
Daffodil
Release 1.0

June 26, 2016

Contents

1 About 3
1.1 Goals . 3
1.2 License . 3

2 API Reference 5
2.1 daffodil . 5

i

ii

Daffodil, Release 1.0

Daffodil is a D image processing Library, inspired by Pillow (The Python Imaging Library)

Contents 1

https://python-pillow.github.io/

Daffodil, Release 1.0

2 Contents

CHAPTER 1

About

1.1 Goals

• Simple, Extensible API

• Controllable internals with suitable defaults

• Wide format support with extensive testing

• High performance

• Support a variety of filters and transformations

• Thread Safety (pending)

1.2 License

Daffodil is licensed under the open source MIT license:

The MIT License (MIT)

Copyright (c) 2015 Cameron Lonsdale, Benjamin Schaaf

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

3

Daffodil, Release 1.0

4 Chapter 1. About

CHAPTER 2

API Reference

2.1 daffodil

The daffodil module provides the public interface for Daffodil.

2.1.1 color

module daffodil.color

2.1.2 image

The daffodil.image module exposes the Image class, which provides basic storage, access and conversion of
images.

module daffodil.image

2.1.3 meta

The daffodil.meta module exposes the MetaData class.

module daffodil.meta

2.1.4 filter

The daffodil.filter module provides various filter functions that can be performed on images. filter functions
differ from transformations (daffodil.transform) in that they cannot be performed in-place, ie. a copy of the
image is required to perform the filter.

convolve

module daffodil.filter.convolve

5

Daffodil, Release 1.0

gaussian

A gaussian filter (aka gaussian blur) is a convolution (daffodil.filter.convolve) using a matrix created from
a gaussian distribution.

real gaussianDistribution(real x, real stDev = 1, real mean = 0)
Evaluate the gaussian/normal distribution for a given x, stDev and mean.

real[] gaussianMatrix(real stDev = 1, real maxDev = 3)
Create a 1D matrix of a discrete gaussian distribution with a given standard deviation and the number of standard
deviations to stop generating at. The result is mirrored with guaranteed odd length.

The result can be used to convolve a image.

auto gaussianBlurred(string axis = "xy", size_t bpc)(const Image!bpc image, real stDev = 1, real maxDev = 3)
Return a copy of image with a gaussian blur applied across axies axis with a given standard deviation and
the number of standard deviations to stop at.

module daffodil.filter.gaussian

module daffodil.filter

2.1.5 transform

The daffodil.transform module provides various transformation functions that can be performed on images.
Transform functions differ from filters (daffodil.filter) in that they can be performed in-place.

flip

void flip(string axis, size_t bpc)(Image!bpc image)
Flip image along axis in-place. axis may contain x, y or both.

Example:

auto image = load!8("daffodil.bmp");
image.flip!"x"(); // Flip the image horizontally
image.flip!"y"(); // Flip the image vertically

Image!bpc flipped(string axis, size_t bpc)(const Image!bpc image)
Same as flip but performs the operation on a copy of image. Allows for stringing operations together.

Example:

auto image = load!8("daffodil.bmp");

// Flip along each axis individually, making a copy each time.
auto flipped = image.flipped!"x".flipped!"y";

module daffodil.transform.flip

module daffodil.transform

module daffodil

6 Chapter 2. API Reference

	About
	Goals
	License

	API Reference
	daffodil

