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CHAPTER 1

Calling C functions

This tutorial describes shortly what you need to know in order to call C library functions from Cython code. For
a longer and more comprehensive tutorial about using external C libraries, wrapping them and handling errors, see
Using C libraries.

For simplicity, let’s start with a function from the standard C library. This does not add any dependencies to your code,
and it has the additional advantage that Cython already defines many such functions for you. So you can just cimport
and use them.

For example, let’s say you need a low-level way to parse a number from a char* value. You could use the atoi()
function, as defined by the stdlib.h header file. This can be done as follows:

from libc.stdlib cimport atoi

cdef parse_charptr_to_py_int(char* s):
assert s is not NULL, "byte string value is NULL"
return atoi(s) # note: atoi() has no error detection!

You can find a complete list of these standard cimport files in Cython’s source package Cython/Includes/. It also
has a complete set of declarations for CPython’s C-API. For example, to test at C compilation time which CPython
version your code is being compiled with, you can do this:

from cpython.version cimport PY_VERSION_HEX

print PY_VERSION_HEX >= 0x030200F0 # Python version >= 3.2 final

Cython also provides declarations for the C math library:

from libc.math cimport sin

cdef double f(double x):
return sin(x*x)

However, this is a library that is not linked by default on some Unix-like systems, such as Linux. In addition to
cimporting the declarations, you must configure your build system to link against the shared library m. For distutils, it
is enough to add it to the libraries parameter of the Extension() setup:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules=[
Extension("demo",

["demo.pyx"],
libraries=["m"]) # Unix-like specific
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]

setup(
name = "Demos",
cmdclass = {"build_ext": build_ext},
ext_modules = ext_modules

)

If you want to access C code for which Cython does not provide a ready to use declaration, you must declare them
yourself. For example, the above sin() function is defined as follows:

cdef extern from "math.h":
double sin(double)

This declares the sin() function in a way that makes it available to Cython code and instructs Cython to generate C
code that includes the math.h header file. The C compiler will see the original declaration in math.h at compile
time, but Cython does not parse “math.h” and requires a separate definition.

Just like the sin() function from the math library, it is possible to declare and call into any C library as long as the
module that Cython generates is properly linked against the shared or static library.

2 Chapter 1. Calling C functions



CHAPTER 2

Using C libraries

Apart from writing fast code, one of the main use cases of Cython is to call external C libraries from Python code. As
Cython code compiles down to C code itself, it is actually trivial to call C functions directly in the code. The following
gives a complete example for using (and wrapping) an external C library in Cython code, including appropriate error
handling and considerations about designing a suitable API for Python and Cython code.

Imagine you need an efficient way to store integer values in a FIFO queue. Since memory really matters, and the
values are actually coming from C code, you cannot afford to create and store Python int objects in a list or deque.
So you look out for a queue implementation in C.

After some web search, you find the C-algorithms library [CAlg] and decide to use its double ended queue implemen-
tation. To make the handling easier, however, you decide to wrap it in a Python extension type that can encapsulate all
memory management.

The C API of the queue implementation, which is defined in the header file libcalg/queue.h, essentially looks
like this:

/* file: queue.h */

typedef struct _Queue Queue;
typedef void *QueueValue;

Queue *queue_new(void);
void queue_free(Queue *queue);

int queue_push_head(Queue *queue, QueueValue data);
QueueValue queue_pop_head(Queue *queue);
QueueValue queue_peek_head(Queue *queue);

int queue_push_tail(Queue *queue, QueueValue data);
QueueValue queue_pop_tail(Queue *queue);
QueueValue queue_peek_tail(Queue *queue);

int queue_is_empty(Queue *queue);

To get started, the first step is to redefine the C API in a .pxd file, say, cqueue.pxd:

# file: cqueue.pxd

cdef extern from "libcalg/queue.h":
ctypedef struct Queue:

pass
ctypedef void* QueueValue

Queue* queue_new()

3
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void queue_free(Queue* queue)

int queue_push_head(Queue* queue, QueueValue data)
QueueValue queue_pop_head(Queue* queue)
QueueValue queue_peek_head(Queue* queue)

int queue_push_tail(Queue* queue, QueueValue data)
QueueValue queue_pop_tail(Queue* queue)
QueueValue queue_peek_tail(Queue* queue)

bint queue_is_empty(Queue* queue)

Note how these declarations are almost identical to the header file declarations, so you can often just copy them
over. However, you do not need to provide all declarations as above, just those that you use in your code or in other
declarations, so that Cython gets to see a sufficient and consistent subset of them. Then, consider adapting them
somewhat to make them more comfortable to work with in Cython.

One noteworthy difference to the header file that we use above is the declaration of the Queue struct in the first line.
Queue is in this case used as an opaque handle; only the library that is called knows what is really inside. Since no
Cython code needs to know the contents of the struct, we do not need to declare its contents, so we simply provide an
empty definition (as we do not want to declare the _Queue type which is referenced in the C header) 1.

Another exception is the last line. The integer return value of the queue_is_empty() function is actually a C
boolean value, i.e. the only interesting thing about it is whether it is non-zero or zero, indicating if the queue is empty
or not. This is best expressed by Cython’s bint type, which is a normal int type when used in C but maps to
Python’s boolean values True and False when converted to a Python object. This way of tightening declarations in
a .pxd file can often simplify the code that uses them.

It is good practice to define one .pxd file for each library that you use, and sometimes even for each header file (or
functional group) if the API is large. That simplifies their reuse in other projects. Sometimes, you may need to use
C functions from the standard C library, or want to call C-API functions from CPython directly. For common needs
like this, Cython ships with a set of standard .pxd files that provide these declarations in a readily usable way that is
adapted to their use in Cython. The main packages are cpython, libc and libcpp. The NumPy library also has a
standard .pxd file numpy, as it is often used in Cython code. See Cython’s Cython/Includes/ source package
for a complete list of provided .pxd files.

After declaring our C library’s API, we can start to design the Queue class that should wrap the C queue. It will live
in a file called queue.pyx. 2

Here is a first start for the Queue class:

# file: queue.pyx

cimport cqueue

cdef class Queue:
cdef cqueue.Queue _c_queue
def __cinit__(self):

self._c_queue = cqueue.queue_new()

Note that it says __cinit__ rather than __init__. While __init__ is available as well, it is not guaranteed to
be run (for instance, one could create a subclass and forget to call the ancestor’s constructor). Because not initializing
C pointers often leads to hard crashes of the Python interpreter, Cython provides __cinit__ which is always called

1 There’s a subtle difference between cdef struct Queue: pass and ctypedef struct Queue: pass. The former declares
a type which is referenced in C code as struct Queue, while the latter is referenced in C as Queue. This is a C language quirk that Cython is
not able to hide. Most modern C libraries use the ctypedef kind of struct.

2 Note that the name of the .pyx file must be different from the cqueue.pxd file with declarations from the C library, as both do not describe
the same code. A .pxd file next to a .pyx file with the same name defines exported declarations for code in the .pyx file. As the cqueue.pxd
file contains declarations of a regular C library, there must not be a .pyx file with the same name that Cython associates with it.

4 Chapter 2. Using C libraries
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immediately on construction, before CPython even considers calling __init__, and which therefore is the right
place to initialise cdef fields of the new instance. However, as __cinit__ is called during object construction,
self is not fully constructed yet, and one must avoid doing anything with self but assigning to cdef fields.

Note also that the above method takes no parameters, although subtypes may want to accept some. A no-arguments
__cinit__() method is a special case here that simply does not receive any parameters that were passed to a
constructor, so it does not prevent subclasses from adding parameters. If parameters are used in the signature of
__cinit__(), they must match those of any declared __init__ method of classes in the class hierarchy that are
used to instantiate the type.

Before we continue implementing the other methods, it is important to understand that the above implementation is
not safe. In case anything goes wrong in the call to queue_new(), this code will simply swallow the error, so we
will likely run into a crash later on. According to the documentation of the queue_new() function, the only reason
why the above can fail is due to insufficient memory. In that case, it will return NULL, whereas it would normally
return a pointer to the new queue.

The Python way to get out of this is to raise a MemoryError 3. We can thus change the init function as follows:

cimport cqueue

cdef class Queue:
cdef cqueue.Queue _c_queue
def __cinit__(self):

self._c_queue = cqueue.queue_new()
if self._c_queue is NULL:

raise MemoryError()

The next thing to do is to clean up when the Queue instance is no longer used (i.e. all references to it have been deleted).
To this end, CPython provides a callback that Cython makes available as a special method __dealloc__(). In our
case, all we have to do is to free the C Queue, but only if we succeeded in initialising it in the init method:

def __dealloc__(self):
if self._c_queue is not NULL:

cqueue.queue_free(self._c_queue)

At this point, we have a working Cython module that we can test. To compile it, we need to configure a setup.py
script for distutils. Here is the most basic script for compiling a Cython module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("queue", ["queue.pyx"])]

)

To build against the external C library, we must extend this script to include the necessary setup. Assuming the library
is installed in the usual places (e.g. under /usr/lib and /usr/include on a Unix-like system), we could simply
change the extension setup from

ext_modules = [Extension("queue", ["queue.pyx"])]

to

3 In the specific case of a MemoryError, creating a new exception instance in order to raise it may actually fail because we are running out
of memory. Luckily, CPython provides a C-API function PyErr_NoMemory() that safely raises the right exception for us. Since version 0.14.1,
Cython automatically substitutes this C-API call whenever you write raise MemoryError or raise MemoryError(). If you use an older
version, you have to cimport the C-API function from the standard package cpython.exc and call it directly.
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ext_modules = [
Extension("queue", ["queue.pyx"],

libraries=["calg"])
]

If it is not installed in a ‘normal’ location, users can provide the required parameters externally by passing appropriate
C compiler flags, such as:

CFLAGS="-I/usr/local/otherdir/calg/include" \
LDFLAGS="-L/usr/local/otherdir/calg/lib" \

python setup.py build_ext -i

Once we have compiled the module for the first time, we can now import it and instantiate a new Queue:

$ export PYTHONPATH=.

$ python -c 'import queue.Queue as Q ; Q()'

However, this is all our Queue class can do so far, so let’s make it more usable.

Before implementing the public interface of this class, it is good practice to look at what interfaces Python offers,
e.g. in its list or collections.deque classes. Since we only need a FIFO queue, it’s enough to provide the
methods append(), peek() and pop(), and additionally an extend() method to add multiple values at once.
Also, since we already know that all values will be coming from C, it’s best to provide only cdef methods for now,
and to give them a straight C interface.

In C, it is common for data structures to store data as a void* to whatever data item type. Since we only want to store
int values, which usually fit into the size of a pointer type, we can avoid additional memory allocations through a
trick: we cast our int values to void* and vice versa, and store the value directly as the pointer value.

Here is a simple implementation for the append() method:

cdef append(self, int value):
cqueue.queue_push_tail(self._c_queue, <void*>value)

Again, the same error handling considerations as for the __cinit__() method apply, so that we end up with this
implementation instead:

cdef append(self, int value):
if not cqueue.queue_push_tail(self._c_queue,

<void*>value):
raise MemoryError()

Adding an extend() method should now be straight forward:

cdef extend(self, int* values, size_t count):
"""Append all ints to the queue.
"""
cdef size_t i
for i in range(count):

if not cqueue.queue_push_tail(
self._c_queue, <void*>values[i]):

raise MemoryError()

This becomes handy when reading values from a NumPy array, for example.

So far, we can only add data to the queue. The next step is to write the two methods to get the first element: peek()
and pop(), which provide read-only and destructive read access respectively:

cdef int peek(self):
return <int>cqueue.queue_peek_head(self._c_queue)

6 Chapter 2. Using C libraries
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cdef int pop(self):
return <int>cqueue.queue_pop_head(self._c_queue)

Simple enough. Now, what happens when the queue is empty? According to the documentation, the functions return a
NULL pointer, which is typically not a valid value. Since we are simply casting to and from ints, we cannot distinguish
anymore if the return value was NULL because the queue was empty or because the value stored in the queue was 0.
However, in Cython code, we would expect the first case to raise an exception, whereas the second case should simply
return 0. To deal with this, we need to special case this value, and check if the queue really is empty or not:

cdef int peek(self) except? -1:
cdef int value = \
<int>cqueue.queue_peek_head(self._c_queue)

if value == 0:
# this may mean that the queue is empty, or
# that it happens to contain a 0 value
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return value

Note how we have effectively created a fast path through the method in the hopefully common cases that the return
value is not 0. Only that specific case needs an additional check if the queue is empty.

The except? -1 declaration in the method signature falls into the same category. If the function was a Python
function returning a Python object value, CPython would simply return NULL internally instead of a Python object
to indicate an exception, which would immediately be propagated by the surrounding code. The problem is that the
return type is int and any int value is a valid queue item value, so there is no way to explicitly signal an error to
the calling code. In fact, without such a declaration, there is no obvious way for Cython to know what to return on
exceptions and for calling code to even know that this method may exit with an exception.

The only way calling code can deal with this situation is to call PyErr_Occurred()when returning from a function
to check if an exception was raised, and if so, propagate the exception. This obviously has a performance penalty.
Cython therefore allows you to declare which value it should implicitly return in the case of an exception, so that the
surrounding code only needs to check for an exception when receiving this exact value.

We chose to use -1 as the exception return value as we expect it to be an unlikely value to be put into the queue. The
question mark in the except? -1 declaration indicates that the return value is ambiguous (there may be a -1 value
in the queue, after all) and that an additional exception check using PyErr_Occurred() is needed in calling code.
Without it, Cython code that calls this method and receives the exception return value would silently (and sometimes
incorrectly) assume that an exception has been raised. In any case, all other return values will be passed through almost
without a penalty, thus again creating a fast path for ‘normal’ values.

Now that the peek() method is implemented, the pop() method also needs adaptation. Since it removes a value
from the queue, however, it is not enough to test if the queue is empty after the removal. Instead, we must test it on
entry:

cdef int pop(self) except? -1:
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return <int>cqueue.queue_pop_head(self._c_queue)

The return value for exception propagation is declared exactly as for peek().

Lastly, we can provide the Queue with an emptiness indicator in the normal Python way by implementing the
__bool__() special method (note that Python 2 calls this method __nonzero__, whereas Cython code can use
either name):

def __bool__(self):
return not cqueue.queue_is_empty(self._c_queue)

7
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Note that this method returns either True or False as we declared the return type of the queue_is_empty
function as bint in cqueue.pxd.

Now that the implementation is complete, you may want to write some tests for it to make sure it works correctly.
Especially doctests are very nice for this purpose, as they provide some documentation at the same time. To enable
doctests, however, you need a Python API that you can call. C methods are not visible from Python code, and thus not
callable from doctests.

A quick way to provide a Python API for the class is to change the methods from cdef to cpdef. This will let Cython
generate two entry points, one that is callable from normal Python code using the Python call semantics and Python
objects as arguments, and one that is callable from C code with fast C semantics and without requiring intermediate
argument conversion from or to Python types.

The following listing shows the complete implementation that uses cpdef methods where possible:

cimport cqueue

cdef class Queue:
"""A queue class for C integer values.

>>> q = Queue()
>>> q.append(5)
>>> q.peek()
5
>>> q.pop()
5
"""
cdef cqueue.Queue* _c_queue
def __cinit__(self):

self._c_queue = cqueue.queue_new()
if self._c_queue is NULL:

raise MemoryError()

def __dealloc__(self):
if self._c_queue is not NULL:

cqueue.queue_free(self._c_queue)

cpdef append(self, int value):
if not cqueue.queue_push_tail(self._c_queue,

<void*>value):
raise MemoryError()

cdef extend(self, int* values, size_t count):
cdef size_t i
for i in xrange(count):

if not cqueue.queue_push_tail(
self._c_queue, <void*>values[i]):

raise MemoryError()

cpdef int peek(self) except? -1:
cdef int value = \

<int>cqueue.queue_peek_head(self._c_queue)
if value == 0:

# this may mean that the queue is empty,
# or that it happens to contain a 0 value
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return value

8 Chapter 2. Using C libraries
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cdef int pop(self) except? -1:
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return <int>cqueue.queue_pop_head(self._c_queue)

def __bool__(self):
return not cqueue.queue_is_empty(self._c_queue)

The cpdef feature is obviously not available for the extend() method, as the method signature is incompatible
with Python argument types. However, if wanted, we can rename the C-ish extend()method to e.g. c_extend(),
and write a new extend() method instead that accepts an arbitrary Python iterable:

cdef c_extend(self, int* values, size_t count):
cdef size_t i
for i in range(count):

if not cqueue.queue_push_tail(
self._c_queue, <void*>values[i]):

raise MemoryError()

cpdef extend(self, values):
for value in values:

self.append(value)

As a quick test with 10000 numbers on the author’s machine indicates, using this Queue from Cython code with C
int values is about five times as fast as using it from Cython code with Python object values, almost eight times faster
than using it from Python code in a Python loop, and still more than twice as fast as using Python’s highly optimised
collections.deque type from Cython code with Python integers.

9
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CHAPTER 3

Extension types (aka. cdef classes)

To support object-oriented programming, Cython supports writing normal Python classes exactly as in Python:

class MathFunction(object):
def __init__(self, name, operator):

self.name = name
self.operator = operator

def __call__(self, *operands):
return self.operator(*operands)

Based on what Python calls a “built-in type”, however, Cython supports a second kind of class: extension types,
sometimes referred to as “cdef classes” due to the keywords used for their declaration. They are somewhat restricted
compared to Python classes, but are generally more memory efficient and faster than generic Python classes. The main
difference is that they use a C struct to store their fields and methods instead of a Python dict. This allows them to
store arbitrary C types in their fields without requiring a Python wrapper for them, and to access fields and methods
directly at the C level without passing through a Python dictionary lookup.

Normal Python classes can inherit from cdef classes, but not the other way around. Cython requires to know the
complete inheritance hierarchy in order to lay out their C structs, and restricts it to single inheritance. Normal Python
classes, on the other hand, can inherit from any number of Python classes and extension types, both in Cython code
and pure Python code.

So far our integration example has not been very useful as it only integrates a single hard-coded function. In order to
remedy this, without sacrificing speed, we will use a cdef class to represent a function on floating point numbers:

cdef class Function:
cpdef double evaluate(self, double x) except *:

return 0

Like before, cpdef makes two versions of the method available; one fast for use from Cython and one slower for use
from Python. Then:

cdef class SinOfSquareFunction(Function):
cpdef double evaluate(self, double x) except *:

return sin(x**2)

Using this, we can now change our integration example:

def integrate(Function f, double a, double b, int N):
cdef int i
cdef double s, dx
if f is None:

raise ValueError("f cannot be None")
s = 0

11
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dx = (b-a)/N
for i in range(N):

s += f.evaluate(a+i*dx)
return s * dx

print(integrate(SinOfSquareFunction(), 0, 1, 10000))

This is almost as fast as the previous code, however it is much more flexible as the function to integrate can be changed.
It is even possible to pass in a new function defined in Python-space:

>>> import integrate
>>> class MyPolynomial(integrate.Function):
... def evaluate(self, x):
... return 2*x*x + 3*x - 10
...
>>> integrate(MyPolynomial(), 0, 1, 10000)
-7.8335833300000077

This is about 20 times slower, but still about 10 times faster than the original Python-only integration code. This shows
how large the speed-ups can easily be when whole loops are moved from Python code into a Cython module.

Some notes on our new implementation of evaluate:

• The fast method dispatch here only works because evaluate was declared in Function. Had evaluate
been introduced in SinOfSquareFunction, the code would still work, but Cython would have used the
slower Python method dispatch mechanism instead.

• In the same way, had the argument f not been typed, but only been passed as a Python object, the slower Python
dispatch would be used.

• Since the argument is typed, we need to check whether it is None. In Python, this would have resulted in an
AttributeError when the evaluate method was looked up, but Cython would instead try to access the
(incompatible) internal structure of None as if it were a Function, leading to a crash or data corruption.

There is a compiler directive nonecheck which turns on checks for this, at the cost of decreased speed. Here’s how
compiler directives are used to dynamically switch on or off nonecheck:

#cython: nonecheck=True
# ^^^ Turns on nonecheck globally

import cython

# Turn off nonecheck locally for the function
@cython.nonecheck(False)
def func():

cdef MyClass obj = None
try:

# Turn nonecheck on again for a block
with cython.nonecheck(True):

print obj.myfunc() # Raises exception
except AttributeError:

pass
print obj.myfunc() # Hope for a crash!

Attributes in cdef classes behave differently from attributes in regular classes:

• All attributes must be pre-declared at compile-time

• Attributes are by default only accessible from Cython (typed access)

• Properties can be declared to expose dynamic attributes to Python-space

12 Chapter 3. Extension types (aka. cdef classes)
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cdef class WaveFunction(Function):
# Not available in Python-space:
cdef double offset
# Available in Python-space:
cdef public double freq
# Available in Python-space:
property period:

def __get__(self):
return 1.0 / self. freq

def __set__(self, value):
self. freq = 1.0 / value

<...>

13
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CHAPTER 4

pxd files

In addition to the .pyx source files, Cython uses .pxd files which work like C header files – they contain Cython
declarations (and sometimes code sections) which are only meant for inclusion by Cython modules. A pxd file is
imported into a pyx module by using the cimport keyword.

pxd files have many use-cases:

1. They can be used for sharing external C declarations.

2. They can contain functions which are well suited for inlining by the C compiler. Such functions should be
marked inline, example:

cdef inline int int_min(int a, int b):
return b if b < a else a

3. When accompanying an equally named pyx file, they provide a Cython interface to the Cython module so that
other Cython modules can communicate with it using a more efficient protocol than the Python one.

In our integration example, we might break it up into pxd files like this:

1. Add a cmath.pxd function which defines the C functions available from the C math.h header file, like sin.
Then one would simply do from cmath cimport sin in integrate.pyx.

2. Add a integrate.pxd so that other modules written in Cython can define fast custom functions to integrate.

cdef class Function:
cpdef evaluate(self, double x)

cpdef integrate(Function f, double a,
double b, int N)

Note that if you have a cdef class with attributes, the attributes must be declared in the class declaration pxd file
(if you use one), not the pyx file. The compiler will tell you about this.
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CHAPTER 5

Caveats

Since Cython mixes C and Python semantics, some things may be a bit surprising or unintuitive. Work always goes
on to make Cython more natural for Python users, so this list may change in the future.

• 10**-2 == 0, instead of 0.01 like in Python.

• Given two typed int variables a and b, a % b has the same sign as the second argument (following Python
semantics) rather then having the same sign as the first (as in C). The C behavior can be obtained, at some speed
gain, by enabling the division directive. (Versions prior to Cython 0.12. always followed C semantics.)

• Care is needed with unsigned types. cdef unsigned n = 10; print(range(-n, n)) will print an
empty list, since -n wraps around to a large positive integer prior to being passed to the range function.

• Python’s float type actually wraps C double values, and Python’s int type wraps C long values.
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CHAPTER 6

Profiling

This part describes the profiling abilities of Cython. If you are familiar with profiling pure Python code, you can only
read the first section (Cython Profiling Basics). If you are not familiar with python profiling you should also read the
tutorial (Profiling Tutorial) which takes you through a complete example step by step.

6.1 Cython Profiling Basics

Profiling in Cython is controlled by a compiler directive. It can either be set either for an entire file or on a per function
via a Cython decorator.

6.1.1 Enable profiling for a complete source file

Profiling is enable for a complete source file via a global directive to the Cython compiler at the top of a file:

# cython: profile=True

Note that profiling gives a slight overhead to each function call therefore making your program a little slower (or a lot,
if you call some small functions very often).

Once enabled, your Cython code will behave just like Python code when called from the cProfile module. This means
you can just profile your Cython code together with your Python code using the same tools as for Python code alone.

6.1.2 Disabling profiling function wise

If your profiling is messed up because of the call overhead to some small functions that you rather do not want to see
in your profile - either because you plan to inline them anyway or because you are sure that you can’t make them any
faster - you can use a special decorator to disable profiling for one function only:

cimport cython

@cython.profile(False)
def my_often_called_function():

pass
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6.2 Profiling Tutorial

This will be a complete tutorial, start to finish, of profiling python code, turning it into Cython code and keep profiling
until it is fast enough.

As a toy example, we would like to evaluate the summation of the reciprocals of squares up to a certain integer 𝑛 for
evaluating 𝜋. The relation we want to use has been proven by Euler in 1735 and is known as the Basel problem.

𝜋2 = 6
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A simple python code for evaluating the truncated sum looks like this:

#!/usr/bin/env python
# encoding: utf-8
# filename: calc_pi.py

def recip_square(i):
return 1./i**2

def approx_pi(n=10000000):
val = 0.
for k in range(1,n+1):

val += recip_square(k)
return (6 * val)**.5

On my box, this needs approximately 4 seconds to run the function with the default n. The higher we choose n,
the better will be the approximation for 𝜋. An experienced python programmer will already see plenty of places to
optimize this code. But remember the golden rule of optimization: Never optimize without having profiled. Let me
repeat this: Never optimize without having profiled your code. Your thoughts about which part of your code takes too
much time are wrong. At least, mine are always wrong. So let’s write a short script to profile our code:

#!/usr/bin/env python
# encoding: utf-8
# filename: profile.py

import pstats, cProfile

import calc_pi

cProfile.runctx("calc_pi.approx_pi()", globals(), locals(), "Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

Running this on my box gives the following output:

TODO: how to display this not as code but verbatimly?

Sat Nov 7 17:40:54 2009 Profile.prof

10000004 function calls in 6.211 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 3.243 3.243 6.211 6.211 calc_pi.py:7(approx_pi)

10000000 2.526 0.000 2.526 0.000 calc_pi.py:4(recip_square)
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1 0.442 0.442 0.442 0.442 {range}
1 0.000 0.000 6.211 6.211 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

This contains the information that the code runs in 6.2 CPU seconds. Note that the code got slower by 2 seconds
because it ran inside the cProfile module. The table contains the real valuable information. You might want to check
the python profiling documentation for the nitty gritty details. The most important columns here are totime (total time
spent in this function not counting functions that were called by this function) and cumtime (total time spent in this
function also counting the functions called by this function). Looking at the tottime column, we see that approximately
half the time is spent in approx_pi and the other half is spent in recip_square. Also half a second is spent in range ...
of course we should have used xrange for such a big iteration. And in fact, just changing range to xrange makes the
code run in 5.8 seconds.

We could optimize a lot in the pure python version, but since we are interested in Cython, let’s move forward and
bring this module to Cython. We would do this anyway at some time to get the loop run faster. Here is our first Cython
version:

# encoding: utf-8
# cython: profile=True
# filename: calc_pi.pyx

def recip_square(int i):
return 1./i**2

def approx_pi(int n=10000000):
cdef double val = 0.
cdef int k
for k in xrange(1,n+1):

val += recip_square(k)
return (6 * val)**.5

Note the second line: We have to tell Cython that profiling should be enabled. This makes the Cython code slightly
slower, but without this we would not get meaningful output from the cProfile module. The rest of the code is mostly
unchanged, I only typed some variables which will likely speed things up a bit.

We also need to modify our profiling script to import the Cython module directly. Here is the complete version adding
the import of the pyximport module:

#!/usr/bin/env python
# encoding: utf-8
# filename: profile.py

import pstats, cProfile

import pyximport
pyximport.install()

import calc_pi

cProfile.runctx("calc_pi.approx_pi()", globals(), locals(), "Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

We only added two lines, the rest stays completely the same. Alternatively, we could also manually compile our code
into an extension; we wouldn’t need to change the profile script then at all. The script now outputs the following:

Sat Nov 7 18:02:33 2009 Profile.prof
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10000004 function calls in 4.406 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 3.305 3.305 4.406 4.406 calc_pi.pyx:7(approx_pi)

10000000 1.101 0.000 1.101 0.000 calc_pi.pyx:4(recip_square)
1 0.000 0.000 4.406 4.406 {calc_pi.approx_pi}
1 0.000 0.000 4.406 4.406 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

We gained 1.8 seconds. Not too shabby. Comparing the output to the previous, we see that recip_square function got
faster while the approx_pi function has not changed a lot. Let’s concentrate on the recip_square function a bit more.
First note, that this function is not to be called from code outside of our module; so it would be wise to turn it into a
cdef to reduce call overhead. We should also get rid of the power operator: it is turned into a pow(i,2) function call
by Cython, but we could instead just write i*i which could be faster. The whole function is also a good candidate for
inlining. Let’s look at the necessary changes for these ideas:

# encoding: utf-8
# cython: profile=True
# filename: calc_pi.pyx

cdef inline double recip_square(int i):
return 1./(i*i)

def approx_pi(int n=10000000):
cdef double val = 0.
cdef int k
for k in xrange(1,n+1):

val += recip_square(k)
return (6 * val)**.5

Now running the profile script yields:

Sat Nov 7 18:10:11 2009 Profile.prof

10000004 function calls in 2.622 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 1.782 1.782 2.622 2.622 calc_pi.pyx:7(approx_pi)

10000000 0.840 0.000 0.840 0.000 calc_pi.pyx:4(recip_square)
1 0.000 0.000 2.622 2.622 {calc_pi.approx_pi}
1 0.000 0.000 2.622 2.622 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

That bought us another 1.8 seconds. Not the dramatic change we could have expected. And why is recip_square still
in this table; it is supposed to be inlined, isn’t it? The reason for this is that Cython still generates profiling code even
if the function call is eliminated. Let’s tell it to not profile recip_square any more; we couldn’t get the function to be
much faster anyway:

# encoding: utf-8
# cython: profile=True
# filename: calc_pi.pyx

cimport cython
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@cython.profile(False)
cdef inline double recip_square(int i):

return 1./(i*i)

def approx_pi(int n=10000000):
cdef double val = 0.
cdef int k
for k in xrange(1,n+1):

val += recip_square(k)
return (6 * val)**.5

Running this shows an interesting result:

Sat Nov 7 18:15:02 2009 Profile.prof

4 function calls in 0.089 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.089 0.089 0.089 0.089 calc_pi.pyx:10(approx_pi)
1 0.000 0.000 0.089 0.089 {calc_pi.approx_pi}
1 0.000 0.000 0.089 0.089 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

First note the tremendous speed gain: this version only takes 1/50 of the time of our first Cython version. Also note that
recip_square has vanished from the table like we wanted. But the most peculiar and import change is that approx_pi
also got much faster. This is a problem with all profiling: calling a function in a profile run adds a certain overhead to
the function call. This overhead is not added to the time spent in the called function, but to the time spent in the calling
function. In this example, approx_pi didn’t need 2.622 seconds in the last run; but it called recip_square 10000000
times, each time taking a little to set up profiling for it. This adds up to the massive time loss of around 2.6 seconds.
Having disabled profiling for the often called function now reveals realistic timings for approx_pi; we could continue
optimizing it now if needed.

This concludes this profiling tutorial. There is still some room for improvement in this code. We could try to replace
the power operator in approx_pi with a call to sqrt from the C stdlib; but this is not necessarily faster than calling
pow(x,0.5).

Even so, the result we achieved here is quite satisfactory: we came up with a solution that is much faster then our
original python version while retaining functionality and readability.
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CHAPTER 7

Using Cython with NumPy

Cython has support for fast access to NumPy arrays. To optimize code using such arrays one must cimport the
NumPy pxd file (which ships with Cython), and declare any arrays as having the ndarray type. The data type and
number of dimensions should be fixed at compile-time and passed. For instance:

import numpy as np
cimport numpy as np
def myfunc(np.ndarray[np.float64_t, ndim=2] A):

<...>

myfunc can now only be passed two-dimensional arrays containing double precision floats, but array indexing oper-
ation is much, much faster, making it suitable for numerical loops. Expect speed increases well over 100 times over
a pure Python loop; in some cases the speed increase can be as high as 700 times or more. [Seljebotn09] contains
detailed examples and benchmarks.

Fast array declarations can currently only be used with function local variables and arguments to def-style functions
(not with arguments to cpdef or cdef, and neither with fields in cdef classes or as global variables). These limitations
are considered known defects and we hope to remove them eventually. In most circumstances it is possible to work
around these limitations rather easily and without a significant speed penalty, as all NumPy arrays can also be passed
as untyped objects.

Array indexing is only optimized if exactly as many indices are provided as the number of array dimensions. Further-
more, all indices must have a native integer type. Slices and NumPy “fancy indexing” is not optimized. Examples:

def myfunc(np.ndarray[np.float64_t, ndim=1] A):
cdef Py_ssize_t i, j
for i in range(A.shape[0]):

print A[i, 0] # fast
j = 2*i
print A[i, j] # fast
k = 2*i
print A[i, k] # slow, k is not typed
print A[i][j] # slow
print A[i,:] # slow

Py_ssize_t is a signed integer type provided by Python which covers the same range of values as is supported as
NumPy array indices. It is the preferred type to use for loops over arrays.

Any Cython primitive type (float, complex float and integer types) can be passed as the array data type. For each valid
dtype in the numpy module (such as np.uint8, np.complex128) there is a corresponding Cython compile-time
definition in the cimport-ed NumPy pxd file with a _t suffix 1. Cython structs are also allowed and corresponds to
NumPy record arrays. Examples:

1 In Cython 0.11.2, np.complex64_t and np.complex128_t does not work and one must write complex or double complex
instead. This is fixed in 0.11.3. Cython 0.11.1 and earlier does not support complex numbers.
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cdef packed struct Point:
np.float64_t x, y

def f():
cdef np.ndarray[np.complex128_t, ndim=3] a = \

np.zeros((3,3,3), dtype=np.complex128)
cdef np.ndarray[Point] b = np.zeros(10,

dtype=np.dtype([('x', np.float64),
('y', np.float64)]))

<...>

Note that ndim defaults to 1. Also note that NumPy record arrays are by default unaligned, meaning data is packed
as tightly as possible without considering the alignment preferences of the CPU. Such unaligned record arrays corre-
sponds to a Cython packed struct. If one uses an aligned dtype, by passing align=True to the dtype constructor,
one must drop the packed keyword on the struct definition.

Some data types are not yet supported, like boolean arrays and string arrays. Also data types describing data which is
not in the native endian will likely never be supported. It is however possible to access such arrays on a lower level by
casting the arrays:

cdef np.ndarray[np.uint8, cast=True] boolarr = (x < y)
cdef np.ndarray[np.uint32, cast=True] values = \

np.arange(10, dtype='>i4')

Assuming one is on a little-endian system, the values array can still access the raw bit content of the array (which
must then be reinterpreted to yield valid results on a little-endian system).

Finally, note that typed NumPy array variables in some respects behave a little differently from untyped arrays.
arr.shape is no longer a tuple. arr.shape[0] is valid but to e.g. print the shape one must do print
(<object>arr).shape in order to “untype” the variable first. The same is true for arr.data (which in typed
mode is a C data pointer).

There are many more options for optimizations to consider for Cython and NumPy arrays. We again refer the interested
reader to [Seljebotn09].
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CHAPTER 8

Unicode and passing strings

Similar to the string semantics in Python 3, Cython also strictly separates byte strings and unicode strings. Above all,
this means that there is no automatic conversion between byte strings and unicode strings (except for what Python 2
does in string operations). All encoding and decoding must pass through an explicit encoding/decoding step.

It is, however, very easy to pass byte strings between C code and Python. When receiving a byte string from a C
library, you can let Cython convert it into a Python byte string by simply assigning it to a Python variable:

cdef char* c_string = c_call_returning_a_c_string()
cdef bytes py_string = c_string

This creates a Python byte string object that holds a copy of the original C string. It can be safely passed around in
Python code, and will be garbage collected when the last reference to it goes out of scope. It is important to remember
that null bytes in the string act as terminator character, as generally known from C. The above will therefore only work
correctly for C strings that do not contain null bytes.

Note that the creation of the Python bytes string can fail with an exception, e.g. due to insufficient memory. If you
need to free() the string after the conversion, you should wrap the assignment in a try-finally construct:

cimport stdlib
cdef bytes py_string
cdef char* c_string = c_call_returning_a_c_string()
try:

py_string = c_string
finally:

stdlib.free(c_string)

To convert the byte string back into a C char*, use the opposite assignment:

cdef char* other_c_string = py_string

This is a very fast operation after which other_c_string points to the byte string buffer of the Python string itself.
It is tied to the life time of the Python string. When the Python string is garbage collected, the pointer becomes invalid.
It is therefore important to keep a reference to the Python string as long as the char* is in use. Often enough, this
only spans the call to a C function that receives the pointer as parameter. Special care must be taken, however, when
the C function stores the pointer for later use. Apart from keeping a Python reference to the string, no manual memory
management is required.

8.1 Decoding bytes to text

The initially presented way of passing and receiving C strings is sufficient if your code only deals with binary data
in the strings. When we deal with encoded text, however, it is best practice to decode the C byte strings to Python
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Unicode strings on reception, and to encode Python Unicode strings to C byte strings on the way out.

With a Python byte string object, you would normally just call the .decode() method to decode it into a Unicode
string:

ustring = byte_string.decode('UTF-8')

Cython allows you to do the same for a C string, as long as it contains no null bytes:

cdef char* some_c_string = c_call_returning_a_c_string()
ustring = some_c_string.decode('UTF-8')

However, this will not work for strings that contain null bytes, and it is very inefficient for long strings, since Cython
has to call strlen() on the C string first to find out the length by counting the bytes up to the terminating null byte.
In many cases, the user code will know the length already, e.g. because a C function returned it. In this case, it is much
more efficient to tell Cython the exact number of bytes by slicing the C string:

cdef char* c_string = NULL
cdef Py_ssize_t length = 0

# get pointer and length from a C function
get_a_c_string(&c_string, &length)

ustring = c_string[:length].decode('UTF-8')

The same can be used when the string contains null bytes, e.g. when it uses an encoding like UCS-4, where each
character is encoded in four bytes.

It is common practice to wrap string conversions (and non-trivial type conversions in general) in dedicated functions,
as this needs to be done in exactly the same way whenever receiving text from C. This could look as follows:

cimport python_unicode
cimport stdlib

cdef unicode tounicode(char* s):
return s.decode('UTF-8', 'strict')

cdef unicode tounicode_with_length(
char* s, size_t length):

return s[:length].decode('UTF-8', 'strict')

cdef unicode tounicode_with_length_and_free(
char* s, size_t length):

try:
return s[:length].decode('UTF-8', 'strict')

finally:
stdlib.free(s)

Most likely, you will prefer shorter function names in your code based on the kind of string being handled. Different
types of content often imply different ways of handling them on reception. To make the code more readable and to
anticipate future changes, it is good practice to use separate conversion functions for different types of strings.

8.2 Encoding text to bytes

The reverse way, converting a Python unicode string to a C char*, is pretty efficient by itself, assuming that what
you actually want is a memory managed byte string:
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py_byte_string = py_unicode_string.encode('UTF-8')
cdef char* c_string = py_byte_string

As noted before, this takes the pointer to the byte buffer of the Python byte string. Trying to do the same without
keeping a reference to the Python byte string will fail with a compile error:

# this will not compile !
cdef char* c_string = py_unicode_string.encode('UTF-8')

Here, the Cython compiler notices that the code takes a pointer to a temporary string result that will be garbage
collected after the assignment. Later access to the invalidated pointer will read invalid memory and likely result in a
segfault. Cython will therefore refuse to compile this code.

8.3 Source code encoding

When string literals appear in the code, the source code encoding is important. It determines the byte sequence that
Cython will store in the C code for bytes literals, and the Unicode code points that Cython builds for unicode literals
when parsing the byte encoded source file. Following PEP 263, Cython supports the explicit declaration of source file
encodings. For example, putting the following comment at the top of an ISO-8859-15 (Latin-9) encoded source
file (into the first or second line) is required to enable ISO-8859-15 decoding in the parser:

# -*- coding: ISO-8859-15 -*-

When no explicit encoding declaration is provided, the source code is parsed as UTF-8 encoded text, as specified by
PEP 3120. UTF-8 is a very common encoding that can represent the entire Unicode set of characters and is compatible
with plain ASCII encoded text that it encodes efficiently. This makes it a very good choice for source code files which
usually consist mostly of ASCII characters.

As an example, putting the following line into a UTF-8 encoded source file will print 5, as UTF-8 encodes the letter
’ö’ in the two byte sequence ’\xc3\xb6’:

print( len(b'abcö') )

whereas the following ISO-8859-15 encoded source file will print 4, as the encoding uses only 1 byte for this letter:

# -*- coding: ISO-8859-15 -*-
print( len(b'abcö') )

Note that the unicode literal u’abcö’ is a correctly decoded four character Unicode string in both cases, whereas
the unprefixed Python str literal ’abcö’ will become a byte string in Python 2 (thus having length 4 or 5 in the
examples above), and a 4 character Unicode string in Python 3. If you are not familiar with encodings, this may not
appear obvious at first read. See CEP 108 for details.

As a rule of thumb, it is best to avoid unprefixed non-ASCII str literals and to use unicode string literals for all text.
Cython also supports the __future__ import unicode_literals that instructs the parser to read all unprefixed
str literals in a source file as unicode string literals, just like Python 3.

8.4 Single bytes and characters

The Python C-API uses the normal C char type to represent a byte value, but it has two special integer types for a
Unicode code point value, i.e. a single Unicode character: Py_UNICODE and Py_UCS4. Since version 0.13, Cython
supports the first natively, support for Py_UCS4 is new in Cython 0.15. Py_UNICODE is either defined as an unsigned
2-byte or 4-byte integer, or as wchar_t, depending on the platform. The exact type is a compile time option in the
build of the CPython interpreter and extension modules inherit this definition at C compile time. The advantage of
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Py_UCS4 is that it is guaranteed to be large enough for any Unicode code point value, regardless of the platform. It
is defined as a 32bit unsigned int or long.

In Cython, the char type behaves differently from the Py_UNICODE and Py_UCS4 types when coercing to Python
objects. Similar to the behaviour of the bytes type in Python 3, the char type coerces to a Python integer value by
default, so that the following prints 65 and not A:

# -*- coding: ASCII -*-

cdef char char_val = 'A'
assert char_val == 65 # ASCII encoded byte value of 'A'
print( char_val )

If you want a Python bytes string instead, you have to request it explicitly, and the following will print A (or b’A’ in
Python 3):

print( <bytes>char_val )

The explicit coercion works for any C integer type. Values outside of the range of a char or unsigned char will
raise an OverflowError at runtime. Coercion will also happen automatically when assigning to a typed variable,
e.g.:

cdef bytes py_byte_string
py_byte_string = char_val

On the other hand, the Py_UNICODE and Py_UCS4 types are rarely used outside of the context of a Python unicode
string, so their default behaviour is to coerce to a Python unicode object. The following will therefore print the
character A, as would the same code with the Py_UNICODE type:

cdef Py_UCS4 uchar_val = u'A'
assert uchar_val == 65 # character point value of u'A'
print( uchar_val )

Again, explicit casting will allow users to override this behaviour. The following will print 65:

cdef Py_UCS4 uchar_val = u'A'
print( <long>uchar_val )

Note that casting to a C long (or unsigned long) will work just fine, as the maximum code point value that a
Unicode character can have is 1114111 (0x10FFFF). On platforms with 32bit or more, int is just as good.

8.5 Narrow Unicode builds

In narrow Unicode builds of CPython, i.e. builds where sys.maxunicode is 65535 (such as all Windows builds, as
opposed to 1114111 in wide builds), it is still possible to use Unicode character code points that do not fit into the 16
bit wide Py_UNICODE type. For example, such a CPython build will accept the unicode literal u’\U00012345’.
However, the underlying system level encoding leaks into Python space in this case, so that the length of this literal
becomes 2 instead of 1. This also shows when iterating over it or when indexing into it. The visible substrings
are u’\uD808’ and u’\uDF45’ in this example. They form a so-called surrogate pair that represents the above
character.

For more information on this topic, it is worth reading the ‘Wikipedia article about the UTF-16 encoding‘_.

The same properties apply to Cython code that gets compiled for a narrow CPython runtime environment. In most
cases, e.g. when searching for a substring, this difference can be ignored as both the text and the substring will contain
the surrogates. So most Unicode processing code will work correctly also on narrow builds. Encoding, decoding and
printing will work as expected, so that the above literal turns into exactly the same byte sequence on both narrow and
wide Unicode platforms.
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However, programmers should be aware that a single Py_UNICODE value (or single ‘character’ unicode string in
CPython) may not be enough to represent a complete Unicode character on narrow platforms. For example, if an
independent search for u’\uD808’ and u’\uDF45’ in a unicode string succeeds, this does not necessarily mean
that the character u’\U00012345 is part of that string. It may well be that two different characters are in the string
that just happen to share a code unit with the surrogate pair of the character in question. Looking for substrings works
correctly because the two code units in the surrogate pair use distinct value ranges, so the pair is always identifiable in
a sequence of code points.

As of version 0.15, Cython has extended support for surrogate pairs so that you can safely use an in test to search
character values from the full Py_UCS4 range even on narrow platforms:

cdef Py_UCS4 uchar = 0x12345
print( uchar in some_unicode_string )

Similarly, it can coerce a one character string with a high Unicode code point value to a Py_UCS4 value on both
narrow and wide Unicode platforms:

cdef Py_UCS4 uchar = u'\U00012345'
assert uchar == 0x12345

8.6 Iteration

Cython 0.13 supports efficient iteration over char*, bytes and unicode strings, as long as the loop variable is appro-
priately typed. So the following will generate the expected C code:

cdef char* c_string = ...

cdef char c
for c in c_string[:100]:

if c == 'A': ...

The same applies to bytes objects:

cdef bytes bytes_string = ...

cdef char c
for c in bytes_string:

if c == 'A': ...

For unicode objects, Cython will automatically infer the type of the loop variable as Py_UCS4:

cdef unicode ustring = ...

# NOTE: no typing required for 'uchar' !
for uchar in ustring:

if uchar == u'A': ...

The automatic type inference usually leads to much more efficient code here. However, note that some unicode
operations still require the value to be a Python object, so Cython may end up generating redundant conversion code
for the loop variable value inside of the loop. If this leads to a performance degradation for a specific piece of code, you
can either type the loop variable as a Python object explicitly, or assign its value to a Python typed variable somewhere
inside of the loop to enforce one-time coercion before running Python operations on it.

There are also optimisations for in tests, so that the following code will run in plain C code, (actually using a switch
statement):
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cdef Py_UCS4 uchar_val = get_a_unicode_character()
if uchar_val in u'abcABCxY':

...

Combined with the looping optimisation above, this can result in very efficient character switching code, e.g. in
unicode parsers.
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Pure Python Mode

Cython provides language constructs to let the same file be either interpreted or compiled. This is accomplished by
the same “magic” module cython that directives use and which must be imported. This is available for both .py
and .pyx files.

This is accomplished via special functions and decorators and an (optional) augmenting .pxd file.

9.1 Magic Attributes

The currently supported attributes of the cython module are:

• declare declares a typed variable in the current scope, which can be used in place of the cdef type var
[= value] construct. This has two forms, the first as an assignment (useful as it creates a declaration in
interpreted mode as well):

x = cython.declare(cython.int) # cdef int x
y = cython.declare(cython.double, 0.57721) # cdef double y = 0.57721

and the second mode as a simple function call:

cython.declare(x=cython.int, y=cython.double) # cdef int x; cdef double y

• locals is a decorator that is used to specify the types of local variables in the function body (including any or
all of the argument types):

@cython.locals(a=cython.double, b=cython.double, n=cython.p_double)
def foo(a, b, x, y):

...

• address is used in place of the & operator:

cython.declare(x=cython.int, x_ptr=cython.p_int)
x_ptr = cython.address(x)

• sizeof emulates the sizeof operator. It can take both types and expressions.:

cython.declare(n=cython.longlong)
print cython.sizeof(cython.longlong), cython.sizeof(n)

• struct can be used to create struct types.:

MyStruct = cython.struct(x=cython.int, y=cython.int, data=cython.double)
a = cython.declare(MyStruct)
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is equivalent to the code:

cdef struct MyStruct:
int x
int y
double data

cdef MyStruct a

• union creates union types with exactly the same syntax as struct

• typedef creates a new type:

T = cython.typedef(cython.p_int) # ctypedef int* T

• compiled is a special variable which is set to True when the compiler runs, and False in the interpreter.
Thus the code:

if cython.compiled:
print "Yep, I'm compiled."

else:
print "Just a lowly interpreted script."

will behave differently depending on whether or not the code is loaded as a compiled .so file or a plain .py
file.

9.2 Augmenting .pxd

If a .pxd file is found with the same name as a .py file, it will be searched for cdef classes and cdef/cpdef
functions and methods. It will then convert the corresponding classes/functions/methods in the .py file to be of the
correct type. Thus if one had a.pxd:

cdef class A:
cpdef foo(self, int i)

the file a.py:

class A:
def foo(self, i):

print "Big" if i > 1000 else "Small"

would be interpreted as:

cdef class A:
cpdef foo(self, int i):

print "Big" if i > 1000 else "Small"

The special cython module can also be imported and used within the augmenting .pxd file. This makes it possible to
add types to a pure python file without changing the file itself. For example, the following python file dostuff.py:

def dostuff(n):
t = 0
for i in range(n):

t += i
return t

could be augmented with the following .pxd file dostuff.pxd:
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import cython

@cython.locals(t = cython.int, i = cython.int)
cpdef int dostuff(int n)

Besides the cython.locals decorator, the cython.declare() function can also be used to add types to global
variables in the augmenting .pxd file.

Note that normal Python (def) functions cannot be declared in .pxd files, so it is currently impossible to override
the types of Python functions in .pxd files if they use *args or **kwargs in their signature, for instance.

9.3 Types

There are numerous types built in to the cython module. One has all the standard C types, namely char, short,
int, long, longlong as well as their unsigned versions uchar, ushort, uint, ulong, ulonglong. One also
has bint and Py_ssize_t. For each type, one has pointer types p_int, pp_int, . . ., up to three levels deep
in interpreted mode, and infinitely deep in compiled mode. The Python types int, long and bool are interpreted as C
int, long and bint respectively. Also, the python types list, dict, tuple, . . . may be used, as well as any
user defined types.

Pointer types may be constructed with cython.pointer(cython.int), and arrays as cython.int[10]. A
limited attempt is made to emulate these more complex types, but only so much can be done from the Python language.

9.4 Decorators (not yet implemented)

We have settled on @cython.cclass for the cdef class decorators, and @cython.cfunc and
@cython.ccall for cdef and cpdef functions (respectively). http://codespeak.net/pipermail/cython-dev/2008-
November/002925.html
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Further reading

The main documentation is located at http://docs.cython.org/. Some recent features might not have documentation
written yet, in such cases some notes can usually be found in the form of a Cython Enhancement Proposal (CEP) on
http://wiki.cython.org/enhancements.

[Seljebotn09] contains more information about Cython and NumPy arrays. If you intend to use Cython code in a
multi-threaded setting, it is essential to read up on Cython’s features for managing the Global Interpreter Lock (the
GIL). The same paper contains an explanation of the GIL, and the main documentation explains the Cython features
for managing it.

Finally, don’t hesitate to ask questions (or post reports on successes!) on the Cython users mailing list [UserList].
The Cython developer mailing list, [DevList], is also open to everybody. Feel free to use it to report a bug, ask for
guidance, if you have time to spare to develop Cython, or if you have suggestions for future development.
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Related work

Pyrex [Pyrex] is the compiler project that Cython was originally based on. Many features and the major design
decisions of the Cython language were developed by Greg Ewing as part of that project. Today, Cython supersedes the
capabilities of Pyrex by providing a higher compatibility with Python code and Python semantics, as well as superior
optimisations and better integration with scientific Python extensions like NumPy.

ctypes [ctypes] is a foreign function interface (FFI) for Python. It provides C compatible data types, and allows calling
functions in DLLs or shared libraries. It can be used to wrap these libraries in pure Python code. Compared to Cython,
it has the major advantage of being in the standard library and being usable directly from Python code, without any
additional dependencies. The major drawback is its performance, which suffers from the Python call overhead as all
operations must pass through Python code first. Cython, being a compiled language, can avoid much of this overhead
by moving more functionality and long-running loops into fast C code.

SWIG [SWIG] is a wrapper code generator. It makes it very easy to parse large API definitions in C/C++ header
files, and to generate straight forward wrapper code for a large set of programming languages. As opposed to Cython,
however, it is not a programming language itself. Thin wrappers are easy to generate, but the more functionality a
wrapper needs to provide, the harder it gets to implement it with SWIG. Cython, on the other hand, makes it very
easy to write very elaborate wrapper code specifically for the Python language. Also, there exists third party code for
parsing C header files and using it to generate Cython definitions and module skeletons.

ShedSkin [ShedSkin] is an experimental Python-to-C++ compiler. It uses profiling information and very powerful
type inference engine to generate a C++ program from (restricted) Python source code. The main drawback is has no
support for calling the Python/C API for operations it does not support natively, and supports very few of the standard
Python modules.
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CHAPTER 12

Appendix: Installing MinGW on Windows

1. Download the MinGW installer from http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite.
(As of this writing, the download link is a bit difficult to find; it’s under “About” in the menu on the left-hand
side). You want the file entitled “Automated MinGW Installer” (currently version 5.1.4).

2. Run it and install MinGW. Only the basic package is strictly needed for Cython, although you might want to
grab at least the C++ compiler as well.

3. You need to set up Windows’ “PATH” environment variable so that includes e.g. “c:\mingw\bin” (if you installed
MinGW to “c:\mingw”). The following web-page describes the procedure in Windows XP (the Vista procedure
is similar): http://support.microsoft.com/kb/310519

4. Finally, tell Python to use MinGW as the default compiler (otherwise it will try for Visual C). If Python is
installed to “c:\Python26”, create a file named “c:\Python26\Lib\distutils\distutils.cfg” containing:

[build]
compiler = mingw32

The [WinInst] wiki page contains updated information about this procedure. Any contributions towards making the
Windows install process smoother is welcomed; it is an unfortunate fact that none of the regular Cython developers
have convenient access to Windows.
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