
Dashkiosk
Release 2.7.3

July 13, 2017

Contents

1 Installation 3
1.1 Server and receiver . 3
1.2 Database . 4
1.3 Unassigned dashboard . 4

2 Upgrade 5

3 Configuration 7
3.1 Available options . 7
3.2 Branding . 8
3.3 Command-line or configuration file . 8
3.4 Environment variables . 9
3.5 JSON configuration file . 9
3.6 Reverse proxy . 9

4 Usage 11
4.1 Running the server . 11
4.2 Administration . 12
4.3 Display configuration . 16
4.4 About the dashboards . 16

5 API 19
5.1 REST API . 19
5.2 Changes API . 27
5.3 Display API . 29
5.4 Internal bus message . 29

6 Android application 31
6.1 Supported devices . 31
6.2 Features . 31
6.3 Compilation . 31
6.4 Installation . 32
6.5 Configuration . 32
6.6 Certificates . 32
6.7 Usage . 34
6.8 Troubleshooting . 34

7 Chromecast devices 35
7.1 Warning . 35

i

7.2 Setup . 35
7.3 Usage . 36
7.4 Custom receiver . 36
7.5 Troubleshooting . 36

8 Cloud install 39
8.1 Deployment tool installation . 39
8.2 Create the application . 39
8.3 Configure a database . 39
8.4 Deploy the application . 40
8.5 Upgrading . 40

9 License 41
9.1 ISC License . 41
9.2 Branded images . 41

10 Indices and tables 43

HTTP Routing Table 45

ii

Dashkiosk, Release 2.7.3

Dashkiosk is a solution to manage dashboards on multiple screens. It comes in four parts:

1. A server will manage the screens by sending them which URL they should display in realtime. A web interface
enables the administrator to configure groups of dashboards as well as their associations with available displays.

2. A receiver runs in a browser attached to each screen. On start, it contacts the server and waits for it to tell which
URL to display.

3. An Android application provides a simple fullscreen webview to display the receiver.

4. A Chromecast custom receiver which will run the regular receiver if you want to display dashboards using
Google Chromecast devices.

The Android application and the Chromecast receiver are optional components. Any device able to display a fullscreen
web page should work.

A live installation, reset every hour, is publicly available:

• administration panel

• receiver

You can also quickly pull a ready-to-use version with Docker (you may want to replace latest by a stable tag, like
2.6.1):

$ docker run -d -p 8080:8080 \
-v /var/lib/dashkiosk/database:/database \
vincentbernat/dashkiosk:latest

Here is a demonstration video:

To contribute, use GitHub.

Contents 1

https://dashkiosk-demo.herokuapp.com/admin
http://dashkiosk-demo.herokuapp.com/receiver
https://github.com/vincentbernat/dashkiosk/

Dashkiosk, Release 2.7.3

2 Contents

CHAPTER 1

Installation

The server is a Node.js application providing a rendez-vous point for all displays to subscribe using a Websocket
protocol as well as an administration page to manage all displays, group them and tell them which URL to display.

Server and receiver

To install it, you need to execute the following step:

1. Grab the latest tarball for Dashkiosk from GitHub.

2. Install Node.js and optionally npm. Currently, Dashkiosk works with Node.js 0.12.x or more recent. If the
version available in your distribution is not up-to-date, have a look at how to install Node.js via the package
manager before trying to build from the sources.

3. Install bower and grunt, two package managers for Javascript with the following command:

$ npm install -g bower grunt-cli

4. Unpack Dashkiosk in the directory of your choice and go into that directory.

5. Install the appropriate dependencies with the following commands:

$ npm install

6. Build the final version of Dashkiosk with the following command:

$ grunt

If you get an error about jpegtran, install jpegtran, optipng and gifsicle from your distribution.
For example, on Debian:

$ sudo apt-get install jpegtran optipng gifsicle

7. Upon success, you will get a dist directory that you can put on some server. It includes both the receiver and
the server part. Then:

$ cd dist && npm install --production

8. If you want to use the Android application, you still need to build it and install it. See Android application.

If you get an error while compiling mDNS extension on Linux, ensure you have the appropriate development package
for Avahi. Specifically, on Debian, you need libavahi-compat-libdnssd-dev.

3

https://nodejs.org/
https://github.com/vincentbernat/dashkiosk/releases
https://nodejs.org/
https://www.npmjs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Dashkiosk, Release 2.7.3

Database

Dashkiosk stores its data inside some database. By default, it uses SQLite. If you prefer to use another database, this is
quite easy. We will use PostgreSQL but this should be easy to transpose to another database supported by Sequelize.js,
the ORM used in Dashkiosk. The databases currently supported are:

• MySQL,

• MariaDB,

• SQLite, and

• PostgreSQL.

Here are the steps:

1. Create a dedicated user inside your RDBMS. For PostgreSQL, this is done as the postgres user with the
following command:

$ createuser -P dashkiosk
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

2. Create an empty database. For PostgreSQL, this is also done as the postgres user:

$ createdb -O dashkiosk dashkiosk

The database will be populated automatically when running Dashkiosk for the first time.

Unassigned dashboard

By default, displays are put in a group with a dashboard with cycling images. You can add more images in
app/images/unassigned if you want. Then, rebuild with grunt.

4 Chapter 1. Installation

https://www.postgresql.org
http://sequelizejs.com

CHAPTER 2

Upgrade

To upgrade, you can use the exact same instructions that you used for installation. You can choose to do an in-place
upgrade if you want to:

$ npm install
$ grunt

If you kept the default SQLite database, be sure to save it (it’s in dist/db/) before upgrading and restore it after
upgrade. The dist/ directory where Dashkiosk is built is wiped out on upgrade.

5

Dashkiosk, Release 2.7.3

6 Chapter 2. Upgrade

CHAPTER 3

Configuration

Before running the server, there are some options you may want to tune. Those options can be specified either on the
command-line or in a configuration file (that should be specified on the command-line).

Available options

Here are the three more important options:

configuration This option allows to specify a configuration file in JSON format.

environment This option sets the environment to use. By default, the development environment
is used. Unless you want to debug Dashkiosk, this is not what you want. You can use any other
keyword. Use production if you don’t know.

port The port to listen to. Quite important.

If you want to be able to use Chromecast devices, you also need to set:

chromecast.enabled Enable Chromecast support. Disabled by default.

chromecast.receiver The URL to the receiver. This is used to tell Chromecast devices where
to find the receiver. This option is mandatory as there is no reliable way to guess it. You should
put the URL to access Dashkiosk and ends it with /receiver. For example, put something like
http://dashkiosk.example.com/receiver. This needs to be a fully qualified URL (in-
cluding the protocol part http:// or https://).

If the reciever is on a server with only internal DNS records use the IP address of the server
rather than URL. Chromecasts are hard coded to only use Google’s DNS servers (8.8.8.8 and
8.8.4.4) for lookups, rather than those given by DHCP.

The Chromecast custom receiver is hosted on GitHub. If you want to modify it or to host it yourself, you need to
register a new application in the Google Cast SDK Developer Console and report the provided application ID as
chromecast.app.

You can protect Dashkiosk with a login and a password. For more advanced options, you should put it behind a reverse
proxy.

auth.enabled Require a login/password. This will enforce the use of HTTP basic authentication to
access to Dashkiosk (both the receiver and the admin panel).

auth.realm Realm to use for HTTP basic authentication.

auth.username Valid username for authentication.

auth.password Valid password for authentication.

7

https://vincentbernat.github.io/dashkiosk/chromecast.html
https://cast.google.com/publish/#/overview

Dashkiosk, Release 2.7.3

The remaining options can usually be left untouched unless you decided to not use the integrated SQLite database.

path.static Path where the static files to be served for the receiver and the integrated dashboards are
located. Unless you moved them to some other location, there is no need to change this.

db.database Database name. This is not needed if you kept the default SQLite database.

db.username Username to access the database. This is not needed if you kept the default SQLite
database.

db.password Password to authenticate with the above username. This is not needed if you kept the
default SQLite database.

db.options.dialect Dialect to use for the database. This can be sqlite, mysql, mariadb or
postgres.

db.options.storage Location of the SQLite database. Not used for other databases.

db.options.host Hostname (or IP) where the database is located. This is not needed for SQLite.

log.level Log level to use for logging messages. Use either info or debug.

log.file Location of a log file where to write logs in JSON format. By default, no such file is gener-
ated.

Branding

You can brand a bit Dashkiosk. For example, the deezer branding provides the following perks:

• The spinning vinyl is located in app/images/loading-deezer.svg. You should be able to use anything
that will give a cool effect while spinning.

• The Deezer logo appearing both in the administration interface and in the default dashboard is located in
app/images/stamp-deezer.svg.

You can create alternate version of those images and drop them at the same place with a different suffix. Currently, the
available brandings are:

• default

• deezer

• dailymotion

• exoscale

If you do your own branding, they can be integrated into Dashkiosk if the used images can be freely distributed. Submit
a pull request.

To select a branding, use the --branding option.

Command-line or configuration file

On the command-line, the options are specified using the classic GNU long option style by prepending them with --.
For example:

--port 8087 --environment production

8 Chapter 3. Configuration

https://github.com/vincentbernat/dashkiosk/pulls

Dashkiosk, Release 2.7.3

Environment variables

You can also specify options using environment variables. In this case, substitute . by __ to get valid values:

$ export port=8088
$ export db__database=dashkiosk4
$ export branding=exoscale

JSON configuration file

Alternatively, you can specify a JSON configuration file with --configuration. In this case, the options with a
dot should be understood as being a sub-object. For example, to configure a PostgreSQL database:

{
"environment": "production",
"db": {

"username": "dashkiosk",
"password": "dashkiosk",
"database": "dashkiosk",
"options": {

"host": "172.17.42.1",
"dialect": "postgres"

}
},
"log": {

"file": "/var/log/dashkiosk.log"
}

}

Reverse proxy

You may want to put a reverse proxy in front of Dashkiosk. You should know that it uses Socket.IO whose preferred
backend is WebSocket. Some reverse proxy may not like it.

Here is a configuration for nginx:

upstream dashkiosk {
server localhost:9450;
server localhost:9451;

}

server {
listen 80;
listen [::]:80;
server_name dashkiosk.example.com;

location / {
proxy_pass http://dashkiosk;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_set_header X-Forwarded-For $remote_addr;

}
}

3.4. Environment variables 9

http://socket.io/

Dashkiosk, Release 2.7.3

Setting X-Forwarded-For header allows Dashkiosk to display the IP address of each display in case you want to
log on it to debug it.

10 Chapter 3. Configuration

CHAPTER 4

Usage

Running the server

Once installed and configured, running Dashkiosk should be straightforward. While in the dist directory:

$ node server.js --environment production

Don’t forget to specify the environment! See Configuration for available options. They can also be specified in a
configuration file.

Testing

The server has three browser endpoints:

• /unassigned which is the default dashboard for unassigned displays,

• /admin which is the administration interface,

• /receiver which is the receiver part that a display should load.

To test that everything is setup correctly, point your browser to /unassigned (for example
http://localhost:9400/unassigned if you kept the default parameters and installed Dashkiosk on
your PC).

You should see the default dashboard displayed for unknown device. These are just a few photos cycling around.

Then, you should go to the administration interface located in /admin. While in the administration interface, open
another tab and go to /receiver which is the URL displaying the receiver. In the /admin tab, you should see
yourself as a new display in the “Unassigned” group and in the /receiver tab, you should see the default dashboard
that you got by going in /unassigned.

To customize the default dashboard, see Unassigned dashboard.

Troubleshooting

If something goes wrong, be sure to look at the log. Either you run the server through something like supervisord and
you can have a look at the log in some file or you can use --log.file to get a log file.

11

http://supervisord.org/

Dashkiosk, Release 2.7.3

Administration

The administration interface allows to create new dashboards, see active displays and associate them to a group of
dashboards. When pointing a browser to the /admin URL, you should see an interface like this:

Figure 4.1: The administration interface with a few groups. At the top, the special “Unassigned” group.

On the figure above, you can see the three main entities in Dashkiosk:

1. The monitors with a 5-digit serial numbers are the displays. For each of them, the serial number is attributed
on their first connection and stored locally in the display 1. They come with a green light when they are actually
alive.

2. Each display is affected to a group of displays. In the above figure, we have three groups. It is possible to
move a display from one group to another. Each group can have a name and a description. It is possible to
create or rename any group. The group named “Unassigned” is special and new displays will be attached to it
on first connection. Other than that, this is a regular group. The other special group is “Chromecast devices”.
See Chromecast devices.

3. Each group of displays contains an ordered list of dashboards. A dashboard is just an URL to be displayed
with a bunch of parameters. You can reorder the dashboards in a group and choose how much time they should

1 The serial number is stored either in the local storage of the browser or in a cookie. If a display comes without this serial number or with an
invalid one, it will be granted a new one. The appropriate token is also put in the URL in case neither cookies or local storage are available. This
way, you can point the browser to the receiver part, then bookmark or turn the web page as an application.

12 Chapter 4. Usage

Dashkiosk, Release 2.7.3

be displayed.

The first time, you will only have the special “Unassigned” group 2.

Displays

Clicking on a display will show a dialog box with various information about the display.

Figure 4.2: The dialog box of the APFI0S display.

First, you get the IP address of the display. This could be useful if you need to connect to it for some other purpose
(like debugging a problem related to this display). If the display is offline, the IP displayed is the last known IP.

Then, on the top right corner, there are contextual icons relevant to the current display. On a display, you can execute
two actions:

• force a reload of the receiver (after an update, for example),

• toggle the OSD on the receiver.

The receiver OSD is a neat feature to check if the display you are inspecting is really the one you are interested
in. It will display an overlay with the display name as well as some technical information that may be useful when
displaying dashboards.

Not shown on the above figure, you can destroy a display by clicking on the Delete button in the lower left corner.

You can assign a description to the display, like “In the kitchen”. You can also change the group the display is
currently attached to by choosing another group in the dropdown menu. The display should immediatly display the
current dashboard of the group.

2 If you don’t have this group, this may be because no display has ever been registered. In this case, point your browser to the /receiver
URL to register one.

4.2. Administration 13

Dashkiosk, Release 2.7.3

The viewport will be explained in a dedicated section. See Viewport.

On a desktop browser, it is also possible to move the display to another group by dragging it to the appropriate group.

Groups

By default, you only get the “Unassigned” group. But you can create any number of groups you need by clicking on
the “Add a new group” button.

The name and the description of a group can be changed by clicking on them. If you change the name of the “Unas-
signed” group, a new “Unassigned” group will be created the next time a new display comes to live.

As for displays, you can execute contextual actions on a group. There are three of them:

• for a reload of all the displays in the group,

• toggle the OSD of all the displays in the group,

• destroy the group.

The group can only be destroyed if no display is attached to it.

Each group has a list of dashboards. You can reorder them by using the up and down arrow icons on the right of each
dashboard. You can add a new dashboard by using the “Add a new dashboard” button.

You can also move or copy a dashboard from another group by using drag’n’drop. By default, a move operation is
issued. However, by using a modifier, you will copy the dashboard. Copying a dashboard from one group to the same
group will result in a duplicate.

Dashboards

When creating a dashboard or modifying an existing one (by clicking on the little pen icon), you will get the following
dialog box:

Currently, a dashboard has:

• an URL

• an optional description

• a timer to tell how much time the dashboard should be displayed

• a timer to tell how much time the dashboard should be delayed before displayed once ready

• a viewport size (see Viewport).

• some availability rules

The first timer (timeout) is optional but it doesn’t make sense to omit it if you have several dashboards in a group.
Without it, once the dashboard is displayed, the next one will never be displayed unless you remove or modify the
current one.

The second timer (delay) is useful for dashboards triggering the ready event while they are not really ready to be
displayed. This is common for dashboards grabbing stuff with Javascript. There is no easy way to tell when the
dashboard is really ready to be displayed. A workaround is to specify this delay. The receiver will wait for the given
amount of time before displaying the dashboard.

The time spent loading the dashboard and the additional specified delay are reducing the amount of time a dashboard
is displayed. If a dashboard takes 5 seconds to load and an additional delay of 5 seconds is requested, if it is specified
to be displayed for 30 seconds, it will in fact be displayed only during 20 seconds.

You can also modify the timer and the viewport by clicking on them directly in the list of dashboards in each group.

14 Chapter 4. Usage

Dashkiosk, Release 2.7.3

Figure 4.3: The dialog box to modify some random dashboard.

4.2. Administration 15

Dashkiosk, Release 2.7.3

It is possible to make some dashboards selected only when some time criteria are matched. The rules can be written
in plain English. Here are some examples:

• after 9:00 am and before 6:00 pm will only display the dashboard during the day

• except on saturday and sunday will not display the dashboard on Saturday nor on Sunday.

• after 9:00 am and before 6:00 pm except on saturday and sunday will only display
the dashboard during work hours.

• after 9:00 am and before 6:00 pm on monday through friday achieves the exact same
effect.

If one rule matches, the dashboard will be displayed. You need to ensure that there is at least one dashboard in each
group that can be displayed at anytime. For the complete grammar, have a look at the documentation of Later.js. Each
rule is prefixed by every 1 second.

The availability of a dashboard is only assessed when moving from one dashboard to another. If a dashboard becomes
unavailable while the timeout is not elapsed, no change will happen.

Display configuration

For Android displays, see Android application. For Chromecast devices, see Chromecast devices. For all other
displays, you need to point a web browser to the receiver URL (the one ending with /receiver).

If you want additional animations, you can use /receiver-fast instead. However, if your device is quite
slow (for example, a Raspberry Pi without hardware acceleration), you can disable most animations by using
/receiver-slow.

About the dashboards

The dashboards to be displayed can be any URL accessible by the displays. When a new dashboard has to be displayed
for a group, the server will broadcast the URL of the dashboard to each member of the group. They will load the
dashboard and display it. This may seem easy but there are several limitations to the system.

Network access

So, the first important thing about those dashboards is that they are fetched by the displays, not by the server. You
must therefore ensure that the dashboards are accessible by the displays and not protected by a password or something
like that.

Processing power

Some dashboards may be pretty dynamic and use special effects that look cool on the average PC. However, when
using a US$ 30 low-end Android stick to display it, it may become a bit laggy. Also, please note that the Android
application uses a modern webview but some functionalities may be missing, like WebGL.

Viewport

By default, a dashboard is displayed using the native resolution of the display. If the display is a 720p screen and your
dashboard can only be rendered correctly on a 1080p screen, you have a problem. There are several solutions to this
problem.

16 Chapter 4. Usage

https://bunkat.github.io/later/parsers.html#text

Dashkiosk, Release 2.7.3

1. Use a responsive dashboard that can adapt itself to any resolution.

2. Change the viewport of the display. By clicking on the display, you can specify a viewport. When empty, it
means that you use the viewport matching the native resolution of the screen. By specifying another resolution,
the display will render the dashboards at the given resolution and zoom in or out to fit it into its native resolution.

The support of this option depends on the ability of the browser running the receiver to exploit this information.
Android devices are able to make use of it but other devices may not. If you don’t see any effect when changing
the viewport, use the next option.

3. Change the viewport of the dashboard. This is quite similar to the previous option but it is a per-dashboard option
and it will work on any device. It works in the same way: the rendering will be done at the given resolution and
then resized to fit in the screen. Both options can be used at the same time, there is no conflict.

IFrames

Technically, the receiver is a simple app rendering the requested URL inside an IFrame which is like a browser inside
a browser. There are some limitations to an IFrame:

• The receiver has almost no way to communicate with the IFrame 3. It can know when an IFrame is ready but not
if there is an error. The IFrame can therefore be displayed while it is not fully rendered and on the other hand,
we cannot detect any error and try to reload the IFrame.

• The IFrame can refuse to be display its content if there is a special X-Frame-Options in the headers forbid-
ding the use of an IFrame.

• The content embedded inside the IFrame can be confused because it uses IFrame too and expects to be at the
top of the structure. Some Javascript code therefore tries to access to Dashkiosk window and gets an unexpected
error. This is the case with JIRA.

• If you are serving Dashkiosk from an HTTPS URL, you cannot display dashboards using HTTP. The other way
is authorized. Hence, it seems just easier to serve Dashkiosk receiver on HTTP.

The second limitation can be quite annoying. Here are some workarounds:

1. Find an embeddable version of the content. Youtube, Google Maps and many other sites propose a version
specifically designed to be embedded into an iframe.

2. Use a web proxy that will strip out the offending header. A good base for such a proxy is Node Unblocker.
It should be easy to modify it to remove the X-Frame-Options header. If you use nginx to reverse proxy
a service, you can use proxy_hide_header X-Frame-Options. If the application is using Ruby on
Rails, add set :protection, :except => :frame_options in config.ru.

3. Use a screenshot service. Instead of displaying the real website, just display a screenshot. There are many
solutions to implement such a service with headless browsers like Phantom.JS. For example this one.

Writing dashboards

Dashkiosk can only displays existing dashboards. Here is a list of services you can use to create them:

• Grafana <https://grafana.com/>, dashboards for time series

• hoplaJS <https://hoplajs.golflima.net/>, a web application running JS code stored in URLs

• Dashing <http://dashing.io/>, a dashboard framework (discontinued, see Smashing
<https://github.com/Smashing/smashing>)

3 If the iframe is in the same domain, it can communicate with the iframe. However, most of the time, this is not the case. The receiver can also
communicate with a cooperating iframe by sending messages. This is currently not implemented.

4.4. About the dashboards 17

https://jira.atlassian.com/browse/JRA-20988
https://github.com/nfriedly/node-unblocker
https://github.com/fzaninotto/screenshot-as-a-service

Dashkiosk, Release 2.7.3

18 Chapter 4. Usage

CHAPTER 5

API

There are three API available in Dashkiosk:

• a REST API to manipulate groups, dashboards and displays,

• the change API which is a Socket.IO based API which broadcasts changes to subscriber,

• the display API which is a Socket.IO based API which tells displays which URL they should display.

There is also an internal bus API.

REST API

The REST API is available on the /api endpoint. Only JSON is currently supported. On error, the HTTP error code
is important and the error message is also encapsulated into a JSON object:

{
"error": {

"httpCode": 404,
"message": "No display named \"CNDS0KD\".",
"name": "NotFoundError",
"stack": [

"NotFoundError: No display named \"CNDS0KD\".",
" at dashkiosk/lib/models/display.js:154:15",
" at process._tickDomainCallback (node.js:459:13)",
" at process._tickFromSpinner (node.js:390:15)",
"From previous event:",
" at new Promise (dashkiosk/node_modules/sequelize/node_modules/bluebird/js/main/promise.js:88:37)",
" at module.exports.CustomEventEmitter.then (dashkiosk/node_modules/sequelize/lib/emitters/custom-event-emitter.js:144:12)",
" at Function.Display.get (dashkiosk/lib/models/display.js:152:6)",
" at dashkiosk/lib/api/rest/displays.js:21:20",
" at callbacks (dashkiosk/node_modules/express/lib/router/index.js:164:37)",
" at param (dashkiosk/node_modules/express/lib/router/index.js:138:11)"

]
},
"message": "No display named \"CNDS0KD\".",
"token": "1397254337651-5YHK0SFJRC"

}

The error attribute is only present in development mode. It can also be found in the logs thanks to the token
attribute.

19

Dashkiosk, Release 2.7.3

Displays

GET /api/display
The list of all known displays.

Example request:

GET /api/display HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"3VZG6Y": {

"connected": false,
"description": null,
"group": 1,
"id": 2,
"ip": null,
"name": "3VZG6Y",
"viewport": null

},
"51VRJ7": {

"connected": false,
"description": "Chromium",
"group": 2,
"id": 7,
"ip": "127.0.0.1",
"name": "51VRJ7",
"viewport": null

}
}

Status Codes

• 200 – no error

PUT /api/display/(name)
Modify the attributes of the display name.

Example request:

PUT /api/display/CNDS0K HTTP/1.1
Accept: application/json

{ "viewport": "1920x1080" }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"connected": true,
"description": "Nexus 5 (localhost:9400)",
"group": 2,
"id": 5,

20 Chapter 5. API

Dashkiosk, Release 2.7.3

"ip": null,
"name": "CNDS0K",
"viewport": "1920x1080"

}

Parameters

• name – name of the display

JSON Parameters

• description – new description for the display

• viewport – new viewport for the display

Status Codes

• 200 – no error

• 404 – display not found

PUT /api/display/(name)/group/
int: id Attach the display name to the group id.

Example request:

PUT /api/display/CNDS0K/group/10 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"connected": false,
"description": "Nexus 5 (localhost:9400)",
"group": 10,
"id": 5,
"ip": null,
"name": "CNDS0K",
"viewport": "1920x1080"

}

Parameters

• name – name of the display

• id – ID of the group

Status Codes

• 200 – no error

• 404 – display or group not found

POST /api/display/(name)/action
Request an action on a display. Only if connected.

Example request:

5.1. REST API 21

Dashkiosk, Release 2.7.3

POST /api/display/CNDS0K/action HTTP/1.1
Accept: application/json

{ "action": "reload" }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"connected": true,
"description": "Nexus 5 (localhost:9400)",
"group": 10,
"id": 5,
"ip": null,
"name": "CNDS0K",
"viewport": "1920x1080"

}

Parameters

• name – name of the display

JSON Parameters

• action – requested action, either reload or osd

• text – for OSD only, text to display or null to remove the OSD

Status Codes

• 200 – no error

• 400 – unknown action

• 404 – display not found or offline

DELETE /api/display/(name)
Delete the display name. Only possible if the display is not connected anymore.

Example request:

DELETE /api/display/CNDS0K HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

Parameters

• name – name of the display

Status Codes

• 204 – no error

• 404 – display not found

• 409 – display still connected

22 Chapter 5. API

Dashkiosk, Release 2.7.3

Groups

GET /api/group
The list of all known groups.

Example request:

GET /api/group HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"1": {

"description": "Default group for unassigned displays",
"id": 1,
"name": "Unassigned"

},
"2": {

"description": "Dashboards with Game of Thrones stuff",
"id": 2,
"name": "Game of Thrones"

}
}

Status Codes

• 200 – no error

POST /api/group
Create a new group

Example request:

POST /api/group HTTP/1.1
Accept: application/json

{
"name": "New group"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 9,
"name": "New group"

}

JSON Parameters

• name – name of the group

• description – description of the group

Status Codes

5.1. REST API 23

Dashkiosk, Release 2.7.3

• 200 – no error

• 400 – a group should have a name

• 409 – a group with the same name already exists

PUT /api/group/(int: id)
Modify a group attributes.

Example request:

PUT /api/group/15 HTTP/1.1
Accept: application/json

{
"name": "Another name",
"description": "Fancy"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 9,
"name": "Another name",
"description": "Fancy"

}

JSON Parameters

• name – name of the group

• description – description of the group

Status Codes

• 200 – no error

• 409 – a group with the same name already exists

DELETE /api/group/(int: id)
Delete the group. Only possible if no display are attached.

Example request:

DELETE /api/group/15 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

Parameters

• id – ID of the group

Status Codes

• 204 – no error

24 Chapter 5. API

Dashkiosk, Release 2.7.3

• 404 – group not found

• 409 – group with displays

Dashboards

GET /api/group/(int: id)/dashboard
The list of all dashboards in a group

Example request:

GET /api/group/15/dashboard HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"active": false,
"description": "House Stark",
"group": 15,
"id": 2,
"timeout": 30,
"url": "http://www.gameofthronescountdown.com/#stark",
"viewport": null

},
{

"active": true,
"description": "House Tully",
"group": 15,
"id": 3,
"timeout": 30,
"url": "http://www.gameofthronescountdown.com/#tully",
"viewport": null

}
]

Parameters

• id – group ID

Status Codes

• 200 – no error

• 404 – the group doesn’t exist

POST /api/group/(int: id)/dashboard
Create a new dashboard

Example request:

POST /api/group/15/dashboard HTTP/1.1
Accept: application/json

{
"url": "http://www.example.com",

5.1. REST API 25

Dashkiosk, Release 2.7.3

"timeout": 30
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": false,
"group": 15,
"id": 6,
"timeout": 30,
"url": "http://www.example.com"

}

Parameters

• id – group ID

JSON Parameters

• url – URL of the dashboard

• description – description of the dashboard

• timeout – timer for this dashboard

• viewport – viewport for this dashboard

Status Codes

• 200 – no error

• 404 – group not found

• 409 – the URL is mandatory

PUT /api/group/(int: id)/dashboard/
int: dashid Modify an existing dashboard. The special attribute rank can be used to modify the position of the
dashboard in the group. The dashboards are numbered from 0 and the rank is the target position we want.

Example request:

POST /api/group/15/dashboard/6 HTTP/1.1
Accept: application/json

{
"timeout": 40

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": false,
"group": 15,
"id": 6,
"timeout": 40,

26 Chapter 5. API

Dashkiosk, Release 2.7.3

"url": "http://www.example.com"
}

Parameters

• id – group ID

• dashid – dashboard ID

JSON Parameters

• url – URL of the dashboard

• description – description of the dashboard

• timeout – timer for this dashboard

• viewport – viewport for this dashboard

• rank – New position for the dashboard

Status Codes

• 200 – no error

• 404 – dashboard or group not found

DELETE /api/group/(int: id)/dashboard
int: dashid Delete the dashboard.

Example request:

DELETE /api/group/15/dashboard/6 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

Parameters

• id – ID of the group

• dashid – ID of the dashboard

Status Codes

• 204 – no error

• 404 – group or dashboard not found

Changes API

The socket.IO endpoint for this API is changes. Upon connection, a client will get all the current groups. Each group
has a collection of displays in the displays attribute and an array of dashboards in the dashboards attribute. Here
is an example:

5.2. Changes API 27

Dashkiosk, Release 2.7.3

{
"1": {

"description": "Default group for unassigned displays",
"id": 1,
"name": "Unassigned",
"displays": {},
"dashboards": []

},
"2": {

"description": "Dashboards with Game of Thrones stuff",
"id": 2,
"name": "Game of Thrones"
"displays": {

"CNDS0K": {
"connected": true,
"description": "Nexus 5 (localhost:9400)",
"group": 10,
"id": 5,
"ip": null,
"name": "CNDS0K",
"viewport": "1920x1080"

}
}

"dashboards": [
{
"active": false,
"description": "House Stark",
"group": 2,
"id": 2,
"timeout": 30,
"url": "http://www.gameofthronescountdown.com/#stark",
"viewport": null

},
{
"active": true,
"description": "House Tully",
"group": 2,
"id": 3,
"timeout": 30,
"url": "http://www.gameofthronescountdown.com/#tully",
"viewport": null

}
]

}
}

This message will be labeled snapshot.

On changes, only the group or the display affected by the change will be sent. The label of the message will be one of:

• group.deleted

• group.updated

• group.created

And for displays:

• display.deleted

• display.updated (also for new displays)

28 Chapter 5. API

Dashkiosk, Release 2.7.3

If a change affects a dashboard, the whole group will be sent nonetheless.

Display API

This API is used by the display to know what they should do. The socket.IO endpoint to use for it is displays.

The server attributes to each new display a serial number. The display is expected to remember it and transmit it back
on the next connection. It is encrypted by the server to avoid the display to steal another display identity.

Upon connection, a display is expected to send a register message with an object containing the blob attribute
with the encrypted identity it previously received (if any).

If the server accepts the identity as is, it answers to this message with the same blob that should be stored by the client.
If not, it will generate a new blob and sends it back to the client. In both cases, the client just has to store the received
blob.

After this handshake, the display can receive the following messages:

dashboard The dashboard that should be displayed right now. It is an object containing the same
attributes as we would have got when requesting this particular dashboard with the REST API. See
Dashboards.

reload The display should reload itself.

osd The OSD should be shown or hidden. If the message comes with a text, the OSD is displayed with
the provided text. Otherwise, it is hidden.

viewport Modify the current viewport of the display with the provided value.

Internal bus message

To avoid strong coupling between components, Dashkiosk uses postal.js as an internal bus message. The messages
that are emitted are listed below:

• display.NAME.connected when a new display is connected

• display.NAME.disconnected when a new display is disconnected

• display.NAME.group when a display should change to a new group

• display.NAME.deleted when a display is deleted

• display.NAME.updated when another change happens on a display

• display.NAME.dashboard when a new dashboard should be displayed by the given display.

• display.NAME.reload when a display should reload itself

• display.NAME.osd when we need to display something on the OSD

• display.NAME.viewport when the display viewport should be updated

• group.ID.created when a new group is created

• group.ID.updated when a group is updated (but not something dashboard related)

• group.ID.deleted when a group is deleted

• group.ID.dashboard when a whole group should switch to a new dashboard

• group.ID.dashboard.ID.added when a new dashboard has been added

5.3. Display API 29

https://github.com/postaljs/postal.js/

Dashkiosk, Release 2.7.3

• group.ID.dashboard.ID.removed when a dashboard has been removed

• group.ID.dashboard.ID.updated when a dashboard has been updated

Each message comes with the group, the dashboard and/or the display specified in the message (when this is relevant).

30 Chapter 5. API

CHAPTER 6

Android application

This is a simple Android application whose purpose is to display fullscreen non-interactive dashboards on Android
devices. Its main use is to be run from an Android stick plug on some TV to run the web application to display
dashboards.

Supported devices

Currently, the minimal version of Android is 4.1 (Jelly Bean. Dashkiosk is using the Crosswalk project to provide an
up-to-date webview with support of recent technologies.

There are a lot of Android devices that you can choose to run Dashkiosk on. When choosing one, prefer the ones
which can be upgraded to Android 4.2.

Many cheap devices are using a Rockchip SoC limited to a 720p resolution. This can be circumvented with some non
official experimental firmwares but usually, this is a sufficient resolution to display dashboards.

The following devices 1 are known to work reasonably well:

• MK809III Mini PC (RK3188 SoC)

• T95N-Mini M8SPro (Amlogic s905X)

Features

• It registers as a possible home screen. It is therefore to run the application on boot.

• It provides a really fullscreen webview. Absolutely no space lost in bars.

• No possible interactions. If run on a tablet, the user is mostly locked out. However, there are still some way
to interact with the device while the application is running by invoking the settings and changing the home
application from here.

• Prevent the device going to sleep.

Compilation

If you don’t want to compile the Android app yourself, you can download a pre-compiled version from GitHub.

1 Please, open an issue if you want to contribute to this list.

31

https://crosswalk-project.org/
https://www.amazon.com/MK809III-Android-Mali-400-OpenGLES2-0-OpenVG1-1/dp/B00CZ7RBIU
https://www.fasttech.com/products/1110/10023228/5021800
https://github.com/vincentbernat/dashkiosk/releases/
https://github.com/vincentbernat/dashkiosk/issues/new

Dashkiosk, Release 2.7.3

Building from source is just a matter of following those two simple steps:

1. Clone the git repository.

2. Build the application with the following command:

./gradlew assemble

At the end of the compilation, you get build/outputs/apk/dashkiosk-android-debug.apk that should
be installed on the Android device.

Installation

You need the adb tool. On Debian and Ubuntu, you can install the android-tools-adb package to get it.
Otherwise, it is available in the platform-tools of the Android SDK. If you didn’t install the SDK yourself, it
should be in ~/.android-sdk. If adb is not present in the platform-tools directory, you can install it with:

tools/android update sdk --no-ui --all --filter platform-tool

You can then install the APK on a device attached through USB on your computer with the following command:

adb install -r build/outputs/apk/dashkiosk-android-debug.apk

Alternatively, you can just point a browser to the APK and you will get proposed to install it. You need to ensure that
you allowed the installation of APK from unknown sources.

The next step is to run the configuration panel. This panel can be accessed by using the back button while the loading
screen is running. It can be accessed later by clicking on the pen icon in the action bar.

Configuration

The orientation is configured to landscape by default. You can choose either auto or portrait.

If you want to lock a bit the application, you can lock settings to prevent any further modifications. You can still revert
the changes by invoking the preferences activity with adb:

adb shell am start -n \
com.deezer.android.dashkiosk/com.deezer.android.dashkiosk.DashboardPreferences

The important part is to input the receiver URL. You can check that this is the correct URL with any browser. You
should see a dashboard with some nice images cycling.

The timeout is not really important. Until the application is able to make contact with the receiver, it will try to reload
the receiver if the timeout is reached.

Alternatively, the configuration can be done at compile-time by modifying res/xml/preferences.xml.

Certificates

Server certificates

Unfortunately, it is currently not possible to trust third-party certificates. Trusted certificates are built into the app and
cannot be modified.

32 Chapter 6. Android application

https://github.com/vincentbernat/dashkiosk-android

Dashkiosk, Release 2.7.3

The only possibility is to accept untrusted certificates in the preferences. This makes TLS useless and you could just
use HTTP, except if you are interested in client certificates. In this case, blindly trusting the server certificate doesn’t
allow an attacker to use your client certificate for its own requests (client has to demonstrate its ability to sign a the
whole handshake with its certificate, including the “server certificate” message).

Client certificates

It is possible to use client certificates. The support is still quite new and may be troublesome to implement. Be sure to
use adb logcat -s DashKiosk AndroidRuntime while running to spot any error.

Creating a keystore

Currently, you can only provide one client certificate and it will be used with any site requesting a client certificate.
The certificate needs to be provided as a BKS (BouncyCastle KeyStore). You can either use keytool or Portecle,
a graphical tool to manage such a store. You can find a cheatsheet to use keytool. If you already have your client
certificate as a PKCS#12 file, you only need to use keytool -importkeystore:

keytool -importkeystore \
-destkeystore clientstore.bks \
-deststoretype BKS \
-provider org.bouncycastle.jce.provider.BouncyCastleProvider \
-providerpath /usr/share/java/bcprov.jar \
-srckeystore client.p12 \
-srcstoretype PKCS12

You will be prompted the password to protect the newly created keystore and the password protecting the PKCS#12
file. Ensure you use the same password for both: keytool seems to protect the private key with the password from
the PKCS#12 file while Dashkiosk will use the same password for the private key and for the keystore.

On Debian, bcprov.jar is from the libbcprov-java package. Be sure to only put one keypair in the store.
Dashkiosk wil always use the first one.

If you have your certificates in PEM format, you can convert them in PKCS#12 with the following command:

openssl pkcs12 -export -out client.p12 \
-in cert.pem \
-inkey key.pem \
-certfile ca.pem

You can import several certificates in the keystore.

Providing the keystore to the application

There are two ways to provide a client certificate to the application. The first one is to put the certificate on the
filesystem. For example, in /sdcard/dashkiosk.bks. Then, in the preferences, ensure to untick Embedded
keystore and tick External keystore, then specify the path to the keystore in Keystore path. The second one is to embed
the client certificate directly into the application. Replace the file res/raw/clientstore.bks by your own and
recompile the application. In the preferences, ensure you tick Embedded keystore. In both cases, you also need to
provide the password protecting the keystore.

Grant permissions to read the keystore

Starting from Android 6, you also have to grant Dashkiosk the permission to access the keystore if you use the external
one. This can be done in Android Settings. Go to Applications, click on Dashkiosk. You should see a Permissions tab.

6.6. Certificates 33

http://portecle.sourceforge.net/
https://github.com/vincentbernat/dashkiosk-android/blob/master/certificates/generate

Dashkiosk, Release 2.7.3

The only item in this tab should be Storage. Enable it.

Usage

Once configured, just run the application as usual. You can also click on the home button and choose the application
from here to make it starts on boot.

Troubleshooting

Still with adb, you can see the log generated by the application with the following command:

adb logcat -s DashKiosk AndroidRuntime

The log also includes Javascript errors that can be generated by the dashboards. Javascript errors from the receiver are
prefixed with [Dashkiosk].

34 Chapter 6. Android application

CHAPTER 7

Chromecast devices

Dashkiosk can optionnaly handle Chromecast devices. When the support is enabled (see Available options), Dashkiosk
will be able to discover Chromecast devices on the network.

Warning

Due to the closedness of the Chromecast platform, its support in Dashkiosk may break from time to time. As soon as
it doesn’t work anymore, feel free to signal it in an issue. If needed, it is possible to help debugging by registering a
Chromecast device on the same account hosting the custom receiver.

However, there is no guarantee that the issue is easy to fix and it may take some time. Therefore, you must be prepared
for the dashboards to break at any time without prior warnings (the Chromecast are updating themselves without user
consent).

Setup

To be able to handle Chromecast devices, you need to enable its support (see Available options). You also need to
ensure that mDNS is working correctly on your setup.

When starting Dashkiosk, you may get this error message:

*** WARNING *** The program ’nodejs’ called ’DNSServiceRegister()’ which is not supported (or only supported partially) in the Apple Bonjour compatibility layer of Avahi.

*** WARNING *** Please fix your application to use the native API of Avahi!

This is perfectly harmless.

For Linux, use the following command to check that you can see The Chromecast devices:

$ avahi-browse _googlecast._tcp
+ eth0.20 IPv4 Chromecast Here _googlecast._tcp local
+ eth0.20 IPv4 Chromecast Demo _googlecast._tcp local

If this first step doesn’t work, check you have Avahi installed and running. Usually, this can be done with apt-get
install avahi-daemon. Then, check you don’t have any firewall preventing multicast traffic to port 5353.

Please note that you need to be on the same network as the Chromecast devices 1.

Then, check that you can resolve the Chromecast names:

1 The mDNS packets are usually using a TTL of 1 and therefore cannot be routed even if you try to setup multicast routing on your network.
The correct solution is to configure a DNS-SD name server.

35

https://github.com/vincentbernat/dashkiosk/issues/new
http://www.dns-sd.org/ServerSetup.html

Dashkiosk, Release 2.7.3

$ getent hosts "Chromecast\032Here".local
192.168.0.195 Chromecast\032Here.local

If this doesn’t work, you need to configure your resolver to use multicast DNS. This is usually done by putting the
following line in /etc/nsswitch.conf:

hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4

On OS X, you can check if you can see the Chromecast devices with dns-sd -B _googlecast._tcp, then try
to resolve with dns-sd -G v4 "Chromecast\032Here".local.

Usage

Discovered Chromecast devices will be assigned to the special group “Chromecast devices”. This group has no
dashboard on purpose: if a Chromecast device is on a group with a dashboard, Dashkiosk will wait for the Chromecast
device to be on the home screen and starts a custom receiver which will load the regular receiver and turn your
Chromecast device into a regular display.

You can either add dashboards to the “Chromecast devices” group to let all Chromecast devices display a dashboard
on inactivity or move the selected Chromecast devices to another group.

Custom receiver

To display dashboards, a Chromecast device is requested to run a custom receiver, which is just some HTML5 applica-
tion. Unfortunately, we cannot just provide an URL for that, we have to give an application ID. The Chromecast device
will ask Google which URL to use and Google will provide the URL. By default, Dashkiosk will use an application
hosted on some GitHub URL. This should work just fine.

If you want to use your own custom receiver (or modify the existing one), you need to declare a new application (and
pay US$ 5). That’s a bit unfortunate. Maybe we could do an application that will just forward to another application.

Troubleshooting

Let me explain how the whole thing works.

1. Dashkiosk detects the Chromecast device using multicast DNS. If it doesn’t see yours, you need to check that
multicast is correctly working on your network.

2. If the Chromecast is in a group with dashboards, Dashkiosk then asks to load the custom receiver using its ap-
plication ID (5E7A2C2C). The Chromecast will then ask Google which URL it should load for this application
ID. Google will send back the GitHub URL hosting the custom receiver. The Chromecast will load it. You
should get a screen “This, Jen, is the Internet”.

3. Dashkiosk will send the receiver URL, as you configured it in the Available options (or with
--chromecast.receiver). Once the custom receiver gets this URL, it displays it in the lower left part of
the screen. If it isn’t displayed, it is likely to be a bug in Dashkiosk. Have a look in the logs and open an issue.

4. The custom receiver will then load the regular receiver. If you don’t get to this step and are stuck on the “This,
Jen, is the Internet” screen, it means that your Chromecast is not able to retrieve the receiver you provided. It
could be a firewall issue or a DNS issue. Try to connect your laptop on the same network as the Chromecast and
load the receiver URL yourself to see what is happening.

36 Chapter 7. Chromecast devices

https://vincentbernat.github.io/dashkiosk/chromecast.html
https://vincentbernat.github.io/dashkiosk/chromecast.html
https://github.com/vincentbernat/dashkiosk/issues/new

Dashkiosk, Release 2.7.3

Troubleshooting is quite complex. Due to a recent change, users are only allowed to debug their own application. You
need to register your Chromecast and register and host a copy of the Chromecast receiver. You’ll get an ID for the
Chromecast application and should use --chromecast.app to specify it.

Once the application is running, you can connect to your Chromecast device using its IP on port 9222. The Chrome-
cast needs to be running the custom receiver. With recent versions of Chrome, you are likely to get mixed content
restrictions. Click on the shield in the URL bar to lift this restriction.

Also, the Chromecast is a low-end device (but quite capable): it may have difficulties to display complex dashboards.
You may want to try to load the dashboard alone using a simple sender. If the dashboard is unable to render correctly
even with this sender, try to reduce its complexity. Moreover, during transitions, the Chromecast has to be able to
display the current dashboard while the next one is rendered in the background. This may use too much resources. Try
to not load two consecutive complex dashboards.

7.5. Troubleshooting 37

https://cast.google.com/publish/#/overview
https://boombatower.github.io/chromecast-dashboard/sender/

Dashkiosk, Release 2.7.3

38 Chapter 7. Chromecast devices

CHAPTER 8

Cloud install

You can run Dashkiosk on a PaaS like Heroku or Dokku. The Chromecast support is unlikely to work in this case but
the remaining functionalities should work without any problem. The following documentation is done using Heroku.
The process should be quite similar with another provider.

We assume that you already have an account registered on Heroku. It comes with a free tier which should be sufficient
to test Dashkiosk.

Deployment tool installation

The first step is to install the deployment tool. For Heroku, follow the install documentation.

Create the application

The next step is to create the Dashkiosk application. For that purpose, a modified buildpack needs to be used as
Dashkiosk is using grunt to be built:

$ git clone https://github.com/vincentbernat/dashkiosk.git
$ cd dashkiosk
$ heroku create
$ heroku config:set NPM_CONFIG_PRODUCTION=false

You can then push the application:

$ git push heroku master

If you want a custom branding, you have to use the following command:

$ heroku config:set branding=exoscale

Configure a database

By default, Dashkiosk will use an SQLite database. However, with a PaaS, this means that the database will be lost at
each deployment. It is therefore more convenient to use a MySQL database:

39

https://www.heroku.com/
https://github.com/progrium/dokku
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-command-line#download-and-install

Dashkiosk, Release 2.7.3

$ heroku addons:create heroku-postgresql:hobby-dev
$ heroku pg:wait
$ heroku config -s | grep HEROKU_POSTGRESQL
HEROKU_POSTGRESQL_RED_URL=postgres://user3123:passkja83kd8@ec2-117-21-174-214.compute-1.amazonaws.com:6212/db982398

The settings are available through environment variables. Unfortunately, Dashkiosk won’t use them. It is also possible
to put them into a credential file but Dashkiosk won’t know how to use them either.

The easiest way is to arrange for those settings to be available as environment variables under the right name:

$ heroku config:set db__options__dialect=postgres
$ heroku config:set db__options__host=ec2-117-21-174-214.compute-1.amazonaws.com
$ heroku config:set db__options__port=6212
$ heroku config:set db__database=db982398
$ heroku config:set db__username=user3123
$ heroku config:set db__password=passkja83kd8

Deploy the application

The application can now be deployed:

$ git push heroku master

If you get a problem, use the log subcommand:

$ heroku logs --tail

Upgrading

Upgrading is just a matter of pulling new changes and pushing them to the PaaS:

$ git pull
$ git push heroku master

40 Chapter 8. Cloud install

CHAPTER 9

License

Dashkiosk is distributed under the ISC license. It basically means: do whatever you want with it as long as the
copyright sticks around, the conditions are not modified and the disclaimer is present.

ISC License

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-
TION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Branded images

As an exception, branded images are free to redistribute but cannot be modified except when the brand logo is com-
pletely removed. Branded images are all images prefixed by app/images/stamp- or app/images/loading-,
except app/images/stamp-default.svg and app/images/loading-default.svg.

41

Dashkiosk, Release 2.7.3

42 Chapter 9. License

CHAPTER 10

Indices and tables

• genindex

• search

43

Dashkiosk, Release 2.7.3

44 Chapter 10. Indices and tables

HTTP Routing Table

/api
GET /api/display, 20
PUT /api/display/(name), 20
DELETE /api/display/(name), 22
POST /api/display/(name)/action, 21
PUT /api/display/(name)/group/(int:id),

21
GET /api/group, 23
POST /api/group, 23
PUT /api/group/(int:id), 24
DELETE /api/group/(int:id), 24
GET /api/group/(int:id)/dashboard, 25
POST /api/group/(int:id)/dashboard, 25
DELETE /api/group/(int:id)/dashboard(int:dashid),

27
PUT /api/group/(int:id)/dashboard/(int:dashid),

26

45

	Installation
	Server and receiver
	Database
	Unassigned dashboard

	Upgrade
	Configuration
	Available options
	Branding
	Command-line or configuration file
	Environment variables
	JSON configuration file
	Reverse proxy

	Usage
	Running the server
	Administration
	Display configuration
	About the dashboards

	API
	REST API
	Changes API
	Display API
	Internal bus message

	Android application
	Supported devices
	Features
	Compilation
	Installation
	Configuration
	Certificates
	Usage
	Troubleshooting

	Chromecast devices
	Warning
	Setup
	Usage
	Custom receiver
	Troubleshooting

	Cloud install
	Deployment tool installation
	Create the application
	Configure a database
	Deploy the application
	Upgrading

	License
	ISC License
	Branded images

	Indices and tables
	HTTP Routing Table

