
Cython Reference Guide
Release 0.15pre

Stefan Behnel, Robert Bradshaw, William Stein
Gary Furnish, Dag Seljebotn, Greg Ewing

Gabriel Gellner, editor

June 06, 2016

Contents

1 Compilation 3
1.1 From the Command Line . 3
1.2 Distutils . 4
1.3 SCons . 4
1.4 Pyximport . 4
1.5 Sage . 5

2 Language Basics 7
2.1 Cython File Types . 7
2.2 Declaring Data Types . 9
2.3 Statements and Expressions . 14
2.4 Functions and Methods . 16
2.5 Error and Exception Handling . 17
2.6 Conditional Compilation . 19

3 Extension Types 21
3.1 Attributes . 21
3.2 Methods . 22
3.3 Properties . 22
3.4 Special Methods . 23
3.5 Subclassing . 26
3.6 Forward Declarations . 26
3.7 Extension Types and None . 27
3.8 Weak Referencing . 28
3.9 External and Public Types . 28
3.10 Type Names vs. Constructor Names . 29

4 Interfacing with Other Code 31
4.1 C . 31
4.2 C++ . 31
4.3 Fortran . 31
4.4 Numpy . 31

5 Special Mention 33

6 Limitations 35

7 Compiler Directives 37

i

8 Indices and tables 39
8.1 Special Methods Table . 39

ii

Cython Reference Guide, Release 0.15pre

Note:

Todo

Most of the boldface is to be changed to refs or other markup later.

Contents:

Contents 1

Cython Reference Guide, Release 0.15pre

2 Contents

CHAPTER 1

Compilation

• Cython code, unlike Python, must be compiled.

• This happens in two stages:

• A .pyx file is compiles by Cython to a .c file.

• The .c file is compiled by a C comiler to a .so file (or a .pyd file on Windows)

• The following sub-sections describe several ways to build your extension modules.

Note: The -a option

• Using the Cython compiler with the -a option will produce a really nice HTML file of the Cython generated
.c code.

• Double clicking on the highlighted sections will expand the code to reveal what Cython has actually generated
for you.

• This is very useful for understanding, optimizing or debugging your module.

1.1 From the Command Line

• Run the Cython compiler command with your options and list of .pyx files to generate:

$ cython -a yourmod.pyx

• This creates a yourmod.c file. (and the -a switch produces a generated html file)

• Compiling your .c files will vary depending on your operating system.

• Python documentation for writing extension modules should have some details for your system.

• Here we give an example on a Linux system:

$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno-strict-aliasing -I/usr/include/python2.5 -o yourmod.so yourmod.c

• gcc will need to have paths to your included header files and paths to libraries you need to link with.

• A yourmod.so file is now in the same directory.

• Your module, yourmod is available for you to import as you normally would.

3

Cython Reference Guide, Release 0.15pre

1.2 Distutils

• Ensure Distutils is installed in your system.

• The following assumes a Cython file to be compiled called hello.pyx.

• Create a setup.py script:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(
name = ’Hello world app’,

cmdclass = {’build_ext’: build_ext},
ext_modules = ext_modules

)

• Run the command python setup.py build_ext --inplace in your system’s command shell.

• Your done.. import your new extension module into your python shell or script as normal.

1.3 SCons

to be completed...

1.4 Pyximport

• For generating Cython code right in your pure python modulce:

>>> import pyximport; pyximport.install()
>>> import helloworld
Hello World

• Use for simple Cython builds only.

• No extra C libraries.

• No special build setup needed.

• Also has experimental compilation support for normal Python modules.

• Allows you to automatically run Cython on every .pyx and .py module that Python imports.

• This includes the standard library and installed packages.

• In the case that Cython fails to compile a Python module, pyximport will fall back to loading the
source modules instead.

• The .py import mechanism is installed like this:

>>> pyximport.install(pyimport = True)

Note: Authors

4 Chapter 1. Compilation

Cython Reference Guide, Release 0.15pre

Paul Prescod, Stefan Behnal

1.5 Sage

The Sage notebook allows transparently editing and compiling Cython code simply by typing %cython at the top of a
cell and evaluate it. Variables and func- tions dened in a Cython cell imported into the run- ning session.

Todo

Provide a link to Sage docs

1.5. Sage 5

Cython Reference Guide, Release 0.15pre

6 Chapter 1. Compilation

CHAPTER 2

Language Basics

2.1 Cython File Types

There are three file types in cython:

• Implementation files carry a .pyx suffix

• Definition files carry a .pxd suffix

• Include files which carry a .pxi suffix

2.1.1 Implementation File

What can it contain?

• Basically anything Cythonic, but see below.

What can’t it contain?

• There are some restrictions when it comes to extension types, if the extension type is already defined else
where... more on this later

2.1.2 Definition File

What can it contain?

• Any kind of C type declaration.

• extern C function or variable decarations.

• Declarations for module implementations.

• The definition parts of extension types.

• All declarations of functions, etc., for an external library

7

Cython Reference Guide, Release 0.15pre

What can’t it contain?

• Any non-extern C variable declaration.

• Implementations of C or Python functions.

• Python class definitions

• Python executable statements.

• Any declaration that is defined as public to make it accessible to other Cython modules.

• This is not necessary, as it is automatic.

• a public declaration is only needed to make it accessible to external C code.

What else?

cimport

• Use the cimport statement, as you would Python’s import statement, to access these files from other definition
or implementation files.

• cimport does not need to be called in .pyx file for for .pxd file that has the same name, as they are already in
the same namespace.

• For cimport to find the stated definition file, the path to the file must be appended to the -I option of the cython
compile command.

compilation order

• When a .pyx file is to be compiled, cython first checks to see if a corresponding .pxd file exits and processes
it first.

2.1.3 Include File

What can it contain?

• Any Cythonic code really, because the entire file is textually embedded at the location you prescribe.

How do I use it?

• Include the .pxi file with an include statement like: include "spamstuff.pxi

• The include statement can appear anywhere in your cython file and at any indentation level

• The code in the .pxi file needs to be rooted at the “zero” indentation level.

• The included code can itself contain other include statements.

8 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

2.2 Declaring Data Types

As a dynamic language, Python encourages a programming style of considering classes and objects in terms of their
methods and attributes, more than where they fit into the class hierarchy.

This can make Python a very relaxed and comfortable language for rapid development, but with a price - the ‘red
tape’ of managing data types is dumped onto the interpreter. At run time, the interpreter does a lot of work searching
namespaces, fetching attributes and parsing argument and keyword tuples. This run-time ‘late binding’ is a major
cause of Python’s relative slowness compared to ‘early binding’ languages such as C++.

However with Cython it is possible to gain significant speed-ups through the use of ‘early binding’ programming
techniques.

Note: Typing is not a necessity

Providing static typing to parameters and variables is convenience to speed up your code, but it is not a necessity.
Optimize where and when needed.

2.2.1 The cdef Statement

The cdef statement is used to make C level declarations for:

Variables

cdef int i, j, k
cdef float f, g[42], *h

Structs

cdef struct Grail:
int age
float volume

Unions

cdef union Food:
char *spam
float *eggs

Enums

cdef enum CheeseType:
cheddar, edam,
camembert

cdef enum CheeseState:
hard = 1
soft = 2
runny = 3

Funtions

cdef int eggs(unsigned long l, float f):
...

Extenstion Types

2.2. Declaring Data Types 9

Cython Reference Guide, Release 0.15pre

cdef class Spam:
...

Note: Constants

Constants can be defined by using an anonymous enum:

cdef enum:
tons_of_spam = 3

2.2.2 Grouping cdef Declarations

A series of declarations can grouped into a cdef block:

cdef:
struct Spam:

int tons

int i
float f
Spam *p

void f(Spam *s):
print s.tons, "Tons of spam"

Note: ctypedef statement

The ctypedef statement is provided for naming types:

ctypedef unsigned long ULong

ctypedef int *IntPtr

2.2.3 Parameters

• Both C and Python function types can be declared to have parameters C data types.

• Use normal C declaration syntax:

def spam(int i, char *s):
...

cdef int eggs(unsigned long l, float f):
...

• As these parameters are passed into a Python declared function, they are magically converted to the specified C
type value.

• This holds true for only numeric and string types

• If no type is specified for a parameter or a return value, it is assumed to be a Python object

• The following takes two Python objects as parameters and returns a Python object:

10 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

cdef spamobjs(x, y):
...

Note: –

This is different then C language behavior, where it is an int by default.

• Python object types have reference counting performed according to the standard Python C-API rules:

• Borrowed references are taken as parameters

• New references are returned

Todo

link or label here the one ref count caveat for numpy.

• The name object can be used to explicitly declare something as a Python Object.

• For sake of code clarity, it recomened to always use object explicitly in your code.

• This is also useful for cases where the name being declared would otherwise be taken for a type:

cdef foo(object int):
...

• As a return type:

cdef object foo(object int):
...

Todo

Do a see also here ..??

Optional Arguments

• Are supported for cdef and cpdef functions

• There differences though whether you declare them in a .pyx file or a .pxd file

• When in a .pyx file, the signature is the same as it is in Python itself:

cdef class A:
cdef foo(self):

print "A"
cdef class B(A)

cdef foo(self, x=None)
print "B", x

cdef class C(B):
cpdef foo(self, x=True, int k=3)

print "C", x, k

• When in a .pxd file, the signature is different like this example: cdef foo(x=*):

2.2. Declaring Data Types 11

Cython Reference Guide, Release 0.15pre

cdef class A:
cdef foo(self)

cdef class B(A)
cdef foo(self, x=*)

cdef class C(B):
cpdef foo(self, x=*, int k=*)

• The number of arguments may increase when subclassing, but the arg types and order must be the
same.

• There may be a slight performance penalty when the optional arg is overridden with one that does not have
default values.

2.2.4 Keyword-only Arguments

• As in Python 3, def functions can have keyword-only argurments listed after a "*" parameter and before a
"**" parameter if any:

def f(a, b, *args, c, d = 42, e, **kwds):
...

• Shown above, the c, d and e arguments can not be passed as positional arguments and must be passed as
keyword arguments.

• Furthermore, c and e are required keyword arguments since they do not have a default value.

• If the parameter name after the "*" is omitted, the function will not accept any extra positional argumrents:

def g(a, b, *, c, d):
...

• Shown above, the signature takes exactly two positional parameters and has two required keyword parameters

2.2.5 Automatic Type Conversion

• For basic numeric and string types, in most situations, when a Python object is used in the context of a C value
and vice versa.

• The following table summarises the conversion possibilities, assuming sizeof(int) == sizeof(long):

C types From Python types To Python types
[unsigned] char

int, long int[unsigned] short
int, long
unsigned int

int, long longunsigned long
[unsigned] long long
float, double, long double int, long, float float
char * str/bytes str/bytes 1

struct dict

Note: Python String in a C Context

• A Python string, passed to C context expecting a char*, is only valid as long as the Python string exists.

• A reference to the Python string must be kept around for as long as the C string is needed.

1The conversion is to/from str for Python 2.x, and bytes for Python 3.x.

12 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

• If this can’t be guarenteed, then make a copy of the C string.

• Cython may produce an error message: Obtaining char* from a temporary Python value and
will not resume compiling in situations like this:

cdef char *s
s = pystring1 + pystring2

• The reason is that concatenating to strings in Python produces a temporary variable.

• The variable is decrefed, and the Python string deallocated as soon as the statement has finished,

• Therefore the lvalue ‘‘s‘‘ is left dangling.

• The solution is to assign the result of the concatenation to a Python variable, and then obtain the char* from
that:

cdef char *s
p = pystring1 + pystring2
s = p

Note: It is up to you to be aware of this, and not to depend on Cython’s error message, as it is not guarenteed
to be generated for every situation.

2.2.6 Type Casting

• The syntax used in type casting are "<" and ">"

Note: The syntax is different from C convention

cdef char *p, float *q
p = <char*>q

• If one of the types is a python object for <type>x, Cython will try and do a coersion.

Note: Cython will not stop a casting where there is no conversion, but it will emit a warning.

• If the address is what is wanted, cast to a void* first.

Type Checking

• A cast like <MyExtensionType>x will cast x to type MyExtensionType without type checking at all.

• To have a cast type checked, use the syntax like: <MyExtenstionType?>x.

• In this case, Cython will throw an error if "x" is not a (subclass) of MyExtenstionClass

• Automatic type checking for extension types can be obtained by whenever isinstance() is used as the
second parameter

2.2. Declaring Data Types 13

Cython Reference Guide, Release 0.15pre

2.2.7 Python Objects

2.3 Statements and Expressions

• For the most part, control structures and expressions follow Python syntax.

• When applied to Python objects, the semantics are the same unless otherwise noted.

• Most Python operators can be applied to C values with the obvious semantics.

• An expression with mixed Python and C values will have conversions performed automatically.

• Python operations are automatically checked for errors, with the appropriate action taken.

2.3.1 Differences Between Cython and C

• Most notable are C constructs which have no direct equivalent in Python.

• An integer literal is treated as a C constant

• It will be truncated to whatever size your C compiler thinks appropriate.

• Cast to a Python object like this:

<object>10000000000000000000

• The "L", "LL" and the "U" suffixes have the same meaning as in C

• There is no -> operator in Cython.. instead of p->x, use p.x.

• There is no * operator in Cython.. instead of *p, use p[0].

• & is permissible and has the same semantics as in C.

• NULL is the null C pointer.

• Do NOT use 0.

• NULL is a reserved word in Cython

• Syntax for Type casts are <type>value.

2.3.2 Scope Rules

• All determination of scoping (local, module, built-in) in Cython is determined statically.

• As with Python, a variable assignment which is not declared explicitly is implicitly declared to be a Python
variable residing in the scope where it was assigned.

Note:

• Module-level scope behaves the same way as a Python local scope if you refer to the variable before assigning
to it.

• Tricks, like the following will NOT work in Cython:

try:
x = True

except NameError:
True = 1

14 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

• The above example will not work because True will always be looked up in the module-level scope. Do the
following instead:

import __builtin__
try:

True = __builtin__.True
except AttributeError:

True = 1

2.3.3 Built-in Constants

Pre-defined Python built-in constants:

• None

• True

• False

2.3.4 Operator Precedence

• Cython uses Python precedence order, not C

2.3.5 For-loops

• range() is C optimized when the index value has been declared by cdef:

cdef i
for i in range(n):

...

• The other form available in C is the for-from style

• The target expression must be a variable name.

• The name between the lower and upper bounds must be the same as the target name.

for i from 0 <= i < n: ...

• Or when using a step size:

for i from 0 <= i < n by s:
...

• To reverse the direction, reverse the conditional operation:

for i from 0 >= i > n:
...

• The break and continue are permissible.

• Can contain an else clause.

2.3. Statements and Expressions 15

Cython Reference Guide, Release 0.15pre

2.4 Functions and Methods

• There are three types of function declarations in Cython as the sub-sections show below.

• Only “Python” functions can be called outside a Cython module from Python interpretted code.

2.4.1 Callable from Python

• Are decalared with the def statement

• Are called with Python objects

• Return Python objects

• See Parameters for special consideration

2.4.2 Callable from C

• Are declared with the cdef statement.

• Are called with either Python objects or C values.

• Can return either Python objects or C values.

2.4.3 Callable from both Python and C

• Are declared with the cpdef statement.

• Can be called from anywhere, because it uses a little Cython magic.

• Uses the faster C calling conventions when being called from other Cython code.

2.4.4 Overriding

cpdef functions can override cdef functions:

cdef class A:
cdef foo(self):

print "A"
cdef class B(A)

cdef foo(self, x=None)
print "B", x

cdef class C(B):
cpdef foo(self, x=True, int k=3)

print "C", x, k

2.4.5 Function Pointers

• Functions declared in a struct are automatically converted to function pointers.

• see using exceptions with function pointers

16 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

2.4.6 Python Built-ins

The following are provided:

Todo

incomplete

Function and arguments Return type Python/C API Equivalent
abs(obj) object PyNumber_Absolute
bool(obj) object Py_True, Py_False
chr(obj) object char
delattr(obj, name) int PyObject_DelAttr
dir(obj) getattr(obj, name) (Note 1) getattr3(obj, name, default) object PyObject_Dir
hasattr(obj, name) int PyObject_HasAttr
hash(obj) int PyObject_Hash
intern(obj) object PyObject_InternFromString
isinstance(obj, type) int PyObject_IsInstance
issubclass(obj, type) int PyObject_IsSubclass
iter(obj) object PyObject_GetIter
len(obj) Py_ssize_t PyObject_Length
pow(x, y, z) (Note 2) object PyNumber_Power
reload(obj) object PyImport_ReloadModule
repr(obj) object PyObject_Repr
setattr(obj, name) void PyObject_SetAttr

2.5 Error and Exception Handling

• A plain cdef declared function, that does not return a Python object...

• Has no way of reporting a Python exception to it’s caller.

• Will only print a warning message and the exception is ignored.

• Inorder to propagate exceptions like this to it’s caller, you need to declare an exception value for it.

• There are three forms of declaring an exception for a C compiled program.

• First:

cdef int spam() except -1:
...

• In the example above, if an error occurs inside spam, it will immediately return with the value of
-1, causing an exception to be propagated to it’s caller.

• Functions declared with an exception value, should explicitly prevent a return of that value.

• Second:

cdef int spam() except? -1:
...

• Used when a -1 may possibly be returned and is not to be considered an error.

• The "?" tells Cython that -1 only indicates a possible error.

2.5. Error and Exception Handling 17

Cython Reference Guide, Release 0.15pre

• Now, each time -1 is returned, Cython generates a call to PyErr_Occurrd to verify it is an actual
error.

• Third:

cdef int spam() except *

• A call to PyErr_Occurred happens every time the function gets called.

Note: Returning void

A need to propagate errors when returning void must use this version.

• Exception values can only be declared for functions returning an..

• integer

• enum

• float

• pointer type

• Must be a constant expression

Note:

Note: Function pointers

• Require the same exception value specification as it’s user has declared.

• Use cases here are when used as parameters and when assigned to a variable:

int (*grail)(int, char *) except -1

Note: Python Objects

• Declared exception values are not need.

• Remember that Cython assumes that a function function without a declared return value, returns a Python object.

• Exceptions on such functions are implicitly propagated by returning NULL

Note: C++

• For exceptions from C++ compiled programs, see Wrapping C++ Classes

2.5.1 Checking return values for non-Cython functions..

• Do not try to raise exceptions by returning the specified value.. Example:

cdef extern FILE *fopen(char *filename, char *mode) except NULL # WRONG!

• The except clause does not work that way.

18 Chapter 2. Language Basics

Cython Reference Guide, Release 0.15pre

• It’s only purpose is to propagate Python exceptions that have already been raised by either...

• A Cython function

• A C function that calls Python/C API routines.

• To propagate an exception for these circumstances you need to raise it yourself:

cdef FILE *p
p = fopen("spam.txt", "r")
if p == NULL:

raise SpamError("Couldn't open the spam file")

2.6 Conditional Compilation

• The expressions in the following sub-sections must be valid compile-time expressions.

• They can evaluate to any Python value.

• The truth of the result is determined in the usual Python way.

2.6.1 Compile-Time Definitions

• Defined using the DEF statement:

DEF FavouriteFood = "spam"
DEF ArraySize = 42
DEF OtherArraySize = 2 * ArraySize + 17

• The right hand side must be a valid compile-time expression made up of either:

• Literal values

• Names defined by other DEF statements

• They can be combined using any of the Python expression syntax

• Cython provides the following pre-defined names

• Corresponding to the values returned by os.uname()

• UNAME_SYSNAME

• UNAME_NODENAME

• UNAME_RELEASE

• UNAME_VERSION

• UNAME_MACHINE

• A name defined by DEF can appear anywhere an identifier can appear.

• Cython replaces the name with the literal value before compilation.

• The compile-time expression, in this case, must eveluate to a Python value of int, long, float, or str:

cdef int a1[ArraySize]
cdef int a2[OtherArraySize]
print "I like", FavouriteFood

2.6. Conditional Compilation 19

Cython Reference Guide, Release 0.15pre

2.6.2 Conditional Statements

• Similiar semantics of the C pre-processor

• The following statements can be used to conditinally include or exclude sections of code to compile.

• IF

• ELIF

• ELSE

IF UNAME_SYSNAME == "Windows":
include "icky_definitions.pxi"

ELIF UNAME_SYSNAME == "Darwin":
include "nice_definitions.pxi"

ELIF UNAME_SYSNAME == "Linux":
include "penguin_definitions.pxi"

ELSE:
include "other_definitions.pxi"

• ELIF and ELSE are optional.

• IF can appear anywhere that a normal statement or declaration can appear

• It can contain any statements or declarations that would be valid in that context.

• This includes other IF and DEF statements

20 Chapter 2. Language Basics

CHAPTER 3

Extension Types

• Normal Python as well as extension type classes can be defined.

• Extension types:

• Are considered by Python as “built-in” types.

• Can be used to wrap arbitrary C-data structures, and provide a Python-like interface to them from Python.

• Attributes and methods can be called from Python or Cython code

• Are defined by the cdef class statement.

cdef class Shrubbery:

cdef int width, height

def __init__(self, w, h):
self.width = w
self.height = h

def describe(self):
print "This shrubbery is", self.width, \

"by", self.height, "cubits."

3.1 Attributes

• Are stored directly in the object’s C struct.

• Are fixed at compile time.

• You can’t add attributes to an extension type instance at run time like in normal Python.

• You can sub-class the extenstion type in Python to add attributes at run-time.

• There are two ways to access extension type attributes:

• By Python look-up.

• Python code’s only method of access.

• By direct access to the C struct from Cython code.

• Cython code can use either method of access, though.

• By default, extension type attributes are:

21

Cython Reference Guide, Release 0.15pre

• Only accessible by direct access.

• Not accessible from Python code.

• To make attributes accessible to Python, they must be declared public or readonly:

cdef class Shrubbery:
cdef public int width, height
cdef readonly float depth

• The width and height attributes are readable and writable from Python code.

• The depth attribute is readable but not writable.

Note:

Note: You can only expose simple C types, such as ints, floats, and strings, for Python access. You can also expose
Python-valued attributes.

Note: The public and readonly options apply only to Python access, not direct access. All the attributes of an
extension type are always readable and writable by C-level access.

3.2 Methods

• self is used in extension type methods just like it normally is in Python.

• See Functions and Methods; all of which applies here.

3.3 Properties

• Cython provides a special syntax:

cdef class Spam:

property cheese:

"A doc string can go here."

def __get__(self):
This is called when the property is read.
...

def __set__(self, value):
This is called when the property is written.
...

def __del__(self):
This is called when the property is deleted.

• The __get__(), __set__(), and __del__() methods are all optional.

22 Chapter 3. Extension Types

Cython Reference Guide, Release 0.15pre

• If they are ommitted, An exception is raised when an access attempt is made.

• Below, is a full example that defines a property which can..

• Add to a list each time it is written to ("__set__").

• Return the list when it is read ("__get__").

• Empty the list when it is deleted ("__del__").

cheesy.pyx
cdef class CheeseShop:

cdef object cheeses

def __cinit__(self):
self.cheeses = []

property cheese:

def __get__(self):
return "We don't have: %s" % self.cheeses

def __set__(self, value):
self.cheeses.append(value)

def __del__(self):
del self.cheeses[:]

Test input
from cheesy import CheeseShop

shop = CheeseShop()
print shop.cheese

shop.cheese = "camembert"
print shop.cheese

shop.cheese = "cheddar"
print shop.cheese

del shop.cheese
print shop.cheese

Test output
We don't have: []
We don't have: ['camembert']
We don't have: ['camembert', 'cheddar']
We don't have: []

3.4 Special Methods

Note:

1. The semantics of Cython’s special methods are similar in principle to that of Python’s.

2. There are substantial differences in some behavior.

3.4. Special Methods 23

Cython Reference Guide, Release 0.15pre

3. Some Cython special methods have no Python counter-part.

• See the Special Methods Table for the many that are available.

3.4.1 Declaration

• Must be declared with def and cannot be declared with cdef.

• Performance is not affected by the def declaration because of special calling conventions

3.4.2 Docstrings

• Docstrings are not supported yet for some special method types.

• They can be included in the source, but may not appear in the corresponding __doc__ attribute at run-time.

• This a Python library limitation because the PyTypeObject data structure is limited

3.4.3 Initialization: __cinit__() and __init__()

• Any arguments passed to the extension type’s constructor, will be passed to both initialization methods.

• __cinit__() is where you should perform C-level initialization of the object

• This includes any allocation of C data structures.

• Caution is warranted as to what you do in this method.

• The object may not be fully valid Python object when it is called.

• Calling Python objects, including the extensions own methods, may be hazardous.

• By the time __cinit__() is called...

• Memory has been allocated for the object.

• All C-level attributes have been initialized to 0 or null.

• Python have been initialized to None, but you can not rely on that for each occasion.

• This initialization method is guaranteed to be called exactly once.

• For Extensions types that inherit a base type:

• The __cinit__() method of the base type is automatically called before this one.

• The inherited __cinit__() method can not be called explicitly.

• Passing modified argument lists to the base type must be done through __init__().

• It may be wise to give the __cinit__() method both "*" and "**" arguments.

• Allows the method to accept or ignore additional arguments.

• Eliminates the need for a Python level sub-class, that changes the __init__()method’s
signature, to have to override both the __new__() and __init__() methods.

• If __cinit__() is declared to take no arguments except self, it will ignore any extra
arguments passed to the constructor without complaining about a signature mis-match

• __init__() is for higher-level initialization and is safer for Python access.

24 Chapter 3. Extension Types

Cython Reference Guide, Release 0.15pre

• By the time this method is called, the extension type is a fully valid Python object.

• All operations are safe.

• This method may sometimes be called more than once, or possibly not at all.

• Take this into consideration to make sure the design of your other methods are robust of this fact.

3.4.4 Finalization: __dealloc__()

• This method is the counter-part to __cinit__().

• Any C-data that was explicitly allocated in the __cinit__() method should be freed here.

• Use caution in this method:

• The Python object to which this method belongs may not be completely intact at this point.

• Avoid invoking any Python operations that may touch the object.

• Don’t call any of this object’s methods.

• It’s best to just deallocate C-data structures here.

• All Python attributes of your extension type object are deallocated by Cython after the __dealloc__()
method returns.

3.4.5 Arithmetic Methods

Note: Most of these methods behave differently than in Python

• There are not “reversed” versions of these methods... there is no __radd__() for instance.

• If the first operand cannot perform the operation, the same method of the second operand is called, with the
operands in the same order.

• Do not rely on the first parameter of these methods, being "self" or the right type.

• The types of both operands should be tested before deciding what to do.

• Return NotImplemented for unhandled, mis-matched operand types.

• The previously mentioned points..

• Also apply to ‘in-place’ method __ipow__().

• Do not apply to other ‘in-place’ methods like __iadd__(), in that these always take self as the first argu-
ment.

3.4.6 Rich Comparisons

Note: There are no separate methods for individual rich comparison operations.

• A single special method called __richcmp__() replaces all the individual rich compare, special method
types.

3.4. Special Methods 25

Cython Reference Guide, Release 0.15pre

• __richcmp__() takes an integer argument, indicating which operation is to be performed as shown in the
table below.

< 0
== 2
> 4
<= 1
!= 3
>= 5

3.4.7 The __next__() Method

• Extension types used to expose an iterator interface should define a __next__() method.

• Do not explicitly supply a next() method, because Python does that for you automatically.

3.5 Subclassing

• An extension type may inherit from a built-in type or another extension type:

cdef class Parrot:
...

cdef class Norwegian(Parrot):
...

• A complete definition of the base type must be available to Cython

• If the base type is a built-in type, it must have been previously declared as an extern extension type.

• cimport can be used to import the base type, if the extern declared base type is in a .pxd definition file.

• In Cython, multiple inheritance is not permitted.. singlular inheritance only

• Cython extenstion types can also be sub-classed in Python.

• Here multiple inhertance is permissible as is normal for Python.

• Even multiple extension types may be inherited, but C-layout of all the base classes must be compatible.

3.6 Forward Declarations

• Extension types can be “forward-declared”.

• This is necessary when two extension types refer to each other:

cdef class Shrubbery # forward declaration

cdef class Shrubber:
cdef Shrubbery work_in_progress

cdef class Shrubbery:
cdef Shrubber creator

• An extension type that has a base-class, requires that both forward-declarations be specified:

26 Chapter 3. Extension Types

Cython Reference Guide, Release 0.15pre

cdef class A(B)

...

cdef class A(B):
attributes and methods

3.7 Extension Types and None

• Parameters and C-variables declared as an Extension type, may take the value of None.

• This is analogous to the way a C-pointer can take the value of NULL.

Note:

1. Exercise caution when using None

2. Read this section carefully.

• There is no problem as long as you are performing Python operations on it.

• This is because full dynamic type checking is applied

• When accessing an extension type’s C-attributes, make sure it is not None.

• Cython does not check this for reasons of efficency.

• Be very aware of exposing Python functions that take extension types as arguments:

def widen_shrubbery(Shrubbery sh, extra_width): # This is
sh.width = sh.width + extra_width

* Users could **crash** the program by passing ``None`` for the ``sh`` parameter.

* This could be avoided by::

def widen_shrubbery(Shrubbery sh, extra_width):
if sh is None:

raise TypeError
sh.width = sh.width + extra_width

* Cython provides a more convenient way with a ``not None`` clause::

def widen_shrubbery(Shrubbery sh not None, extra_width):
sh.width = sh.width + extra_width

* Now this function automatically checks that ``sh`` is not ``None``, as well as that is the right type.

• not None can only be used in Python functions (declared with def not cdef).

• For cdef functions, you will have to provide the check yourself.

• The self parameter of an extension type is guaranteed to never be None.

• When comparing a value x with None, and x is a Python object, note the following:

• x is None and x is not None are very efficient.

• They translate directly to C-pointer comparisons.

3.7. Extension Types and None 27

Cython Reference Guide, Release 0.15pre

• x == None and x != None or if x: ... (a boolean condition), will invoke Python opera-
tions and will therefore be much slower.

3.8 Weak Referencing

• By default, weak references are not supported.

• It can be enabled by declaring a C attribute of the object type called __weakref__():

cdef class ExplodingAnimal:
"""This animal will self-destruct when it is
no longer strongly referenced."""

cdef object __weakref__

3.9 External and Public Types

3.9.1 Public

• When an extention type is declared public, Cython will generate a C-header (”.h”) file.

• The header file will contain the declarations for it’s object-struct and it’s type-object.

• External C-code can now access the attributes of the extension type.

3.9.2 External

• An extern extension type allows you to gain access to the internals of:

• Python objects defined in the Python core.

• Non-Cython extension modules

• The following example lets you get at the C-level members of Python’s built-in “complex” object:

cdef extern from "complexobject.h":

struct Py_complex:
double real
double imag

ctypedef class __builtin__.complex [object PyComplexObject]:
cdef Py_complex cval

A function which uses the above type
def spam(complex c):

print "Real:", c.cval.real
print "Imag:", c.cval.imag

Note: Some important things in the example: #. ctypedef has been used because because Python’s header file has
the struct decalared with:

28 Chapter 3. Extension Types

Cython Reference Guide, Release 0.15pre

ctypedef struct {
...
} PyComplexObject;

1. The module of where this type object can be found is specified along side the name of the extension type. See
Implicit Importing.

2. When declaring an external extension type...

• Don’t declare any methods, because they are Python method class the are not needed.

• Similiar to structs and unions, extension classes declared inside a cdef extern from block only need to
declare the C members which you will actually need to access in your module.

3.9.3 Name Specification Clause

Note: Only available to public and extern extension types.

• Example:

[object object_struct_name, type type_object_name]

• object_struct_name is the name to assume for the type’s C-struct.

• type_object_name is the name to assume for the type’s statically declared type-object.

• The object and type clauses can be written in any order.

• For cdef extern from declarations, This clause is required.

• The object clause is required because Cython must generate code that is compatible with the declarations in the
header file.

• Otherwise the object clause is optional.

• For public extension types, both the object and type clauses are required for Cython to generate code that is
compatible with external C-code.

3.10 Type Names vs. Constructor Names

• In a Cython module, the name of an extension type serves two distinct purposes:

1. When used in an expression, it refers to a “module-level” global variable holding the type’s constructor (i.e. it’s
type-object)

2. It can also be used as a C-type name to declare a “type” for variables, arguments, and return values.

• Example:

cdef extern class MyModule.Spam:
...

• The name “Spam” serves both of these roles.

• Only “Spam” can be used as the type-name.

• The constructor can be referred to by other names.

3.10. Type Names vs. Constructor Names 29

Cython Reference Guide, Release 0.15pre

• Upon an explicit import of “MyModule”...

• MyModule.Spam() could be used as the constructor call.

• MyModule.Spam could not be used as a type-name

• When an “as” clause is used, the name specified takes over both roles:

cdef extern class MyModule.Spam as Yummy:
...

• Yummy becomes both type-name and a name for the constructor.

• There other ways of course, to get hold of the constructor, but Yummy is the only usable type-name.

30 Chapter 3. Extension Types

CHAPTER 4

Interfacing with Other Code

4.1 C

4.2 C++

4.3 Fortran

4.4 Numpy

31

Cython Reference Guide, Release 0.15pre

32 Chapter 4. Interfacing with Other Code

CHAPTER 5

Special Mention

33

Cython Reference Guide, Release 0.15pre

34 Chapter 5. Special Mention

CHAPTER 6

Limitations

35

Cython Reference Guide, Release 0.15pre

36 Chapter 6. Limitations

CHAPTER 7

Compiler Directives

TODO. See http://wiki.cython.org/enhancements/compilerdirectives

37

http://wiki.cython.org/enhancements/compilerdirectives

Cython Reference Guide, Release 0.15pre

38 Chapter 7. Compiler Directives

CHAPTER 8

Indices and tables

8.1 Special Methods Table

This table lists all of the special methods together with their parameter and return types. In the table below, a parameter
name of self is used to indicate that the parameter has the type that the method belongs to. Other parameters with no
type specified in the table are generic Python objects.

You don’t have to declare your method as taking these parameter types. If you declare different types, conversions
will be performed as necessary.

8.1.1 General

Name Parameters Return type Description
__cinit__ self, ... Basic initialisation (no direct Python equivalent)
__init__ self, ... Further initialisation
__dealloc__ self Basic deallocation (no direct Python equivalent)
__cmp__ x, y int 3-way comparison
__richcmp__ x, y, int op object Rich comparison (no direct Python equivalent)
__str__ self object str(self)
__repr__ self object repr(self)
__hash__ self int Hash function
__call__ self, ... object self(...)
__iter__ self object Return iterator for sequence
__getattr__ self, name object Get attribute
__setattr__ self, name, val Set attribute
__delattr__ self, name Delete attribute

39

Cython Reference Guide, Release 0.15pre

8.1.2 Arithmetic operators

Name Parameters Return type Description
__add__ x, y object binary + operator
__sub__ x, y object binary - operator
__mul__ x, y object * operator
__div__ x, y object / operator for old-style division
__floordiv__ x, y object // operator
__truediv__ x, y object / operator for new-style division
__mod__ x, y object % operator
__divmod__ x, y object combined div and mod
__pow__ x, y, z object ** operator or pow(x, y, z)
__neg__ self object unary - operator
__pos__ self object unary + operator
__abs__ self object absolute value
__nonzero__ self int convert to boolean
__invert__ self object ~ operator
__lshift__ x, y object << operator
__rshift__ x, y object >> operator
__and__ x, y object & operator
__or__ x, y object | operator
__xor__ x, y object ^ operator

8.1.3 Numeric conversions

Name Parameters Return type Description
__int__ self object Convert to integer
__long__ self object Convert to long integer
__float__ self object Convert to float
__oct__ self object Convert to octal
__hex__ self object Convert to hexadecimal
__index__ (2.5+ only) self object Convert to sequence index

8.1.4 In-place arithmetic operators

Name Parameters Return type Description
__iadd__ self, x object += operator
__isub__ self, x object -= operator
__imul__ self, x object *= operator
__idiv__ self, x object /= operator for old-style division
__ifloordiv__ self, x object //= operator
__itruediv__ self, x object /= operator for new-style division
__imod__ self, x object %= operator
__ipow__ x, y, z object **= operator
__ilshift__ self, x object <<= operator
__irshift__ self, x object >>= operator
__iand__ self, x object &= operator
__ior__ self, x object |= operator
__ixor__ self, x object ^= operator

40 Chapter 8. Indices and tables

Cython Reference Guide, Release 0.15pre

8.1.5 Sequences and mappings

Name Parameters Return type Description
__len__ self int len(self)
__getitem__ self, x object self[x]
__setitem__ self, x, y self[x] = y
__delitem__ self, x del self[x]
__getslice__ self, Py_ssize_t i, Py_ssize_t j object self[i:j]
__setslice__ self, Py_ssize_t i, Py_ssize_t j, x self[i:j] = x
__delslice__ self, Py_ssize_t i, Py_ssize_t j del self[i:j]
__contains__ self, x int x in self

8.1.6 Iterators

Name Parameters Return type Description
__next__ self object Get next item (called next in Python)

8.1.7 Buffer interface

Note: The buffer interface is intended for use by C code and is not directly accessible from Python. It is described in
the Python/C API Reference Manual under sections 6.6 and 10.6.

Name Parameters Return type Description
__getreadbuffer__ self, int i, void **p
__getwritebuffer__ self, int i, void **p
__getsegcount__ self, int *p
__getcharbuffer__ self, int i, char **p

8.1.8 Descriptor objects

Note: Descriptor objects are part of the support mechanism for new-style Python classes. See the discussion of
descriptors in the Python documentation. See also PEP 252, “Making Types Look More Like Classes”, and PEP 253,
“Subtyping Built-In Types”.

Name Parameters Return type Description
__get__ self, instance, class object Get value of attribute
__set__ self, instance, value Set value of attribute
__delete__ self, instance Delete attribute

• genindex

• modindex

• search

8.1. Special Methods Table 41

	Compilation
	From the Command Line
	Distutils
	SCons
	Pyximport
	Sage

	Language Basics
	Cython File Types
	Declaring Data Types
	Statements and Expressions
	Functions and Methods
	Error and Exception Handling
	Conditional Compilation

	Extension Types
	Attributes
	Methods
	Properties
	Special Methods
	Subclassing
	Forward Declarations
	Extension Types and None
	Weak Referencing
	External and Public Types
	Type Names vs. Constructor Names

	Interfacing with Other Code
	C
	C++
	Fortran
	Numpy

	Special Mention
	Limitations
	Compiler Directives
	Indices and tables
	Special Methods Table

