
Dask Cloud Provider Documentation
Release 2022.10.0

Dask Cloud Provider Developers

Oct 21, 2022

OVERVIEW

1 Installation 3
1.1 Pip . 3
1.2 Conda . 3

2 Configuration 5
2.1 Authentication . 5
2.2 Cluster config . 5

3 Amazon Web Services (AWS) 7
3.1 Overview . 7
3.2 Elastic Compute Cloud (EC2) . 7
3.3 Elastic Container Service (ECS) . 12
3.4 Fargate . 18

4 DigitalOcean 23
4.1 Overview . 23
4.2 Droplet . 23

5 Google Cloud Platform 27
5.1 Overview . 27
5.2 Google Cloud VMs . 28

6 Microsoft Azure 33
6.1 Overview . 33
6.2 AzureVM . 35
6.3 Azure Spot Instance Plugin . 40

7 Hetzner 43
7.1 Overview . 43

8 Troubleshooting 47
8.1 Unable to connect to scheduler . 47
8.2 Invalid CPU or Memory . 47
8.3 Requested CPU Configuration Above Limit . 48
8.4 Pulling private Docker images . 48

9 Security 49
9.1 Public Schedulers . 49
9.2 Authentication and encryption . 49

10 GPU clusters 51

i

11 Creating custom OS images with Packer 53
11.1 Installing Packer . 53
11.2 Packer Overview . 53
11.3 Image Requirements . 54
11.4 Examples . 54

12 Testing 61

13 Releasing 63

Index 65

ii

Dask Cloud Provider Documentation, Release 2022.10.0

Native Cloud integration for Dask.

This package provides classes for constructing and managing ephemeral Dask clusters on various cloud platforms.

To use a cloud provider cluster manager you can import it and instantiate it. Instantiating the class will result in cloud
resources being created for you.

from dask_cloudprovider.aws import FargateCluster
cluster = FargateCluster(

Cluster manager specific config kwargs
)

You can then construct a Dask client with that cluster object to use the cluster.

from dask.distributed import Client
client = Client(cluster)

Once you are connected to the cluster you can go ahead and use Dask and all computation will take place on your cloud
resource.

Once you are finished be sure to close out your cluster to shut down any cloud resources you have and end any charges.

cluster.close()

Warning: Cluster managers will attempt to automatically remove hanging cloud resources on garbage collection
if the cluster object is destroyed without calling cluster.close(), however this is not guaranteed.

To implicitly close your cluster when you are done with it you can optionally contruct the cluster manager via a context
manager. However this will result in the creation and destruction of the whole cluster whenever you run this code.

from dask_cloudprovider.aws import FargateCluster
from dask.distributed import Client

with FargateCluster(...) as cluster:
with Client(cluster) as client:

Do some Dask things

OVERVIEW 1

Dask Cloud Provider Documentation, Release 2022.10.0

2 OVERVIEW

CHAPTER

ONE

INSTALLATION

1.1 Pip

$ pip install dask-cloudprovider[all]

You can also restrict your install to just a specific cloud provider by giving their name instead of all.

$ pip install dask-cloudprovider[aws] # or
$ pip install dask-cloudprovider[azure] # or
$ pip install dask-cloudprovider[azureml] # or
$ pip install dask-cloudprovider[digitalocean] # or
$ pip install dask-cloudprovider[gcp]

1.2 Conda

$ conda install -c conda-forge dask-cloudprovider

3

Dask Cloud Provider Documentation, Release 2022.10.0

4 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

Each cluster manager in Dask Cloudprovider will require some configuration specific to the cloud services you wish
to use. Many config options will have sensible defaults and often you can create a cluster with just your authentication
credentials configured.

2.1 Authentication

All cluster managers assume you have already configured your credentials for the cloud you are using.

For AWS this would mean storing your access key and secret key in ~/.aws/credentials. The AWS CLI can create
this for you by running the command aws configure.

See each cluster manager for specific details.

Warning: Most cluster managers also allow passing credentials as keyword arguments, although this would result
in credentials being stored in code and is not advised.

2.2 Cluster config

Configuration can be passed to a cluster manager via keyword arguments, YAML config or environment variables.

For example the FargateCluster manager for AWS ECS takes a scheduler_mem configuration option to set how
much memory to give the scheduler in megabytes. This can be configured in the following ways.

from dask_cloudprovider.aws import FargateCluster

cluster = FargateCluster(
scheduler_mem=8192

)

~/.config/dask/cloudprovider.yaml

cloudprovider:
ecs:
scheduler_mem: 8192

$ export DASK_CLOUDPROVIDER__ECS__SCHEDULER_MEM=8192

See each cluster manager and the Dask configuration docs for more information.

5

https://docs.dask.org/en/latest/configuration.html

Dask Cloud Provider Documentation, Release 2022.10.0

6 Chapter 2. Configuration

CHAPTER

THREE

AMAZON WEB SERVICES (AWS)

EC2Cluster([region, availability_zone, ...]) Deploy a Dask cluster using EC2.
ECSCluster([fargate_scheduler, ...]) Deploy a Dask cluster using ECS
FargateCluster(**kwargs) Deploy a Dask cluster using Fargate on ECS

3.1 Overview

3.1.1 Authentication

In order to create clusters on AWS you need to set your access key, secret key and region. The simplest way is to use
the aws command line tool.

$ pip install awscli
$ aws configure

3.1.2 Credentials

In order for your Dask workers to be able to connect to other AWS resources such as S3 they will need credentials.

This can be done by attaching IAM roles to individual resources or by passing credentials as environment variables.
See each cluster manager docstring for more information.

3.2 Elastic Compute Cloud (EC2)

class dask_cloudprovider.aws.EC2Cluster(region=None, availability_zone=None, bootstrap=None,
auto_shutdown=None, ami=None, instance_type=None,
scheduler_instance_type=None, worker_instance_type=None,
vpc=None, subnet_id=None, security_groups=None,
filesystem_size=None, key_name=None,
iam_instance_profile=None, docker_image=None,
debug=False, instance_tags=None, volume_tags=None,
use_private_ip=None, enable_detailed_monitoring=None,
**kwargs)

Deploy a Dask cluster using EC2.

7

Dask Cloud Provider Documentation, Release 2022.10.0

This creates a Dask scheduler and workers on EC2 instances.

All instances will run a single configurable Docker container which should contain a valid Python
environment with Dask and any other dependencies.

All optional parameters can also be configured in a cloudprovider.yaml file in your Dask configuration
directory or via environment variables.

For example ami can be set via DASK_CLOUDPROVIDER__EC2__AMI.

See https://docs.dask.org/en/latest/configuration.html for more info.

Parameters

region: string (optional) The region to start your clusters. By default this will be detected from
your config.

availability_zone: string or List(string) (optional) The availability zone to start your clusters.
By default AWS will select the AZ with most free capacity. If you specify more than one
then scheduler and worker VMs will be randomly assigned to one of your chosen AZs.

bootstrap: bool (optional) It is assumed that the ami will not have Docker installed (or the
NVIDIA drivers for GPU instances). If bootstrap is True these dependencies will be in-
stalled on instance start. If you are using a custom AMI which already has these dependencies
set this to False.

worker_command: string (optional) The command workers should run when starting. By de-
fault this will be "dask-worker" unless instance_type is a GPU instance in which case
dask-cuda-worker will be used.

ami: string (optional) The base OS AMI to use for scheduler and workers.

This must be a Debian flavour distribution. By default this will be the latest official Ubuntu
20.04 LTS release from canonical.

If the AMI does not include Docker it will be installed at runtime. If the instance_type is a
GPU instance the NVIDIA drivers and Docker GPU runtime will be installed at runtime.

instance_type: string (optional) A valid EC2 instance type. This will determine the re-
sources available to the scheduler and all workers. If supplied, you may not specify
scheduler_instance_type or worker_instance_type.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.

scheduler_instance_type: string (optional) A valid EC2 instance type. This will determine
the resources available to the scheduler.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.

worker_instance_type: string (optional) A valid EC2 instance type. This will determine the
resources available to all workers.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.

vpc: string (optional) The VPC ID in which to launch the instances.

Will detect and use the default VPC if not specified.

8 Chapter 3. Amazon Web Services (AWS)

https://docs.dask.org/en/latest/configuration.html
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Dask Cloud Provider Documentation, Release 2022.10.0

subnet_id: string (optional) The Subnet ID in which to launch the instances.

Will use all subnets for the VPC if not specified.

security_groups: List(string) (optional) The security group ID that will be attached to the
workers.

Must allow all traffic between instances in the security group and ports 8786 and 8787 be-
tween the scheduler instance and wherever you are calling EC2Cluster from.

By default a Dask security group will be created with ports 8786 and 8787 exposed to the
internet.

filesystem_size: int (optional) The instance filesystem size in GB.

Defaults to 40.

key_name: str (optional) The SSH key name to assign to all instances created by the cluster
manager. You can list your existing key pair names with aws ec2 describe-key-pairs
--query 'KeyPairs[*].KeyName' --output text.

NOTE: You will need to ensure your security group allows access on port 22. If
security_groups is not set the default group will not contain this rule and you will need
to add it manually.

iam_instance_profile: dict (optional) An IAM profile to assign to VMs. This can be used
for allowing access to other AWS resources such as S3. See https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html.

n_workers: int Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str The Python module to run for the worker. Defaults to distributed.
cli.dask_worker

worker_options: dict Params to be passed to the worker class. See distributed.worker.
Worker for default worker class. If you set worker_module then refer to the docstring for
the custom worker class.

scheduler_options: dict Params to be passed to the scheduler class. See distributed.
scheduler.Scheduler.

docker_image: string (optional) The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the
Python environment matches your local environment where EC2Cluster is being created
from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda in-
stalled.

By default the daskdev/dask:latest image will be used.

docker_args: string (optional) Extra command line arguments to pass to Docker.

env_vars: dict (optional) Environment variables to be passed to the worker.

silence_logs: bool Whether or not we should silence logging when setting up the cluster.

asynchronous: bool If this is intended to be used directly within an event loop with async/await

security [Security or bool, optional] Configures communication security in this cluster. Can be
a security object, or True. If True, temporary self-signed credentials will be created auto-
matically. Default is True.

3.2. Elastic Compute Cloud (EC2) 9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler

Dask Cloud Provider Documentation, Release 2022.10.0

debug: bool, optional More information will be printed when constructing clusters to enable
debugging.

instance_tags: dict, optional Tags to be applied to all EC2 instances upon creation. By default,
includes “createdBy”: “dask-cloudprovider”

volume_tags: dict, optional Tags to be applied to all EBS volumes upon creation. By default,
includes “createdBy”: “dask-cloudprovider”

use_private_ip: bool (optional) Whether to use a private IP (if True) or public IP (if False).

Default False.

enable_detailed_monitoring: bool (optional) Whether to enable detailed monitoring
for created instances. See https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using-cloudwatch-new.html Default False.

Notes

Resources created

Resource Name Purpose Cost
EC2 Instance dask-scheduler-{cluster uuid} Dask Scheduler EC2 Pricing
EC2 Instance dask-worker-{cluster uuid}-{worker uuid} Dask Workers EC2 Pricing

Credentials

In order for Dask workers to access AWS resources such as S3 they will need credentials.

The best practice way of doing this is to pass an IAM role to be used by workers. See the
iam_instance_profile keyword for more information.

Alternatively you could read in your local credentials created with aws configure and pass them along as
environment variables. Here is a small example to help you do that.

>>> def get_aws_credentials():
... parser = configparser.RawConfigParser()
... parser.read(os.path.expanduser('~/.aws/config'))
... config = parser.items('default')
... parser.read(os.path.expanduser('~/.aws/credentials'))
... credentials = parser.items('default')
... all_credentials = {key.upper(): value for key, value in [*config,␣
→˓*credentials]}
... with contextlib.suppress(KeyError):
... all_credentials["AWS_REGION"] = all_credentials.pop("REGION")
... return all_credentials
>>> cluster = EC2Cluster(env_vars=get_aws_credentials())

Manual cleanup

If for some reason the cluster manager is terminated without being able to perform cleanup the default behaviour
of EC2Cluster is for the scheduler and workers to time out. This will result in the host VMs shutting down.
This cluster manager also creates instances with the terminate on shutdown setting so all resources should be
removed automatically.

If for some reason you chose to override those settings and disable auto cleanup you can destroy resources with
the following CLI command.

10 Chapter 3. Amazon Web Services (AWS)

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch-new.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch-new.html
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

Dask Cloud Provider Documentation, Release 2022.10.0

export CLUSTER_ID="cluster id printed during creation"
aws ec2 describe-instances \

--filters "Name=tag:Dask Cluster,Values=${CLUSTER_ID}" \
--query "Reservations[*].Instances[*].[InstanceId]" \
--output text | xargs aws ec2 terminate-instances --instance-ids

Enable SSH for debugging

>>> from dask_cloudprovider.aws import EC2Cluster
>>> cluster = EC2Cluster(key_name="myawesomekey",

Security group which allows ports 22, 8786, 8787␣
→˓and all internal traffic

security_groups=["sg-aabbcc112233"])

You can now SSH to an instance with ssh ubuntu@public_ip

>>> cluster.close()

Attributes

asynchronous Are we running in the event loop?

auto_shutdown

bootstrap

command

dashboard_link

docker_image

gpu_instance

loop

name

observed

plan

requested

scheduler_address

scheduler_class

worker_class

3.2. Elastic Compute Cloud (EC2) 11

Dask Cloud Provider Documentation, Release 2022.10.0

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
call_async(f, *args, **kwargs) Run a blocking function in a thread as a coroutine.
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
get_tags() Generate tags to be applied to all resources.
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context

close
get_cloud_init
logs
render_cloud_init
render_process_cloud_init
scale_down

3.3 Elastic Container Service (ECS)

class dask_cloudprovider.aws.ECSCluster(fargate_scheduler=None, fargate_workers=None,
fargate_spot=None, image=None, scheduler_cpu=None,
scheduler_mem=None, scheduler_port=8786,
scheduler_timeout=None, scheduler_extra_args=None,
scheduler_task_definition_arn=None,
scheduler_task_kwargs=None, scheduler_address=None,
worker_cpu=None, worker_nthreads=None,
worker_mem=None, worker_gpu=None,
worker_extra_args=None, worker_task_definition_arn=None,
worker_task_kwargs=None, n_workers=None,
workers_name_start=0, workers_name_step=1,
cluster_arn=None, cluster_name_template=None,
execution_role_arn=None, task_role_arn=None,
task_role_policies=None, cloudwatch_logs_group=None,
cloudwatch_logs_stream_prefix=None,
cloudwatch_logs_default_retention=None, vpc=None,
subnets=None, security_groups=None, environment=None,
tags=None, skip_cleanup=None, aws_access_key_id=None,
aws_secret_access_key=None, region_name=None,
platform_version=None, fargate_use_private_ip=False,
mount_points=None, volumes=None,
mount_volumes_on_scheduler=False, **kwargs)

Deploy a Dask cluster using ECS

This creates a dask scheduler and workers on an existing ECS cluster.

12 Chapter 3. Amazon Web Services (AWS)

Dask Cloud Provider Documentation, Release 2022.10.0

All the other required resources such as roles, task definitions, tasks, etc will be created automatically like in
FargateCluster.

Parameters

fargate_scheduler: bool (optional) Select whether or not to use fargate for the scheduler.

Defaults to False. You must provide an existing cluster.

fargate_workers: bool (optional) Select whether or not to use fargate for the workers.

Defaults to False. You must provide an existing cluster.

fargate_spot: bool (optional) Select whether or not to run cluster using Fargate Spot with work-
ers running on spot capacity. If fargate_scheduler=True and fargate_workers=True, this will
make sure worker tasks will use fargate_capacity_provider=FARGATE_SPOT and sched-
uler task will use fargate_capacity_provider=FARGATE capacity providers.

Defaults to False. You must provide an existing cluster.

image: str (optional) The docker image to use for the scheduler and worker tasks.

Defaults to daskdev/dask:latest or rapidsai/rapidsai:latest if worker_gpu is
set.

scheduler_cpu: int (optional) The amount of CPU to request for the scheduler in milli-cpu
(1/1024).

Defaults to 1024 (one vCPU). See the troubleshooting guide for information on the valid
values for this argument.

scheduler_mem: int (optional) The amount of memory to request for the scheduler in MB.

Defaults to 4096 (4GB). See the troubleshooting guide for information on the valid values
for this argument.

scheduler_timeout: str (optional) The scheduler task will exit after this amount of time if there
are no clients connected.

Defaults to 5 minutes.

scheduler_port: int (optional) The port on which the scheduler should listen.

Defaults to 8786

scheduler_extra_args: List[str] (optional) Any extra command line arguments to pass to dask-
scheduler, e.g. ["--tls-cert", "/path/to/cert.pem"]

Defaults to None, no extra command line arguments.

scheduler_task_definition_arn: str (optional) The arn of the task definition that the cluster
should use to start the scheduler task. If provided, this will override the image, sched-
uler_cpu, scheduler_mem, any role settings, any networking / VPC settings, as these are
all part of the task definition.

Defaults to None, meaning that the task definition will be created along with the cluster, and
cleaned up once the cluster is shut down.

scheduler_task_kwargs: dict (optional) Additional keyword arguments for the scheduler ECS
task.

scheduler_address: str (optional) If passed, no scheduler task will be started, and instead the
workers will connect to the passed address.

Defaults to None, a scheduler task will start.

3.3. Elastic Container Service (ECS) 13

./troubleshooting.html#invalid-cpu-or-memory
./troubleshooting.html#invalid-cpu-or-memory

Dask Cloud Provider Documentation, Release 2022.10.0

worker_cpu: int (optional) The amount of CPU to request for worker tasks in milli-cpu
(1/1024).

Defaults to 4096 (four vCPUs). See the troubleshooting guide for information on the valid
values for this argument.

worker_nthreads: int (optional) The number of threads to use in each worker.

Defaults to 1 per vCPU.

worker_mem: int (optional) The amount of memory to request for worker tasks in MB.

Defaults to 16384 (16GB). See the troubleshooting guide for information on the valid values
for this argument.

worker_gpu: int (optional) The number of GPUs to expose to the worker.

To provide GPUs to workers you need to use a GPU ready docker image that has dask-cuda
installed and GPU nodes available in your ECS cluster. Fargate is not supported at this time.

Defaults to None, no GPUs.

worker_task_definition_arn: str (optional) The arn of the task definition that the cluster
should use to start the worker tasks. If provided, this will override the image, worker_cpu,
worker_mem, any role settings, any networking / VPC settings, as these are all part of the
task definition.

Defaults to None, meaning that the task definition will be created along with the cluster, and
cleaned up once the cluster is shut down.

worker_extra_args: List[str] (optional) Any extra command line arguments to pass to dask-
worker, e.g. ["--tls-cert", "/path/to/cert.pem"]

Defaults to None, no extra command line arguments.

worker_task_kwargs: dict (optional) Additional keyword arguments for the workers ECS
task.

n_workers: int (optional) Number of workers to start on cluster creation.

Defaults to None.

workers_name_start: int Name workers from here on.

Defaults to 0.

workers_name_step: int Name workers by adding multiples of workers_name_step to work-
ers_name_start.

Default to 1.

cluster_arn: str (optional if fargate is true) The ARN of an existing ECS cluster to use for
launching tasks.

Defaults to None which results in a new cluster being created for you.

cluster_name_template: str (optional) A template to use for the cluster name if cluster_arn
is set to None.

Defaults to 'dask-{uuid}'

execution_role_arn: str (optional) The ARN of an existing IAM role to use for ECS execution.

This ARN must have sts:AssumeRole allowed for ecs-tasks.amazonaws.com and allow
the following permissions:

• ecr:GetAuthorizationToken

14 Chapter 3. Amazon Web Services (AWS)

./troubleshooting.html#invalid-cpu-or-memory
./troubleshooting.html#invalid-cpu-or-memory

Dask Cloud Provider Documentation, Release 2022.10.0

• ecr:BatchCheckLayerAvailability

• ecr:GetDownloadUrlForLayer

• ecr:GetRepositoryPolicy

• ecr:DescribeRepositories

• ecr:ListImages

• ecr:DescribeImages

• ecr:BatchGetImage

• logs:*

• ec2:AuthorizeSecurityGroupIngress

• ec2:Describe*

• elasticloadbalancing:DeregisterInstancesFromLoadBalancer

• elasticloadbalancing:DeregisterTargets

• elasticloadbalancing:Describe*

• elasticloadbalancing:RegisterInstancesWithLoadBalancer

• elasticloadbalancing:RegisterTargets

Defaults to None (one will be created for you).

task_role_arn: str (optional) The ARN for an existing IAM role for tasks to assume. This
defines which AWS resources the dask workers can access directly. Useful if you need to
read from S3 or a database without passing credentials around.

Defaults to None (one will be created with S3 read permission only).

task_role_policies: List[str] (optional) If you do not specify a task_role_arn you may want
to list some IAM Policy ARNs to be attached to the role that will be created for you.

E.g if you need your workers to read from S3 you could add arn:aws:iam::aws:policy/
AmazonS3ReadOnlyAccess.

Default None (no policies will be attached to the role)

cloudwatch_logs_group: str (optional) The name of an existing cloudwatch log group to place
logs into.

Default None (one will be created called dask-ecs)

cloudwatch_logs_stream_prefix: str (optional) Prefix for log streams.

Defaults to the cluster name.

cloudwatch_logs_default_retention: int (optional) Retention for logs in days. For use when
log group is auto created.

Defaults to 30.

vpc: str (optional) The ID of the VPC you wish to launch your cluster in.

Defaults to None (your default VPC will be used).

subnets: List[str] (optional) A list of subnets to use when running your task.

Defaults to None. (all subnets available in your VPC will be used)

3.3. Elastic Container Service (ECS) 15

Dask Cloud Provider Documentation, Release 2022.10.0

security_groups: List[str] (optional) A list of security group IDs to use when launching tasks.

Defaults to None (one will be created which allows all traffic between tasks and access to
ports 8786 and 8787 from anywhere).

environment: dict (optional) Extra environment variables to pass to the scheduler and worker
tasks.

Useful for setting EXTRA_APT_PACKAGES, EXTRA_CONDA_PACKAGES and
`EXTRA_PIP_PACKAGES if you’re using the default image.

Defaults to None.

tags: dict (optional) Tags to apply to all resources created automatically.

Defaults to None. Tags will always include {"createdBy": "dask-cloudprovider"}

skip_cleanup: bool (optional) Skip cleaning up of stale resources. Useful if you have lots of
resources and this operation takes a while.

Default False.

platform_version: str (optional) Version of the AWS Fargate platform to use, e.g. “1.4.0” or
“LATEST”. This setting has no effect for the EC2 launch type.

Defaults to None

fargate_use_private_ip: bool (optional) Whether to use a private IP (if True) or public IP (if
False) with Fargate.

Default False.

mount_points: list (optional) List of mount points as documented here: https://docs.aws.
amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Default None.

volumes: list (optional) List of volumes as documented here: https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/efs-volumes.html

Default None.

mount_volumes_on_scheduler: bool (optional) Whether to also mount volumes in the sched-
uler task. Any volumes and mount points specified will always be mounted in worker tasks.
This setting controls whether volumes are also mounted in the scheduler task.

Default False.

**kwargs: dict Additional keyword arguments to pass to SpecCluster.

Examples

>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/
→˓<clustername>")

There is also support in ECSCluster for GPU aware Dask clusters. To do this you need to create an ECS cluster
with GPU capable instances (from the g3, p3 or p3dn families) and specify the number of GPUs each worker
task should have.

16 Chapter 3. Amazon Web Services (AWS)

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Dask Cloud Provider Documentation, Release 2022.10.0

>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(
... cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/<gpuclustername>",
... worker_gpu=1)

By setting the worker_gpu option to something other than None will cause the cluster to run
dask-cuda-worker as the worker startup command. Setting this option will also change the default Docker
image to rapidsai/rapidsai:latest, if you’re using a custom image you must ensure the NVIDIA CUDA
toolkit is installed with a version that matches the host machine along with dask-cuda.

Attributes

asynchronous Are we running in the event loop?

dashboard_link

loop

name

observed

plan

requested

scheduler_address

tags

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context
update_attr_from_config(attr, private) Update class attribute of given cluster based on con-

fig, if not already set.

close
logs
scale_down

3.3. Elastic Container Service (ECS) 17

Dask Cloud Provider Documentation, Release 2022.10.0

3.4 Fargate

class dask_cloudprovider.aws.FargateCluster(**kwargs)
Deploy a Dask cluster using Fargate on ECS

This creates a dask scheduler and workers on a Fargate powered ECS cluster. If you do not configure a cluster
one will be created for you with sensible defaults.

Parameters

kwargs: dict Keyword arguments to be passed to ECSCluster.

Notes

IAM Permissions

To create a FargateCluster the cluster manager will need to use various AWS resources ranging from IAM
roles to VPCs to ECS tasks. Depending on your use case you may want the cluster to create all of these for you,
or you may wish to specify them yourself ahead of time.

Here is the full minimal IAM policy that you need to create the whole cluster:

{
"Statement": [

{
"Action": [

"ec2:AuthorizeSecurityGroupIngress",
"ec2:CreateSecurityGroup",
"ec2:CreateTags",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSubnets",
"ec2:DescribeVpcs",
"ec2:DeleteSecurityGroup",
"ecs:CreateCluster",
"ecs:DescribeTasks",
"ecs:ListAccountSettings",
"ecs:RegisterTaskDefinition",
"ecs:RunTask",
"ecs:StopTask",
"ecs:ListClusters",
"ecs:DescribeClusters",
"ecs:DeleteCluster",
"ecs:ListTaskDefinitions",
"ecs:DescribeTaskDefinition",
"ecs:DeregisterTaskDefinition",
"iam:AttachRolePolicy",
"iam:CreateRole",
"iam:TagRole",
"iam:PassRole",
"iam:DeleteRole",
"iam:ListRoles",
"iam:ListRoleTags",
"iam:ListAttachedRolePolicies",

(continues on next page)

18 Chapter 3. Amazon Web Services (AWS)

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

"iam:DetachRolePolicy",
"logs:DescribeLogGroups",
"logs:GetLogEvents",
"logs:CreateLogGroup",
"logs:PutRetentionPolicy"

],
"Effect": "Allow",
"Resource": [

"*"
]

}
],
"Version": "2012-10-17"

}

If you specify all of the resources yourself you will need a minimal policy of:

{
"Statement": [

{
"Action": [

"ec2:CreateTags",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSubnets",
"ec2:DescribeVpcs",
"ecs:DescribeTasks",
"ecs:ListAccountSettings",
"ecs:RegisterTaskDefinition",
"ecs:RunTask",
"ecs:StopTask",
"ecs:ListClusters",
"ecs:DescribeClusters",
"ecs:ListTaskDefinitions",
"ecs:DescribeTaskDefinition",
"ecs:DeregisterTaskDefinition",
"iam:ListRoles",
"iam:ListRoleTags",
"logs:DescribeLogGroups",
"logs:GetLogEvents"

],
"Effect": "Allow",
"Resource": [

"*"
]

}
],
"Version": "2012-10-17"

}

3.4. Fargate 19

Dask Cloud Provider Documentation, Release 2022.10.0

Examples

The FargateCluster will create a new Fargate ECS cluster by default along with all the IAM roles, security
groups, and so on that it needs to function.

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster()

Note that in many cases you will want to specify a custom Docker image to FargateCluster so that Dask has
the packages it needs to execute your workflow.

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster(image="<hub-user>/<repo-name>[:<tag>]")

To run cluster with workers using Fargate Spot (<https://aws.amazon.com/blogs/aws/
aws-fargate-spot-now-generally-available/>) set fargate_spot=True

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster(fargate_spot=True)

One strategy to ensure that package versions match between your custom environment and the Docker container
is to create your environment from an environment.yml file, export the exact package list for that environment
using conda list --export > package-list.txt, and then use the pinned package versions contained in
package-list.txt in your Dockerfile. You could use the default Dask Dockerfile as a template and simply
add your pinned additional packages.

Attributes

asynchronous Are we running in the event loop?

dashboard_link

loop

name

observed

plan

requested

scheduler_address

tags

20 Chapter 3. Amazon Web Services (AWS)

https://aws.amazon.com/blogs/aws/aws-fargate-spot-now-generally-available/
https://aws.amazon.com/blogs/aws/aws-fargate-spot-now-generally-available/
https://github.com/dask/dask-docker/blob/master/base/Dockerfile

Dask Cloud Provider Documentation, Release 2022.10.0

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context
update_attr_from_config(attr, private) Update class attribute of given cluster based on con-

fig, if not already set.

close
logs
scale_down

3.4. Fargate 21

Dask Cloud Provider Documentation, Release 2022.10.0

22 Chapter 3. Amazon Web Services (AWS)

CHAPTER

FOUR

DIGITALOCEAN

DropletCluster([region, size, image, debug]) Cluster running on Digital Ocean droplets.

4.1 Overview

4.1.1 Authentication

To authenticate with DigitalOcean you must first generate a personal access token.

Then you must put this in your Dask configuration at cloudprovider.digitalocean.token. This can be done by
adding the token to your YAML configuration or exporting an environment variable.

~/.config/dask/cloudprovider.yaml

cloudprovider:
digitalocean:
token: "yourtoken"

$ export DASK_CLOUDPROVIDER__DIGITALOCEAN__TOKEN="yourtoken"

4.2 Droplet

class dask_cloudprovider.digitalocean.DropletCluster(region: Optional[str] = None, size:
Optional[str] = None, image: Optional[str] =
None, debug: bool = False, **kwargs)

Cluster running on Digital Ocean droplets.

VMs in DigitalOcean (DO) are referred to as droplets. This cluster manager constructs a Dask cluster running
on VMs.

When configuring your cluster you may find it useful to install the doctl tool for querying the DO API for
available options.

https://www.digitalocean.com/docs/apis-clis/doctl/how-to/install/

Parameters

region: str The DO region to launch you cluster in. A full list can be obtained with doctl
compute region list.

23

https://www.digitalocean.com/docs/apis-clis/api/create-personal-access-token/
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.digitalocean.com/docs/apis-clis/doctl/how-to/install/

Dask Cloud Provider Documentation, Release 2022.10.0

size: str The VM size slug. You can get a full list with doctl compute size list. The
default is s-1vcpu-1gb which is 1GB RAM and 1 vCPU

image: str The image ID to use for the host OS. This should be a Ubuntu variant. You can list
available images with doctl compute image list --public | grep ubuntu.*x64.

worker_module: str The Dask worker module to start on worker VMs.

n_workers: int Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str The Python module to run for the worker. Defaults to distributed.
cli.dask_worker

worker_options: dict Params to be passed to the worker class. See distributed.worker.
Worker for default worker class. If you set worker_module then refer to the docstring for
the custom worker class.

scheduler_options: dict Params to be passed to the scheduler class. See distributed.
scheduler.Scheduler.

docker_image: string (optional) The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the
Python environment matches your local environment where EC2Cluster is being created
from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda in-
stalled.

By default the daskdev/dask:latest image will be used.

docker_args: string (optional) Extra command line arguments to pass to Docker.

extra_bootstrap: list[str] (optional) Extra commands to be run during the bootstrap phase.

env_vars: dict (optional) Environment variables to be passed to the worker.

silence_logs: bool Whether or not we should silence logging when setting up the cluster.

asynchronous: bool If this is intended to be used directly within an event loop with async/await

security [Security or bool, optional] Configures communication security in this cluster. Can be
a security object, or True. If True, temporary self-signed credentials will be created auto-
matically. Default is True.

debug: bool, optional More information will be printed when constructing clusters to enable
debugging.

Examples

Create the cluster.

>>> from dask_cloudprovider.digitalocean import DropletCluster
>>> cluster = DropletCluster(n_workers=1)
Creating scheduler instance
Created droplet dask-38b817c1-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-38b817c1-worker-dc95260d

24 Chapter 4. DigitalOcean

https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler

Dask Cloud Provider Documentation, Release 2022.10.0

Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)

Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964

Close the cluster

>>> client.close()
>>> cluster.close()
Terminated droplet dask-38b817c1-worker-dc95260d
Terminated droplet dask-38b817c1-scheduler

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

>>> with DropletCluster(n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().
→˓compute())
Creating scheduler instance
Created droplet dask-48efe585-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-48efe585-worker-5181aaf1
0.5000558682356162
Terminated droplet dask-48efe585-worker-5181aaf1
Terminated droplet dask-48efe585-scheduler

Attributes

asynchronous Are we running in the event loop?

auto_shutdown

bootstrap

command

dashboard_link

docker_image

gpu_instance

loop

name

observed

plan

requested

4.2. Droplet 25

Dask Cloud Provider Documentation, Release 2022.10.0

scheduler_address

scheduler_class

worker_class

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
call_async(f, *args, **kwargs) Run a blocking function in a thread as a coroutine.
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
get_tags() Generate tags to be applied to all resources.
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context

close
get_cloud_init
logs
render_cloud_init
render_process_cloud_init
scale_down

26 Chapter 4. DigitalOcean

CHAPTER

FIVE

GOOGLE CLOUD PLATFORM

GCPCluster([projectid, zone, network, ...]) Cluster running on GCP VM Instances.

5.1 Overview

5.1.1 Authentication

In order to create clusters on GCP you need to set your authentication credentials. You can do this via the gcloud
command line tool.

$ gcloud auth login

Alternatively you can use a service account which provides credentials in a JSON file. You must set the
GOOGLE_APPLICATION_CREDENTIALS environment variable to the path to the JSON file.

$ export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json

5.1.2 Project ID

To use Dask Cloudprovider with GCP you must also configure your Project ID. Generally when creating a GCP account
you will create a default project. This can be found at the top of the GCP dashboard.

Your Project ID must be added to your Dask config file.

~/.config/dask/cloudprovider.yaml
cloudprovider:
gcp:
projectid: "YOUR PROJECT ID"

Or via an environment variable.

$ export DASK_CLOUDPROVIDER__GCP__PROJECTID="YOUR PROJECT ID"

27

https://cloud.google.com/sdk/gcloud
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/resource-manager/docs/creating-managing-projects

Dask Cloud Provider Documentation, Release 2022.10.0

5.2 Google Cloud VMs

class dask_cloudprovider.gcp.GCPCluster(projectid=None, zone=None, network=None,
network_projectid=None, machine_type=None,
on_host_maintenance=None, source_image=None,
docker_image=None, ngpus=None, gpu_type=None,
filesystem_size=None, disk_type=None, auto_shutdown=None,
bootstrap=True, preemptible=None, debug=False,
instance_labels=None, **kwargs)

Cluster running on GCP VM Instances.

This cluster manager constructs a Dask cluster running on Google Cloud Platform 67VMs.

When configuring your cluster you may find it useful to install the gcloud tool for querying the GCP API for
available options.

https://cloud.google.com/sdk/gcloud

Parameters

projectid: str Your GCP project ID. This must be set either here or in your Dask config.

https://cloud.google.com/resource-manager/docs/creating-managing-projects

See the GCP docs page for more info.

https://cloudprovider.dask.org/en/latest/gcp.html#project-id

zone: str The GCP zone to launch you cluster in. A full list can be obtained with gcloud
compute zones list.

network: str The GCP VPC network/subnetwork to use. The default is default. If using firewall
rules, please ensure the follwing accesses are configured:

• egress 0.0.0.0/0 on all ports for downloading docker images and general data access

• ingress 10.0.0.0/8 on all ports for internal communication of workers

• ingress 0.0.0.0/0 on 8786-8787 for external accessibility of the dashboard/scheduler

• (optional) ingress 0.0.0.0./0 on 22 for ssh access

network_projectid: str The project id of the GCP network. This defaults to the projectid. There
may be cases (i.e. Shared VPC) when network configurations from a different GCP project
are used.

machine_type: str The VM machine_type. You can get a full list with gcloud compute
machine-types list. The default is n1-standard-1which is 3.75GB RAM and 1 vCPU

source_image: str The OS image to use for the VM. Dask Cloudprovider will boostrap Ubuntu
based images automatically. Other images require Docker and for GPUs the NVIDIA Drivers
and NVIDIA Docker.

A list of available images can be found with gcloud compute images list

Valid values are:

• The short image name provided it is in projectid.

• The full image name projects/<projectid>/global/images/<source_image>.

• The full image URI such as those listed in gcloud compute images list --uri.

28 Chapter 5. Google Cloud Platform

https://cloud.google.com/sdk/gcloud
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloudprovider.dask.org/en/latest/gcp.html#project-id

Dask Cloud Provider Documentation, Release 2022.10.0

The default is projects/ubuntu-os-cloud/global/images/
ubuntu-minimal-1804-bionic-v20201014.

docker_image: string (optional) The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the
Python environment matches your local environment where EC2Cluster is being created
from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda in-
stalled.

By default the daskdev/dask:latest image will be used.

docker_args: string (optional) Extra command line arguments to pass to Docker.

extra_bootstrap: list[str] (optional) Extra commands to be run during the bootstrap phase.

ngpus: int (optional) The number of GPUs to atatch to the instance. Default is 0.

gpu_type: str (optional) The name of the GPU to use. This must be set if ngpus>0. You
can see a list of GPUs available in each zone with gcloud compute accelerator-types
list.

filesystem_size: int (optional) The VM filesystem size in GB. Defaults to 50.

disk_type: str (optional) Type of disk to use. Default is pd-standard. You can see a list of
disks available in each zone with gcloud compute disk-types list.

on_host_maintenance: str (optional) The Host Maintenance GCP option. Defaults to
TERMINATE.

n_workers: int (optional) Number of workers to initialise the cluster with. Defaults to 0.

bootstrap: bool (optional) Install Docker and NVIDIA drivers if ngpus>0. Set to False if
you are using a custom source_image which already has these requirements. Defaults to
True.

worker_class: str The Python class to run for the worker. Defaults to dask.distributed.
Nanny

worker_options: dict (optional) Params to be passed to the worker class. See distributed.
worker.Worker for default worker class. If you set worker_class then refer to the doc-
string for the custom worker class.

env_vars: dict (optional) Environment variables to be passed to the worker.

scheduler_options: dict (optional) Params to be passed to the scheduler class. See
distributed.scheduler.Scheduler.

silence_logs: bool (optional) Whether or not we should silence logging when setting up the
cluster.

asynchronous: bool (optional) If this is intended to be used directly within an event loop with
async/await

security [Security or bool (optional)] Configures communication security in this cluster. Can
be a security object, or True. If True, temporary self-signed credentials will be created au-
tomatically. Default is True.

preemptible: bool (optional) Whether to use preemptible instances for workers in this cluster.
Defaults to False.

5.2. Google Cloud VMs 29

https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler

Dask Cloud Provider Documentation, Release 2022.10.0

debug: bool, optional More information will be printed when constructing clusters to enable
debugging.

instance_labels: dict (optional) Labels to be applied to all GCP instances upon creation.

Examples

Create the cluster.

>>> from dask_cloudprovider.gcp import GCPCluster
>>> cluster = GCPCluster(n_workers=1)
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-
→˓v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesytsem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-acc897b9-scheduler

Internal IP: 10.142.0.37
External IP: 34.75.60.62

Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-acc897b9-worker-bfbc94bc

Internal IP: 10.142.0.39
External IP: 34.73.245.220

Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)

Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964

Close the cluster

>>> cluster.close()
Closing Instance: dask-acc897b9-worker-bfbc94bc
Closing Instance: dask-acc897b9-scheduler

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

>>> with GCPCluster(n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().
→˓compute())

(continues on next page)

30 Chapter 5. Google Cloud Platform

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-
→˓v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesystem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-19352f29-scheduler

Internal IP: 10.142.0.41
External IP: 34.73.217.251

Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-19352f29-worker-91a6bfe0

Internal IP: 10.142.0.48
External IP: 34.73.245.220

0.5000812282861661
Closing Instance: dask-19352f29-worker-91a6bfe0
Closing Instance: dask-19352f29-scheduler

Attributes

asynchronous Are we running in the event loop?

auto_shutdown

bootstrap

command

dashboard_link

docker_image

gpu_instance

loop

name

observed

plan

requested

scheduler_address

scheduler_class

worker_class

5.2. Google Cloud VMs 31

Dask Cloud Provider Documentation, Release 2022.10.0

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
call_async(f, *args, **kwargs) Run a blocking function in a thread as a coroutine.
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
get_tags() Generate tags to be applied to all resources.
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context

close
get_cloud_init
logs
render_cloud_init
render_process_cloud_init
scale_down

32 Chapter 5. Google Cloud Platform

CHAPTER

SIX

MICROSOFT AZURE

AzureVMCluster([location, resource_group, ...]) Cluster running on Azure Virtual machines.

6.1 Overview

6.1.1 Authentication

In order to create clusters on Azure you need to set your authentication credentials. You can do this via the az command
line tool.

$ az login

Note: Setting the default output to table with az configure will make the az tool much easier to use.

6.1.2 Resource Groups

To create resources on Azure they must be placed in a resource group. Dask Cloudprovider will need a group to create
Dask components in.

You can list existing groups via the cli.

$ az group list

You can also create a new resource group if you do not have an existing one.

$ az group create --location <location> --name <resource group name> --subscription
→˓<subscription>

You can get a full list of locations with az account list-locations and subscriptions with az account list.

Take note of your resource group name for later.

33

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Dask Cloud Provider Documentation, Release 2022.10.0

6.1.3 Virtual Networks

Compute resources on Azure must be placed in virtual networks (vnet). Dask Cloudprovider will require an existing
vnet to connect compute resources to.

You can list existing vnets via the cli.

$ az network vnet list

You can also create a new vnet via the cli.

$ az network vnet create -g <resource group name> -n <vnet name> --address-prefix 10.0.0.
→˓0/16 \

--subnet-name <subnet name> --subnet-prefix 10.0.0.0/24

This command will create a new vnet in your resource group with one subnet with the 10.0.0.0/24 prefix. For more
than 255 compute resources you will need additional subnets.

Take note of your vnet name for later.

6.1.4 Security Groups

To allow network traffic to reach your Dask cluster you will need to create a security group which allows traffic on ports
8786-8787 from wherever you are.

You can list existing security groups via the cli.

$ az network nsg list

Or you can create a new security group.

$ az network nsg create -g <resource group name> --name <security group name>
$ az network nsg rule create -g <resource group name> --nsg-name <security group name> -
→˓n MyNsgRuleWithAsg \

--priority 500 --source-address-prefixes Internet --destination-port-ranges 8786␣
→˓8787 \

--destination-address-prefixes '*' --access Allow --protocol Tcp --description
→˓"Allow Internet to Dask on ports 8786,8787."

This example allows all traffic to 8786-8787 from the internet. It is recommended you make your rules more restrictive
than this by limiting it to your corporate network or specific IP.

Again take note of this security group name for later.

6.1.5 Dask Configuration

You’ll provide the names or IDs of the Azure resources when you create a AzureVMCluster. You can specify these
values manually, or use Dask’s configuration system system. For example, the resource_group value can be specified
using an environment variable:

$ export DASK_CLOUDPROVIDER__AZURE__RESOURCE_GROUP="<resource group name>"
$ python

Or you can set it in a YAML configuration file.

34 Chapter 6. Microsoft Azure

https://docs.dask.org/en/stable/configuration.html

Dask Cloud Provider Documentation, Release 2022.10.0

cloudprovider:
azure:
resource_group: "<resource group name>"
azurevm:
vnet: "<vnet name>"

Note that the options controlling the VMs are under the cloudprovider.azure.azurevm key.

See Configuration for more.

6.2 AzureVM

class dask_cloudprovider.azure.AzureVMCluster(location: Optional[str] = None, resource_group:
Optional[str] = None, vnet: Optional[str] = None,
security_group: Optional[str] = None, public_ingress:
Optional[bool] = None, vm_size: Optional[str] = None,
scheduler_vm_size: Optional[str] = None, vm_image:
dict = {}, disk_size: Optional[int] = None, bootstrap:
Optional[bool] = None, auto_shutdown: Optional[bool]
= None, docker_image=None, debug: bool = False,
marketplace_plan: dict = {}, subscription_id:
Optional[str] = None, **kwargs)

Cluster running on Azure Virtual machines.

This cluster manager constructs a Dask cluster running on Azure Virtual Machines.

When configuring your cluster you may find it useful to install the az tool for querying the Azure API for available
options.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Parameters

location: str The Azure location to launch you cluster in. List available locations with az
account list-locations.

resource_group: str The resource group to create components in. List your resource groups
with az group list.

vnet: str The vnet to attach VM network interfaces to. List your vnets with az network vnet
list.

security_group: str The security group to apply to your VMs. This must allow ports 8786-
8787 from wherever you are running this from. List your security groups with az network
nsg list.

public_ingress: bool Assign a public IP address to the scheduler. Default True.

vm_size: str Azure VM size to use for scheduler and workers. Default Standard_DS1_v2. List
available VM sizes with az vm list-sizes --location <location>.

disk_size: int Specifies the size of the VM host OS disk in gigabytes. Default is 50. This value
cannot be larger than 1023.

scheduler_vm_size: str Azure VM size to use for scheduler. If not set will use the vm_size.

vm_image: dict By default all VMs will use the latest Ubuntu LTS release with the following
configuration

6.2. AzureVM 35

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Dask Cloud Provider Documentation, Release 2022.10.0

{"publisher": "Canonical", "offer": "UbuntuServer","sku": "18.
04-LTS", "version": "latest"}

You can override any of these options by passing a dict with matching keys here. For example
if you wish to try Ubuntu 19.04 you can pass {"sku": "19.04"} and the publisher,
offer and version will be used from the default.

bootstrap: bool (optional) It is assumed that the VHD will not have Docker installed (or the
NVIDIA drivers for GPU instances). If bootstrap is True these dependencies will be
installed on instance start. If you are using a custom VHD which already has these depen-
dencies set this to False.

auto_shutdown: bool (optional) Shutdown the VM if the Dask process exits. Default True.

worker_module: str The Dask worker module to start on worker VMs.

n_workers: int Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str The Python module to run for the worker. Defaults to distributed.
cli.dask_worker

worker_options: dict Params to be passed to the worker class. See distributed.worker.
Worker for default worker class. If you set worker_module then refer to the docstring for
the custom worker class.

scheduler_options: dict Params to be passed to the scheduler class. See distributed.
scheduler.Scheduler.

docker_image: string (optional) The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the
Python environment matches your local environment where AzureVMCluster is being cre-
ated from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda in-
stalled.

By default the daskdev/dask:latest image will be used.

docker_args: string (optional) Extra command line arguments to pass to Docker.

extra_bootstrap: list[str] (optional) Extra commands to be run during the bootstrap phase.

silence_logs: bool Whether or not we should silence logging when setting up the cluster.

asynchronous: bool If this is intended to be used directly within an event loop with async/await

security [Security or bool, optional] Configures communication security in this cluster. Can be
a security object, or True. If True, temporary self-signed credentials will be created auto-
matically. Default is True.

debug: bool, optional More information will be printed when constructing clusters to enable
debugging.

marketplace_plan: dict (optional) Plan information dict necessary for creating a virtual ma-
chine from Azure Marketplace image or a custom image sourced from a Marketplace image
with a plan. Default is {}.

All three fields “name”, “publisher”, “product” must be passed in the dictionary if set. For
e.g.

{"name": "ngc-base-version-21-02-2", "publisher": "nvidia",
"product": "ngc_azure_17_11"}

36 Chapter 6. Microsoft Azure

https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler

Dask Cloud Provider Documentation, Release 2022.10.0

subscription_id: str (optional) The ID of the Azure Subscription to create the virtual machines
in. If not specified, then dask-cloudprovider will attempt to use the configured default for the
Azure CLI. List your subscriptions with az account list.

Examples

Minimal example

Create the cluster

>>> from dask_cloudprovider.azure import AzureVMCluster
>>> cluster = AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1)
Creating scheduler instance
Assigned public IP
Network interface ready
Creating VM
Created VM dask-5648cc8b-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-5648cc8b-worker-e1ebfc0e

Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)

Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5004117488368686

Close the cluster.

>>> client.close()
>>> cluster.close()
Terminated VM dask-5648cc8b-worker-e1ebfc0e
Removed disks for VM dask-5648cc8b-worker-e1ebfc0e
Deleted network interface
Terminated VM dask-5648cc8b-scheduler
Removed disks for VM dask-5648cc8b-scheduler
Deleted network interface
Unassigned public IP

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

6.2. AzureVM 37

Dask Cloud Provider Documentation, Release 2022.10.0

>>> with AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().
→˓compute())
Creating scheduler instance
Assigned public IP
Network interface ready
Creating VM
Created VM dask-1e6dac4e-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-1e6dac4e-worker-c7c4ca23
0.4996427609642539
Terminated VM dask-1e6dac4e-worker-c7c4ca23
Removed disks for VM dask-1e6dac4e-worker-c7c4ca23
Deleted network interface
Terminated VM dask-1e6dac4e-scheduler
Removed disks for VM dask-1e6dac4e-scheduler
Deleted network interface
Unassigned public IP

RAPIDS example

You can also use AzureVMCluster to run a GPU enabled cluster and leverage the RAPIDS accelerated libraries.

>>> cluster = AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1,
... vm_size="Standard_NC12s_v3", # Or any NVIDIA GPU␣
→˓enabled size
... docker_image="rapidsai/rapidsai:cuda11.0-runtime-
→˓ubuntu18.04-py3.8",
... worker_class="dask_cuda.CUDAWorker")
>>> from dask.distributed import Client
>>> client = Client(cluster)

Run some GPU code.

>>> def get_gpu_model():
... import pynvml
... pynvml.nvmlInit()
... return pynvml.nvmlDeviceGetName(pynvml.nvmlDeviceGetHandleByIndex(0))

>>> client.submit(get_gpu_model).result()
b'Tesla V100-PCIE-16GB'

Close the cluster.

38 Chapter 6. Microsoft Azure

https://rapids.ai/

Dask Cloud Provider Documentation, Release 2022.10.0

>>> client.close()
>>> cluster.close()

Attributes

asynchronous Are we running in the event loop?

auto_shutdown

bootstrap

command

dashboard_link

docker_image

gpu_instance

loop

name

observed

plan

requested

scheduler_address

scheduler_class

worker_class

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
call_async(f, *args, **kwargs) Run a blocking function in a thread as a coroutine.
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
get_tags() Generate tags to be applied to all resources.
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context

close
get_cloud_init
logs
render_cloud_init
render_process_cloud_init
scale_down

6.2. AzureVM 39

Dask Cloud Provider Documentation, Release 2022.10.0

6.3 Azure Spot Instance Plugin

class dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin(poll_interval_s=1,
metadata_url=None,
termination_events=None,
termination_offset_minutes=0)

A worker plugin for azure spot instances

This worker plugin will poll azure’s metadata service for preemption notifications. When a node is preempted,
the plugin will attempt to shutdown gracefully all workers on the node.

This plugin can be used on any worker running on azure spot instances, not just the ones created by
dask-cloudprovider.

For more details on azure spot instances see: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/
scheduled-events

Parameters

poll_interval_s: int (optional) The rate at which the plugin will poll the metadata service in
seconds.

Defaults to 1

metadata_url: str (optional) The url of the metadata service to poll.

Defaults to “http://169.254.169.254/metadata/scheduledevents?api-version=2019-08-01”

termination_events: List[str] (optional) The type of events that will trigger the gracefull shut-
down

Defaults to ['Preempt', 'Terminate']

termination_offset_minutes: int (optional) Extra offset to apply to the premption date. This
may be negative, to start the gracefull shutdown before the NotBefore date. It can also be
positive, to start the shutdown after the NotBefore date, but this is at your own risk.

Defaults to 0

Examples

Let’s say you have cluster and a client instance. For example using dask_kubernetes.KubeCluster

>>> from dask_kubernetes import KubeCluster
>>> from distributed import Client
>>> cluster = KubeCluster()
>>> client = Client(cluster)

You can add the worker plugin using the following:

>>> from dask_cloudprovider.azure import AzurePreemptibleWorkerPlugin
>>> client.register_worker_plugin(AzurePreemptibleWorkerPlugin())

40 Chapter 6. Microsoft Azure

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events
http://169.254.169.254/metadata/scheduledevents?api-version=2019-08-01
https://kubernetes.dask.org/en/latest/kubecluster.html#dask_kubernetes.KubeCluster

Dask Cloud Provider Documentation, Release 2022.10.0

Methods

setup(worker) Run when the plugin is attached to a worker.
teardown(worker) Run when the worker to which the plugin is attached

to is closed
transition(key, start, finish, **kwargs) Throughout the lifecycle of a task (see Worker),

Workers are instructed by the scheduler to compute
certain tasks, resulting in transitions in the state of
each task.

poll_status

setup(worker)
Run when the plugin is attached to a worker. This happens when the plugin is registered and attached to
existing workers, or when a worker is created after the plugin has been registered.

teardown(worker)
Run when the worker to which the plugin is attached to is closed

6.3. Azure Spot Instance Plugin 41

https://distributed.dask.org/en/latest/worker.html

Dask Cloud Provider Documentation, Release 2022.10.0

42 Chapter 6. Microsoft Azure

CHAPTER

SEVEN

HETZNER

HetznerCluster([bootstrap, image, location, ...]) Cluster running on Hetzner cloud vServers.

7.1 Overview

7.1.1 Authentication

To authenticate with Hetzner you must first generate a personal access token.

Then you must put this in your Dask configuration at cloudprovider.hetzner.token. This can be done by adding
the token to your YAML configuration or exporting an environment variable.

~/.config/dask/cloudprovider.yaml

cloudprovider:
hetzner:
token: "yourtoken"

$ export DASK_CLOUDPROVIDER__HETZNER__TOKEN="yourtoken"

class dask_cloudprovider.hetzner.HetznerCluster(bootstrap: Optional[str] = None, image:
Optional[str] = None, location: Optional[str] =
None, server_type: Optional[str] = None,
docker_image: Optional[str] = None, **kwargs)

Cluster running on Hetzner cloud vServers.

VMs in Hetzner are referred to as vServers. This cluster manager constructs a Dask cluster running on VMs.

When configuring your cluster you may find it useful to install the hcloud tool for querying the Hetzner API for
available options.

https://github.com/hetznercloud/cli

Parameters

image: str The image to use for the host OS. This should be a Ubuntu variant. You can list
available images with hcloud image list|grep Ubuntu.

location: str The Hetzner location to launch you cluster in. A full list can be obtained with
hcloud location list.

server_type: str The VM server type. You can get a full list with hcloud server-type
list. The default is cx11 which is vServer with 2GB RAM and 1 vCPU.

43

https://www.digitalocean.com/docs/apis-clis/api/create-personal-access-token/
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hetznercloud/cli

Dask Cloud Provider Documentation, Release 2022.10.0

n_workers: int Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str The Python module to run for the worker. Defaults to distributed.
cli.dask_worker

worker_options: dict Params to be passed to the worker class. See distributed.worker.
Worker for default worker class. If you set worker_module then refer to the docstring for
the custom worker class.

scheduler_options: dict Params to be passed to the scheduler class. See distributed.
scheduler.Scheduler.

env_vars: dict Environment variables to be passed to the worker.

extra_bootstrap: list[str] (optional) Extra commands to be run during the bootstrap phase.

Attributes

asynchronous Are we running in the event loop?

auto_shutdown

bootstrap

command

dashboard_link

docker_image

gpu_instance

loop

name

observed

plan

requested

scheduler_address

scheduler_class

worker_class

Methods

adapt([Adaptive, minimum, maximum, ...]) Turn on adaptivity
call_async(f, *args, **kwargs) Run a blocking function in a thread as a coroutine.
from_name(name) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs([cluster, scheduler, workers]) Return logs for the cluster, scheduler and workers
get_tags() Generate tags to be applied to all resources.
new_worker_spec() Return name and spec for the next worker
scale([n, memory, cores]) Scale cluster to n workers
scale_up([n, memory, cores]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context

44 Chapter 7. Hetzner

https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler
https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler

Dask Cloud Provider Documentation, Release 2022.10.0

close
get_cloud_init
logs
render_cloud_init
render_process_cloud_init
scale_down

7.1. Overview 45

Dask Cloud Provider Documentation, Release 2022.10.0

46 Chapter 7. Hetzner

CHAPTER

EIGHT

TROUBLESHOOTING

This document contains frequently asked troubleshooting problems.

8.1 Unable to connect to scheduler

The most common issue is not being able to connect to the cluster once it has been constructed.

Each cluster manager will construct a Dask scheduler and by default expose it via a public IP address. You must be
able to connect to that address on ports 8786 and 8787 from wherver your Python session is.

If you are unable to connect to this address it is likely that there is something wrong with your network configuration,
for example you may have corporate policies implementing additional firewall rules on your account.

To reduce the chances of this happening it is often simplest to run Dask Cloudprovider from within the cloud you are
trying to use and configure private networking only. See your specific cluster manager docs for info.

8.2 Invalid CPU or Memory

When working with FargateCluster or ECSCluster, CPU and memory arguments can only take values from a fixed
set of combinations.

So, for example, code like this will result in an error

from dask_cloudprovider.aws import FargateCluster
cluster = FargateCluster(

image="daskdev/dask:latest",
worker_cpu=256,
worker_mem=30720,
n_workers=2,
fargate_use_private_ip=False,
scheduler_timeout="15 minutes"

)
client = Client(cluster)
cluster

botocore.errorfactory.ClientException:
An error occurred (ClientException) when calling the RegisterTaskDefinition operation:
No Fargate configuration exists for given values.

This is because ECS and Fargate task definitions with CPU=256 cannot have as much memory as that code is requesting.

47

Dask Cloud Provider Documentation, Release 2022.10.0

The AWS-accepted set of combinations is documented at https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task-cpu-memory-error.html.

8.3 Requested CPU Configuration Above Limit

When creating a FargateCluster or or ECSCluster, or adding additional workers, you may receive an error response
with “The requested CPU configuration is above your limit”. This means that the scheduler and workers requested and
any other EC2 resources you have running in that region use up more than your current service quota limit for vCPUs.

You can adjust the scheduler and/or worker CPUs with the scheduler_cpu and worker_cpu arguments. See the
“Invalid CPU or Memory” section in this document for more information.

However, to get the desired cluster configuration you’ll need to request a service limit quota increase.

Go to https://<region>.aws.amazon.com/servicequotas/home/services/ec2/quotas and request an in-
crease for “Running On-Demand Standard (A, C, D, H, I, M, R, T, Z) instances”.

8.4 Pulling private Docker images

For cluster managers like EC2Cluster, AzureVMCluster and GCPCluster Docker images will be pulled onto VMs
created on the cloud of your choice.

If you need to pull a private Docker images which requires authentication each VM will need to be configured with
credentials. These cluster managers accept and extra_bootstrap argument where you can provide additional bash
commands to be run during startup. This is a good place to log into your Docker registry.

from dask_cloudprovider.azure import AzureVMCluster
cluster = AzureVMCluster(...

docker_image="my_private_image:latest",
extra_bootstrap=["docker login -u 'username' -p 'password'"])

48 Chapter 8. Troubleshooting

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html
https://aws.amazon.com/ec2/faqs/#EC2_On-Demand_Instance_limits
https://cloudprovider.dask.org/en/latest/aws.html#elastic-container-service-ecs
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

CHAPTER

NINE

SECURITY

Dask Cloudprovider aims to balance ease of use with security best practices. The two are not always compatible so
this document aims to outline the compromises and decisions made in this library.

9.1 Public Schedulers

For each cluster manager to work correctly it must be able to make a connection to the Dask scheduler on port 8786.
In many cluster managers the default option is to expose the Dask scheduler and dashboard to the internet via a public
IP address. This makes things quick and easy for new users to get up and running, but may pose a security risk long
term.

Many organisations have policies which do not allow users to assign public IP addresses or open ports. Our best prac-
tices advice is to use Dask Cloudprovider from within a cloud platform, either from a VM or a managed environment.
Then disable public networking. For example:

>>> import dask.config, dask_cloudprovider
>>> dask.config.set({"cloudprovider.gcp.public_ingress": False})

See each cluster manager for configuration options.

9.2 Authentication and encryption

Cluster managers such as dask_cloudprovider.aws.EC2Cluster, dask_cloudprovider.azure.
AzureVMCluster, dask_cloudprovider.gcp.GCPCluster and dask_cloudprovider.digitalocean.
DropletCluster enable certificate based authentication and encryption by default.

When a cluster is launched with any of these cluster managers a set of temporary keys will be generated and distributed
to the cluster nodes via their startup script. All communication between the client, scheduler and workers will then be
encrypted and only clients and workers with valid certificates will be able to connect to the scheduler.

You can also specify your own certificates using the distributed.security.Security object.

>>> from dask_cloudprovider.gcp import GCPCluster
>>> from dask.distributed import Client
>>> from distributed.security import Security
>>> sec = Security(tls_ca_file='cluster_ca.pem',
... tls_client_cert='cli_cert.pem',
... tls_client_key='cli_key.pem',
... require_encryption=True)
>>> cluster = GCPCluster(n_workers=1, security=sec)

(continues on next page)

49

https://distributed.dask.org/en/latest/tls.html#distributed.security.Security

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

>>> client = Client(cluster)
>>> client
<Client: 'tls://10.142.0.29:8786' processes=0 threads=0, memory=0 B>

You can disable secure connections by setting the security keyword argument to False. This may be desirable when
troubleshooting or when running on a trusted network (entirely inside a VPC for example).

50 Chapter 9. Security

CHAPTER

TEN

GPU CLUSTERS

Many cloud providers have GPU offerings and so it is possible to launch GPU enabled Dask clusters with Dask Cloud-
provider.

Each cluster manager handles this differently but generally you will need to configure the following settings:

• Configure the hardware to include GPUs. This may be by changing the hardware type or adding accelerators.

• Ensure the OS/Docker image has the NVIDIA drivers. For Docker images it is recommended to use the [RAPIDS
images](https://hub.docker.com/r/rapidsai/rapidsai/).

• Set the worker_module config option to dask_cuda.cli.dask_cuda_worker or worker_command option
to dask-cuda-worker.

In the following AWS dask_cloudprovider.aws.EC2Cluster example we set the ami to be a Deep Learning AMI
with NVIDIA drivers, the docker_image to RAPIDS, the instance_type to p3.2xlarge which has one NVIDIA
Tesla V100 and the worker_module to dask_cuda.cli.dask_cuda_worker.

>>> cluster = EC2Cluster(ami="ami-0c7c7d78f752f8f17", # Example Deep Learning AMI␣
→˓(Ubuntu 18.04)

docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04",
instance_type="p3.2xlarge",
worker_module="dask_cuda.cli.dask_cuda_worker",
bootstrap=False,
filesystem_size=120)

See each cluster manager’s example sections for info on starting a GPU cluster.

51

https://hub.docker.com/r/rapidsai/rapidsai/

Dask Cloud Provider Documentation, Release 2022.10.0

52 Chapter 10. GPU clusters

CHAPTER

ELEVEN

CREATING CUSTOM OS IMAGES WITH PACKER

Many cloud providers in Dask Cloudprovider involve creating VMs and installing dependencies on those VMs at boot
time.

This can slow down the creation and scaling of clusters, so this page discusses building custom images using Packer to
speed up cluster creation.

Packer is a utility which boots up a VM on your desired cloud, runs any installation steps and then takes a snapshot of
the VM for use as a template for creating new VMs later. This allows us to run through the installation steps once, and
then reuse them when starting Dask components.

11.1 Installing Packer

See the official install docs.

11.2 Packer Overview

To create an image with packer we need to create a JSON config file.

A Packer config file is broken into a couple of sections, builders and provisioners.

A builder configures what type of image you are building (AWS AMI, GCP VMI, etc). It describes the base image you
are building on top of and connection information for Packer to connect to the build instance.

When you run packer build /path/to/config.json a VM (or multiple VMs if you configure more than one)
will be created automatically based on your builders config section.

Once your build VM is up and running the provisioners will be run. These are steps to configure and provision your
machine. In the examples below we are mostly using the shell provisioner which will run commands on the VM to
set things up.

Once your provisioning scripts have completed the VM will automatically stop, a snapshot will be taken and you will
be provided with an ID which you can then use as a template in future runs of dask-cloudprovider.

53

https://www.packer.io/
https://www.packer.io/docs/install

Dask Cloud Provider Documentation, Release 2022.10.0

11.3 Image Requirements

Each cluster manager that uses VMs will have specific requirements for the VM image.

The AWS ECSCluster for example requires ECS optimised AMIs.

The VM cluster managers such as EC2cluster and DropletCluster just require Docker to be installed (or NVIDIA
Docker for GPU VM types).

11.4 Examples

11.4.1 EC2Cluster with cloud-init

When any of the VMCluster based cluster managers, such as EC2Cluster, lauch a new default VM it uses the Ubuntu
base image and installs all dependencies with cloud-init.

Instead of doing this every time we could use Packer to do this once, and then reuse that image every time.

Each VMCluster cluster manager has a class method called get_cloud_init which takes the same keyword argu-
ments as creating the object itself, but instead returns the cloud-init file that would be generated.

from dask_cloudprovider.aws import EC2Cluster

cloud_init_config = EC2Cluster.get_cloud_init(
Pass any kwargs here you would normally pass to ``EC2Cluster``

)
print(cloud_init_config)

We should see some output like this.

#cloud-config

packages:
- apt-transport-https
- ca-certificates
- curl
- gnupg-agent
- software-properties-common

Enable ipv4 forwarding, required on CIS hardened machines
write_files:
- path: /etc/sysctl.d/enabled_ipv4_forwarding.conf

content: |
net.ipv4.conf.all.forwarding=1

create the docker group
groups:
- docker

Add default auto created user to docker group
system_info:
default_user:

groups: [docker]
(continues on next page)

54 Chapter 11. Creating custom OS images with Packer

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.docker.com/engine/install/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://cloudinit.readthedocs.io/en/latest/

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

runcmd:

Install Docker
- curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
- add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_
→˓release -cs) stable"
- apt-get update -y
- apt-get install -y docker-ce docker-ce-cli containerd.io
- systemctl start docker
- systemctl enable docker

Run container
- docker run --net=host daskdev/dask:latest dask-scheduler --version

We should save this output somewhere for reference later. Let’s refer to it as /path/to/cloud-init-config.yaml.

Next we need a Packer config file to build our image, let’s refer to it as /path/to/config.json. We will use the
official Ubuntu 20.04 image and specify our cloud-init config file in the user_data_file option.

Packer will not necesserily wait for our cloud-init config to finish executing before taking a snapshot, so we need to add
a provisioner that will block until the cloud-init completes.

{
"builders": [

{
"type": "amazon-ebs",
"region": "eu-west-2",
"source_ami_filter": {

"filters": {
"virtualization-type": "hvm",
"name": "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*",
"root-device-type": "ebs"

},
"owners": [

"099720109477"
],
"most_recent": true

},
"instance_type": "t2.micro",
"ssh_username": "ubuntu",
"ami_name": "dask-cloudprovider {{timestamp}}",
"user_data_file": "/path/to/cloud-init-config.yaml"

}
],
"provisioners": [

{
"type": "shell",
"inline": [

"echo 'Waiting for cloud-init'; while [! -f /var/lib/cloud/instance/
→˓boot-finished]; do sleep 1; done; echo 'Done'"

]
}

(continues on next page)

11.4. Examples 55

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

]
}

Then we can build our image with packer build /path/to/config.json.

$ packer build /path/to/config.json
amazon-ebs: output will be in this color.

==> amazon-ebs: Prevalidating any provided VPC information
==> amazon-ebs: Prevalidating AMI Name: dask-cloudprovider 1600875672

amazon-ebs: Found Image ID: ami-062c2b6de9e9c54d3
==> amazon-ebs: Creating temporary keypair: packer_5f6b6c99-46b5-6002-3126-8dcb1696f969
==> amazon-ebs: Creating temporary security group for this instance: packer_5f6b6c9a-
→˓bd7d-8bb3-58a8-d983f0e95a96
==> amazon-ebs: Authorizing access to port 22 from [0.0.0.0/0] in the temporary security␣
→˓groups...
==> amazon-ebs: Launching a source AWS instance...
==> amazon-ebs: Adding tags to source instance

amazon-ebs: Adding tag: "Name": "Packer Builder"
amazon-ebs: Instance ID: i-0531483be973d60d8

==> amazon-ebs: Waiting for instance (i-0531483be973d60d8) to become ready...
==> amazon-ebs: Using ssh communicator to connect: 18.133.244.42
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: /var/folders/0l/
→˓fmwbqvqn1tq96xf20rlz6xmm0000gp/T/packer-shell512450076

amazon-ebs: Waiting for cloud-init
amazon-ebs: Done

==> amazon-ebs: Stopping the source instance...
amazon-ebs: Stopping instance

==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating AMI dask-cloudprovider 1600875672 from instance i-
→˓0531483be973d60d8

amazon-ebs: AMI: ami-064f8db7634d19647
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished after 4 minutes 5 seconds.

==> Wait completed after 4 minutes 5 seconds

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:
eu-west-2: ami-064f8db7634d19647

Then to use our new image we can create an EC2Cluster specifying the AMI and disabling the automatic bootstrap-
ping.

from dask.distributed import Client
(continues on next page)

56 Chapter 11. Creating custom OS images with Packer

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
ami="ami-064f8db7634d19647", # AMI ID provided by Packer
bootstrap=False

)
cluster.scale(2)

client = Client(cluster)
Your cluster is ready to use

11.4.2 EC2Cluster with RAPIDS

To launch RAPIDS on AWS EC2 we can select a GPU instance type, choose the official Deep Learning AMIs that
Amazon provides and run the official RAPIDS Docker image.

from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
ami="ami-0c7c7d78f752f8f17", # Deep Learning AMI (this ID varies by region so find␣

→˓yours in the AWS Console)
docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8",
instance_type="p3.2xlarge",
bootstrap=False, # Docker is already installed on the Deep Learning AMI
filesystem_size=120,

)
cluster.scale(2)

However every time a VM is created by EC2Cluster the RAPIDS Docker image will need to be pulled from Docker
Hub. The result is that the above snippet can take ~20 minutes to run, so let’s create our own AMI which already has
the RAPIDS image pulled.

In our builders section we will specify we want to build on top of the latest Deep Learning AMI by specifying "Deep
Learning AMI (Ubuntu 18.04) Version *" to list all versions and "most_recent": true to use the most
recent.

We also restrict the owners to 898082745236 which is the ID for the official image channel.

The official image already has the NVIDIA drivers and NVIDIA Docker runtime installed so the only step we need to
do is to pull the RAPIDS Docker image. That way when a scheduler or worker VM is created the image will already
be available on the machine.

{
"builders": [

{
"type": "amazon-ebs",
"region": "eu-west-2",
"source_ami_filter": {

"filters": {
"virtualization-type": "hvm",
"name": "Deep Learning AMI (Ubuntu 18.04) Version *",
"root-device-type": "ebs"

(continues on next page)

11.4. Examples 57

https://rapids.ai/

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

},
"owners": [

"898082745236"
],
"most_recent": true

},
"instance_type": "p3.2xlarge",
"ssh_username": "ubuntu",
"ami_name": "dask-cloudprovider-rapids {{timestamp}}"

}
],
"provisioners": [

{
"type": "shell",
"inline": [

"docker pull rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8"
]

}
]

}

Then we can build our image with packer build /path/to/config.json.

$ packer build /path/to/config.json
==> amazon-ebs: Prevalidating any provided VPC information
==> amazon-ebs: Prevalidating AMI Name: dask-cloudprovider-gpu 1600868638

amazon-ebs: Found Image ID: ami-0c7c7d78f752f8f17
==> amazon-ebs: Creating temporary keypair: packer_5f6b511e-d3a3-c607-559f-d466560cd23b
==> amazon-ebs: Creating temporary security group for this instance: packer_5f6b511f-
→˓8f62-cf98-ca54-5771f1423d2d
==> amazon-ebs: Authorizing access to port 22 from [0.0.0.0/0] in the temporary security␣
→˓groups...
==> amazon-ebs: Launching a source AWS instance...
==> amazon-ebs: Adding tags to source instance

amazon-ebs: Adding tag: "Name": "Packer Builder"
amazon-ebs: Instance ID: i-077f54ed4ae6bcc66

==> amazon-ebs: Waiting for instance (i-077f54ed4ae6bcc66) to become ready...
==> amazon-ebs: Using ssh communicator to connect: 52.56.96.165
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: /var/folders/0l/
→˓fmwbqvqn1tq96xf20rlz6xmm0000gp/T/packer-shell376445833

amazon-ebs: Waiting for cloud-init
amazon-ebs: Bootstrap complete

==> amazon-ebs: Stopping the source instance...
amazon-ebs: Stopping instance

==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating AMI dask-cloudprovider-gpu 1600868638 from instance i-
→˓077f54ed4ae6bcc66

amazon-ebs: AMI: ami-04e5539cb82859e69
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Terminating the source AWS instance...

(continues on next page)

58 Chapter 11. Creating custom OS images with Packer

Dask Cloud Provider Documentation, Release 2022.10.0

(continued from previous page)

==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished after 20 minutes 35 seconds.

It took over 20 minutes to build this image, but now that we’ve done it once we can reuse the image in our RAPIDS
powered Dask clusters.

We can then run our code snippet again but this time it will take less than 5 minutes to get a running cluster.

from dask.distributed import Client
from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
ami="ami-04e5539cb82859e69", # AMI ID provided by Packer
docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8",
instance_type="p3.2xlarge",
bootstrap=False,
filesystem_size=120,

)
cluster.scale(2)

client = Client(cluster)
Your cluster is ready to use

11.4. Examples 59

Dask Cloud Provider Documentation, Release 2022.10.0

60 Chapter 11. Creating custom OS images with Packer

CHAPTER

TWELVE

TESTING

Tests in dask-cloudprovider and written and run using pytest.

To set up your testing environment run:

pip install -r requirements_test.txt

To run tests run pytest from the root directory

pytest

You may notice that many tests will be skipped. This is because those tests create external resources on cloud providers.
You can set those tests to run with the --create-external-resources flag.

Warning: Running tests that create external resources are slow and will cost a small amount of credit on each
cloud provider.

pytest -rs --create-external-resources

It is also helpful to set the -rs flag here because tests may also skip if you do not have appropriate credentials to create
those external resources. If this is the case the skip reason will contain instructions on how to set up those credentials.
For example

SKIPPED [1] dask_cloudprovider/azure/tests/test_azurevm.py:49:
You must configure your Azure resource group and vnet to run this test.

$ export DASK_CLOUDPROVIDER__AZURE__LOCATION="<LOCATION>"
$ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__RESOURCE_GROUP="<RESOURCE GROUP>"
$ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__VNET="<VNET>"
$ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__SECURITY_GROUP="<SECUROTY GROUP>"

61

Dask Cloud Provider Documentation, Release 2022.10.0

62 Chapter 12. Testing

CHAPTER

THIRTEEN

RELEASING

Releases are published automatically when a tag is pushed to GitHub.

Set next version number
export RELEASE=x.x.x

Create tags
git commit --allow-empty -m "Release $RELEASE"
git tag -a $RELEASE -m "Version $RELEASE"

Push
git push upstream --tags

63

Dask Cloud Provider Documentation, Release 2022.10.0

64 Chapter 13. Releasing

INDEX

A
AzurePreemptibleWorkerPlugin (class in

dask_cloudprovider.azure), 40
AzureVMCluster (class in dask_cloudprovider.azure),

35

D
DropletCluster (class in

dask_cloudprovider.digitalocean), 23

E
EC2Cluster (class in dask_cloudprovider.aws), 7
ECSCluster (class in dask_cloudprovider.aws), 12

F
FargateCluster (class in dask_cloudprovider.aws), 18

G
GCPCluster (class in dask_cloudprovider.gcp), 28

H
HetznerCluster (class in dask_cloudprovider.hetzner),

43

S
setup() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin

method), 41

T
teardown() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin

method), 41

65

	Installation
	Pip
	Conda

	Configuration
	Authentication
	Cluster config

	Amazon Web Services (AWS)
	Overview
	Authentication
	Credentials

	Elastic Compute Cloud (EC2)
	Elastic Container Service (ECS)
	Fargate

	DigitalOcean
	Overview
	Authentication

	Droplet

	Google Cloud Platform
	Overview
	Authentication
	Project ID

	Google Cloud VMs

	Microsoft Azure
	Overview
	Authentication
	Resource Groups
	Virtual Networks
	Security Groups
	Dask Configuration

	AzureVM
	Azure Spot Instance Plugin

	Hetzner
	Overview
	Authentication

	Troubleshooting
	Unable to connect to scheduler
	Invalid CPU or Memory
	Requested CPU Configuration Above Limit
	Pulling private Docker images

	Security
	Public Schedulers
	Authentication and encryption

	GPU clusters
	Creating custom OS images with Packer
	Installing Packer
	Packer Overview
	Image Requirements
	Examples
	EC2Cluster with cloud-init
	EC2Cluster with RAPIDS

	Testing
	Releasing
	Index

