
daisy Documentation
Release 0.1.0

Joe Jevnik

January 22, 2017

Contents

1 What is daisy? 3

2 Example 5
2.1 Why is this faster? . 6
2.2 More shared work . 6

3 Contents 9
3.1 API Reference . 9

4 Indices and tables 15

i

ii

daisy Documentation, Release 0.1.0

dask + lazy = daisy

A dask backend for lazy

Contents 1

http://dask.readthedocs.io/en/latest/
https://github.com/llllllllll/lazy_python

daisy Documentation, Release 0.1.0

2 Contents

CHAPTER 1

What is daisy?

daisy is an experiment to finally use lazy for something useful. daisy is meant to be an alternative to
dask.delayed() for automatically creating computation graphs from functions.

3

https://github.com/llllllllll/lazy_python

daisy Documentation, Release 0.1.0

4 Chapter 1. What is daisy?

CHAPTER 2

Example

Given the following setup:

from daisy import autodask, inline, register_get
from dask import delayed
from dask.threaded import get
from lazy import strict
import numpy as np

@inline
def f(a, b):

return a + b

def g(a, b):
return f(f(a, b), f(a, b))

autodask_g = autodask(g, inline=True)
delayed_g = delayed(g)

register_get(get)

arr = np.arange(1000000)

To start, let’s make sure these all do the same thing:

>>> (g(arr, arr) == delayed_g(arr, arr).compute()).all()
True

>>> (g(arr, arr) == autodask_g(arr, arr)).all()
True

Now we will run some not very scientific profiling runs:

In [1]: %timeit g(arr, arr)
100 loops, best of 3: 9.34 ms per loop

In [2]: %timeit delayed_g(arr, arr).compute()
100 loops, best of 3: 10.2 ms per loop

In [3]: %timeit strict(autodask_g(arr, arr))
100 loops, best of 3: 3.63 ms per loop

5

daisy Documentation, Release 0.1.0

2.1 Why is this faster?

This is a very good case for autodask because we can dramatically reduce the amount of work we are doing. In
the normal function and dask.delayed cases we will fall f(a, b) twice, and then add those together. In the
autodask case will will just directly execute a + b once, and then add that to itself. We have totally removed f
from the graph, and instead just use + directly.

We have used a very large input here to see a speedup. One goal I have is to reduce the overhead to make this work
for smaller inputs and smaller expressions. I would like to try this with real workloads to see if the amount of reduced
work causes as dramatic of speedups.

2.2 More shared work

Let’s look at a more radical example:

from daisy import inline, autodask, ltree_to_dask
from lazy.tree import LTree

@inline
def f(a, b):

return a + b

@inline
def g(a, b):

return a + b + 1

def h(a, b):
return f(a, b) + g(a, b)

In [1]: (h(arr, arr) == autodask_h(arr, arr)).all()
Out[1]: True

In [2]: %timeit h(arr, arr)
100 loops, best of 3: 9.02 ms per loop

In [3]: %timeit strict(autodask_h(arr, arr))
100 loops, best of 3: 5.9 ms per loop

The reason this is faster is that we can actually share the work of computing a + b even though they are in totally
separate functions!

In [4]: from lazy.tree import LTree

In [5]: from daisy import ltree_to_dask

In [6]: ltree_to_dask(LTree.parse(autodask_h(arr, arr)))[0]
Out[6]:
{'4876ef4b-832a-4058-94f7-29a6fb998ea6': <wrapped-function add>,
'5a2bee49-2a31-4e01-887f-bfaef7ebb27a': 1,
'add-39c81b36-ad91-4c2e-93c7-2a74d485fd7b': (<function dask.compatibility.apply>,
'4876ef4b-832a-4058-94f7-29a6fb998ea6',
['add-d581fba1-d73f-42db-8e41-9bff1c803941',
'add-54f2153f-4cbe-4dfc-babe-cbde4c7d66c1'],
(dict, [])),

'add-54f2153f-4cbe-4dfc-babe-cbde4c7d66c1': (<function dask.compatibility.apply>,
'4876ef4b-832a-4058-94f7-29a6fb998ea6',

6 Chapter 2. Example

daisy Documentation, Release 0.1.0

['add-d581fba1-d73f-42db-8e41-9bff1c803941',
'5a2bee49-2a31-4e01-887f-bfaef7ebb27a'],
(dict, [])),

'add-d581fba1-d73f-42db-8e41-9bff1c803941': (<function dask.compatibility.apply>,
'4876ef4b-832a-4058-94f7-29a6fb998ea6',
['f174fab9-9eb1-4448-991c-5437bd2d709e',
'f174fab9-9eb1-4448-991c-5437bd2d709e'],
(dict, [])),

'f174fab9-9eb1-4448-991c-5437bd2d709e': array([0, 1, 2, ..., 999997, 999998, 999999])}

The key point here is that we only ever have a + b once in this graph.

2.2. More shared work 7

daisy Documentation, Release 0.1.0

8 Chapter 2. Example

CHAPTER 3

Contents

3.1 API Reference

3.1.1 Main

daisy.autodask(func, *, inline)
Mark that a function should lazily build up a call graph to be executed by dask.

Parameters

• func (callable) – The function to transform.

• inline (bool) – Should the function be inlined into other autodask functions? This
should normally be True unless the function is strict on the argument.

Returns transformed – func with the transformations needed to build the call graph.

Return type callable

Notes

autodask transforms a function to build up a call graph which can be executed by dask. This is very similar
to dask.delayed() which provides an imperitive API to dask.

Functional purity

autodask may only be applied to functions which a pure functions of their inputs. This means that a function
must always be safe to memoize.

There is no guarantee about the execution order of autodask defered code. Repeated calls to a function with
the same arguments may only be computed a single time.

Note: Things to be on the look out for when checking if a function is pure:

•IO

•Mutating structures

•Reading or writing to shared state (please stop this)

•Randomness

9

https://docs.python.org/library/functions.html#callable
https://docs.python.org/library/functions.html#bool
https://docs.python.org/library/functions.html#callable

daisy Documentation, Release 0.1.0

IO may be okay if you are alright with only executing the call once and in an undefined order. You may force
the partial order of execution by explicitly passing the results of one IO call into the other calls that must follow
it.

Building up our task graph

Unlike dask.delayed(), autodask is lazy by default. This means that f(a, b) will automatically turn
into a dask task graph like:

{'name': (f, a, b)}

Note: f, a and, b may also be deferred computations themselves.

Dask will perform best if we can encode more information into the task graph before feeding it to dask. To
do this, we can pass inline=True to autodask before decorating. If a function is inlineable then instead
of defering the computation, we will enter the code and add the body of that function to the dask graph. For
example, imagine we have defined f like:

@autodask(inline=True)
def f(a, b):

return a + b + 1

When calling this function we know that it is safe to replace the task (f, a, b) with the task graph:

{'name_1': (add, a, b),
'result': (add, 'name_1', 1)}

This will give dask more information to optimize the expression. We can also use this to collapse shared work.
For example, imagine we have

@autodask(inline=True)
def g(a, b):

return f(a, b) + f(a, b)

Because f is inlineable, we will enter the code and see what it adds to the graph. Because we are doing the same
work twice, we can reduce it to a more simple task graph that will look more like:

{'name_1': (add, a, b),
'f_result': (add, 'name_1', 1),
'result': (add, 'f_result', 'f_result')}

This shows that we will not duplicate the work needed to add compute f(a, b) twice.

When it is unsafe to pass inline=True

There is no default for inline because it is a very important decision! On the one hand, we almost always
want to pass inline=True; however, there are cases when inlining is not possible, and attempting to do so
will give much worse performance.

Functions cannot be inlined into the graph if they are strict on their inputs. This means that to return a final
defered computation they must scrutinize at least one of the inputs and normalize it to a concrete value.

There are many operations which will force computation, here are some common cases:

Branching on the input

def f(x):
if p(x):

return x + 1

10 Chapter 3. Contents

daisy Documentation, Release 0.1.0

else:
return x - 1

Iterating over the input with a for loop

def f(xs):
total = 0
for x in xs:

total += 0
return total

Explicitly strictly evaluating an input

def f(x):
return strict(x)

Differences with dask.delayed

Lazy by default vs eager by default

While both autodask and dask.delayed() serve the same purpose, they go about it in different ways.
dask.delayed() is strict by default. This means that by default, most functions will be entered im-
mediatly instead of creating a task. This can be bad if the function does not know how to work with
the dask.delayed.Delayed object or is strict on an input. Here is an example of a function in the
dask.delayed() API:

@dask.delayed
def f(a, b):

lazy call: this will create a node like ``(f, a, b)`` in the
resulting task graph
c = delayed(g)(a, b)

strict call: this will enter the code ``h`` immediatly and add the
body to the graph. This may not be safe!
return h(c, b)

autodask takes a different approach and is lazy by default. This means that by default function calls just
create a new task for the graph and are not executed eagerly. Here is the same function in the autodask API:

@autodask
def f(a, b):

lazy call: this will create a node like ``(f, a, b)`` in the
resulting task graph **unless ``g`` is an inline function**!
c = g(a, b)

strict call: this will enter the code ``h`` immediatly and add the
body to the graph. This may not be safe!
return inline(h)(c, b)

One advantage of the autodask approach is that that the potentially unsafe operation is called out explicitly,
while we choose a more conservative graph construction strategy by default. We also allow functions to opt-in
to inlining if they know it is safe to do so.

Magic

autodask uses much darker magic than dask.delayed(). This is nice because it allows us to do things
like translate:

@autodask(inline=True)
def f(a, b):

return a is b

3.1. API Reference 11

daisy Documentation, Release 0.1.0

into a dask graph like:

{'result': (operator.is_, a, b)}

We can also defer things like comprehensions and even literal construction.

Warning: The magic required for autodask may be too much for people. It will not be easy to debug!
dask.delayed() is a much more reasonable solution for most cases. You have been warned.

See also:

daisy.inline(), lazy.strict(), dask.delayed()

class daisy.inline(func)
A box that denotes that a function should be inlined in autodask.

Parameters func (callable) – The function to wrap.

Notes

inline can allow non-autodask functions to be inlined into the task graph. This is nice if you know that a
function is a pure computation of its inputs and does not need to scrutinize an input to return a final computation.

Functions cannot be inlined into the graph if they are strict on their inputs. This means that to return a final
defered computation they must scrutinize at least one of the inputs and normalize it to a concrete value.

There are many operations which will force computation, here are some common cases:

Branching on the input

def f(x):
if p(x):

return x + 1
else:

return x - 1

Iterating over the input with a for loop

def f(xs):
total = 0
for x in xs:

total += 0
return total

Explicitly strictly evaluating an input

def f(x):
return strict(x)

See also:

daisy.autodask()

daisy.register_get(get)
Register the get function which will be used to evaluate autodaskthunk generated dask graphs.

By default, dask.get() will be used.

Parameters get (callable[dict, str, any]) – The get function.

Returns get – The get function unchanged.

12 Chapter 3. Contents

https://docs.python.org/library/functions.html#callable

daisy Documentation, Release 0.1.0

Return type callable[dict, str, any]

3.1.2 Miscellaneous

class daisy.autodaskthunk
A thunk which is evaluated with dask.

Parameters

• func (callable) – The code for the closure.

• *args – The free variables.

• **kwargs – The free variables.

daisy.ltree_to_dask(node)
Convert an lazy.tree.LTree into a dask task graph.

Parameters node (LTree) – The node to convert into a dask graph.

Returns dask – The equivalent dask task graph.

Return type dict[str, any]

Notes

This function does common subexpression folding to produce a minimal graph.

3.1. API Reference 13

https://docs.python.org/library/functions.html#callable

daisy Documentation, Release 0.1.0

14 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

daisy Documentation, Release 0.1.0

16 Chapter 4. Indices and tables

Index

A
autodask() (in module daisy), 9
autodaskthunk (class in daisy), 13

I
inline (class in daisy), 12

L
ltree_to_dask() (in module daisy), 13

R
register_get() (in module daisy), 12

17

	What is daisy?
	Example
	Why is this faster?
	More shared work

	Contents
	API Reference

	Indices and tables

