <module>()
----> 1 even_numbers(5)

<ipython-input-1-a20a4ea4b42a> in even_numbers(n)
 8 [0,2,4,6,8]
 9 """
---> 10 raise Exception("TODO IMPLEMENT ME!")

Exception: TODO IMPLEMENT ME!

Why? The instruction

raise Exception("TODO IMPLEMENT ME!")

tells Python to immediatly stop execution, and signal an error to the caller of the function even_number. If there were commands right after raise Exception("TODO IMPLEMENT ME"), they would not be executed. Here, we are directly calling the function from the prompt, and we didn’t tell Python how to handle the Exception, so Python just stopped and showed the error message given as parameter to the Exception

Spend time reading well the function text!

Always read very well function text and ask yourself questions! What is the supposed input? What should be the output? Is there any output to return at all, or should you instead modify in-place a passed parameter (i.e. for example, when you sort a list)? Are there any edge cases, es what happens for n=0)? What about n < 0 ?

Let’s code a possible solution. As it often happens, first version may be buggy, in this case for example purposes we intentionally introduce a bug:

[16]:

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 r = [2 * x for x in range(n)]
 r[n // 2] = 3 # <-- evil bug, puts number '3' in the middle, and 3 is not even ..
 return r

Typically the first test we do is printing the output and do some ‘visual inspection’ of the result, in this case we find many numbers are correct but we might miss errors such as the wrong 3 in the middle:

[17]:

print(even_numbers(5))

[0, 2, 3, 6, 8]

Furthermore, if we enter commands a the prompt, each time we fix something in the code, we need to enter commands again to check everything is ok. This is inefficient, boring, and prone to errors.

Let’s add assertions

To go beyond the dumb “visual inspection” testing, it’s better to write some extra code to allow Python checking for us if the function actually returns what we expect, and throws an error otherwise. We can do so with assert command, which verifies if its argument is True. If it is not, it raises an AssertionError immediately stopping execution.

Here we check the result of even_numbers(5) is actually the list of even numbers [0,2,4,6,8] we expect:

assert even_numbers(5) == [0,2,4,6,8]

Since our code is faulty, even_numbers returns the wrong list [0,2,3,6,8] which is different from [0,2,4,6,8] so assertion fails showing AssertionError:

AssertionError Traceback (most recent call last)
<ipython-input-21-d4198f229404> in <module>()
----> 1 assert even_numbers(5) != [0,2,4,6,8]

AssertionError:

We got some output, but we would like to have it more informative. To do so, we may add a message, separated by a comma:

assert even_numbers(5) == [0,2,4,6,8], "even_numbers is not working !!"

AssertionError Traceback (most recent call last)
<ipython-input-18-8544fcd1b7c8> in <module>()
----> 1 assert even_numbers(5) == [0,2,4,6,8], "even_numbers is not working !!"

AssertionError: even_numbers is not working !!

So if we modify code to fix bugs we can just launch the assert commands and have a quick feedback about possible errors.

Error kinds

As a fact of life, errors happen. Sometimes, your program may have inconsistent data, like wrong parameter type passed to a function (i.e. string instead of integer). A good principle to follow in these cases is to try have the program detect weird situations, and stop as early as such a situation is found (i.e. in the Therac 25 case, if you detect excessive radiation, showing a warning sign is not enough, it’s better to stop). Note stopping might not always be the desirable solution (if one
pidgeon enters one airplane engine, you don’t want to stop all the other engines). If you want to check function parameters are correct, you do the so called precondition checking.

There are roughly two cases for errors, external user misusing you program, and just plain wrong code. Let’s analyize both:

Error kind a) An external user misuses you program.

You can assume whover uses your software, final users or other programmers , they will try their very best to wreck your precious code by passing all sort of non-sense to functions. Everything can come in, strings instead of numbers, empty arrays, None objects … In this case you should signal the user he made some mistake. The most crude signal you can have is raising an Exception with raise Exception("Some error occurred"), which will stop the program and print the stacktrace in
the console. Maybe final users won’t understand a stacktrace, but at least programmers hopefully will get a clue about what is happening.

In these case you can raise an appropriate Exception, like TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] for wrong types and ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] for more generic errors. Other basic exceptions can be found in Python documentation [https://docs.python.org/3/library/exceptions.html#built-in-exceptions]. Notice you can also define your own, if needed (we won’t consider custom exceptions in this course).

NOTE: Many times, you can consider yourself the ‘careless external user’ to guard against.

Let’s enrich the function with some appropriate type checking:

Note that for checking input types, you can use the function type() :

[18]:

type(3)

[18]:

int

[19]:

type("ciao")

[19]:

str

Let’s add the code for checking the even_numbers example:

[20]:

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 if type(n) is not int:
 raise TypeError("Passed a non integer number: " + str(n))

 if n < 0:
 raise ValueError("Passed a negative number: " + str(n))

 r = [2 * x for x in range(n)]
 return r

Let’s pass a wrong type and see what happens:

>>> even_numbers("ciao")

TypeError Traceback (most recent call last)
<ipython-input-14-a908b20f00c4> in <module>()
----> 1 even_numbers("ciao")

<ipython-input-13-b0b3a85f2b2a> in even_numbers(n)
 9 """
 10 if type(n) is not int:
---> 11 raise TypeError("Passed a non integer number: " + str(n))
 12
 13 if n < 0:

TypeError: Passed a non integer number: ciao

Now let’s try to pass a negative number - it should suddenly stop with a meaningful message:

>>> even_numbers(-5)

ValueError Traceback (most recent call last)
<ipython-input-15-3f648fdf6de7> in <module>()
----> 1 even_numbers(-5)

<ipython-input-13-b0b3a85f2b2a> in even_numbers(n)
 12
 13 if n < 0:
---> 14 raise ValueError("Passed a negative number: " + str(n))
 15
 16 r = [2 * x for x in range(n)]

ValueError: Passed a negative number: -5

Now, even if you ship your code to careless users, and as soon as they commit a mistrake, they will get properly notified.

Error kind b): Your code is just plain wrong

In this case, it’s 100% your fault, and these sort of bugs should never pop up in production. For example your code passes internally wrong stuff, like strings instead of integers, or wrong ranges (typically integer outside array bounds). So if you have an internal function nobody else should directly call, and you suspect it is being passed wrong parameters or at some point it has inconsistent data, to quickly spot the error you could add an assertion:

[21]:

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 assert type(n) is int, "type of n is not correct: " + str(type(n))
 assert n >= 0, "Found negative n: " + str(n)

 r = [2 * x for x in range(n)]

 return r

As before, the function will stop as soon we call it we wrong parameters. The big difference is, this time we are assuming even_numbers is just for personal use and nobody else except us should directly call it.

Since assertion consume CPU time, IF we care about performances AND once we are confident our program behaves correctly, we can even remove them from compiled code by using the -O compiler flag. For more info, see Python wiki [https://wiki.python.org/moin/UsingAssertionsEffectively]

EXERCISE: try to call latest definition of even_numbers with wrong parameters, and see what happens.

NOTE: here we are using the correct definition of even_numbers, not the buggy one with the 3 in the middle of returned list !

Testing with Unittest

NOTE: Testing with Unittest is only done in PART B of this course

Is there anything better than assertfor testing? assert can be a quick way to check but doesn’t tell us exactly which is the wrong number in the list returned by even_number(5). Luckily, Python offers us a better option, which is a complete testing framework called unittest [https://docs.python.org/3/library/unittest.html]. We will use unittest because it is the standard one, but if you’re doing other projects you might consider using better ones like
pytest [https://docs.pytest.org/en/latest/]

So let’s give unittest a try. Suppose you have a file called file_test.py like this:

[22]:

import unittest

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 r = [2 * x for x in range(n)]
 r[n // 2] = 3 # <-- evil bug, puts number '3' in the middle
 return r

class MyTest(unittest.TestCase):

 def test_long_list(self):
 self.assertEqual(even_numbers(5),[0,2,4,6,8])

We won’t explain what class mean (for classes see the book chpater [http://interactivepython.org/runestone/static/pythonds/Introduction/ObjectOrientedProgramminginPythonDefiningClasses.html]), the important thing to notice is the method definition:

def test_long_list(self):
 self.assertEqual(even_numbers(5),[0,2,4,6,8])

In particular:

	method is declared like a function, and begins with 'test_' word

	method takes self as parameter

	self.assertEqual(even_numbers(5),[0,2,4,6,8]) executes the assertion. Other assertions could be self.assertTrue(some_condition) or self.assertFalse(some_condition)

Running tests

To run the tests, enter the following command in the terminal:

python -m unittest file_test

!!!!! WARNING: In the call above, DON’T append the extension .py to file_test !!!!!! !!!!! WARNING: Still, on the hard-disk the file MUST be named with a .py at the end, like file_test.py!!!!!!

You should see an output like the following:

[23]:

jupman.show_run(MyTest)

F
==
FAIL: test_long_list (__main__.MyTest)
--
Traceback (most recent call last):
 File "<ipython-input-22-397caec8a66f>", line 19, in test_long_list
 self.assertEqual(even_numbers(5),[0,2,4,6,8])
AssertionError: Lists differ: [0, 2, 3, 6, 8] != [0, 2, 4, 6, 8]

First differing element 2:
3
4

- [0, 2, 3, 6, 8]
? ^

+ [0, 2, 4, 6, 8]
? ^

--
Ran 1 test in 0.001s

FAILED (failures=1)

Now you can see a nice display of where the error is, exactly in the middle of the list!

When tests don’t run

When -m unittest does not work and you keep seeing absurd errors like Python not finding a module and you are getting desperate (especially because Python has unittest included by default, there is no need to install it!), try to put the following code at the very end of the file you are editing:

unittest.main()

Then run your file with just

python file_test.py

In this case it should REALLY work. If it still doesn’t, call the Ghostbusters. Or, better, the IndentationBusters, you’re likely having tabs mixed with spaces mixed with bad bad luck.

Adding tests

How can we add (good) tests? Since best ones are usually short, it would be better starting small boundary cases. For example like n=1 , which according to function documentation should produce a list containing zero:

[24]:

class MyTest(unittest.TestCase):

 def test_one_element(self):
 self.assertEqual(even_numbers(1),[0])

 def test_long_list(self):
 self.assertEqual(even_numbers(5),[0,2,4,6,8])

Let’s call again the command:

python -m unittest file_test

[25]:

jupman.show_run(MyTest)

FF
==
FAIL: test_long_list (__main__.MyTest)
--
Traceback (most recent call last):
 File "<ipython-input-24-306d9f1c7777>", line 7, in test_long_list
 self.assertEqual(even_numbers(5),[0,2,4,6,8])
AssertionError: Lists differ: [0, 2, 3, 6, 8] != [0, 2, 4, 6, 8]

First differing element 2:
3
4

- [0, 2, 3, 6, 8]
? ^

+ [0, 2, 4, 6, 8]
? ^

==
FAIL: test_one_element (__main__.MyTest)
--
Traceback (most recent call last):
 File "<ipython-input-24-306d9f1c7777>", line 4, in test_one_element
 self.assertEqual(even_numbers(1),[0])
AssertionError: Lists differ: [3] != [0]

First differing element 0:
3
0

- [3]
+ [0]

--
Ran 2 tests in 0.002s

FAILED (failures=2)

From the tests we can now see there is clearly something wrong with the number 3 that keeps popping up, making both tests fail. You can see immediately which tests have failed by looking at the first two FF at the top of the output. Let’s fix the code by removing the buggy line:

[26]:

def even_numbers(n):
 """
 Return a list of the first n even numbers

 Zero is considered to be the first even number.

 >>> even_numbers(5)
 [0,2,4,6,8]
 """
 r = [2 * x for x in range(n)]
 # NOW WE COMMENTED THE BUGGY LINE r[n // 2] = 3 # <-- evil bug, puts number '3' in the middle
 return r

And call yet again the command:

python -m unittest file_test

[27]:

jupman.show_run(MyTest)

..
--
Ran 2 tests in 0.001s

OK

Wonderful, all the two tests have passed and we got rid of the bug.

WARNING: DON’T DUPLICATE TEST CLASS NAMES AND/OR METHODS!

In the following, you will be asked to add tests. Just add NEW methods with NEW names to the EXISTING class MyTest !

Exercise: boundary cases

Think about other boundary cases, and try to add corresponding tests.

	Can we ever have an empty list?

	Can n be equal to zero? Add a test inside MyTest class for its expected result.

	Can n be negative? In this case the function text tells us nothing about the expected behaviour, so we might choose it now: either the function raises an error, or it gives a back something, like i.e. list of even negative numbers. Try to modify even_numbers and add a relative test inside MyTest class for expecting even negative numbers (starting from zero).

Exercise: expecting assertions

What if user passes us a float like 3.5 instead of an integer? If you try to run even_numbers(3.5) you will discover it works anyway, but we might decide to be picky and not accept inputs other than integers. Try to modify even_numbers to make so that when input is not of type int, raises TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] (to check for type, you can write type(n) == int).

To test for it, add following test inside MyTest class :

def test_type(self):

 with self.assertRaises(TypeError):
 even_numbers(3.5)

The with block tells Python to expect the code inside the with block to raise the exception TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]:

	If even_numbers(3.5) actually raises TypeError exception, nothing happens

	If even_numbers(3.5) does not raise TypeError exception, with raises AssertionError

After you completed previous task, consider when the input is the float 4.0: in this case it might make sense to still accept it, so modify even_numbers accordingly and write a test for it.

Exercise: good tests

What difference is there between the following two test classes? Which one is better for testing?

class MyTest(unittest.TestCase):

 def test_one_element(self):
 self.assertEqual(even_numbers(1),[0])

 def test_long_list(self):
 self.assertEqual(even_numbers(5),[0,2,4,6,8])

and

class MyTest(unittest.TestCase):

 def test_stuff(self):
 self.assertEqual(even_numbers(1),[0])
 self.assertEqual(even_numbers(5),[0,2,4,6,8])

Running unittests in Visual Studio Code

You can run and debug tests in Visual Studio Code, which is very handy. First, you need to set it up.

	Hit Control-Shift-P (on Mac: Command-Shift-P) and type Python: Configure Tests

[image: vscode 1 4292234]

	Select unittest:

[image: vscode 2 2341234123]

	Select . root directory (we assume tests are in the folder that you’ve opened):

[image: vscode 3 3142434]

	Select *Python files containing the word 'test':

[image: vscode 4 92383283]

Hopefully, on the currently opened test file new labels should appear above class and test methods, like in the following example. Try to click on them:

[image: vscode 5 8232114]

In the bottom bar, you should see a recap of run tests (right side of the picture):

[image: vscode 6 2348324332]

TROUBLESHOOTING

If you encounter problems running tests and have Anaconda, sometimes an easy solution can be just closing Visual Studio Code and running it from the Anaconda Navigator. You can also try to update it.

Running tests by console does not work:

	remember to SAVE the files before executing tests: in Windows, a file appears as not saved when its filename in the tab is written in italics; on Linux, you might see a dot to the right of the filename

Run Test label does not show up in code:

	if you see red squiggles in the code, most probably syntax is not correct and thus no test will get discovered ! If this is the case, fix the syntax error, SAVE, and then tell Visual Studio to discover test.

	you might also try Right click->Run current Test File.

	try selecting another testing framework , try pytest, which is also capable to discover and execute unittests.

	if you are really out of luck with the editor, there is always the option of running tests from the console.

WARNING: spend time also with the console !!!!

During the exam testing in VSCode might not work, so please be prepared to use the console

Functional programming

In functional programming, functions behave as mathematical ones so they always take some parameter and return new data without ever changing the input. They say functional programming is easier to test. Why?

Immutable data structures: all data structures are (or are meant to be) immutable -> no code can ever tweak your data, so other developers just cannot (should not) be able to inadvertently change your data.

Simpler parallel computing: point above is particularly inmportant in parallel computation, wheb the system can schedule thread executions differently each time you run the program: this implies that when you have multiple threads it can be very very hard to reproduce a bug where a thread wrongly changes a data which is supposed to be exclusively managed by another one, as it might fail in one run and succeed in another just because the system scheduled differently the code execution !
Functional programming frameworks like Spark [https://spark.apache.org] solve these problems very nicely.

Easier to reason about code: it is much easier to reason about functions, as we can use standard equational reasoning on input/outputs as traditionally done in algebra. To understand what we’re talking about, you can see these slides: Visual functional programming [https://docs.google.com/presentation/d/1hTHty5aML9WDDTvkflvvdGDh0AfZwV_8ZEr10-rUPVA] (will talk more about it in class)

[]:

 Matrices: list of lists solutions

Matrices: list of lists solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/matrices-lists]

Introduction

Python natively does not provide easy and efficient ways to manipulate matrices. To do so, you would need an external library called numpy which will be seen later in the course. For now we will limit ourselves to using matrices as lists of lists because

	lists are pervasive in Python, you will probably encounter matrices expressed as lists of lists anyway

	you get an idea of how to construct a nested data structure

	we can discuss memory referencies and copies along the way

	even if numpy internal representation is different, it prints matrices as they were lists of lists

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- matrix-lists
 |- matrix-list-exercise.ipynb
 |- matrix-list-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/matrices-lists/matrices-lists-exercise.ipynb

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Overview

So let’s see these lists of lists.For example, we can consider the following a matrix with 3 rows and 2 columns, or in short 3x2 matrix:

[2]:

m = [
 ['a','b'],
 ['c','d'],
 ['a','e']
]

For convenience, we assume as input to our functions there won’t be matrices with no rows, nor rows with no columns.

Going back to the example, in practice we have a big external list:

m = [

]

and each of its elements is another list which represents a row:

m = [
 ['a','b'],
 ['c','d'],
 ['a','e']
]

So, to access the whole first row ['a','b'], we would simply access the element at index 0 of the external list m:

[3]:

m[0]

[3]:

['a', 'b']

To access the second whole second row ['c','d'], we would access the element at index 1 of the external list m:

[4]:

m[1]

[4]:

['c', 'd']

To access the second whole third row ['c','d'], we would access the element at index 2 of the external list m:

[5]:

m[2]

[5]:

['a', 'e']

To access the first element 'a' of the first row ['a','b'] we would add another subscript operator with index 0:

[6]:

m[0][0]

[6]:

'a'

To access the second elemnt 'b' of the first row ['a','b'] we would use instead index 1 :

[7]:

m[0][1]

[7]:

'b'

WARNING: When a matrix is a list of lists, you can only access values with notation m[i][j], NOT with m[i,j] !!

[8]:

write here the wrong notation m[0,0] and see which error you get:

Exercises

Now implement the following functions.

REMEMBER: if the cell is executed and nothing happens, it is because all the assert tests have worked! In such case you probably wrote correct code but careful, these kind of tests are never exhaustive so you could have still made some error.

COMMANDMENT 4: You shall never ever reassign function parameters

def myfun(i, s, L, D):

 # You shall not do any of such evil, no matter what the type of the parameter is:
 i = 666 # basic types (int, float, ...)
 s = "666" # strings
 L = [666] # containers
 D = {"evil":666} # dictionaries

 # For the sole case of composite parameters like lists or dictionaries,
 # you can write stuff like this IF AND ONLY IF the function specification
 # requires you to modify the parameter internal elements (i.e. sorting a list
 # or changing a dictionary field):

 L[4] = 2 # list
 D["my field"] = 5 # dictionary
 C.my_field = 7 # class

COMMANDMENT 7: You shall use ``return`` command only if you see written *return* in the function description!

If there is no return in function description, the function is intended to return None. In this case you don’t even need to write return None, as Python will do it implicitly for you.

Matrix dimensions

✪ EXERCISE: For getting matrix dimensions, we can use normal list operations. Which ones? You can assume the matrix is well formed (all rows have equal length) and has at least one row and at least one column

[9]:

m = [
 ['a','b'],
 ['c','d'],
 ['a','e']
]

[10]:

write here code for printing rows and columns

the outer list is a list of rows, so to count htem we just use len(m)

print("rows")
print(len(m))

if we assume the matrix is well formed and has at least one row and column, we can directly check the length
of the first row

print("columns")
print(len(m[0]))

rows
3
columns
2

extract_row

One of the first things you might want to do is to extract the i-th row. If you’re implementing a function that does this, you have basically two choices. Either you

	return a pointer to the original row

	return a copy of the row.

Since a copy consumes memory, why should you ever want to return a copy? Sometimes you should because you don’t know which use will be done of the data structure. For example, suppose you got a book of exercises which has empty spaces to write exercises in. It’s such a great book everybody in the classroom wants to read it - but you are afraid if the book starts changing hands some careless guy might write on it. To avoid problems, you make a copy of the book and distribute it (let’s leave
copyright infringment matters aside :-)

extract_row_pointer

So first let’s see what happens when you just return a pointer to the original row.

NOTE: For convenience, at the end of the cell we put a magic call to jupman.pytut() which shows the code execution like in Python tutor (for further info about jupman.pytut(), see here [https://datasciprolab.readthedocs.io/en/latest/exercises/introduction/introduction-solution.html#Python-Tutor-inside-Jupyter]). If execute all the code in Python tutor, you will see that at the end you have two arrow pointers to the row ['a','b'], one starting from m list and one from
row variable.

[11]:

def extract_row_pointer(mat, i):
 """ RETURN the ith row from mat
 NOTE: the underlying row is returned, so modifications to it will also modify original mat
 """
 return mat[i]

m = [
 ['a','b'],
 ['c','d'],
 ['a','e'],
]

row = extract_row_pointer(m, 0)

jupman.pytut()

[11]:

 Matrices: Numpy solutions

Matrices: Numpy solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/matrices-numpy]

Introduction

References:

	Andrea Passerini slides A08 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A08-numpy.pdf]

	Python Data Science Handbook, Numpy part [https://jakevdp.github.io/PythonDataScienceHandbook/02.00-introduction-to-numpy.html]

Previously we’ve seen Matrices as lists of lists [https://datasciprolab.readthedocs.io/en/latest/exercises/matrices-lists/matrices-lists-solution.html], here we focus on matrices using Numpy library

There are substantially two ways to represent matrices in Python: as list of lists, or with the external library numpy [https://www.numpy.org]. The most used is surely Numpy, let’s see the reason the principal differences:

List of lists - see separate notebook [https://datasciprolab.readthedocs.io/en/latest/exercises/matrices-lists/matrices-lists-solution.html]

	native in Python

	not efficient

	lists are pervasive in Python, probably you will encounter matrices expressed as list of lists anyway

	give an idea of how to build a nested data structure

	may help in understanding important concepts like pointers to memory and copies

Numpy - this notebook

	not natively available in Python

	efficient

	many libraries for scientific calculations are based on Numpy (scipy, pandas)

	syntax to access elements is slightly different from list of lists

	in rare cases might give problems of installation and/or conflicts (implementation is not pure Python)

Here we will see data types and essential commands of Numpy library [https://www.numpy.org], but we will not get into the details.

The idea is to simply pass using the the data format ndarray without caring too much about performances: for example, even if for cycles in Python are slow because they operate cell by cell, we will use them anyway. In case you actually need to execute calculations fast, you will want to use operators on vectors but for this we invite you to read links below

ATTENTION: if you want to use Numpy in Python tutor [http://www.pythontutor.com/visualize.html#mode=edit], instead of default interpreter Python 3.6 you will need to select Python 3.6 with Anaconda (at May 2019 results marked as experimental)

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- matrices-numpy
 |- matrices-numpy-exercise.ipynb
 |- matrices-numpy-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/matrices-numpy/matrices-numpy-exercise.ipynb

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

np.array

First of all, we import the library, and for convenience we rename it to ‘np’:

[2]:

import numpy as np

With lists of lists we have often built the matrices one row at a time, adding lists as needed. In Numpy instead we usually create in one shot the whole matrix, filling it with zeroes.

In particular, this command creates an ndarray filled with zeroes:

[3]:

mat = np.zeros((2,3)) # 2 rows, 3 columns

[4]:

mat

[4]:

array([[0., 0., 0.],
 [0., 0., 0.]])

Note like inside array() the content seems represented like a list of lists, BUT in reality in physical memory the data is structured in a linear sequence which allows Python to access numbers in a faster way.

To access data or overwrite square bracket notation is used, with the important difference that in Numpy you can write bot the indeces inside the same brackets, separated by a comma:

ATTENTION: notation mat[i,j] is only for Numpy, with list of lists does not work!

Let’s put number 0 in cell at row 0 and column 1

[5]:

mat[0,1] = 9

[6]:

mat

[6]:

array([[0., 9., 0.],
 [0., 0., 0.]])

Let’s access cell at row 0 and column 1

[7]:

mat[0,1]

[7]:

9.0

We put number 7 into cell at row 1 and column 2

[8]:

mat[1,2] = 7

[9]:

mat

[9]:

array([[0., 9., 0.],
 [0., 0., 7.]])

To get the dimension, we write like the following:

ATTENTIONE: after shape there are no round parenthesis !

shape is an attribute, not a function to call

[10]:

mat.shape

[10]:

(2, 3)

If we want to memorize the dimension in separate variables, we can use thi more pythonic mode (note the comma between num_rows and num_cols:

[11]:

num_rows, num_cols = mat.shape

[12]:

num_rows

[12]:

2

[13]:

num_cols

[13]:

3

✪ Exercise: try to write like the following, what happens?

mat[0,0] = "c"

[14]:

write here

We can also create an ndarray starting from a list of lists:

[15]:

mat = np.array([[5.0,8.0,1.0],
 [4.0,3.0,2.0]])

[16]:

mat

[16]:

array([[5., 8., 1.],
 [4., 3., 2.]])

[17]:

type(mat)

[17]:

numpy.ndarray

[18]:

mat[1,1]

[18]:

3.0

✪ Exercise: Try to write like this and check what happens:

mat[1,1.0]

[19]:

write here

NaNs and infinities

Float numbers can be numbers and…. not numbers, and infinities. Sometimes during calculations extremal conditions may arise, like when dividing a small number by a huge number. In such cases, you might end up having a float which is a dreaded Not a Number, NaN for short, or you might get an infinity. This can lead to very awful unexpected behaviours, so you must be well aware of it.

Following behaviours are dictated by IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754) which Numpy uses and is implemented in all CPUs, so they actually regard all programming languages.

NaNs

A NaN is Not a Number. Which is already a silly name, since a NaN is actually a very special member of floats, with this astonishing property:

WARNING: NaN IS NOT EQUAL TO ITSELF !!!!

Yes you read it right, NaN is really not equal to itself.

Even if your mind wants to refuse it, we are going to confirm it.

To get a NaN, you can use Python module math which holds this alien item:

[20]:

import math
math.nan # notice it prints as 'nan' with lowercase n

[20]:

nan

As we said, a NaN is actually considered a float:

[21]:

type(math.nan)

[21]:

float

Still, it behaves very differently from its fellow floats, or any other object in the known universe:

[22]:

math.nan == math.nan # what the F... alse

[22]:

False

Detecting NaN

Given the above, if you want to check if a variable x is a NaN, you cannot write this:

[23]:

x = math.nan
if x == math.nan: # WRONG
 print("I'm NaN ")
else:
 print("x is something else ??")

x is something else ??

To correctly handle this situation, you need to use math.isnan function:

[24]:

x = math.nan
if math.isnan(x): # CORRECT
 print("x is NaN ")
else:
 print("x is something else ??")

x is NaN

Notice math.isnan also work with negative NaN:

[25]:

y = -math.nan
if math.isnan(y): # CORRECT
 print("y is NaN ")
else:
 print("y is something else ??")

y is NaN

Sequences with NaNs

Still, not everything is completely crazy. If you compare a sequence holding NaNs to another one, you will get reasonable results:

[26]:

[math.nan, math.nan] == [math.nan, math.nan]

[26]:

True

Exercise NaN: two vars

Given two number variables x and y, write some code that prints "same" when they are the same, even when they are NaN. Otherwise, prints `”not the same”

[27]:

expected output: same
x = math.nan
y = math.nan

expected output: not the same
#x = 3
#y = math.nan

expected output: not the same
#x = math.nan
#y = 5

expected output: not the same
#x = 2
#y = 7

expected output: same
#x = 4
#y = 4

write here
if math.isnan(x) and math.isnan(y):
 print('same')
elif x == y:
 print('same')
else:
 print('not the same')

same

Operations on NaNs

Any operation on a NaN will generate another NaN:

[28]:

5 * math.nan

[28]:

nan

[29]:

math.nan + math.nan

[29]:

nan

[30]:

math.nan / math.nan

[30]:

nan

The only thing you cannot do is dividing by zero with an unboxed NaN:

math.nan / 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-94-1da38377fac4> in <module>
----> 1 math.nan / 0

ZeroDivisionError: float division by zero

NaN corresponds to boolean value True:

[31]:

if math.nan:
 print("That's True")

That's True

NaN and Numpy

When using Numpy you are quite likely to encounter NaNs, so much so they get redefined inside Numpy, but they are exactly the same as in math module:

[32]:

np.nan

[32]:

nan

[33]:

math.isnan(np.nan)

[33]:

True

[34]:

np.isnan(math.nan)

[34]:

True

In Numpy when you have unknown numbers you might be tempted to put a None. You can actually do it, but look closely at the result:

[35]:

import numpy as np
np.array([4.9,None,3.2,5.1])

[35]:

array([4.9, None, 3.2, 5.1], dtype=object)

The resulting array type is not an array of float64 which allows fast calculations, instead it is an array containing generic objects, as Numpy is assuming the array holds heterogenous data. So what you gain in generality you lose it in performance, which should actually be the whole point of using Numpy.

Despite being weird, NaNs are actually regular float citizen so they can be stored in the array:

[36]:

np.array([4.9,np.nan,3.2,5.1]) # Notice how the `dtype=object` has disappeared

[36]:

array([4.9, nan, 3.2, 5.1])

Where are the NaNs ?

Let’s try to see where we can spot NaNs and other weird things such infinities in the wild

First, let check what happens when we call function log of standard module math. As we know, log function behaves like this:

	\(x < 0\): not defined

	\(x = 0\): tends to minus infinity

	\(x > 0\): defined

[image: log function u9u9u9]

So we might wonder what happens when we pass to it a value where it is not defined:

>>> math.log(-1)

ValueError Traceback (most recent call last)
<ipython-input-38-d6e02ba32da6> in <module>
----> 1 math.log(-1)

ValueError: math domain error

Let’s try the equivalent with Numpy:

[37]:

np.log(-1)

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in log
 """Entry point for launching an IPython kernel.

[37]:

nan

Notice we actually got as a result np.nan, even if Jupyter is printing a warning.

The default behaviour of Numpy regarding dangerous calculations is to perform them anyway and storing the result in as a NaN or other limit objects. This also works for arrays calculations:

[38]:

np.log(np.array([3,7,-1,9]))

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in log
 """Entry point for launching an IPython kernel.

[38]:

array([1.09861229, 1.94591015, nan, 2.19722458])

Infinities

As we said previously, NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Since somebody at IEEE decided to capture the misteries of infinity into floating numbers, we have yet another citizen to take into account when performing calculations (for more info see Numpy documentation on constants [https://numpy.org/devdocs/reference/constants.html]):

Positive infinity np.inf

[39]:

 np.array([5]) / 0

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in true_divide
 """Entry point for launching an IPython kernel.

[39]:

array([inf])

[40]:

np.array([6,9,5,7]) / np.array([2,0,0,4])

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in true_divide
 """Entry point for launching an IPython kernel.

[40]:

array([3. , inf, inf, 1.75])

Be aware that:

	Not a Number is not equivalent to infinity

	positive infinity is not equivalent to negative infinity

	infinity is equivalent to positive infinity

This time, infinity is equal to infinity:

[41]:

np.inf == np.inf

[41]:

True

so we can safely detect infinity with ==:

[42]:

x = np.inf

if x == np.inf:
 print("x is infinite")
else:
 print("x is finite")

x is infinite

Alternatively, we can use the function np.isinf:

[43]:

np.isinf(np.inf)

[43]:

True

Negative infinity

We can also have negative infinity, which is different from positive infinity:

[44]:

-np.inf == np.inf

[44]:

False

Note that isinf detects both positive and negative:

[45]:

np.isinf(-np.inf)

[45]:

True

To actually check for negative infinity you have to use isneginf:

[46]:

np.isneginf(-np.inf)

[46]:

True

[47]:

np.isneginf(np.inf)

[47]:

False

Where do they appear? As an example, let’s try np.log function:

[48]:

np.log(0)

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in log
 """Entry point for launching an IPython kernel.

[48]:

-inf

Combining infinities and NaNs

When performing operations involving infinities and NaNs, IEEE arithmetics tries to mimic classical analysis, sometimes including NaN as a result:

[49]:

np.inf + np.inf

[49]:

inf

[50]:

- np.inf - np.inf

[50]:

-inf

[51]:

np.inf * -np.inf

[51]:

-inf

What in classical analysis would be undefined, here becomes NaN:

[52]:

np.inf - np.inf

[52]:

nan

[53]:

np.inf / np.inf

[53]:

nan

As usual, combining with NaN results in NaN:

[54]:

np.inf + np.nan

[54]:

nan

[55]:

np.inf / np.nan

[55]:

nan

Negative zero

We can even have a negative zero - who would have thought?

[56]:

np.NZERO

[56]:

-0.0

Negative zero of course pairs well with the more known and much appreciated positive zero:

[57]:

np.PZERO

[57]:

0.0

NOTE: Writing np.NZERO or -0.0 is exactly the same thing. Same goes for positive zero.

At this point, you might start wondering with some concern if they are actually equal. Let’s try:

[58]:

0.0 == -0.0

[58]:

True

Great! Finally one thing that makes sense.

Given the above, you might think in a formula you can substitute one for the other one and get same results, in harmony with the rules of the universe.

Let’s make an attempt of substitution, as an example we first try dividing a number by positive zero (even if math teachers tell us such divisions are forbidden) - what will we ever get??

\(\frac{5.0}{0.0}=???\)

In Numpy terms, we might write like this to box everything in arrays:

[59]:

np.array([5.0]) / np.array([0.0])

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in true_divide
 """Entry point for launching an IPython kernel.

[59]:

array([inf])

Hmm, we got an array holding an np.inf.

If 0.0 and -0.0 are actually the same, dividing a number by -0.0 we should get the very same result, shouldn’t we?

Let’s try:

[60]:

np.array([5.0]) / np.array([-0.0])

/home/da/Da/bin/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: divide by zero encountered in true_divide
 """Entry point for launching an IPython kernel.

[60]:

array([-inf])

Oh gosh. This time we got an array holding a negative infinity -np.inf

If all of this seems odd to you, do not bash at Numpy. This is the way pretty much any CPUs does floating point calculations so you will find it in almost ALL computer languages.

What programming languages can do is add further controls to protect you from paradoxical situations, for example when you directly write 1.0/0.0 Python raises ZeroDivisionError (blocking thus execution), and when you operate on arrays Numpy emits a warning (but doesn’t block execution).

Exercise: detect proper numbers

Write some code that PRINTS equal numbers if two numbers x and y passed are equal and actual numbers, and PRINTS not equal numbers otherwise.

NOTE: not equal numbers must be printed if any of the numbers is infinite or NaN.

To solve it, feel free to call functions indicated in Numpy documentation about costants [https://docs.scipy.org/doc/numpy/reference/constants.html]

[1]:

expected: equal numbers
x = 5
y = 5

expected: not equal numbers
#x = np.inf
#y = 3

expected: not equal numbers
#x = 3
#y = np.inf

expected: not equal numbers
#x = np.inf
#y = np.nan

expected: not equal numbers
#x = np.nan
#y = np.inf

expected: not equal numbers
#x = np.nan
#y = 7

expected: not equal numbers
#x = 9
#y = np.nan

expected: not equal numbers
#x = np.nan
#y = np.nan

write here

SOLUTION 1 - the ugly one
if np.isinf(x) or np.isinf(y) or np.isnan(x) or np.isnan(y):
 print('not equal numbers')
else:
 print('equal numbers')

SOLUTION 2 - the pretty one
if np.isfinite(x) and np.isfinite(y):
 print('equal numbers')
else:
 print('not equal numbers')

NameError Traceback (most recent call last)
<ipython-input-1-32186ec2496f> in <module>()
 35
 36 # SOLUTION 1 - the ugly one
---> 37 if np.isinf(x) or np.isinf(y) or np.isnan(x) or np.isnan(y):
 38 print('not equal numbers')
 39 else:

NameError: name 'np' is not defined

Exercise: guess expressions

For each of the following expressions, try to guess the result

WARNING: the following may cause severe convulsions and nausea.

During clinical trials, both mathematically inclined and math-averse patients have experienced illness, for different reasons which are currently being investigated.

a. 0.0 * -0.0
b. (-0.0)**3
c. np.log(-7) == math.log(-7)
d. np.log(-7) == np.log(-7)
e. np.isnan(1 / np.log(1))
f. np.sqrt(-1) * np.sqrt(-1) # sqrt = square root
g. 3 ** np.inf
h 3 ** -np.inf
i. 1/np.sqrt(-3)
j. 1/np.sqrt(-0.0)
m. np.sqrt(np.inf) - np.sqrt(-np.inf)
n. np.sqrt(np.inf) + (1 / np.sqrt(-0.0))
o. np.isneginf(np.log(np.e) / np.sqrt(-0.0))
p. np.isinf(np.log(np.e) / np.sqrt(-0.0))
q. [np.nan, np.inf] == [np.nan, np.inf]
r. [np.nan, -np.inf] == [np.nan, np.inf]
s. [np.nan, np.inf] == [-np.nan, np.inf]

Verify comprehension

odd

✪✪✪ Takes a Numpy matrix mat of dimension nrows by ncols containing integer numbers and RETURN a NEW Numpy matrix of dimension nrows by ncols which is like the original, ma in the cells which contained even numbers now there will be odd numbers obtained by summing 1 to the existing even number.

Example:

odd(np.array([
 [2,5,6,3],
 [8,4,3,5],
 [6,1,7,9]
]))

Must give as output

array([[3., 5., 7., 3.],
 [9., 5., 3., 5.],
 [7., 1., 7., 9.]])

Hints:

	Since you need to return a matrix, start with creating an empty one

	go through the whole input matrix with indeces i and j

[62]:

import numpy as np

def odd(mat):
 #jupman-raise
 nrows, ncols = mat.shape
 ret = np.zeros((nrows, ncols))

 for i in range(nrows):
 for j in range(ncols):
 if mat[i,j] % 2 == 0:
 ret[i,j] = mat[i,j] + 1
 else:
 ret[i,j] = mat[i,j]
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([
 [2],
])
m2 = np.array([
 [3]
])
assert np.allclose(odd(m1),
 m2)
assert m1[0][0] == 2 # checks we are not modifying original matrix

m3 = np.array([
 [2,5,6,3],
 [8,4,3,5],
 [6,1,7,9]
])
m4 = np.array([
 [3,5,7,3],
 [9,5,3,5],
 [7,1,7,9]
])
assert np.allclose(odd(m3),
 m4)

TEST END

doublealt

✪✪✪ Takes a Numpy matrix mat of dimensions nrows x ncols containing integer numbers and RETURN a NEW Numpy matrix of dimension nrows x ncols having at rows of even index the numbers of original matrix multiplied by two, and at rows of odd index the same numbers as the original matrix.

Example:

m = np.array([# index
 [2, 5, 6, 3], # 0 even
 [8, 4, 3, 5], # 1 odd
 [7, 1, 6, 9], # 2 even
 [5, 2, 4, 1], # 3 odd
 [6, 3, 4, 3] # 4 even
])

A call to

doublealt(m)

will return the Numpy matrix:

array([[4, 10, 12, 6],
 [8, 4, 3, 5],
 [14, 2, 12, 18],
 [5, 2, 4, 1],
 [12, 6, 8, 6]])

[63]:

import numpy as np

def doublealt(mat):
 #jupman-raise
 nrows, ncols = mat.shape
 ret = np.zeros((nrows, ncols))

 for i in range(nrows):
 for j in range(ncols):
 if i % 2 == 0:
 ret[i,j] = mat[i,j] * 2
 else:
 ret[i,j] = mat[i,j]
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([
 [2],
])
m2 = np.array([
 [4]
])
assert np.allclose(doublealt(m1),
 m2)
assert m1[0][0] == 2 # checks we are not modifying original matrix

m3 = np.array([
 [2, 5, 6],
 [8, 4, 3]
])
m4 = np.array([
 [4,10,12],
 [8, 4, 3]
])
assert np.allclose(doublealt(m3),
 m4)

m5 = np.array([
 [2, 5, 6, 3],
 [8, 4, 3, 5],
 [7, 1, 6, 9],
 [5, 2, 4, 1],
 [6, 3, 4, 3]
])
m6 = np.array([
 [4,10,12, 6],
 [8, 4, 3, 5],
 [14, 2,12,18],
 [5, 2, 4, 1],
 [12, 6, 8, 6]
])
assert np.allclose(doublealt(m5),
 m6)

TEST END

frame

✪✪✪ RETURN a NEW Numpy matrix of n rows and n columns, in which all the values are zero except those on borders, which must be equal to a given k

For example, frame(4, 7.0) must give:

array([[7.0, 7.0, 7.0, 7.0],
 [7.0, 0.0, 0.0, 7.0],
 [7.0, 0.0, 0.0, 7.0],
 [7.0, 7.0, 7.0, 7.0]])

Ingredients:

	create a matrix filled with zeros. ATTENTION: which dimensions does it have? Do you need n or k ? Read WELL the text.

	start by filling the cells of first row with k values. To iterate along the first row columns, use a for j in range(n)

	fill other rows and columns, using appropriate for

[64]:

def frame(n, k):
 #jupman-raise
 mat = np.zeros((n,n))
 for i in range(n):
 mat[0, i] = k
 mat[i, 0] = k
 mat[i, n-1] = k
 mat[n-1, i] = k
 return mat
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

expected_mat = np.array([[7.0, 7.0, 7.0, 7.0],
 [7.0, 0.0, 0.0, 7.0],
 [7.0, 0.0, 0.0, 7.0],
 [7.0, 7.0, 7., 7.0]])
all_close return Ture if all the values in the first matrix are close enough
(that is, within a given tolerance) to corresponding values in the second
assert np.allclose(frame(4, 7.0), expected_mat)

expected_mat = np.array([[7.0]
])
assert np.allclose(frame(1, 7.0), expected_mat)

expected_mat = np.array([[7.0, 7.0],
 [7.0, 7.0]
])
assert np.allclose(frame(2, 7.0), expected_mat)
TEST END

chessboard

✪✪✪ RETURN a NEW Numpy matrix of n rows and n columns, in which all cells alternate zeros and ones.

For example, chessboard(4) must give:

array([[1.0, 0.0, 1.0, 0.0],
 [0.0, 1.0, 0.0, 1.0],
 [1.0, 0.0, 1.0, 0.0],
 [0.0, 1.0, 0.0, 1.0]])

Ingredients:

	to alternate, you can use range in the form in which takes 3 parameters, for example range(0,n,2) starts from 0, arrives to n excluded by jumping one item at a time, generating 0,2,4,6,8, ….

	instead range(1,n,2) would generate 1,3,5,7, …

[65]:

def chessboard(n):
 #jupman-raise
 mat = np.zeros((n,n))

 for i in range(0,n, 2):
 for j in range(0,n, 2):
 mat[i, j] = 1

 for i in range(1,n, 2):
 for j in range(1,n, 2):
 mat[i, j] = 1

 return mat
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

expected_mat = np.array([[1.0, 0.0, 1.0, 0.0],
 [0.0, 1.0, 0.0, 1.0],
 [1.0, 0.0, 1.0, 0.0],
 [0.0, 1.0, 0.0, 1.0]])

all_close return True if all the values in the first matrix are close enough
(that is, within a certain tolerance) to the corresponding ones in the second matrix
assert np.allclose(chessboard(4), expected_mat)

expected_mat = np.array([[1.0]
])
assert np.allclose(chessboard(1), expected_mat)

expected_mat = np.array([[1.0, 0.0],
 [0.0, 1.0]
])
assert np.allclose(chessboard(2), expected_mat)
TEST END

altsum

✪✪✪ MODIFY the input Numpy matrix (n x n), by summing to all the odd rows the even rows. For example

m = [[1.0, 3.0, 2.0, 5.0],
 [2.0, 8.0, 5.0, 9.0],
 [6.0, 9.0, 7.0, 2.0],
 [4.0, 7.0, 2.0, 4.0]]
altsum(m)

after the call to altsum m should be:

m = [[1.0, 3.0, 2.0, 5.0],
 [3.0, 11.0,7.0, 14.0],
 [6.0, 9.0, 7.0, 2.0],
 [10.0,16.0,9.0, 6.0]]

Ingredients:

	to alternate, you can use range in the form in which takes 3 parameters, for example range(0,n,2) starts from 0, arrives to n excluded by jumping one item at a time, generating 0,2,4,6,8, ….

	instead range(1,n,2) would generate 1,3,5,7, ..

[66]:

def altsum(mat):
 #jupman-raise
 nrows, ncols = mat.shape
 for i in range(1,nrows, 2):
 for j in range(0,ncols):
 mat[i, j] = mat[i,j] + mat[i-1, j]
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([
 [1.0, 3.0, 2.0, 5.0],
 [2.0, 8.0, 5.0, 9.0],
 [6.0, 9.0, 7.0, 2.0],
 [4.0, 7.0, 2.0, 4.0]
])

r1 = np.array([
 [1.0, 3.0, 2.0, 5.0],
 [3.0, 11.0,7.0, 14.0],
 [6.0, 9.0, 7.0, 2.0],
 [10.0,16.0,9.0, 6.0]
])

altsum(m1)
assert np.allclose(m1, r1)

m2 = np.array([[5.0]])
r2 = np.array([[5.0]])
altsum(m1)
assert np.allclose(m2, r2)

m3 = np.array([[6.0, 1.0],
 [3.0, 2.0]
])
r3 = np.array([[6.0, 1.0],
 [9.0, 3.0]
])
altsum(m3)
assert np.allclose(m3, r3)
TEST END

avg_rows

✪✪✪ Takes a Numpy matrix n x m and RETURN a NEW Numpy matrix consisting in a single column in which the values are the average of the values in corresponding rows of input matrix

Example:

Input: 5x4 matrix

3 2 1 4
6 2 3 5
4 3 6 2
4 6 5 4
7 2 9 3

Output: 5x1 matrix

(3+2+1+4)/4
(6+2+3+5)/4
(4+3+6+2)/4
(4+6+5+4)/4
(7+2+9+3)/4

Ingredients:

	create a matrix n x 1 to return, filling it with zeros

	visit all cells of original matrix with two nested fors

	during visit, accumulate in the matrix to return the sum of elements takes from each row of original matrix

	once completed the sum of a row, you can divide it by the dimension of columns of original matrix

	return the matrix

[67]:

def avg_rows(mat):
 #jupman-raise
 nrows, ncols = mat.shape

 ret = np.zeros((nrows,1))

 for i in range(nrows):

 for j in range(ncols):
 ret[i] += mat[i,j]

 ret[i] = ret[i] / ncols
 # for brevity we could also write
 # ret[i] /= colonne
 #/jupman-raise
 return ret

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([[5.0]])
r1 = np.array([[5.0]])
assert np.allclose(avg_rows(m1), r1)

m2 = np.array([[5.0, 3.0]])
r2 = np.array([[4.0]])
assert np.allclose(avg_rows(m2), r2)

m3 = np.array([[3,2,1,4],
 [6,2,3,5],
 [4,3,6,2],
 [4,6,5,4],
 [7,2,9,3]])

r3 = np.array([[(3+2+1+4)/4],
 [(6+2+3+5)/4],
 [(4+3+6+2)/4],
 [(4+6+5+4)/4],
 [(7+2+9+3)/4]])

assert np.allclose(avg_rows(m3), r3)
TEST END

avg_half

✪✪✪ Takes as input a Numpy matrix withan even number of columns, and RETURN as output a Numpy matrix 1x2, in which the first element will be the average of the left half of the matrix, and the second element will be the average of the right half.

Ingredients:

	to obtain the number of columns divided by two as integer number, use // operator

[68]:

def avg_half(mat):
 #jupman-raise
 nrows, ncols = mat.shape
 half_cols = ncols // 2

 avg_sx = 0.0
 avg_dx = 0.0

 # scrivi qui
 for i in range(nrows):
 for j in range(half_cols):
 avg_sx += mat[i,j]
 for j in range(half_cols, ncols):
 avg_dx += mat[i,j]

 half_elements = nrows * half_cols
 avg_sx /= half_elements
 avg_dx /= half_elements
 return np.array([avg_sx, avg_dx])
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([[3,2,1,4],
 [6,2,3,5],
 [4,3,6,2],
 [4,6,5,4],
 [7,2,9,3]])

r1 = np.array([(3+2+6+2+4+3+4+6+7+2)/10, (1+4+3+5+6+2+5+4+9+3)/10])

assert np.allclose(avg_half(m1), r1)
TEST END

matxarr

✪✪✪ Takes a Numpy matrix n x m and an ndarray of m elements, and RETURN a NEW Numpy matrix in which the values of each column of input matrix are multiplied by the corresponding value in the n elements array.

[69]:

def matxarr(mat, arr):
 #jupman-raise
 ret = np.zeros(mat.shape)

 for i in range(mat.shape[0]):
 for j in range(mat.shape[1]):
 ret[i,j] = mat[i,j] * arr[j]

 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`
m1 = np.array([[3,2,1],
 [6,2,3],
 [4,3,6],
 [4,6,5]])

a1 = [5, 2, 6]

r1 = [[3*5, 2*2, 1*6],
 [6*5, 2*2, 3*6],
 [4*5, 3*2, 6*6],
 [4*5, 6*2, 5*6]]

assert np.allclose(matxarr(m1,a1), r1)
TEST END

quadrants

✪✪✪ Given a matrix 2n * 2n, divide the matrix in 4 equal square parts (see example) and RETURN a NEW matrix 2 * 2 containing the average of each quadrant.

We assume the matrix is always of even dimensions

HINT: to divide by two and obtain an integer number, use // operator

Example:

1, 2 , 5 , 7
4, 1 , 8 , 0
2, 0 , 5 , 1
0, 2 , 1 , 1

can be divided in

 1, 2 | 5 , 7
 4, 1 | 8 , 0

 2, 0 | 5 , 1
 0, 2 | 1 , 1

and returns

(1+2+4+1)/ 4 | (5+7+8+0)/4 2.0 , 5.0
----------------------------- => 1.0 , 2.0
(2+0+0+2)/4 | (5+1+1+1)/4

[70]:

import numpy as np

def quadrants(mat):
 #jupman-raise
 ret = np.zeros((2,2))

 dim = mat.shape[0]
 n = dim // 2
 elements_per_quad = n * n

 for i in range(n):
 for j in range(n):
 ret[0,0] += mat[i,j]
 ret[0,0] /= elements_per_quad

 for i in range(n,dim):
 for j in range(n):
 ret[1,0] += mat[i,j]
 ret[1,0] /= elements_per_quad

 for i in range(n,dim):
 for j in range(n,dim):
 ret[1,1] += mat[i,j]
 ret[1,1] /= elements_per_quad

 for i in range(n):
 for j in range(n,dim):
 ret[0,1] += mat[i,j]
 ret[0,1] /= elements_per_quad

 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

assert np.allclose(
 quadrants(np.array([
 [3.0, 5.0],
 [4.0, 9.0],
])),
 np.array([
 [3.0, 5.0],
 [4.0, 9.0],
]))

assert np.allclose(
 quadrants(np.array([
 [1.0, 2.0 , 5.0 , 7.0],
 [4.0, 1.0 , 8.0 , 0.0],
 [2.0, 0.0 , 5.0 , 1.0],
 [0.0, 2.0 , 1.0 , 1.0]
])),
 np.array([
 [2.0, 5.0],
 [1.0, 2.0]
]))

TEST END

matrot

✪✪✪ RETURN a NEW Numpy matrix which has the numbers of input matrix rotated by a column.

With rotation we mean that:

	if a number of input matrix is found in column j, in the output matrix it will be in the column j+1 in the same row.

	if a number is found in the last column, in the output matrix it will be in the zertoth column

Example:

If we have as input:

np.array([
 [0,1,0],
 [1,1,0],
 [0,0,0],
 [0,1,1]
])

We expect as output:

np.array([
 [0,0,1],
 [0,1,1],
 [0,0,0],
 [1,0,1]
])

[71]:

import numpy as np

def matrot(mat):
 #jupman-raise
 ret = np.zeros(mat.shape)

 for i in range(mat.shape[0]):
 ret[i,0] = mat[i,-1]
 for j in range(1, mat.shape[1]):
 ret[i,j] = mat[i,j-1]
 return ret
 #/jupman-raise

TEST START - DO NOT TOUCH!
if you wrote the whole code correct, and execute the cell, Python shouldn't raise `AssertionError`

m1 = np.array([[1]])
r1 = np.array([[1]])

assert np.allclose(matrot(m1), r1)

m2 = np.array([[0,1]])
r2 = np.array([[1,0]])
assert np.allclose(matrot(m2), r2)

m3 = np.array([[0,1,0]])
r3 = np.array([[0,0,1]])

assert np.allclose(matrot(m3), r3)

m4 = np.array([
 [0,1,0],
 [1,1,0]
])
r4 = np.array([
 [0,0,1],
 [0,1,1]
])
assert np.allclose(matrot(m4), r4)

m5 = np.array([
 [0,1,0],
 [1,1,0],
 [0,0,0],
 [0,1,1]
])
r5 = np.array([
 [0,0,1],
 [0,1,1],
 [0,0,0],
 [1,0,1]
])
assert np.allclose(matrot(m5), r5)
TEST END

Other Numpy exercises

	Try to do exercises from liste di liste [https://datasciprolab.readthedocs.io/en/latest/exercises/matrices-lists/matrices-lists-solution.html] using Numpy instead.

	try to do the exercises more performant by using Numpy features and functions (i.e. 2*arr multiplies all numbers in arr without the need of a slow Python for)

	(in inglese) machinelearningplus [https://www.machinelearningplus.com/python/101-numpy-exercises-python/] Esercizi su Numpy (Fermarsi a difficoltà L1, L2 e se vuoi prova L3)

[]:

 Data formats solutions

Data formats solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/formats]

Introduction

Here we review how to load and write tabular data such as CSV, tree-like data such as JSON files, and how to fetch it from the web with webapis.

Graph formats [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-formats/graph-formats-solution.html] are treated in a separate notebook.

In this tutorial we will talk about data formats

	textual files

	line-based files

	CSV

	opendata catalogs

	license mention (creative commons, ..)

In a separate notebook we will discuss graph formats [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-formats/graph-formats-solution.html]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-exercises
 |- matrices
 |- formats-exercise.ipynb
 |- formats-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/matrix-networks/matrix-networks-exercise.ipynb

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

1. line files

Line files are typically text files which contain information grouped by lines. An example using historical characters might be like the following:

Leonardo
da Vinci
Sandro
Botticelli
Niccolò
Macchiavelli

We can immediately see a regularity: first two lines contain data of Leonardo da Vinci, second one the name and then the surname. Successive lines instead have data of Sandro Botticelli, with again first the name and then the surname and so on.

We might want to do a program that reads the lines and prints on the terminal names and surnames like the following:

Leonardo da Vinci
Sandro Botticelli
Niccolò Macchiavelli

To start having an approximation of the final result, we can open the file, read only the first line and print it:

[1]:

with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 print(line)

Leonardo

What happened? Let’s examing first rows:

open command

The command

open('people-simple.txt', encoding='utf-8')

allows us to open the text file by telling PYthon the file path 'people-simple.txt' and the encoding in which it was written (encoding='utf-8').

The encoding

The encoding dependes on the operating system and on the editor used to write the file. When we open a file, Python is not capable to divine the encoding, and if we do not specify anything Python might open the file assuming an encoding different from the original - in other words, if we omit the encoding (or we put a wrong one) we might end up seeing weird characters (like little squares instead of accented letters).

In general, when you open a file, try first to specify the encoding utf-8 which is the most common one. If it doesn’t work try others, for example for files written in south Europe with Windows you might check encoding='latin-1'. If you open a file written elsewhere, you might need other encodings. For more in-depth information, you can read Dive into Python - Chapter 4 - Strings [https://diveintopython3.problemsolving.io/strings.html], and Dive into Python - Chapter 11 -
File [https://diveintopython3.problemsolving.io/files.html], both of which are extremely recommended readings.

with block

The with defines a block with instructions inside:

with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 print(line)

We used the with to tell PYthon that in any case, even if errors occur, we want that after having used the file, that is after having executed the instructions inside the internal block (the line=f.readline() and print(line)) Python must automatically close the file. Properly closing a file avoids to waste memory resources and creating hard to find paranormal errors. If you want to avoid hunting for never closed zombie files, always remember to open all files in with blocks!
Furthermore, at the end of the row in the part as f: we assigned the file to a variable hereby called f, but we could have used any other name we liked.

WARNING: To indent the code, ALWAYS use sequences of four white spaces. Sequences of 2 spaces. Sequences of only 2 spaces even if allowed are not recommended.

WARNING: Depending on the editor you use, by pressing TAB you might get a sequence o f white spaces like it happens in Jupyter (4 spaces which is the recommended length), or a special tabulation character (to avoid)! As much as this annoying this distinction might appear, remember it because it might generate very hard to find errors.

WARNING: In the commands to create blocks such as with, always remember to put the character of colon : at the end of the line !

The command

line=f.readline()

puts in the variable line the entire line, like a string. Warning: the string will contain at the end the special character of line return !

You might wonder from where that readline comes from. Like everything in Python, our variable f which represents the file we just opened is an object, and like any object, depending on its type, it has particular methods we can use on it. In this case the method is readline.

The following command prints the string content:

print(line)

✪ 1.1 Exercise: Try to rewrite here the block we’ve just seen, and execute the cell by pressing Control-Enter. Rewrite the code with the fingers, not with copy-paste ! Pay attention to correct indentation with spaces in the block.

[2]:

write here

with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 print(line)

Leonardo

✪ 1.2 Exercise: you might wondering what exactly is that f, and what exatly the method readlines should be doing. When you find yourself in these situations, you might help yourself with functions type and help. This time, directly copy paste the same code here, but insert inside with block the commands:

	print(type(f))

	print(help(f))

	print(help(f.readline)) # Attention: remember the f. before the readline !!

Every time you add something, try to execute with Control+Enter and see what happens

[3]:

write here the code (copy and paste)
with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 print(type(f))
 print(help(f.readline))
 print(help(f))
 print(line)

<class '_io.TextIOWrapper'>
Help on built-in function readline:

readline(size=-1, /) method of _io.TextIOWrapper instance
 Read until newline or EOF.

 Returns an empty string if EOF is hit immediately.

None
Help on TextIOWrapper object:

class TextIOWrapper(_TextIOBase)
 | Character and line based layer over a BufferedIOBase object, buffer.
 |
 | encoding gives the name of the encoding that the stream will be
 | decoded or encoded with. It defaults to locale.getpreferredencoding(False).
 |
 | errors determines the strictness of encoding and decoding (see
 | help(codecs.Codec) or the documentation for codecs.register) and
 | defaults to "strict".
 |
 | newline controls how line endings are handled. It can be None, '',
 | '\n', '\r', and '\r\n'. It works as follows:
 |
 | * On input, if newline is None, universal newlines mode is
 | enabled. Lines in the input can end in '\n', '\r', or '\r\n', and
 | these are translated into '\n' before being returned to the
 | caller. If it is '', universal newline mode is enabled, but line
 | endings are returned to the caller untranslated. If it has any of
 | the other legal values, input lines are only terminated by the given
 | string, and the line ending is returned to the caller untranslated.
 |
 | * On output, if newline is None, any '\n' characters written are
 | translated to the system default line separator, os.linesep. If
 | newline is '' or '\n', no translation takes place. If newline is any
 | of the other legal values, any '\n' characters written are translated
 | to the given string.
 |
 | If line_buffering is True, a call to flush is implied when a call to
 | write contains a newline character.
 |
 | Method resolution order:
 | TextIOWrapper
 | _TextIOBase
 | _IOBase
 | builtins.object
 |
 | Methods defined here:
 |
 | __getstate__(...)
 |
 | __init__(self, /, *args, **kwargs)
 | Initialize self. See help(type(self)) for accurate signature.
 |
 | __new__(*args, **kwargs) from builtins.type
 | Create and return a new object. See help(type) for accurate signature.
 |
 | __next__(self, /)
 | Implement next(self).
 |
 | __repr__(self, /)
 | Return repr(self).
 |
 | close(self, /)
 | Flush and close the IO object.
 |
 | This method has no effect if the file is already closed.
 |
 | detach(self, /)
 | Separate the underlying buffer from the TextIOBase and return it.
 |
 | After the underlying buffer has been detached, the TextIO is in an
 | unusable state.
 |
 | fileno(self, /)
 | Returns underlying file descriptor if one exists.
 |
 | OSError is raised if the IO object does not use a file descriptor.
 |
 | flush(self, /)
 | Flush write buffers, if applicable.
 |
 | This is not implemented for read-only and non-blocking streams.
 |
 | isatty(self, /)
 | Return whether this is an 'interactive' stream.
 |
 | Return False if it can't be determined.
 |
 | read(self, size=-1, /)
 | Read at most n characters from stream.
 |
 | Read from underlying buffer until we have n characters or we hit EOF.
 | If n is negative or omitted, read until EOF.
 |
 | readable(self, /)
 | Return whether object was opened for reading.
 |
 | If False, read() will raise OSError.
 |
 | readline(self, size=-1, /)
 | Read until newline or EOF.
 |
 | Returns an empty string if EOF is hit immediately.
 |
 | seek(self, cookie, whence=0, /)
 | Change stream position.
 |
 | Change the stream position to the given byte offset. The offset is
 | interpreted relative to the position indicated by whence. Values
 | for whence are:
 |
 | * 0 -- start of stream (the default); offset should be zero or positive
 | * 1 -- current stream position; offset may be negative
 | * 2 -- end of stream; offset is usually negative
 |
 | Return the new absolute position.
 |
 | seekable(self, /)
 | Return whether object supports random access.
 |
 | If False, seek(), tell() and truncate() will raise OSError.
 | This method may need to do a test seek().
 |
 | tell(self, /)
 | Return current stream position.
 |
 | truncate(self, pos=None, /)
 | Truncate file to size bytes.
 |
 | File pointer is left unchanged. Size defaults to the current IO
 | position as reported by tell(). Returns the new size.
 |
 | writable(self, /)
 | Return whether object was opened for writing.
 |
 | If False, write() will raise OSError.
 |
 | write(self, text, /)
 | Write string to stream.
 | Returns the number of characters written (which is always equal to
 | the length of the string).
 |
 | --
 | Data descriptors defined here:
 |
 | buffer
 |
 | closed
 |
 | encoding
 | Encoding of the text stream.
 |
 | Subclasses should override.
 |
 | errors
 | The error setting of the decoder or encoder.
 |
 | Subclasses should override.
 |
 | line_buffering
 |
 | name
 |
 | newlines
 | Line endings translated so far.
 |
 | Only line endings translated during reading are considered.
 |
 | Subclasses should override.
 |
 | --
 | Methods inherited from _IOBase:
 |
 | __del__(...)
 |
 | __enter__(...)
 |
 | __exit__(...)
 |
 | __iter__(self, /)
 | Implement iter(self).
 |
 | readlines(self, hint=-1, /)
 | Return a list of lines from the stream.
 |
 | hint can be specified to control the number of lines read: no more
 | lines will be read if the total size (in bytes/characters) of all
 | lines so far exceeds hint.
 |
 | writelines(self, lines, /)
 |
 | --
 | Data descriptors inherited from _IOBase:
 |
 | __dict__

None
Leonardo

First we put the content of the first line into the variable line, now we might put it in a variable witha more meaningful name, like name. Also, we can directly read the next row into the variable surname and then print the concatenation of both:

[4]:

with open('people-simple.txt', encoding='utf-8') as f:
 name=f.readline()
 surname=f.readline()
 print(name + ' ' + surname)

Leonardo
 da Vinci

PROBLEM ! The printing puts a weird carriage return. Why is that? If you remember, first we said that readline reads the line content in a string adding to the end also the special newline character. To eliminate it, you can use the command rstrip():

[5]:

with open('people-simple.txt', encoding='utf-8') as f:
 name=f.readline().rstrip()
 surname=f.readline().rstrip()
 print(name + ' ' + surname)

Leonardo da Vinci

✪ 1.3 Exercise: Again, rewrite the block above in the cell below, ed execute the cell with Control+Enter. Question: what happens if you use strip() instead of rstrip()? What about lstrip()? Can you deduce the meaning of r and l? If you can’t manage it, try to use python command help by calling help(string.rstrip)

[6]:

write here

with open('people-simple.txt', encoding='utf-8') as f:
 name=f.readline().rstrip()
 surname=f.readline().rstrip()
 print(name + ' ' + surname)

Leonardo da Vinci

Very good, we have the first line ! Now we can read all the lines in sequence. To this end, we can use a while cycle:

[7]:

with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 while line != "":
 name = line.rstrip()
 surname=f.readline().rstrip()
 print(name + ' ' + surname)
 line=f.readline()

Leonardo da Vinci
Sandro Botticelli
Niccolò Macchiavelli

NOTE: In Python there are shorter ways [https://thispointer.com/5-different-ways-to-read-a-file-line-by-line-in-python/] to read a text file line by line, we used this approach to make explicit all passages.

What did we do? First, we added a while cycle in a new block

WARNING: In new block, since it is already within the external with, the instructions are indented of 8 spaces and not 4! If you use the wrong spaces, bad things happen !

We first read a line, and two cases are possible:

	we are the end of the file (or file is empty) : in this case readline() call returns an empty string

	we are not at the end of the file: the first line is put as a string inside the variable line. Since Python internally uses a pointer to keep track at which position we are when reading inside the file, after the read such pointer is moved at the beginning of the next line. This way the next call to readline() will read a line from the new position.

In while block we tell Python to continue the cycle as long as line is not empty. If this is the case, inside the while block we parse the name from the line and put it in variable name (removing extra newline character with rstrip() as we did before), then we proceed reading the next line and parse the result inside the surname variable. Finally, we read again a line into the line variable so it will be ready for the next round of name extraction. If line is empty
the cycle will terminate:

while line != "": # enter cycle if line contains characters
 name = line.rstrip() # parses the name
 surname=f.readline().rstrip() # reads next line and parses surname
 print(name + ' ' + surname)
 line=f.readline() # read next line

✪ 1.4 EXERCISE: As before, rewrite in the cell below the code with the while, paying attention to the indentation (for the external with line use copy-and-paste):

[8]:

write here the code of internal while

with open('people-simple.txt', encoding='utf-8') as f:
 line=f.readline()
 while line != "":
 name = line.rstrip()
 surname=f.readline().rstrip()
 print(name + ' ' + surname)
 line=f.readline()

Leonardo da Vinci
Sandro Botticelli
Niccolò Macchiavelli

people-complex line file:

Look at the file people-complex.txt:

name: Leonardo
surname: da Vinci
birthdate: 1452-04-15
name: Sandro
surname: Botticelli
birthdate: 1445-03-01
name: Niccolò
surname: Macchiavelli
birthdate: 1469-05-03

Supposing to read the file to print this output, how would you do it?

Leonardo da Vinci, 1452-04-15
Sandro Botticelli, 1445-03-01
Niccolò Macchiavelli, 1469-05-03

Hint 1: to obtain the string 'abcde', the substring 'cde', which starts at index 2, you can ue the operator square brackets, using the index followed by colon :

[9]:

x = 'abcde'
x[2:]

[9]:

'cde'

[10]:

x[3:]

[10]:

'de'

Hint 2: To know the length of a string, use the function len:

[11]:

len('abcde')

[11]:

5

✪ 1.5 Exercise: Write here the solution of the exercise ‘People complex’:

[12]:

write here

with open('people-complex.txt', encoding='utf-8') as f:
 line=f.readline()
 while line != "":
 name = line.rstrip()[len("name: "):]
 surname= f.readline().rstrip()[len("surname: "):]
 born = f.readline().rstrip()[len("birthdate: "):]
 print(name + ' ' + surname + ', ' + born)
 line=f.readline()

Leonardo da Vinci, 1452-04-15
Sandro Botticelli, 1445-03-01
Niccolò Macchiavelli, 1469-05-03

Exercise: line file immersione-in-python-toc

✪✪✪ This exercise is more challenging, if you are a beginner you might skip it and go on to CSVs

The book Dive into Python is nice and for the italian version there is a PDF, which has a problem though: if you try to print it, you will discover that the index is missing. Without despairing, we found a program to extract titles in a file as follows, but you will discover it is not exactly nice to see. Since we are Python ninjas, we decided to transform raw titles in a real table of contents [http://softpython.readthedocs.io/it/latest/_static/toc-immersione-in-python-3.txt]. Sure enough
there are smarter ways to do this, like loading the pdf in Python with an appropriate module for pdfs, still this makes for an interesting exercise.

You are given the file immersione-in-python-toc.txt:

BookmarkBegin
BookmarkTitle: Il vostro primo programma Python
BookmarkLevel: 1
BookmarkPageNumber: 38
BookmarkBegin
BookmarkTitle: Immersione!
BookmarkLevel: 2
BookmarkPageNumber: 38
BookmarkBegin
BookmarkTitle: Dichiarare funzioni
BookmarkLevel: 2
BookmarkPageNumber: 41
BookmarkBeginint
BookmarkTitle: Argomenti opzionali e con nome
BookmarkLevel: 3
BookmarkPageNumber: 42
BookmarkBegin
BookmarkTitle: Scrivere codice leggibile
BookmarkLevel: 2
BookmarkPageNumber: 44
BookmarkBegin
BookmarkTitle: Stringhe di documentazione
BookmarkLevel: 3
BookmarkPageNumber: 44
BookmarkBegin
BookmarkTitle: Il percorso di ricerca di import
BookmarkLevel: 2
BookmarkPageNumber: 46
BookmarkBegin
BookmarkTitle: Ogni cosa è un oggetto
BookmarkLevel: 2
BookmarkPageNumber: 47

Write a python program to print the following output:

Il vostro primo programma Python 38
 Immersione! 38
 Dichiarare funzioni 41
 Argomenti opzionali e con nome 42
 Scrivere codice leggibile 44
 Stringhe di documentazione 44
 Il percorso di ricerca di import 46
 Ogni cosa è un oggetto 47

For this exercise, you will need to insert in the output artificial spaces, in a qunatity determined by the rows BookmarkLevel

QUESTION: what’s that weird value è at the end of the original file? Should we report it in the output?

HINT 1: To convert a string into an integer number, use the function int:

[13]:

x = '5'

[14]:

x

[14]:

'5'

[15]:

int(x)

[15]:

5

Warning: int(x) returns a value, and never modifies the argument x!

HINT 2: To substitute a substring in a string, you can use the method .replace:

[16]:

x = 'abcde'
x.replace('cd', 'HELLO')

[16]:

'abHELLOe'

HINT 3: while there is only one sequence to substitute, replace is fine, but if we had a milion of horrible sequences like >, >, &x3e;, what should we do? As good data cleaners, we recognize these are HTML escape sequences [https://corsidia.com/materia/web-design/caratterispecialihtml], so we could use methods specific to sequences like html.escape [https://docs.python.org/3/library/html.html#html.unescape]. TRy it instead of replace and check if it works!

NOTE: Before using html.unescape, import the module html with the command:

import html

HINT 4: To write n copies of a character, use * like this:

[17]:

"b" * 3

[17]:

'bbb'

[18]:

"b" * 7

[18]:

'bbbbbbb'

IMPLEMENTATION: Write here the solution for the line file immersione-in-python-toc.txt, and try execute it by pressing Control + Enter:

[19]:

write here

import html

with open("immersione-in-python-toc.txt", encoding='utf-8') as f:

 line=f.readline()
 while line != "":
 line = f.readline().strip()
 title = html.unescape(line[len("BookmarkTitle: "):])
 line=f.readline().strip()
 level = int(line[len("BookmarkLevel: "):])
 line=f.readline().strip()
 page = line[len("BookmarkPageNumber: "):]
 print((" " * level) + title + " " + page)
 line=f.readline()

 Il vostro primo programma Python 38
 Immersione! 38
 Dichiarare funzioni 41
 Argomenti opzionali e con nome 42
 Scrivere codice leggibile 44
 Stringhe di documentazione 44
 Il percorso di ricerca di import 46
 Ogni cosa è un oggetto 47

2. File CSV

There can be various formats for tabular data, among which you surely know Excel (.xls or .xslx). Unfortunately, if you want to programmatically process data, you should better avoid them and prefer if possible the CSV format, literally ‘Comma Separated Value’. Why? Excel format is very complex and may hide several things which have nothing to do with the raw data:

	formatting (bold fonts, colors …)

	merged cells

	formulas

	multiple tabs

	macros

Correctly parsing complex files may become a nightmare. Instead, CSVs are far simpler, so much so you can even open them witha simple text editor.

We will try to open some CSV, taking into consideration the possible problems we might get. CSVs are not necessarily the perfect solution for everything, but they offer more control over reading and typically if there are conversion problems is because we made a mistake, and not because the reader module decided on its own to exchange days with months in dates.

Why parsing a CSV ?

To load and process CSVs there exist many powerful and intuitive modules such as Pandas in Python or R dataframes. Yet, in this notebook we will load CSVs using the most simple method possible, that is reading row by row, mimicking the method already seen in the previous part of the tutorial. Don’t think this method is primitive or stupid, according to the situation it may save the day. How? Some files may potentially occupy huge amounts of memory, and in moder laptops as of 2019 we only have 4
gigabytes of RAM, the memory where Python stores variables. Given this, Python base functions to read files try their best to avoid loading everything in RAM. Tyipcally a file is read sequentially one piece at a time, putting in RAM only one row at a time.

QUESTION 2.1: if we want to know if a given file of 1000 terabytes contains only 3 million rows in which the word ‘ciao’ is present, are we obliged to put in RAM all of the rows ?

ANSWER: no, it is sufficient to keep in memory one row at a time, and hold the count in another variable

QUESTION 2.2: What if we wanted to take a 100 terabyte file and create another one by appending to each row of the first one the word ‘ciao’? Should we put in RAM at the same time all the rows of the first file ? What about the rows of second one?

ANSWER: No, it is enough to keep in RAM one row at a time, which is first read from the first file and then written right away in the second file.

Reading a CSV

We will start with artifical example CSV. Let’s look at example-1.csv which you can find in the same folder as this Jupyter notebook. It contains animals with their expected lifespan:

animal, lifespan
dog, 12
cat, 14
pelican, 30
squirrel, 6
eagle, 25

We notice right away that the CSV is more structured than files we’ve seen in the previous section

	in the first line there are column names, separated with commas: animal, lifespan

	fields in successive rows are also separated by commas ,: dog, 12

Let’s try now to import this file in Python:

[20]:

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:

 # we create an object 'my_reader' which will take rows from the file
 my_reader = csv.reader(f, delimiter=',')

 # 'my_reader' is an object considered 'iterable', that is,
 # if used in a 'for' will produce a sequnce of rows from csv
 # NOTE: here every file row is converted into a list of Python strings !

 for row in my_reader:
 print('We just read a row !')
 print(row) # prints variable 'row', which is a list of strings
 print('') # prints an empty string, to separate in vertical

We just read a row !
['animal', ' lifespan']

We just read a row !
['dog', '12']

We just read a row !
['cat', '14']

We just read a row !
['pelican', '30']

We just read a row !
['squirrel', '6']

We just read a row !
['eagle', '25']

We immediatly notice from output that example file is being printed, but there are square parrenthesis ([]). What do they mean? Those we printed are lists of strings

Let’s analyze what we did:

import csv

Python natively has a module to deal with csv files, which has the intuitive csv name. With this instruction, we just loaded the module.

What happens next? As already did for files with lines before, we open the file in a with block:

with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
 for row in my_reader:
 print(row)

For now ignore the newline='' and notice how first we specificed the encoding

Once the file is open, in the row

my_reader = csv.reader(f, delimiter=',')

we ask to csv module to create a reader object called my_reader for our file, telling Python that comma is the delimiter for fields.

NOTE: my_reader is the name of the variable we are creating, it could be any name.

This reader object can be exploited as a sort of generator of rows by using a for cycle:

for row in my_reader:
 print(row)

In for cycle we employ lettore to iterate in the reading of the file, producing at each iteration a row we call row (but it could be any name we like). At each iteration, the variable row gets printed.

If you look closely the prints of first lists, you will see that each time to each row is assigned only one Python list. The list contains as many elements as the number of fields in the CSV.

✪ EXERCISE 2.3: Rewrite in the cell below the instructions to read and print the CSV, paying attention to indentation:

[21]:

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:

 # we create an object 'my_reader' which will take rows from the file
 my_reader = csv.reader(f, delimiter=',')

 # 'my_reader' is an object considered 'iterable', that is,
 # if used in a 'for' will produce a sequnce of rows from csv
 # NOTE: here every file row is converted into a list of Python strings !

 for row in my_reader:
 print("We just read a row !")
 print(row) # prints variable 'row', which is a list of strings
 print('') # prints an empty string, to separate in vertical

We just read a row !
['animal', ' lifespan']

We just read a row !
['dog', '12']

We just read a row !
['cat', '14']

We just read a row !
['pelican', '30']

We just read a row !
['squirrel', '6']

We just read a row !
['eagle', '25']

✪✪ Exercise 2.4: try to put into big_list a list containing all the rows extracted from the file, which will be a list of lists like so:

[['eagle', 'lifespan'],
 ['dog', '12'],
 ['cat', '14'],
 ['pelican', '30'],
 ['squirrel', '6'],
 ['eagle', '25']]

HINT: Try creating an empty list and then adding elements with .append method

[22]:

write here

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:

 # we create an object 'my_reader' which will take rows from the file
 my_reader = csv.reader(f, delimiter=',')

 # 'my_reader' is an object considered 'iterable', that is,
 # if used in a 'for' will produce a sequnce of rows from csv
 # NOTE: here every file row is converted into a list of Python strings !

 big_list = []
 for row in my_reader:
 big_list.append(row)
 print(big_list)

[['animal', ' lifespan'], ['dog', '12'], ['cat', '14'], ['pelican', '30'], ['squirrel', '6'], ['eagle', '25']]

✪✪ EXERCISE 2.5: You may have noticed that numbers in lists are represented as strings like '12' (note apeces), instead that like Python integer numbers (represented without apeces), 12:

We just read a row!
['dog', '12']

So, by reading the file and using normal for cycles, try to create a new variable big_list like this, which

	has only data, the row with the header is not present

	numbers are represented as proper integers

[['dog', 12],
 ['cat', 14],
 ['pelican', 30],
 ['squirrel', 6],
 ['eagle', 25]]

HINT 1: to jump a row you can use the instruction next(my_reader)

HINT 2: to convert a string into an integer, you can use for example. int('25')

[23]:

write here

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
 big_list = []
 next(my_reader)
 for row in my_reader:
 big_list.append([row[0], int(row[1])])
 print(big_list)

[['dog', 12], ['cat', 14], ['pelican', 30], ['squirrel', 6], ['eagle', 25]]

What’s a reader ?

We said that my_reader generates a sequence of rows, and it is iterable. In for cycle, at every cycle we ask to read a new line, which is put into variable row. We might then ask ourselves, what happens if we directly print my_reader, without any for? Will we see a nice list or something else? Let’s try:

[24]:

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
 print(my_reader)

<_csv.reader object at 0x7f58767de978>

This result is quite disappointing

✪ EXERCISE 2.6: you probably found yourself in the same situation when trying to print a sequence generated by a call to range(5): instead of the actual sequence you get a range object. If you want to convert the generator to a list, what should you do?

[25]:

write here

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
 print(list(my_reader))

[['animal', ' lifespan'], ['dog', '12'], ['cat', '14'], ['pelican', '30'], ['squirrel', '6'], ['eagle', '25']]

Consuming a file

Not all sequences are the same. From what you’ve seen so far, going through a file in Python looks a lot like iterating a list. Which is very handy, but you need to pay attention to some things. Given that files potentially might occupy terabytes, basic Python functions to load them avoid loading everything into memory and typically a file is read one piece at a time. But if the whole file is loaded into Python environment in one shot, what happens if we try to go through it twice inside the
same with ? What happens if we try using it outside with? To find out look at next exercises.

✪ EXERCISE 2.7: taking the solution to previous exercise, try to call print(list(my_reader)) twice, in sequence. Do you get the same output in both occasions?

[]:

[26]:

write here the code

#import csv
#with open('example-1.csv', encoding='utf-8', newline='') as f:
my_reader = csv.reader(f, delimiter=',')
print(list(my_reader))
print(list(my_reader))

✪ Exercise 2.8: Taking the solution from previous exercise (using only one print), try down here to move the print to the left (removing any spaces). Does it still work ?

[27]:

write here

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
#print(list(my_reader)) # COMMENTED, AS IT WOULD RAISE ON ERROR OF CLOSED FILE
 # We can't use commands which read the file outside the with !

✪✪ Exercise 2.9: Now that we understood which kind of beast my_reader is, try to produce this result as done before, but using a list comprehension instead of the for:

[['dog', 12],
 ['cat', 14],
 ['pelican', 30],
 ['squirrel', 6],
 ['eagle', 25]]

	If you can, try also to write the whole transformation to create big_list in one row, usinf the function itertools.islice [https://docs.python.org/3/library/itertools.html#itertools.islice] to jump the header (for example itertools.islice(['A', 'B', 'C', 'D', 'E'], 2, None) first two elements and produces the sequence C D E F G - in our case the elements produced by my_reader would be rows)

[28]:

import csv
import itertools
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.reader(f, delimiter=',')
 # write here
 big_list = [[row[0], int(row[1])] for row in itertools.islice(my_reader, 1, None)]
 print(big_list)

[['dog', 12], ['cat', 14], ['pelican', 30], ['squirrel', 6], ['eagle', 25]]

✪ Exercise 2.10: Create a file my-example.csv in the same folder where this Jupyter notebook is, and copy inside the content of the file example-1.csv. Then add a column description, remembering to separate the column name from the preceding one with a comma. As column values, put into successive rows strings like dogs walk, pelicans fly, etc according to the animal, remembering to separate them from lifespan using a comma, like this:

dog,12,dogs walk

After this, copy and paste down here the Python code to load the file, putting the file name my-example.csv, and try to load everything, just to check everything is working:

[29]:

write here

ANSWER:

animal,lifespan,description
dog,12,dogs walk
cat,14,cats walk
pelican,30,pelicans fly
squirrel,6,squirrels fly
eagle,25,eagles fly

✪ Exercise 2.11: Not every CSV is structured in the same way, sometimes when we write csvs or import them some tweak is necessary. Let’s see which problems may arise:

	In the file, try to put one or two spaces before numbers, for example write down here and look what happens

dog, 12,dogs fly

QUESTION 2.11.1: Does the space get imported?

ANSWER: yes

QUESTION 2.11.2: if we convert to integer, is the space a problem?

ANSWER: no

QUESTION 2.11.3 Modify only dogs description from dogs walk to dogs walk, but don't fly and try to riexecute the cell which opens the file. What happens?

ANSWER: Python reads one element more in the list

QUESTION 2.11.4: To overcome previous problem, a solution you can adopt in CSVs is to round strings containing commas with double quotes, like this: "dogs walk, but don't fly". Does it work ?

ANSWER: yes

Reading as dictionaries

To read a CSV, instead of getting lists, you may more conveniently get dictionaries in the form of OrderedDicts

See Python documentation [https://docs.python.org/3/library/csv.html#csv.DictReader]

NOTE: different Python versions give different dictionaries:

	\(<\) 3.6: dict

	3.6, 3.7: OrderedDict

	\(\geq\) 3.8: dict

Python 3.8 returned to old dict because in the implementation of its dictionariesthe key order is guaranteed, so it will be consistent with the one of CSV headers

[30]:

import csv
with open('example-1.csv', encoding='utf-8', newline='') as f:
 my_reader = csv.DictReader(f, delimiter=',') # Notice we now used DictReader
 for d in my_reader:
 print(d)

{'animal': 'dog', ' lifespan': '12'}
{'animal': 'cat', ' lifespan': '14'}
{'animal': 'pelican', ' lifespan': '30'}
{'animal': 'squirrel', ' lifespan': '6'}
{'animal': 'eagle', ' lifespan': '25'}

Writing a CSV

You can easily create a CSV by instantiating a writer object:

ATTENTION: BE SURE TO WRITE IN THE CORRECT FILE!

If you don’t pay attention to file names, you risk deleting data !

[31]:

import csv

To write, REMEMBER to specify the `w` option.
WARNING: 'w' *completely* replaces existing files !!
with open('written-file.csv', 'w', newline='') as csvfile_out:

 my_writer = csv.writer(csvfile_out, delimiter=',')

 my_writer.writerow(['This', 'is', 'a header'])
 my_writer.writerow(['some', 'example', 'data'])
 my_writer.writerow(['some', 'other', 'example data'])

Reading and writing a CSV

To create a copy of an existing CSV, you may nest a with for writing inside another for reading:

ATTENTION: CAREFUL NOT TO SWAP FILE NAMES!

When we read and write it’s easy to make mistakes and accidentally overwrite our precious data.

To avoid issues:

	use explicit names both for output files (es: example-1-enriched.csv and handles (i.e. csvfile_out)

	backup data to read

	always check before carelessly executing code you just wrote !

[32]:

import csv

To write, REMEMBER to specify the `w` option.
WARNING: 'w' *completely* replaces existing files !!
WARNING: handle here is called *csvfile_out*
with open('example-1-enriched.csv', 'w', encoding='utf-8', newline='') as csvfile_out:
 my_writer = csv.writer(csvfile_out, delimiter=',')

 # Notice how this 'with' is *inside* the outer one:
 # WARNING: handle here is called *csvfile_in*
 with open('example-1.csv', encoding='utf-8', newline='') as csvfile_in:
 my_reader = csv.reader(csvfile_in, delimiter=',')

 for row in my_reader:
 row.append('something else')
 my_writer.writerow(row)
 my_writer.writerow(row)
 my_writer.writerow(row)

Let’s see the new file was actually created by reading it:

[33]:

with open('example-1-enriched.csv', encoding='utf-8', newline='') as csvfile_in:
 my_reader = csv.reader(csvfile_in, delimiter=',')

 for row in my_reader:
 print(row)

['animal', ' lifespan', 'something else']
['animal', ' lifespan', 'something else']
['animal', ' lifespan', 'something else']
['dog', '12', 'something else']
['dog', '12', 'something else']
['dog', '12', 'something else']
['cat', '14', 'something else']
['cat', '14', 'something else']
['cat', '14', 'something else']
['pelican', '30', 'something else']
['pelican', '30', 'something else']
['pelican', '30', 'something else']
['squirrel', '6', 'something else']
['squirrel', '6', 'something else']
['squirrel', '6', 'something else']
['eagle', '25', 'something else']
['eagle', '25', 'something else']
['eagle', '25', 'something else']

CSV Botteghe storiche

Usually in open data catalogs like the popular CKAN platform (for example dati.trentino.it [http://dati.trentino.it/], data.gov.uk [https://data.gov.uk/], European data portal [https://www.europeandataportal.eu/] run instances of CKAN) files are organized in datasets, which are collections of resources: each resource directly contains a file inside the catalog (typically CSV, JSON or XML) or a link to the real file located in a server belonging to the organizazion which created
the data.

The first dataset we wil look at will be ‘Botteghe storiche del Trentino’:

https://dati.trentino.it/dataset/botteghe-storiche-del-trentino

Here you will find some generic information about the dataset, of importance note the data provider: Provincia Autonoma di Trento and the license Creative Commons Attribution v4.0 [https://creativecommons.org/licenses/by/4.0/deed.en], which basically allows any reuse provided you cite the author.

Inside the dataset page, there is a resource called ‘Botteghe storiche’

https://dati.trentino.it/dataset/botteghe-storiche-del-trentino/resource/43fc327e-99b4-4fb8-833c-1807b5ef1d90

At the resource page, we find a link to the CSV file (you can also find it by clicking on the blue button ‘Go to the resource’):

http://www.commercio.provincia.tn.it/binary/pat_commercio/valorizzazione_luoghi_storici/Albo_botteghe_storiche_in_ordine_iscrizione_9_5_2019.1557403385.csv

Accordingly to the browser and operating system you have, by clicking on the link above you might get different results. In our case, on browser Firefox and operating system Linux we get (here we only show first 10 rows):

Numero,Insegna,Indirizzo,Civico,Comune,Cap,Frazione/LocalitÃ ,Note
1,BAZZANELLA RENATA,Via del Lagorai,30,Sover,38068,Piscine di Sover,"generi misti, bar - ristorante"
2,CONFEZIONI MONTIBELLER S.R.L.,Corso Ausugum,48,Borgo Valsugana,38051,,esercizio commerciale
3,FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.,Largo Dordi,8,Borgo Valsugana,38051,,"esercizio commerciale, attivitÃ artigianale"
4,BAR SERAFINI DI MINATI RENZO,,24,Grigno,38055,Serafini,esercizio commerciale
6,SEMBENINI GINO & FIGLI S.R.L.,Via S. Francesco,35,Riva del Garda,38066,,
7,HOTEL RISTORANTE PIZZERIA â€œALLA NAVEâ€�,Via Nazionale,29,Lavis,38015,Nave San Felice,
8,OBRELLI GIOIELLERIA DAL 1929 S.R.L.,Via Roma,33,Lavis,38015,,
9,MACELLERIE TROIER S.A.S. DI TROIER DARIO E C.,Via Roma,13,Lavis,38015,,
10,NARDELLI TIZIANO,Piazza Manci,5,Lavis,38015,,esercizio commerciale

As expected, values are separated with commas.

Problem: wrong characters ??

You can suddenly discover a problem in the first row of headers, in the column Frazione/LocalitÃ. It seems last character is wrong, in italian it should show accented like à. Is it truly a problem of the file ? Not really. Probably, the server is not telling Firefox which encoding is the correct one for the file. Firefox is not magical, and tries its best to show the CSV on the base of the info it has, which may be limited and / or even wrong. World is never like we would like it to be
…

✪ 2.12 Exercise: download the CSV, and try opening it in Excel and / or LibreOffice Calc. Do you see a correct accented character? If not, try to set the encoding to ‘Unicode (UTF-8)’ (in Calc is called ‘Character set’).

WARNING: CAREFUL IF YOU USE Excel!

By clicking directly on File->Open in Excel, probably Excel will try to guess on its own how to put the CSV in a table, and will make the mistake to place everything in a column. To avoid the problem, we have to tell Excel to show a panel to ask us how we want to open the CSV, by doing like so:

	In old Excels, find File-> Import

	In recent Excels, click on tab Data and then select From text. For further information, see copytrans guide [https://www.copytrans.net/support/how-to-open-a-csv-file-in-excel/]

	NOTE: If the file is not available, in the folder where this notebook is you will find the same file renamed to botteghe-storiche.csv

[image: import example in LibreOffice Calc]

We should get a table like this. Notice how the Frazione/Località header displays with the right accent because we selected Character set: Unicode (UTF-8) which is the appropriate one for this dataset:

[image: botteghe storiche table]

Botteghe storiche in Python

Now that we understood a couple of things about encoding, let’s try to import the file in Python.

If we load in Python the first 5 entries with a csv DictReader and print them we should see something like this:

OrderedDict([('Numero', '1'),
 ('Insegna', 'BAZZANELLA RENATA'),
 ('Indirizzo', 'Via del Lagorai'),
 ('Civico', '30'),
 ('Comune', 'Sover'),
 ('Cap', '38068'),
 ('Frazione/Località', 'Piscine di Sover'),
 ('Note', 'generi misti, bar - ristorante')]),
OrderedDict([('Numero', '2'),
 ('Insegna', 'CONFEZIONI MONTIBELLER S.R.L.'),
 ('Indirizzo', 'Corso Ausugum'),
 ('Civico', '48'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale')]),
OrderedDict([('Numero', '3'),
 ('Insegna', 'FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.'),
 ('Indirizzo', 'Largo Dordi'),
 ('Civico', '8'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale, attività artigianale')]),
OrderedDict([('Numero', '4'),
 ('Insegna', 'BAR SERAFINI DI MINATI RENZO'),
 ('Indirizzo', ''),
 ('Civico', '24'),
 ('Comune', 'Grigno'),
 ('Cap', '38055'),
 ('Frazione/Località', 'Serafini'),
 ('Note', 'esercizio commerciale')]),
OrderedDict([('Numero', '6'),
 ('Insegna', 'SEMBENINI GINO & FIGLI S.R.L.'),
 ('Indirizzo', 'Via S. Francesco'),
 ('Civico', '35'),
 ('Comune', 'Riva del Garda'),
 ('Cap', '38066'),
 ('Frazione/Località', ''),
 ('Note', '')])

We would like to know which different categories of bottega there are, and count them. Unfortunately, there is no specific field for Categoria, so we will need to extract this information from other fields such as Insegna and Note. For example, this Insegna contains the category BAR, while the Note (commercial enterprise) is a bit too generic to be useful:

'Insegna': 'BAR SERAFINI DI MINATI RENZO',
'Note': 'esercizio commerciale',

while this other Insegna contains just the owner name and Note holds both the categories bar and ristorante:

'Insegna': 'BAZZANELLA RENATA',
'Note': 'generi misti, bar - ristorante',

As you see, data is non uniform:

	sometimes the category is in the Insegna

	sometimes is in the Note

	sometimes is in both

	sometimes is lowercase

	sometimes is uppercase

	sometimes is single

	sometimes is multiple (bar - ristorante)

First we want to extract all categories we can find, and rank them according their frequency, from most frequent to least frequent.

To do so, you need to

	count all words you can find in both Insegna and Note fields, and sort them. Note you need to normalize the uppercase.

	consider a category relevant if it is present at least 11 times in the dataset.

	filter non relevant words: some words like prepositions, type of company ('S.N.C', S.R.L., ..), etc will appear a lot, and will need to be ignored. To detect them, you are given a list called stopwords.

NOTE: the rules above do not actually extract all the categories, for the sake of the exercise we only keep the most frequent ones.

To know how to proceed, read the following.

Botteghe storiche: rank_categories

Load the file with csv.DictReader and while you are loading it, calculate the words as described above. Afterwards, return a list of words with their frequencies.

Do not load the whole file into memory, just process one dictionary at a time and update statistics accordingly.

Expected output:

[('BAR', 191),
 ('RISTORANTE', 150),
 ('HOTEL', 67),
 ('ALBERGO', 64),
 ('MACELLERIA', 27),
 ('PANIFICIO', 22),
 ('CALZATURE', 21),
 ('FARMACIA', 21),
 ('ALIMENTARI', 20),
 ('PIZZERIA', 16),
 ('SPORT', 16),
 ('TABACCHI', 12),
 ('FERRAMENTA', 12),
 ('BAZAR', 11)]

[34]:

def rank_categories(stopwords):
 #jupman-raise
 ret = {}
 import csv
 with open('botteghe.csv', newline='', encoding='utf-8',) as csvfile:
 reader = csv.DictReader(csvfile, delimiter=',')
 for d in reader:
 words = d['Insegna'].split(" ") + d['Note'].upper().split(" ")
 for word in words:
 if word in ret and not word in stopwords:
 ret[word] += 1
 else:
 ret[word] = 1
 return sorted([(key, val) for key,val in ret.items() if val > 10], key=lambda c: c[1], reverse=True)
 #/jupman-raise

stopwords = ['',
 'S.N.C.', 'SNC','S.A.S.', 'S.R.L.', 'S.C.A.R.L.', 'SCARL','S.A.S', 'COMMERCIALE','FAMIGLIA','COOPERATIVA',
 '-', '&', 'C.', 'ESERCIZIO',
 'IL', 'DE', 'DI','A', 'DA', 'E', 'LA', 'AL', 'DEL', 'ALLA',]
categories = rank_categories(stopwords)

categories

[34]:

[('BAR', 191),
 ('RISTORANTE', 150),
 ('HOTEL', 67),
 ('ALBERGO', 64),
 ('MACELLERIA', 27),
 ('PANIFICIO', 22),
 ('FARMACIA', 21),
 ('CALZATURE', 21),
 ('ALIMENTARI', 20),
 ('PIZZERIA', 16),
 ('SPORT', 16),
 ('FERRAMENTA', 12),
 ('TABACCHI', 12),
 ('BAZAR', 11)]

Botteghe storiche: enrich

Once you found the categories, implement function enrich, which takes the db and previously computed categories, and WRITES a NEW file botteghe-enriched.csv where the rows are enriched with a new field Categorie, which holds a list of the categories a particular bottega belongs to.

	Write the new file with a DictWriter, see documentation [https://docs.python.org/3/library/csv.html#csv.DictWriter]

The new file should contain rows like this (showing only first 5):

OrderedDict([('Numero', '1'),
 ('Insegna', 'BAZZANELLA RENATA'),
 ('Indirizzo', 'Via del Lagorai'),
 ('Civico', '30'),
 ('Comune', 'Sover'),
 ('Cap', '38068'),
 ('Frazione/Località', 'Piscine di Sover'),
 ('Note', 'generi misti, bar - ristorante'),
 ('Categorie', "['BAR', 'RISTORANTE']")])
OrderedDict([('Numero', '2'),
 ('Insegna', 'CONFEZIONI MONTIBELLER S.R.L.'),
 ('Indirizzo', 'Corso Ausugum'),
 ('Civico', '48'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale'),
 ('Categorie', '[]')])
OrderedDict([('Numero', '3'),
 ('Insegna', 'FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.'),
 ('Indirizzo', 'Largo Dordi'),
 ('Civico', '8'),
 ('Comune', 'Borgo Valsugana'),
 ('Cap', '38051'),
 ('Frazione/Località', ''),
 ('Note', 'esercizio commerciale, attività artigianale'),
 ('Categorie', '[]')])
OrderedDict([('Numero', '4'),
 ('Insegna', 'BAR SERAFINI DI MINATI RENZO'),
 ('Indirizzo', ''),
 ('Civico', '24'),
 ('Comune', 'Grigno'),
 ('Cap', '38055'),
 ('Frazione/Località', 'Serafini'),
 ('Note', 'esercizio commerciale'),
 ('Categorie', "['BAR']")])
OrderedDict([('Numero', '6'),
 ('Insegna', 'SEMBENINI GINO & FIGLI S.R.L.'),
 ('Indirizzo', 'Via S. Francesco'),
 ('Civico', '35'),
 ('Comune', 'Riva del Garda'),
 ('Cap', '38066'),
 ('Frazione/Località', ''),
 ('Note', ''),
 ('Categorie', '[]')])

[35]:

def enrich(categories):
 #jupman-raise
 ret = []

 fieldnames = []
 # read headers
 with open('botteghe.csv', newline='', encoding='utf-8') as csvfile_in:
 reader = csv.DictReader(csvfile_in, delimiter=',')
 d1 = next(reader)
 fieldnames = list(d1.keys()) # otherwise we cannot append

 fieldnames.append('Categorie')

 with open('botteghe-enriched-solution.csv', 'w', newline='', encoding='utf-8') as csvfile_out:

 writer = csv.DictWriter(csvfile_out, fieldnames=fieldnames)
 writer.writeheader()

 with open('botteghe.csv', newline='', encoding='utf-8',) as csvfile_in:
 reader = csv.DictReader(csvfile_in, delimiter=',')
 for d in reader:

 new_d = {key:val for key,val in d.items()}
 new_d['Categorie'] = []
 for cat in categories:
 if cat[0] in d['Insegna'].upper() or cat[0] in d['Note'].upper():
 new_d['Categorie'].append(cat[0])
 writer.writerow(new_d)

 #/jupman-raise

enrich(rank_categories(stopwords))

[36]:

let's see if we created the file we wanted
(using botteghe-enriched-solution.csv to avoid polluting your file)

with open('botteghe-enriched-solution.csv', newline='', encoding='utf-8',) as csvfile_in:
 reader = csv.DictReader(csvfile_in, delimiter=',')
 # better to pretty print the OrderedDicts, otherwise we get unreadable output
 # for documentation see https://docs.python.org/3/library/pprint.html
 import pprint
 pp = pprint.PrettyPrinter(indent=4)
 for i in range(5):
 d = next(reader)
 pp.pprint(d)

{ 'Cap': '38068',
 'Categorie': "['BAR', 'RISTORANTE']",
 'Civico': '30',
 'Comune': 'Sover',
 'Frazione/Località': 'Piscine di Sover',
 'Indirizzo': 'Via del Lagorai',
 'Insegna': 'BAZZANELLA RENATA',
 'Note': 'generi misti, bar - ristorante',
 'Numero': '1'}
{ 'Cap': '38051',
 'Categorie': '[]',
 'Civico': '48',
 'Comune': 'Borgo Valsugana',
 'Frazione/Località': '',
 'Indirizzo': 'Corso Ausugum',
 'Insegna': 'CONFEZIONI MONTIBELLER S.R.L.',
 'Note': 'esercizio commerciale',
 'Numero': '2'}
{ 'Cap': '38051',
 'Categorie': '[]',
 'Civico': '8',
 'Comune': 'Borgo Valsugana',
 'Frazione/Località': '',
 'Indirizzo': 'Largo Dordi',
 'Insegna': 'FOTOGRAFICA TRINTINAGLIA UMBERTO S.N.C.',
 'Note': 'esercizio commerciale, attività artigianale',
 'Numero': '3'}
{ 'Cap': '38055',
 'Categorie': "['BAR']",
 'Civico': '24',
 'Comune': 'Grigno',
 'Frazione/Località': 'Serafini',
 'Indirizzo': '',
 'Insegna': 'BAR SERAFINI DI MINATI RENZO',
 'Note': 'esercizio commerciale',
 'Numero': '4'}
{ 'Cap': '38066',
 'Categorie': '[]',
 'Civico': '35',
 'Comune': 'Riva del Garda',
 'Frazione/Località': '',
 'Indirizzo': 'Via S. Francesco',
 'Insegna': 'SEMBENINI GINO & FIGLI S.R.L.',
 'Note': '',
 'Numero': '6'}

[]:

 Graph formats solutions

Graph formats solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/graph-formats]

Introduction

Usual matrices from linear algebra are of great importance in computer science because they are widely used in many fields, for example in machine learning and network analysis. This tutorial will give you an appreciation of the meaning of matrices when considered as networks or, as we call them in computer science, graphs. We will also review other formats for storing graphs, such as adjacency lists and a have a quick look at a specialized library called Networkx.

In Part A we will limit ourselves to graph formats in this notebook and see some theory in separate binary relations notebook [https://datasciprolab.readthedocs.io/en/latest/exercises/binary-relations/binary-relations-solution.html], while in Part B of the course will focus on graph algorithms [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-algos/graph-algos.html].

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- graph-formats
 |- graph-formats-exercise.ipynb
 |- graph-formats-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/graph-formats/graph-formats-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Required libraries

In order for visualizations to work, you need installed the python library networkx and pydot. Pydot is an interface to the non-pyhon package GraphViz [http://graphviz.org/].

Anaconda:

From Anaconda Prompt:

	Install GraphViz:

conda install graphviz

	Install python packages:

conda install pydot networkx

Ubuntu

From console:

	Install PyGraphViz (note: you should use apt to install it, pip might give problems):

sudo apt install python3-pygraphviz

	Install python packages:

python3 -m pip install --user pydot networkx

Graph definition

In computer science a graph is a set of verteces V (also called nodes) linked by a set of edges E. You can visualize nodes as circles and links as lines. If the graph is undirected, links are just lines, if the graph is directed, links are represented as arrows with a tip to show the direction:

[image: graph dir undir jk3234234u]

[image: graph adjacent 8743gh4]

For our purposes, we will consider directed graphs (also called digraphs).

Usually we will indicate nodes with numbers going from zero included but optionally they can be labelled. Since we are dealing with directed graphs, we can have an arrow going for example from node 1 to node 2, but also another arrow going from node 2 to node 1. Furthemore, a node (for example node 0) can have a cap, that is an edge going to itself:

[image: graph dir boolean 34243]

Edge weights

Optionally, we will sometimes assign a weight to the edges, that is a number to be shown over the edges. So we can modify the previous example. Note we can have an arrow going from node 1 to node 2 with a weight which is different from the weight arrow from 2 to 1:

[image: graph dir different weights 34343iu4]

Matrices

Here we will represent graphs as matrices, which performance-wise is particularly good when the matrix is dense, that is, has many entries different from zero. Otherwise, when you have a so-called sparse matrix (few non-zero entries), it is best to represent the graph with adjacency list, but we will deal with them later.

If you have a directed graph (digraph) with n verteces, you can represent it as an n x n matrix by considering each row as vertex:

	A row at index i represents the outward links from node i to the other n nodes, with possibly node i itself included.

	A value of zero means there is no link to a given node.

	In general, mat[i][j] is the weight of the edge between node i to node j

Visualization examples

We defined a function sciprog.draw_matto display matrices as graphs (you don’t need to understand the internals, for now we won’t go into depth about matrix visualizations).

If it doesn’t work, see above Required libraries paragraph

[2]:

PLEASE EXECUTE THIS CELL TO CHECK IF VISUALIZATION IS WORKING

notice links with weight zero are not shown)
all weights are set to 1

first need to import this
import sys
sys.path.append('../../')
from sciprog import draw_mat

mat = [
 [1,1,0,1], # node 0 is linked to node 0 itself, node 1 and node 2
 [0,0,1,1], # node 1 is linked to node 2 and node 3
 [1,1,1,1], # node 2 is linked to node 0, node 1, node 2 itself and node 3
 [0,1,0,1] # node 3 is linked to node 1 and node 3 itself
]

draw_mat(mat)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_13_0.png]

Saving a graph to a file

If you want (or if you are not using Jupyter), optionally you can save the graph to a .png file by specificing the save_to filepath:

[3]:

mat = [
 [1,1],
 [0,1]
]
draw_mat(mat, save_to='example.png')

[image: ../../_images/exercises_graph-formats_graph-formats-solution_15_0.png]

Image saved to file: example.png

Minimal graph

With this representation derived from matrices as we intend them (that is with at least one row and one column), the corresponding minimal graph can have only one node:

[4]:

minimal = [
 [0]
]

draw_mat(minimal)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_17_0.png]

If we set the weight different from zero, the zeroeth node will link to itself (here we put the weight 5 in the link):

[5]:

minimal = [
 [5]
]

draw_mat(minimal)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_19_0.png]

Graph with two nodes example

[6]:

m = [
 [5,9], # node 0 links to node 0 itself with a weight of 5, and to node 1 with a weight of 9
 [0,6], # node 1 links to node 1 with a weight of 6

]

draw_mat(m)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_21_0.png]

Distance matrix

Depending on the problem at hand, it may be reasonable to change the weights. For example, on a road network the nodes could represent places and the weights could be the distances. If we assume it is possible to travel in both directions on all roads, we get a matrix symmetric along the diagonal, and we can call the matrix a distance matrix. Talking about the diagonal, for the special case of going from a place to itself, we set that street length to 0 (which make sense for street length but
could give troubles for other purposes, for example if we give the numbers the meaning ‘is connected’ a place should always be connected to itself)

[7]:

distance matrix example

mat = [
 [0,6,0,8], # place 0 is linked to place 1 and place 2
 [6,0,9,7], # place 1 is linked to place 0, place 2 and place 3
 [5,9,0,4], # place 2 is linked to place 0, place 1 and place 3
 [8,7,4,0] # place 3 is linked to place 0, place 1 and place 2
]

draw_mat(mat)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_23_0.png]

More realistic traffic road network, where going in one direction might take actually longer than going back, because of one-way streets and different routing times.

[8]:

mat = [
 [0,6,0,8], # place 0 is linked to place 1 and place 2
 [9,0,9,7], # place 1 is linked to place 0, place 2 and place 3
 [5,5,0,4], # place 2 is linked to place 0, place 1 and place 3
 [7,9,8,0] # place 3 is linked to place 0, place 1, place 2
]

draw_mat(mat)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_25_0.png]

Boolean matrix example

If we are not interested at all in the weights, we might use only zeroes and ones as we did before. But this could have implications when doing operations on matrices, so some times it is better to use only True and False

[9]:

mat = [
 [False, True, False],
 [False, True, True],
 [True, False, True],

]
draw_mat(mat)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_27_0.png]

Matrix exercises

We are now ready to start implementing the following functions. Before even start implementation, for each try to interpret the matrix as a graph, drawing it on paper. When you’re done implementing try to use draw_mat on the results. Notice that since draw_mat is a generic display function and knows nothing about the nature of the graph, sometimes it will not show the graph in the optimal way we humans would use.

line

✪✪ This function is similar to diag. As that one, you can implement it in two ways: you can use a double for, or a single one. For the sake of the first part of the course the double for is acceptable, but in the second part it would be considered a waist of computing cycles.

What would be the graph representation of diag ?

[10]:

def line(n):
 """ RETURN a matrix as lists of lists where node i must have an edge to node i + 1 with weight 1
 Last node points to nothing
 n must be >= 1, otherwise rises ValueError
 """
 #jupman-raise
 if n < 1:
 raise ValueError("Invalid n %s" % n)
 ret = [[0]*n for i in range(n)]
 for i in range(n-1):
 ret[i][i+1] = 1
 return ret
 #/jupman-raise

assert line(1) == [
 [0]
]
assert line(2) == [
 [0,1],
 [0,0]
]
assert line(3) == [
 [0,1,0],
 [0,0,1],
 [0,0,0]
]

assert line(4) == [
 [0,1,0,0],
 [0,0,1,0],
 [0,0,0,1],
 [0,0,0,0]
]
draw_mat(line(4))

[image: ../../_images/exercises_graph-formats_graph-formats-solution_30_0.png]

cross

✪✪ RETURN a nxn matrix filled with zeros except on the crossing lines.

	n must be >=1 and odd, otherwise a ValueError is thrown

Example for n=7 :

0001000
0001000
0001000
1111111
0001000
0001000
0001000

Try to figure out how the resulting graph would look like (try to draw on paper, also notice that draw_mat will probably not draw the best possible representation)

[11]:

def cross(n):
 #jupman-raise
 if n < 1 or n % 2 == 0:
 raise ValueError("Invalid n %s" % n)
 ret = [[0]*n for i in range(n)]
 for i in range(n):
 ret[n//2][i] = 1
 ret[i][n//2] = 1
 return ret
 #/jupman-raise

assert cross(1) == [
 [1]
]
assert cross(3) == [
 [0,1,0],
 [1,1,1],
 [0,1,0]
]

assert cross(5) == [
 [0,0,1,0,0],
 [0,0,1,0,0],
 [1,1,1,1,1],
 [0,0,1,0,0],
 [0,0,1,0,0]
]

union

✪✪ When we talk about the union of two graphs, we intend the graph having union of verteces of both graphs and having as edges the union of edges of both graphs. In this exercise, we have two graphs as list of lists with boolean edges. To simplify we suppose they have the same vertices but possibly different edges, and we want to calculate the union as a new graph.

For example, if we have a graph ma like this:

[12]:

ma = [
 [True, False, False],
 [False, True, False],
 [True, False, False]
]

[13]:

draw_mat(ma)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_35_0.png]

And another mb like this:

[14]:

mb = [
 [True, True, False],
 [False, False, True],
 [False, True, False]

]

[15]:

draw_mat(mb)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_38_0.png]

The result of calling union(ma, mb) will be the following:

[16]:

res = [[True, True, False], [False, True, True], [True, True, False]]

which will be displayed as

[17]:

draw_mat(res)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_42_0.png]

So we get same verteces and edges from both ma and mb

[18]:

def union(mata, matb):
 """ Takes two graphs represented as nxn matrices of lists of lists with boolean edges,
 and RETURN a NEW matrix which is the union of both graphs

 if mata row number is different from matb, raises ValueError
 """
 #jupman-raise

 if len(mata) != len(matb):
 raise ValueError("mata and matb have different row number a:%s b:%s!" % (len(mata), len(matb)))

 n = len(mata)

 ret = []
 for i in range(n):
 row = []
 ret.append(row)
 for j in range(n):
 row.append(mata[i][j] or matb[i][j])
 return ret
 #/jupman-raise

try:
 union([[False],[False]], [[False]])
 raise Exception("Shouldn't arrive here !")
except ValueError:
 "test passed"

try:
 union([[False]], [[False],[False]])
 raise Exception("Shouldn't arrive here !")
except ValueError:
 "test passed"

ma1 = [
 [False]
]
mb1 = [
 [False]
]

assert union(ma1, mb1) == [
 [False]
]

ma2 = [
 [False]
]
mb2 = [
 [True]
]

assert union(ma2, mb2) == [
 [True]
]

ma3 = [
 [True]
]
mb3 = [
 [False]
]

assert union(ma3, mb3) == [
 [True]
]

ma4 = [
 [True]
]
mb4 = [
 [True]
]

assert union(ma4, mb4) == [
 [True]
]

ma5 = [
 [False, False, False],
 [False, False, False],
 [False, False, False]

]
mb5 = [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

assert union(ma5, mb5) == [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

ma6 = [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]
mb6 = [
 [False, False, False],
 [False, False, False],
 [False, False, False]

]

assert union(ma6, mb6) == [
 [True, False, True],
 [False, True, True],
 [False, False, False]
]

ma7 = [
 [True, False, False],
 [False, True, False],
 [True, False, False]
]

mb7 = [
 [True, True, False],
 [False, False, True],
 [False, True, False]

]

assert union(ma7, mb7) == [
 [True, True, False],
 [False, True, True],
 [True, True, False]

]

is_subgraph

✪✪ If we interpret a matrix as graph, we may wonder when a graph A is a subgraph of another graph B, that is, when A nodes are a subset of B nodes and when A edges are a subset of B edges. For convenience, here we only consider graphs having the same n nodes both in A and B. Edges may instead vary. Graphs are represented as boolean matrices.

[19]:

def is_subgraph(A, B):
 """ RETURN True is A is a subgraph of B, that is, some or all of its edges also belong to B.
 A and B are boolean matrices of size nxn. If sizes don't match, raises ValueError
 """
 #jupman-raise
 n = len(A)
 m = len(B)
 if n != m:
 raise ValueError("A size %s and B size %s should match !" % (n,m))
 for i in range(n):
 for j in range(n):
 if A[i][j] and not B[i][j]:
 return False
 return True
 #/jupman-raise

the set of edges is empty

ma = [
 [False]
]

the set of edges is empty

mb = [
 [False]
]

an empty set is always a subset of an empty set

assert is_subgraph(ma, mb) == True

the set of edges is empty

ma = [
 [False]
]

the set of edges contains one element

mb = [
 [True]
]

an empty set is always a subset of any set, so function gives True
assert is_subgraph(ma, mb) == True

ma = [
 [True]
]

mb = [
 [True]
]

assert is_subgraph(ma, mb) == True

ma = [
 [True]
]

mb = [
 [False]
]

assert is_subgraph(ma, mb) == False

ma = [
 [True, False],
 [True, False],
]

mb = [
 [True, False],
 [True, True],
]

assert is_subgraph(ma, mb) == True

ma = [
 [False, False, True],
 [True, True,True],
 [True, False,True],
]

mb = [
 [True, False, True],
 [True, True,True],
 [True, True,True],
]

assert is_subgraph(ma, mb) == True

remove_node

✪✪ Here the function text is not so precise, as it is talking about nodes but you have to operate on a matrix. Can you guess exactly what you have to do ? In your experiments, try to draw the matrix before and after executing remove_node

[20]:

def remove_node(mat, i):
 """ MODIFIES mat by removing node i.
 """
 #jupman-raise
 del mat[i]
 for row in mat:
 del row[i]
 #/jupman-raise

m = [
 [3,5,2,5],
 [6,2,3,7],
 [4,2,1,2],
 [7,2,2,6]
]

remove_node(m,2)

assert len(m) == 3
for i in range(3):
 assert len(m[i]) == 3

utriang

✪✪✪ You will try to create an upper triangular matrix of side n. What could possibly be the graph interpretation of such a matrix? Since draw_mat is a generic drawing function doesn’t provide the best possible representation, try to draw on paper a more intuitive one.

[21]:

def utriang(n):
 """ RETURN a matrix of size nxn which is upper triangular, that is,
 has all nodes below the diagonal 0, while all the other nodes
 are set to 1
 """
 #jupman-raise
 ret = []
 for i in range(n):
 row = []
 for j in range(n):
 if j < i:
 row.append(0)
 else:
 row.append(1)
 ret.append(row)
 return ret
 #/jupman-raise

assert utriang(1) == [
 [1]
]
assert utriang(2) == [
 [1,1],
 [0,1]
]
assert utriang(3) == [
 [1,1,1],
 [0,1,1],
 [0,0,1]
]
assert utriang(4) == [
 [1,1,1,1],
 [0,1,1,1],
 [0,0,1,1],
 [0,0,0,1]
]

ediff

✪✪✪ The edge difference of two graphs ediff(da,db) is a graph with the edges of the first except the edges of the second. For simplicity, here we consider only graphs having the same verteces but possibly different edges. This time we will try operate on graphs represented as dictionaries of adjacency lists.

For example, if we have

[22]:

da = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

[23]:

draw_adj(da)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_54_0.png]

and

[24]:

db = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

[25]:

draw_adj(db)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_57_0.png]

The result of calling ediff(da,db) will be:

[26]:

res = {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

Which can be shown as

[27]:

draw_adj(res)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_61_0.png]

[28]:

def ediff(da,db):
 """ Takes two graphs as dictionaries of adjacency lists da and db, and
 RETURN a NEW graph as dictionary of adjacency lists, containing the same vertices of da,
 and the edges of da except the edges of db.

 - As order of elements within the adjacency lists, use the same order as found in da.
 - We assume all verteces in da and db are represented in the keys (even if they have
 no outgoing edge), and that da and db have the same keys

 EXAMPLE:

 da = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

 db = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

 assert ediff(da, db) == {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

 """
 #jupman-raise

 ret = {}
 for key in da:
 ret[key] = []
 for target in da[key]:
 # not efficient but works for us
 # using sets would be better, see https://stackoverflow.com/a/6486483
 if target not in db[key]:
 ret[key].append(target)
 return ret
 #/jupman-raise

da1 = {
 'a': []
 }
db1 = {
 'a': []
 }

assert ediff(da1, db1) == {
 'a': []
 }

da2 = {
 'a': []
 }

db2 = {
 'a': ['a']
 }

assert ediff(da2, db2) == {
 'a': []
 }

da3 = {
 'a': ['a']
 }
db3 = {
 'a': []
 }

assert ediff(da3, db3) == {
 'a': ['a']
 }

da4 = {
 'a': ['a']
 }
db4 = {
 'a': ['a']
 }

assert ediff(da4, db4) == {
 'a': []
 }
da5 = {
 'a':['b'],
 'b':[]
 }
db5 = {
 'a':['b'],
 'b':[]
 }

assert ediff(da5, db5) == {
 'a':[],
 'b':[]
 }

da6 = {
 'a':['b'],
 'b':[]
 }
db6 = {
 'a':[],
 'b':[]
 }

assert ediff(da6, db6) == {
 'a':['b'],
 'b':[]
 }

da7 = {
 'a':['a','b'],
 'b':[]
 }
db7 = {
 'a':['a'],
 'b':[]
 }

assert ediff(da7, db7) == {
 'a':['b'],
 'b':[]
 }

da8 = {
 'a':['a','b'],
 'b':['a']
 }
db8 = {
 'a':['a'],
 'b':['b']
 }

assert ediff(da8, db8) == {
 'a':['b'],
 'b':['a']
 }

da9 = {
 'a':['a','c'],
 'b':['b', 'c'],
 'c':['b','c']
 }

db9 = {
 'a':['c'],
 'b':['a','b', 'c'],
 'c':['a']
 }

assert ediff(da9, db9) == {
 'a':['a'],
 'b':[],
 'c':['b','c']
 }

pyramid

✪✪✪ The following function requires to create a matrix filled with non-zero numbers. Even if don’t know exactly the network meaning, with ust this fact we can conclude that all nodes are linked to all others. A graph where this happens is called a clique (the Italian name is cricca - where have you already seen it? ;-)

[29]:

def pyramid(n):
 """
 Takes an odd number n >= 1 and RETURN a matrix as list of lists containing numbers displaced like this
 example for a pyramid of square 7:
 if n is even, raises ValueError

 1111111
 1222221
 1233321
 1234321
 1233321
 1222221
 1111111
 """
 #jupman-raise
 if n % 2 == 0:
 raise ValueError("n should be odd, found instead %s" % n)
 ret = [[0]*n for i in range(n)]
 for i in range(n//2 + 1):
 for j in range(n//2 +1):
 ret[i][j] = min(i, j) + 1
 ret[i][n-j-1] = min(i, j) + 1
 ret[n-i-1][j] = min(i, j) + 1
 ret[n-i-1][n-j-1] = min(i, j) + 1

 ret[n//2][n//2] = n // 2 + 1
 return ret
 #/jupman-raise

try:
 pyramid(4)
 raise Exception("SHOULD HAVE FAILED!")
except ValueError:
 "passed test"

assert pyramid(1) == [
 [1]
]

assert pyramid(3) == [
 [1,1,1],
 [1,2,1],
 [1,1,1]
]

assert pyramid(5) == [
 [1, 1, 1, 1, 1],
 [1, 2, 2, 2, 1],
 [1, 2, 3, 2, 1],
 [1, 2, 2, 2, 1],
 [1, 1, 1, 1, 1]
]

Adjacency lists

So far, we represented graphs as matrices, saying they are good when the graph is dense, that is any given node is likely to be connected to almost all other nodes - or equivalently, many cell entries in the matrix are different from zero. But if this is not the case, other representations might be needed. For example, we can represent a graph as a adjacency lists.

Let’s look at this 6x6 boolean matrix:

[30]:

m = [
 [False, False, False, False, False, False],
 [False, False, False, False, False, False],
 [True, False, False, True, False, False],
 [False, False, False, False, False, False],
 [False, False, False, False, False, False],
 [False, False, True, False, False, False]
]

We see just a few True, so by drawing it we don’t expect to see many edges:

[31]:

draw_mat(m)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_68_0.png]

As a more compact representation, we might represent the data as a dictionary of adjacency lists where the keys are the node indexes and the to each node we associate a list with the target nodes it points to.

To reproduce the example above, we can write like this:

[32]:

d = {
 0: [], # node 0 links to nothing
 1: [], # node 1 links to nothing
 2: [0,3], # node 2 links to node 0 and 3
 3: [], # node 3 links to nothing
 4: [], # node 4 links to nothing
 5: [2] # node 5 links to node 2
 }

In sciprog.py, we provide also a function sciprog.draw_adj to quickly inspect such data structure:

[33]:

from sciprog import draw_adj

draw_adj(d)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_72_0.png]

As expected, the resulting graph is the same as for the equivalent matrix representation.

mat_to_adj

✪✪ Implement a function that takes a boolean nxn matrix and RETURN the equivalent representation as dictionary of adjacency lists. Remember that to create an empty dict you have to write dict()

[34]:

def mat_to_adj(bool_mat):
 #jupman-raise
 ret = dict()
 n = len(bool_mat)
 for i in range(n):
 ret[i] = []
 for j in range(n):
 if bool_mat[i][j]:
 ret[i].append(j)
 return ret
 #/jupman-raise

m1 = [
 [False]
]

d1 = {
 0:[]
 }

assert mat_to_adj(m1) == d1

m2 = [
 [True]
]

d2 = {
 0:[0]
 }

assert mat_to_adj(m2) == d2

m3 = [
 [False,False],
 [False,False]
]

d3 = {
 0:[],
 1:[]
 }

assert mat_to_adj(m3) == d3

m4 = [
 [True,True],
 [True,True]
]

d4 = {
 0:[0,1],
 1:[0,1]
 }

assert mat_to_adj(m4) == d4

m5 = [
 [False,False],
 [False,True]
]

d5 = {
 0:[],
 1:[1]
 }

assert mat_to_adj(m5) == d5

m6 = [
 [True,False,False],
 [True, True,False],
 [False,True,False]
]

d6 = {
 0:[0],
 1:[0,1],
 2:[1]
 }

assert mat_to_adj(m6) == d6

mat_ids_to_adj

✪✪ Implement a function that takes a boolean nxn matrix and a list of immutable identifiers for the nodes, and RETURN the equivalent representation as dictionary of adjacency lists.

	If matrix is not nxn or ids length does not match n, raise ValueError

[35]:

def mat_ids_to_adj(bool_mat, ids):
 #jupman-raise

 ret = dict()
 n = len(bool_mat)
 m = len(bool_mat[0])
 if n != m:
 raise ValueError('matrix is not nxn !')
 if n != len(ids):
 raise ValueError("Identifiers quantity is different from matrix size!")
 for i in range(n):
 ret[ids[i]] = []
 for j in range(n):
 if bool_mat[i][j]:
 ret[ids[i]].append(ids[j])
 return ret
 #/jupman-raise

try:
 mat_ids_to_adj([[False, True]], ['a','b'])
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

try:
 mat_ids_to_adj([[False]], ['a','b'])
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

m1 = [
 [False]
]

d1 = { 'a':[] }
assert mat_ids_to_adj(m1, ['a']) == d1

m2 = [
 [True]
]

d2 = { 'a':['a'] }
assert mat_ids_to_adj(m2, ['a']) == d2

m3 = [
 [False,False],
 [False,False]
]

d3 = {
 'a':[],
 'b':[]
 }
assert mat_ids_to_adj(m3,['a','b']) == d3

m4 = [
 [True,True],
 [True,True]
]

d4 = {
 'a':['a','b'],
 'b':['a','b']
 }
assert mat_ids_to_adj(m4, ['a','b']) == d4

m5 = [
 [False,False],
 [False,True]
]

d5 = {
 'a':[],
 'b':['b']
 }

assert mat_ids_to_adj(m5,['a','b']) == d5

m6 = [
 [True,False,False],
 [True, True,False],
 [False,True,False]
]

d6 = {
 'a':['a'],
 'b':['a','b'],
 'c':['b']
 }

assert mat_ids_to_adj(m6,['a','b','c']) == d6

adj_to_mat

✪✪✪ Try now conversion from dictionary of adjacency list to matrix (this is a bit hard).

To solve this, the general idea is that you have to fill an nxn matrix to return. During the filling of a cell at row i and column j, you have to decide whether to put a True or a False. You should put True if in the d list value corresponding to the i-th key, there is contained a number equal to j. Otherwise, you should put False.

If you look at the tests, as inputs we are passing OrderedDict. The reason is that when we check the output matrix of your function, we want to be sure the matrix rows are ordered in a certain way.

But you have to assume d can contain arbitrary ids with no precise ordering, so:

	first you should scan the dictionary and lists to save the mapping between indexes to ids in a separate list

NOTE: d.keys() is not exactly a list (does not allow access by index), so you must convert to list with this: list(d.keys())

	then you should build the matrix to return, using the previously built list when needed.

Now implement the function:

[36]:

def adj_to_mat(d):
 """ Take a dictionary of adjacency lists with arbitrary ids and
 RETURN its representation as an nxn boolean matrix (assume
 all nodes are present as keys)

 - Assume d is a simple dictionary (not necessarily an OrderedDict)

 """
 #jupman-raise
 ret = []
 n = len(d)
 ids_to_row_indexes = dict()
 # first maps row indexes to keys
 row_indexes_to_ids = list(d.keys()) # because d.keys() is *not* indexable !
 i = 0
 for key in d:
 row = []
 ret.append(row)
 for j in range(n):
 if row_indexes_to_ids[j] in d[key]:
 row.append(True)
 else:
 row.append(False)
 i += 1
 return ret
 #/jupman-raise

from collections import OrderedDict
od1 = OrderedDict([
 ('a',[])
])
m1 = [[False]]
assert adj_to_mat(od1) == m1

od2 = OrderedDict([
 ('a',['a'])
])
m2 = [[True]]

assert adj_to_mat(od2) == m2

od3 = OrderedDict([
 ('a',['a','b']),
 ('b',['a','b']),
])
m3 = [
 [True, True],
 [True, True]
]

assert adj_to_mat(od3) == m3

od4 = OrderedDict([
 ('a',[]),
 ('b',[]),
])

m4 = [
 [False, False],
 [False, False]
]

assert adj_to_mat(od4) == m4

od5 = OrderedDict([
 ('a',['a']),
 ('b',['a','b']),
])

m5 = [
 [True, False],
 [True, True]
]

assert adj_to_mat(od5) == m5

od6 = OrderedDict([
 ('a',['a','c']),
 ('b',['c']),
 ('c',['a','b']),
])

m6 = [
 [True, False, True],
 [False, False, True],
 [True, True, False],
]

assert adj_to_mat(od6) == m6

table_to_adj

Suppose you have a table expressed as a list of lists with headers like this:

[37]:

m0 = [
 ['Identifier','Price','Quantity'],
 ['a',1,1],
 ['b',5,8],
 ['c',2,6],
 ['d',8,5],
 ['e',7,3]
]

where a, b, c etc are the row identifiers (imagine they represent items in a store), Price and Quantity are properties they might have. NOTE: here we put two properties, but they might have n properties !

We want to transform such table into a graph-like format as a dictionary of lists, which relates store items as keys to the properties they might have. To include in the list both the property identifier and its value, we will use tuples. So you need to write a function that transforms the above input into this:

[38]:

res0 = {
 'a':[('Price',1),('Quantity',1)],
 'b':[('Price',5),('Quantity',8)],
 'c':[('Price',2),('Quantity',6)],
 'd':[('Price',8),('Quantity',5)],
 'e':[('Price',7),('Quantity',3)]
 }

[39]:

def table_to_adj(table):
 #jupman-raise
 ret = {}
 headers = table[0]

 for row in table[1:]:
 lst = []
 for j in range(1, len(row)):
 lst.append((headers[j], row[j]))
 ret[row[0]] = lst
 return ret
 #/jupman-raise

m0 = [
 ['I','P','Q']
]
res0 = {}

assert res0 == table_to_adj(m0)

m1 = [
 ['Identifier','Price','Quantity'],
 ['a',1,1],
 ['b',5,8],
 ['c',2,6],
 ['d',8,5],
 ['e',7,3]
]
res1 = {
 'a':[('Price',1),('Quantity',1)],
 'b':[('Price',5),('Quantity',8)],
 'c':[('Price',2),('Quantity',6)],
 'd':[('Price',8),('Quantity',5)],
 'e':[('Price',7),('Quantity',3)]
 }

assert res1 == table_to_adj(m1)

m2 = [
 ['I','P','Q'],
 ['a','x','y'],
 ['b','w','z'],
 ['c','z','x'],
 ['d','w','w'],
 ['e','y','x']
]
res2 = {
 'a':[('P','x'),('Q','y')],
 'b':[('P','w'),('Q','z')],
 'c':[('P','z'),('Q','x')],
 'd':[('P','w'),('Q','w')],
 'e':[('P','y'),('Q','x')]
 }

assert res2 == table_to_adj(m2)

m3 = [
 ['I','P','Q', 'R'],
 ['a','x','y', 'x'],
 ['b','z','x', 'y'],
]

res3 = {
 'a':[('P','x'),('Q','y'), ('R','x')],
 'b':[('P','z'),('Q','x'), ('R','y')],

}

assert res3 == table_to_adj(m3)

Networkx

Before continuing, make sure to have installed the required libraries

Networkx is a library to perform statistics on networks. For now, it will offer us a richer data structure where we can store the properties we want in nodes and also edges.

You can initialize networkx objects with the dictionary of adjacency lists we’ve alredy seen:

[40]:

import networkx as nx

notice with networkx if nodes are already referenced to in an adjacency list
you do not need to put them as keys:

G=nx.DiGraph({
 'a':['b','c'], # node a links to b and c
 'b':['b','c', 'd'] # node b links to b itself, c and d
})

The resulting object is not a simple dict, but something more complex:

[41]:

G

[41]:

<networkx.classes.digraph.DiGraph at 0x7fef507c1080>

To display it in a way uniform with the rest of the course, we developed a function called sciprog.draw_nx :

[42]:

from sciprog import draw_nx

[43]:

draw_nx(G)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_91_0.png]

From the picture above, we notice there are no weights displayed, because in networkx they are just considered optional attributes of edges.

To see all the attributes of an edge, you can write like this:

[44]:

G['a']['b']

[44]:

{}

This graph has no attributes for the node, so we get back an empty dict. If we wanted to add a weight of 123 to that particular a b edge, you could write like this:

[45]:

G['a']['b']['weight'] = 123

[46]:

G['a']['b']

[46]:

{'weight': 123}

Let’s try to display it:

[47]:

draw_nx(G)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_98_0.png]

We still don’t see the weight as weight can be one of many properties: the only thing that gets displayed is the propery label. So let’s set label equal to the weight:

[48]:

G['a']['b']['label'] = 123

[49]:

draw_nx(G)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_101_0.png]

Converting networkx graphs

If you try to just output the string representation of the graph, networkx will give the empty string:

[50]:

print(G)

[51]:

str(G)

[51]:

''

[52]:

repr(G)

[52]:

'<networkx.classes.digraph.DiGraph object at 0x7fef507c1080>'

To convert to the dict of adjacency lists we know, you can use this method:

[53]:

nx.to_dict_of_lists(G)

[53]:

{'a': ['b', 'c'], 'b': ['b', 'c', 'd'], 'c': [], 'd': []}

The above works, but it doesn’t convert additional edge info. For a complete conversion, use nx.to_dict_of_dicts

[54]:

nx.to_dict_of_dicts(G)

[54]:

{'a': {'b': {'weight': 123, 'label': 123}, 'c': {}},
 'b': {'b': {}, 'c': {}, 'd': {}},
 'c': {},
 'd': {}}

mat_to_nx

✪✪ Now try by yourself to convert a matrix as list of lists along with node ids (like you did before) into a networkx object.

This time, don’t create a dictionary to pass it to nx.DiGraph constructor: instead, use networkx methods like .add_edge and add_node. For usage example, check the networkx tutorial [https://networkx.github.io/documentation/stable/tutorial.html]. Do you need to explicitly call add_node before referring to some node with add_edge ?

[55]:

def mat_to_nx(mat, ids):
 """ Given a real-valued nxn matrix as list of lists and a list of immutable identifiers for the nodes,
 RETURN the corresponding graph in networkx format (as nx.DiGraph).

 If matrix is not nxn or ids length does not match n, raise ValueError

 - DON'T transform into a dict, use add_ methods from networkx object!
 - WARNING: Remember to set the labels to the weights AS STRINGS!
 """

 #jupman-raise

 G = nx.DiGraph()
 n = len(mat)
 m = len(mat[0])
 if n != m:
 raise ValueError('matrix is not nxn !')
 if n != len(ids):
 raise ValueError("Identifiers quantity is different from matrix size!")
 for i in range(n):
 G.add_node(ids[i])
 for j in range(n):
 if mat[i][j] != 0:
 G.add_edge(ids[i], ids[j])
 G[ids[i]][ids[j]]['weight'] = mat[i][j]
 G[ids[i]][ids[j]]['label'] = str(mat[i][j])
 return G
 #/jupman-raise

try:
 mat_ids_to_adj([[0, 3]], ['a','b'])
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

try:
 mat_ids_to_adj([[0]], ['a','b'])
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

m1 = [
 [0]
]

d1 = {'a': {}}

assert nx.to_dict_of_dicts(mat_to_nx(m1, ['a'])) == d1

m2 = [
 [7]
]

d2 = {'a': {'a': {'weight': 7, 'label': '7'}}}
assert nx.to_dict_of_dicts(mat_to_nx(m2, ['a'])) == d2

m3 = [
 [0,0],
 [0,0]
]

d3 = {
 'a':{},
 'b':{}
 }
assert nx.to_dict_of_dicts(mat_to_nx(m3,['a','b'])) == d3

m4 = [
 [7,9],
 [8,6]
]

d4 = {
 'a':{'a': {'weight':7,'label':'7'},
 'b' : {'weight':9,'label':'9'},
 },
 'b':{'a': {'weight':8,'label':'8'},
 'b' : {'weight':6,'label':'6'},
 }

 }
assert nx.to_dict_of_dicts(mat_to_nx(m4, ['a','b'])) == d4

m5 = [
 [0,0],
 [0,7]
]

d5 = {
 'a':{},
 'b':{
 'b' : {'weight':7,'label':'7'},
 }

 }

assert nx.to_dict_of_dicts(mat_to_nx(m5,['a','b'])) == d5

m6 = [
 [7,0,0],
 [7,9,0],
 [0,7,0]
]

d6 = {
 'a':{
 'a' : {'weight':7,'label':'7'},
 },
 'b': {
 'a': {'weight':7,'label':'7'},
 'b' : {'weight':9,'label':'9'}
 },

 'c':{
 'b' : {'weight':7,'label':'7'}
 }
 }

assert nx.to_dict_of_dicts(mat_to_nx(m6,['a','b','c'])) == d6

Simple statistics

We will now compute simple statistics abour graphs. More advanced stuff will be done in Part B notebook about graph algorithms [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-algos/graph-algos.html].

Outdegrees and indegrees

The out-degree \(\deg^+(v)\) of a node \(v\) is the number of edges going out from it, while the in-degree \(\deg^-(v)\) is the number of edges going into it.

NOTE: the out-degree and in-degree are not the sum of weights ! They just count presence or absence of edges.

For example, consider this graph:

[56]:

from sciprog import draw_adj

d = {
 'a' : ['b','c'],
 'b' : ['b','d'],
 'c' : ['a','b','c','d'],
 'd' : ['b','d']
}

draw_adj(d)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_114_0.png]

The out-degree of d is 2, because it has one outgoing edge to b but also an outgoing edge to itself. The indegree of d is 3, because it has an edge coming from b, one from c and one self-loop from d itself.

outdegree_adj

[57]:

def outdegree_adj(d, v):
 """ RETURN the outdegree of a node from graph d represented as a dictionary of adjacency lists

 If v is not a vertex of d, raise ValueError
 """
 #jupman-raise
 if v not in d:
 raise ValueError("Vertex %s is not in %s" % (v, d))

 return len(d[v])
 #/jupman-raise

try:
 outdegree_adj({'a':[]},'b')
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

assert outdegree_adj({
 'a':[]
},'a') == 0

assert outdegree_adj({
 'a':['a']
},'a') == 1

assert outdegree_adj({
 'a':['a','b'],
 'b':[]
},'a') == 2

assert outdegree_adj({
 'a':['a','b'],
 'b':['a','b','c'],
 'c':[]
},'b') == 3

outdegree_mat

✪✪ RETURN the outdegree of a node i from a graph boolean matrix nxn represented as a list of lists

	If i is not a node of the graph, raise ValueError

[58]:

def outdegree_mat(mat, i):
 #jupman-raise
 n = len(mat)
 if i < 0 or i > n:
 raise ValueError("i %s is not a row of matrix %s" % (i, mat))
 ret = 0
 for j in range(n):
 if mat[i][j]:
 ret += 1
 return ret
 #/jupman-raise

try:
 outdegree_mat([[False]],7)
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

try:
 outdegree_mat([[False]],-1)
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

assert outdegree_mat(
 [
 [False]
]
,0) == 0

assert outdegree_mat(
 [
 [True]
],0) == 1

assert outdegree_mat(
 [
 [True, True],
 [False, False]
],0) == 2

assert outdegree_mat(
 [
 [True, True, False],
 [True, True, True],
 [False, False, False],
]
,1) == 3

outdegree_avg

✪✪ RETURN the average outdegree of nodes in graph d, represented as dictionary of adjacency lists.

	Assume all nodes are in the keys.

[59]:

def outdegree_avg(d):
 #jupman-raise
 s = 0
 for k in d:
 s += len(d[k])
 return s / len(d)
 #/jupman-raise

assert outdegree_avg({
 'a':[]
}) == 0

assert round(
 outdegree_avg({
 'a':['a']
 })
 ,2) == 1.00 / 1.00

assert round(
 outdegree_avg({
 'a':['a','b'],
 'b':[]
 })
 ,2) == (2 + 0) / 2

assert round(
 outdegree_avg({
 'a':['a','b'],
 'b':['a','b','c'],
 'c':[]
 })
 ,2) == round((2 + 3) / 3 , 2)

indegree_adj

The indegree of a node v is the number of edges going into it.

✪✪ RETURN the indegree of node v in graph d, represented as a dictionary of adjacency lists

	If v is not a node of the graph, raise ValueError

[60]:

def indegree_adj(d, v):
 #jupman-raise
 if v not in d:
 raise ValueError("Vertex %s is not in %s" % (v, d))
 ret = 0
 for k in d:
 if v in d[k]:
 ret += 1
 return ret
 #/jupman-raise

try:
 indegree_adj({'a':[]},'b')
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

assert indegree_adj({
 'a':[]
},'a') == 0

assert indegree_adj({
 'a':['a']
},'a') == 1

assert indegree_adj({
 'a':['a','b'],
 'b':[]
},'a') == 1

assert indegree_adj({
 'a':['a','b'],
 'b':['a','b','c'],
 'c':[]
},'b') == 2

indegree_mat

✪✪ RETURN the indegree of a node i from a graph boolean matrix nxn represented as a list of lists

	If i is not a node of the graph, raise ValueError

[61]:

def indegree_mat(mat, i):
 #jupman-raise
 n = len(mat)
 if i < 0 or i > n:
 raise ValueError("i %s is not a row of matrix %s" % (i, mat))
 ret = 0
 for k in range(n):
 if mat[k][i]:
 ret += 1
 return ret
 #/jupman-raise

try:
 indegree_mat([[False]],7)
 raise Exception("SHOULD HAVE FAILED !")
except ValueError:
 "passed test"

assert indegree_mat(
 [
 [False]
]
,0) == 0

assert indegree_mat(
 [
 [True]
],0) == 1

assert indegree_mat(
 [
 [True, True],
 [False, False]
],0) == 1

assert indegree_mat(
 [
 [True, True, False],
 [True, True, True],
 [False, False, False],
]
,1) == 2

indegree_avg

✪✪ RETURN the average indegree of nodes in graph d, represented as dictionary of adjacency lists.

	Assume all nodes are in the keys

[62]:

def indegree_avg(d):
 #jupman-raise
 s = 0
 for k in d:
 s += len(d[k])
 return s / len(d)
 #/jupman-raise

assert indegree_avg({
 'a':[]
}) == 0

assert round(
 indegree_avg({
 'a':['a']
 })
 ,2) == 1.00 / 1.00

assert round(
 indegree_avg({
 'a':['a','b'],
 'b':[]
 })
 ,2) == (1 + 1) / 2

assert round(
 indegree_avg({
 'a':['a','b'],
 'b':['a','b','c'],
 'c':[]
 })
 ,2) == round((2 + 2 + 1) / 3 , 2)

Was it worth it?

QUESTION: Is there any difference between the results of indegree_avg and outdegree_avg ?

ANSWER: They give the same result. Think about what you did: for outdegree_avg you summed over all rows and then divided by n. For indegree_avg you summed over all columns, and then divided by n.

More formally, we have that the so-called degree sum formula holds (see Wikipedia [https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree] for more info):

\(\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |A|\)

min_outdeg

Difficulty: ✪✪✪

Before proceeding please make sure you read recursions on lists [https://datasciprolab.readthedocs.io/en/latest/exercises/lists/lists-solution.html] chapter

[63]:

def helper(mat, start, end):
 """
 Takes a graph as matrix of list of lists and RETURN the minimum
 outdegree of nodes with row index between indeces start (included)
 and end included

 This function MUST be recursive, so it must call itself.

 - HINT: REMEMBER to put return instructions in all 'if' branches!
 """
 #jupman-raise
 n = len(mat)
 if start == end:
 return mat[start].count(True)
 else:
 half = (start + end) // 2
 min_left = helper(mat, 0, half)
 min_right = helper(mat, half+1, end)
 return min(min_left, min_right)
 #/jupman-raise

def min_outdeg(mat):
 """
 Takes a graph as matrix of list of lists and RETURN the minimum
 outdegree of nodes by calling function helper.
 min_outdeg function is *not* recursive, only function helper is.
 """
 #jupman-raise
 n = len(mat)
 return helper(mat, 0, len(mat) - 1)
 #/jupman-raise

assert min_outdeg(
 [
 [False]
]) == 0

assert min_outdeg(
 [
 [True]
]) == 1

assert min_outdeg(
 [
 [False, True],
 [True, False]
]) == 1

assert min_outdeg(
 [
 [True, True, False],
 [True, True, True],
 [False, True, True],
]) == 2

assert min_outdeg(
 [
 [True, True, False],
 [True, True, True],
 [False, True, False],
]) == 1

assert min_outdeg(
 [
 [True, True, True],
 [True, True, True],
 [False, True, False],
]) == 1

networkx Indegrees and outdegrees

With Networkx we can easily calculate indegrees and outdegrees of a node:

[64]:

import networkx as nx

notice with networkx if nodes are already referenced to in an adjacency list
you do not need to put them as keys:

G=nx.DiGraph({
 'a':['b','c'], # node a links to b and c
 'b':['b','c', 'd'] # node b links to b itself, c and d
})

draw_nx(G)

[image: ../../_images/exercises_graph-formats_graph-formats-solution_133_0.png]

[65]:

G.out_degree('a')

[65]:

2

QUESTION: What is the outdegree of 'b' ? Try to think about it and then confirm your thoughts with networkx:

[66]:

write here
#print("indegree b: %s" % G.in_degree('b'))
#print("outdegree b: %s" % G.out_degree('b'))

QUESTION: We defined indegree and outdegree. Can you guess what the degree might be ? In particular, for a self pointing node like 'b', what could it be? Try to use G.degree('b') methods to validate your thoughts.

[67]:

write here
#print("degree b: %s" % G.degree('b'))

ANSWER: it is the sum of indegree and outdegree. In presence of a self-loop like for 'b', we count the self-loop twice, once as outgoing edge and one as incident edge

[68]:

write here
#G.degree('b')

[69]:

draw_nx(mat_to_nx([
 [7,0,0],
 [7,9,0],
 [0,7,0]
], ['a','b','c']))

[image: ../../_images/exercises_graph-formats_graph-formats-solution_141_0.png]

 Visualization solutions

Visualization solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/visualization]

Introduction

We will review the famous library Matplotlib which allows to display a variety of charts, and it is the base of many other visualization libraries.

References

	Andrea Passerini slides A08 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A08-numpy.pdf]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- visualization
 |- visualization-exercise.ipynb
 |- visualization-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/visualization/visualization-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

First example

Let’s start with a very simple plot:

[2]:

this is *not* a python command, it is a Jupyter-specific magic command,
to tell jupyter we want the graphs displayed in the cell outputs
%matplotlib inline

imports matplotlib
import matplotlib.pyplot as plt

we can give coordinates as simple numberlists
this are couples for the function y = 2 * x
xs = [1, 2, 3, 4, 5, 6]
ys = [2, 4, 6, 8,10,12]

plt.plot(xs, ys)

we can add this after plot call, it doesn't matter
plt.title("my function")
plt.xlabel('x')
plt.ylabel('y')

prevents showing '<matplotlib.text.Text at 0x7fbcf3c4ff28>' in Jupyter
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_3_0.png]

Plot style

To change the way the line is displayed, you can set dot styles with another string parameter. For example, to display red dots, you would add the string ro, where r stands for red and o stands for dot.

[3]:

%matplotlib inline
import matplotlib.pyplot as plt

xs = [1, 2, 3, 4, 5, 6]
ys = [2, 4, 6, 8,10,12]

plt.plot(xs, ys, 'ro') # NOW USING RED DOTS

plt.title("my function")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_5_0.png]

x power 2 exercise

Try to display the function y = x**2 (x power 2) using green dots and for integer xs going from -10 to 10

[4]:

write here the solution

[5]:

SOLUTION

%matplotlib inline
import matplotlib.pyplot as plt

xs = range(-10, 10)
ys = [x**2 for x in xs]

plt.plot(xs, ys, 'go')

plt.title("x squared")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_8_0.png]

Axis limits

If you want to change the x axis, you can use plt.xlim:

[6]:

%matplotlib inline
import matplotlib.pyplot as plt

xs = [1, 2, 3, 4, 5, 6]
ys = [2, 4, 6, 8,10,12]

plt.plot(xs, ys, 'ro')

plt.title("my function")
plt.xlabel('x')
plt.ylabel('y')

plt.xlim(-5, 10) # SETS LOWER X DISPLAY TO -5 AND UPPER TO 10
plt.ylim(-7, 26) # SETS LOWER Y DISPLAY TO -7 AND UPPER TO 26

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_10_0.png]

Axis size

[7]:

%matplotlib inline
import matplotlib.pyplot as plt

xs = [1, 2, 3, 4, 5, 6]
ys = [2, 4, 6, 8,10,12]

fig = plt.figure(figsize=(10,3)) # width: 10 inches, height 3 inches

plt.plot(xs, ys, 'ro')

plt.title("my function")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_12_0.png]

Changing tick labels

You can also change labels displayed on ticks on axis with plt.xticks and plt.yticks functions:

Note: instead of xticks you might directly use categorical variables [https://matplotlib.org/gallery/lines_bars_and_markers/categorical_variables.html] IF you have matplotlib >= 2.1.0

Here we use xticks as sometimes you might need to fiddle with them anyway

[8]:

%matplotlib inline
import matplotlib.pyplot as plt

xs = [1, 2, 3, 4, 5, 6]
ys = [2, 4, 6, 8,10,12]

plt.plot(xs, ys, 'ro')

plt.title("my function")
plt.xlabel('x')
plt.ylabel('y')

FIRST NEEDS A SEQUENCE WITH THE POSITIONS, THEN A SEQUENCE OF SAME LENGTH WITH LABELS
plt.xticks(xs, ['a', 'b', 'c', 'd', 'e', 'f'])
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_14_0.png]

Introducting numpy

For functions involving reals, vanilla python starts showing its limits and its better to switch to numpy library. Matplotlib can easily handle both vanilla python sequences like lists and numpy array. Let’s see an example without numpy and one with it.

Example without numpy

If we only use vanilla Python (that is, Python without extra libraries like numpy), to display the function y = 2x + 1 we can come up with a solution like this

[9]:

%matplotlib inline
import matplotlib.pyplot as plt

xs = [x*0.1 for x in range(10)] # notice we can't do a range with float increments
 # (and it would also introduce rounding errors)
ys = [(x * 2) + 1 for x in xs]

plt.plot(xs, ys, 'bo')

plt.title("y = 2x + 1 with vanilla python")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_18_0.png]

Example with numpy

With numpy, we have at our disposal several new methods for dealing with arrays.

First we can generate an interval of values with one of these methods.

Sine Python range does not allow float increments, we can use np.arange:

[10]:

import numpy as np

xs = np.arange(0,1.0,0.1)
xs

[10]:

array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

Equivalently, we could use np.linspace:

[11]:

xs = np.linspace(0,0.9,10)

xs

[11]:

array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

Numpy allows us to easily write functions on arrays in a natural manner. For example, to calculate ys we can now do like this:

[12]:

ys = 2*xs + 1

ys

[12]:

array([1. , 1.2, 1.4, 1.6, 1.8, 2. , 2.2, 2.4, 2.6, 2.8])

Let’s put everything together:

[13]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0,0.9,10) # left end: 0 *included* right end: 0.9 *included* number of values: 10
ys = 2*xs + 1

plt.plot(xs, ys, 'bo')

plt.title("y = 2x + 1 with numpy")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_26_0.png]

y = sin(x) + 3 exercise

✪✪✪ Try to display the function y = sin(x) + 3 for x at pi/4 intervals, starting from 0. Use exactly 8 ticks.

NOTE: 8 is the number of x ticks (telecom people would use the term ‘samples’), NOT the x of the last tick !!

	try to solve it without using numpy. For pi, use constant math.pi (first you need to import math module)

	try to solve it with numpy. For pi, use constant np.pi (which is exactly the same as math.pi)

b.1) solve it with np.arange

b.2) solve it with np.linspace

	For each tick, use the label sequence "0π/4", "1π/4" , "2π/4", "3π/4" , "4π/4", "5π/4", Obviously writing them by hand is easy, try instead to devise a method that works for any number of ticks. What is changing in the sequence? What is constant? What is the type of the part changes ? What is final type of the labels you want to obtain ?

	If you are in the mood, try to display them better like 0, π/4 , π/2 π, 3π/4 , π, 5π/4 possibly using Latex (requires some search, this example [https://stackoverflow.com/a/40642200] might be a starting point)

NOTE: Latex often involves the usage of the \ bar, like in \frac{2,3}. If we use it directly, Python will interpret \f as a special character and will not send to the Latex processor the string we meant:

[14]:

'\frac{2,3}'

[14]:

'\x0crac{2,3}'

One solution would be to double the slashes, like this:

[15]:

'\\frac{2,3}'

[15]:

'\\frac{2,3}'

An even better one is to prepend the string with the r character, which allows to write slashes only once:

[16]:

r'\frac{2,3}'

[16]:

'\\frac{2,3}'

[17]:

write here solution for a) y = sin(x) + 3 with vanilla python

[18]:

SOLUTION a) y = sin(x) + 3 with vanilla python

%matplotlib inline
import matplotlib.pyplot as plt
import math

xs = [x * (math.pi)/4 for x in range(8)]
ys = [math.sin(x) + 3 for x in xs]

plt.plot(xs, ys)

plt.title("a) solution y = sin(x) + 3 with vanilla python ")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_34_0.png]

[19]:

write here solution b.1) y = sin(x) + 3 with numpy, arange

[20]:

SOLUTION b.1) y = sin(x) + 3 with numpy, linspace

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

left end = 0 right end = 7/4 pi 8 points
notice numpy.pi is exactly the same as vanilla math.pi
xs = np.arange(0, # included
 8 * np.pi/4, # *not* included (we put 8, as we actually want 7 to be included)
 np.pi/4)
ys = np.sin(xs) + 3 # notice we know operate on arrays. All numpy functions can operate on them

plt.plot(xs, ys)

plt.title("b.1 solution y = sin(x) + 3 with numpy arange")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_36_0.png]

[21]:

write here solution b.2) y = sin(x) + 3 with numpy, linspace

[22]:

SOLUTION b.2) y = sin(x) + 3 with numpy, linspace

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

left end = 0 right end = 7/4 pi 8 points
notice numpy.pi is exactly the same as vanilla math.pi
xs = np.linspace(0, (np.pi/4) * 7 , 8)
ys = np.sin(xs) + 3 # notice we know operate on arrays. All numpy functions can operate on them

plt.plot(xs, ys)

plt.title("b2 solution y = sin(x) + 3 with numpy , linspace")
plt.xlabel('x')
plt.ylabel('y')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_38_0.png]

[23]:

write here solution c) y = sin(x) + 3 with numpy and pi xlabels

[24]:

SOLUTION c) y = sin(x) + 3 with numpy and pi xlabels

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, (np.pi/4) * 7 , 8) # left end = 0 right end = 7/4 pi 8 points
ys = np.sin(xs) + 3 # notice we know operate on arrays. All numpy functions can operate on them

plt.plot(xs, ys)

plt.title("c) solution y = sin(x) + 3 with numpy and pi xlabels")
plt.xlabel('x')
plt.ylabel('y')

FIRST NEEDS A SEQUENCE WITH THE POSITIONS, THEN A SEQUENCE OF SAME LENGTH WITH LABELS
plt.xticks(xs, ["%sπ/4" % x for x in range(8)])
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_40_0.png]

Showing degrees per node

Going back to the indegrees and outdegrees as seen in Network statistics [https://datasciprolab.readthedocs.io/en/latest/exercises/network-statistics/network-statistics-solution.html#Simple-statistics] chapter, we will try to study the distributions visually.

Let’s take an example networkx DiGraph:

[59]:

import networkx as nx

G1=nx.DiGraph({
 'a':['b','c'],
 'b':['b','c', 'd'],
 'c':['a','b','d'],
 'd':['b', 'd']
})

draw_nx(G1)

[image: ../../_images/exercises_visualization_visualization-solution_43_0.png]

indegree per node

✪✪ Display a plot for graph G where the xtick labels are the nodes, and the y is the indegree of those nodes.

Note: instead of xticks you might directly use categorical variables [https://matplotlib.org/gallery/lines_bars_and_markers/categorical_variables.html] IF you have matplotlib >= 2.1.0

Here we use xticks as sometimes you might need to fiddle with them anyway

To get the nodes, you can use the G1.nodes() function:

[26]:

G1.nodes()

[26]:

NodeView(('a', 'b', 'c', 'd'))

It gives back a NodeView which is not a list, but still you can iterate through it with a for in cycle:

[27]:

for n in G1.nodes():
 print(n)

a
b
c
d

Also, you can get the indegree of a node with

[28]:

G1.in_degree('b')

[28]:

4

[29]:

write here the solution

[30]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())
ys_in = [G1.in_degree(n) for n in G1.nodes()]

plt.plot(xs, ys_in, 'bo')

plt.ylim(0,max(ys_in) + 1)
plt.xlim(0,max(xs) + 1)

plt.title("G1 Indegrees per node solution")

plt.xticks(xs, G1.nodes())

plt.xlabel('node')
plt.ylabel('indegree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_51_0.png]

Bar plots

The previous plot with dots doesn’t look so good - we might try to use instead a bar plot. First look at this this example, then proceed with the next exercise

[31]:

import numpy as np
import matplotlib.pyplot as plt

xs = [1,2,3,4]
ys = [7,5,8,2]

plt.bar(xs, ys,
 0.5, # the width of the bars
 color='green', # someone suggested the default blue color is depressing, so let's put green
 align='center') # bars are centered on the xtick

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_53_0.png]

indegree per node bar plot

✪✪ Display a bar plot [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html] for graph G1 where the xtick labels are the nodes, and the y is the indegree of those nodes.

[32]:

write here

[33]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())
ys_in = [G1.in_degree(n) for n in G1.nodes()]

plt.bar(xs, ys_in, 0.5, align='center')

plt.title("G1 Indegrees per node solution")
plt.xticks(xs, G1.nodes())

plt.xlabel('node')
plt.ylabel('indegree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_56_0.png]

indegree per node sorted alphabetically

✪✪ Display the same bar plot as before, but now sort nodes alphabetically.

NOTE: you cannot run .sort() method on the result given by G1.nodes(), because nodes in network by default have no inherent order. To use .sort() you need first to convert the result to a list object.

[34]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())

xs_labels = list(G1.nodes())

xs_labels.sort()

ys_in = [G1.in_degree(n) for n in xs_labels]

plt.bar(xs, ys_in, 0.5, align='center')

plt.title("G1 Indegrees per node, sorted labels solution")
plt.xticks(xs, xs_labels)

plt.xlabel('node')
plt.ylabel('indegree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_58_0.png]

[35]:

write here

indegree per node sorted

✪✪✪ Display the same bar plot as before, but now sort nodes according to their indegree. This is more challenging, to do it you need to use some sort trick. First read the Python documentation [https://docs.python.org/3/howto/sorting.html#key-functions] and then:

	create a list of couples (list of tuples) where each tuple is the node identifier and the corresponding indegree

	sort the list by using the second value of the tuples as a key.

[36]:

write here

[37]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())

coords = [(v, G1.in_degree(v)) for v in G1.nodes()]

coords.sort(key=lambda c: c[1])

ys_in = [c[1] for c in coords]

plt.bar(xs, ys_in, 0.5, align='center')

plt.title("G1 Indegrees per node, sorted by indegree solution")
plt.xticks(xs, [c[0] for c in coords])

plt.xlabel('node')
plt.ylabel('indegree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_62_0.png]

out degrees per node sorted

✪✪✪ Do the same graph as before for the outdegrees.

You can get the outdegree of a node with:

[38]:

G1.out_degree('b')

[38]:

3

[39]:

SOLUTION
import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())

coords = [(v, G1.out_degree(v)) for v in G1.nodes()]

coords.sort(key=lambda c: c[1])

ys_out = [c[1] for c in coords]

plt.bar(xs, ys_out, 0.5, align='center')

plt.title("G1 Outdegrees per node sorted solution")
plt.xticks(xs, [c[0] for c in coords])

plt.xlabel('node')
plt.ylabel('outdegree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_66_0.png]

[40]:

write here

degrees per node

✪✪✪ We might check as well the sorted degrees per node, intended as the sum of in_degree and out_degree. To get the sum, use G1.degree(node) function.

[41]:

write here the solution

[42]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())

coords = [(v, G1.degree(v)) for v in G1.nodes()]

coords.sort(key=lambda c: c[1])

ys_deg = [c[1] for c in coords]

plt.bar(xs, ys_deg, 0.5, align='center')

plt.title("G1 degrees per node sorted SOLUTION")
plt.xticks(xs, [c[0] for c in coords])

plt.xlabel('node')
plt.ylabel('degree')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_70_0.png]

✪✪✪✪ EXERCISE: Look at this example [https://matplotlib.org/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py], and make a double bar chart sorting nodes by their total degree. To do so, in the tuples you will need vertex, in_degree, out_degree and also degree.

[43]:

write here

[44]:

SOLUTION

import numpy as np
import matplotlib.pyplot as plt

xs = np.arange(G1.number_of_nodes())

coords = [(v, G1.degree(v), G1.in_degree(v), G1.out_degree(v)) for v in G1.nodes()]

coords.sort(key=lambda c: c[1])

ys_deg = [c[1] for c in coords]
ys_in = [c[2] for c in coords]
ys_out = [c[3] for c in coords]

width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(xs - width/2, ys_in, width,
 color='SkyBlue', label='indegrees')
rects2 = ax.bar(xs + width/2, ys_out, width,
 color='IndianRed', label='outdegrees')

Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_title('G1 in and out degrees per node SOLUTION')
ax.set_xticks(xs)
ax.set_xticklabels([c[0] for c in coords])
ax.legend()

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_73_0.png]

Frequency histogram

Now let’s try to draw degree frequencies, that is, for each degree present in the graph we want to display a bar as high as the number of times that particular degree appears.

For doing so, we will need a matplot histogram, see documentation [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html]

We will need to tell matplotlib how many columns we want, which in histogram terms are called bins. We also need to give the histogram a series of numbers so it can count how many times each number occurs. Let’s consider this graph G2:

[61]:

import networkx as nx

G2=nx.DiGraph({
 'a':['b','c'],
 'b':['b','c', 'd'],
 'c':['a','b','d'],
 'd':['b', 'd','e'],
 'e':[],
 'f':['c','d','e'],
 'g':['e','g']
})

draw_nx(G2)

[image: ../../_images/exercises_visualization_visualization-solution_76_0.png]

If we take the the degree sequence of G2 we get this:

[46]:

degrees_G2 = [G2.degree(n) for n in G2.nodes()]

degrees_G2

[46]:

[3, 7, 3, 6, 7, 3, 3]

We see 3 appears four times, 6 once, and seven twice.

Let’s try to determine a good number for the bins. First we can check the boundaries our x axis should have:

[47]:

min(degrees_G2)

[47]:

3

[48]:

max(degrees_G2)

[48]:

7

So our histogram on the x axis must go at least from 3 and at least to 7. If we want integer columns (bins), we will need at least ticks for going from 3 included to 7 included, so at least ticks for 3,4,5,6,7. For getting precise display, wen we have integer x it is best to also manually provide the sequence of bin edges, remembering it should start at least from the minimum included (in our case, 3) and arrive to the maximum + 1 included (in our case, 7 + 1 = 8)

NOTE: precise histogram drawing can be quite tricky, please do read this StackOverflow post [https://stackoverflow.com/a/27084005] for more details about it.

[49]:

import matplotlib.pyplot as plt
import numpy as np

degrees = [G2.degree(n) for n in G2.nodes()]

add histogram

in this case hist returns a tuple of three values
we put in three variables
n, bins, columns = plt.hist(degrees_G2,
 bins=range(3,9), # 3 *included* , 4, 5, 6, 7, 8 *included*
 width=1.0) # graphical width of the bars

plt.xlabel('Degrees')
plt.ylabel('Frequency counts')
plt.title('G2 Degree distribution')
plt.xlim(0, max(degrees) + 2)
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_83_0.png]

As expected we see 3 is counted four times, 6 once, and seven twice.

✪✪✪ EXERCISE: Still, it would be visually better to align the x ticks to the middle of the bars with xticks, and also to make the graph more tight by setting the xlim appropriately. This is not always easy to do.

Read carefully this StackOverflow post [https://stackoverflow.com/a/27084005] and try do it by yourself.

NOTE: set one thing at a time and try if it works(i.e. first xticks and then xlim), doing everything at once might get quite confusing

[50]:

write here the solution

[51]:

SOLUTION

import matplotlib.pyplot as plt
import numpy as np

degrees = [G2.degree(n) for n in G2.nodes()]

add histogram

min_x = min(degrees) # 3
max_x = max(degrees) # 7
bar_width = 1.0

in this case hist returns a tuple of three values
we put in three variables
n, bins, columns = plt.hist(degrees_G2,
 bins= range(3,9), # 3 *included* to 9 *excluded*
 # it is like the xs, but with one number more !!
 # to understand why read this
 # https://stackoverflow.com/questions/27083051/matplotlib-xticks-not-lining-up-with-histogram/27084005#27084005
 width=bar_width) # graphical width of the bars

plt.xlabel('Degrees')
plt.ylabel('Frequency counts')
plt.title('G2 Degree distribution, tight graph SOLUTION')

xs = np.arange(min_x,max_x + 1) # 3 *included* to 8 *excluded*
 # used numpy so we can later reuse it for float vector operations

plt.xticks(xs + bar_width / 2, # position of ticks
 xs) # labels of ticks
plt.xlim(min_x, max_x + 1) # 3 *included* to 8 *excluded*
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_87_0.png]

Showing plots side by side

You can display plots on a grid. Each cell in the grid is idientified by only one number. For example, for a grid of two rows and three columns, you would have cells indexed like this:

1 2 3
4 5 6

[52]:

%matplotlib inline
import matplotlib.pyplot as plt
import math

xs = [1,2,3,4,5,6]

cells:
1 2 3
4 5 6

plt.subplot(2, # 2 rows
 3, # 3 columns
 1) # plotting in first cell
ys1 = [x**3 for x in xs]
plt.plot(xs, ys1)
plt.title('first cell')

plt.subplot(2, # 2 rows
 3, # 3 columns
 2) # plotting in first cell

ys2 = [2*x + 1 for x in xs]
plt.plot(xs,ys2)
plt.title('2nd cell')

plt.subplot(2, # 2 rows
 3, # 3 columns
 3) # plotting in third cell

ys3 = [-2*x + 1 for x in xs]
plt.plot(xs,ys3)
plt.title('3rd cell')

plt.subplot(2, # 2 rows
 3, # 3 columns
 4) # plotting in fourth cell

ys4 = [-2*x**2 for x in xs]
plt.plot(xs,ys4)
plt.title('4th cell')

plt.subplot(2, # 2 rows
 3, # 3 columns
 5) # plotting in fifth cell

ys5 = [math.sin(x) for x in xs]
plt.plot(xs,ys5)
plt.title('5th cell')

plt.subplot(2, # 2 rows
 3, # 3 columns
 6) # plotting in sixth cell

ys6 = [-math.cos(x) for x in xs]
plt.plot(xs,ys6)
plt.title('6th cell')

plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_89_0.png]

Graph models

Let’s study frequencies of some known network types.

Erdős–Rényi model

✪✪ A simple graph model we can think of is the so-called Erdős–Rényi model [https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model]: is is an undirected graph where have n nodes, and each node is connected to each other with probability p. In networkx, we can generate a random one by issuing this command:

[53]:

G = nx.erdos_renyi_graph(10, 0.5)

In the drawing, by looking the absence of arrows confirms it is undirected:

[62]:

draw_nx(G)

[image: ../../_images/exercises_visualization_visualization-solution_95_0.png]

Try plotting degree distribution for different values of p (0.1, 0.5, 0.9) with a fixed n=1000, putting them side by side on the same row. What does their distribution look like ? Where are they centered ?

To avoid rewriting the same code again and again, define a plot_erdos(n,p,j) function to be called three times.

[55]:

write here the solution

[56]:

SOLUTION

import matplotlib.pyplot as plt
import numpy as np

def plot_erdos(n, p, j):
 G = nx.erdos_renyi_graph(n, p)

 plt.subplot(1, # 1 row
 3, # 3 columns
 j) # plotting in jth cell

 degrees = [G.degree(n) for n in G.nodes()]
 num_bins = 20

 n, bins, columns = plt.hist(degrees, num_bins, width=1.0)

 plt.xlabel('Degrees')
 plt.ylabel('Frequency counts')
 plt.title('p = %s' % p)

n = 1000

fig = plt.figure(figsize=(15,6)) # width: 10 inches, height 3 inches

plot_erdos(n, 0.1, 1)
plot_erdos(n, 0.5, 2)
plot_erdos(n, 0.9, 3)

print()
print(" Erdős–Rényi degree distribution SOLUTION")
plt.show()

 Erdős–Rényi degree distribution SOLUTION

[image: ../../_images/exercises_visualization_visualization-solution_98_1.png]

Other plots

Matplotlib allows to display pretty much any you might like, here we collect some we use in the course, for others, see the extensive Matplotlib documentation [https://matplotlib.org/gallery/index.html]

Pie chart

[57]:

%matplotlib inline
import matplotlib.pyplot as plt

labels = ['Oranges', 'Apples', 'Cocumbers']
fracs = [14, 23, 5] # how much for each sector, note doesn't need to add up to 100

plt.pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True)
plt.title("Super strict vegan diet (good luck)")
plt.show()

[image: ../../_images/exercises_visualization_visualization-solution_101_0.png]

 Pandas solutions

Pandas solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/pandas]

References:

	Andrea Passerini, Lecture A07 [http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/slides/A07-pandas.pdf]

	[]

1. Introduction

Today we will try analyzing data with Pandas

	data analysis with Pandas library

	plotting with MatPlotLib

	Examples from AstroPi dataset

	Exercises with meteotrentino dataset

Python gives powerful tools for data analysis:

[image: pydata iuiu34]

One of these is Pandas [https://pandas.pydata.org/], which gives fast and flexible data structures, especially for interactive data analusis.

What to do

	Install Pandas:

Anaconda:

conda install pandas

Without Anaconda (--user installs in your home):

python3 -m pip install --user pandas

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- pandas
 |- pandas-exercise.ipynb
 |- pandas-solution.ipynb

WARNING 1: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser.

	The browser should show a file list: navigate the list and open the notebook exercises/network-statistics/pandas-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

2. Data analysis of Astro Pi

Let’s try analyzing data recorded on a Raspberry present on the International Space Station, downloaded from here:

raspberrypi.org/learning/astro-pi-flight-data-analysis/worksheet [https://www.raspberrypi.org/learning/astro-pi-flight-data-analysis/worksheet/]

in which it is possible to find the detailed description of data gathered by sensors, in the month of February 2016 (one record each 10 seconds).

[image: ISS uiu9u]

The method read_csv imports data from a CSV file and saves them in DataFrame structure.

In this exercise we shall use the file Columbus_Ed_astro_pi_datalog.csv

[2]:

import pandas as pd # we import pandas and for ease we rename it to 'pd'
import numpy as np # we import numpy and for ease we rename it to 'np'

remember the encoding !
df = pd.read_csv('Columbus_Ed_astro_pi_datalog.csv', encoding='UTF-8')
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110869 entries, 0 to 110868
Data columns (total 20 columns):
ROW_ID 110869 non-null int64
temp_cpu 110869 non-null float64
temp_h 110869 non-null float64
temp_p 110869 non-null float64
humidity 110869 non-null float64
pressure 110869 non-null float64
pitch 110869 non-null float64
roll 110869 non-null float64
yaw 110869 non-null float64
mag_x 110869 non-null float64
mag_y 110869 non-null float64
mag_z 110869 non-null float64
accel_x 110869 non-null float64
accel_y 110869 non-null float64
accel_z 110869 non-null float64
gyro_x 110869 non-null float64
gyro_y 110869 non-null float64
gyro_z 110869 non-null float64
reset 110869 non-null int64
time_stamp 110869 non-null object
dtypes: float64(17), int64(2), object(1)
memory usage: 16.9+ MB

We can quickly see rows and columns of the dataframe with the attribute shape:

NOTE: shape is not followed by rounded parenthesis !

[3]:

df.shape

[3]:

(110869, 20)

The describe method gives you on the fly many summary info:

	rows counting

	the average

	standard deviation [https://it.wikipedia.org/wiki/Scarto_quadratico_medio]

	quantiles [https://en.wikipedia.org/wiki/Quantile]

	minimum and maximum

[4]:

df.describe()

[4]:

 Binary relations solutions

Binary relations solutions

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/binary-relations]

Introduction

We can use graphs to model relations of many kinds, like isCloseTo, isFriendOf, loves, etc. Here we review some of them and their properties.

Before going on, make sure to have read the chapter Graph formats [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-formats/graph-formats-solution.html]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- graph-formats
 |- binary-relations-exercise.ipynb
 |- binary-relations-solution.ipynb

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

	open Jupyter Notebook from that folder. Two things should open, first a console and then browser. The browser should show a file list: navigate the list and open the notebook exercises/binary-relations/binary-relations-exercise.ipynb

WARNING 2: DO NOT use the Upload button in Jupyter, instead navigate in Jupyter browser to the unzipped folder !

	Go on reading that notebook, and follow instuctions inside.

Shortcut keys:

	to execute Python code inside a Jupyter cell, press Control + Enter

	to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

	to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

	If the notebooks look stuck, try to select Kernel -> Restart

Reflexive relations

A graph is reflexive when each node links to itself.

In real life, the typical reflexive relation could be “is close to” , supposing “close to” means being within a 100 meters distance. Obviously, any place is always close to itself, let’s see an example (Povo is a small town around Trento):

[2]:

from sciprog import draw_adj

draw_adj({
 'Trento Cathedral' : ['Trento Cathedral', 'Trento Neptune Statue'],
 'Trento Neptune Statue' : ['Trento Neptune Statue', 'Trento Cathedral'],
 'Povo' : ['Povo'],
})

[image: ../../_images/exercises_binary-relations_binary-relations-solution_3_0.png]

Some relations might not always be necessarily reflexive, like “did homeworks for”. You should always do your own homeworks, but to our dismay, university intelligence services caught some of you cheating. In the following example we expose the situation - due to privacy concerns, we identify students with numbers starting from zero included:

[3]:

from sciprog import draw_mat

draw_mat(
 [
 [True, False, False, False],
 [False, False, False, False],
 [False, True, True, False],
 [False, False, False, False],
]

)

[image: ../../_images/exercises_binary-relations_binary-relations-solution_5_0.png]

From the graph above, we see student 0 and student 2 both did their own homeworks. Student 3 did no homerworks at all. Alarmingly, we notice student 2 did the homeworks for student 1. Resulting conspiration shall be severely punished with a one year ban from having spritz at Emma’s bar.

Exercises

is_reflexive_mat

✪✪ Implement now this function for matrices.

[4]:

def is_reflexive_mat(mat):

 """ RETURN True if nxn boolean matrix mat as list of lists is reflexive, False otherwise.

 A graph is reflexive when all nodes point to themselves. Please at least try to make the function efficient.
 """
 #jupman-raise
 n = len(mat)
 for i in range(n):
 if not mat[i][i]:
 return False
 return True
 #/jupman-raise

assert is_reflexive_mat([
 [False]
]) == False # m1

assert is_reflexive_mat([
 [True]
]) == True # m2

assert is_reflexive_mat([
 [False, False],
 [False, False],

]) == False # m3

assert is_reflexive_mat([
 [True, True],
 [True, True],

]) == True # m4

assert is_reflexive_mat([
 [True, True],
 [False, True],

]) == True # m5

assert is_reflexive_mat([
 [True, False],
 [True, True],

]) == True # m6

assert is_reflexive_mat([
 [True, True],
 [True, False],

]) == False # m7

assert is_reflexive_mat([
 [False, True],
 [True, True],

]) == False # m8

assert is_reflexive_mat([
 [False, True],
 [True, False],

]) == False # m9

assert is_reflexive_mat([
 [False, False],
 [True, False],

]) == False # m10

assert is_reflexive_mat([
 [False, True, True],
 [True, False, False],
 [True, True, True],

]) == False # m11

assert is_reflexive_mat([
 [True, True, True],
 [True, True, True],
 [True, True, True],

]) == True # m12

is_reflexive_adj

✪✪ Implement now the same function for dictionaries of adjacency lists.

[5]:

def is_reflexive_adj(d):

 """ RETURN True if provided graph as dictionary of adjacency lists is reflexive, False otherwise.

 A graph is reflexive when all nodes point to themselves. Please at least try to make the function efficient.
 """
 #jupman-raise

 for v in d:
 if not v in d[v]:
 return False
 return True
 #/jupman-raise

assert is_reflexive_adj({
 'a':[]
 }) == False # d1

assert is_reflexive_adj({
 'a':['a']
 }) == True # d2

assert is_reflexive_adj({
 'a':[],
 'b':[]
 }) == False # d3

assert is_reflexive_adj({
 'a':['a'],
 'b':['b']
 }) == True # d4

assert is_reflexive_adj({
 'a':['a','b'],
 'b':['b']
 }) == True # d5

assert is_reflexive_adj({
 'a':['a'],
 'b':['a','b']
 }) == True # d6

assert is_reflexive_adj({
 'a':['a','b'],
 'b':['a']
 }) == False # d7

assert is_reflexive_adj({
 'a':['b'],
 'b':['a','b']
 }) == False # d8

assert is_reflexive_adj({
 'a':['b'],
 'b':['a']
 }) == False # d9

assert is_reflexive_adj({
 'a':[],
 'b':['a']
 }) == False # d10

assert is_reflexive_adj({
 'a':['b','c'],
 'b':['a'],
 'c':['a','b','c']
 }) == False # d11

assert is_reflexive_adj({
 'a':['a','b','c'],
 'b':['a','b','c'],
 'c':['a','b','c']
 }) == True # d12

Symmetric relations

A graph is symmetric when for all nodes, if a node A links to another node B, there is a also a link from node B to A.

In real life, the typical symmetric relation is “is friend of”. If you are friend to somene, that someone should be also be your friend.

For example, since Scrooge typically is not so friendly with his lazy nephew Donald Duck, but certainly both Scrooge and Donald Duck enjoy visiting the farm of Grandma Duck, we can model their friendship relation like this:

[6]:

from sciprog import draw_adj

draw_adj({
 'Donald Duck' : ['Grandma Duck'],
 'Scrooge' : ['Grandma Duck'],
 'Grandma Duck' : ['Scrooge', 'Donald Duck'],
})

[image: ../../_images/exercises_binary-relations_binary-relations-solution_13_0.png]

Not that Scrooge is not linked to Donald Duck, but this does not mean the whole graph cannot be considered symmetric. If you pay attention to the definition above, there is if written at the beginning: if a node A links to another node B, there is a also a link from node B to A.

QUESTION: Looking purely at the above definition (so do not consider ‘is friend of’ relation), should a symmetric relation be necessarily reflexive?

ANSWER: No, in a symmetric relation some nodes can be linked to themseves, while some other nodes may have no link to themselves. All we care about to check symmetry is links from a node to other nodes.

QUESTION: Think about the semantics of the specific “is friend of” relation: can you think of a social network where the relation is not shown as reflexive?

ANSWER: In the particular case of “is friend to” relation is interesting, as it prompts us to think about the semantic meaning of the relation: obviously, everybody should be a friend of himself/herself - but if were to implement say a social network service like Facebook, it would look rather useless to show in your your friends list the information that you are a friend of yourself.

QUESTION: Always talking about the specific semantics of “is friend of” relation: can you think about some case where it should be meaningful to store information about individuals not being friends of themselves ?

ANSWER: in real life it may always happen to find fringe cases - suppose you are given the task to model a network of possibly depressed people with self-harming tendencies. So always be sure your model correctly fits the problem at hand.

Some relations sometimes may or not be symmetric, depending on the graph at hand. Think about the relation loves. It is well known that Mickey Mouse lovel Minnie and the sentiment is reciprocal, and Donald Duck loves Daisy Duck and the sentiment is reciprocal. We can conclude this particular graph is symmetrical:

[7]:

from sciprog import draw_adj

draw_adj({
 'Donald Duck' : ['Daisy Duck'],
 'Daisy Duck' : ['Donald Duck'],
 'Mickey Mouse' : ['Minnie'],
 'Minnie' : ['Mickey Mouse']

})

[image: ../../_images/exercises_binary-relations_binary-relations-solution_22_0.png]

But what about this one? Donald Duck is not the only duck in town and sometimes a contender shows up: Gladstone Gander [https://en.wikipedia.org/wiki/Gladstone_Gander] (Gastone in Italian) also would like the attention of Daisy (never mind in some comics he actually gets it when Donald Duck messes up big time):

[8]:

from sciprog import draw_adj

draw_adj({
 'Donald Duck' : ['Daisy Duck'],
 'Daisy Duck' : ['Donald Duck'],
 'Mickey Mouse' : ['Minnie'],
 'Minnie' : ['Mickey Mouse'],
 'Gladstone Gander' : ['Daisy Duck']

})

[image: ../../_images/exercises_binary-relations_binary-relations-solution_24_0.png]

is_symmetric_mat

✪✪ Implement an automated procedure to check whether or not a graph is symmetrical. Implement this function for matrices:

[9]:

def is_symmetric_mat(mat):
 """ RETURN True if nxn boolean matrix mat as list of lists is symmetric, False otherwise.

 A graph is symmetric when for all nodes, if a node A links to another node B,
 there is a also a link from node B to A.

 NOTE: if
 """
 #jupman-raise
 n = len(mat)
 for i in range(n):
 for j in range(n):
 if mat[i][j] and not mat[j][i]:
 return False
 return True
 #/jupman-raise

assert is_symmetric_mat([
 [False]
]) == True # m1

assert is_symmetric_mat([
 [True]
]) == True # m2

assert is_symmetric_mat([
 [False, False],
 [False, False],

]) == True # m3

assert is_symmetric_mat([
 [True, True],
 [True, True],

]) == True # m4

assert is_symmetric_mat([
 [True, True],
 [False, True],

]) == False # m5

assert is_symmetric_mat([
 [True, False],
 [True, True],

]) == False # m6

assert is_symmetric_mat([
 [True, True],
 [True, False],

]) == True # m7

assert is_symmetric_mat([
 [False, True],
 [True, True],

]) == True # m8

assert is_symmetric_mat([
 [False, True],
 [True, False],

]) == True # m9

assert is_symmetric_mat([
 [False, False],
 [True, False],

]) == False # m10

assert is_symmetric_mat([
 [False, True, True],
 [True, False, False],
 [True, True, True],

]) == False # m11

assert is_symmetric_mat([
 [False, True, True],
 [True, False, True],
 [True, True, True],

]) == True # m12

is_symmetric_adj

✪✪ Now implement the same as before but for a dictionary of adjacency lists:

[10]:

def is_symmetric_adj(d):
 """ RETURN True if given dictionary of adjacency lists is symmetric, False otherwise.

 Assume all the nodes are represented in the keys.

 A graph is symmetric when for all nodes, if a node A links to another node B,
 there is a also a link from node B to A.

 """
 #jupman-raise
 for k in d:
 for v in d[k]:
 if not k in d[v]:
 return False
 return True
 #/jupman-raise

assert is_symmetric_adj({
 'a':[]
 }) == True # d1

assert is_symmetric_adj({
 'a':['a']
 }) == True # d2

assert is_symmetric_adj({
 'a' : [],
 'b' : []
 }) == True # d3

assert is_symmetric_adj({
 'a' : ['a','b'],
 'b' : ['a','b']
 }) == True # d4

assert is_symmetric_adj({
 'a' : ['a','b'],
 'b' : ['b']
 }) == False # d5

assert is_symmetric_adj({
 'a' : ['a'],
 'b' : ['a','b']
 }) == False # d6

assert is_symmetric_adj({
 'a' : ['a','b'],
 'b' : ['a']
 }) == True # d7

assert is_symmetric_adj({
 'a' : ['b'],
 'b' : ['a','b']
 }) == True # d8

assert is_symmetric_adj({
 'a' : ['b'],
 'b' : ['a']
 }) == True # d9

assert is_symmetric_adj({
 'a' : [],
 'b' : ['a']
 }) == False # d10

assert is_symmetric_adj({
 'a' : ['b', 'c'],
 'b' : ['a'],
 'c' : ['a','b','c']
 }) == False # d11

assert is_symmetric_adj({
 'a' : ['b', 'c'],
 'b' : ['a','c'],
 'c' : ['a','b','c']
 }) == True # d12

surjective

✪✪ If we consider a graph as a nxn binary relation where the domain is the same as the codomain, such relation is called surjective if every node is reached by at least one edge.

For example, G1 here is surjective, because there is at least one edge reaching into each node (self-loops as in 0 node also count as incoming edges)

[11]:

G1 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, True, False],
 [False, True, True, True],

]

[12]:

draw_mat(G1)

[image: ../../_images/exercises_binary-relations_binary-relations-solution_31_0.png]

G2 down here instead does not represent a surjective relation, as there is at least one node (2 in our case) which does not have any incoming edge:

[13]:

G2 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, False, False],
 [False, True, False, False],

]

[14]:

draw_mat(G2)

[image: ../../_images/exercises_binary-relations_binary-relations-solution_34_0.png]

[15]:

def surjective(mat):
 """ RETURN True if provided graph mat as list of boolean lists is an
 nxn surjective binary relation, otherwise return False
 """
 #jupman-raise
 n = len(mat)
 c = 0 # number of incoming edges found
 for j in range(len(mat)): # go column by column
 for i in range(len(mat)): # go row by row
 if mat[i][j]:
 c += 1
 break # as you find first incoming edge, increment c and stop search for that column
 return c == n
 #/jupman-raise

m1 = [
 [False]
]

assert surjective(m1) == False

m2 = [
 [True]
]

assert surjective(m2) == True

m3 = [
 [True, False],
 [False, False],
]

assert surjective(m3) == False

m4 = [
 [False, True],
 [False, False],
]

assert surjective(m4) == False

m5 = [
 [False, False],
 [True, False],
]

assert surjective(m5) == False

m6 = [
 [False, False],
 [False, True],
]

assert surjective(m6) == False

m7 = [
 [True, False],
 [True, False],
]

assert surjective(m7) == False

m8 = [
 [True, False],
 [False, True],
]

assert surjective(m8) == True

m9 = [
 [True, True],
 [False, True],
]

assert surjective(m9) == True

m10 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, False, False],
 [False, True, False, False],

]
assert surjective(m10) == False

m11 = [
 [True, True, False, False],
 [False, False, False, True],
 [False, True, True, False],
 [False, True, True, True],

]
assert surjective(m11) == True

Further resources

	Rule based design [https://www.researchgate.net/profile/Stef_Joosten/publication/327022933_Rule_Based_Design/links/5b7321be45851546c903234a/Rule-Based-Design.pdf] by Lex Wedemeijer, Stef Joosten, Jaap van der woude: a very readable text on how to represent information using only binary relations with boolean matrices. This a theorical book with no python exercise so it is not a mandatory read, it only gives context and practical applications for some of the material on graphs presented
during the course

[]:

 OOP

OOP

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/oop-formats]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |- oop
 |- oop.ipynb
 |- ComplexNumber_solution.py
 |- ComplexNumber_exercise.py

This time you will not write in the notebook, instead you will edit .py files in Visual Studio Code.

Now proceed reading.

1. Abstract Data Types (ADT) Theory

1.1. Intro

	Theory from the slides:

	Programming paradagims, Object-Oriented Python [http://disi.unitn.it/~montreso/sp/slides/A09-oop.pdf#Navigation5]

	Data structures slides [http://disi.unitn.it/~montreso/sp/slides/B02-strutture.pdf] (First slides until slide 13 ‘Comments’)

	Object Oriented programming on the the book [http://interactivepython.org/runestone/static/pythonds/Introduction/ObjectOrientedProgramminginPythonDefiningClasses.html] (In particular, Fraction class [http://interactivepython.org/runestone/static/pythonds/Introduction/ObjectOrientedProgramminginPythonDefiningClasses.html#a-fraction-class], in this course we won’t focus on inheritance)

1.2. Complex number theory

[image: Complex number definition from Wikipedia]

1.3. Datatypes the old way

From the definition we see that to identify a complex number we need two float values . One number is for the *real* part, and another number is for the *imaginary* part.

How can we represent this in Python? So far, you saw there are many ways to put two numbers together. One way could be to put the numbers in a list of two elements, and implicitly assume the first one is the real and the second the imaginary part:

[2]:

c = [3.0, 5.0]

Or we could use a tuple:

[3]:

c = (3.0, 5.0)

A problem with the previous representations is that a casual observer might not know exactly the meaning of the two numbers. We could be more explicit and store the values into a dictionary, using keys to identify the two parts:

[4]:

c = {'real': 3.0, 'imaginary': 5.0}

[5]:

print(c)

{'real': 3.0, 'imaginary': 5.0}

[6]:

print(c['real'])

3.0

[7]:

print(c['imaginary'])

5.0

Now, writing the whole record {'real': 3.0, 'imaginary': 5.0} each time we want to create a complex number might be annoying and error prone. To help us, we can create a little shortcut function named complex_number that creates and returns the dictionary:

[8]:

def complex_number(real, imaginary):
 d = {}
 d['real'] = real
 d['imaginary'] = imaginary
 return d

[9]:

c = complex_number(3.0, 5.0)

[10]:

print(c)

{'real': 3.0, 'imaginary': 5.0}

To do something with our dictionary, we would then define functions, like for example complex_str to show them nicely:

[11]:

def complex_str(cn):
 return str(cn['real']) + " + " + str(cn['imaginary']) + "i"

[12]:

c = complex_number(3.0, 5.0)
print(complex_str(c))

3.0 + 5.0i

We could do something more complex, like defining the phase of the complex number which returns a float:

IMPORTANT: In these exercises, we care about programming, not complex numbers theory. There’s no need to break your head over formulas!

[13]:

import math
def phase(cn):
 """ Returns a float which is the phase (that is, the vector angle) of the complex number

 See definition: https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
 """
 return math.atan2(cn['imaginary'], cn['real'])

[14]:

c = complex_number(3.0, 5.0)
print(phase(c))

1.0303768265243125

We could even define functions that that take the complex number and some other parameter, for example we could define the log of complex numbers, which return another complex number (mathematically it would be infinitely many, but we just pick the first one in the series):

[15]:

import math
def log(cn, base):
 """ Returns another complex number which is the logarithm of this complex number

 See definition (accomodated for generic base b):
 https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
 """
 return {'real':math.log(cn['real']) / math.log(base),
 'imaginary' : phase(cn) / math.log(base)}

[16]:

print(log(c,2))

{'real': 1.5849625007211563, 'imaginary': 1.4865195378735334}

You see we got our dictionary representing a complex number. If we want a nicer display we can call on it the complex_str we defined:

[17]:

print(complex_str(log(c,2)))

1.5849625007211563 + 1.4865195378735334i

1.4. Finding the pattern

So, what have we done so far?

	Decided a data format for the complex number, saw that the dictionary is quite convenient

	Defined a function to quickly create the dictionary:

def complex_number(real, imaginary):

	Defined some function like phase and log to do stuff on the complex number

def phase(cn):
def log(cn, base):

	Defined a function complex_str to express the complex number as a readable string:

def complex_str(cn):

Notice that: * all functions above take a cn complex number dictionary as first parameter * the functions phase and log are quite peculiar to complex number, and to know what they do you need to have deep knowledge of what a complex number is. * the function complex_str is more intuitive, because it covers the common need of giving a nice string representation to the data format we just defined. Also, we used the word str as part of the name to give a hint to the reader
that probably the function behaves in a way similar to the Python function str().

When we encounter a new datatype in our programs, we often follow the procedure of thinking listed above. Such procedure is so common that software engineering people though convenient to provide a specific programming paradigm to represent it, called Object Oriented programming. We are now going to rewrite the complex number example using such paradigm.

1.5. Object Oriented Programming

In Object Oriented Programming, we usually

	Introduce new datatypes by declaring a class, named for example ComplexNumber

	Are given a dictionary and define how data is stored in the dictionary (i.e. in fields real and imaginary)

	Define a way to construct specific instances , like 3 + 2i, 5 + 6i (instances are also called objects)

	Define some methods to operate on the instances (like phase)

	Define some special methods to customize how Python treats instances (for example for displaying them as strings when printing)

Let’s now create our first class.

2. ComplexNumber class

2.1. Class declaration

A minimal class declaration will at least declare the class name and the __init__ method:

[18]:

class ComplexNumber:

 def __init__(self, real, imaginary):
 self.real = real
 self.imaginary = imaginary

Here we declare to Python that we are starting defining a template for a new class called ComplexNumber. This template will hold a collection of functions (called methods) that manipulate instances of complex numbers (instances are 1.0 + 2.0i, 3.0 + 4.0i, …).

IMPORTANT: Although classes can have any name (i.e. complex_number, complexNumber, …), by convention you SHOULD use a camel cased name like ComplexNumber, with capital letters as initials and no underscores.

2.2. Constructor __init__

With the dictonary model, to create complex numbers remember we defined that small utility function complex_number, where inside we were creating the dictionary:

def complex_number(real, imaginary):
 d = {}
 d['real'] = real
 d['imaginary'] = imaginary
 return d

With classes, to create objects we have instead to define a so-called constructor method called __init__:

[19]:

class ComplexNumber:

 def __init__(self, real, imaginary):
 self.real = real
 self.imaginary = imaginary

__init__ is a very special method, that has the job to initialize an instance of a complex number. It has three important features:

	it is defined like a function, inside the ComplexNumber declaration (as usual, indentation matters!)

	it always takes as first parameter self, which is an instance of a special kind of dictionary that will hold the fields of the complex number. Inside the previous complex_number function, we were creating a dictionary d. In __init__ method, the dictionary instead is automatically created by Python and given to us in the form of parameter self

	__init__ does not return anything: this is different from the previous complex_number function where instead we were returning the dictionary d.

Later we will explain better these properties. For now, let’s just concentrate on the names of things we see in the declaration.

WARNING: There can be only one constructor method per class, and MUST be named __init__

WARNING: init MUST take at least one parameter, by convention it is usually named self

IMPORTANT: self is just a name we give to the first parameter. It could be any name our fantasy suggest and the program would behave exactly the same!

If the editor you are using will evidence it in some special color, it is because it is aware of the convention but not because self is some special Python keyword.

IMPORTANT: In general, any of the __init__ parameters can have completely arbitrary names, so for example the following code snippet would work exactly the same as the initial definition:

[20]:

class ComplexNumber:

 def __init__(donald_duck, mickey_mouse, goofy):
 donald_duck.real = mickey_mouse
 donald_duck.imaginary = goofy

Once the __init__ method is defined, we can create a specific ComplexNumber instance with a call like this:

[21]:

c = ComplexNumber(3.0,5.0)
print(c)

<__main__.ComplexNumber object at 0x7f0c4c380f60>

What happend here?

init 2.2.1) We told Python we want to create a new particular instance of the template defined by class ComplexNumber. As parameters for the instance we indicated 3.0 and 5.0.

WARNING: to create the instance, we used the name of the class ComplexNumber following it by an open round parenthesis and parameters like a function call: c=ComplexNumber(3.0,5.0) Writing just: c = ComplexNumber would NOT instantiate anything and we would end up messing with the template ``ComplexNumber``, which is a collection of functions for complex numbers.

init 2.2.2) Python created a new special dictionary for the instance

init 2.2.3) Python passed the special dictionary as first parameter of the method __init__, so it will be bound to parameter self. As second and third arguments passed 3.0 and 5.0, which will be bound respectively to parameters real and imaginary

WARNING: When instantiating an object with a call like c=ComplexNumber(3.0,5.0) you don’t need to pass a dictionary as first parameter! Python will implicitly create it and pass it as first parameter to __init__

init 2.2.4) In the __init__ method, the instructions

self.real = real
self.imaginary = imaginary

first create a key in the dictionary called real associating to the key the value of the parameter real (in the call is 3.0). Then the value 5.0 is bound to the key imaginary.

IMPORTANT: we said Python provides init with a special kind of dictionary as first parameter. One of the reason it is special is that you can access keys using the dot like self.my_key. With ordinary dictionaries you would have to write the brackets like self[“my_key”]

IMPORTANT: like with dictionaries, we can arbitrarily choose the name of the keys, and which values to associate to them.

IMPORTANT: In the following, we will often refer to keys of the self dictionary with the terms field, and/or attribute.

Now one important word of wisdom:

!!!!!! COMMANDMENT 5: YOU SHALL NEVER EVER REASSIGN ``self`` !!!!!!!

Since self is a kind of dictionary, you might be tempted to do like this:

[22]:

class EvilComplexNumber:
 def __init__(self, real, imaginary):
 self = {'real':real, 'imaginary':imaginary}

but to the outside world this will bring no effect. For example, let’s say somebody from outside makes a call like this:

[23]:

ce = EvilComplexNumber(3.0, 5.0)

At the first attempt of accessing any field, you would get an error because after the initalization c will point to the yet untouched self created by Python, and not to your dictionary (which at this point will be simply lost):

print(ce.real)

AttributeError: EvilComplexNumber instance has no attribute ‘real’

In general, you DO NOT reassign self to anything. Here are other example DON’Ts:

self = ['666'] # self is only supposed to be a sort of dictionary which is passed by Python
self = 6 # self is only supposed to be a sort of dictionary which is passed by Python</p>

init 2.2.5) Python automatically returns from __init__ the special dictionary self

WARNING: __init__ must NOT have a return statement ! Python will implicitly return self !

init 2.2.6) The result of the call (so the special dictionary) is bound to external variable ‘c`:

c = ComplexNumber(3.0, 5.0)

init 2.2.7) You can then start using c as any variable

[24]:

print(c)

<__main__.ComplexNumber object at 0x7f0c4c380f60>

From the output, you see we have indeed an instance of the class ComplexNumber. To see the difference between instance and class, you can try printing the class instead:

[25]:

print(ComplexNumber)

<class '__main__.ComplexNumber'>

IMPORTANT: You can create an infinite number of different instances (i.e.
ComplexNumber(1.0, 1.0), ComplexNumber(2.0, 2.0), ComplexNumber(3.0, 3.0), …), but you will have only one class definition for them (ComplexNumber).

We can now access the fields of the special dictionary by using the dot notation as we were doing with the ‘self`:

[26]:

print(c.real)

3.0

[27]:

print(c.imaginary)

5.0

If we want, we can also change them:

[28]:

c.real = 6.0
print(c.real)

6.0

2.3. Defining methods

2.3.1 phase

Let’s make our class more interesting by adding the method phase(self) to operate on the complex number:

[29]:

import unittest
import math

class ComplexNumber:

 def __init__(self, real, imaginary):
 self.real = real
 self.imaginary = imaginary

 def phase(self):
 """ Returns a float which is the phase (that is, the vector angle) of the complex number

 This method is something we introduce by ourselves, according to the definition:
 https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
 """
 return math.atan2(self.imaginary, self.real)

The method takes as first parameter self which again is a special dictionary. We expect the dictionary to have already been initialized with some values for real and imaginary fields. We can access them with the dot notation as we did before:

return math.atan2(self.imaginary, self.real)

How can we call the method on instances of complex numbers? We can access the method name from an instance using the dot notation as we did with other keys:

[30]:

c = ComplexNumber(3.0,5.0)
print(c.phase())

1.0303768265243125

What happens here?

By writing c.phase() , we call the method phase(self) which we just defined. The method expects as first parameter self a class instance, but in the call c.phase() apparently we don’t provide any parameter. Here some magic is going on, and Python implicitly is passing as first parameter the special dictionary bound to c. Then it executes the method and returns the desired float.

WARNING: Put round parenthesis in method calls!

When calling a method, you MUST put the round parenthesis after the method name like in c.phase()! If you just write c.phase without parenthesis you will get back an address to the physical location of the method code:

>>> c.phase
<bound method ComplexNumber.phase of <__main__.ComplexNumber instance at 0xb465a4cc>>

2.3.2 log

We can also define methods that take more than one parameter, and also that create and return ComplexNumber instances, like for example the method log(self, base):

[31]:

import math

class ComplexNumber:

 def __init__(self, real, imaginary):
 self.real = real
 self.imaginary = imaginary

 def phase(self):
 """ Returns a float which is the phase (that is, the vector angle) of the complex number

 This method is something we introduce by ourselves, according to the definition:
 https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
 """
 return math.atan2(self.imaginary, self.real)

 def log(self, base):
 """ Returns another ComplexNumber which is the logarithm of this complex number

 This method is something we introduce by ourselves, according to the definition:
 (accomodated for generic base b)
 https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
 """
 return ComplexNumber(math.log(self.real) / math.log(base), self.phase() / math.log(base))

WARNING: ALL METHODS MUST HAVE AT LEAST ONE PARAMETER, WHICH BY CONVENTION IS NAMED self !

To call log, you can do as with phase but this time you will need also to pass one parameter for the base parameter, in this case we use the exponential math.e:

[32]:

c = ComplexNumber(3.0, 5.0)
logarithm = c.log(math.e)

WARNING: As before for phase, notice we didn’t pass any dictionary as first parameter! Python will implicitly pass as first argument the instance c as self, and math.e as base

[33]:

print(logarithm)

<__main__.ComplexNumber object at 0x7f0c4c39e470>

To see if the method worked and we got back we got back a different complex number, we can print the single fields:

[34]:

print(logarithm.real)

1.0986122886681098

[35]:

print(logarithm.imaginary)

1.0303768265243125

2.3.3 __str__ for printing

As we said, printing is not so informative:

[36]:

print(ComplexNumber(3.0, 5.0))

<__main__.ComplexNumber object at 0x7f0c4c3f53c8>

It would be nice to instruct Python to express the number like “3.0 + 5.0i” whenever we want to see the ComplexNumber represented as a string. How can we do it? Luckily for us, defining the __str__(self) method (see bottom of class definition)

WARNING: There are two underscores _ before and two underscores _ after in __str__ !

[37]:

import math

class ComplexNumber:

 def __init__(self, real, imaginary):
 self.real = real
 self.imaginary = imaginary

 def phase(self):
 """ Returns a float which is the phase (that is, the vector angle) of the complex number

 This method is something we introduce by ourselves, according to the definition:
 https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
 """
 return math.atan2(self.imaginary, self.real)

 def log(self, base):
 """ Returns another ComplexNumber which is the logarithm of this complex number

 This method is something we introduce by ourselves, according to the definition:
 (accomodated for generic base b)
 https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
 """
 return ComplexNumber(math.log(self.real) / math.log(base), self.phase() / math.log(base))

 def __str__(self):
 return str(self.real) + " + " + str(self.imaginary) + "i"

IMPORTANT: all methods starting and ending with a double underscore __ have a special meaning in Python: depending on their name, they override some default behaviour. In this case, with __str__ we are overriding how Python represents a ComplexNumber instance into a string.

WARNING:

Since we are overriding Python default behaviour, it is very important that we follow the specs of the method we are overriding to the letter. In our case, the specs for __str__ [https://docs.python.org/3/reference/datamodel.html#object.__str__] obviously state you MUST return a string. Do read them!

[38]:

c = ComplexNumber(3.0, 5.0)

We can also pretty print the whole complex number. Internally, print function will look if the class ComplexNumber has defined a method named __str__. If so, it will pass to the method the instance c as the first argument, which in our methods will end up in the self parameter:

[39]:

print(c)

3.0 + 5.0i

[40]:

print(c.log(2))

1.5849625007211563 + 1.4865195378735334i

Special Python methods are like any other method, so if we wish, we can also call them directly:

[41]:

c.__str__()

[41]:

'3.0 + 5.0i'

EXERCISE: There is another method for getting a string representation of a Python object, called __repr__. Read carefully __repr__ documentation [https://docs.python.org/3/reference/datamodel.html#object.__repr__] and implement the method. To try it and see if any difference appear with respect to str, call the standard Python functions repr and str like this:

c = ComplexNumber(3,5)
print(repr(c))
print(str(c))

QUESTION: Would 3.0 + 5.0i be a valid Python expression ? Should we return it with __repr__? Read again also __str__ documentation [https://docs.python.org/3/reference/datamodel.html#object.__str__]

2.4. ComplexNumber code skeleton

We are now ready to write methods on our own. Open Visual Studio Code (no jupyter in part B !) and proceed editing file ComplexNumber_exercise.py

To see how to test, try running this in the console, tests should pass (if system doesn’t find python3 write python):

python3 -m unittest ComplexNumber_test.ComplexNumberTest

2.5. Complex numbers magnitude

[image: complex numbers magnitude 1 31231893123] [image: complex numbers magnitude 2 2312391232]

Implement the magnitude method, using this signature:

def magnitude(self):
 """ Returns a float which is the magnitude (that is, the absolute value) of the complex number

 This method is something we introduce by ourselves, according to the definition:
 https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
 """
 raise Exception("TODO implement me!")

To test it, check this test in MagnitudeTest class passes (notice the almost in assertAlmostEquals !!!):

def test_01_magnitude(self):
 self.assertAlmostEqual(ComplexNumber(3.0,4.0).magnitude(),5, delta=0.001)

To run the test, in the console type:

python3 -m unittest ComplexNumber_test.MagnitudeTest

2.6. Complex numbers equality

Here we will try to give you a glimpse of some aspects related to Python equality, and trying to respect interfaces when overriding methods. Equality can be a nasty subject, here we will treat it in a simplified form.

First of all, try to execute this command, you should get back False

[42]:

ComplexNumber(1,2) == ComplexNumber(1,2)

[42]:

False

How comes we get False? The reason is whenever we write ComplexNumber(1,2) we are creating a new object in memory. Such object will get assigned a unique address number in memory, and by default equality between class instances is calculated considering only equality among memory addresses. In this case we create one object to the left of the expression and another one to the right. So far we didn’t tell Python how to deal with equality for ComplexNumber classes, so default equality
testing is used by checking memory addresses, which are different - so we get False.

To get True as we expect, we need to implement __eq__ special method. This method should tell Python to compare the fields within the objects, and not just the memory address.

REMEMBER: as all methods starting and ending with a double underscore __, __eq__ has a special meaning in Python: depending on their name, they override some default behaviour. In this case, with __eq__ we are overriding how Python checks equality. Please review __eq__ documentation [https://docs.python.org/3/reference/datamodel.html#object.__eq__] before continuing.

QUESTION: What is the return type of __eq__ ?

[image: image0]

	Implement equality for ComplexNumber more or less as it was done for Fraction

Use this method signature:

def __eq__(self, other):

Since __eq__ is a binary operation, here self will represent the object to the left of the ==, and other the object to the right.

Use this simple test case to check for equality in class EqTest:

def test_01_integer_equality(self):
 """
 Note all other tests depend on this test !

 We want also to test the constructor, so in c we set stuff by hand
 """
 c = ComplexNumber(0,0)
 c.real = 1
 c.imaginary = 2
 self.assertEquals(c, ComplexNumber(1,2))

To run the test, in the console type:

python3 -m unittest ComplexNumber_test.EqTest

	Beware ‘equality’ is tricky in Python for float numbers! Rule of thumb: when overriding __eq__, use ‘dumb’ equality, two things are the same only if their parts are literally equal

	If instead you need to determine if two objects are similar, define other ‘closeness’ functions.

	Once done, check again ComplexNumber(1,2) == ComplexNumber(1,2) command and see what happens, this time it should give back True.

QUESTION: What about ComplexNumber(1,2) != ComplexNumber(1,2)? Does it behaves as expected?

	(Non mandatory read) if you are interested in the gory details of equality, see

	How to Override comparison operators in Python [http://jcalderone.livejournal.com/32837.html]

	Messing with hashing [http://www.asmeurer.com/blog/posts/what-happens-when-you-mess-with-hashing-in-python/]

2.7. Complex numbers isclose

Complex numbers can be represented as vectors, so intuitively we can determine if a complex number is close to another by checking that the distance between its vector tip and the the other tip is less than a given delta. There are more precise ways to calculate it, but here we prefer keeping the example simple.

Given two complex numbers

\[z_1 = a + bi\]

and

\[z_2 = c + di\]

We can consider them as close if they satisfy this condition:

\[\sqrt{(a-c)^2 + (b-d)^2} < delta\]

	Implement the method in ComplexNumber class:

def isclose(self, c, delta):
 """ Returns True if the complex number is within a delta distance from complex number c.
 """
 raise Exception("TODO Implement me!")

Check this test case IsCloseTest class pass:

def test_01_isclose(self):
 """ Notice we use `assertTrue` because we expect `isclose` to return a `bool` value, and
 we also test a case where we expect `False`
 """
 self.assertTrue(ComplexNumber(1.0,1.0).isclose(ComplexNumber(1.0,1.1), 0.2))
 self.assertFalse(ComplexNumber(1.0,1.0).isclose(ComplexNumber(10.0,10.0), 0.2))

To run the test, in the console type:

python3 -m unittest ComplexNumber_test.IscloseTest

REMEMBER: Equality with __eq__ and closeness functions like isclose are very different things. Equality should check if two objects have the same memory address or, alternatively, if they contain the same things, while closeness functions should check if two objects are similar. You should never use functions like isclose inside __eq__ methods, unless you really know what you’re doing.

2.8. Complex numbers addition

[image: complex numbers addition 982323892]

	a and c correspond to real, b and d correspond to imaginary

	implement addition for ComplexNumber more or less as it was done for Fraction in theory slides

	write some tests as well!

Use this definition:

def __add__(self, other):
 raise Exception("TODO implement me!")

Check these two tests pass in AddTest class:

def test_01_add_zero(self):
 self.assertEquals(ComplexNumber(1,2) + ComplexNumber(0,0), ComplexNumber(1,2));

def test_02_add_numbers(self):
 self.assertEquals(ComplexNumber(1,2) + ComplexNumber(3,4), ComplexNumber(4,6));

To run the tests, in the console type:

python3 -m unittest ComplexNumber_test.AddTest

2.9. Adding a scalar

We defined addition among ComplexNumbers, but what about addition among a ComplexNumber and an int or a float?

Will this work?

ComplexNumber(3,4) + 5

What about this?

ComplexNumber(3,4) + 5.0

Try to add the following method to your class, and check if it does work with the scalar:

[43]:

 def __add__(self, other):
 # checks other object is instance of the class ComplexNumber
 if isinstance(other, ComplexNumber):
 return ComplexNumber(self.real + other.real,self.imaginary + other.imaginary)

 # else checks the basic type of other is int or float
 elif type(other) is int or type(other) is float:
 return ComplexNumber(self.real + other, self.imaginary)

 # other is of some type we don't know how to process.
 # In this case the Python specs say we MUST return 'NotImplemented'
 else:
 return NotImplemented

Hopefully now you have a better add. But what about this? Will this work?

5 + ComplexNumber(3,4)

Answer: it won’t, Python needs further instructions. Usually Python tries to see if the class of the object on left of the expression defines addition for operands to the right of it. In this case on the left we have a float number, and float numbers don’t define any way to deal to the right with your very own ComplexNumber class. So as a last resort Python tries to see if your ComplexNumber class has defined also a way to deal with operands to the left of the ComplexNumber,
by looking for the method __radd__ , which means reverse addition . Here we implement it :

def __radd__(self, other):
 """ Returns the result of expressions like other + self """
 if (type(other) is int or type(other) is float):
 return ComplexNumber(self.real + other, self.imaginary)
 else:
 return NotImplemented

To check it is working and everything is in order for addition, check these tests in RaddTest class pass:

def test_01_add_scalar_right(self):
 self.assertEquals(ComplexNumber(1,2) + 3, ComplexNumber(4,2));

def test_02_add_scalar_left(self):
 self.assertEquals(3 + ComplexNumber(1,2), ComplexNumber(4,2));

def test_03_add_negative(self):
 self.assertEquals(ComplexNumber(-1,0) + ComplexNumber(0,-1), ComplexNumber(-1,-1));

2.10. Complex numbers multiplication

[image: complex numbers multiplication 98322372373]

	Implement multiplication for ComplexNumber, taking inspiration from previous __add__ implementation

	Can you extend multiplication to work with scalars (both left and right) as well?

To implement __mul__, implement definition into ComplexNumber class:

def __mul__(self, other):
 raise Exception("TODO Implement me!")

and make sure these tests cases pass in MulTest class:

def test_01_mul_by_zero(self):
 self.assertEquals(ComplexNumber(0,0) * ComplexNumber(1,2), ComplexNumber(0,0));

def test_02_mul_just_real(self):
 self.assertEquals(ComplexNumber(1,0) * ComplexNumber(2,0), ComplexNumber(2,0));

def test_03_mul_just_imaginary(self):
 self.assertEquals(ComplexNumber(0,1) * ComplexNumber(0,2), ComplexNumber(-2,0));

def test_04_mul_scalar_right(self):
 self.assertEquals(ComplexNumber(1,2) * 3, ComplexNumber(3,6));

def test_05_mul_scalar_left(self):
 self.assertEquals(3 * ComplexNumber(1,2), ComplexNumber(3,6));

3. MultiSet

You are going to implement a class called MultiSet, where you are only given the class skeleton, and you will need to determine which Python basic datastructures like list, set, dict (or combinations thereof) is best suited to actually hold the data.

In math a multiset (or bag) generalizes a set by allowing multiple instances of the multiset’s elements.

The multiplicity of an element is the number of instances of the element in a specific multiset.

For example:

	The multiset a, b contains only elements a and b, each having multiplicity 1

	In multiset a, a, b, a has multiplicity 2 and b has multiplicity 1

	In multiset a, a, a, b, b, b, a and b both have multiplicity 3

NOTE: order of insertion does not matter, so a, a, b and a, b, a are the same multiset, where a has multiplicity 2 and b has multiplicity 1.

[44]:

from multiset_solution import *

3.1 __init__ add and get

Now implement all of the following methods: __init__, add and get:

def __init__(self):
 """ Initializes the MultiSet as empty."""
 raise Exception("TODO IMPLEMENT ME !!!")

def add(self, el):
 """ Adds one instance of element el to the multiset

 NOTE: MUST work in O(1)
 """
 raise Exception("TODO IMPLEMENT ME !!!")

def get(self, el):
 """ Returns the multiplicity of element el in the multiset.

 If no instance of el is present, return 0.

 NOTE: MUST work in O(1)
 """
 raise Exception("TODO IMPLEMENT ME !!!")

Testing

Once done, running this will run only the tests in AddGetTest class and hopefully they will pass.

Notice that multiset_test is followed by a dot and test class name .AddGetTest :

python3 -m unittest multiset_test.AddGetTest

3.2 removen

Implement the following removen method:

def removen(self, el, n):
 """ Removes n instances of element el from the multiset (that is, reduces el multiplicity by n)

 If n is negative, raises ValueError.
 If n represents a multiplicity bigger than the current multiplicity, raises LookupError

 NOTE: multiset multiplicities are never negative
 NOTE: MUST work in O(1)
 """

Testing: python3 -m unittest multiset_test.RemovenTest

 Sorting

Sorting

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/sorting]

Introduction

References

	Alberto Montresor Algorithm analysis slides [http://disi.unitn.it/~montreso/sp/handouts/B01-analisi.pdf]

	Python DS Chapter 2.6: Algorithm analysis [https://runestone.academy/runestone/books/published/pythonds/AlgorithmAnalysis/toctree.html]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-sorting
 |- sorting.ipynb
 |- selection_sort_exercise.py
 |- selection_sort_test.py
 |- selection_sort_solution.py

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

List performance

Python lists are generic containers, they are useful in a variety of scenarios but sometimes their perfomance can be disappointing, so it’s best to know and avoid potentially expensive operations. Table from the book Chapter 2.6: Lists [http://interactivepython.org/runestone/static/pythonds/AlgorithmAnalysis/Lists.html]

	[image: list complexity 1 4jj34]>

	[image: list complexity 2 fjgjugr]>

	
	

Fast or not?

x = ["a", "b", "c"]

x[2]
x[2] = "d"
x.append("d")
x.insert(0, "d")
x[3:5]
x.sort()

What about len(x) ? If you don’t know the answer, try googling it!

Sublist iteration performance

get slice time complexity is O(k), but what about memory? It’s the same!

So if you want to iterate a part of a list, beware of slicing! For example, slicing a list like this can occupy much more memory than necessary:

[2]:

x = range(1000)

print([2*y for y in x[100:200]])

[200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398]

The reason is that, depending on the Python interpreter you have, slicing like x[100:200]at loop start can create a new list. If we want to explicitly tell Python we just want to iterate through the list, we can use the so called itertools. In particular, the islice method is handy, with it we can rewrite the list comprehension above like this:

[3]:

import itertools

print([2*y for y in itertools.islice(x, 100, 200)])

[200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398]

Exercises

1 Selection Sort

We will try to implement Selection Sort on our own. Montresor slides already contain the Python solution, but don’t look at them (we will implement a slightly different solution anyway). In this exercises, you will only be allowed to look at this picture:

[image: sleection sort matrix 34hh4u]

To start with, open selection_sort_exercise.py in an editor of your choice.

Now proceed reading.

1.1 Implement swap

[4]:

def swap(A, i, j):
 """ MODIFIES the array A by swapping the elements at position i and j
 """
 raise Exception("TODO implement me!")

In order to succeed in this part of the course, you are strongly invited to first think hard about a function, and then code! So to start with, pay particular attention at the required inputs and expected outputs of functions. Before start coding, answer these questions:

QUESTION 1.1.1: What are the input types of swap? In particular

	What is the type of the elements in A?

	Can we have both strings and floats inside A ?

	What is the type of i and j ?

COMMANDMENT 2: You shall also write on paper!

Help yourself by drawing a representation of input array. Staring at the monitor doesn’t always work, so help yourself and draw a representation of the state sof the program. Tables, nodes, arrows, all can help figuring out a solution for the problem.

QUESTION 1.1.2: What should be the result of the three prints here? Should the function swap return something at all ? Try to answer this question before proceeding.

A = ['a','b','c']
print(A)
print(swap(A, 0, 2))
print(A)

HINT: Remember this:

COMMANDMENT 7: You shall use return command only if you see written return in the function description!

If there is no return in function description, the function is intended to return None.

QUESTION 1.1.3: Try to answer this question before proceeding:

	What is the result of the first and second print down here?

	What is the result of the final print if we have arbitrary indeces \(i\) and \(j\) with \(0 \leq i,j \leq 2\) ?

A = ['a','b','c']
swap(A, 0, 2)
print(A)
swap(A, 0, 2)
print(A)

QUESTION 1.1.3: Try to answer this question before proceeding:

	What is the result of the first and second print down here?

	What is the result of the final print if we have arbitrary indeces \(i\) and \(j\) with \(0 \leq i,j \leq 2\) ?

A = ['a','b','c']
swap(A, 0, 2)
print(A)
swap(A, 2, 0)
print(A)

QUESTION 1.1.4: What is the result of the final print here? Try to answer this question before proceeding:

A = ['a','b','c']
swap(A, 1, 1)
print(A)

QUESTION 1.1.5:

	In the same file selection_sort.py copy at the end the test code at the end of this question.

	Read carefully all the test cases, in particular test_swap_property and test_double_swap. They show two important properties of the swap function that you should have discovered while ansering the questions before.

	Why should these tests succeed with implemented code? Make sure to answer.

EXERCISE: implement swap

Proceed implementing the swap function

To test the function, run:

python3 -m unittest selection_sort_test.SwapTest

Notice that:

	In the command above there is no .py at the end of selection_sort_test

	We are executing the command in the operating system shell, not Python (there must not be >>> at the beginning)

	At the end of the filename, there is a dot followed by a test class name SwapTest, which means Python will only execute tests contained in SwapTest. Of course, in this case those are all the tests we have, but if we add many test classes to our file, it will be useful to able to filter executed tests.

	According to your distribution (i.e. Anaconda), you might need to write python instead of python3

QUESTION 1.1.6: Read Error kinds [https://datasciprolab.readthedocs.io/en/latest/exercises/testing/testing.html#Error-kinds] section in Testing. Suppose you will be the only one calling swap, and you suspect your program somewhere is calling swap with wrong parameters. Which kind of error would that be? Add to swap some appropriate precondition checking.

1.2 Implement argmin

Try to code and test the partial argmin pos function:

[5]:

def argmin(A, i):
 """ RETURN the *index* of the element in list A which is lesser than or equal
 to all other elements in A that start from index i included

 - MUST execute in O(n) where n is the length of A
 """
 raise Exception("TODO implement me!")

QUESTION 1.2.1: What are the input types of argmin? In particular

	What could be the type of the elements in A?

	Can we have both strings and floats inside A ?

	What is the type of i ?

	What is the range of i ?

QUESTION 1.2.2: Should the function argmin return something ? What would be the result type? Try to answer this question before proceeding.

QUESTION 1.2.3: Look again at the selection_sort matrix, and compare it to the argmin function definition:

[image: selection sort matrix jk34j34]

	Can you understand the meaning of orange and white boxes?

	What does the yellow box represent?

QUESTION 1.2.4:

	Draw a matrix like the above for the array A = ['b','a','c'], adding the corresponding row and column numbers for i and j

	What should be the result of the three prints here?

A = ['a','b','c']
print(argmin(A,0))
print(argmin(A,1))
print(argmin(A,2))
print(A)

EXERCISE 1.2.5: Copy the following test code at the end of the file selection_sort.py, and start coding a solution.

To test the function, run:

python3 -m unittest selection_sort_test.ArgminTest

Notice how now we are appending .ArgminTest at the end of the command.

Warning: Don’t use slices ! Remember their computational complexity, and that in these labs we do care about performances!

1.3: Full selection_sort

[image: selection sort matrix g9gf]

Let’s talks about implementing selection_sort function in selection_sort_exercise.py

[6]:

def selection_sort(A):
 """ Sorts the list A in-place in O(n^2) time this ways:
 1. Looks at minimal element in the array [i:n],
 and swaps it with first element.
 2. Repeats step 1, but considering the subarray [i+1:n]

 Remember selection sort has complexity O(n^2) where n is the
 size of the list.
 """

 raise Exception("TODO implement me!")

Note: on the book website there is an implementation of the selection sort [http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html] with a nice animated histogram showing a sorting process. Differently from the slides, instead of selecting the minimal element the algorithm on the book selects the maximal element and puts it to the right of the array.

QUESTION 1.3.1:

	What is the expected return type? Does it return anything at all?

	What is the meaning of ‘Sorts the list A in-place’ ?

QUESTION 1.3.2:

	At the beginning, which array indeces are considered?

	At the end, which array indeces are considered ? Is A[len(A) - 1:len(A)] ever considered ?

EXERCISE 1.3.3:

Try now to implement selection_sort in selection_sort_exercise.py, using the two previously defined functions swap and argmin.

HINT: If you are having troubles because your selection sort passes wrong arguments to either swap or argmin, feel free to add further assertions to both. They are much more effective than prints !

To test the function, run:

python3 -m unittest selection_sort_test.SelectionSortTest

2 Insertion sort

Insertion sort is a basic sorting algorithm. This animation gives you an idea of how it works:

[image: selection sort example ui4u5]

From the animation, you can see these things are going on:

	The red square selects one number starting from the leftomost (question: does it actually need to be the leftmost ? Can we save one iteration?). Let’s say it starts at position i.

	While the number in the red square is lesser then the previous one, it is shifted back one position at a time

	The red square now selects the number immediately following the previous starting point of the red square, that is, selects position i + 1

From the analysis above:

	how many cycles do we need ? One, Two, Three?

	Are they nested?

	Is there one cycle with a fixed number of iterations ? Is there one with an unknown number of iterations?

	What is the worst-case complexity of the algorithm?

As always, if you have troubles finding a generic solution, take a fixed list and manually write down all the steps to do the algorithm. Here we give a sketch:

 i=0,1,2,3,4,5
A = [3,8,9,7,6,2]

Let’s say we have red square at i=4

i = 4
red = A[4] # in red we put the value in A[4] which is 6

 # 0,1,2,3,4,5
 # [3,7,8,9,6,2] start
A[4] = A[3] # [3,7,8,9,9,2]
A[3] = A[2] # [3,7,8,8,9,2]
A[2] = A[1] # [3,7,7,8,9,2]
A[1] = red # [3,6,7,8,9,2] A[1] < red, stop

We can generalize A index with a j:

i = 4
red = A[4]
j = 4
while ...
 A[j] = A[j-1]
 j -= 1

A[j] = red

Start editing the file insertion_sort_exercise.py and implement insertion_sort without looking at theory slides.

def insertion_sort(A):
 """ Sorts in-place list A with insertion sort
 """

3 Merge sort

With merge sort we model lists to ordered as stacks, so it is important to understand how to take elements from the end of a list and how to reverse a list to change its order.

Taking last element

To take last element from a list you may use [-1]:

[7]:

[9,7,8][-1]

[7]:

8

Reversing a list

REMEMBER: .reverse() method MODIFIES the list it is called on and returns None !

[8]:

lst = [9,7,8]
lst.reverse()

Notice how above Jupyter did not show anything, because implicitly the result of the call was None. Still, we have an effect, lst is now reversed:

[9]:

lst

[9]:

[8, 7, 9]

If you want to reversed version of a list without actually changing it, you can use reversed function:

[10]:

lst = [9,7,8]
reversed(lst)

[10]:

<list_reverseiterator at 0x7f1848121198>

The returned value is an iterator, so something which is able to produce a reversed version of the list but it is still not a list. If you actually want to get back a list, you need to explicitly cast it to list:

[11]:

lst = [9,7,8]
list(reversed(lst))

[11]:

[8, 7, 9]

Notice lst itself was not changed:

[12]:

lst

[12]:

[9, 7, 8]

Removing last element with .pop()

To remove an element, you can use .pop() method, which does two things:

	if not given any argument, removes the last element in \(O(1)\) time

	returns it to the caller of the method, so for example we can conveniently store it in a variable

[13]:

A = [9,7,8]
x = A.pop()

[14]:

print(A)

[9, 7]

[15]:

print(x)

8

WARNING: internal deletion is expensive !

If you pay attention to performance (and in this course part you are), whenever you have to remove elements from a Python list be very careful about the complexity! Removal at the end is a very fast O(1), but internal removal is O(n) !

Costly internal del

You can remove an internal element with del

NOTE: del returns None

[16]:

lst = [9,5,6,7]
del lst[2] # internal delete is O(n)

[17]:

lst

[17]:

[9, 5, 7]

Costly internal pop

You can remove an internal element with pop(i)

[18]:

lst = [9,5,6,7]

lst.pop(2) # internal pop is O(n)

[18]:

6

[19]:

lst

[19]:

[9, 5, 7]

3.1 merge 1

Start editing merge_sort_exercise.py

merge1 takes two already ordered lists of size n and m and return a new one made with the elements of both in \(O(n+m)\) time. For example:

[20]:

from merge_sort_solution import *

merge1([3,6,9,13,15], [2,4,8,9])

[20]:

[2, 3, 4, 6, 8, 9, 9, 13, 15]

To implement it, keep comparing the last elements of the two lists, and at each round append the greatest in a temporary list, which you shall return at the end of the function (remember to reverse it!).

Example:

If we imagine the numbers as ordered card decks, we can picture them like this:

 2 15
 4 13
 4 10
 6 9
 15 8 8
 13 10 9 6
 9 8 10 4
 6 4 13 4
 4 2 15 2

 A B TMP RESULT

As Python lists, they would look like:

A=[4,6,9,13,15]
B=[2,4,8,10]
TMP=[15,13,10,9,8,6,4,4,2]
RESULT=[2,4,4,6,8,9,10,13,15]

The algorithm would:

	compare 15 and 10, pop 15 and put it in TMP

	compare 13 and 10, pop 13 and put it in TMP

	compare 9 and 10, pop 10 and put it in TMP

	compare 9 and 8, pop 9 and put it in TMP

	etc …

	finally return a reversed TMP

It remains to decide what to do when one of the two lists remains empty, but this is up to you.

To test:

python3 -m unittest merge_sort_test.Merge1Test

3.2 merge2

merge2 takes A and B as two ordered lists (from smallest to greatest) of (possibly negative) integers. Lists are of size n and m respectively, and RETURN a NEW list composed of the items in A and B ordered from smallest to greatest

	MUST RUN IN O(m+n)

	in this version, do NOT use .pop() on input lists to reduce their size. Instead, use indeces to track at which point you are, starting at zero and putting minimal elements in result list, so this time you don’t even need a temporary list.

 8 15
 7 13
 6 10
 5 9
 4 15 8
 3 13 10 6
 2 9 8 4
 1 6 4 4
 0 4 2 2

index A B RESULT

Sketch:

	set i=0 (left index) and j=0 (right index)

	compare 4 and 2, put 2 in RESULT, set i=0, j=1

	compare 4 and 4, put 4 in RESULT, set i=1, j=1

	compare 6 and 4, put 4 in RESULT, set i=1, j=2

	compare 6 and 8, put 6 in RESULT, set i=2, j=2

	etc …

	finally return RESULT

To test:

python3 -m unittest merge_sort_test.Merge2Test

4 quick sort

Quick sort is a widely used sorting algorithm and in this exercise you will implement it following the pseudo code.

IMPORTANT: Array A in the pseudo code has indexes starting from zero included

IMPORTANT: The functions pivot and quicksort operate an a subarray that goes from indeces first included and last included !!!

Start editing the file quick_sort_exercise.py:

4.1 pivot

Try look at this pseudocode and implement pivot method.

IMPORTANT: If something goes wrong (it will), find the problem using the debugger !

[image: image0]

def pivot(A, first, last):
 """ MODIFIES in-place the slice of the array A with indeces between first included
 and last **included**. RETURN the new pivot index.

 """
 raise Exception("TODO IMPLEMENT ME!")

You can run tests only for pivot with this command:

python3 -m unittest quick_sort_test.PivotTest

4.2 quicksort and qs

Implement quicksort and qs method:

[image: quicksort jiu5y45]

def quicksort(A, first, last):
 """
 Sorts in-place the slice of the array A with indeces between
 first included and last included.
 """
 raise Exception("TODO IMPLEMENT ME !")

def qs(A):
 """
 Sorts in-place the array A by calling quicksort function on the
 full array.
 """
 raise Exception("TODO IMPLEMENT ME !")

You can run tests only for both quicksort and qs with this command:

python3 -m unittest quick_sort_test.QuicksortTest

5. chaining

You will be doing exercises about chainable lists, using plain old Python lists. This time we don’t actually care about sorting, we just want to detect duplicates and chain sequences fast.

Start editing the file exerciseB2.py and read the following.

5.1 has_duplicates

Implement the function has_duplicates

def has_duplicates(external_list):
 """
 Returns True if internal lists inside external_list contain duplicates,
 False otherwise. For more info see exam and tests.

 INPUT: a list of list of strings, possibily containing repetitions, like:

 [
 ['ab', 'c', 'de'],
 ['v', 'a'],
 ['c', 'de', 'b']
]

 OUTPUT: Boolean (in the example above it would be True)

 """

	MUST RUN IN \(O(m*n)\), where \(m\) is the number of internal lists and \(n\) is the length of the longest internal list (just to calculate complexity think about the scenario where all lists have equal size)

	HINT: Given the above constraint, whenever you find an item, you cannot start another for loop to check if the item exists elsewhere - that would cost around \(O(m^2*n)\). Instead, you need to keep track of found items with some other data structure of your choice, which must allow fast read and writes.

Testing: python3 -m unittest chains_test.TestHasDuplicates

B.2.2 chain

Implement the function chain:

def chain(external_list):
 """
 Takes a list of list of strings and return a list containing all the strings
 from external_list in sequence, joined by the ending and starting strings
 of the internal lists. For more info see exam and tests.

 INPUT: a list of list of strings , like:

 [
 ['ab', 'c', 'de'],
 ['gh', 'i'],
 ['de', 'f', 'gh']
]

 OUTPUT: a list of strings, like ['ab', 'c', 'de', 'f', 'gh', 'i']

It is assumed that

	external_list always contains at least one internal list

	internal lists always contain at least two strings

	no string is duplicated among all internal lists

Output sequence is constructed as follows:

	it starts will all the items from the first internal list

	successive items are taken from an internal list which starts with a string equal to the previous taken internal list last string

	sequence must not contain repetitions (so joint strings are taken only once).

	all internal lists must be used. If this is not possible (because there are no joint strings), raise ValueError

Be careful that:

	MUST BE WRITTEN WITH STANDARD PYTHON FUNCTIONS

	MUST RUN IN \(O(m * n)\), where \(m\) is the number of internal lists and \(n\) is the length of the longest internal list (just to calculate complexity think about the scenario where all lists have equal size)

	HINT: Given the above constraint, whenever you find a string, you cannot start another for loop to check if the string exists elsewhere (that would likely introduce a quadratic \(m^2\) factor) Instead, you need to first keep track of both starting strings and the list they are contained within using some other data structure of your choice, which must allow fast read and writes.

	if possible avoid slicing (which doubles memory usage) and use itertools.islice instead

Testing: python3 -m unittest chains_test.TestChain

6 SwapArray

NOTE: This exercise was given at an exam. Solving it could have been quite easy, if students had just read the book [https://runestone.academy/runestone/static/pythonds/SortSearch/sorting.html] (which is available when doing the exam)!

Interpret it as a warning that reading these worksheets alone is not enough to pass the exam.

You are given a class SwapArray that models an array where the only modification you can do is to swap an element with the successive one.

[21]:

from swap_array_solution import *

To create a SwapArray, just call it passing a python list:

[22]:

sarr = SwapArray([7,8,6])
print(sarr)

SwapArray: [7, 8, 6]

Then you can query in \(O(1)\) it by calling get() and get_last()

[23]:

sarr.get(0)

[23]:

7

[24]:

sarr.get(1)

[24]:

8

[25]:

sarr.get_last()

[25]:

6

You can know the size in \(O(1)\) with size() method:

[26]:

sarr.size()

[26]:

3

As we said, the only modification you can do to the internal array is to call swap_next method:

def swap_next(self, i):
""" Swaps the elements at indeces i and i + 1

 If index is negative or greater or equal of the last index, raises
 an IndexError

 """

For example:

[27]:

sarr = SwapArray([7,8,6,3])
print(sarr)

SwapArray: [7, 8, 6, 3]

[28]:

sarr.swap_next(2)
print(sarr)

SwapArray: [7, 8, 3, 6]

[29]:

sarr.swap_next(0)
print(sarr)

SwapArray: [8, 7, 3, 6]

Now start editing the file swap_array_exercise.py:

6.1 is_sorted

Implement the is_sorted function, which is a function external to the class SwapArray:

def is_sorted(sarr):
 """ Returns True if the provided SwapArray sarr is sorted, False otherwise

 NOTE: Here you are a user of SwapArray, so you *MUST NOT* access
 directly the field _arr.
 NOTE: MUST run in O(n) where n is the length of the array
 """
 raise Exception("TODO IMPLEMENT ME !")

Once done, running this will run only the tests in IsSortedTest class and hopefully they will pass.

python3 -m unittest swap_array_test.IsSortedTest

Example usage:

[30]:

is_sorted(SwapArray([8,5,6]))

[30]:

False

[31]:

is_sorted(SwapArray([5,6,6,8]))

[31]:

True

6.2 max_to_right

Implement max_to_right function, which is a function external to the class SwapArray. There are two ways to implement it, try to minimize the reads from the SwapArray.

def max_to_right(sarr,i):
 """ Modifies the provided SwapArray sarr so that its biggest element
 in the subarray from 0 to i is moved at index i.
 Elements *after* i are *not* considered.

 The order in which the other elements will be after a call
 to this function is left unspecified (so it could be any).

 NOTE: Here you are a user of SwapArray, so you *MUST NOT* access
 directly the field _arr. To do changes, you can only use
 the method swap_next(self, i).
 NOTE: does *not* return anything!
 NOTE: MUST run in O(n) where n is the length of the array

 """

** Testing **: python3 -m unittest swap_array_test.MaxToRightTest

Example usage:

[32]:

sarr = SwapArray([7, 9, 6, 5, 8])
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

[33]:

max_to_right(sarr,4) # 4 is an *index*
print(sarr)

SwapArray: [7, 6, 5, 8, 9]

[34]:

sarr = SwapArray([7, 9, 6, 5, 8])
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

[35]:

max_to_right(sarr,3)
print(sarr)

SwapArray: [7, 6, 5, 9, 8]

[36]:

sarr = SwapArray([7, 9, 6, 5, 8])
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

[37]:

max_to_right(sarr,1)
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

[38]:

sarr = SwapArray([7, 9, 6, 5, 8])
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

[39]:

max_to_right(sarr,0) # changes nothing
print(sarr)

SwapArray: [7, 9, 6, 5, 8]

6.6 swapsort

When you know how to push a maximum element to the rightmost position of an array, you almost have a sorting algorithm. So now you can try to implement swapsort function, taking inspiration from max_to_right. Note swapsort is a function external to the class SwapArray:

def swapsort(sarr):
 """ Sorts in-place provided SwapArray.

 NOTE: Here you are a user of SwapArray, so you *MUST NOT* access
 directly the field _arr. To do changes, you can only use
 the method swap_next(self, i).
 NOTE: does *not* return anything!
 NOTE: MUST execute in O(n^2), where n is the length of the array
 """

 raise Exception("TODO IMPLEMENT ME !")

You can run tests only for swapsort with this command:

python3 -m unittest swap_array_test.SwapSortTest

Example usage:

[40]:

sar = SwapArray([8,4,2,4,2,7,3])

[41]:

swapsort(sar)

[42]:

print(sar)

SwapArray: [2, 2, 3, 4, 4, 7, 8]

[]:

 Linked lists

Linked lists

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/linked-lists]

0 Introduction

In these exercises, you will be implementing several versions of a LinkedList, improving its performances with each new version.

References

	theory slides [https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture4.pdf](Monodirectional list)

	LinkedList Abstract Data Type [http://interactivepython.org/runestone/static/pythonds/BasicDS/TheUnorderedListAbstractDataType.html] on the book

	Implementing LinkedListLinkedLists [http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementinganUnorderedListLinkedLists.html] on the book

NOTE: What the book calls UnorderedList, in this lab is just called LinkedList. May look confusing, but in the wild you will never find code called UnorderedList so let’s get rid of the weird name right now!

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-linked-lists
 |- linked-lists.ipynb
 |- linked_list_test.py
 |- linked_list_exercise.py
 |- linked_list_solution.py
 |- linked_list_v2_sol.py
 |- linked_list_v2_test_sol.py
 |- linked_list_v3_sol.py
 |- linked_list_v3_test_sol.py

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

0.1 Initialization

A LinkedList for us is a linked list starting with a pointer called head that points to the first Node (if the list is empty the pointer points to None). Think of the list as a chain where each Node can contain some data retriavable with Node.get_data() method and you can access one Node at a time by calling the method Node.get_next() on each node.

Let’s see how a LinkedList should behave:

[2]:

from linked_list_solution import *

[3]:

ll = LinkedList()

At the beginning the LinkedList is empty:

[4]:

print(ll)

LinkedList:

NOTE: print calls __str__ method, which in our implementation was overridden to produce a nice string you’ve just seen. Still, we did not override __repr__ method which is the default one used by Jupyter when displaying on object without using print, so if you omit it you won’t get nice display:

[5]:

ll

[5]:

<linked_list_solution.LinkedList at 0x7f1fec5cf748>

0.2 Growing

Main way to grow a LinkedList is by using the .add method, which executes in costant time \(O(1)\):

[6]:

ll.add('a')

Internally, each time you call .add a new Node object is created which will hold the actual data that you are passing. In this implementation, users of the class are supposed to never get instances of Node, they will just be able to see the actual data contained in the Nodes:

[7]:

print(ll)

LinkedList: a

Notice that .add actually inserts nodes at the beginning :

[8]:

ll.add('b')

[9]:

print(ll)

LinkedList: b,a

[10]:

ll.add('c')

[11]:

print(ll)

LinkedList: c,b,a

Our basic LinkedList instance will only hold a pointer to the first Node of the chain (such pointer is called _next). When you add an element:

	a new Node is created

	provided data is stored inside new node

	the new node _next field is set to point to current first Node

	the new node becomes the first node of the LinkedList, by setting LinkedList._next to new node

0.3 Visiting

Any method that needs to visit the LinkedList will have to start from the first Node pointed by LinkedList._next and then follow the chain of _next links from one Node to the next one. This is why the data structure is called ‘linked’. While insertion at the beginning is very fast, retrieving an element at arbitrary position requires a linear scan which in worst case costs \(O(n)\).

1 v1: a slow LinkedList

Implement the missing methods in linked_list_exercise.py, in the order they are presented in the skeleton. Before implementing, read carefully all this point 1) and all its subsections (1.a,b and c)

1.a) Testing

You will have two files to look at, the code in linked_list_exercise.py and the test code in a separate linked_list_test.py file:

	linked_list_exercise.py

	linked_list_test.py

You can run tests with this shell command:

python3 -m unittest linked_list_test

Let’s look inside the first lines of linked_list_test.py code, you will see a structure like this:

from linked_list_exercise import *
import unittest

class LinkedListTest(unittest.TestCase):

 def myAssert(self, linked_list, python_list):
 ##### etc #####

class AddTest(LinkedListTest):

 def test_01_init(self):
 ##### etc #####

 def test_04_add(self):
 ##### etc #####

class SizeTest(LinkedListTest):
 ##### etc #####

Note:

	the test automatically imports everything from first module linked_list_exercise, so when you run the test, it automatically loads the file you will be working on.) :

from linked_list_exercise import *

	there is a base class for testing called LinkedListTest

	there are many classes for testing individual methods, each class inherits from LinkedListTest

	You will be writing several versions of the linked list. For the first one, you won’t need myAssert

	This time there is not much Python code to find around, you should rely solely on theory from the slides and book, method definitions and your intuition

1.b) Differences with the book

	We don’t assume the list has all different values

	We used more pythonic names [https://www.python.org/dev/peps/pep-0008/#id45] for properties and methods, so for example private attribute Node.data was renamed to Node._data and accessor method Node.getData() was renamed to Node.get_data(). There are nicer ways to handle these kind of getters/setters pairs called ‘properties’ but we won’t address them here.

	In boundary cases like removing a non-existing element we prefer to raise an LookupError with the command

raise LookupError("Some error occurred!")

In general, this is the behaviour you also find in regular Python lists.

1.c) Please remember…

WARNING: Methods of the class LinkedList are supposed to never return instances of Node. If you see them returned in the tests, then you are making some mistake. Users of LinkedList are should only be able to get access to items inside the Node data fields.

WARNING: Do not use a Python list to hold data inside the data structure. Differently from the CappedStack exercise, here you can only use Node class. Each Node in the _data field can hold only one element which is provided by the user of the class, and we don’t care about the type of the value the user gives us (so it can be an int, a float, a string, or even a Python list !)

COMMANDMENT 2: You shall also draw lists on paper, helps a lot avoiding mistakes

COMMANDMENT 5: You shall never ever reassign ``self``:

Never ever write horrors such as:

class MyClass
 def my_method(self, x, y):
 self = {a:666} # since self is a kind of dictionary, you might be tempted to do like this
 # but to the outside world this will bring no effect.
 # For example, let's say somebody from outside makes a call like this:
 # mc = MyClass()
 # mc.my_method()
 # after the call mc will not point to {a:666}
 self = ['666'] # self is only supposed to be a sort of dictionary and passed from outside
 self = 6 # self is only supposed to be a sort of dictionary and passed from outside

COMMANDMENT 7: You shall use return command only if you see written return in the function description!

If there is no return in function description, the function is intended to return None. In this case you don’t even need to write return None, as Python will do it implicitly for you.

2 v2 faster size

2.1 Save a copy of your work

You already wrote a lot of code, and you don’t want to lose it, right? Since we are going to make many modifications, when you reach a point when the code does something useful, it is good practice to save a copy of what you have done somewhere, so if you later screw up something, you can always restore the copy.

	Copy the whole folder linked-lists in a new folder linked-lists-v1

	Add also in the copied folder a separate README.txt file, writing inside the version (like 1.0), the date, and a description of the main features you implemented (for example “Simple linked list, not particularly performant”).

	Backing up the work is a form of the so-called versioning : there are much better ways to do it (like using git [https://git-scm.com]) but we don’t address them here.

WARNING: DO NOT SKIP THIS STEP!

No matter how smart you are, you will fail, and a backup may be the only way out.

WARNING: HAVE YOU READ WHAT I JUST WROTE ????

Just. Copy. The. Folder.

2.2. Improve size

Once you saved your precious work in the copy folder linked-lists-v1, you can now more freely improve the current folder linked-lists, being sure your previous efforts are not going to get lost!

As a first step, in linked-lists/linked_list_exercise.py implement a size() method that works in O(1). To make this work without going through the whole list each time, we will need a new _size field that keeps track of the size. When the list is mutated with methods like add, append, etc you will also need to update the _size field accordingly. Proceed like this:

2.2.1) add a new field _size in the class constructor and initialize it to zero

2.2.2) modify the size() method to just return the _size field.

2.2.3) The data structure starts to be complex, and we need better testing. If you look at the tests, very often there are lines of code like self.assertEquals(to_py(ul), ['a', 'b']) in the test_add method:

def test_add(self):
 ul = LinkedList()
 self.myAssert(ul, [])
 ul.add('b')
 self.assertEquals(to_py(ul), ['b'])
 ul.add('a')
 self.assertEquals(to_py(ul), ['a', 'b'])

Last line checks our linked list ul contains a sequence of linked nodes that once transformed to a python list actually equals ['a', 'b']. Since in the new implementation we are going to mutate _size field a lot, it could be smart to also check that ul.size() equals len(["a", "b"]). Repeating this check in every test method could be quite verbose. Instead, we can do a smarter thing, and develop in the LinkedListTest class a new assertion method on our own:

If you noticed, there is a method myAssert in LinkedListTest class (in the current exercises/linked-lists/linked_list_test.py file) which we never used so far, which performs a more thourough check:

class LinkedListTest(unittest.TestCase):

 def myAssert(self, linked_list, python_list):
 """ Checks provided linked_list can be represented as the given python_list. Since v2.
 """
 self.assertEquals(to_py(linked_list), python_list)
 # check this new invariant about the size
 self.assertEquals(linked_list.size(), len(python_list))

WARNING: method myAssert must not start with test, otherwise unittest will run it as a test!

2.3.4) Now, how to use this powerful new myAssert method? In the test class, just replace every occurence of

self.assertEquals(to_py(ul), ['a', 'b'])

into calls like this:

self.myAssert(ul, ['a', 'b'])

WARNING: Notice the to_py() enclosing ul is gone.

2.3.5) Actually update _size in the various methods where data is mutated, like add, insert, etc.

2.3.6) Run the tests and hope for the best ;-)

python3 -m unittest linked_list_test

3 v3 Faster append

We are now better equipped to make further improvements. Once you’re done implementing the above and made sure everything works, you can implement an append method that works in \(O(1)\) by adding an additional pointer in the data structure that always point at the last node. To further exploit the pointer, you can also add a fast last(self) method that returns the last value in the list. Proceed like this:

3.1 Save a copy of your work

	Copy the whole folder linked-lists in a new folder linked-lists-v2

	Add also in the copied folder a separate README.txt file, writing inside the version (like 2.0), the date, and a description of the main features you implemented (for example “Simple linked list, not particularly performant”).

WARNING: DO NOT SKIP THIS STEP!

3.2 add _last field

Work on linked_list.py and simply add an additional pointer called _last in the constructor.

3.3 add method skeleton

Copy this method last into the class. Just copy it, don’t implement it for now.

def last(self):
 """ Returns the last element in the list, in O(1).

 - If list is empty, raises a ValueError. Since v3.
 """
 raise ValueError("TODO implement me!")

3.4 test driven development

Let’s do some so-called test driven development, that is, first we write the tests, then we write the implementation.

WARNING: During the exam you may be asked to write tests, so don’t skip writing them now !!

3.4.1 LastTest

Create a class LastTest which inherits from LinkedListTest, and add this method Implement a test for last() method, by adding this to LinkedListTest class:

def test_01_last(self):
 raise Exception("TODO IMPLEMENT ME !")

In the method, create a list and add elements using only calls to add method and checks using the myAssert method. When done, ask your instructor if the test is correct (or look at the proposed solution), it is important you get it right otherwise you won’t be able to properly test your code.

3.4.2 improve myAssert

You already have a test for the append() method, but, how can you be sure the _last pointer is updated correctly throughout the code? When you implemented the fast size() method you wrote some invariant in the myAssert method. We can do the same this time, too. Find the invariant and add the corresponding check to the myAssert method. When done, ask your instructor if the invariant is correct (or look at the proposed solution): it is important you get it right otherwise you
won’t be able to properly test your code.

3.5 update methods that mutate the LinkedList

Update the methods that mutate the data structure (add, insert, remove …) so they keep _last pointed to last element. If the list is empty, _last will point to None. Take particular care of corner cases such as empty list and one element list.

3.6 Run tests

Cross your fingers and run the tests!

python3 -m unittest linked_list_test

4 v4 Go bidirectional

Our list so far has links that allow us to traverse it fast in one direction. But what if we want fast traversal in the reverse direction, from last to first element? What if we want a pop() that works in \(O(1)\) ? To speed up these operations we could add backward links to each Node. Note no solution is provided for this part (yet).

Proceed in the following way:

4.1 Save your work

Once you’re done with previous points, save the version you have in a folder linked-list-v3 somewhere adding in the README.txt comments about the improvements done so far, the version number (like 3.0) and the date. Then start working on a new copy.

4.2 Node backlinks

In Node class, add backlinks by adding the attribute _prev and methods get_prev(self) and set_prev(self, pointer).

4.3 Better str

Improve __str__ method so it shows presence or absence of links, along with the size of the list (note you might need to adapt the test for str method):

	next pointers presence must be represented with > character , absence with * character. They must be put after the item representation.

	prev pointers presence must be represented with < character , absence with * character. They must be put befor the item representation.

For example, for the list ['a','b','c'], you would have the following representation:

LinkedList(size=3):*a><c*

As a special case for empty list you should print the following:

LinkedList(size=0):**

Other examples of proper lists, with 3, 2, and 1 element can be:

LinkedList(size=3):*a><c*
LinkedList(size=2):*a><b*
LinkedList(size=1):*a*

This new __str__ method should help you to spot broken lists like the following, were some pointers are not correct:

Broken list, all prev pointers are missing:
LinkedList(size=3):*a>*b>*c*

Broken list, size = 3 but shows only one element with next pointer set to None:
LinkedList(size=3):*a*

Broken list, first backward pointer points to something other than None
LinkedList(size=3):<a>*b><c*

4.4 Modify add

Update the LinkedList add method to take into account you now have backlinks. Take particular care for the boundary cases when the list is empty, has one element, or for nodes at the head and at the tail of the list.

4.5 Add to_python_reversed

Implement to_python_reversed method with a linear scan by using the newly added backlinks:

def to_python_reversed(self):
 """ Returns a regular Python list with the elements in reverse order,
 from last to first. Since v3. """
 raise Exception("TODO implement me")

Add also this test, and make sure it pass:

def test_to_python_reversed(self):
 ul = LinkedList()
 ul.add('c')
 ul.add('b')
 ul.add('a')
 pr = to_py(ul)
 pr.reverse() # we are reversing pr with Python's 'reverse()' method
 self.assertEquals(pr, ul.to_python_reversed())

4.6 Add invariant

By using the method to_python_reversed(), add a new invariant to the myAssert method. If implemented correctly, this will surely spot a lot of possible errors in the code.

4.7 Modify other methods

Modify all other methods that mutate the data structure (insert, remove, etc) so that they update the backward links properly.

4.8 Run the tests

If you wrote meaningful tests and all pass, congrats!

5 EqList

Open file eqlist_exercise.py , which is a simple linked list, and start editing the following methods.

5.1 eq

Implement the method __eq__ (with TWO underscores before and TWO underscores after ‘eq’) !:

def __eq__(self, other):
 """ Returns True if self is equal to other, that is, if all the data elements in the respective
 nodes are the same. Otherwise, return False.

 NOTE: compares the *data* in the nodes, NOT the nodes themselves !
 """

Testing: python -m unittest eqlist_test.EqTest

5.2 remsub

Implement the method remsub:

def remsub(self, rem):
 """ Removes the first elements found in this LinkedList that match subsequence rem
 Parameter rem is the subsequence to eliminate, which is also a LinkedList.

 Examples:
 aabca remsub ac = aba
 aabca remsub cxa = aaba # when we find a never matching character in rem like 'x' here,
 the rest of rem after 'x' is not considered.
 aabca remsub ba = aac
 aabca remsub a = abca
 abcbab remsub bb = acab
 """

Testing: python3 -m unittest eqlist_test.RemsubTest

6 Cloning

Start editing the file cloning_exercise.py, which contains a simplified LinkedList.

6.1 rev

Implement the method rev(self) that you find in the skeleton and check provided tests pass.

Testing: python3 -m unittest cloning_test.RevTest

6.2 clone

Implement the method clone(self) that you find in the skeleton and check provided tests pass.

Testing: python3 -m unittest cloning_test.CloneTest

7 More exercises

Start editing the file more_exercise.py, which contains a simplified LinkedList.

7.1 occurrences

Implement this method:

def occurrences(self, item):
 """
 Returns the number of occurrences of item in the list.

 - MUST execute in O(n) where 'n' is the length of the list.
 """

Testing: python3 -m unittest more_test.CloneTest

**Examples: **

[17]:

from more_solution import *

ul = LinkedList()
ul.add('a')
ul.add('c')
ul.add('b')
ul.add('a')
print(ul)

LinkedList: a,b,c,a

[18]:

print(ul.occurrences('a'))

2

[19]:

print(ul.occurrences('c'))

1

[20]:

print(ul.occurrences('z'))

0

7.2 shrink

Implement this method in LinkedList class:

def shrink(self):
 """
 Removes from this LinkedList all nodes at odd indeces (1, 3, 5, ...),
 supposing that the first node has index zero, the second node
 has index one, and so on.

 So if the LinkedList is
 'a','b','c','d','e'
 a call to shrink will transform the UnorderedList into
 'a','c','e'

 - MUST execute in O(n) where 'n' is the length of the list.
 - Does *not* return anything.
 """
 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest more_test.ShrinkTest

[21]:

ul = LinkedList()
ul.add('e')
ul.add('d')
ul.add('c')
ul.add('b')
ul.add('a')
print(ul)

LinkedList: a,b,c,d,e

[22]:

ul.shrink()
print(ul)

LinkedList: a,c,e

7.3 dup_first

Implement the method dup_first:

def dup_first(self):
 """ MODIFIES this list by adding a duplicate of first node right after it.

 For example, the list 'a','b','c' should become 'a','a','b','c'.
 An empty list remains unmodified.

 - DOES NOT RETURN ANYTHING !!!

 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python3 -m unittest more_test.DupFirstTest

7.4 dup_all

Implement the method dup_all:

def dup_all(self):
 """ Modifies this list by adding a duplicate of each node right after it.

 For example, the list 'a','b','c' should become 'a','a','b','b','c','c'.
 An empty list remains unmodified.

 - MUST PERFORM IN O(n) WHERE n is the length of the list.

 - DOES NOT RETURN ANYTHING !!!
 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python3 -m unittest more_test.DupAllTest

7.5 mirror

Implement following mirror function. NOTE: the function is external to class LinkedList.

def mirror(lst):
 """ Returns a new LinkedList having double the nodes of provided lst
 First nodes will have same elements of lst, following nodes will
 have the same elements but in reversed order.

 For example:

 >>> mirror(['a'])
 LinkedList: a,a

 >>> mirror(['a','b'])
 LinkedList: a,b,b,a

 >>> mirror(['a','c','b'])
 LinkedList: a,c,b,b,c,a

 """
 raise Exception("TODO IMPLEMENT ME !")

Testing: python -m unittest more_test.MirrorTest

7.6 norep

Implement the method norep:

def norep(self):
 """ MODIFIES this list by removing all the consecutive
 repetitions from it.

 - MUST perform in O(n), where n is the list size.

 For example, after calling norep:

 'a','a','b','c','c','c' will become 'a','b','c'

 'a','a','b','a' will become 'a','b','a'

 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python -m unittest more_test.NorepTest

7.8 find_couple

Implement following find_couple method.

def find_couple(self,a,b):
 """ Search the list for the first two consecutive elements having data equal to
 provided a and b, respectively. If such elements are found, the position
 of the first one is returned, otherwise raises LookupError.

 - MUST run in O(n), where n is the size of the list.
 - Returned index start from 0 included

 """

Testing: python3 -m unittest more_test.FindCoupleTest

7.9 swap

Implement the method swap:

def swap (self, i, j):
 """
 Swap the data of nodes at index i and j. Indeces start from 0 included.
 If any of the indeces is out of bounds, rises IndexError.

 NOTE: You MUST implement this function with a single scan of the list.

 """

Testing: python3 -m unittest more_test.SwapTest

7.10 gaps

Given a linked list of size n which only contains integers, a gap is an index i, 0<i<n, such that L[i−1]<L[i]. For the purpose of this exercise, we assume an empy list or a list with one element have zero gaps

Example:

 data: 9 7 6 8 9 2 2 5
index: 0 1 2 3 4 5 6 7

contains three gaps [3,4,7] because:

	number 8 at index 3 is greater than previous number 6 at index 2

	number 9 at index 4 is greater than previous number 8 at index 3

	number 5 at index 7 is greater than previous number 2 at index 6

Implement this method:

def gaps(self):
 """ Assuming all the data in the linked list is made by numbers,
 finds the gaps in the LinkedList and return them as a Python list.

 - we assume empty list and list of one element have zero gaps
 - MUST perform in O(n) where n is the length of the list

 NOTE: gaps to return are *indeces* , *not* data!!!!
 """

Testing: python3 -m unittest more_test.GapsTest

7.11 flatv

Suppose a LinkedList only contains integer numbers, say 3,8,8,7,5,8,6,3,9. Implement method flatv which scans the list: when it finds the first occurence of a node which contains a number which is less then the previous one, and the less than successive one, it inserts after the current one another node with the same data as the current one, and exits.

Example:

for Linked list 3,8,8,7,5,8,6,3,9

calling flatv should modify the linked list so that it becomes

Linked list 3,8,8,7,5,5,8,6,3,9

Note that it only modifies the first occurrence found 7,5,8 to 7,5,5,8 and the successive sequence 6,3,9 is not altered

Implement this method:

def flatv(self):

Testing: python3 -m unittest more_test.FlatvTest

7.12 bubble_sort

You will implement bubble sort on a LinkedList.

def bubble_sort(self):
 """ Sorts in-place this linked list using the method of bubble sort

 - MUST execute in O(n^2) where n is the length of the linked list
 """

As a reference, you can look at this example_bubble implementation below that operates on regular python lists. Basically, you will have to translate the for cycles into two suitable while and use node pointers.

NOTE: this version of the algorithm is inefficient as we do not use j in the inner loop: your linked list implementation can have this inefficiency as well.

Testing: python3 -m unittest more_test.BubbleSortTest

[23]:

def example_bubble(plist):
 for j in range(len(plist)):
 for i in range(len(plist)):
 if i + 1 < len(plist) and plist[i]>plist[i+1]:
 temp = plist[i]
 plist[i] = plist[i+1]
 plist[i+1] = temp

my_list = [23, 34, 55, 32, 7777, 98, 3, 2, 1]
example_bubble(my_list)
print(my_list)

[1, 2, 3, 23, 32, 34, 55, 98, 7777]

7.13 merge

Implement this method:

def merge(self,l2):
 """ Assumes this linkedlist and l2 linkedlist contain integer numbers
 sorted in ASCENDING order, and RETURN a NEW LinkedList with
 all the numbers from this and l2 sorted in DESCENDING order

 IMPORTANT 1: *MUST* EXECUTE IN O(n1+n2) TIME where n1 and n2 are
 the sizes of this and l2 linked_list, respectively

 IMPORTANT 2: *DO NOT* attempt to convert linked lists to
 python lists!
 """

Testing: python3 -m unittest more_test.MergeTest

[]:

 Stacks

Stacks

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/stacks]

0. Introduction

References

	theory: https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture5.pdf

	stack definition on the book [http://interactivepython.org/runestone/static/pythonds/BasicDS/WhatisaStack.html]

and following sections :

	Stack Abstract Data Type [http://interactivepython.org/runestone/static/pythonds/BasicDS/TheStackAbstractDataType.html]

	Implementing a Stack in Python [http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementingaStackinPython.html]

	Simple Balanced Parenthesis [http://interactivepython.org/runestone/static/pythonds/BasicDS/SimpleBalancedParentheses.html]

	Balanced Symbols - a General Case

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-stacks
 |- stacks.ipynb
 |- capped_stack_exercise.py
 |- capped_stack_solution.py
 |- capped_stack_test.py
 |- ...

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside

1. CappedStack

You will try to implement a so called capped stack, which has a limit called cap over which elements are discarded.

[image: capped stack oioi43]

	Your internal implementation will use python lists

	Please name internal variables that you don’t want to expose to class users by prepending them with one underscore '_', like _elements or _cap

	The underscore is just a convention, class users will still be able to get internal variables by accessing them with field accessors like mystack._elements

	If users manipulate private fields and complain something is not working, you can tell them it’s their fault!

	try to write robust code. In general, when implementing code in the real world you might need to think more about boundary cases. In this case, we add the additional constraint that if you pass to the stack a negative or zero cap, your class initalization is expected to fail and raise a ValueError.

	For easier inspection of the stack, implement also an __str__ method so that calls to print show text like CappedStack: cap=4 elements=['a', 'b']

IMPORTANT: you can exploit any Python feature you deem correct to implement the data structure. For example, internally you could represent the elements as a list , and use its own methods to grow it.

QUESTION: If we already have Python lists that can more or less do the job of the stack, why do we need to wrap them inside a Stack? Can’t we just give our users a Python list?

QUESTION: When would you not use a Python list to hold the data in the stack?

Notice that:

	We tried to use pythonic names for methods, so for example isEmpty was renamed to is_empty

	In this case, when this stack is required to pop or peek but it is found to be empty, an IndexError is raised

CappedStack Examples

To get an idea of the class to be made, in the terminal you may run the python interpreter and load the solution module like we are doing here:

[2]:

from capped_stack_solution import *

[3]:

s = CappedStack(2)

[4]:

print(s)

CappedStack: cap=2 elements=[]

[5]:

s.push('a')

[6]:

print(s)

CappedStack: cap=2 elements=['a']

[7]:

s.peek()

[7]:

'a'

[8]:

s.push('b')

[9]:

s.peek()

[9]:

'b'

[10]:

print(s)

CappedStack: cap=2 elements=['a', 'b']

[11]:

s.peek()

[11]:

'b'

[12]:

s.push('c') # exceeds cap, gets silently discarded

[13]:

print(s) # no c here ...

CappedStack: cap=2 elements=['a', 'b']

[14]:

s.pop()

[14]:

'b'

[15]:

print(s)

CappedStack: cap=2 elements=['a']

[16]:

s.pop()

[16]:

'a'

s.pop() # can't pop empty stack

IndexError Traceback (most recent call last)
<ipython-input-41-c88c8c48122b> in <module>()
----> 1 s.pop()

~/Da/prj/datasciprolab/prj/exercises/stacks/capped_stack_solution.py in pop(self)
 63 #jupman-raise
 64 if len(self._elements) == 0:
---> 65 raise IndexError("Empty stack !")
 66 else:
 67 return self._elements.pop()

IndexError: Empty stack !

s.peek() # can't peek empty stack

IndexError Traceback (most recent call last)
<ipython-input-18-f056e7e54f5d> in <module>()
----> 1 s.peek()

~/Da/prj/datasciprolab/prj/exercises/stacks/capped_stack_solution.py in peek(self)
 77 #jupman-raise
 78 if len(self._elements) == 0:
---> 79 raise IndexError("Empty stack !")
 80
 81 return self._elements[-1]

IndexError: Empty stack !

Capped Stack basic methods

Now open capped_stack_exercise.py and start implementing the methods in the order you find them.

All basic methods are grouped within the CappedStackTest class: to execute single tests you can put the test method name after the test class name, see examples below.

1.1 __init__

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_01_init

1.2 cap

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_02_cap

1.3 size

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_03_size

1.4 __str__

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_04_str

1.5 is_empty

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_05_is_empty

1.6 push

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_06_push

1.7 peek

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_07_peek

1.8 pop

Test: python3 -m unittest capped_stack_test.CappedStackTest.test_08_pop

1.9 peekn

Implement the peekn method:

def peekn(self, n):
 """
 RETURN a list with the n top elements, in the order in which they
 were pushed. For example, if the stack is the following:

 e
 d
 c
 b
 a

 peekn(3) will return the list ['c','d','e']

 - If there aren't enough element to peek, raises IndexError
 - If n is negative, raises an IndexError

 """
 raise Exception("TODO IMPLEMENT ME!")

Test: python3 -m unittest capped_stack_test.PeeknTest

1.10 popn

Implement the popn method:

def popn(self, n):
 """ Pops the top n elements, and RETURN them as a list, in the order in
 which they where pushed. For example, with the following stack:

 e
 d
 c
 b
 a

 popn(3)

 will give back ['c','d','e'], and stack will become:

 b
 a

 - If there aren't enough element to pop, raises an IndexError
 - If n is negative, raises an IndexError
 """

Test: python3 -m unittest capped_stack_test.PopnTest

1.11 set_cap

Implement the set_cap method:

def set_cap(self, cap):
 """ MODIFIES the cap, setting its value to the provided cap.

 If the cap is less then the stack size, all the elements above
 the cap are removed from the stack.

 If cap < 1, raises an IndexError
 Does *not* return anything!

 For example, with the following stack, and cap at position 7:

 cap -> 7
 6
 5 e
 4 d
 3 c
 2 b
 1 a

 calling method set_cap(3) will change the stack to this:

 cap -> 3 c
 2 b
 1 a

 """

Test: python3 -m unittest capped_stack_test.SetCapTest

2. SortedStack

You are given a class SortedStack that models a simple stack. This stack is similar to the CappedStack you already saw, the differences being:

	it can only contain integers, trying to put other type of values will raise a ValueError

	integers must be inserted sorted in the stack, either ascending or descending

	there is no cap

Example:

 Ascending: Descending

 8 3
 5 5
 3 8

[17]:

from sorted_stack_solution import *

To create a SortedStack sorted in ascending order, just call it passing True:

[18]:

s = SortedStack(True)
print(s)

SortedStack (ascending): elements=[]

[19]:

s.push(5)
print(s)

SortedStack (ascending): elements=[5]

[20]:

s.push(7)
print(s)

SortedStack (ascending): elements=[5, 7]

[21]:

print(s.pop())

7

[22]:

print(s)

SortedStack (ascending): elements=[5]

[23]:

print(s.pop())

5

[24]:

print(s)

SortedStack (ascending): elements=[]

For descending order, pass False when you create it:

[25]:

sd = SortedStack(False)
sd.push(7)
sd.push(5)
sd.push(4)
print(sd)

SortedStack (descending): elements=[7, 5, 4]

2.1 transfer

Now implement the transfer function.

NOTE: function is external to class SortedStack, so you must NOT access fields which begin with underscore (like _elements), which are meant to be private !!

def transfer(s):
 """ Takes as input a SortedStack s (either ascending or descending) and
 returns a new SortedStack with the same elements of s, but in reverse order.
 At the end of the call s will be empty.

 Example:

 s result

 2 5
 3 3
 5 2
 """
 raise Exception("TODO IMPLEMENT ME !!")

Testing

Once done, running this will run only the tests in TransferTest class and hopefully they will pass.

**Notice that exercise1 is followed by a dot and test class name .TransferTest : **

python -m unittest sorted_stack_test.TransferTest

2.2 merge

Implement following merge function. NOTE: function is external to class SortedStack.

def merge(s1,s2):
 """ Takes as input two SortedStacks having both ascending order,
 and returns a new SortedStack sorted in descending order, which will be the sorted merge
 of the two input stacks. MUST run in O(n1 + n2) time, where n1 and n2 are s1 and s2 sizes.

 If input stacks are not both ascending, raises ValueError.
 At the end of the call the input stacks will be empty.

 Example:

 s1 (asc) s2 (asc) result (desc)

 5 7 2
 4 3 3
 2 4
 5
 7

 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python -m unittest sorted_stack_test.MergeTest

3. WStack

Using a text editor, open file wstack_exercise.py. You will find a WStack class skeleton which represents a simple stack that can only contain integers.

3.1 implement class WStack

Fill in missing methods in class WStack in the order they are presented so to have a .weight() method that returns the total sum of integers in the stack in O(1) time.

Example:

[26]:

from wstack_solution import *

[27]:

s = WStack()

[28]:

print(s)

WStack: weight=0 elements=[]

[29]:

s.push(7)

[30]:

print(s)

WStack: weight=7 elements=[7]

[31]:

s.push(4)

[32]:

print(s)

WStack: weight=11 elements=[7, 4]

[33]:

s.push(2)

[34]:

s.pop()

[34]:

2

[35]:

print(s)

WStack: weight=11 elements=[7, 4]

3.2 accumulate

Implement function accumulate:

def accumulate(stack1, stack2, min_amount):
 """ Pushes on stack2 elements taken from stack1 until the weight of
 stack2 is equal or exceeds the given min_amount

 - if the given min_amount cannot possibly be reached because
 stack1 has not enough weight, raises early ValueError without
 changing stack1.
 - DO NOT access internal fields of stacks, only use class methods.
 - MUST perform in O(n) where n is the size of stack1
 - NOTE: this function is defined *outside* the class !
 """

Testing: python -m unittest wstack_test.AccumulateTest

Example:

[36]:

s1 = WStack()

print(s1)

WStack: weight=0 elements=[]

[37]:

s1.push(2)
s1.push(9)
s1.push(5)
s1.push(3)

[38]:

print(s1)

WStack: weight=19 elements=[2, 9, 5, 3]

[39]:

s2 = WStack()
print(s2)

WStack: weight=0 elements=[]

[40]:

s2.push(1)
s2.push(7)
s2.push(4)

[41]:

print(s2)

WStack: weight=12 elements=[1, 7, 4]

[42]:

attempts to reach in s2 a weight of at least 17

[43]:

accumulate(s1,s2,17)

[44]:

print(s1)

WStack: weight=11 elements=[2, 9]

Two top elements were taken from s1 and now s2 has a weight of 20, which is >= 17

4. Backpack

Open a text editor and edit file backpack_solution.py

We can model a backpack as stack of elements, each being a tuple with a name and a weight.

A sensible strategy to fill a backpack is to place heaviest elements to the bottom, so our backback will allow pushing an element only if that element weight is equal or lesser than current topmost element weight.

The backpack has also a maximum weight: you can put any number of items you want, as long as its maximum weight is not exceeded.

Example

[45]:

from backpack_solution import *

bp = Backpack(30) # max_weight = 30

bp.push('a',10) # item 'a' with weight 10

DEBUG: Pushing (a,10)

[46]:

print(bp)

Backpack: weight=10 max_weight=30
 elements=[('a', 10)]

[47]:

bp.push('b',8)

DEBUG: Pushing (b,8)

[48]:

print(bp)

Backpack: weight=18 max_weight=30
 elements=[('a', 10), ('b', 8)]

>>> bp.push('c', 11)

DEBUG: Pushing (c,11)

ValueError: ('Pushing weight greater than top element weight! %s > %s', (11, 8))

[49]:

bp.push('c', 7)

DEBUG: Pushing (c,7)

[50]:

print(bp)

Backpack: weight=25 max_weight=30
 elements=[('a', 10), ('b', 8), ('c', 7)]

>>> bp.push('d', 6)

DEBUG: Pushing (d,6)

ValueError: Can't exceed max_weight ! (31 > 30)

4.1 class

✪✪ Implement methods in the class Backpack, in the order they are shown. If you want, you can add debug prints by calling the debug function

IMPORTANT: the data structure should provide the total current weight in O(1), so make sure to add and update an appropriate field to meet this constraint.

Testing: python3 -m unittest backpack_test.BackpackTest

4.2 remove

✪✪ Implement function remove:

NOTE: this function is implemented *outside* the class !

def remove(backpack, el):
 """
 Remove topmost occurrence of el found in the backpack,
 and RETURN it (as a tuple name, weight)

 - if el is not found, raises ValueError

 - DO *NOT* ACCESS DIRECTLY FIELDS OF BACKPACK !!!
 Instead, just call methods of the class!

 - MUST perform in O(n), where n is the backpack size

 - HINT: To remove el, you need to call Backpack.pop() until
 the top element is what you are looking for. You need
 to save somewhere the popped items except the one to
 remove, and then push them back again.

 """

Testing: python3 -m unittest backpack_test.RemoveTest

Example:

[51]:

bp = Backpack(50)

bp.push('a',9)
bp.push('b',8)
bp.push('c',8)
bp.push('b',8)
bp.push('d',7)
bp.push('e',5)
bp.push('f',2)

DEBUG: Pushing (a,9)
DEBUG: Pushing (b,8)
DEBUG: Pushing (c,8)
DEBUG: Pushing (b,8)
DEBUG: Pushing (d,7)
DEBUG: Pushing (e,5)
DEBUG: Pushing (f,2)

[52]:

print(bp)

Backpack: weight=47 max_weight=50
 elements=[('a', 9), ('b', 8), ('c', 8), ('b', 8), ('d', 7), ('e', 5), ('f', 2)]

[53]:

remove(bp, 'b')

DEBUG: Popping ('f', 2)
DEBUG: Popping ('e', 5)
DEBUG: Popping ('d', 7)
DEBUG: Popping ('b', 8)
DEBUG: Pushing (d,7)
DEBUG: Pushing (e,5)
DEBUG: Pushing (f,2)

[53]:

('b', 8)

[54]:

print(bp)

Backpack: weight=39 max_weight=50
 elements=[('a', 9), ('b', 8), ('c', 8), ('d', 7), ('e', 5), ('f', 2)]

[55]:

print(s2)

WStack: weight=20 elements=[1, 7, 4, 3, 5]

5. Tasks

Very often, you begin to do a task just to discover it requires doing 3 other tasks, so you start carrying them out one at a time and discover one of them actually requires to do yet another two other subtasks….

To represent the fact a task may have subtasks, we will use a dictionary mapping a task label to a list of subtasks, each represented as a label. For example:

[56]:

subtasks = {
 'a':['b','g'],
 'b':['c','d','e'],
 'c':['f'],
 'd':['g'],
 'e':[],
 'f':[],
 'g':[]
 }

Task a requires subtasks b andg to be carried out (in this order), but task b requires subtasks c, d and e to be done. c requires f to be done, and d requires g.

You will have to implement a function called do and use a Stack data structure, which is already provided and you don’t need to implement. Let’s see an example of execution.

IMPORTANT: In the execution example, there are many prints just to help you understand what’s going on, but the only thing we actually care about is the final list returned by the function!

IMPORTANT: notice subtasks are scheduled in reversed order, so the item on top of the stack will be the first to get executed !

[57]:

from tasks_solution import *

do('a', subtasks)

DEBUG: Stack: elements=['a']
DEBUG: Doing task a, scheduling subtasks ['b', 'g']
DEBUG: Stack: elements=['g', 'b']
DEBUG: Doing task b, scheduling subtasks ['c', 'd', 'e']
DEBUG: Stack: elements=['g', 'e', 'd', 'c']
DEBUG: Doing task c, scheduling subtasks ['f']
DEBUG: Stack: elements=['g', 'e', 'd', 'f']
DEBUG: Doing task f, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g', 'e', 'd']
DEBUG: Doing task d, scheduling subtasks ['g']
DEBUG: Stack: elements=['g', 'e', 'g']
DEBUG: Doing task g, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g', 'e']
DEBUG: Doing task e, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=['g']
DEBUG: Doing task g, scheduling subtasks []
DEBUG: Nothing else to do!
DEBUG: Stack: elements=[]

[57]:

['a', 'b', 'c', 'f', 'd', 'g', 'e', 'g']

The Stack you must use is simple and supports push, pop, and is_empty operations:

[58]:

s = Stack()

[59]:

print(s)

Stack: elements=[]

[60]:

s.is_empty()

[60]:

True

[61]:

s.push('a')

[62]:

print(s)

Stack: elements=['a']

[63]:

s.push('b')

[64]:

print(s)

Stack: elements=['a', 'b']

[65]:

s.pop()

[65]:

'b'

[66]:

print(s)

Stack: elements=['a']

5.1 do

Now open tasks_exercise.py and implement function do:

def do(task, subtasks):
 """ Takes a task to perform and a dictionary of subtasks,
 and RETURN a list of performed tasks

 - To implement it, inside create a Stack instance and a while cycle.
 - DO *NOT* use a recursive function
 - Inside the function, you can use a print like "I'm doing task a',
 but that is only to help yourself in debugging, only the
 list returned by the function will be considered in the evaluation!
 """

Testing: python3 -m unittest tasks_test.DoTest

5.2 do_level

In this exercise, you are asked to implement a slightly more complex version of the previous function where on the Stack you push two-valued tuples, containing the task label and the associated level. The first task has level 0, the immediate subtask has level 1, the subtask of the subtask has level 2 and so on and so forth. In the list returned by the function, you will put such tuples.

One possibile use is to display the executed tasks as an indented tree, where the indentation is determined by the level. Here we see an example:

IMPORTANT: Again, the prints are only to let you understand what’s going on, and you are not required to code them. The only thing that really matters is the list the function must return !

[67]:

subtasks = {
 'a':['b','g'],
 'b':['c','d','e'],
 'c':['f'],
 'd':['g'],
 'e':[],
 'f':[],
 'g':[]
 }

do_level('a', subtasks)

DEBUG: Stack: elements=[('a', 0)]
DEBUG: I'm doing a level=0 Stack: elements=[('g', 1), ('b', 1)]
DEBUG: I'm doing b level=1 Stack: elements=[('g', 1), ('e', 2), ('d', 2), ('c', 2)]
DEBUG: I'm doing c level=2 Stack: elements=[('g', 1), ('e', 2), ('d', 2), ('f', 3)]
DEBUG: I'm doing f level=3 Stack: elements=[('g', 1), ('e', 2), ('d', 2)]
DEBUG: I'm doing d level=2 Stack: elements=[('g', 1), ('e', 2), ('g', 3)]
DEBUG: I'm doing g level=3 Stack: elements=[('g', 1), ('e', 2)]
DEBUG: I'm doing e level=2 Stack: elements=[('g', 1)]
DEBUG: I'm doing g level=1 Stack: elements=[]

[67]:

[('a', 0),
 ('b', 1),
 ('c', 2),
 ('f', 3),
 ('d', 2),
 ('g', 3),
 ('e', 2),
 ('g', 1)]

Now implement the function:

def do_level(task, subtasks):
 """ Takes a task to perform and a dictionary of subtasks,
 and RETURN a list of performed tasks, as tuples (task label, level)

 - To implement it, use a Stack and a while cycle
 - DO *NOT* use a recursive function
 - Inside the function, you can use a print like "I'm doing task a',
 but that is only to help yourself in debugging, only the
 list returned by the function will be considered in the evaluation
 """

Testing: python3 -m unittest tasks_test.DoLevelTest

6. Stacktris

Open a text editor and edit file stacktris_exercise.py

A Stacktris is a data structure that operates like the famous game Tetris, with some restrictions:

	Falling pieces can be either of length 1 or 2. We call them 1-block and 2-block respectively

	The pit has a fixed width of 3 columns

	2-blocks can only be in horizontal

We print a Stacktris like this:

\ j 012
i
4 | 11| # two 1-block
3 | 22| # one 2-block
2 | 1 | # one 1-block
1 |22 | # one 2-block
0 |1 1| # on the ground there are two 1-block

In Python, we model the Stacktris as a class holding in the variable _stack a list of lists of integers, which models the pit:

class Stacktris:

 def __init__(self):
 """ Creates a Stacktris
 """
 self._stack = []

So in the situation above the _stack variable would look like this (notice row order is inverted with respect to the print)

[
 [1,0,1],
 [2,2,0],
 [0,1,0],
 [0,2,2],
 [0,1,1],
]

The class has three methods of interest which you will implement, drop1(j) , drop2h(j) and _shorten

Example

Let’s see an example:

[68]:

from stacktris_solution import *

st = Stacktris()

At the beginning the pit is empty:

[69]:

st

[69]:

Stacktris:
EMPTY

We can start by dropping from the ceiling a block of dimension 1 into the last column at index j=2. By doing so, a new row will be created, and will be a list containing the numbers [0,0,1]

IMPORTANT: zeroes are not displayed

[70]:

st.drop1(2)

DEBUG: Stacktris:
 | 1|

[70]:

[]

Now we drop an horizontal block of dimension 2 (a 2-block) having the leftmost block at column j=1. Since below in the pit there is already the 1 block we previosly put, the new block will fall and stay upon it. Internally, we will add a new row as a python list containing the numbers [0,2,2]

[71]:

st.drop2h(1)

DEBUG: Stacktris:
 | 22|
 | 1|

[71]:

[]

We see the zeroth column is empty, so if we drop there a 1-block it will fall to the ground. Internally, the zeroth list will become [1,0,1]:

[72]:

st.drop1(0)

DEBUG: Stacktris:
 | 22|
 |1 1|

[72]:

[]

Now we drop again a 2-block at column j=2, on top of the previously laid one. This will add a new row as list [0,2,2].

[73]:

st.drop2h(1)

DEBUG: Stacktris:
 | 22|
 | 22|
 |1 1|

[73]:

[]

In the game Tetris, when a row becomes completely filled it disappears. So if we drop a 1-block to the leftmost column, the mid line should be removed.

NOTE: The messages on the console are just debug print, the function drop1 only returns the extracted line [1,2,2]:

[74]:

st.drop1(0)

DEBUG: Stacktris:
 | 22|
 |122|
 |1 1|

DEBUG: POPPING [1, 2, 2]
DEBUG: Stacktris:
 | 22|
 |1 1|

[74]:

[1, 2, 2]

Now we insert another 2-block starting at j=0. It will fall upon the previously laid one:

[75]:

st.drop2h(0)

DEBUG: Stacktris:
 |22 |
 | 22|
 |1 1|

[75]:

[]

We can complete teh topmost row by dropping a 1-block to the rightmost column. As a result, the row will be removed from the stack and the row will be returned by the call to drop1:

[76]:

st.drop1(2)

DEBUG: Stacktris:
 |221|
 | 22|
 |1 1|

DEBUG: POPPING [2, 2, 1]
DEBUG: Stacktris:
 | 22|
 |1 1|

[76]:

[2, 2, 1]

Another line completion with a drop1 at column j=0:

[77]:

st.drop1(0)

DEBUG: Stacktris:
 |122|
 |1 1|

DEBUG: POPPING [1, 2, 2]
DEBUG: Stacktris:
 |1 1|

[77]:

[1, 2, 2]

We can finally empty the Stacktris by dropping a 1-block in the mod column:

[78]:

st.drop1(1)

DEBUG: Stacktris:
 |111|

DEBUG: POPPING [1, 1, 1]
DEBUG: Stacktris:
 EMPTY

[78]:

[1, 1, 1]

6.1 _shorten

Start by implementing this private method:

def _shorten(self):
 """ Scans the Stacktris from top to bottom searching for a completely filled line:
 - if found, remove it from the Stacktris and return it as a list.
 - if not found, return an empty list.
 """

If you wish, you can add debug prints but they are not mandatory

Testing: python3 -m unittest stacktris_test.ShortenTest

6.2 drop1

Once you are done with the previous function, implement drop1 method:

NOTE: In the implementation, feel free to call the previously implemented _shorten method.

def drop1(self, j):
 """ Drops a 1-block on column j.

 - If another block is found, place the 1-block on top of that block,
 otherwise place it on the ground.

 - If, after the 1-block is placed, a row results completely filled, removes
 the row and RETURN it. Otherwise, RETURN an empty list.

 - if index `j` is outside bounds, raises ValueError
 """

Testing: python3 -m unittest stacktris_test.Drop1Test

6.3 drop2h

Once you are done with the previous function, implement drop2 method:

def drop2h(self, j):
 """ Drops a 2-block horizontally with left block on column j,

 - If another block is found, place the 2-block on top of that block,
 otherwise place it on the ground.

 - If, after the 2-block is placed, a row results completely filled,
 removes the row and RETURN it. Otherwise, RETURN an empty list.

 - if index `j` is outside bounds, raises ValueError
 """

Testing: python3 -m unittest stacktris_test.Drop2hTest

[]:

 Queues

Queues

Download exercises zip

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/queues]

Introduction

In these exercises, you will be implementing several queues.

	See theory slides [https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture5.pdf]

	See Queue Abstract Data Type [http://interactivepython.org/runestone/static/pythonds/BasicDS/WhatIsaQueue.html] on the book

	See Implementing a Queue in Python [http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementingaQueueinPython.html] on the book

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-queues
 |- queues.ipynb
 |- circular_queue_exercise.py
 |- circular_queue_test.py
 |- circular_queue_solution.py
 |- ...

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

1. LinkedQueue

Open linked_queue_exercise.py.

You are given a queue implemented as a LinkedList, with usual _head pointer plus additional _tail pointer and _size counter

	Data in enqueued at the right, in the tail

	Data is dequeued at the left, removing it from the head

Example, where the arrows represent _next pointers:

_head _tail
 a -> b -> c -> d -> e -> f

In this exercise you will implement the methods enqn(lst) and deqn(n) which respectively enqueue a python list of n elements and dequeue n elements, returning python a list of them.

Here we show an example usage, see to next points for detailed instructions.

Example:

[2]:

from linked_queue_solution import *

[3]:

q = LinkedQueue()

[4]:

print(q)

LinkedQueue:

[5]:

q.enqn(['a','b','c'])

Return nothing, queue becomes:

_head _tail
 a -> b -> c

[6]:

q.enqn(['d'])

Return nothing, queue becomes:

_head _tail
 a -> b -> c -> d

[7]:

q.enqn(['e','f'])

Return nothing, queue becomes:

_head _tail
 a -> b -> c -> d -> e -> f

[8]:

q.deqn(3)

[8]:

['a', 'b', 'c']

Returns [‘d’, ‘e’, ‘f’] and queue becomes:

_head _tail
 a -> b -> c

[9]:

q.deqn(1)

[9]:

['d']

Returns [‘c’] and queue becomes:

_head _tail
 a -> b

q.deqn(5)

LookupError Traceback (most recent call last)
<ipython-input-55-e68c2e9949d0> in <module>()
 1
----> 2 q.deqn(5)

~/Da/prj/datasciprolab/prj/exercises/queues/linked_queue_solution.py in deqn(self, n)
 202 #jupman-raise
 203 if n > self._size:
--> 204 raise LookupError('Asked to dequeue %s elements, but only %s are available!' % (n, self._size))
 205
 206 ret = []

LookupError: Asked to dequeue 5 elements, but only 2 are available!

Raises LookupError as there aren’t enough elements to remove

1.1 enqn

Implement the method enqn:

def enqn(self, lst):
 """ Enqueues provided list of elements at the tail of the queue

 - Required complexity: O(len(lst))
 - NOTE: remember to update the _size and _tail

 Example: supposing arrows represent _next pointers:

 _head _tail
 a -> b -> c

 Calling

 q.enqn(['d', 'e', 'f', 'g'])

 will produce the queue:

 _head _tail
 a -> b -> c -> d -> e -> f -> g

Testing: python3 -m unittest linked_queue_test.EnqnTest

1.2 deqn

Implement the method deqn:

def deqn(self, n):
 """ Removes n elements from the head, and return them as a Python list,
 where the first element that was enqueued will appear at the
 beginning of the returned Python list.

 - if n is greater than the size of the queue, raises a LookupError.
 - required complexity: O(n)

 NOTE 1: return a list of the *DATA* in the nodes, *NOT* the nodes
 themselves
 NOTE 2: DO NOT try to convert the whole queue to a Python
 list for playing with splices.
 NOTE 3: remember to update _size, _head and _tail when needed.

 For example, supposing arrows represent _next pointers:

 _head _tail
 a -> b -> c -> d -> e -> f -> g

 q.deqn(3) will return the Python list ['a', 'b', 'c']

 After the call, the queue will be like this:

 _head _tail
 d -> e -> f -> g

 """

Testing: python3 -m unittest linked_queue_test.DeqnTest

2. CircularQueue

A circular queue is a data structure which when initialized occupies a fixed amount of memory called capacity. Typically, fixed size data structures are found in systems programming (i.e. programming drivers), when space is constrained and you want predictable results as much as possible. For us, it will be an example of modular arithmetic usage. In our implementation, to store data we will use a Python list, which we initialize with a number of empty cells equal to capacity. During
initialization, it does’t matter what we actually put inside cells, in this case we will use None. Note that capacity never changes, and cells are never added nor remove from the list. What varies during execution is the actual content of the cells, the index pointing to the head of the queue (from which elements are dequeued) and another number we call size which is a number telling us how many elements are present in the queue. Summing head and size numbers will allow us to
determine where to enqueue elements at the tail of the queue - to avoid overflow, we will have to take modulus of the sum. Keep reading for details.

To implement the circular queue you can use this pseudo code:

[image: circular queue pseudocode 34u3y]

QUESTION 2.1: Pseudo code is meant to give a general overview of the algorithms, and can often leave out implementation details, such as defining what to do when things don’t work as expected. If you were to implement this in a real life scenario, do you see any particular problem?

In our implementation, we will:

	use more pythonic names, with underscores instead of camelcase.

	explicitly handle exceptions and corner cases

	be able to insert any kind of object in the queue

	Initial queue will be populated with None objects, and will have length set to provided capacity

	_size is the current dimension of the queue, which is different from the initial provided capacity.

	we consider capacity as fixed: it will never change during execution. For this reason, since we use a Python list to represent the data, we don’t need an extra variable to hold it, just getting the list length will suffice.

	_head is an index pointing to the next element to be dequeued

	elements are inserted at the position pointed to by (_head + _size) % capacity(), and dequeued from position pointed by _head. The module % operator allows using a list as it were circular, that is, if an index apparently falls outside the list, with the modulus it gets transformed to a small index. Since _size can never exceed capacity(), the formula (_head + _size) % capacity() never points to a place which could overwrite elements not yet dequeued, except cases when
the queue has _size==0 or _size==capacity() which are to be treated as special.

	enqueuing and dequeing operations don’t modify list length !

QUESTION 2.2: If we can insert any kind of object in the queue including None, are we going to have troubles with definitions like top() above?

2.1 Implementation

Implement methods in file circular_queue_exercise.py in the order they are presented, and test them with circular_queue_test.py

python3 -m unittest circular_queue_test

3. ItalianQueue

You will implement an ItalianQueue, modelled as a LinkedList with two pointers, a _head and a _tail.

	an element is enqueued scanning from _head until a matching group is found, in which case are inserted after (that is, at the right) of the matching group, otherwise the element is appended at the _tail

	an element is dequeued from the _head

3.1 Slow v1

To gain some understanding about the data structure, look at the following excerpts.

Excerpt from Node:

class Node:
 """ A Node of an ItalianQueue.
 Holds both data and group provided by the user.
 """

 def __init__(self, initdata, initgroup):
 def get_data(self):
 def get_group(self):
 def get_next(self):

 # etc ..

Excerpt from ItalianQueue class:

class ItalianQueue:
 """ An Italian queue, v1.

 - Implemented as a LinkedList
 - Worst case enqueue is O(n)
 - has extra methods, for accessing groups and tail:
 - top_group()
 - tail()
 - tail_group()

 Each element is assigned a group; during enqueing, queue is scanned
 from head to tail to find if there is another element with a
 matching group.
 - If there is, element to be enqueued is inserted after the last
 element in the same group sequence (that is, to the right of
 the group)
 - otherwise the element is inserted at the end of the queue
 """

 def __init__(self):
 """ Initializes the queue. Note there is no capacity as parameter

 - MUST run in O(1)
 """

Example:

[10]:

from italian_queue_solution import *

q = ItalianQueue()
print(q)

ItalianQueue:

 _head: None
 _tail: None

[11]:

q.enqueue('a','x') # 'a' is the element,'x' is the group

[12]:

print(q)

ItalianQueue: a
 x
 _head: Node(a,x)
 _tail: Node(a,x)

[13]:

q.enqueue('c','y') # 'c' belongs to new group 'y', goes to the end of the queue

[14]:

print(q)

ItalianQueue: a->c
 x y
 _head: Node(a,x)
 _tail: Node(c,y)

[15]:

q.enqueue('d','y') # 'd' belongs to existing group 'y', goes to the end of the group

[16]:

print(q)

ItalianQueue: a->c->d
 x y y
 _head: Node(a,x)
 _tail: Node(d,y)

[17]:

q.enqueue('b','x') # 'b' belongs to existing group 'x', goes to the end of the group

[18]:

print(q)

ItalianQueue: a->b->c->d
 x x y y
 _head: Node(a,x)
 _tail: Node(d,y)

[19]:

q.enqueue('f','z') # 'f' belongs to new group, goes to the end of the queue

[20]:

print(q)

ItalianQueue: a->b->c->d->f
 x x y y z
 _head: Node(a,x)
 _tail: Node(f,z)

[21]:

q.enqueue('e','y') # 'e' belongs to an existing group 'y', goes to the end of the group

[22]:

print(q)

ItalianQueue: a->b->c->d->e->f
 x x y y y z
 _head: Node(a,x)
 _tail: Node(f,z)

[23]:

q.enqueue('g','z') # 'g' belongs to an existing group 'z', goes to the end of the group

[24]:

print(q)

ItalianQueue: a->b->c->d->e->f->g
 x x y y y z z
 _head: Node(a,x)
 _tail: Node(g,z)

[25]:

q.enqueue('h','z') # 'h' belongs to an existing group 'z', goes to the end of the group

[26]:

print(q)

ItalianQueue: a->b->c->d->e->f->g->h
 x x y y y z z z
 _head: Node(a,x)
 _tail: Node(h,z)

Dequeue is always from the head, without taking in consideration the group:

[27]:

q.dequeue()

[27]:

'a'

[28]:

print(q)

ItalianQueue: b->c->d->e->f->g->h
 x y y y z z z
 _head: Node(b,x)
 _tail: Node(h,z)

[29]:

q.dequeue()

[29]:

'b'

[30]:

print(q)

ItalianQueue: c->d->e->f->g->h
 y y y z z z
 _head: Node(c,y)
 _tail: Node(h,z)

[31]:

q.dequeue()

[31]:

'c'

[32]:

print(q)

ItalianQueue: d->e->f->g->h
 y y z z z
 _head: Node(d,y)
 _tail: Node(h,z)

3.1.1 init

Implement methods in file italian_queue_exercise.py in the order they are presented up until enqueue excluded

Testing: python3 -m unittest italian_queue_test.InitEmptyTest

3.1.2 Slow enqueue

Implement version 1 of enqueue running in \(O(n)\) where \(n\) is the queue size.

def enqueue(self, v, g):
 """ Enqueues provided element v having group g, with the following
 criteria:

 Queue is scanned from head to find if there is another element
 with a matching group:
 - if there is, v is inserted after the last element in the
 same group sequence (so to the right of the group)
 - otherwise v is inserted at the end of the queue

 - MUST run in O(n)
 """

Testing: python3 -m unittest italian_queue_test.EnqueueTest

QUESTION: The ItalianQueue was implemented as a LinkedList. Even if this time we don’t care much about perfomance, if we wanted an efficient enqueue operation, could we start with a circular data structure ? Or would you prefer improving a LinkedList ?

3.1.2 dequeue

Implement version 1 of dequeue running in \(O(1)\)

def dequeue(self):
 """ Removes head element and returns it.

 - If the queue is empty, raises a LookupError.
 - MUST run in O(1)
 """

Testing: python3 -m unittest italian_queue_test.DequeueTest

3.2 Fast v2

3.2.1 Save a copy

You already wrote a lot of code, and you don’t want to lose it, right? Since we are going to make many modifications, when you reach a point when the code does something useful, it is good practice to save a copy of what you have done somewhere, so if you later screw up something, you can always restore the copy.

	Copy the whole folder queues in a new folder queues_v1

	Add also in the copied folder a separate README.txt file, writing inside the version (like 1.0), the date, and a description of the main features you implemented (for example “Simple Italian Queue, not particularly performant”).

	Backing up the work is a form of the so-called versioning : there are much better ways to do it (like using git [https://git-scm.com]) but we don’t address them here.

WARNING: DO NOT SKIP THIS STEP!

No matter how smart you are, you will fail, and a backup may be the only way out.

WARNING: NOT CONVINCED YET?

If you still don’t understand why you should spend time with this copy bureaucracy, to help you enter the right mood imagine tomorrow is demo day with your best client and you screw up the only working version: your boss will skin you alive.

3.2.2 Improve enqueue

Improve enqueue so it works in \(O(1)\)

HINT:

	You will need an extra data structure that keeps track of the starting points of each group and how they are ordered

	You will also need to update this data structure as enqueue and dequeue calls are made

4. Supermarket queues

In this exercises, you will try to model a supermarket containing several cash queues.

CashQueue

WARNING: DO *NOT* MODIFY CashQueue CLASS

For us, a CashQueue is a simple queue of clients represented as strings. A CashQueue supports the enqueue, dequeue, size and is_empty operations:

	Clients are enqueued at the right, in the tail

	Clients are dequeued from the left, removing them from the head

For example:

q = CashQueue()

q.is_empty() # True

q.enqueue('a') # a
q.enqueue('b') # a,b
q.enqueue('c') # a,b,c

q.size() # 3

q.dequeue() # returns: a
 # queue becomes: [b,c]

q.dequeue() # returns: b
 # queue becomes: [c]

q.dequeue() # returns: c
 # queue becomes: []

q.dequeue() # raises LookupError as there aren't enough elements to remove

Supermarket

A Supermarket contains several cash queues. It is possible to initialize a Supermarket by providing queues as simple python lists, where the first clients arrived are on the left, and the last clients are on the right.

For example, by calling:

s = Supermarket([
 ['a','b','c'], # <------ clients arrive from right
 ['d'],
 ['f','g']
])

internally three CashQueue objects are created. Looking at the first queue with clients ['a','b','c'], a at the head arrived first and c at the tail arrived last

>>> print(s)

Supermarket
0 CashQueue: ['a', 'b', 'c']
1 CashQueue: ['d']
2 CashQueue: ['f', 'g']

Note a supermarket must have at least one queue, which may be empty:

s = Supermarket([[]])

>>> print(s)

Supermarket
0 CashQueue: []

Supermarket as a queue

Our Supermarket should maximize the number of served clients (we assume each clients is served in an equal amount of time). To do so, the whole supermarket itself can be seen as a particular kind of queue, which allows the enqueue and dequeue operations described as follows:

	by calling supermarket.enqueue(client) a client gets enqueued in the shortest CashQueue.

	by calling supermarket.dequeue(), all clients which are at the heads of non-empty CashQueues are dequeued all at once, and their list is returned (this simulates parallelism).

Implementation

Now start editing supermarket_exercise.py implementing methods in the following points.

4.1 Supermarket size

Implement Supermarket.size :

def size(self):
 """ Return the total number of clients present in all cash queues.
 """

Testing: python3 -m unittest supermarket_test.SizeTest

4.2 Supermarket dequeue

Implement Supermarket.dequeue :

def dequeue(self):
 """ Dequeue all the clients which are at the heads of non-empty cash queues,
 and return a list of such clients.

 - clients are returned in the same order as found in the queues
 - if supermarket is empty, an empty list is returned

 For example, suppose we have following supermarket:

 0 ['a','b','c']
 1 []
 2 ['d','e']
 3 ['f']

 A call to deque() will return ['a','d','f']
 and the supermarket will now look like this:

 0 ['b','c']
 1 []
 2 ['e']
 3 []
 """

Testing: python3 -m unittest supermarket_test.DequeueTest

4.3 Supermarket enqueue

Implement Supermarket.enqueue :

def enqueue(self, client):
 """ Enqueue provided client in the cash queue with minimal length.

 If more than one minimal length cash queue is available, the one
 with smallest index is chosen.

 For example:

 If we have supermarket

 0 ['a','b','c']
 1 ['d','e','f','g']
 2 ['h','i']
 3 ['m','n']

 since queues 2 and 3 have both minimal length 2,
 supermarket.enqueue('z') will enqueue the client on queue 2:

 0 ['a','b','c']
 1 ['d','e','f','g']
 2 ['h','i','z']
 3 ['m','n']
 """

Testing: python3 -m unittest supermarket_test.EnqueueTest

5. Shopping mall queues

In this exercises, you will try to model a shopping mall containing several shops and clients.

Client

WARNING: DO *NOT* MODIFY Client CLASS

For us, a Client is composed by a name (in the exercise we will use a, b, c …) and a list of shops he wants to visit as a list. We will identify the shops with letters such as x, y, z …

Note: shops to visit are a Python list intended as a stack, so the first shop to visit is at end (top) of the list

Example:

c = Client('f', ['y','x','z'])

creates a Client named f who wants to visit first the shop z, then x and finally y

Methods:

>>> print(c.name())
a
>>> print(c.to_visit())
['z','x','y']

Shop

WARNING: DO *NOT* MODIFY Shop CLASS

For us, a Shop is a class with a name and a queue of clients. A Shop supports the name, enqueue, dequeue, size and is_empty operations:

	Clients are enqueued at the right, in the tail

	Clients are dequeued from the left, removing them from the head

For example:

s = Shop('x') # creates a shop named 'x'

print(s.name()) # prints x

s.is_empty() # True

s.enqueue('a') # a enqueues client 'a'
s.enqueue('b') # a,b
s.enqueue('c') # a,b,c

s.size() # 3

s.dequeue() # returns: a
 # queue becomes: [b,c]

s.dequeue() # returns: b
 # queue becomes: [c]

s.dequeue() # returns: c
 # queue becomes: []

s.dequeue() # raises LookupError as there aren't enough elements to remove

Mall

A shopping Mall contains several shops and clients. It is possible to initialize a Mall by providing

	shops as a list of values shop name , client list, where the first clients arrived are on the left, and the last clients are on the right.

	clients as a list of values client name , shop to visit list

For example, by calling:

m = Mall(
[
 'x', ['a','b','c'], # <------ clients arrive from right
 'y', ['d'],
 'z', ['f','g']
],
[
 'a',['y','x'],
 'b',['x'],
 'c',['x'],
 'd',['z','y'], # IMPORTANT: shops to visit stack grows from right, so
 'f',['y','x','z'], # client 'f' wants to visit first shop 'z', then 'x', and finally 'y'
 'g',['x','z']
])

Internally:

	three Shop objects are created in an OrderedDict. Looking at the first queue with clients ['a','b','c'], a at the head arrived first and c at the tail arrived last.

	6 Client objects are created in an OrderedDict. Note if a client is in a particular shop queue, that shop must be his top desired shop to visit in its stack.

>>> print(s)

Mall
 Shop x: ['a', 'b', 'c']
 Shop y: ['d']
 Shop z: ['f', 'g']

 Client a: ['y','x']
 Client b: ['x']
 Client c: ['x']
 Client d: ['z','y']
 Client f: ['x','y','z']
 Client g: ['x','z']

Methods:

>>> m.shops()

OrderedDict([
 ('x', Shop x: ['a', 'b', 'c'])
 ('y', Shop y: ['d'])
 ('z', Shop z: ['f', 'g'])
])

>>> m.clients()

OrderedDict([
 ('a', Client a: ['y','x']),
 ('b', Client b: ['x']),
 ('c', Client c: ['x']),
 ('d', Client d: ['z','y']),
 ('f', Client f: ['x','y','z']),
 ('g', Client g: ['x','z'])
])

Note a mall must have at least one shop and may have zero clients:

m = Mall({'x':[]}, {})

>>> print(m)

Mall
 Shop x: []

Mall as a queue

Our Mall should maximize the number of served clients (we assume each clients is served in an equal amount of time). To do so, the whole mall itself can be seen as a particular kind of queue, which allows the enqueue and dequeue operations described as follows:

	by calling mall.enqueue(client) a client gets enqueued in the top Shop he wants to visit (its desired shop to visit list doesn’t change)

	by calling mall.dequeue()

	all clients which are at the heads of non-empty Shops are dequeued all at once

	their top desired shop to visit is removed

	if a client has any shop to visit left, he is automatically enqueued in that Shop

	the list of clients with no shops to visit is returned (this simulates parallelism)

Implementation

Now start editing mall_exercise.py implementing methods in the following points.

6.1 Mall enqueue

Implement Mall.enqueue method:

def enqueue(self, client):
 """ Enqueue provided client in the top shop he wants to visit

 - If client is already in the mall, raise ValueError
 - if client has no shop to visit, raise ValueError
 - If any of the shops to visit are not in the mall, raise ValueError

 For example:

 If we have this mall:

 Mall
 Shop x: ['a','b']
 Shop y: ['c']

 Client a: ['y','x']
 Client b: ['x']
 Client c: ['x','y']

 mall.enqueue(Client('d',['x','y'])) will enqueue the client in Shop y :

 Mall
 Shop x: ['a','b']
 Shop y: ['c','d']

 Client a: ['y','x']
 Client b: ['x']
 Client c: ['x','y']
 Client d: ['x','y']

 """

Testing: python3 -m unittest mall_test.EnqueueTest

6.2 Mall dequeue

Implement Mall.dequeue method:

def dequeue(self):
 """ Dequeue all the clients which are at the heads of non-empty
 shop queues,enqueues clients in their next shop to visit and return
 a list of names of clients that exit the mall.

 In detail:
 - shop list is scanned, and all clients which are at the heads
 of non-empty Shops are dequeued

 VERY IMPORTANT HINT: FIRST put all this clients in a list,
 THEN using that list do all of the following

 - for each dequeued client, his top desired shop is removed from
 his visit list
 - if a client has a shop to visit left, he is automatically
 enqueued in that Shop
 - clients are enqueued in the same order they were dequeued
 from shops
 - the list of clients with no shops to visit anymore
 is returned (this simulates parallelism)
 - clients are returned in the same order they were dequeued
 from shops
 - if mall has no clients, an empty list is returned

 """

Testing: python3 -m unittest mall_test.DequeueTest

For example, suppose we have following mall:

[33]:

from mall_solution import *

[34]:

m = Mall([
 'x', ['a', 'b', 'c'],
 'y', ['d'],
 'z', ['f', 'g']
],
 [
 'a', ['y', 'x'],
 'b', ['x'],
 'c', ['x'],
 'd', ['z','y'],
 'f', ['y','x','z'],
 'g', ['x','z']
])

[35]:

print(m)

Mall
 Shop x : ['a', 'b', 'c']
 Shop y : ['d']
 Shop z : ['f', 'g']

 Client a : ['y', 'x']
 Client b : ['x']
 Client c : ['x']
 Client d : ['z', 'y']
 Client f : ['y', 'x', 'z']
 Client g : ['x', 'z']

[36]:

m.dequeue() # first call

[36]:

[]

Clients ‘a’, ‘d’ and ‘f’ change shop, the others stay in their current shop. The mall will now look like this:

[37]:

print(m)

Mall
 Shop x : ['b', 'c', 'f']
 Shop y : ['a']
 Shop z : ['g', 'd']

 Client a : ['y']
 Client b : ['x']
 Client c : ['x']
 Client d : ['z']
 Client f : ['y', 'x']
 Client g : ['x', 'z']

[38]:

m.dequeue() # second call

[38]:

['b', 'a']

because client ‘b’ was top shop in the list, ‘a’ in the second, and both clients had nothing else to visit. Client ‘g’ changes shop, the others remain in their current shop.

The mall will now look like this:

[39]:

print(m) # Clients a and b are gone

Mall
 Shop x : ['c', 'f', 'g']
 Shop y : []
 Shop z : ['d']

 Client c : ['x']
 Client d : ['z']
 Client f : ['y', 'x']
 Client g : ['x']

[40]:

m.dequeue() # third call

[40]:

['c', 'd']

[41]:

print(m)

Mall
 Shop x : ['f', 'g']
 Shop y : []
 Shop z : []

 Client f : ['y', 'x']
 Client g : ['x']

[42]:

m.dequeue() # fourth call

[42]:

[]

[43]:

print(m)

Mall
 Shop x : ['g']
 Shop y : ['f']
 Shop z : []

 Client f : ['y']
 Client g : ['x']

[44]:

m.dequeue() # fifth call

[44]:

['g', 'f']

[45]:

print(m)

Mall
 Shop x : []
 Shop y : []
 Shop z : []

6. Company queues

We can model a company as a list of many employees ordered by their rank, the highest ranking being the first in the list. We assume all employees have different rank. Each employee has a name, a rank, and a queue of tasks to perform (as a Python deque).

When a new employee arrives, it is inserted in the list in the right position according to his rank:

[46]:

from company_solution import *

c = Company()
print(c)

Company:
 name rank tasks

[47]:

c.add_employee('x',9)

[48]:

print(c)

Company:
 name rank tasks
 x 9 deque([])

[49]:

c.add_employee('z',2)

[50]:

print(c)

Company:
 name rank tasks
 x 9 deque([])
 z 2 deque([])

[51]:

c.add_employee('y',6)

[52]:

print(c)

Company:
 name rank tasks
 x 9 deque([])
 y 6 deque([])
 z 2 deque([])

7.1 add_employee

Implement this method:

def add_employee(self, name, rank):
 """
 Adds employee with name and rank to the company, maintaining
 the _employees list sorted by rank (higher rank comes first)

 Represent the employee as a dictionary with keys 'name', 'rank'
 and 'tasks' (a Python deque)

 - here we don't mind about complexity, feel free to use a
 linear scan and .insert
 - If an employee of the same rank already exists, raise ValueError
 - if an employee of the same name already exists, raise ValueError
 """

Testing: python3 -m unittest company_test.AddEmployeeTest

7.2 add_task

Each employee has a queue of tasks to perform. Tasks enter from the right and leave from the left. Each task has associated a required rank to perform it, but when it is assigned to an employee the required rank may exceed the employee rank or be far below the employee rank. Still, when the company receives the task, it is scheduled in the given employee queue, ignoring the task rank.

[53]:

c.add_task('a',3,'x')

[54]:

c

[54]:

Company:
 name rank tasks
 x 9 deque([('a', 3)])
 y 6 deque([])
 z 2 deque([])

[55]:

c.add_task('b',5,'x')

[56]:

c

[56]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5)])
 y 6 deque([])
 z 2 deque([])

[57]:

c.add_task('c',12,'x')
c.add_task('d',1,'x')
c.add_task('e',8,'y')
c.add_task('f',2,'y')
c.add_task('g',8,'y')
c.add_task('h',10,'z')

[58]:

c

[58]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5), ('c', 12), ('d', 1)])
 y 6 deque([('e', 8), ('f', 2), ('g', 8)])
 z 2 deque([('h', 10)])

Implement this function:

def add_task(self, task_name, task_rank, employee_name):
 """ Append the task as a (name, rank) tuple to the tasks of
 given employee

 - If employee does not exist, raise ValueError
 """

Testing: python3 -m unittest company_test.AddTaskTest

7.3 work

Work in the company is produced in work steps. Each work step produces a list of all task names executed by the company in that work step.

A work step is done this way:

For each employee, starting from the highest ranking one, dequeue its current task (from the left), and than compare the task required rank with the employee rank according to these rules:

	When an employee discovers a task requires a rank strictly greater than his rank, he will append the task to his supervisor tasks. Note the highest ranking employee may be forced to do tasks that are greater than his rank.

	When an employee discovers he should do a task requiring a rank strictly less than his, he will try to see if the next lower ranking employee can do the task, and if so append the task to that employee tasks.

	When an employee cannot pass the task to the supervisor nor the next lower ranking employee, he will actually execute the task, adding it to the work step list

Example:

[59]:

c

[59]:

Company:
 name rank tasks
 x 9 deque([('a', 3), ('b', 5), ('c', 12), ('d', 1)])
 y 6 deque([('e', 8), ('f', 2), ('g', 8)])
 z 2 deque([('h', 10)])

[60]:

c.work()

DEBUG: Employee x gives task ('a', 3) to employee y
DEBUG: Employee y gives task ('e', 8) to employee x
DEBUG: Employee z gives task ('h', 10) to employee y
DEBUG: Total performed work this step: []

[60]:

[]

[61]:

c

[61]:

Company:
 name rank tasks
 x 9 deque([('b', 5), ('c', 12), ('d', 1), ('e', 8)])
 y 6 deque([('f', 2), ('g', 8), ('a', 3), ('h', 10)])
 z 2 deque([])

[62]:

c.work()

DEBUG: Employee x gives task ('b', 5) to employee y
DEBUG: Employee y gives task ('f', 2) to employee z
DEBUG: Employee z executes task ('f', 2)
DEBUG: Total performed work this step: ['f']

[62]:

['f']

[63]:

c

[63]:

Company:
 name rank tasks
 x 9 deque([('c', 12), ('d', 1), ('e', 8)])
 y 6 deque([('g', 8), ('a', 3), ('h', 10), ('b', 5)])
 z 2 deque([])

[64]:

c.work()

DEBUG: Employee x executes task ('c', 12)
DEBUG: Employee y gives task ('g', 8) to employee x
DEBUG: Total performed work this step: ['c']

[64]:

['c']

[65]:

c

[65]:

Company:
 name rank tasks
 x 9 deque([('d', 1), ('e', 8), ('g', 8)])
 y 6 deque([('a', 3), ('h', 10), ('b', 5)])
 z 2 deque([])

[66]:

c.work()

DEBUG: Employee x gives task ('d', 1) to employee y
DEBUG: Employee y executes task ('a', 3)
DEBUG: Total performed work this step: ['a']

[66]:

['a']

[67]:

c

[67]:

Company:
 name rank tasks
 x 9 deque([('e', 8), ('g', 8)])
 y 6 deque([('h', 10), ('b', 5), ('d', 1)])
 z 2 deque([])

[68]:

c.work()

DEBUG: Employee x executes task ('e', 8)
DEBUG: Employee y gives task ('h', 10) to employee x
DEBUG: Total performed work this step: ['e']

[68]:

['e']

[69]:

c

[69]:

Company:
 name rank tasks
 x 9 deque([('g', 8), ('h', 10)])
 y 6 deque([('b', 5), ('d', 1)])
 z 2 deque([])

[70]:

c.work()

DEBUG: Employee x executes task ('g', 8)
DEBUG: Employee y executes task ('b', 5)
DEBUG: Total performed work this step: ['g', 'b']

[70]:

['g', 'b']

[71]:

c

[71]:

Company:
 name rank tasks
 x 9 deque([('h', 10)])
 y 6 deque([('d', 1)])
 z 2 deque([])

[72]:

c.work()

DEBUG: Employee x executes task ('h', 10)
DEBUG: Employee y gives task ('d', 1) to employee z
DEBUG: Employee z executes task ('d', 1)
DEBUG: Total performed work this step: ['h', 'd']

[72]:

['h', 'd']

[73]:

c

[73]:

Company:
 name rank tasks
 x 9 deque([])
 y 6 deque([])
 z 2 deque([])

Now implement this method:

def work(self):
 """ Performs a work step and RETURN a list of performed task names.

 For each employee, dequeue its current task from the left and:
 - if the task rank is greater than the rank of the
 current employee, append the task to his supervisor queue
 (the highest ranking employee must execute the task)
 - if the task rank is lower or equal to the rank of the
 next lower ranking employee, append the task to that employee
 queue
 - otherwise, add the task name to the list of
 performed tasks to return
 """

Testing: python3 -m unittest company_test.WorkTest

7. Concert

Start editing file concert_exercise.py.

When there are events with lots of potential visitors such as concerts, to speed up check-in there are at least two queues: one for cash where tickets are sold, and one for the actual entrance at the event.

Each visitor may or may not have a ticket. Also, since people usually attend in groups (coupls, families, and so on), in the queue lines each group tends to move as a whole.

In Python, we will model a Person as a class you can create like this:

[74]:

from concert_solution import *

[75]:

Person('a', 'x', False)

[75]:

Person(a,x,False)

a is the name, 'x' is the group, and False indicates the person doesn’t have ticket

To model the two queues, in Concert class we have these fields and methods:

class Concert:

 def __init__(self):
 self._cash = deque()
 self._entrance = deque()

 def enqc(self, person):
 """ Enqueues at the cash from the right """

 self._cash.append(person)

 def enqe(self, person):
 """ Enqueues at the entrance from the right """

 self._entrance.append(person)

7.1 dequeue

✪✪✪ Implement dequeue. If you want, you can add debug prints by calling the debug function.

def dequeue(self):
 """ RETURN the names of people admitted to concert

 Dequeuing for the whole queue system is done in groups, that is,
 with a _single_ call to dequeue, these steps happen, in order:

 1. entrance queue: all people belonging to the same group at
 the front of entrance queue who have the ticket exit the queue
 and are admitted to concert. People in the group without the
 ticket are sent to cash.
 2. cash queue: all people belonging to the same group at the front
 of cash queue are given a ticket, and are queued at the entrance queue
 """

Testing: python3 -m unittest concert_test.DequeueTest

Example:

[76]:

con = Concert()

con.enqc(Person('a','x',False)) # a,b,c belong to same group x
con.enqc(Person('b','x',False))
con.enqc(Person('c','x',False))
con.enqc(Person('d','y',False)) # d belongs to group y
con.enqc(Person('e','z',False)) # e,f belongs to group z
con.enqc(Person('f','z',False))
con.enqc(Person('g','w',False)) # g belongs to group w

[77]:

con

[77]:

Concert:
 cash: deque([Person(a,x,False),
 Person(b,x,False),
 Person(c,x,False),
 Person(d,y,False),
 Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([])

First time we dequeue, entrance queue is empty so no one enters concert, while at the cash queue people in group x are given a ticket and enqueued at the entrance queue

NOTE: The messages on the console are just debug print, the function dequeue only return name sof people admitted to concert

[78]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: giving ticket to a (group x)
DEBUG: giving ticket to b (group x)
DEBUG: giving ticket to c (group x)
DEBUG: Concert:
 cash: deque([Person(d,y,False),
 Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([Person(a,x,True),
 Person(b,x,True),
 Person(c,x,True)])

[78]:

[]

[79]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: a (group x) admitted to concert
DEBUG: b (group x) admitted to concert
DEBUG: c (group x) admitted to concert
DEBUG: giving ticket to d (group y)
DEBUG: Concert:
 cash: deque([Person(e,z,False),
 Person(f,z,False),
 Person(g,w,False)])
 entrance: deque([Person(d,y,True)])

[79]:

['a', 'b', 'c']

[80]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: d (group y) admitted to concert
DEBUG: giving ticket to e (group z)
DEBUG: giving ticket to f (group z)
DEBUG: Concert:
 cash: deque([Person(g,w,False)])
 entrance: deque([Person(e,z,True),
 Person(f,z,True)])

[80]:

['d']

[81]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: e (group z) admitted to concert
DEBUG: f (group z) admitted to concert
DEBUG: giving ticket to g (group w)
DEBUG: Concert:
 cash: deque([])
 entrance: deque([Person(g,w,True)])

[81]:

['e', 'f']

[82]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: g (group w) admitted to concert
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[82]:

['g']

[83]:

calling dequeue on empty lines gives empty list:
con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[83]:

[]

Special dequeue case: broken group

In the special case when there is a group at the entrance with one or more members without a ticket, it is assumed that the group gets broken, so whoever has the ticket enters and the others get enqueued at the cash.

[84]:

con = Concert()

con.enqe(Person('a','x',True))
con.enqe(Person('b','x',False))
con.enqe(Person('c','x',True))
con.enqc(Person('f','y',False))

con

[84]:

Concert:
 cash: deque([Person(f,y,False)])
 entrance: deque([Person(a,x,True),
 Person(b,x,False),
 Person(c,x,True)])

[85]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: a (group x) admitted to concert
DEBUG: b (group x) has no ticket! Sending to cash
DEBUG: c (group x) admitted to concert
DEBUG: giving ticket to f (group y)
DEBUG: Concert:
 cash: deque([Person(b,x,False)])
 entrance: deque([Person(f,y,True)])

[85]:

['a', 'c']

[86]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: f (group y) admitted to concert
DEBUG: giving ticket to b (group x)
DEBUG: Concert:
 cash: deque([])
 entrance: deque([Person(b,x,True)])

[86]:

['f']

[87]:

con.dequeue()

DEBUG: DEQUEUING ..
DEBUG: b (group x) admitted to concert
DEBUG: Concert:
 cash: deque([])
 entrance: deque([])

[87]:

['b']

[88]:

con

[88]:

Concert:
 cash: deque([])
 entrance: deque([])

[89]:

 m.dequeue() # no clients left

[89]:

[]

[]:

 Trees

Trees

Download exercises zip

(before editing read whole introduction sections 0.x)

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/trees]

0. Introduction

We will deal with both binary and generic trees.

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-trees
 |- trees.ipynb
 |- bin_tree_test.py
 |- bin_tree_exercise.py
 |- bin_tree_solution.py
 |- gen_tree_test.py
 |- gen_tree_exercise.py
 |- gen_tree_solution.py

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

BT 0. Binary Tree Introduction

BT 0.1 References

See

	Luca Bianco theory here [https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture6.pdf]

	Trees on the book [https://interactivepython.org/runestone/static/pythonds/Trees/toctree.html]

	In particular, Vocabulary and definitions [https://interactivepython.org/runestone/static/pythonds/Trees/VocabularyandDefinitions.html]

BT 0.2 Terminology - relations

[image: bt terminology 1 i3u4i34u]

BT 0.3 Terminology - levels

[image: bt terminology 2 kjklj34]

BT 0.4 Terminology - shapes

[image: bt shapes kj3iu32i]

In this worksheet we are first going to provide an implementation of a BinaryTree class:

	Differently from the LinkedList, which actually had two classes Node and LinkedList that was pointing to the first node, in this case we just have one BinaryTree class.

	Each BinaryTree instance may have a left BinaryTree instance and may have a right BinaryTree instance, while absence of a branch is marked with None. This reflects the recursive nature of trees.

	To grow a tree, first you need to create an instance of BinaryTree, and then you call .insert_left or .insert_right methods on it and pass data. Keep reading to see how to do it.

BT 0.2 Code skeleton

Look at the files:

	exercises/trees/bin_tree_exercise.py : the exercise to edit

	exercises/trees/bin_tree_test.py: the tests to run. Do not modify this file.

Before starting to implement methods in BinaryTree class, read all the following sub sections (starting with ‘0.x’)

BT 0.3 Building trees

Let’s learn how to build BinaryTree. For these trials, feel free to launch a Python 3 interpreter and load this module:

[2]:

from bin_tree_solution import *

BT 0.3.1 Pointers

A BinaryTree class holds 2 pointers that link it to other nodes: _left, and _right

It also holds a value data which is provided by the user to store arbitrary data (could be ints, strings, lists, even other trees, we don’t care):

class BinaryTree:

 def __init__(self, data):
 self._data = data
 self._left = None
 self._right = None

NOTE: BinaryTree as defined here is unidirectional, that is, has no backlinks (so no _parent field).

Formally, a tree as described in discrete mathematics books is always unidirectional (can’t have any cycle) and every node can have at most one incoming link. When we program, though, for convenience we may decide to have or not have backlinks (later with GenericTree we will see an example)

To create a BinaryTree of one node, just call the constructor passing whatever you want like this:

[3]:

tblah = BinaryTree("blah")
tn = BinaryTree(5)

Note that with the provided constructor you can’t pass children.

BT 0.3.2 Building with insert_left

To grow a BinaryTree, as basic building block you will have to implement insert_left:

def insert_left(self, data):
 """ Takes as input DATA (*NOT* a node !!) and MODIFIES current
 node this way:

 - First creates a new BinaryTree (let's call it B) into which
 provided data is wrapped.
 - Then:
 - if there is no left node in self, new node B is attached to
 the left of self
 - if there already is a left node L, it is substituted by
 new node B, and L becomes the left node of B
 """

You can call it like this:

[4]:

t = BinaryTree('a')

t.insert_left('c')

[5]:

print(t)

a
├c
└

[6]:

t.insert_left('b')

[7]:

print(t)

a
├b
│├c
│└
└

[8]:

t.left().data()

[8]:

'b'

[9]:

t.left().left().data()

[9]:

'c'

BT 0.3.3 Building with bt

If you need to test your data structure, we provide you with this handy function bt in bin_tree_test module that allows to easily construct trees from other trees.

WARNING: DO NOT USE bt inside your implementation code !!!! bt is just meant for testing.

def bt(*args):
 """ Shorthand function that returns a GenericTree containing the provided
 data and children. First parameter is the data, the following ones are the children.

[10]:

from bin_tree_test import bt

bt('a')
print(bt('a'))

a

[11]:

print(bt('a', None, bt('b')))

a
├
└b

[12]:

print(bt('a', bt('b'), bt('c')))

a
├b
└c

[13]:

print(bt('a', bt('b'), bt('c', bt('d'), None)))

a
├b
└c
 ├d
 └

BT 1. Insertions

BT 1.1 insert_left

Implement insert_left

def insert_left(self, data):
 """ Takes as input DATA (*NOT* a node !!) and MODIFIES current node
 this way:

 - First creates a new BinaryTree (let's call it B) into which
 provided data is wrapped.
 - Then:
 - if there is no left node in self, new node B is attached to
 the left of self
 - if there already is a left node L, it is substituted by
 new node B, and L becomes the left node of B

Testing: python3 -m unittest bin_tree_test.InsertLeftTest

BT 1.2 insert_right

def insert_right(self, data):
 """ Takes as input DATA (*NOT* a node !!) and MODIFIES current node
 this way:

 - First creates a new BinaryTree (let's call it B) into which
 provided data is wrapped.
 - Then:
 - if there is no right node in self, new node B is attached
 to the right of self
 - if there already is a right node L, it is substituted by
 new node B, and L becomes the right node of B
 """

Testing: python3 -m unittest bin_tree_test.InsertRightTest

BT 2. Recursive visit

In these exercises, we are going to implement methods which do recursive calls. Before doing it, we should ask oursevles why. Tyipically, recursive calls are present in funcitonal languages. Is Python one of them? Python is a general purpose language, that allows writing imperative, object-oriented code and also sports some, but not all functional programming features. Unfortunately, one notably missing feature is the capability to efficiently perform recursive calls. If too many recursive
calls happen, you will probabily get a ‘Recursion limit exceed’ error. So why should we bother?

It turns out that recursive code is much shorter and elegant than corrisponding imperative one (which would often use stacks). So to gain a first understanding of problems, it might be beneficial to think about a recursive solution. After that, we may increase efficiency by explicitly using a stack instead of recursive calls.

BT 2.1 sum_rec

Supposing all nodes hold a number, let’s see how to write a method that returns the sum of all numbers in the tree. We can define sum recursively:

	if a node has no children: the sum is equal to the node data.

	if a node has only left child: the sum is equal to the node data plus the (recursive) sum of left child

	if a node has only right child: the sum is equal to the node data plus the (recursive) sum of right child

	if a node has both left and right child: the sum is equal to the node data plus the (recursive) sum of left child and the (recursive) sum of the right child

Example: black numbers are node data, purple numbers are the respective sums.

Let’s look at node with black number 10: its sum is 23, which is given by its data 10, plus 1 (the recursive sum of the left child 1), plus 12 (recursive sum of the right child 7)

[image: bt sum 9834uu4]

def sum_rec(self):
 """ Supposing the tree holds integer numbers in all nodes,
 RETURN the sum of the numbers.

 - implement it as a recursive Depth First Search (DFS) traversal
 NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.ContainsRecTest

Code example:

[14]:

t = bt(3,
 bt(10,
 bt(1),
 bt(7,
 bt(5))),
 bt(9,
 bt(6,
 bt(2,
 None,
 bt(4)),
 bt(8))))
print(t)

3
├10
│├1
│└7
│ ├5
│ └
└9
 ├6
 │├2
 ││├
 ││└4
 │└8
 └

[15]:

t.sum_rec()

[15]:

55

BT 2.2 height_rec

Let’s say we want to know the height a tree, which is defined as ‘the maximum depth of all the leaves’. We can think recursively as:

	the height of a node without children is 0

	the height of a node with only a left child is the height of the left node plus one

	the height of a node with only a right child is the height of the right node plus one

	the height of a node with both left and right children is the maximum of the height of the left node and height of the right node, plus one

Look at the example and try to convince yourself this makes sense:

	in purple you see nodes corresponding heights

	notice how leaves have all height 0

[image: bt height 9893u3]

def height_rec(self):
 """ RETURN an integer which is the height of the tree

 - implement it as recursive call which does NOT modify the tree
 NOTE: with big trees a recursive solution would surely exceed
 the call stack, but here we don't mind
 - A tree with only one node has height zero.

Testing: python3 -m unittest bin_tree_test.HeightRecTest

BT 2.3 depth_rec

def depth_rec(self, level):
 """
 - MODIFIES the tree by putting in the data field the provided
 value level (which is an integer),
 and recursively calls itself on left and right nodes
 (if present) passing level + 1
 - implement it as a recursive Depth First Search (DFS) traversal
 NOTE: with big trees a recursive solution would surely exceed
 the call stack, but here we don't mind
 - The root of a tree has depth zero.
 - does not return anything

Testing: python3 -m unittest bin_tree_test.DepthDfsTest

Example: For example, if we take this tree:

[16]:

t = bt('a', bt('b', bt('c'), None), bt('d', None, bt('e', bt('f'))))

print(t)

a
├b
│├c
│└
└d
 ├
 └e
 ├f
 └

After a call do depth_rec on t passing 0 as starting level, all letters will be substituted by the tree depth at that point:

[17]:

t.depth_rec(0)

[18]:

print(t)

0
├1
│├2
│└
└1
 ├
 └2
 ├3
 └

BT 2.4 contains_rec

def contains_rec(self, item):
 """ RETURN True if at least one node in the tree has data equal
 to item, otherwise RETURN False.

 - implement it as a recursive Depth First Search (DFS) traversal
 NOTE: with big trees a recursive solution would surely exceed
 the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.ContainsRecTest

Example:

[19]:

t = bt('a',
 bt('b',
 bt('c'),
 bt('d',
 None,
 bt('e'))),
 bt('f',
 bt('g',
 bt('h')),
 bt('i')))

[20]:

print(t)

a
├b
│├c
│└d
│ ├
│ └e
└f
 ├g
 │├h
 │└
 └i

[21]:

t.contains_rec('g')

[21]:

True

[22]:

t.contains_rec('z')

[22]:

False

BT 2.5 join_rec

def join_rec(self):
 """ Supposing the tree nodes hold a character each, RETURN a STRING
 holding all characters IN-ORDER

 - implement it as a recursive Depth First Search (DFS) traversal
 NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.JoinRecTest

[23]:

t = bt('e',
 bt('b',
 bt('a'),
 bt('c',
 None,
 bt('d'))),
 bt('h',
 bt('g',
 bt('f')),
 bt('i')))

[24]:

print(t)

e
├b
│├a
│└c
│ ├
│ └d
└h
 ├g
 │├f
 │└
 └i

[25]:

t.join_rec()

[25]:

'abcdefghi'

BT 2.6 fun_rec

def fun_rec(self):
 """ Supposing the tree nodes hold expressions which can either be
 functions or single variables, RETURN a string holding
 the complete formula with needed parenthesis.

 - implement it as a recursive Depth First Search (DFS)
 PRE-ORDER visit
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.FunRecTest

Example:

[26]:

t = bt('f',
 bt('g',
 bt('x'),
 bt('y')),
 bt('f',
 bt('h',
 bt('z')),
 bt('w')))

[27]:

print(t)

f
├g
│├x
│└y
└f
 ├h
 │├z
 │└
 └w

[28]:

t.fun_rec()

[28]:

'f(g(x,y),f(h(z),w))'

BT 2.7 bin_search_rec

You are given a so-called binary search tree, which holds numbers as data, and all nodes respect this constraint:

	if a node A holds a number strictly less than the number held by its parent node B, then node A must be a left child of B

	if a node C holds a number greater or equal than its parent node B, then node C must be a right child of B

[image: bt bin search 984uu43]

[29]:

t = bt(7,
 bt(3,
 bt(2),
 bt(6)),
 bt(12,
 bt(8,
 None,
 bt(11,
 bt(9))),
 bt(14,
 bt(13))))
print(t)

7
├3
│├2
│└6
└12
 ├8
 │├
 │└11
 │ ├9
 │ └
 └14
 ├13
 └

Implement following method:

def bin_search_rec(self, m):
 """ Assuming the tree is a binary search tree of integer numbers,
 RETURN True if m is present in the tree, False otherwise

 - MUST EXECUTE IN O(height(t))
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """
 raise Exception("TODO IMPLEMENT ME !")

	QUESTION: what is the complexity in worst case scenario?

	QUESTION: what is the complexity when tree is balanced?

Testing: python3 -m unittest bin_tree_test.BinSearchRecTest

BT 2.8 bin_insert_rec

def bin_insert_rec(self, m):
 """ Assuming the tree is a binary search tree of integer numbers,
 MODIFIES the tree by inserting a new node with the value m
 in the appropriate position. Node is always added as a leaf.

 - MUST EXECUTE IN O(height(t))
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.BinInsertRecTest

Example:

[30]:

t = bt(7)
print(t)

7

[31]:

t.bin_insert_rec(3)
print(t)

7
├3
└

[32]:

t.bin_insert_rec(6)
print(t)

7
├3
│├
│└6
└

[33]:

t.bin_insert_rec(2)
print(t)

7
├3
│├2
│└6
└

[34]:

t.bin_insert_rec(12)
print(t)

7
├3
│├2
│└6
└12

[35]:

t.bin_insert_rec(14)
print(t)

7
├3
│├2
│└6
└12
 ├
 └14

[36]:

t.bin_insert_rec(13)
print(t)

7
├3
│├2
│└6
└12
 ├
 └14
 ├13
 └

[37]:

t.bin_insert_rec(8)
print(t)

7
├3
│├2
│└6
└12
 ├8
 └14
 ├13
 └

[38]:

t.bin_insert_rec(11)
print(t)

7
├3
│├2
│└6
└12
 ├8
 │├
 │└11
 └14
 ├13
 └

[39]:

t.bin_insert_rec(9)
print(t)

7
├3
│├2
│└6
└12
 ├8
 │├
 │└11
 │ ├9
 │ └
 └14
 ├13
 └

BT 2.9 univalued_rec

def univalued_rec(self):
 """ RETURN True if the tree is univalued, otherwise RETURN False.

 - a tree is univalued when all nodes have the same value as data
 - MUST execute in O(n) where n is the number of nodes of the tree
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 """

Testing: python3 -m unittest bin_tree_test.UnivaluedRecTest

Example:

[40]:

t = bt(3, bt(3), bt(3, bt(3, bt(3, None, bt(3)))))
print(t)

3
├3
└3
 ├3
 │├3
 ││├
 ││└3
 │└
 └

[41]:

t.univalued_rec()

[41]:

True

[42]:

t = bt(2, bt(3), bt(6, bt(3, bt(3, None, bt(3)))))
print(t)

2
├3
└6
 ├3
 │├3
 ││├
 ││└3
 │└
 └

[43]:

t.univalued_rec()

[43]:

False

BT 2.10 same_rec

def same_rec(self, other):
 """ RETURN True if this binary tree is equal to other binary tree,
 otherwise return False.

 - MUST execute in O(n) where n is the number of nodes of the tree
 - NOTE: with big trees a recursive solution would surely
 exceed the call stack, but here we don't mind
 - HINT: defining a helper function

 def helper(t1, t2):

 which recursively calls itself and assumes both of the
 inputs can be None may reduce the number of ifs to write.
 """

Testing: python3 -m unittest bin_tree_test.SameRecTest

BT 3. Stack visit

To avoid getting ‘Recursion limit exceeded’ errors which can happen with Python, instead of using recursion we can implement tree operations with a while cycle and a stack (or a queue, depending on the case).

Typically, in these algorithms you follow this recipe:

	at the beginning you put inside the stack the current node on which the method is called

	you keep executing the while until the stack is empty

	inside the while, you pop the stack and do some processing on the popped node data

	if the node has children, you put them on the stack

We will try to reimplement this way methods we’ve already seen.

BT 3.1 sum_stack

Implement sum_stack

def sum_stack(self):
 """ Supposing the tree holds integer numbers in all nodes,
 RETURN the sum of the numbers.

 - DO *NOT* use recursion
 - implement it with a while and a stack (as a python list)
 - In the stack place nodes to process
 """

Testing: python3 -m unittest bin_tree_test.SumStackTest

[image: bt su iuiu4383]

BT 3.3 height_stack

The idea of this function is not that different from the Tasks do_level exercise [https://datasciprolab.readthedocs.io/en/latest/exercises/stacks/stacks.html#5.2-do_level] we’ve seen in the lab about stacks

def height_stack(self):
 """ RETURN an integer which is the height of the tree

 - A tree with only one node has height zero.
 - DO *NOT* use recursion
 - implement it with a while and a stack (as a python list).
 - In the stack place *tuples* holding a node *and* its level

 """

Testing: python3 -m unittest bin_tree_test.HeightStackTest

[image: bt height 989uure]

BT 3.3 others

Hopefully you got an idea of how stack recursion works, now you could try to implement by yourself previously defined recursive functions, this time using a while and a stack (or a queue, depending on what you are trying to achieve).

BT Further resources

See Trees exercises [https://leetcode.com/tag/tree/] on LeetCode (sort by easy difficulty), for example:

	univalued [https://leetcode.com/problems/univalued-binary-tree/]

	same_tree [https://leetcode.com/problems/same-tree/] (give recursive solution)

	Sum range of BST [https://leetcode.com/problems/range-sum-of-bst/]

GT 0. Generic Tree Introduction

See Luca Bianco Generic Tree theory [https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture6.pdf]

[image: gt labeled iiuiue9]

In this worksheet we are going to provide an implementation of a GenericTree class:

	Why GenericTree ? Because many object hierarchies in real life tend to have many interlinked pointers this, in one form or another

	Differently from the LinkedList, which actually had two classes Node and LinkedList that was pointing to the first node, in this case we just have one GenericTree class. So to grow a tree like the above one in the picture, for each of the boxes that you see we will need to create one instance of GenericTree and link it to the other instances.

	Ordinary simple trees just hold pointers to the children. In this case, we have an enriched tree which holds ponters also up to the parent and on the right to the siblings. Whenever we are going to manipulate the tree, we need to take good care of updating these pointers.

Do we need sidelinks and backlinks ?:

Here we use sidelinks and backlinks like _sibling and _parent for exercise purposes, but keep in mind such extra links need to be properly managed when you write algorithms and thus increase the likelihood of introducing bugs.

As a general rule of thumb, if you are to design a data structure, always first try to start making it unidirectional (like for example the BinaryTree we’ve seen before). Then, if you notice you really need extra links (for example to quickly traverse a tree from a node up to the root), you can always add them in a later development iteration.

ROOT NODE: In this context, we call a node _root_
 if has no incoming edges _and_ it has no parent nor sibling

DETACHING A NODE: In this context, when we _detach_ a node from a tree,
the node becomes the _root_ of a new tree, which means it will have no
link anymore with the tree it was in.

GT 0.2 Code skeleton

Look at the files:

	exercises/trees/gen_tree_exercise.py : the exercise to edit

	exercises/trees/gen_tree_test.py: the tests to run. Do not modify this file.

Before starting to implement methods in GenericTree class, read all the following sub sections (starting with ‘0.x’)

GT 0.3 Building trees

Let’s learn how to build GenericTree. For these trials, feel free to launch a Python 3 interpreter and load this module:

[44]:

from gen_tree_solution import *

GT 0.3.1 Pointers

A GenericTree class holds 3 pointers that link it to the other nodes: _child, _sibling and _parent. So this time we have to manage more pointers, in particular beware of the _parent one which as a matter of fact creates cycles in the structure.

It also holds a value data which is provided by the user to store arbitrary data (could be ints, strings, lists, even other trees, we don’t care):

class GenericTree:

 def __init__(self, data):
 self._data = data
 self._child = None
 self._sibling = None
 self._parent = None

To create a tree of one node, just call the constructor passing whatever you want like this:

[45]:

tblah = GenericTree("blah")
tn = GenericTree(5)

Note that with the provided constructor you can’t pass children.

GT 0.3.2 Building with insert_child

To grow a GenericTree, as basic building block you will have to implement insert_child:

def insert_child(self, new_child):
 """ Inserts new_child at the beginning of the children sequence. """

WARNING: here we insert a node !!

Differently from the BinaryTree, this time instead of passing data we pass a node. This can cause more troubles than before, as when we add a new_child we must be careful it doesn’t have wrong pointers. For example, think the case when you insert node B as child of node A, but by mistake you previously set B _child field to point to A. Such a cycle would not be a tree anymore and would basically disrupt any algorithm you would try to run.

You can call it like this:

[46]:

ta = GenericTree('a')
print(ta) # 'a' is the root

a

[47]:

tb = GenericTree('b')
ta.insert_child(tb)
print(ta)

a
└b

a 'a' is the root
└b 'b' is the child . The '└' means just that it is also the last child of the siblings sequence

[48]:

tc = GenericTree('c')
ta.insert_child(tc)
print(ta)

a
├c
└b

a # 'a' is the root
├c # 'c' is inserted as the first child (would be shown on the left in the graph image)
└b # 'b' is now the next sibling of c The '\' means just that it
 # is also the last child of the siblings sequence

[49]:

td = GenericTree('d')
tc.insert_child(td)
print(ta)

a
├c
│└d
└b

a # 'a' is the root
├c # 'c' is the first child of 'a'
|└d # 'd' is the first child of 'c'
└b # 'b' is the next sibling of c

GT 0.3.3 Building with gt

If you need to test your data structure, we provide you with this handy function gt in gen_tree_test module that allows to easily construct trees from other trees.

WARNING: DO NOT USE gt inside your implementation code !!!! gt is just meant for testing.

def gt(*args):
 """ Shorthand function that returns a GenericTree containing the provided
 data and children. First parameter is the data, the following ones are the children.

[50]:

first remember to import it from gen_tree_test:

from gen_tree_test import gt

NOTE: this function is _not_ a class method, you can directly invoke it like this:
print(gt('a'))

a

[51]:

NOTE: the external call gt('a',) INCLUDES gt('b') and gt('c') in the parameters !

print(gt('a', gt('b'), gt('c')))

a
├b
└c

GT 0.4 Displaying trees side by side with str_trees

If you have a couple of trees, like the actual one you get from your method calls and the one you expect, it might be useful to display them side by side with the str_trees method in gen_tree_test module:

[52]:

first remember to import it:

from gen_tree_test import str_trees

NOTE: this function is _not_ a class method, you can directly invoke it like this:
print(str_trees(gt('a', gt('b')), gt('x', gt('y'), gt('z'))))

ACTUAL EXPECTED
a x
└b ├y
 └z

GT 0.5 Look at the tests

Have a look at the gen_tree_test.py file header, notice it imports GenericTree class from exercises file gen_tree_exercise:

from gen_tree_exercise import *
import unittest

GT 0.6 Look at gen_tree_test.GenericTreeTest

Have a quick look at GenericTreeTest definitions inside gen_tree_test :

class GenericTreeTest(unittest.TestCase):

 def assertReturnNone(self, ret, function_name):
 """ Asserts method result ret equals None """

 def assertRoot(self, t):
 """ Checks provided node t is a root, if not raises Exception """

 def assertTreeEqual(self, t1, t2):
 """ Asserts the trees t1 and t2 are equal """

We see we added extra asserts you will later find used around in test methods. Of these ones, the most important is assertTreeEqual: when you have complex data structures like trees, it is helpful being able to compare the tree you obtain from your method calls to the tree you expect. This assertion we created provides a way to quickly display such differences.

GT 1 Implement basic methods

[image: gt labeled 99f9guggo]

Start editing gen_tree_exercise.py, implementing methods in GenericTree in the order you find them in the next points.

IMPORTANT: All methods and functions without written inside raise Exception("TODO IMPLEMENT ME!") are already provided and you don’t need to edit them !

GT 1.1 insert_child

Implement method insert_child, which is the basic building block for our GenericTree:

WARNING: here we insert a node !!

Differently from the BinaryTree, this time instead of passing data we pass a node. This implies that inside the insert_child method you will have to take care of pointers of new_child: for example, you will need to set the _parent pointer of new_child to point to the current node you are attaching to (that is, self)

def insert_child(self, new_child):
 """ Inserts new_child at the beginning of the children sequence. """

IMPORTANT: before proceding, make sure the tests for it pass by running:

python3 -m unittest gen_tree_test.InsertChildTest

QUESTION: Look at the tests, they are quite thourough and verbose. Why ?

GT 1.2 insert_children

Implement insert_children:

def insert_children(self, new_children):
 """ Takes a list of children and inserts them at the beginning of the
 current children sequence,

 NOTE: in the new sequence new_children appear in the order they
 are passed to the function!

 For example:
 >>> t = gt('a', gt('b'), gt('c))
 >>> print t

 a
 ├b
 └c

 >>> t.insert_children([gt('d'), gt('e')])
 >>> print t

 a
 ├d
 ├e
 ├b
 └c
 """

HINT 1: try to reuse insert_child, but note it inserts only to the left. Calling it on the input sequence you would get wrong ordering in the tree.

WARNING: Function description does not say anything about changing the input new_children, so users calling your method don’t expect you to modify it ! However, you can internally produce a new Python list out of the input one, if you wish to.

Testing: python3 -m unittest gen_tree_test.InsertChildrenTest

GT 1.3 insert_sibling

Implement insert_sibling:

def insert_sibling(self, new_sibling):
 """ Inserts new_sibling as the *immediate* next sibling.

 If self is a root, raises an Exception
 """

Testing: python3 -m unittest tree_test.InsertSiblingTest

Examples:

[53]:

tb = gt('b')
ta = gt('a', tb, gt('c'))
print(ta)

a
├b
└c

[54]:

tx = gt('x', gt('y'))
print(tx)

x
└y

[55]:

tb.insert_sibling(tx)
print(ta)

a
├b
├x
│└y
└c

QUESTION: if you call insert_sibling an a root node such as ta, you should get an Exception. Why? Does it make sense to have parentless brothers ?

ta.insert_sibling(g('z'))

Exception Traceback (most recent call last)
<ipython-input-35-a1e4ba8b1ee5> in <module>()
----> 1 ta.insert_sibling(gt('z'))

~/Da/prj/sciprolab2/prj/exercises/trees/tree_solution.py in insert_sibling(self, new_sibling)
 128 """
 129 if (self.is_root()):
--> 130 raise Exception("Can't add siblings to a root node !!")
 131
 132 new_sibling._parent = self._parent

Exception: Can't add siblings to a root node !!

GT 1.4 insert_siblings

Testing: python3 -m unittest tree_test.InsertSiblingsTest

GT 1.5 detach_child

QUESTION: does a detached child have still any parent or sibling ?

Testing: python3 -m unittest tree_test.DetachChildTest

GT 1.6 detach_sibling

Testing: python3 -m unittest tree_test.DetachSiblingTest

GT 1.7 detach

Testing: python3 -m unittest tree_test.DetachTest

GT 1.8 ancestors

[image: gt labeled iu9ug8g9]

Implement ancestors:

def ancestors(self):
 """ Return the ancestors up until the root as a Python list.
 First item in the list will be the parent of this node.

 NOTE: this function return the *nodes*, not the data.
 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python3 -m unittest gen_tree_test.AncestorsTest

Examples:

	ancestors of p: f, b, a

	ancestors of h: c, a

	ancestors of a: empty list

GT 2 Implement more complex functions

After you understood well and implemented the previous methods, you can continue with the following ones:

GT 2.1 grandchildren

Implement the grandchildren method. NOTE: it returns the data inside the nodes, NOT the nodes !!!!!

def grandchildren(self):
 """ Returns a python list containing the data of all the
 grandchildren of this node.

 - Data must be from left to right order in the tree horizontal
 representation (or up to down in the vertical representation).
 - If there are no grandchildren, returns an empty array.

 For example, for this tree:

 a
 ├b
 │├c
 │└d
 │ └g
 ├e
 └f
 └h

 Returns ['c','d','h']
 """

Testing: python3 -m unittest gen_tree_test.ZagTest

Examples:

[56]:

ta = gt('a', gt('b', gt('c')))
print(ta)

a
└b
 └c

[57]:

print(ta.grandchildren())

['c']

[58]:

ta = gt('a', gt('b'))
print(ta)

a
└b

[59]:

print(ta.grandchildren())

[]

[60]:

ta = gt('a', gt('b', gt('c'), gt('d')), gt('e', gt('f')))
print(ta)

a
├b
│├c
│└d
└e
 └f

[61]:

print(ta.grandchildren())

['c', 'd', 'f']

GT 2.2 Zig Zag

Here you will be visiting a generic tree in various ways.

[image: gt labeled jii4u43]

GT 2.2.1 zig

The method zig must return as output a list of data of the root and all the nodes in the chain of child attributes. Basically, you just have to follow the red lines and gather data in a list, until there are no more red lines to follow.

Testing: python3 -m unittest tree_test.ZigTest

Examples: in the labeled tree in the image, these would be the results of calling zig on various nodes:

From a: ['a','b', 'e']
From b: ['b', 'e']
From c: ['c', 'g']
From h: ['h']
From q: ['h']

GT 2.2.2 zag

This function is quite similar to zig, but this time it gathers data going right, along the sibling arrows.

Testing: python3 -m unittest gen_tree_test.ZagTest

Examples: in the labeled tree in the image, these would be the results of calling zag on various nodes:

From a : ['a']
From b : ['b', 'c', 'd']
From o : ['o', 'p']

GT 2.2.3 zigzag

As you are surely thinking, zig and zag alone are boring. So let’s mix the concepts, and go zigzaging. This time you will write a function zigzag, that first zigs collecting data along the child vertical red chain as much as it can. Then, if the last node links to at least a sibling, the method continues to collect data along the siblings horizontal chain as much as it can. At this point, if it finds a child, it goes zigging again along the child vertical red chain as much as it can, and then
horizontal zaging, and so on. It continues zig-zaging like this until it reaches a node that has no child nor sibling: when this happens returns the list of data found so far.

Testing: python3 -m unittest tree_test.ZigZagTest

Examples: in the labeled tree in the image, these would be the results of calling zigzag on various nodes:

From a: ['a', 'b', 'e', 'f', 'o']
From c: ['c', 'g', 'h', 'i', 'q'] NOTE: if node h had a child z, the process would still proceed to i
From d: ['d', 'm', 'n']
From o: ['o', 'p']
From n: ['n']

GT 2.3 uncles

Implement the uncles method:

def uncles(self):
 """ RETURN a python list containing the data of all the uncles
 of this node (that is, *all* the siblings of its parent).

 NOTE: returns also the father siblings which are *BEFORE*
 the father !!

 - Data must be from left to right order in the tree horizontal
 representation (or up to down in the vertical representation)
 - If there are no uncles, returns an empty array.

 For example, for this tree:

 a
 ├b
 │├c
 │└d
 │ └g
 ├e
 │└h
 └f

 calling this method on 'h' returns ['b','f']
 """

Testing: python3 -m unittest gen_tree_test.UnclesTest

Example usages:

[62]:

td = gt('d')
tb = gt('b')
ta = gt('a', tb, gt('c', td), gt('e'))
print(ta)

a
├b
├c
│└d
└e

[63]:

print(td.uncles())

['b', 'e']

[64]:

print(tb.uncles())

[]

GT 2.4 common_ancestor

[image: gt labeled iiug9f9]

Implement the method common_ancestor:

def common_ancestor(self, gt2):
 """ RETURN the first common ancestor of current node and the provided
 gt2 node

 - If gt2 is not a node of the same tree, raises LookupError

 NOTE: this function returns a *node*, not the data.

 Ideally, this method should perform in O(h) where h is the height
 of the tree.

 HINT: you should use a Python Set). If you can't figure out how
 to make it that fast, try to make it at worst O(h^2)

 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python3 -m unittest gen_tree_test.CommonAncestorTest

Examples:

	common ancestor of g and i: tree rooted at c

	common_ancestor of g and q: tree rooted at c

	common_ancestor of e and d: tree rooted at a

GT 2.5 mirror

def mirror(self):
 """ Modifies this tree by mirroring it, that is, reverses the order
 of all children of this node and of all its descendants

 - MUST work in O(n) where n is the number of nodes
 - MUST change the order of nodes, NOT the data (so don't touch the
 data !)
 - DON'T create new nodes
 - It is acceptable to use a recursive method.

 Example:

 a <- Becomes: a
 ├b ├i
 │├c ├e
 │└d │├h
 ├e │├g
 │├f │└f
 │├g └b
 │└h ├d
 └i └c

 """

Testing: python3 -m unittest gen_tree_test.MirrorTest

GT 2.6 clone

Implement the method clone:

def clone(self):
 """ Clones this tree, by returning an *entirely* new tree which is an
 exact copy of this tree (so returned node and *all* its descendants
 must be new).

 - MUST run in O(n) where n is the number of nodes
 - a recursive method is acceptable.
 """

 raise Exception("TODO IMPLEMENT ME !")

Testing: python3 -m unittest gen_tree_test.CloneTest

GT 2.7 rightmost

[image: gt labeled i99kfdf]

In the example above, the rightmost branch of a is given by the node sequence a,d,n

Implement this method:

def rightmost(self):
 """ RETURN a list containing the *data* of the nodes
 in the *rightmost* branch of the tree.

 Example:

 a
 ├b
 ├c
 |└e
 └d
 ├f
 └g
 ├h
 └i

 should give

 ['a','d','g','i']
 """

Testing: python3 -m unittest gen_tree_test.RightmostTest

GT 2.8 fill_left

Open tree_exercise.py and implement fill_left method:

def fill_left(self, stuff):
 """ MODIFIES the tree by filling the leftmost branch data
 with values from provided array 'stuff'

 - if there aren't enough nodes to fill, raise ValueError
 - root data is not modified
 - *DO NOT* use recursion

 """

Testing: python3 -m unittest gen_tree_test.FillLeftTest

Example:

[65]:

from gen_tree_test import gt
from gen_tree_solution import *

[66]:

t = gt('a',
 gt('b',
 gt('e',
 gt('f'),
 gt('g',
 gt('i')),
 gt('h')),
 gt('c'),
 gt('d')))

[67]:

print(t)

a
└b
 ├e
 │├f
 │├g
 ││└i
 │└h
 ├c
 └d

[68]:

t.fill_left(['x','y'])

[69]:

print(t)

a
└x
 ├y
 │├f
 │├g
 ││└i
 │└h
 ├c
 └d

[70]:

t.fill_left(['W','V','T'])
print(t)

a
└W
 ├V
 │├T
 │├g
 ││└i
 │└h
 ├c
 └d

GT 2.9 follow

Open tree_exercise.py and implement follow method:

def follow(self, positions):
 """
 RETURN an array of node data, representing a branch from the
 root down to a certain depth.
 The path to follow is determined by given positions, which
 is an array of integer indeces, see example.

 - if provided indeces lead to non-existing nodes, raise ValueError
 - IMPORTANT: *DO NOT* use recursion, use a couple of while instead.
 - IMPORTANT: *DO NOT* attempt to convert siblings to
 a python list !!!! Doing so will give you less points!

 """

Example:

 level 01234

 a
 ├b
 ├c
 |└e
 | ├f
 | ├g
 | |└i
 | └h
 └d

 RETURNS
t.follow([]) [a] root data is always present
t.follow([0]) [a,b] b is the 0-th child of a
t.follow([2]) [a,d] d is the 2-nd child of a
t.follow([1,0,2]) [a,c,e,h] c is the 1-st child of a
 e is the 0-th child of c
 h is the 2-nd child of e
t.follow([1,0,1,0]) [a,c,e,g,i] c is the 1-st child of a
 e is the 0-th child of c
 g is the 1-st child of e
 i is the 0-th child of g

Testing: python3 -m unittest gen_tree_test.FollowTest

GT 2.10 is_triangle

A triangle is a node which has exactly two children.

Let’s see some example:

 a
 / \
 / \
 b ----- c
 /|\ /
d-e-f g
 / \
 h---i
 /
 l

The tree above can also be represented like this:

a
├b
|├d
|├e
|└f
└c
 └g
 ├h
 └i
 └l

	node a is a triangle because has exactly two children b and c, note it doesn’t matter if b or c have children)

	b is not a triangle (has 3 children)

	c and i are not triangles (have only 1 child)

	g is a triangle as it has exactly two children h and i

	d, e, f, h and l are not triangles, because they have zero children

Now implement this method:

def is_triangle(self, elems):
 """ RETURN True if this node is a triangle matching the data
 given by list elems.

 In order to match:
 - first list item must be equal to this node data
 - second list item must be equal to this node first child data
 - third list item must be equal to this node second child data

 - if elems has less than three elements, raises ValueError
 """

Testing: python -m unittest gen_tree_test.IsTriangleTest

Examples:

[71]:

from gen_tree_test import gt

[72]:

this is the tree from the example above

tb = gt('b', gt('d', gt('e'), gt('f')))
tg = gt('g', gt('h'), gt('i', gt('l')))
ta = gt('a', tb, gt('c', tg))

ta.is_triangle(['a','b','c'])

[72]:

True

[73]:

ta.is_triangle(['b','c','a'])

[73]:

False

[74]:

tb.is_triangle(['b','d','e'])

[74]:

False

[75]:

tg.is_triangle(['g','h','i'])

[75]:

True

[76]:

tg.is_triangle(['g','i','h'])

[76]:

False

GT 2.11 has_triangle

Implement this method:

def has_triangle(self, elems):
 """ RETURN True if this node *or one of its descendants* is a triangle
 matching given elems. Otherwise, return False.

 - a recursive solution is acceptable
 """

Testing: python -m unittest gen_tree_test.HasTriangleTest

Examples:

[77]:

example tree seen at the beginning

tb = gt('b', gt('d', gt('e'), gt('f')))
tg = gt('g', gt('h'), gt('i', gt('l')))
tc = gt('c', tg)
ta = gt('a', tb, tc)

ta.has_triangle(['a','b','c'])

[77]:

True

[78]:

ta.has_triangle(['a','c','b'])

[78]:

False

[79]:

ta.has_triangle(['b','c','a'])

[79]:

False

[80]:

tb.is_triangle(['b','d','e'])

[80]:

False

[81]:

tg.has_triangle(['g','h','i'])

[81]:

True

[82]:

tc.has_triangle(['g','h','i']) # check recursion

[82]:

True

[83]:

ta.has_triangle(['g','h','i']) # check recursion

[83]:

True

[]:

 Graph algorithms

Graph algorithms

Download exercises zip

(before editing read whole introduction section 0.x)

Browse files online [https://github.com/DavidLeoni/datasciprolab/tree/master/exercises/graph-algos]

What to do

	unzip exercises in a folder, you should get something like this:

-jupman.py
-sciprog.py
-exercises
 |-graph-algos
 |- graph-algos.ipynb
 |- graph_exercise.py
 |- graph_solution.py

	open the editor of your choice (for example Visual Studio Code, Spyder or PyCharme), you will edit the files ending in _exercise.py files

	Go on reading this notebook, and follow instuctions inside.

Introduction

0.1 Graph theory

In short, a graph is a set of vertices linked by edges.

Longer version:

	Luca Bianco theory [https://sciproalgo2019.readthedocs.io/en/latest/slides/Lecture7.pdf]

	Graphs on the book [https://interactivepython.org/runestone/static/pythonds/Graphs/toctree.html]

	In particular, see Vocabulary and definitions [https://interactivepython.org/runestone/static/pythonds/Graphs/VocabularyandDefinitions.html]

[image: graph dir undir 12312j123]

[image: graph adjacent 334234j]

0.2 Directed graphs

In this worksheet we are going to use so called Directed Graphs (DiGraph for brevity), that is, graphs with directed edges: each edge can be pictured as an arrow linking source node a to target node b. With such an arrow, you can go from a to b but you cannot go from b to a unless there is another edge in the reverse direction.

	DiGraph for us can also have no edges or no verteces at all.

	Verteces for us can be anything, strings like ‘abc’, numbers like 3, etc

	In our model, edges simply link vertices and have no weights

	DiGraph is represented as an adjacency list, mapping each vertex to the verteces it is linked to.

QUESTION: is DiGraph model good for dense or sparse graphs?

0.3 Serious graphs

In this worksheet we follow the Do It Yourself methodology and create graph classes from scratch for didactical purposes. Of course, in Python world you have alread nice libraries entirely devoted to graphs like networkx [https://networkx.github.io/], you can also use them for visualizating graphs. If you have huge graphs to process you might consider big data tools like Spark GraphX [http://spark.apache.org/graphx] which is programmable in Python.

0.4 Code skeleton

First off, download the exercises zip and look at the files:

	graph_exercise.py : the exercise to edit

	graph_test.py: the tests to run. Do not modify this file.

Before starting to implement methods in DiGraph class, read all the following sub sections (starting with ‘0.x’)

0.5 Building graphs

IMPORTANT: All the functions in section 0 are already provided and you don’t need to implement them !

For now, open a Python 3 interpreter and try out the graph_solution module :

[2]:

from graph_solution import *

0.5.1 Building basics

Let’s look at the constructor __init__ and add_vertex. They are already provided and you don’t need to implement it:

class DiGraph:
 def __init__(self):
 # The class just holds the dictionary _edges: as keys it has the verteces, and
 # to each vertex associates a list with the verteces it is linked to.

 self._edges = {}

 def add_vertex(self, vertex):
 """ Adds vertex to the DiGraph. A vertex can be any object.

 If the vertex already exist, does nothing.
 """
 if vertex not in self._edges:
 self._edges[vertex] = []

You will see that inside it just initializes _edges. So the only way to create a DiGraph is with a call like

[3]:

g = DiGraph()

DiGraph provides an __str__ method to have a nice printout:

[4]:

print(g)

DiGraph()

To draw a DiGraph, you can use draw_dig from sciprog module - in this case draw nothing as the graph is empty:

[5]:

from sciprog import draw_dig
draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_15_0.png]

You can add then vertices to the graph like so:

[6]:

g.add_vertex('a')
g.add_vertex('b')
g.add_vertex('c')

[7]:

print(g)

a: []
b: []
c: []

To draw a DiGraph, you can use draw_dig from sciprog module:

[8]:

from sciprog import draw_dig
draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_20_0.png]

Adding a vertex twice does nothing:

[9]:

g.add_vertex('a')
print(g)

a: []
b: []
c: []

Once you added the verteces, you can start adding directed edges among them with the method add_edge:

def add_edge(self, vertex1, vertex2):
 """ Adds an edge to the graph, from vertex1 to vertex2

 If verteces don't exist, raises an Exception.
 If there is already such an edge, exits silently.
 """

 if not vertex1 in self._edges:
 raise Exception("Couldn't find source vertex:" + str(vertex1))

 if not vertex2 in self._edges:
 raise Exception("Couldn't find target vertex:" + str(vertex2))

 if not vertex2 in self._edges[vertex1]:
 self._edges[vertex1].append(vertex2)

[10]:

g.add_edge('a', 'c')
print(g)

a: ['c']
b: []
c: []

[11]:

draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_25_0.png]

[12]:

g.add_edge('a', 'b')
print(g)

a: ['c', 'b']
b: []
c: []

[13]:

draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_27_0.png]

Adding an edge twice makes no difference:

[14]:

g.add_edge('a', 'b')
print(g)

a: ['c', 'b']
b: []
c: []

Notice a DiGraph can have self-loops too (also called caps):

[15]:

g.add_edge('b', 'b')
print(g)

a: ['c', 'b']
b: ['b']
c: []

[16]:

draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_32_0.png]

0.5.2 dig()

dig() is a shortcut to build graphs, it is already provided and you don’t need to implement it.

USE IT ONLY WHEN TESTING, *NOT* IN THE ``DiGraph`` CLASS CODE !!!!

First of all, remember to import it from graph_test package:

[17]:

from graph_test import dig

With empty dict prints the empty graph:

[18]:

print(dig({}))

DiGraph()

To build more complex graphs, provide a dictionary with pairs source vertex / target verteces list like in the following examples:

[19]:

print(dig({'a':['b','c']}))

a: ['b', 'c']
b: []
c: []

[20]:

print(dig({'a': ['b','c'],
 'b': ['b'],
 'c': ['a']}))

a: ['b', 'c']
b: ['b']
c: ['a']

0.6 Equality

Graphs for us are equal irrespectively of the order in which elements in adjacency lists are specified. So for example these two graphs will be considered equal:

[21]:

dig({'a': ['c', 'b']}) == dig({'a': ['b', 'c']})

[21]:

True

0.7 Basic querying

There are some provided methods to query the DiGraph: adj, verteces, is_empty

0.7.1 adj

To obtain the edges, you can use the method adj(self, vertex). It is already provided and you don’t need to implement it:

def adj(self, vertex):
 """ Returns the verteces adjacent to vertex.

 NOTE: verteces are returned in a NEW list.
 Modifying the list will have NO effect on the graph!
 """
 if not vertex in self._edges:
 raise Exception("Couldn't find a vertex " + str(vertex))

 return self._edges[vertex][:]

[22]:

lst = dig({'a': ['b', 'c'],
 'b': ['c']}).adj('a')
print(lst)

['b', 'c']

Let’s check we actually get back a new list (so modifying the old one won’t change the graph):

[23]:

lst.append('d')
print(lst)

['b', 'c', 'd']

[24]:

print(g.adj('a'))

['c', 'b']

NOTE: This technique of giving back copies is also called defensive copying: it prevents users from modifying the internal data structures of a class instance in an uncontrolled manner. For example, if we allowed them direct access to the internal verteces list, they could add duplicate edges, which we don’t allow in our model. If instead we only allow users to add edges by calling add_edge, we are sure the constraints for our model will always remain satisfied.

0.7.2 is_empty()

We can check if a DiGraph is empty. It is already provided and you don’t need to implement it:

def is_empty(self):
 """ A DiGraph for us is empty if it has no verteces and no edges """

 return len(self._edges) == 0

[25]:

print(dig({}).is_empty())

True

[26]:

print(dig({'a':[]}).is_empty())

False

0.7.3 verteces()

To obtain the verteces, you can use the function verteces. (NOTE for Italians: method is called verteces, with two es !!!). It is already provided and you don’t need to implement it:

def verteces(self):
 """ Returns a set of the graph verteces. Verteces can be any object. """

 # Note dict keys() return a list, not a set. Bleah.
 # See http://stackoverflow.com/questions/13886129/why-does-pythons-dict-keys-return-a-list-and-not-a-set
 return set(self._edges.keys())

[27]:

g = dig({'a': ['c', 'b'],
 'b': ['c']})
print(g.verteces())

{'a', 'c', 'b'}

Notice it returns a set, as verteces are stored as keys in a dictionary, so they are not supposed to be in any particular order. When you print the whole graph you see them vertically ordered though, for clarity purposes:

[28]:

print(g)

a: ['c', 'b']
b: ['c']
c: []

Verteces in the edges list are instead stored and displayed in the order in which they were inserted.

0.8 Blow up your computer

Try to call the already implemented function graph_test.gen_graphs with small numbers for n, like 1, 2 , 3 , 4 …. Just with 2 we get back a lot of graphs:

def gen_graphs(n):
 """ Returns a list with all the possible 2^(n^2) graphs of size n

 Verteces will be identified with numbers from 1 to n
 """

[29]:

from graph_test import gen_graphs
print(gen_graphs(2))

[
1: []
2: []
,
1: []
2: [2]
,
1: []
2: [1]
,
1: []
2: [1, 2]
,
1: [2]
2: []
,
1: [2]
2: [2]
,
1: [2]
2: [1]
,
1: [2]
2: [1, 2]
,
1: [1]
2: []
,
1: [1]
2: [2]
,
1: [1]
2: [1]
,
1: [1]
2: [1, 2]
,
1: [1, 2]
2: []
,
1: [1, 2]
2: [2]
,
1: [1, 2]
2: [1]
,
1: [1, 2]
2: [1, 2]
]

QUESTION: What happens if you call gen_graphs(10) ? How many graphs do you get back ?

1. Implement building

Enough for talking! Let’s implement building graphs.

1.1 has_edge

Implement this method in DiGraph:

def has_edge(self, source, target):
 """ Returns True if there is an edge between source vertex and target vertex.
 Otherwise returns False.

 If either source, target or both verteces don't exist raises an Exception.
 """

 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest graph_test.HasEdgeTest

1.2 full_graph

Implement this function outside the class definition. It is not a method of DiGraph !

def full_graph(verteces):
 """ Returns a DiGraph which is a full graph with provided verteces list.

 In a full graph all verteces link to all other verteces (including themselves!).
 """

 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest graph_test.FullGraphTest

1.3 dag

Implement this function outside the class definition. It is not a method of DiGraph !

def dag(verteces):
 """ Returns a DiGraph which is DAG (Directed Acyclic Graph) made out of provided verteces list

 Provided list is intended to be in topological order.
 NOTE: a DAG is ACYCLIC, so caps (self-loops) are not allowed !!
 """

 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest graph_test.DagTest

1.4 list_graph

Implement this function outside the class definition. It is not a method of DiGraph !

def list_graph(n):
 """ Return a graph of n verteces displaced like a
 monodirectional list: 1 -> 2 -> 3 -> ... -> n

 Each vertex is a number i, 1 <= i <= n and has only one edge connecting it
 to the following one in the sequence
 If n = 0, return the empty graph.
 if n < 0, raises an Exception.
 """

 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest graph_test.ListGraphTest

1.5 star_graph

Implement this function outside the class definition. It is not a method of DiGraph !

def star_graph(n):
 """ Returns graph which is a star with n nodes

 First node is the center of the star and it is labeled with 1. This node is linked
 to all the others. For example, for n=4 you would have a graph like this:

 3
 ^
 |
 2 <- 1 -> 4

 If n = 0, the empty graph is returned
 If n < 0, raises an Exception
 """

 raise Exception("TODO IMPLEMENT ME!")

Testing: python3 -m unittest graph_test.StarGraphTest

1.6 odd_line

Implement this function outside the class definition. It is not a method of DiGraph !

def odd_line(n):
 """ Returns a DiGraph with n verteces, displaced like a line of odd numbers

 Each vertex is an odd number i, for 1 <= i < 2n. For example, for
 n=4 verteces are displaced like this:

 1 -> 3 -> 5 -> 7

 For n = 0, return the empty graph

 """

Testing: python3 -m unittest graph_test.OddLineTest

Example usage:

[30]:

odd_line(0)

[30]:

DiGraph()

[31]:

odd_line(1)

[31]:

1: []

[32]:

 odd_line(2)

[32]:

1: [3]
3: []

[33]:

odd_line(3)

[33]:

1: [3]
3: [5]
5: []

[34]:

odd_line(4)

[34]:

1: [3]
3: [5]
5: [7]
7: []

1.7 even_line

Implement this function outside the class definition. It is not a method of DiGraph !

def even_line(n):
 """ Returns a DiGraph with n verteces, displaced like a line of even numbers

 Each vertex is an even number i, for 2 <= i <= 2n. For example, for
 n=4 verteces are displaced like this:

 2 <- 4 <- 6 <- 8

 For n = 0, return the empty graph

 """

Testing: python3 -m unittest graph_test.EvenLineTest

Example usage:

[35]:

even_line(0)

[35]:

DiGraph()

[36]:

even_line(1)

[36]:

2: []

[37]:

 even_line(2)

[37]:

2: []
4: [2]

[38]:

even_line(3)

[38]:

2: []
4: [2]
6: [4]

1.8 quads

Implement this function outside the class definition. It is not a method of DiGraph !

def quads(n):
 """ Returns a DiGraph with 2n verteces, displaced like a strip of quads.

 Each vertex is a number i, 1 <= i <= 2n.
 For example, for n = 4, verteces are displaced like this:

 1 -> 3 -> 5 -> 7
 ^ | ^ |
 | ; | ;
 2 <- 4 <- 6 <- 8

 where

 ^ |
 | represents an upward arrow, while ; represents a downward arrow

 """

Testing: python3 -m unittest graph_test.QuadsTest

Example usage:

[39]:

quads(0)

[39]:

DiGraph()

[40]:

quads(1)

[40]:

1: []
2: [1]

[41]:

quads(2)

[41]:

1: [3]
2: [1]
3: [4]
4: [2]

[42]:

quads(3)

[42]:

1: [3]
2: [1]
3: [5, 4]
4: [2]
5: []
6: [4, 5]

[43]:

quads(4)

[43]:

1: [3]
2: [1]
3: [5, 4]
4: [2]
5: [7]
6: [4, 5]
7: [8]
8: [6]

1.9 pie

Implement this function outside the class definition. It is not a method of DiGraph !

def pie(n):
 """
 Returns a DiGraph with n+1 verteces, displaced like a polygon with a perimeter
 of n verteces progressively numbered from 1 to n.
 A central vertex numbered zero has outgoing edges to all other verteces.

 For n = 0, return the empty graph.
 For n = 1, return vertex zero connected to node 1, and node 1 has a self-loop.

 """

Testing: python3 -m unittest graph_test.PieTest

Example usage:

For n=5, the function creates this graph:

[44]:

pie(5)

[44]:

0: [1, 2, 3, 4, 5]
1: [2]
2: [3]
3: [4]
4: [5]
5: [1]

[image: pie 34hy243y]

Degenerate cases:

[45]:

pie(0)

[45]:

DiGraph()

[46]:

pie(1)

[46]:

0: [1]
1: [1]

1.10 Flux Capacitor

A Flux Capacitor is a plutonium-powered device that enables time travelling. During the 80s it was installed on a Delorean car and successfully used to ride humans back and forth across centuries:

[image: flux capacitor j3k3]

In this exercise you will build a Flux Capacitor model as a Y-shaped DiGraph, created according to a parameter depth. Here you see examples at different depths:

[image: flux capacitor graph i324324]

Implement this function outside the class definition. It is not a method of DiGraph !

def flux(depth):
 """ Returns a DiGraph with 1 + (d * 3) numbered verteces displaced like a Flux Capacitor:

 - from a central node numbered 0, three branches depart
 - all edges are directed outward
 - on each branch there are 'depth' verteces.
 - if depth < 0, raises a ValueError

 For example, for depth=2 we get the following graph (suppose arrows point outward):

 4 5
 \ /
 1 2
 \ /
 0
 |
 3
 |
 6

Testing: python3 -m unittest graph_test.FluxTest

Example usage:

[47]:

flux(0)

[47]:

0: []

[48]:

flux(1)

[48]:

0: [1, 2, 3]
1: []
2: []
3: []

[49]:

flux(2)

[49]:

0: [1, 2, 3]
1: [4]
2: [5]
3: [6]
4: []
5: []
6: []

[50]:

 flux(3)

[50]:

0: [1, 2, 3]
1: [4]
2: [5]
3: [6]
4: [7]
5: [8]
6: [9]
7: []
8: []
9: []

2. Manipulate graphs

You will now implement some methods to manipulate graphs.

2.1 remove_vertex

def remove_vertex(self, vertex):
 """ Removes the provided vertex and returns it

 If the vertex is not found, raises an Exception.
 """

Testing: python3 -m unittest graph_test.RemoveVertexTest

2.2 transpose

def transpose(self):
 """ Reverses the direction of all the edges

 - MUST perform in O(|V|+|E|)
 Note in adjacency lists model we suppose there are only few edges per node,
 so if you end up with an algorithm which is O(|V|^2) you are ending up with a
 complexity usually reserved for matrix representations !!

 NOTE: this method changes in-place the graph: does **not** create a new instance
 and does *not* return anything !!

 NOTE: To implement it *avoid* modifying the existing _edges dictionary (would
 probably more problems than anything else).
 Instead, create a new dictionary, fill it with the required
 verteces and edges ad then set _edges to point to the new dictionary.
 """

Testing: python3 -m unittest graph_test.TransposeTest

2.3 has_self_loops

def has_self_loops(self):
 """ Returns True if the graph has any self loop (a.k.a. cap), False otherwise """

Testing: python3 -m unittest graph_test.HasSelfLoopsTest

2.4 remove_self_loops

def remove_self_loops(self):
 """ Removes all of the self-loops edges (a.k.a. caps)

 NOTE: Removes just the edges, not the verteces!
 """

Testing: python3 -m unittest graph_test.RemoveSelfLoopsTest

2.5 undir

def undir(self):
 """ Return a *NEW* undirected version of this graph, that is, if an edge a->b exists in this graph,
 the returned graph must also have both edges a->b and b->a

 DO NOT modify the current graph, just return an entirely new one.
 """

Testing: python3 -m unittest graph_test.UndirTest

3. Query graphs

You can query graphs the Do it yourself way with Depth First Search (DFS) or Breadth First Search (BFS).

Let’s make a simple example:

[51]:

g = dig({'a': ['a','b', 'c'],
 'b': ['c'],
 'd': ['e']})

from sciprog import draw_dig
draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_94_0.png]

[52]:

g.dfs('a')

DEBUG: Stack is: ['a']
DEBUG: popping from stack: a
DEBUG: not yet visited
DEBUG: Scheduling for visit: a
DEBUG: Scheduling for visit: b
DEBUG: Scheduling for visit: c
DEBUG: Stack is : ['a', 'b', 'c']
DEBUG: popping from stack: c
DEBUG: not yet visited
DEBUG: Stack is : ['a', 'b']
DEBUG: popping from stack: b
DEBUG: not yet visited
DEBUG: Scheduling for visit: c
DEBUG: Stack is : ['a', 'c']
DEBUG: popping from stack: c
DEBUG: already visited!
DEBUG: popping from stack: a
DEBUG: already visited!

Compare it wirh the example for the bfs :

[53]:

draw_dig(g)

[image: ../../_images/exercises_graph-algos_graph-algos_97_0.png]

[54]:

g.bfs('a')

DEBUG: Removed from queue: a
DEBUG: Found neighbor: a
DEBUG: already visited
DEBUG: Found neighbor: b
DEBUG: not yet visited, enqueueing ..
DEBUG: Found neighbor: c
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['b', 'c']
DEBUG: Removed from queue: b
DEBUG: Found neighbor: c
DEBUG: already visited
DEBUG: Queue is: ['c']
DEBUG: Removed from queue: c
DEBUG: Queue is: []

Predictably, results are different.

3.1 distances()

Implement this method of DiGraph:

def distances(self, source):
 """
 Returns a dictionary where the keys are verteces, and each vertex v is associated
 to the *minimal* distance in number of edges required to go from the source
 vertex to vertex v. If node is unreachable, the distance will be -1

 Source has distance zero from itself
 Verteces immediately connected to source have distance one.

 - if source is not a vertex, raises an LookupError
 - MUST execute in O(|V| + |E|)
 - HINT: implement this using bfs search.
 """

If you look at the following graph, you can see an example of the distances to associate to each vertex, supposing that the source is a. Note that a iself is at distance zero from itself and also that unreachable nodes like f and g will be at distance -1

[55]:

import sciprog
sciprog.draw_nx(sciprog.show_distances())

[image: ../../_images/exercises_graph-algos_graph-algos_101_0.png]

distances('a') called on this graph would return a map like this:

{
 'a':0,
 'b':1,
 'c':1,
 'd':2,
 'e':3,
 'f':-1,
 'g':-1,

}

3.2 equidistances()

Implement this method of DiGraph:

def equidistances(self, va, vb):
 """ RETURN a dictionary holding the nodes which
 are equidistant from input verteces va and vb.
 The dictionary values will be the distances of the nodes.

 - if va or vb are not present in the graph, raises LookupError
 - MUST execute in O(|V| + |E|)
 - HINT: To implement this, you can use the previously defined distances() method
 """

Example:

[56]:

G = dig({'a': ['b','e'],
 'b': ['d'],
 'c': ['d'],
 'd': ['f'],
 'e': ['d','b'],
 'f': ['g','h'],
 'g': ['e']})
draw_dig(G, options={'graph':{'size':'15,3!', 'rankdir':'LR'}})

[image: ../../_images/exercises_graph-algos_graph-algos_104_0.png]

Consider a and g, they both:

	can reach e in one step

	can reach d in two steps

	can reach f in three steps

	can reach h in four steps

	c is unreachable by both a andg,so it won’t be present in the output

	b is reached from a in one step, and from g in two steps, so it won’t be included in the output

[57]:

G.equidistances('a','g')

[57]:

{'e': 1, 'd': 2, 'f': 3, 'h': 4}

3.3 Play with dfs and bfs

Create small graphs (like linked lists a->b->c, triangles, mini-full graphs, trees - you can also use the functions you defined to create graphs like full_graph, dag, list_graph, star_graph) and try to predict the visit sequence (verteces order, with discovery and finish times) you would have running a dfs or bfs. Then write tests that assert you actually get those sequences when running provided dfs and bfs

3.4 Exits graph

There is a place nearby Trento called Silent Hill, where people always study and do little else. Unfortunately, one day an unethical biotech AI experiment goes wrong and a buggy cyborg is left free to roam in the building. To avoid panic, you are quickly asked to devise an evacuation plan. The place is a well known labyrinth, with endless corridors also looping into cycles. But you know you can model this network as a digraph, and decide to represent crossings as nodes. When a crossing has a
door to leave the building, its label starts with letter e, while when there is no such door the label starts with letter n.

In the example below, there are three exits e1, e2, and e3. Given a node, say n1, you want to tell the crowd in that node the shortest paths leading to the three exits. To avoid congestion, one third of the crowd may be told to go to e2, one third to reach e1 and the remaining third will go to e3 even if they are farther than e2.

In Python terms, we would like to obtain a dictionary of paths like the following, where as keys we have the exits and as values the shortest sequence of nodes from n1 leading to that exit

{
 'e1': ['n1', 'n2', 'e1'],
 'e2': ['n1', 'e2'],
 'e3': ['n1', 'e2', 'n3', 'e3']
}

[58]:

from sciprog import draw_dig
from graph_solution import *
from graph_test import dig

[59]:

G = dig({'n1':['n2','e2'],
 'n2':['e1'],
 'e1':['n1'],
 'e2':['n2','n3', 'n4'],
 'n3':['e3'],
 'n4':['n1']})
draw_dig(G)

[image: ../../_images/exercises_graph-algos_graph-algos_110_0.png]

You will solve the exercise in steps, so open exits_solution.py and proceed reading the following points.

3.4.1 Exits graph cp

Implement this method

def cp(self, source):
 """ Performs a BFS search starting from provided node label source and
 RETURN a dictionary of nodes representing the visit tree in the
 child-to-parent format, that is, each key is a node label and as value
 has the node label from which it was discovered for the first time

 So if node "n2" was discovered for the first time while
 inspecting the neighbors of "n1", then in the output dictionary there
 will be the pair "n2":"n1".

 The source node will have None as parent, so if source is "n1" in the
 output dictionary there will be the pair "n1": None

 - MUST execute in O(|V| + |E|)
 - NOTE: This method must *NOT* distinguish between exits
 and normal nodes, in the tests we label them n1, e1 etc just
 because we will reuse in next exercise
 - NOTE: You are allowed to put debug prints, but the only thing that
 matters for the evaluation and tests to pass is the returned
 dictionary
 """

Testing: python3 -m unittest graph_test.CpTest

Example:

[60]:

G.cp('n1')

DEBUG: Removed from queue: n1
DEBUG: Found neighbor: n2
DEBUG: not yet visited, enqueueing ..
DEBUG: Found neighbor: e2
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['n2', 'e2']
DEBUG: Removed from queue: n2
DEBUG: Found neighbor: e1
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['e2', 'e1']
DEBUG: Removed from queue: e2
DEBUG: Found neighbor: n2
DEBUG: already visited
DEBUG: Found neighbor: n3
DEBUG: not yet visited, enqueueing ..
DEBUG: Found neighbor: n4
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['e1', 'n3', 'n4']
DEBUG: Removed from queue: e1
DEBUG: Found neighbor: n1
DEBUG: already visited
DEBUG: Queue is: ['n3', 'n4']
DEBUG: Removed from queue: n3
DEBUG: Found neighbor: e3
DEBUG: not yet visited, enqueueing ..
DEBUG: Queue is: ['n4', 'e3']
DEBUG: Removed from queue: n4
DEBUG: Found neighbor: n1
DEBUG: already visited
DEBUG: Queue is: ['e3']
DEBUG: Removed from queue: e3
DEBUG: Queue is: []

[60]:

{'n1': None,
 'n2': 'n1',
 'e2': 'n1',
 'e1': 'n2',
 'n3': 'e2',
 'n4': 'e2',
 'e3': 'n3'}

Basically, the dictionary above represents this visit tree:

 n1
 / \
n2 e2
 \ / \
 e1 n3 n4
 |
 e3

3.4.2 Exit graph exits

Implement this function. NOTE: the function is external to class DiGraph.

def exits(cp):
 """
 INPUT: a dictionary of nodes representing a visit tree in the
 child-to-parent format, that is, each key is a node label and
 as value has its parent as a node label. The root has
 associated None as parent.

 OUTPUT: a dictionary mapping node labels of exits to a list
 of node labels representing the the shortest path from
 the root to the exit (root and exit included)

 - MUST execute in O(|V| + |E|)
 """

Testing: python3 -m unittest graph_test.ExitsTest

Example:

[61]:

as example we can use the same dictionary outputted by the cp call in the previous exercise

visit_cp = { 'e1': 'n2',
 'e2': 'n1',
 'e3': 'n3',
 'n1': None,
 'n2': 'n1',
 'n3': 'e2',
 'n4': 'e2'
 }
exits(visit_cp)

[61]:

{'e1': ['n1', 'n2', 'e1'], 'e2': ['n1', 'e2'], 'e3': ['n1', 'e2', 'n3', 'e3']}

3.5 connected components

Implement cc:

def cc(self):
 """ Finds the connected components of the graph, returning a dict object
 which associates to the verteces the corresponding connected component
 number id, where 1 <= id <= |V|

 IMPORTANT: ASSUMES THE GRAPH IS UNDIRECTED !
 ON DIRECTED GRAPHS, THE RESULT IS UNPREDICTABLE !

 To develop this function, implement also ccdfs

 HINT: store 'counter' as field in Visit object
 """

Which in turn uses the FUNCTION ccdfs, also to implement INSIDE the method cc:

def ccdfs(counter, source, ids):
 """
 Performs a DFS from source vertex

 HINT: Copy in here the method from DFS and adapt it as needed
 HINT: store the connected component id in VertexLog objects
 """

Testing: python3 -m unittest graph_test.CCTest

NOTE: In tests, to keep code compact graphs are created a call to udig()

[62]:

from graph_test import udig

udig({'a': ['b'],
 'c': ['d']})

[62]:

a: ['b']
b: ['a']
c: ['d']
d: ['c']

which makes sure the resulting graph is undirected as CC algorithm requires (so if there is one edge a->b there will also be another edge b->a)

3.6 has_cycle

Implement has_cycle method for directed graphs:

```python

def has_cycle(self):
    """ Return True if this directed graph has a cycle, return False otherwise.

        - To develop this function, implement also has_cycle_rec(u) inside this method
        - Inside has_cycle_rec, to reference variables of has_cycle you need to
          declare them as nonlocal like
             nonlocal clock, dt, ft
        - MUST be able to also detect self-loops
    """```





and also has_cycle_rec inside has_cycle:

def has_cycle_rec(u):
    raise Exception("TODO IMPLEMENT ME !")





Testing: python3 -m unittest graph_test.HasCycleTest




3.7 top_sort

Look at Montresor slides on topological sort [http://disi.unitn.it/~montreso/sp/slides/B04-grafi.pdf]

Keep in mind two things:


	topological sort works on DAGs, that is, Directed Acyclic Graphs


	given a graph, there can be more than one valid topological sort


	it works also on DAGs having disconnected components, in which case the nodes of one component can be interspersed with the nodes of other components at will, provided the order within nodes belonging to the same component is preserved.




EXERCISE: Before coding, try by hand to find all the topological sorts of the following graphs. For all them, you will find the solutions listed in the tests.


[63]:






G = dig({'a':['c'],
         'b':['c']})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_121_0.png]





[64]:






G = dig({'a':['b'], 'c':[]})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_122_0.png]





[65]:






G = dig({'a':['b'], 'c':['d']})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_123_0.png]





[66]:






G = dig({'a':['b','c'], 'b':['d'], 'c':['d']})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_124_0.png]





[67]:






G = dig({'a':['b','c','d'], 'b':['e'], 'c':['e'], 'd':['e']})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_125_0.png]





[68]:






G = dig({'a':['b','c','d'], 'b':['c','d'], 'c':['d'], 'd':[]})
draw_dig(G)












[image: ../../_images/exercises_graph-algos_graph-algos_126_0.png]




Now implement this method:

def top_sort(self):
    """ RETURN a topological sort of the graph. To implement this code,
        feel free to adapt Montresor algorithm

        - implement  Stack S  as a list
        - implement  visited  as a set
        - NOTE: differently from Montresor code, for tests to pass
                you will need to return a reversed list. Why ?
    """





Testing: python3 -m unittest graph_test.TopSortTest

Note: in tests there is the method self.assertIn(el,elements) which checks el is in elements. We use it because for a graph there a many valid topological sorts, and we want the test independent from your particular implementation .


[ ]:






















          

      

      

    

  

  
    
    Index
    

    

    
 
  

    
      
          
            
  



	Home
	News

	Slides

	Office hours

	Labs timetable

	Tutoring

	Exams

	Resources

	Acknoledgements





	Past Exams
	Data science

	2017-18 (QCB)

	2016-17 (QCB)





	Slides 2019/20
	Part A





	Commandments

	Introduction
	Download exercises zip

	Installation

	Python tutor

	System console

	Python interpreter

	Visual Studio Code

	The debugger

	Jupyter

	Course exercise formats

	Exercises





	Python basics
	Download exercises zip

	Modules

	Objects

	Variables

	Numeric types

	Booleans

	Numeric operators

	Real numbers





	Strings
	Download exercises zip

	What to do

	Introduction

	Exercises with functions

	Verify comprehension

	Further resources





	Lists
	Download exercises zip

	What to do

	Introduction

	Exercises with functions

	Verify comprehension

	Recursive operations

	Further exercises





	Tuples
	Download exercises zip

	What to do

	Introduction

	Verify comprehension





	Sets
	Download exercises zip

	introduction





	Dictionaries
	Download exercises zip

	What to do

	Introduction

	Dictionary methods

	Exercises with functions

	Verify comprehension





	Control flow
	Download exercises zip

	Introduction

	Execution flow

	Conditionals

	Loops

	Exercises





	Functions
	Download exercises zip

	Introduction

	Namespace and variable scope

	Argument passing

	Simple exercises

	Verify comprehension

	Lambda functions





	Errors and testing
	Download exercises zip

	Introduction

	Unforeseen situations

	Check with the return

	Exceptions

	assert

	Testing

	Testing with asserts

	Testing with Unittest

	Functional programming





	Matrices: lists
	Download exercises zip

	Introduction

	What to do

	Exercises





	Matrices: numpy
	Download exercises zip

	Introduction

	np.array

	NaNs and infinities

	Verify comprehension





	Data formats
	Download exercises zip

	Introduction

	1. line files

	2. File CSV





	Graph formats
	Download exercises zip

	Introduction

	Adjacency lists

	Networkx

	Simple statistics





	Visualization
	Download exercises zip

	Introduction

	First example

	Introducting numpy

	Bar plots

	Frequency histogram

	Showing plots side by side

	Other plots





	Pandas
	Download exercises zip

	1. Introduction

	2. Data analysis of Astro Pi

	3. Indexing, filtering, ordering

	4. MatPlotLib review

	5. Calculating new columns

	6. Object values

	7. Transforming

	8. Grouping

	9. Exercise: meteo average temperatures

	10. Merging tables

	11. Other exercises





	Binary relations
	Download exercises zip

	Introduction

	Exercises

	Further resources





	OOP
	Download exercises zip

	What to do

	1. Abstract Data Types (ADT) Theory

	2. ComplexNumber class

	3. MultiSet

	3.1 __init__ add and get

	3.2 removen





	Sorting
	Download exercises zip

	Introduction

	List performance

	Exercises

	1 Selection Sort

	2 Insertion sort

	3 Merge sort

	4 quick sort

	5. chaining

	6 SwapArray





	Linked lists
	Download exercises zip

	0 Introduction

	1 v1: a slow LinkedList

	2 v2 faster size

	3 v3 Faster append

	4 v4 Go bidirectional

	5 EqList

	6 Cloning

	7 More exercises





	Stacks
	Download exercises zip

	0. Introduction

	1. CappedStack

	2. SortedStack

	3. WStack

	4. Backpack

	5. Tasks

	6. Stacktris





	Queues
	Download exercises zip

	Introduction

	1. LinkedQueue

	2. CircularQueue

	3. ItalianQueue

	4. Supermarket queues

	5. Shopping mall queues

	6. Company queues

	7. Concert





	Trees
	Download exercises zip

	0. Introduction

	BT 0. Binary Tree Introduction

	BT 1. Insertions

	BT 2. Recursive visit

	BT 3. Stack visit

	BT Further resources

	GT 0. Generic Tree Introduction

	GT 1 Implement basic methods

	GT 2 Implement more complex functions





	Graph algorithms
	Download exercises zip

	Introduction

	1. Implement building

	2. Manipulate graphs

	3. Query graphs










Index





          

      

      

    

  

  
    
    Index
    

    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    DataSciproLab
    

    

    
 
  

    
      
          
            
  


DataSciproLab

Source code as Jupyter Python worksheets for algorithms lab of Scientific Programming course (Data Science master, University of Trento)

For Students:


	Officiale course website is here  datasciprolab.readthedocs.org [http://datasciprolab.readthedocs.org]


	In this repository you will find the pages for building the website, the only thing interesting to you
should be the exercises folder




For instructors: see Jupman [http://jupman.readthedocs.io]





          

      

      

    

  

  
    
    Changelog
    

    

    
 
  

    
      
          
            
  


Changelog

DataSciproLab http://datasciprolab.readthedocs.com


0.1, September 2018

Site is born







          

      

      

    

  

  
    
    Old news
    

    

    
 
  

    
      
          
            
  


Old news


Warning: last news are published at the top of course description



5 November 2019: WARNING: TUTORING CHANGE

Since Fridays apparently aren’t the best day for tutoring (nobody went twice in a row), we’re moving Friday tutoring to Wednesday 9:00-11:00 starting with Wednesday 6 November. Rooms: A219 until Wednesday 13 November included, A218 afterwards

Given the fact many of you took ages to do the midterm simulation, I’d recommend attendance.

2 November 2019:


	published Midterm simulation solutions


	added NaN and infinities section to matrix: numpy exercises


	improved pandas exercises


	added functions exercises




24 October 2019: updated numpy matrices and visualization

22 October 2019: WARNING: TUTORING TIMETABLE CHANGE!

Unfortunately, due to reasons beyond our control we need need to change timetable for tutoring:


	Mondays remain the same: room A215 from 11.30-13.30


	Fridays change: instead of previous 12.30-14:30, the new hours will be 11.00-13.00. Friday room is also changed, it will be A218 for all fridays


	Graph formats draw functions:


	fixed bug about username not found in windows


	now it is possible to save to file in draw_mat, draw_nx, etc by passing filename in parameter save_to, see documentation [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-formats/graph-formats-solution.html#Saving-a-graph-to-a-file]








17 October 2019 : rewrote Graph formats page

12 October 2019 : tutoring service has been set up on Mondays and Fridays starting Monday 14th October, see timetable

10 October 2019: Save the dates:


	MIDTERM PART A SIMULATION: 31 october 15:30-17:30 room a202


	MIDTERM PART A: 7 november 11:30-13:30 room b106




IMPORTANT: differently from past Part A exams, there will also be an exercise on Pandas.


	merged Part A graph stuff into graph formats [https://datasciprolab.readthedocs.io/en/latest/exercises/graph-formats/graph-formats-solution.html]




7 October 2019


	added Tuples page (were extracted from Lists)


	updated Dictionaries


	rewrote Sets, now belongs to Part A




3 October 2019: updated Lists

1 October 2019


	updated Strings


	updated error handling and testing




24 September 2019


	updated introduction


	added Python basics




27 August 2019: published exam solutions

2 July 2019: published exam solutions

10 June 2019: published exam solutions


	13 January 2019: published exam solutions


	23 January 2019: published exam solutions


	23 January 2019: removed children() method from GenericTree (you shouldn’t use it anyway)


	10 January 2019: published Part B midterm solutions


	9 January 2019: added topsort to graph algorithm exercises


	24 December 2018:


	Added to LinkedList exercises: EqList, Cloning, and More exercises


	Added to Sorting exercises: chains, SwapArray exercises






	14 December 2018, published:


	stack exercises


	queues exercises


	set exercises






	12 December 2018: the lab of Friday 14th Dec is moved to A211 from 8:30 to 11:30 . As you have noticed, there is even an extra FREE hour of coding, so don’t miss this special Friday offer !


	11 December 2018: published graph algorithm exercises


	9 December 2018: fixed tree exercises


	6 December 2018: published linked-lists exercises


	5 December 2018: expanded sorting with insertion_sort, merge_sort, quick_sort


	16 November 2018: Published midterm solutions


	14 November 2018: Published midterm simulation exam solutions


	6 November 2018: RESTRUCTURED WEBSITE


	Added Exam modalities , please read them


	Added difficulty ratings to exercises


	Added sections:


	Strings


	Graph formats


	Binary relations


	Pandas






	Expanded sections:


	Lists


	Visualization










	26 October 2018: IMPORTANT: there will be NO LABS on Tuesday 20 October and on Friday 2 November. Next lab is scheduled for Tuesday 6 November.


	23 October 2018: Restructured Basic data structures material, separating into pages Lists and Dictionaries


	16 October 2018:


	restructured Matrix material, separating matrix chapter into pages Matrix as lists of lists and Matrix networks


	fixed graph drawing function and moved it to sciprog module.






	13 October 2018: added explanations to Matrix as lists of lists lesson


	The missed lab of 2nd October is moved to Wednesday 10 October 11.30-13.30 room A209 Povo 1. Other scheduled labs will be held regularly.


	5 October 2018 14:30 A214 Povo 1: lab to be held regularly


	2 October 2018: Lab 2 did not happen, I apologize for the inconvenience. See you on Friday 5th October at 14:30


	21 Sept 2018: Moved website from old QCB master sciprolab2.readthedocs.io [https://sciprolab2.readthedocs.io] to datasciprolab.readthedocs.io [https://datasciprolab.readthedocs.io]





[ ]:


















          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  


[99]:







#DAV silly way to create n tles files so later we can read them with skyfield :-/
with open('iss-tles.txt', encoding='utf-8', newline='') as fin:
    i = 0
    row1 = fin.readline()
    while row1 != "":
        row2 = fin.readline()
        with open('tles/tle-%s.txt' % i, 'w', newline='') as fout:
            fout.write(row1)
            fout.write(row2)
        i += 1
        row1 = fin.readline()








[ ]:






# pandas
#tls = pd.read_csv('iss-tles.txt', encoding='UTF-8',names=list(range(1,10)),sep='\s+')








[88]:






#DAV:  satellite visible area:  https://stackoverflow.com/a/54990129

import skyfield
from skyfield import api
from skyfield.positionlib import ICRF, Geocentric
from skyfield.constants import (AU_M, ERAD, DEG2RAD,
                                IERS_2010_INVERSE_EARTH_FLATTENING, tau)
from skyfield.units import Angle

from numpy import einsum, sqrt, arctan2, pi, cos, sin

def reverse_terra(xyz_au, gast, iterations=3):
    """Convert a geocentric (x,y,z) at time `t` to latitude and longitude.
    Returns a tuple of latitude, longitude, and elevation whose units
    are radians and meters.  Based on Dr. T.S. Kelso's quite helpful
    article "Orbital Coordinate Systems, Part III":
    https://www.celestrak.com/columns/v02n03/
    """
    x, y, z = xyz_au
    R = sqrt(x*x + y*y)

    lon = (arctan2(y, x) - 15 * DEG2RAD * gast - pi) % tau - pi
    lat = arctan2(z, R)

    a = ERAD / AU_M
    f = 1.0 / IERS_2010_INVERSE_EARTH_FLATTENING
    e2 = 2.0*f - f*f
    i = 0
    C = 1.0
    while i < iterations:
        i += 1
        C = 1.0 / sqrt(1.0 - e2 * (sin(lat) ** 2.0))
        lat = arctan2(z + a * C * e2 * sin(lat), R)
    elevation_m = ((R / cos(lat)) - a * C) * AU_M
    earth_R = (a*C)*AU_M
    return lat, lon, elevation_m, earth_R

def subpoint(self, iterations):
    """Return the latitude an longitude directly beneath this position.

    Returns a :class:`~skyfield.toposlib.Topos` whose ``longitude``
    and ``latitude`` are those of the point on the Earth's surface
    directly beneath this position (according to the center of the
    earth), and whose ``elevation`` is the height of this position
    above the Earth's center.
    """
    if self.center != 399:  # TODO: should an __init__() check this?
        raise ValueError("you can only ask for the geographic subpoint"
                            " of a position measured from Earth's center")
    t = self.t
    xyz_au = einsum('ij...,j...->i...', t.M, self.position.au)
    lat, lon, elevation_m, self.earth_R = reverse_terra(xyz_au, t.gast, iterations)

    from skyfield.toposlib import Topos
    return Topos(latitude=Angle(radians=lat),
                    longitude=Angle(radians=lon),
                    elevation_m=elevation_m)

def earth_radius(self):
    return self.earth_R

def satellite_visiable_area(earth_radius, satellite_elevation):
    """Returns the visible area from a satellite in square meters.

    Formula is in the form is 2piR^2h/R+h where:
        R = earth radius
        h = satellite elevation from center of earth
    """
    return ((2 * pi * ( earth_radius ** 2 ) *
            ( earth_radius + satellite_elevation)) /
            (earth_radius + earth_radius + satellite_elevation))










[93]:







def load_tle(filepath):
    #stations_url = 'http://celestrak.com/NORAD/elements/stations.txt'
    #satellites = api.load.tle(stations_url)
    satellites = api.load.tle(filepath)
    satellite = list(satellites.values())[0]
    #satellites = api.load.tle('staz.txt')
    #print(satellites)
    #print(satellites.keys())
    #satellite = satellites['ISS (ZARYA)']
    #satellite = satellites.values()
    #print(satellite)

    #DAV: with api.load.timescale()  has problems downloading stuff the net, see https://github.com/skyfielders/python-skyfield/issues/218
    ts = api.load.timescale(builtin=True)
    t = ts.now()

    geocentric = satellite.at(t)
    geocentric.subpoint = subpoint.__get__(geocentric, Geocentric)
    geocentric.earth_radius = earth_radius.__get__(geocentric, Geocentric)

    geodetic_sub = geocentric.subpoint(3)

    #print('Geodetic latitude:', geodetic_sub.latitude)
    #print('Geodetic longitude:', geodetic_sub.longitude)
    #print('Geodetic elevation (m)', int(geodetic_sub.elevation.m))
    #print('Geodetic earth radius (m)', int(geocentric.earth_radius()))

    geocentric_sub = geocentric.subpoint(0)
    #print('Geocentric latitude:', geocentric_sub.latitude)
    #print('Geocentric longitude:', geocentric_sub.longitude)
    #print('Geocentric elevation (m)', int(geocentric_sub.elevation.m))
    #print('Geocentric earth radius (m)', int(geocentric.earth_radius()))
    #print('Visible area (m^2)', satellite_visiable_area(geocentric.earth_radius(),
    #                                                    geocentric_sub.elevation.m))
    #DAV geodetic should be the most correct one
    def decdegs(angle):
        import math
        return angle.radians * 180/math.pi

    time_string = satellite.epoch.utc_datetime().strftime("%Y-%m-%d %H:%M:%S")
    return [time_string, decdegs(geodetic_sub.latitude), decdegs(geodetic_sub.longitude)]









[94]:






load_tle("tles/tle-%s.txt" % 0)








[94]:







['2016-01-01 05:11:30', -32.806635689473154, -78.61284245286787]







[101]:






import csv
with open('../iss-coords.csv', 'w', newline='') as csvfile_out:

    writer = csv.writer(csvfile_out, delimiter=',')
    writer.writerow(["timestamp","lat","lon"])
    import glob
    ntles = len(glob.glob("tles/*.txt"))

    for i in range(ntles):
        tle = load_tle("tles/tle-%s.txt" % i)
        writer.writerow(tle)








[96]:






satellites








[96]:







{25544: <EarthSatellite number=25544 epoch=2016-02-29T21:36:47Z>}







[ ]:






satellites








[8]:






satellites[25544].satellite








[8]:







<bound method VectorFunction.satellite of <EarthSatellite number=25544 epoch=2016-02-29T21:36:47Z>>







[11]:















[ ]:
















          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

This is a template folder for exams. To find the meaning of the various folders, look for other README files inside them.



          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

In this directory is collected the graded material. It will have subdirectories like

- john-doe-112233
    - corrected
        - exercise1.py
        - exercise2.py
        - exercise1_test.py
        - exercise2_test.py
    - shipped
        - exercise1.py
        - exercise2.py
        - exercise1_test.py
        - exercise2_test.py
    - john-doe-112233.pdf
- jane-doe-445566
    - corrected
        - exercise1.py
        - exercise2.py
        - exercise1_test.py
        - exercise2_test.py
    - shipped
        - exercise1.py
        - exercise2.py
        - exercise1_test.py
        - exercise2_test.py
    - jane-doe-445566.pdf







          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

In this directory is collected all the material that will be copied on the exam server accessible by the students.

NOTE: Content of this directory is git ignored, except for:


	this README file






          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

In this directory we collect work shipped by students in a structure like this:






	john-doe-112233


	exercise1.py


	exercise2.py


	exercise1_test.py


	exercise2_test.py






	jane-doe-445566


	exercise1.py


	exercise2.py


	exercise1_test.py


	exercise2_test.py
















          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

In this directory we collect theory for a given exam. This folder is only meant for instructors and is not copied on the exam server.



          

      

      

    

  

  
    
    Exam - JM{exam.date_human}
    

    

    
 
  

    
      
          
            
  


Exam - JM{exam.date_human}

Scientific Programming - *JM*{conf.degree}


Introduction


	Taking part to this exam erases any vote you had before





What to do


	Download _JM_{conf.filename}-_JM_{exam.date}-exam.zip and extract it on your desktop.


	Rename _JM_{conf.filename}-_JM_{exam.date}-FIRSTNAME-LASTNAME-ID folder: put your name, lastname an id number, like _JM_{conf.filename}-_JM_{exam.date}-john-doe-432432




From now on, you will be editing the files in that folder. At the end of the exam, that is what will be evaluated.


	Edit the files following the instructions in this worksheet for each exercise. Every exercise should take max 25 mins. If it takes longer, leave it and try another exercise.


	When done:





	if you have unitn login: zip and send to examina.icts.unitn.it/studente [http://examina.icts.unitn.it/studente]


	If you don’t have unitn login: tell instructors and we will download your work manually









Part A

Open Jupyter and start editing this notebook exam-_JM_{exam.date}-exercise.ipynb




Part B


B1 Theory

Write the solution in separate ``theory.txt`` file







ANSWER:




B2

Open a text editor and edit file


[ ]:






















          

      

      

    

  

  
    
    Markdown
    

    

    
 
  

    
      
          
            
  


Markdown

Per formattare il testo, Jupyter mette a disposizione un linguaggio chiamato Markdown. Perchè dovreste imparare Markdown? E’ semplice, molto popolare ed è probabile ritrovarlo in molti posti (blog, sistemi di documentazione tecnica, etc).

Qua riporto solo informazioni essenziali, per altre potete consultare la Guida di Jupyter (inglese) [http://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html]


Celle Markdown

Per dire a Jupyter che una cella è codice Markdown e non Python, dal menu seleziona Cell->Cell type->Markdown. Una shortcut veloce è premere Esc seguito poi da il tasto m




Paragrafi

Per suddividere paragrafi basta inserire una riga vuota:

Per esempio, scrivendo così:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.





Si ottiene questo:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.




Link

Un link si scrive mettendo il testo visibile dall’utente tra parentesi quadre e l’indirizzo vero e proprio tra parentesi tonde:

[Questo è il testo del link](http://www.google.com)





Il risultato sarà il seguente:

Questo è il testo del link [http://www.google.com]




Liste

Le liste si scrivono mettendo anteponendo ad ogni elemento un asterisco:

Per esempio, scrivendo questo:

* Elemento 1
* Elemento 2
    * Sotto elemento
    * Altro sotto elemento
* Elemento 3





Verrà visualizzato così:


	Elemento 1


	Elemento 2


	Sotto elemento


	Altro sotto elemento






	Elemento 3




Potete anche usare liste numerate anteponendo agli elementi un numero e un punto.

Per esempio, questo:

1. Elemento 1
2. Elemento 2
    1. Sotto elemento
    2. Altro sotto elemento
3. Elemento 3





Verrà visualizzato così:


	Elemento 1


	Elemento 2


	Sotto elemento


	Altro sotto elemento






	Elemento 3







Immagini

Purtroppo Jupyter non supporta il copia e incolla di immagini, potete solo inserire dei link alle immagini stesse da mettere nella stessa cartella del notebook oppure in una sottocartella.

Una volta che la cella viene eseguita, se il percorso al file è corretto apparirà l’immagine. Per indicare il percorso, scrivete punto esclamativo, parentesi quadre aperta-chiusa, e poi tra parentesi tonde il percorso del file, per es se l’immagine notebook_icon.png sta nella sotto-cartella img, scrivete così:

![](img/example.png)





Eseguendo la cella, apparirà l’immagine:

[image: image0]

Nota che potete usare qualunque formato di immagine (jpg, png, bmp, svg, per gli altri provate a vedere se vengono visualizzati).




Variabili e nomi tecnici

Per visualizzare in evidenza variabili e nomi tecnici, come x, faiQualcosa, percorso-di-file, potete includere il nome tra due cosiddetti backtick `

NOTA: il backtick ` NON è l’apice che usiamo di solito: '

Per scrivere questo strano apice rovesciato, guardate qua, se non va fate copia e incolla !


	Windows:


	se avete il tastierino numerico: tenere premuto Alt Gr, scrivere 96 sul tastierino numerico, rilasciare Alt Gr


	se non l’avete: provate a premere tasto windows + \ (in alto a sinistra)






	Mac: alt+9


	Linux: Alt-Gr + carattere apice normale '







Codice JSON / XML / Python

Se in una cella Markdown volete visualizzare testo posizionato esattamente come lo scrivete, racchiudetelo in un blocco delimitato da file di tre tre backtick ``` :

```

testo posizionato come
 voglio
 io


```

Risultato:

testo posizionato come
    voglio
 io





Il codice python / json / xml e altri possono essere formattati automaticamente da Jupyter. Basta scriveterlo in blocchi da tre backtick come prima e in più specificare il linguaggio subito dopo i primi tre backtick, per esempio un json scritto così:

```json

{
 "a" : ["b"],
 "c" : {
 "d":5
 }

}


```

Risulterà formattato in questo modo:

{
   "a" : ["b"],
   "c" : {
           "d":5
         }

}








Formule matematiche

E’ possibile scrivere formule in Latex [http://www.lorenzopantieri.net/LaTeX_files/ArteLaTeX.pdf#chapter.5] (ma non l’abbiamo visto a lezione) mettendole tra segni di dollaro $. Per esempio $\sum$ verrà visualizzato così: \(\sum\)


Tabelle

Scrivere tabelle piccole in Markdown è ancora fattibile:

Per esempio, scrivere questo:

io	sono	una tabella
4|ciao|3
2|hello world|7





risulta visualizzato così :








	io

	sono

	una tabella





	4

	ciao

	3



	2

	hello world

	7






ma per tabelle grandi Markdown è terribile. Quindi siete più che giustificati a usare alternative, per esempio allegare fogli Excel (anche se preferisco LibreOffice Calc col formato .ods, se proprio amate Excel perlomeno mandatemi un .xls e non un .xlsx). Potete anche prendere screenshot delle tabelle e includerli come immagini.









          

      

      

    

  

  
    
    Jupman Project
    

    

    
 
  

    
      
          
            
  


Jupman Project

METTERE:

TITOLO

NOME - MATRICOLA

DATA


Introduzione

Descrivere


	gli obbiettivi che ci si è posti


	risultati attesi (i.e. file CSV con dati integrati da mostrare su Umap)


	librerie Python utilizzate per il progetto







Sorgenti dati

Descrivere le sorgenti dati (almeno due), mettendo:


	nome origine e possibilmente URL


	le licenze


	encoding


	dimensione in Kb (i file dovrebbero essere max 50 megabyte, se più grandi cercate un modo per ridurli e se avete problemi chiedete come fare)


	schemi dei dati


	CSV: intestazione colonne, tipi delle colonne (stringa, numero, data …)


	JSON: spiegare sommariamente le scheletro del JSON ( se volete strafare scrivete un JSON schema [http://json-schema.org], ma non l’abbiamo visto a lezione)


	XML: spiegare sommariamente le scheletro dell’XML (possibilmente guardate se l’XML già fornisce un XML schema [https://en.wikipedia.org/wiki/XML_schema], ma non l’abbiamo fatto a lezione, se avete dubbi chiedete)


	SQL: mettere schema del DB (molti browser di database possono generare diagrammi per gli schemi)


	per altri formati: descrivere a parole






	qualche dato di esempio


	Se i dati sono da ottenere tramite web API [https://en.wikipedia.org/wiki/Web_API], chiedersi se è possibile ottenere gratuitamente tutti i dati desiderati entro i limiti d’uso dell’API




IMPORTANTE: ricordarsi di includere nella cartella del progetto una copia dei dati! Questa è fondamentale ai fini della riproducibilità del notebook, e vale in particolare per i dati ottenuti da Web API e pagine HTML, che possono variare nel tempo (i.e. dati meteo).




Pulizia e integrazione dati

Elencare eventuali problemi da correggere, e come li si è risolti. Esempi:


	dati mal formattati


	interpretazione dati mancanti, come li si è convertiti


	i valori assenti sono da assumersi uguali a 0, stringa vuota, None, lista vuota ? …






	Mappe con punti in posti assurdi







Analisi

Mettere qualche analisi sui dati. Esempi:


	mostrare raggruppamenti, grafici frequenze


	correlazioni tra valori con Pandas


	mostrare punti su mappa con UMap, notare raggruppamenti


	ricavare qualche modello dai dati, con plot su grafico(es: relazione lineare pressione / temperatura)


	mettere qualche widget per variare parametri del modello







Problematiche riscontrate

Descrivere i problemi maggiori riscontrati nel progetto




Conclusioni

Descrivere:


	se si sono raggiunti gli obbiettivi posti


	eventualmente cosa si potrebbe aggiungere di interessante










          

      

      

    

  

  
    
    Slides 2018/19
    

    

    
 
  

    
      
          
            
  


Slides 2018/19


WARNING: These are old slides. Slides for current year can be found here




Part A


Lab A.1

Friday 28 Sep 2018 Links

lab site: datasciprolab.readthedocs.org [http://datasciprolab.readthedocs.org]

Questionnaire: https://tinyurl.com/spquest01

All Google Colab scratchpads
First Google Colab (for code shown during lesson - during each lesson you also can write on it):
Lesson: Introduction








Lab A.2

Friday October 5th 2018

links:


	Google colab scratchpad 2 [https://colab.research.google.com/drive/17GYc2Idok7opLoZdXdL_L_-R_SUuF3WN]







	Slides montresor - Structured data types [http://disi.unitn.it/~montreso/sp/slides/A02-datastructures.pdf]


	(maybe) Slides montresor - Structured programming [http://disi.unitn.it/~montreso/sp/slides/A03-controlflow.pdf]


	ThinkPython General introduction [https://runestone.academy/runestone/static/thinkcspy/GeneralIntro/toctree.html]


	ThinkPythonSimple Python Data [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/toctree.html]


	exercises [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/Exercises.html]






	ThinkPython Debugging interlude 1 [https://runestone.academy/runestone/static/thinkcspy/Debugging/toctree.html]




Will do:


	Finish review of tools: Visual Studio Code


	some exercise on data types


	simple functions with return


	simple tests with assert







Lab A.3

Tuesday October 9th 2018

links:


	Google colab scratchpad 3 [https://colab.research.google.com/drive/1gp27m659gbBOQP2jA4xW66tO4R5NIV6W]


	lesson: lists







	Slides montresor - Structured data types [http://disi.unitn.it/~montreso/sp/slides/A02-datastructures.pdf]


	Slides montresor - Structured programming [http://disi.unitn.it/~montreso/sp/slides/A03-controlflow.pdf]


	ThinkPython General introduction [https://runestone.academy/runestone/static/thinkcspy/GeneralIntro/toctree.html]


	ThinkPythonSimple Python Data [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/toctree.html]


	exercises [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/Exercises.html]






	ThinkPython Debugging interlude 1 [https://runestone.academy/runestone/static/thinkcspy/Debugging/toctree.html]







Lab A.4

Wednesday October 10th 2018

links:


	Google colab scratchpad 4 [https://colab.research.google.com/drive/1_uM7n77lrxp53-zxthLYYX4f-gAerA6y]


	lesson: Matrix as lists of lists







	Slides montresor - Structured data types [http://disi.unitn.it/~montreso/sp/slides/A02-datastructures.pdf]


	Slides montresor - Structured programming [http://disi.unitn.it/~montreso/sp/slides/A03-controlflow.pdf]


	ThinkPython General introduction [https://runestone.academy/runestone/static/thinkcspy/GeneralIntro/toctree.html]


	ThinkPythonSimple Python Data [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/toctree.html]


	ThinkPython Debugging interlude 1 [https://runestone.academy/runestone/static/thinkcspy/Debugging/toctree.html]







Lab A.5

Friday October 12th, 2018


	Google colab scratchpad 5 [https://colab.research.google.com/drive/1YVZVrt3xEO5I1wZjhyNxviEjHjJlH3rv]


	lesson: Matrix as list of lists (continued)







	Slides montresor - Structured data types [http://disi.unitn.it/~montreso/sp/slides/A02-datastructures.pdf]


	Slides montresor - Structured programming [http://disi.unitn.it/~montreso/sp/slides/A03-controlflow.pdf]


	ThinkPython General introduction [https://runestone.academy/runestone/static/thinkcspy/GeneralIntro/toctree.html]


	ThinkPythonSimple Python Data [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/toctree.html]


	ThinkPython Debugging interlude 1 [https://runestone.academy/runestone/static/thinkcspy/Debugging/toctree.html]







Lab A.6

Tuesday October 16th, 2018


	Google colab scratchpad 6 [https://colab.research.google.com/drive/14B3jWZTWNKpFaA3x8w8k3Xgd2kvcR613]


	lesson: Matrix networks







	Slides montresor - Structured data types [http://disi.unitn.it/~montreso/sp/slides/A02-datastructures.pdf]


	Slides montresor - Structured programming [http://disi.unitn.it/~montreso/sp/slides/A03-controlflow.pdf]


	ThinkPython General introduction [https://runestone.academy/runestone/static/thinkcspy/GeneralIntro/toctree.html]


	ThinkPythonSimple Python Data [https://runestone.academy/runestone/static/thinkcspy/SimplePythonData/toctree.html]


	ThinkPython Debugging interlude 1 [https://runestone.academy/runestone/static/thinkcspy/Debugging/toctree.html]







Lab A.7

Friday October 19th, 2018


	Google colab scratchpad 7 [https://colab.research.google.com/drive/1gJ6kI9xhzS66dffuHXSqjlHfKk5Ix3Jx]


	lesson: dictionaries


	lesson: binary relations, Graph formats paragraph


	lesson: Network statistics







Lab A.8

Tuesday October 23rd, 2018


	Google colab scratchpad 8 [https://colab.research.google.com/drive/149yLlDrwG6AdyCQPtOCZKDYGff3z2k2s]


	lesson: Network statistics (continued)







	Slides montresor - A06 Recursion [http://disi.unitn.it/~montreso/sp/handouts/A06-recursion.pdf]







Lab A.9

Friday October 26th, 2018


	lesson: Network statistics (continued)


	lesson: Visualization







	Slides montresor - A08 numpy+matplotlib [http://disi.unitn.it/~montreso/sp/handouts/A08-numpy.pdf]







Lab A.10

Tuesday November 6th, 2018


	lesson: Pandas







	Slides montresor - A08 numpy+matplotlib [http://disi.unitn.it/~montreso/sp/handouts/A07-pandas.pdf]




NEWS: RESTRUCTURED WEBSITE. - Added Exam modalities , please read them - Added difficulty ratings to exercises - Added sections: - Strings - Graph formats - Binary relations - Pandas - Expanded sections: -
Lists - Visualization




Lab A.11

Friday November 9th, 2018


	Google Colab [https://colab.research.google.com/drive/1aZbmnYeWyjJikv2lGZq8cprm-zOzqWr1]


	review exercises Strings, Lists , Binary relations







Midterm simulation

Tuesday November 13th, 2018

Midterm simulation: see solution




Midterm

Friday November 16th, 2018

Midterm: see solution






Part B


Lab B.1

Wednesday November 21st, 2018


	Testing


	OOP (until magnitude included)







Lab B.2

Friday November 25th, 2018


	OOP (finish)







Lab B.3

Tuesday November 27th, 2018


	Sorting (SelectionSort and Merge idea)







Lab B.4

Friday November 30th, 2018

Google Colab [https://colab.research.google.com/drive/12NWJE0-cHXkGKSMVvfzDKo5EmKeRfM5C]


	Sorting (Merge idea, InsertionSort, QuickSort)







Lab B.5

Tuesday December 4th, 2018

Data structures:


	LinkedLists


	Stacks


	Queues


	Sets







Lab B.6

Friday December 7th, 2018

Data structures:


	Trees


	BinaryTree







Lab B.7

Friday December 11th, 2018

Data structures:


	Trees


	GenericTree







Lab B.8

Friday December 14th, 2018

Data structures:


	Graph algos







Lab B.9

Tuesday December 18th, 2018

Data structures:


	Graph algos





[ ]:






















          

      

      

    

  
_images/exercises_graph-formats_graph-formats-solution_101_0.png





_images/exercises_graph-formats_graph-formats-solution_114_0.png
0—9\
'Me_g





_images/exercises_graph-algos_graph-algos_94_0.png





_images/exercises_graph-algos_graph-algos_97_0.png





_images/exercises_graph-formats_graph-formats-solution_133_0.png





_images/exercises_visualization_visualization-solution_66_0.png
outdegree

30

25

20

10

05

00

G1 Outdegrees per node sorted solution

node





_images/exercises_graph-formats_graph-formats-solution_13_0.png





_images/exercises_visualization_visualization-solution_73_0.png
G1in and out degrees per node SOLUTION

= indegrees
== utdegrees






_images/exercises_visualization_visualization-solution_70_0.png
degree.

G1 degrees per node sorted SOLUTION

node





_images/exercises_visualization_visualization-solution_83_0.png
Frequency counts.

40

35

30

25

20

15

10

05

00

G2 Degree distribution

Degrees






_images/exercises_visualization_visualization-solution_76_0.png





_images/exercises_visualization_visualization-solution_89_0.png
first cell 2nd cell 3rd cell

20
s
100
5
-0
0
24thcell ¢ a5thcell ¢ 26thcell ¢
0 1 1
20
-0 o o
60
1 1






_images/exercises_visualization_visualization-solution_87_0.png
Frequency counts.

G2 Degree distribution, tight graph SOLUTION

H
Degrees





_images/exercises_visualization_visualization-solution_95_0.png





_images/exercises_visualization_visualization-solution_8_0.png
100

2

x squared






_images/exercises_visualization_visualization-solution_62_0.png
G1 Indegrees per node, sorted by indegree solution

indegree

05

00l

node





_images/exercises_visualization_visualization-solution_5_0.png
my function

»

1






_images/exercises_graph-algos_graph-algos_27_0.png





_images/exercises_graph-algos_graph-algos_32_0.png





_images/exercises_graph-algos_graph-algos_20_0.png





_images/exercises_graph-algos_graph-algos_25_0.png





_images/exercises_visualization_visualization-solution_3_0.png
my function






_images/exercises_visualization_visualization-solution_38_0.png
400

375

350

325

300

275

250

225

200

b2 solution

y =sin(x) + 3 with numpy , linspace






_images/exercises_visualization_visualization-solution_43_0.png
L





_images/exercises_visualization_visualization-solution_40_0.png
© solution _y = sin(x) + 3 with numpy and pi xlabels

400

375

350

325

300

275

250

225

200

U4 e owe A aus  Sws  Gue  Twe





_images/exercises_visualization_visualization-solution_53_0.png





_images/exercises_visualization_visualization-solution_51_0.png
G1 Indegrees per node solution

s
s .
' .
1
0
. 3 : :

node






_images/exercises_visualization_visualization-solution_58_0.png
G1 Indegrees per node, sorted labels solution

indegree

05

00l

node





_images/exercises_visualization_visualization-solution_56_0.png
G1 Indegrees per node solution

indegree

05

00l

node





_images/exercises_visualization_visualization-solution_34_0.png
400

375

350

325

300

275

250

225

200

a) solution

y=

in(x) + 3 with vanilla python






_images/exercises_visualization_visualization-solution_26_0.png
275

250

225

200

175

150

125

100

02

04

06

08






_images/exercises_visualization_visualization-solution_36_0.png
400

375

350

325

300

275

250

225

200

b.1 solution

y =sin(x) + 3 with numpy arange






_images/graph-dir-undir1.png
Directed and undirected graphs: definitions

Directed graph G = (V, E)
o V is a set of vertexes/nodes

o Eis aset of edges, ie.
ordered pairs (u,v) of nodes

<
"

={ab,c,def}
={ (a,p),(a,d),(b,0),(d,a)
(d,c),(d,e),(e,0) }

O—O
@ ®
&F—O

2]
[

Undirected graph G = (V, E)

o V is a set of vertexes/nodes

o Eis aset of edges, ie.
unordered pairs [u, v] of
nodes

={ab,cdef}
= { [a,b],[a,d], [b,c],
[c,d],[d,e], [c,e] }






_images/insertion-sort-example.gif
6 53 187 24





_images/gt-labeled.png
bra

53 FLD

Parent
Child | Sibling

(h
R

4]

)






_images/judgement-day.png
JUDGMENT
DAY

IS
INEVITABLE






_images/iteration.png
str for iterates over the characters
Tist for iterates over the clements
tuple | for iterates over the clements

dict

For iterates over the ke






_images/list-complexity-1.png
Operation
index ]

index assignment
append

pop()

pop()
insertitem)

del operator

teration

Big-O Efficiency
o(1)
o(1)
o)
o(1)
om)
o(n)
om)

o)





_images/keywords.png
ot

toaly

pass

you

oreak

sl

-

cass

import

win





_images/list_methods.png
Return| Method Meaning

None list.append(obj) Add a new element at the end of
the list

None list.extend(list) Add several new elements at the
end of the list

None list.insert(int,obj)| Add a new element at some given
position

None list.remove(obj) Remove the first occurrence of an
element

None list.reverse() Invert the order of the elements

None list.sort() Sort the elements

int list.count (obj) Count the occurrences of an

element






_images/list-complexity-2.png
contains in)
get sice [xy]
del sice

set siice
reverse
concatenate
sort

multiply

o)
o)
om)
o)
om)
o)
ofnlogn)

o(nk)





_images/log.png
log function






_images/flux-capacitor.jpg





_images/flux-capacitor-graph.png
DEPTH 0 DEPTH 1 DEPTH 2 DEPTH 3






_images/geeks-for-geeks-more-topics.jpeg
Cunsiritiae

Topic Tags.

s

Mathematical

Strings

Dynamic Programming
Hash






_images/gap-rec-histogram.png
n-1





_images/graph-adjacent.png
Terminology

@ Vertex v is adjacent to u if and only if (u,v) € E.
o In an undirected graph, the adjacency relation is symmetric

o An edge (u,v) is said to be incident from u to v

° o o (a,b) is incident from a to b

o (a,d) is incident from a to d

o (d,a) is incident from d to a

(a) @ o bis adjacent to a

o d is adjacent to a

° o ais adjacent to d





_images/generic-tree-labeled.png
bra

53 FLD

Parent
Child | Sibling

(h
R

4]

)






_images/graph-dir-boolean.png





_images/graph-adjacent1.png
Terminology

@ Vertex v is adjacent to u if and only if (u,v) € E.
o In an undirected graph, the adjacency relation is symmetric

o An edge (u,v) is said to be incident from u to v

° o o (a,b) is incident from a to b

o (a,d) is incident from a to d

o (d,a) is incident from d to a

(a) @ o bis adjacent to a

o d is adjacent to a

° o ais adjacent to d





_images/graph-dir-undir.png
Directed and undirected graphs: definitions

Directed graph G = (V, E)
o V is a set of vertexes/nodes

o Eis aset of edges, ie.
ordered pairs (u,v) of nodes

<
"

={ab,c,def}
={ (a,p),(a,d),(b,0),(d,a)
(d,c),(d,e),(e,0) }

O—O
@ ®
&F—O

2]
[

Undirected graph G = (V, E)

o V is a set of vertexes/nodes

o Eis aset of edges, ie.
unordered pairs [u, v] of
nodes

={ab,cdef}
= { [a,b],[a,d], [b,c],
[c,d],[d,e], [c,e] }






_images/graph-dir-different-weights.png





_images/exercises_visualization_visualization-solution_98_1.png
p=09

p=05

p=01

160

10

g 8 @
sno> fousribos

Bl

120

100

8 8
Sno> ouanbasy

o

120

100

2 E
Sunos Aousnbaiy

o

0 o sio s30 s30
Degrees

B0 80 &0

@ %0 S0 s
Degrees

60

o B0 Bo

150
Degrees





_images/exams_2018-11-16_exam-2018-11-16-solution_40_0.png





_images/exams_2019-01-10_exam-2019-01-10_33_0.png





_images/exams_2018-11-16_exam-2018-11-16-solution_33_0.png





_images/exams_2018-11-16_exam-2018-11-16-solution_36_0.png





_images/exams_2019-02-13_exam-2019-02-13-solution_17_0.png
Legend

B2l]  e—

Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz.

Trento Corso 3 Novembre





_images/exams_2019-02-13_exam-2019-02-13-solution_39_0.png
srskesrekenss cale_nx SOLUTION

Legend

B20] >
B202 =
T —
B217 et
B30] =t

Trento
Trento Via
Loc. Sardagna Trento
S.Antonio Civ. Maso Trento
104 Pedrotti Loc.Conotter

Trento
Via
i Ponte Brescia
lione Arche 4
Via Via
Circonvallaz. Ballino

Trento
Vi Tione c Autostaz. Tre
Circonvallazione Autostazione omm.
65

Verona
Novembre





_images/exams_2019-02-13_exam-2019-02-13-solution_13_0.png
Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz. Trento Corso 3 Novembre





_images/exams_2019-02-13_exam-2019-02-13-solution_15_0.png
Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz. Trento Corso 3 Novembre





_images/exams_2019-02-13_exam-2019-02-13-solution_58_1.png
sk color_hubs SOLUTION

Legend

B20] >
B202 =
T —
B217 et
B30] =t

Trento
Trento Via
Loc. Sardagna Trento
S.Antonio Civ. Maso Trento
104 Pedrotti Loc.Conotter

Trento
Via
Brescia

4

Tione
Via
Circonvallaz.

Ponte
Arche
Via
Ballino

Trento
Vi Tione c Autostaz. Tre
Circonvallazione Autostazione omm.
65

Verona

Novembre





_images/exercises_graph-formats_graph-formats-solution_38_0.png





_images/exams_2019-02-13_exam-2019-02-13-solution_66_0.png
Frequency counts.

Time histogram SOLUTION

012345576 9001131415167 1519202122232425
Time between stops in minutes






_images/exercises_graph-formats_graph-formats-solution_54_0.png





_images/exercises_graph-formats_graph-formats-solution_42_0.png





_images/exercises_graph-formats_graph-formats-solution_61_0.png





_images/exercises_graph-formats_graph-formats-solution_57_0.png





_images/exercises_graph-formats_graph-formats-solution_23_0.png
}1’ |





_images/exercises_graph-formats_graph-formats-solution_21_0.png





_images/exercises_graph-formats_graph-formats-solution_27_0.png
oo





_images/exercises_graph-formats_graph-formats-solution_25_0.png





_images/exercises_graph-formats_graph-formats-solution_35_0.png





_images/exercises_graph-formats_graph-formats-solution_30_0.png





_images/exams_2019-08-26_exam-2019-08-26-solution_32_0.png
oisi Sociology coGscl

Guest Professor Professor

Professor

Guest

Teaching

Research

Teaching Research

Research

Teaching





_images/exams_2019-08-26_exam-2019-08-26-solution_38_0.png
‘common employees

SOLUTION

Sociology Law Sociology
Department pairs

sis
Humanities

Economics

ol
ois|

ago






_images/exams_2019-07-02_exam-2019-07-02-solution_22_0.png
E

5

Categorie botteghe storiche SOLUTION

RISTORANTE  HOTEL  ALBERGO MAch_EmA | CPANFCO T CALZATURE FAUMACA  AMENTAN  PZZERA






_images/exams_2019-08-26_exam-2019-08-26-solution_26_0.png
professor roles

2

Professor roles per department SOLUTION

Humanities Economics Sociology Physics. Mathematics
eparments






_images/exams_2020-01-23_exam-2020-01-23-solution_31_0.png
frequency
B

1

Statement references SOLUTION

‘Illl--
R

Statement labels

m





_images/exams_2020-02-10_exam-2020-02-10-solution_24_0.png
domestic_animal

working_dog
shepherd_dog bulldog






_images/exams_2020-01-23_exam-2020-01-23-solution_25_1.png





_images/exams_2020-01-23_exam-2020-01-23-solution_28_1.png
24
WIE((1+0)=t>1=1)
wim: wif (P> Q)

20
Wi (140)=t
weq: Wit = ¢

18
term (t+0)
tpl:term (t+71)

16
term t
1t: term t

17
term O
tze: term O





_images/exams_2020-02-10_exam-2020-02-10-solution_28_1.png
70000

0000

50000

0000

30000

20000

10000

Wordnet Relation frequency SOLUTION

Hypernym  Hyponym Derivationally Member  Member Instance Instance  Antonym  Substance  Substance  Attrbute
elsted | meronym  tolomym meronym tolomym Hypemym  Hypomm meronym holonym.






_images/exercises_graph-formats_graph-formats-solution_15_0.png





_static/file.png





_images/exercises_graph-formats_graph-formats-solution_141_0.png
=





_images/exercises_graph-formats_graph-formats-solution_19_0.png





_static/plus.png





_images/exercises_graph-formats_graph-formats-solution_17_0.png





_static/minus.png





_images/vscode-4.png
kelect the pattern to identify test files

*test.py Python Files ending with ‘test’
*_test.py Python Files ending with '_test’
test*.py Python Files beginning with 'test'
test_*.py Python Files beginning with 'test '
*test*.py Python Files containing the word 'test'





_images/vscode-3.png
kelect the directory containing the tests

. Root directory

- __pycache__

data





_images/vscode-6.png
o master O Python3.7.564bit @O0A0 46A1





_images/vscode-5.png
@ stack_test.py @ stack2_test.py X

@ stack2_test.py > % WStackTest

1
2
B]

10
11

12
13

import unittest
from stack_solution import *

X Run Test | X Debug Test
class WStackTest(unittest.TestCase):

v Run Test | v Debug Test
def test 01 init(self):
s = WStack()

X Run Test | X Debug Test

def test 02 weight(self):
s = WStack()
self.assertEqual(s.weight(), 1)





_images/where-is-your-software.png
You are
here!

Algorithmic

start testing

simple

script Code size

ey
2

T
=





_images/watch.png
4 WATCH + @ &
name 'S' is not defined

name 'i' is not defined

S+i: name 'S’ is not defined





_images/exams_2019-06-10_exam-2019-06-10-solution_22_0.png
‘quantity

10000

000

5000

000

2000

ITEA real estates SOLUTION

l._,__,_

ALLOGGIO POSTOMACCHINA GARAGE  MAGAZZINO  NEGOZIO

ATRO.

SAA/ CABINAELETTRICA CANTINA
ATTIVITA SOCIALI

FFICio






_images/exercises_binary-relations_binary-relations-solution_22_0.png
Donald Duck






_images/exercises_binary-relations_binary-relations-solution_24_0.png
Gladstone Gander

Donald Duck






_images/exams_2020-08-24_exam-2020-08-24-solution_17_0.png
POMPA COMPLETA DI MOTORE (A.02.40.0010) SOLUTION






_images/exercises_binary-relations_binary-relations-solution_13_0.png
Donald Duck






_images/exercises_binary-relations_binary-relations-solution_3_0.png
Trento Cathedral )
Trento Neptune Statue )






_images/exercises_binary-relations_binary-relations-solution_5_0.png





_images/exercises_binary-relations_binary-relations-solution_31_0.png





_images/exercises_binary-relations_binary-relations-solution_34_0.png





_images/exercises_pandas_pandas-solution_72_1.png
001 — humidity

1005.1
4575 | — Pressure (right)

1005.0
50
10049
%25
10045
400
10047
75
10046
50
10045
25

10044

12500 13000 3300 14000 14500





_images/exercises_visualization_visualization-solution_101_0.png
Super strict vegan diet (good luck)

Oranges.

8% Cocumbers

wpwes‘\





_images/exercises_pandas_pandas-solution_76_1.png
0 20000 40000 60000 80000 100000





_images/exercises_visualization_visualization-solution_12_0.png
»

1

my function






_images/exercises_visualization_visualization-solution_10_0.png
=

2

my function






_images/exercises_visualization_visualization-solution_18_0.png
275

250

225

200

175

150

125

100

02

04 06 08






_images/exercises_visualization_visualization-solution_14_0.png
my function






_images/exercises_pandas_pandas-solution_66_0.png
0225

w0 Humidity

Pressure (right) |- 1020.0
5 10175
0 10150
525 10125
500 10100
as 1075
50 1005.0
s 10025

o 2000 40000 6000 8000 100000





_images/exercises_pandas_pandas-solution_64_0.png
La parabola






_images/exercises_pandas_pandas-solution_71_1.png
4700

%75

50

%25

400

75

50

25

10044 10045 10046 10047 10048 10049 10050 1005.1





_images/exercises_pandas_pandas-solution_68_1.png
&0

575

50

525

500

as

50

25

10025 1005.0 1007.5 1010.0 1012.5 1015.0 1017.5 1020.0 10225





_images/exams_2020-06-16_exam-2020-06-16-solution_26_0.png
minutes.
cw BHENE RS

Disconnections SOLUTION

—maxgap
- time_away

——

Luigi Mario

Princess Toadstool






_images/exams_2020-07-17_exam-2020-07-17-solution_27_0.png
# of exclusions by divisions (level 2) - SOLUTION

NACE 90 NACE 47 NACE 46 NACE 01 NACE 28 NACE 5L NACE 19 NACE 77 NACE 03 NACE 16
Geative, Retail VWholesale  Cropand  Manufacture of Manufacture of  Rentaland  Fishingand  Manufacture of
aits and. rade, rade, il mahnery s bareport | eoke ang leasing  aquaculture  wood and of

entertainment  exceptof  exceptof  producton,  equipment refined activities products of
activties motor motor hunting and nec petroleum "wood and

vehidlesand  vehiclesand - related products ok,
motorcycles  motorcycles  service. except
activties frniture;
manufacture of
articles of
Straw and
Paiting

materials






_images/exercises_graph-algos_graph-algos_123_0.png





_images/exercises_graph-algos_graph-algos_124_0.png
()
00600





_images/exercises_graph-algos_graph-algos_121_0.png





_images/exercises_graph-algos_graph-algos_122_0.png





_images/exercises_graph-algos_graph-algos_15_0.png





_images/exercises_graph-algos_graph-algos_125_0.png





_images/exercises_graph-algos_graph-algos_126_0.png





_images/exercises_pandas_pandas-solution_122_2.png
s

150

15

100

s

50

25

00

25






_images/exercises_pandas_pandas-solution_119_0.png
s

150

15

100

s

50

25

00

1 0 w00 100 00 200





_images/exercises_pandas_pandas-solution_124_2.png
s

150

15

100

s

50

25

00

25






_images/exercises_pandas_pandas-solution_123_2.png
s

150

15

100

s

50

25

00

25






_images/exercises_pandas_pandas-solution_62_0.png
=

2

The parabola






_images/exercises_pandas_pandas-solution_55_0.png
Some number

10

15

20

25

30

35

40






_images/exercises_graph-formats_graph-formats-solution_72_0.png





_images/exercises_graph-formats_graph-formats-solution_68_0.png





_images/exercises_graph-formats_graph-formats-solution_98_0.png
oAmr“





_images/exercises_graph-formats_graph-formats-solution_91_0.png





_images/exercises_pandas_pandas-solution_116_1.png
s

150

15

100

s

s0

25

00

50

1000

1500

2000

=00






_images/exercises_graph-algos_graph-algos_104_0.png





_images/exercises_graph-algos_graph-algos_110_0.png





_images/exercises_graph-algos_graph-algos_101_0.png
o—«:oe
-0





_images/B202.png
E

=

2

B202 stops SOLUTION

velocity (k/h)

Sordagna  Sardagna  Sardagna  Serdagna Trento Tento Trento Trento Trento Trento
%2500 Q. v20  Maso Loc. Via Maso. Loc.Conatter Via Autostaz
2% e2io0 S S Antonio Sordagna  Pedrotts 06:37.00 Brestia 06:41.00
06:26:00 062800 %6:31.00 Qv 063400 4
04 06:32.00
06:33.00

stops






_images/B301.png
velocity (k/h)

2

B301 stops SOLUTION

Trento Trento Trento_Trento Trento Trento  Mattitidatieetirells Acqugaviva Besdeiibiiuminel Callgatigahatepietra  Volabolano S5 Slario RoveretRovatareto
Autostaz Cso Vial Bartolamedfiale Man  LocRonB75S.0Bx  115P@feria  PosteBOSFOM.  SE.0BQMEEL00 1815002 SIrIPUA00 Vie Via Via
17:35:00 Tre Verona 17:46.00 Verona 17:50.00 17 Sebrivestimenta 150000  Veccrd  Sud 4 Manfrini Des Sioperi _TrentoBaratanion:
Novembre  17:44:00 Big 17:54:007:56:00 18.0RBAI 0015.06 OCCimiteral3 10.00 Tor 181800 1521001520400
174000 Center 150800 181600
17:48:00

stops






_images/B201.png
velocity (K/h)

2

B201 stops SOLUTION

Tione Zutlo
Autostaziors237

1815 0uperm.
L

1817:00

Saine
182000

Ponte.
srche
Autost

183200

Sarthe.
Centro
Comm

18:45:00

stops

Trento
sutostaz
19:10:00






_images/botteghe-table.png
A | B

[ c

[ o ] 3

[ F [ G [ H
"1 |Numero_Insegna Indirizzo Civico  Comune Cap  Frazione/Localita Note
2| 1BAZZANELLARENATA Via del Lagorai 30 Sover 38068 Piscine di Sover _genei mist, bar - fstorane
N 2 CONFEZION MONTIBELLER SR.L Corso Ausugum 48 Borgo Valsugana | 38051 esercizio commerciale
4| 3 FOTOGRAFICATRINTINAGLIA UMBERTO S.N.C. Largo Dordi 8 Borgo Valsugana 38051 esercizio commerciale, attivita artigianale
5 | 4BAR SERAFINI DI MINATI RENZO 24 Grigno 38055 Serafini esercizio commerciale
o | 6 SEMBENINI GINO & FIGLI SR.L. Via 5. Francesco 35 Riva del Garda 38066
7] 7 HOTEL RISTORANTE PIZZERIA"ALLANAVE" Via Nazionale 29Lavis 38015 Nave San Felice
o | 8 OBRELLI GIOIELLERIA DAL 1920 SR.L Via Roma 33Lavis 38015
o 9 MACELLERIE TROIER S A.S. DI TROIER DARIO E C. Via Roma 13Lavis 38015
0 10 NARDELLI TIZIANO Piazza Manci 5Lavis 38015 esercizio commerciale






_images/breakpoint.png
@ integer_sumpy X

mwn integer sum.py is a script to

s=0
for 1 in range(0, 1201):
s=s+1

print("The sum of the first 1200 integers is






_images/argument_passing.png





_images/botteghe-import.png
Character set: | Unicode (UTF-5) =
Longuage: Iealan (ialy) v
Fromrow 1
eparatr Options
O Fxedwidth

O mb @ comme [ semicolon

(] Merge gelimiters

ther Options
() Suoted Feldsstext

[Standard [standard

@ separated by
0

[ Detect specilpurmbers

) other

Text delimiter: v

[standard [Standard [standard

T iumero Tnsegna Tndirizzo civico Comne o

2 BAZZANELLA RENATA Via del Lagorai 30 sover

3 CONFEZLONE WONTIBELLER S.7.L Corso Ausugun 48 Borgo vals

0 FOTOGRAFICA TRINTINAGLIA UNBERTO S.11.C Largo bordi 5 Borgo Vals

s BAR SERAFINI DI WINATI RENZO 26 origno

© SENBENINI GINO & FIGLT 5.R.L via s. Francesco 35 Rivadels.
>

Help

oK Gancel






_images/bt-bin-search.png





_images/bt-height.png
Level





_images/bt-leaves-numbers.png





nav.xhtml

    
      Table of Contents


      
        		
          <no title>
        


        		
          Home
          
            		
              News
            


            		
              Slides
            


            		
              Office hours
            


            		
              Labs timetable
            


            		
              Tutoring
            


            		
              Exams
              
                		
                  Schedule
                


                		
                  Exam modalities
                


                		
                  Exams how to
                


                		
                  Expectations
                


                		
                  Grading
                


                		
                  Exams FAQ
                


                		
                  Past exams
                


              


            


            		
              Resources
              
                		
                  Part A Resources
                


                		
                  Part B Resources
                


                		
                  Editors
                


                		
                  Further readings
                


              


            


            		
              Acknoledgements
            


          


        


        		
          Past Exams
          
            		
              Data science
              
                		
                  Exam - Monday 24, August 2020 - solutions
                


                		
                  Exam - Friday 17, July 2020 - solutions
                


                		
                  Exam - Tuesday 16, June 2020 - solutions
                


                		
                  Exam - Monday 10, February 2020 - solutions
                


                		
                  Exam - Thu 23, Jan 2020 - solutions
                


                		
                  Midterm B - Fri 20, Dec 2019
                


                		
                  Midterm - Thu 07, Nov 2019 - solutions
                


                		
                  Midterm sim - Tue 31, October 2019 - solutions
                


                		
                  Exam - Mon 26, August 2019 - solutions
                


                		
                  Exam - Tue 02, July 2019 - solutions
                


                		
                  Exam - Monday 10, June 2019 - solutions
                


                		
                  Exam - Wed 13, Feb 2019 - solutions
                


                		
                  Exam - Wed 23, Jan 2019 - solutions
                


                		
                  Midterm - Thu 10, Jan 2019 - solutions
                


                		
                  Midterm - Fri 16 November 2018 - solutions
                


                		
                  Midterm Simulation - Tue 13, November 2018 - solutions
                


              


            


            		
              2017-18 (QCB)
            


            		
              2016-17 (QCB)
            


          


        


        		
          Slides 2019/20
          
            		
              Part A
              
                		
                  Lab A.1
                


                		
                  Lab A.2
                


                		
                  Lab A.3
                


                		
                  Lab A.4
                


                		
                  Lab A.5
                


                		
                  Lab A.6
                


                		
                  Lab A.7
                


                		
                  Lab A.8
                


                		
                  Lab A.9
                


                		
                  Lab A.10
                


                		
                  Lab A.11
                


                		
                  Lab A.12
                


                		
                  Lab B.1
                


                		
                  Lab B.2
                


                		
                  Lab B.3
                


                		
                  Lab B.4
                


                		
                  Lab B.5
                


                		
                  Lab B.6
                


                		
                  Lab B.7
                


                		
                  Lab B.8
                


                		
                  Lab B.9
                


                		
                  Lab B.10
                


                		
                  Lab B.11
                


                		
                  Lab B.12
                


              


            


          


        


        		
          Commandments
        


        		
          Introduction
          
            		
              Download exercises zip
            


            		
              Installation
              
                		
                  Windows/Mac installation
                


                		
                  Linux installation
                


              


            


            		
              Python tutor
            


            		
              System console
            


            		
              Python interpreter
            


            		
              Visual Studio Code
            


            		
              The debugger
            


            		
              Jupyter
              
                		
                  Run Jupyter
                


                		
                  Editing notebooks
                


                		
                  Browsing notebooks
                


              


            


            		
              Course exercise formats
              
                		
                  Download exercises zip
                


                		
                  Python Tutor inside Jupyter
                


              


            


            		
              Exercises
            


          


        


        		
          Python basics
          
            		
              Download exercises zip
            


            		
              Modules
            


            		
              Objects
            


            		
              Variables
              
                		
                  Exercise: variable names
                


              


            


            		
              Numeric types
              
                		
                  Integers
                


              


            


            		
              Booleans
              
                		
                  Boolean operators
                


                		
                  Booleans exercise: constants
                


                		
                  Boolean conversion
                


                		
                  Booleans exercise: what is a boolean?
                


              


            


            		
              Numeric operators
              
                		
                  Numeric operators exercise: cycling
                


              


            


            		
              Real numbers
              
                		
                  Real numbers exercise: quadratic equation
                


              


            


          


        


        		
          Strings
          
            		
              Download exercises zip
            


            		
              What to do
            


            		
              Introduction
              
                		
                  Exercise: many hello
                


                		
                  Exercise: interleave terns
                


                		
                  Exercise: print length
                


                		
                  Exercise: both contained
                


                		
                  Slicing
                


                		
                  Exercise: garalampog
                


                		
                  Exercise: ifE:nbsphinx-math:te:nbsphinx-math:`nfav  `lkD lkWe
                


                		
                  Exercise: javarnanda
                


                		
                  Methods for the str object
                


                		
                  Exercise substitute
                


                		
                  Exercise hatespace
                


              


            


            		
              Exercises with functions
              
                		
                  length
                


                		
                  contains
                


                		
                  invertilet
                


                		
                  nspace
                


                		
                  startend
                


                		
                  swap
                


              


            


            		
              Verify comprehension
              
                		
                  has_char
                


                		
                  count
                


                		
                  dialect
                


                		
                  countvoc
                


                		
                  palindrome
                


                		
                  extract_email
                


                		
                  canon_phone
                


                		
                  phone_prefix
                


              


            


            		
              Further resources
            


          


        


        		
          Lists
          
            		
              Download exercises zip
            


            		
              What to do
            


            		
              Introduction
              
                		
                  Operators for lists
                


                		
                  Methods of the class list
                


                		
                  Exercise: growing list 1
                


                		
                  Exercise: growing list 2
                


                		
                  List of strings
                


                		
                  Lists hold references
                


                		
                  Making copies
                


                		
                  Equality and identity
                


                		
                  From strings to lists, the split method
                


                		
                  And back to strings with the join method
                


                		
                  Exercise: manylines
                


                		
                  Exercise: welldone
                


                		
                  Exercise: numlist
                


                		
                  List comprehension
                


              


            


            		
              Exercises with functions
              
                		
                  printwords
                


                		
                  printeven
                


                		
                  find26
                


                		
                  firstsec
                


                		
                  threeven
                


                		
                  separate_ip
                


                		
                  average
                


              


            


            		
              Verify comprehension
              
                		
                  Mapping
                


                		
                  newdoublefor
                


                		
                  double
                


                		
                  newdoublecomp
                


                		
                  up
                


                		
                  Filter
                


                		
                  remall
                


                		
                  only_capital_for
                


                		
                  only_capital_comp
                


                		
                  Reduce
                


                		
                  sum_all
                


                		
                  sum_all_even_for
                


                		
                  sum_all_even_comp
                


                		
                  Other exercises
                


                		
                  contains
                


                		
                  firstn
                


                		
                  firstlast
                


                		
                  dup
                


                		
                  hasdup
                


                		
                  ord3
                


                		
                  filterab
                


                		
                  hill
                


                		
                  peak
                


                		
                  even
                


                		
                  mix
                


                		
                  fill
                


                		
                  nostop
                


                		
                  threes
                


                		
                  list_to_int
                


                		
                  list_to_int
                


                		
                  int_to_list
                


                		
                  add one
                


                		
                  collatz
                


              


            


            		
              Recursive operations
              
                		
                  gap_rec
                


              


            


            		
              Further exercises
            


          


        


        		
          Tuples
          
            		
              Download exercises zip
            


            		
              What to do
            


            		
              Introduction
              
                		
                  Building tuples
                


                		
                  Building from sequences
                


                		
                  Tuple operators
                


                		
                  Exercise: pet tuples
                


                		
                  Exercise: fruits
                


                		
                  Exercise: build a tuple
                


              


            


            		
              Verify comprehension
              
                		
                  doubletup
                


              


            


          


        


        		
          Sets
          
            		
              Download exercises zip
              
                		
                  What to do
                


              


            


            		
              introduction
              
                		
                  Creating a set
                


                		
                  Empty sets
                


                		
                  Iterating a set
                


                		
                  Adding twice
                


                		
                  Belonging to a set
                


                		
                  Operations
                


                		
                  Exercise: set operators
                


                		
                  Exercise: dedup
                


              


            


          


        


        		
          Dictionaries
          
            		
              Download exercises zip
            


            		
              What to do
            


            		
              Introduction
              
                		
                  Dict
                


              


            


            		
              Dictionary methods
              
                		
                  Functions working on dictionaries
                


                		
                  Exercise print key
                


                		
                  Exercise modify dictionary
                


                		
                  Exercise print keys
                


                		
                  Exercise print dimension
                


                		
                  Exercise print keys as list
                


                		
                  Exercise ordered keys
                


                		
                  OrderedDict
                


                		
                  Exercise: OrderedDict phonebook
                


                		
                  Exercise: OrderedDict copy
                


                		
                  List of nested dictionaries
                


                		
                  Exercise: print employees
                


                		
                  Exercise: print company names
                


              


            


            		
              Exercises with functions
              
                		
                  print_val
                


                		
                  has_key
                


                		
                  dim
                


                		
                  keyring
                


                		
                  couples
                


              


            


            		
              Verify comprehension
              
                		
                  histogram
                


                		
                  listify
                


                		
                  tcounts
                


                		
                  inter
                


                		
                  unique_vals
                


                		
                  uppers
                


                		
                  filtraz
                


                		
                  powers
                


                		
                  dilist
                


                		
                  prefixes
                


                		
                  Managers
                


                		
                  managers: extract_managers
                


                		
                  managers: extract_departments
                


                		
                  managers: avg_age
                


                		
                  managers: buildings
                


                		
                  medie
                


                		
                  has_pref
                


              


            


          


        


        		
          Control flow
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              Execution flow
            


            		
              Conditionals
              
                		
                  The basic if - else statement
                


                		
                  The if - elif - else statement
                


                		
                  Nested ifs
                


                		
                  Ternary operator
                


              


            


            		
              Loops
              
                		
                  For loop
                


                		
                  Looping over a range
                


                		
                  Nested for loops
                


                		
                  While loops
                


                		
                  Break and continue
                


              


            


            		
              Exercises
            


          


        


        		
          Functions
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


                		
                  What is a function ?
                


              


            


            		
              Namespace and variable scope
            


            		
              Argument passing
              
                		
                  Positional arguments
                


                		
                  Passing arguments by keyword
                


                		
                  Specifying default values
                


              


            


            		
              Simple exercises
              
                		
                  sum2
                


                		
                  comparep
                


                		
                  comparer
                


                		
                  even
                


                		
                  gre
                


                		
                  is_vocal
                


                		
                  sphere_volume
                


                		
                  ciri
                


                		
                  age
                


              


            


            		
              Verify comprehension
              
                		
                  gre3
                


                		
                  final_price
                


                		
                  arrival_time
                


              


            


            		
              Lambda functions
              
                		
                  Exercises: lambdas
                


                		
                  apply_borders
                


                		
                  process
                


              


            


          


        


        		
          Errors and testing
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              Unforeseen situations
              
                		
                  make_problematic_pie
                


              


            


            		
              Check with the return
            


            		
              Exceptions
              
                		
                  Manage exceptions
                


                		
                  Particular exceptions
                


              


            


            		
              assert
              
                		
                  When to use assert?
                


              


            


            		
              Testing
              
                		
                  Where Is Your Software?
                


              


            


            		
              Testing with asserts
              
                		
                  Part A exercise structure
                


                		
                  even_numbers example
                


                		
                  Error kinds
                


              


            


            		
              Testing with Unittest
              
                		
                  Running tests
                


                		
                  When tests donâ��t run
                


                		
                  Adding tests
                


                		
                  Exercise: boundary cases
                


                		
                  Exercise: expecting assertions
                


                		
                  Exercise: good tests
                


                		
                  Running unittests in Visual Studio Code
                


              


            


            		
              Functional programming
            


          


        


        		
          Matrices: lists
          
            		
              Download exercises zip
            


            		
              Introduction
            


            		
              What to do
              
                		
                  Overview
                


              


            


            		
              Exercises
              
                		
                  Matrix dimensions
                


                		
                  extract_row
                


                		
                  extract_row_pointer
                


                		
                  extract_row_f
                


                		
                  extract_row_fr
                


                		
                  extract_row_s
                


                		
                  extract_row_c
                


                		
                  extract_col_f
                


                		
                  extract_col_c
                


                		
                  deep_clone
                


                		
                  stitch_down
                


                		
                  stitch_up
                


                		
                  stitch_right
                


                		
                  stitch_left_mod
                


                		
                  Exceptions and parameter checking
                


                		
                  diag
                


                		
                  anti_diag
                


                		
                  is_utriang
                


                		
                  transpose_1
                


                		
                  empty matrix
                


                		
                  empty_matrix the elegant way
                


                		
                  transpose_2
                


                		
                  threshold
                


                		
                  swap_rows
                


                		
                  swap_cols
                


                		
                  lab
                


                		
                  dump
                


                		
                  matrix multiplication
                


                		
                  check_nqueen
                


              


            


          


        


        		
          Matrices: numpy
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              np.array
            


            		
              NaNs and infinities
              
                		
                  NaNs
                


                		
                  Detecting NaN
                


                		
                  Sequences with NaNs
                


                		
                  Exercise NaN: two vars
                


                		
                  Operations on NaNs
                


                		
                  NaN and Numpy
                


                		
                  Where are the NaNs ?
                


                		
                  Infinities
                


                		
                  Positive infinity np.inf
                


                		
                  Negative infinity
                


                		
                  Combining infinities and NaNs
                


                		
                  Negative zero
                


                		
                  Exercise: detect proper numbers
                


                		
                  Exercise: guess expressions
                


              


            


            		
              Verify comprehension
              
                		
                  odd
                


                		
                  doublealt
                


                		
                  frame
                


                		
                  chessboard
                


                		
                  altsum
                


                		
                  avg_rows
                


                		
                  avg_half
                


                		
                  matxarr
                


                		
                  quadrants
                


                		
                  matrot
                


                		
                  Other Numpy exercises
                


              


            


          


        


        		
          Data formats
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              1. line files
              
                		
                  open command
                


                		
                  The encoding
                


                		
                  with block
                


                		
                  people-complex line file:
                


                		
                  Exercise: line file immersione-in-python-toc
                


              


            


            		
              2. File CSV
              
                		
                  Why parsing a CSV ?
                


                		
                  Reading a CSV
                


                		
                  Writing a CSV
                


                		
                  Reading and writing a CSV
                


                		
                  CSV Botteghe storiche
                


                		
                  Problem: wrong characters ??
                


                		
                  Botteghe storiche in Python
                


                		
                  Botteghe storiche: rank_categories
                


                		
                  Botteghe storiche: enrich
                


              


            


          


        


        		
          Graph formats
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


                		
                  Required libraries
                


                		
                  Graph definition
                


                		
                  Edge weights
                


                		
                  Matrices
                


                		
                  Visualization examples
                


                		
                  Saving a graph to a file
                


                		
                  Minimal graph
                


                		
                  Graph with two nodes example
                


                		
                  Distance matrix
                


                		
                  Boolean matrix example
                


                		
                  Matrix exercises
                


                		
                  line
                


                		
                  cross
                


                		
                  union
                


                		
                  is_subgraph
                


                		
                  remove_node
                


                		
                  utriang
                


                		
                  ediff
                


                		
                  pyramid
                


              


            


            		
              Adjacency lists
              
                		
                  mat_to_adj
                


                		
                  mat_ids_to_adj
                


                		
                  adj_to_mat
                


                		
                  table_to_adj
                


              


            


            		
              Networkx
              
                		
                  Converting networkx graphs
                


                		
                  mat_to_nx
                


              


            


            		
              Simple statistics
              
                		
                  Outdegrees and indegrees
                


                		
                  outdegree_adj
                


                		
                  outdegree_mat
                


                		
                  outdegree_avg
                


                		
                  indegree_adj
                


                		
                  indegree_mat
                


                		
                  indegree_avg
                


                		
                  Was it worth it?
                


                		
                  min_outdeg
                


                		
                  networkx Indegrees and outdegrees
                


              


            


          


        


        		
          Visualization
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              First example
              
                		
                  Plot style
                


                		
                  x power 2 exercise
                


                		
                  Axis limits
                


                		
                  Axis size
                


                		
                  Changing tick labels
                


              


            


            		
              Introducting numpy
              
                		
                  Example without numpy
                


                		
                  Example with numpy
                


                		
                  y = sin(x) + 3 exercise
                


                		
                  Showing degrees per node
                


                		
                  indegree per node
                


              


            


            		
              Bar plots
              
                		
                  indegree per node bar plot
                


                		
                  indegree per node sorted alphabetically
                


                		
                  indegree per node sorted
                


                		
                  out degrees per node sorted
                


                		
                  degrees per node
                


              


            


            		
              Frequency histogram
            


            		
              Showing plots side by side
              
                		
                  Graph models
                


              


            


            		
              Other plots
              
                		
                  Pie chart
                


              


            


          


        


        		
          Pandas
          
            		
              Download exercises zip
            


            		
              1. Introduction
              
                		
                  What to do
                


              


            


            		
              2. Data analysis of Astro Pi
              
                		
                  2.1 Exercise: meteo info
                


              


            


            		
              3. Indexing, filtering, ordering
              
                		
                  3.1 Exercise: Meteo stats
                


              


            


            		
              4. MatPlotLib review
              
                		
                  Matplotlib plots from pandas datastructures
                


              


            


            		
              5. Calculating new columns
              
                		
                  5.1 Exercise: Meteo Fahrenheit temperature
                


                		
                  5.2 Exercise: Pressure vs Temperature
                


              


            


            		
              6. Object values
              
                		
                  Filter by textual values
                


                		
                  Extracting strings
                


              


            


            		
              7. Transforming
            


            		
              8. Grouping
            


            		
              9. Exercise: meteo average temperatures
              
                		
                  9.1 meteo plot
                


                		
                  9.2 meteo pressure and raining
                


                		
                  9.3 meteo average temperature
                


              


            


            		
              10. Merging tables
              
                		
                  Exercise 10.1 better merge
                


              


            


            		
              11. Other exercises
            


          


        


        		
          Binary relations
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


                		
                  Reflexive relations
                


              


            


            		
              Exercises
              
                		
                  is_reflexive_mat
                


                		
                  is_reflexive_adj
                


                		
                  Symmetric relations
                


                		
                  is_symmetric_mat
                


                		
                  is_symmetric_adj
                


                		
                  surjective
                


              


            


            		
              Further resources
            


          


        


        		
          OOP
          
            		
              Download exercises zip
            


            		
              What to do
            


            		
              1. Abstract Data Types (ADT) Theory
              
                		
                  1.1. Intro
                


                		
                  1.2. Complex number theory
                


                		
                  1.3. Datatypes the old way
                


                		
                  1.4. Finding the pattern
                


                		
                  1.5. Object Oriented Programming
                


              


            


            		
              2. ComplexNumber class
              
                		
                  2.1. Class declaration
                


                		
                  2.2. Constructor __init__
                


                		
                  2.3. Defining methods
                


                		
                  2.4. ComplexNumber code skeleton
                


                		
                  2.5. Complex numbers magnitude
                


                		
                  2.6. Complex numbers equality
                


                		
                  2.7. Complex numbers isclose
                


                		
                  2.8. Complex numbers addition
                


                		
                  2.9. Adding a scalar
                


                		
                  2.10. Complex numbers multiplication
                


              


            


            		
              3. MultiSet
            


            		
              3.1 __init__ add and get
            


            		
              3.2 removen
            


          


        


        		
          Sorting
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  References
                


                		
                  What to do
                


              


            


            		
              List performance
              
                		
                  Fast or not?
                


              


            


            		
              Exercises
            


            		
              1 Selection Sort
              
                		
                  1.1 Implement swap
                


                		
                  1.2 Implement argmin
                


                		
                  1.3: Full selection_sort
                


              


            


            		
              2 Insertion sort
            


            		
              3 Merge sort
              
                		
                  Taking last element
                


                		
                  Costly internal del
                


                		
                  Costly internal pop
                


                		
                  3.1 merge 1
                


                		
                  3.2 merge2
                


              


            


            		
              4 quick sort
              
                		
                  4.1 pivot
                


                		
                  4.2 quicksort and qs
                


              


            


            		
              5. chaining
              
                		
                  5.1 has_duplicates
                


                		
                  B.2.2 chain
                


              


            


            		
              6 SwapArray
              
                		
                  6.1 is_sorted
                


                		
                  6.2 max_to_right
                


                		
                  6.6 swapsort
                


              


            


          


        


        		
          Linked lists
          
            		
              Download exercises zip
            


            		
              0 Introduction
              
                		
                  References
                


                		
                  What to do
                


                		
                  0.1 Initialization
                


                		
                  0.2 Growing
                


                		
                  0.3 Visiting
                


              


            


            		
              1 v1: a slow LinkedList
              
                		
                  1.a) Testing
                


                		
                  1.b) Differences with the book
                


                		
                  1.c) Please rememberâ�¦
                


              


            


            		
              2 v2 faster size
              
                		
                  2.1 Save a copy of your work
                


                		
                  2.2. Improve size
                


              


            


            		
              3 v3 Faster append
              
                		
                  3.1 Save a copy of your work
                


                		
                  3.2 add _last field
                


                		
                  3.3 add method skeleton
                


                		
                  3.4 test driven development
                


                		
                  3.4.1 LastTest
                


                		
                  3.4.2 improve myAssert
                


                		
                  3.5 update methods that mutate the LinkedList
                


                		
                  3.6 Run tests
                


              


            


            		
              4 v4 Go bidirectional
              
                		
                  4.1 Save your work
                


                		
                  4.2 Node backlinks
                


                		
                  4.3 Better str
                


                		
                  4.4 Modify add
                


                		
                  4.5 Add to_python_reversed
                


                		
                  4.6 Add invariant
                


                		
                  4.7 Modify other methods
                


                		
                  4.8 Run the tests
                


              


            


            		
              5 EqList
              
                		
                  5.1 eq
                


                		
                  5.2 remsub
                


              


            


            		
              6 Cloning
              
                		
                  6.1 rev
                


                		
                  6.2 clone
                


              


            


            		
              7 More exercises
              
                		
                  7.1 occurrences
                


                		
                  7.2 shrink
                


                		
                  7.3 dup_first
                


                		
                  7.4 dup_all
                


                		
                  7.5 mirror
                


                		
                  7.6 norep
                


                		
                  7.8 find_couple
                


                		
                  7.9 swap
                


                		
                  7.10 gaps
                


                		
                  7.11 flatv
                


                		
                  7.12 bubble_sort
                


                		
                  7.13 merge
                


              


            


          


        


        		
          Stacks
          
            		
              Download exercises zip
            


            		
              0. Introduction
              
                		
                  References
                


                		
                  What to do
                


              


            


            		
              1. CappedStack
              
                		
                  CappedStack Examples
                


                		
                  Capped Stack basic methods
                


                		
                  1.1 __init__
                


                		
                  1.2 cap
                


                		
                  1.3 size
                


                		
                  1.4 __str__
                


                		
                  1.5 is_empty
                


                		
                  1.6 push
                


                		
                  1.7 peek
                


                		
                  1.8 pop
                


                		
                  1.9 peekn
                


                		
                  1.10 popn
                


                		
                  1.11 set_cap
                


              


            


            		
              2. SortedStack
              
                		
                  2.1 transfer
                


                		
                  2.2 merge
                


              


            


            		
              3. WStack
              
                		
                  3.1 implement class WStack
                


                		
                  3.2 accumulate
                


              


            


            		
              4. Backpack
              
                		
                  4.1 class
                


                		
                  4.2 remove
                


              


            


            		
              5. Tasks
              
                		
                  5.1 do
                


                		
                  5.2 do_level
                


              


            


            		
              6. Stacktris
              
                		
                  6.1 _shorten
                


                		
                  6.2 drop1
                


                		
                  6.3 drop2h
                


              


            


          


        


        		
          Queues
          
            		
              Download exercises zip
            


            		
              Introduction
              
                		
                  What to do
                


              


            


            		
              1. LinkedQueue
              
                		
                  1.1 enqn
                


                		
                  1.2 deqn
                


              


            


            		
              2. CircularQueue
              
                		
                  2.1 Implementation
                


              


            


            		
              3. ItalianQueue
              
                		
                  3.1 Slow v1
                


                		
                  3.1.1 init
                


                		
                  3.1.2 Slow enqueue
                


                		
                  3.1.2 dequeue
                


                		
                  3.2 Fast v2
                


                		
                  3.2.1 Save a copy
                


                		
                  3.2.2 Improve enqueue
                


              


            


            		
              4. Supermarket queues
              
                		
                  CashQueue
                


                		
                  Supermarket
                


                		
                  Supermarket as a queue
                


                		
                  Implementation
                


                		
                  4.1 Supermarket size
                


                		
                  4.2 Supermarket dequeue
                


                		
                  4.3 Supermarket enqueue
                


              


            


            		
              5. Shopping mall queues
              
                		
                  Client
                


                		
                  Shop
                


                		
                  Mall
                


                		
                  Mall as a queue
                


                		
                  Implementation
                


                		
                  6.1 Mall enqueue
                


                		
                  6.2 Mall dequeue
                


              


            


            		
              6. Company queues
              
                		
                  7.1 add_employee
                


                		
                  7.2 add_task
                


                		
                  7.3 work
                


              


            


            		
              7. Concert
              
                		
                  7.1 dequeue
                


              


            


          


        


        		
          Trees
          
            		
              Download exercises zip
            


            		
              0. Introduction
              
                		
                  What to do
                


              


            


            		
              BT 0. Binary Tree Introduction
              
                		
                  BT 0.1 References
                


                		
                  BT 0.2 Terminology - relations
                


                		
                  BT 0.3 Terminology - levels
                


                		
                  BT 0.4 Terminology - shapes
                


                		
                  BT 0.2 Code skeleton
                


                		
                  BT 0.3 Building trees
                


                		
                  BT 0.3.1 Pointers
                


                		
                  BT 0.3.2 Building with insert_left
                


                		
                  BT 0.3.3 Building with bt
                


              


            


            		
              BT 1. Insertions
              
                		
                  BT 1.1 insert_left
                


                		
                  BT 1.2 insert_right
                


              


            


            		
              BT 2. Recursive visit
              
                		
                  BT 2.1 sum_rec
                


                		
                  BT 2.2 height_rec
                


                		
                  BT 2.3 depth_rec
                


                		
                  BT 2.4 contains_rec
                


                		
                  BT 2.5 join_rec
                


                		
                  BT 2.6 fun_rec
                


                		
                  BT 2.7 bin_search_rec
                


                		
                  BT 2.8 bin_insert_rec
                


                		
                  BT 2.9 univalued_rec
                


                		
                  BT 2.10 same_rec
                


              


            


            		
              BT 3. Stack visit
              
                		
                  BT 3.1 sum_stack
                


                		
                  BT 3.3 height_stack
                


                		
                  BT 3.3 others
                


              


            


            		
              BT Further resources
            


            		
              GT 0. Generic Tree Introduction
              
                		
                  GT 0.2 Code skeleton
                


                		
                  GT 0.3 Building trees
                


                		
                  GT 0.3.1 Pointers
                


                		
                  GT 0.3.2 Building with insert_child
                


                		
                  GT 0.3.3 Building with gt
                


                		
                  GT 0.4 Displaying trees side by side with str_trees
                


                		
                  GT 0.5 Look at the tests
                


                		
                  GT 0.6 Look at gen_tree_test.GenericTreeTest
                


              


            


            		
              GT 1 Implement basic methods
              
                		
                  GT 1.1 insert_child
                


                		
                  GT 1.2 insert_children
                


                		
                  GT 1.3 insert_sibling
                


                		
                  GT 1.4 insert_siblings
                


                		
                  GT 1.5 detach_child
                


                		
                  GT 1.6 detach_sibling
                


                		
                  GT 1.7 detach
                


                		
                  GT 1.8 ancestors
                


              


            


            		
              GT 2 Implement more complex functions
              
                		
                  GT 2.1 grandchildren
                


                		
                  GT 2.2 Zig Zag
                


                		
                  GT 2.3 uncles
                


                		
                  GT 2.4 common_ancestor
                


                		
                  GT 2.5 mirror
                


                		
                  GT 2.6 clone
                


                		
                  GT 2.7 rightmost
                


                		
                  GT 2.8 fill_left
                


                		
                  GT 2.9 follow
                


                		
                  GT 2.10 is_triangle
                


                		
                  GT 2.11 has_triangle
                


              


            


          


        


        		
          Graph algorithms
          
            		
              Download exercises zip
              
                		
                  What to do
                


              


            


            		
              Introduction
              
                		
                  0.1 Graph theory
                


                		
                  0.2 Directed graphs
                


                		
                  0.3 Serious graphs
                


                		
                  0.4 Code skeleton
                


                		
                  0.5 Building graphs
                


                		
                  0.5.1 Building basics
                


                		
                  0.5.2 dig()
                


                		
                  0.6 Equality
                


                		
                  0.7 Basic querying
                


                		
                  0.7.1 adj
                


                		
                  0.7.2 is_empty()
                


                		
                  0.7.3 verteces()
                


                		
                  0.8 Blow up your computer
                


              


            


            		
              1. Implement building
              
                		
                  1.1 has_edge
                


                		
                  1.2 full_graph
                


                		
                  1.3 dag
                


                		
                  1.4 list_graph
                


                		
                  1.5 star_graph
                


                		
                  1.6 odd_line
                


                		
                  1.7 even_line
                


                		
                  1.8 quads
                


                		
                  1.9 pie
                


                		
                  1.10 Flux Capacitor
                


              


            


            		
              2. Manipulate graphs
              
                		
                  2.1 remove_vertex
                


                		
                  2.2 transpose
                


                		
                  2.3 has_self_loops
                


                		
                  2.4 remove_self_loops
                


                		
                  2.5 undir
                


              


            


            		
              3. Query graphs
              
                		
                  3.1 distances()
                


                		
                  3.2 equidistances()
                


                		
                  3.3 Play with dfs and bfs
                


                		
                  3.4 Exits graph
                


                		
                  3.4.1 Exits graph cp
                


                		
                  3.4.2 Exit graph exits
                


                		
                  3.5 connected components
                


                		
                  3.6 has_cycle
                


                		
                  3.7 top_sort
                


              


            


          


        


        		
          Index
        


      


    
  

_images/bt-tasks.png





_images/bt-terminology-1.png
o Ais the tree oot @ D,E arechildren o Purple nodes are
e B,C are roots of of B leaves

their subtrees o Bis the parent of o The other nodes
o D, E are siblings D.E are internal nodes





_images/bt-shapes.png
Binary tree

A binary tree is a tree data structure in which each node has at
most two children, which are referred to as the left child and the
right child.

Note: Two trees T and U having the same nodes, the same children for
cach node and the same root, are said to be different if a node u is a left
child of a node v in T and a right child of the same node in U.

T T Ty Level

—ee- 0

cee- 2






_images/bt-sum.png





_images/cc-by.png





_images/circular-queue-pseudocode.png
Queue

Queue based on circular array — Pseudocode

Queve
A Y Elements  dequeue()

size % Current size | if size > 0 then

head %% Head of the queue temp « Alhead)

cap % Maximum size head ¢ (head + 1)%cap

Queve(self, dim)
self.A & new int[0...dim — 1]
self.cap  dim
selfhead « 0
self .size & 0

top()

if size > 0 then
| return Afhead

5P - Da

size 4 size — 1
return temp

enqueue(v)
if size < cap then
Al(head + size)Yocap] v
L size ¢ size + 1

size()
| return size

isEmpty()
| return size=0

a structure 201

/11/21

62/ 60





_images/bt-terminology-2.png
- Depth of a node

The length of the simple path
from the root to the no-
de (measured in number of
edges)

ALevl———————————
The set of nodes having the
same depth

~ Height of the tree

The maximum depth of all its
leaves

Height of this tree





_images/capped-stack.png
discarded

~o

Vemma

00000





_images/codecompletion.png
pri|

© print

def print(value, ..., se

='\n', file=sys.stdout, flush=Fals

Prints the values to a stream, or to sys.stdout by
default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the
current sys.stdout.

sep: string inserted between values, defaulta
space.

end: string appended after the last value, default





_images/comparators.png
True if and only if a = b

True if and only if a # b

a<b |Trueifandonlyifa<b

a>b |Trueifandonlyifa>b

a<=b [Trueifandonlyifa<h

a> b |Trueifandonlyifa>b






_images/complex-numbers-addition.png
Complex numbers are added by separately adding the real and imaginary parts of the summands.
That is to say:

(a+bi)+ (c+di) = (a+c)+ (b+d)i.
Similarly, subtraction is defined by

(a+bi) — (c+di) = (a—c) + (b— d)i.





_images/complex-numbers-magnitude-1.png
The absolute value (or modulus or magnitude) of a complex number z = x + yi is

- VT






_images/complex-numbers-magnitude-2.png





_images/complex-numbers-definition.png
A complex number is a number that can be expressed in the
form a + bi, where a and b are real numbers and i is the
imaginary unit which satisfies the equation 12 = ~1. In this
expression, a is the real part and b is the imaginary part of the
complex number.

Complex number - Wikipedia
https://en.wikipedia.org/wiki/Complex_number





_images/complex-numbers-equality.png
Equality [edit]
Two complex numbers are equal if and only if both their real and imaginary parts are equal. In symbols:

z1 =2z + (Re(z1) =Re(z2) A Im(21) = Im(2,)).





_images/debug.png





_images/division-exclusions-solution.png
# of exclusions by divisions (level 2) - SOLUTION

NACE 90 NACE 47 NACE 46 NACE 01 NACE 28 NACE 5L NACE 19 NACE 77 NACE 03 NACE 16
Geative, Retail Wholesale  Cropand  Manufacture of Manufacture of  Rentaland  Fistingand  Manufacture of
arts and rade, rade, e Mathneyar  transport coke and leasing aquaculture  wood and of

entertanment  exceptof  exceptof  production,  equipment refined activities products of
actities motor motor Hunting and nec petroleum "Wood and

vehiclesand  vehiclesand  related products cork,
motorcycles  motorcycles  service. except
actiities fmiture;
manufacture of
articles of

Straw and

paiting
materials






_images/complex-numbers-multiplication.png
Multiplication and division [edit]

The multiplication of two complex numbers is defined by the following formula:
(a+ bi)(c + di) = (ac — bd) + (bc + ad)i.

In particular, the square of the imaginary unit is -1:

P2 =ixi=—1





_images/console.png
biancol@bluhp:~$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux
"copyright", "credits" or "license” for more information.






_images/visual_studio_code.png
Welcome — Visual Studio Code

EXPLORER

4 OPEN EDITORS

4 welcome
4 NO FOLDER OPENED

You have not yet opened a
folder.

Open Fols

°d Welcome x

Start

New file
Open folder..
Clone Gt repository...

Recent

No recent folders

Help

Printable keyboard cheatsheet
Introductory videos

Tips and Tricks

GitHub repository

Stack Overflow

@ Show welcome page on startup

Customize

Tools and languages
Install support for JavaScript, TypeScr.

Install keyboard shortcuts
Install the keyboard shortcuts of Vim,

Color theme
Make the editor and your code look th.

Learn

Find and run all commands
Rapidly access and search command.

Deploy applications to the cloud
Learn how to deploy your Node apps t

Interactive playground
Try essential editor features out in a's.





_images/types.png
Type | Meaning Domain Mutable?
bool | Condition True, False No
int | Integer No
Jong | duters Ne
long | Integer z No
float | Rational Q (more or less) No
str | Text Text No
list | Sequence Collections of things | Yes
tuple | Sequence Collections of things | No
dict | Map Maps between things | Yes






_images/vscode-2.png
ad.
t |
st

kelect a test framework/tool to enable

unittest Standard Python test framework
https://docs.python.org/3/library/unittest.html

pytest pytest framework
http://docs.pytest.org/

nose nose framework
https://nose.readthedocs.io/






_images/vscode-1.png
>

d. Python: Configure Tests

- | Add Cursor Above
T Add Cursor Below
Add Cursors To Bottom

es






_images/structured_programming.png
Sequenc

Newiines

Conditional statement

True, False.

if - elif - else

Loop statement

[Fatse

for - while






_images/strmethods.png
Result| Method Meaning.

Str__ [ stroupper() Return the strng i upper case

Str__ | str lover) Return the string in lower case’

str__| str_strip(stn) Remove strings from the sides

Str_ [ str Istrip(stn) Remove strings from the IofL

Str__ | strrstrip(stn) Remove strings from the right

str__| str.replace(str, str) | Replace substrings

Bool | str_startsuith(str) | Check if the string starts with another

ool | str_endswith(str) ‘Chedk i the string ends with another

Tt | str.fima(sen) Return the frst position of a substring,
starting from the left

Tt | ser.rfinaGeen) Return the position of a substring
starting from the right

Tt | str.count(str) Count the mumber of occurrences of

substring






_images/tree.jpg





_images/surveillance.png
minutes
cw BEH BN YRS

Disconnections SOLUTION

— el

—maxgap
- time_away

Luigi Wario

Princess Toadstool






_images/tuple_methods.png
Return| Method Meaning

int list.count (obj) Count the occurrences of an
element

int list.index(obj) Return the index of the first

occurrence of an object






_images/triangle.png





_images/tuple_operators.png
Result| Operator Meaning

bool =, I= Check if two tuples are equal or different

int len(tuple) Return the length of the tuple

tuple | tuple + tuple | Concatenate two tuples (returns a new
tuple)

tuple | tuple * int Replicate the tuple (returns a tuple)

tuple | tuple[int] Read an element of the tuple

tuple

tuple[int:int]

Extract a sub-tuple






_images/escapes.png
W

Backslash

\a__ | ASCII linefced (also known as newline)
\t__ | ASCII tab character

\" [ Single quote

\"__[ Double quote

\oxxx | Unicode character ook (hexadecimal)






_images/example-nace.jpg
M PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES
69 Legal and accounting activities
69.1 Legal activities
69.10 Legal activities
69.2 Accounting, bookkeeping and auditing activities; tax consultancy
69.20 Accounting, bookkeeping and auditing activities; tax consultancy
70 Activities of head offices; management consultancy activities
70.1 Activities of head offices
70.10 Activities of head offices
70.2 Management consultancy activities
70.21 Public relations and communication activities
70.22 Business and other management consultancy activities
71 Architectural and engineering activities; technical testing and analysis
71.1 Architectural and engineering activities and related technical consultancy
71.11 Architectural activities
71.12 Engineering activities and related technical consultancy
71.2 Technical testing and analysis
71.20 Technical testing and analysis
72 Scientific research and development
72.1 Research and experimental development on natural sciences and engineering
72.11 Research and experimental development on biotechnology
72.19 Other research and experimental development on natural sciences and engineering
72.2 Research and experimental development on social sciences and humanities
72.20 Research and experimental development on social sciences and humanities
73 Advertising and market research
73.1 Advertising
73.11 Advertising agencies
73.12 Media representation





_images/errors.png
1 mem
2 This is the first example of Python script.
R

4 z=10# variaple a

5 B =33 #variaple »

6 C=a/Db#variable c holas the ratic

7

& % Let's print the result to screen.

s printe("a:", a, " bi", b, " a/b=", )

10

PROBLEMS ~ OUTPUT  DEBUGCONSOLE  TERMINAL  Filter byt

4 @ examplelpy @

© [pylint] CO103:Inval
© [pylint] CO103:Inval
© [pylint] CO103:Inval

constant name "a" (4, 1)
constant name "b" (5, 1)
constant name "c” (6, 1)






_images/exams_2018-11-16_exam-2018-11-16-solution_13_0.png





_images/exams_2018-11-16_exam-2018-11-16-solution_16_0.png





_images/example.png
A
Jupyter!





_images/exams_2018-11-13_exam-2018-11-13-solution_25_0.png
province calls by prefixes sorted solution

30

25

20

10

0s

00
] 0461 mobile

prefixes





_images/exams_2018-11-16_exam-2018-11-16-solution_28_0.png





_images/exams_2018-11-16_exam-2018-11-16-solution_20_0.png





_images/exams_2018-11-16_exam-2018-11-16-solution_25_0.png





_images/step0.png
DEBUG B Python M- |

4 VARIABLES
Lol
_name_: '_main_'
_doc_: ' integer_sum.py is ..
__package__: None
__loader_: None
__spec__: None
__file_: '/home/biancol/Goog..
__cached__: None
»_builtins_: {'ArithmeticErr.

@ integer_sum.py X

mwn integer_sum.py is a script to
compute the sum of the first 1200 integers. """

s=0
for 1 in range(0, 1201)

print("The sum of the first 1200 integers is: ", S)





_images/stringoperators.png
Result| Operator | Meaning
int | len(str) | Return the length of the string

str__ | str + str | Concatenate two strings

str | str + int | Replicate the string

Bool | str in str | Check if a string is present in another string
str | strlint] | Read the character at specified index

str__| strlint:int]| Extract a sub-string






_images/step1.png
DEBUG B Python # =2

4 VARIABLES
Lol
_name_: '_main_'
_doc_: ' integer_sum.py is ..
__package__: None
__loader_: None
__spec__: None
__file_: '/home/biancol/Goog..
__cached__: None
»_builtins_: {'ArithmeticErr.
o0
+ warcn
s: 0
1:1
Stiz 1

@ integer_sum.py X

mwn integer_sum.py is a script to
compute the sum of the first 1200 integers.

s=0
for 1 in range(0, 1201)

print("The sum of the first 1200 integers is:






_images/problems.png
example1.py — exercises — Visual Studio Code

EXPLORER @ examplelpy X @ m -

4 OPENEDITORS

This is the first example of Python script.

# examplel.py

+ Exeraises
2 - 10 # variable a
T 5 B =334 variablen
) launchjson 6 g=a/b#variable c holds the ratio
0} settingsjson 7
@ examplet.py & 4 Let's print the result to screen.
@ integer_sum.py S print(fa:t, a, " b:%, B, " a/b=t, )
10
PROBLEMS ~ OUTPUT  DEBUGCONSOLE  TERMINAL Filter by type. a

€0103:1nvalid constant name

C0103:1nvalid constant name "b” (s,

€0103:1nvalid constant name

" O Q0A0O®3 Ln10,Col1 Spaces:4 UTF8 LF Python @





_images/pythoninterpreter.png
EXPLORER

OPEN EDITORS
@ example
@ example
EXERCISES
4 .vscode
) launchisa
) settingsjs
® example1.p}
 example2p)

>Python

Python: Select Workspace Interpreter
Python: Run Python File in Terminal
Python Refactor: Extract Method
Python Refactor: Extract Va