

Welcome to Cyclops’s documentation!

Cyclops is an open source, community driven project led by Cloud Accounting
and Billing (CAB) initiative @ SPLAB, part of InIT - ZHAW, for creating a
flexible accounting and billing framework for IT services. Cyclops has been
specifically designed keeping requirements of popular cloud native
applications, platforms and services in mind. Widely used platforms such as
OpenStack, CloudStack, Apache Hadoop, etc. are already supported, meaning -
these can be billed out of box through Cyclops framework via appropriate
collectors.

[image: Cyclops v3 architecture]
Figure 1: Cyclops framework architecture (v3.0)

This manual covers only installation and administration of Cyclops
installation.

See also

You may want to read Cyclops’s Developer’s guide [https://github.com/icclab/cyclops/wiki] (WiKi) – the first
bit, at least – to get an idea of the concepts required for extending the
framework.

Contents:

	Building Cyclops
	Building from source

	Preparing the host
	Adding a dedicated user

	Optional softwares

	System folders

	Bootstrapping Postgresql

	Configuring RabbitMQ

	Install & Configure: UDR
	Preparing the host machine

	Preparing the Postgressql / TimescaleDB

	Preparing RabbitMQ

	Configuring UDR

	Fixing permissions

	Setup as a service

	Install & Configure: CDR
	Preparing the host machine

	Preparing the Postgressql / TimescaleDB

	Preparing RabbitMQ

	Configuring CDR

	Fixing permissions

	Setup as a service

	Install & Configure: Billing
	Preparing the host machine

	Preparing the Postgressql / TimescaleDB

	Preparing RabbitMQ

	Configuring Billing

	Fixing permissions

	Setup as a service

	Install & Configure: Rule Engine
	Setup & configuration: coincdr

	Setup & configuration: coinbill

	Managing Cyclops
	Configuring a collector

	Rules management

	Generation of a bill

	Advanced customizations
	Working with the dashboard

	Advanced RabbitMQ setup

	Rule Versioning
	Setup rule versioning

	Setting up checkpoints for the rules

	Rolling back rules and affected records

	Forecasting and Estimation Engine
	Per account forecast: (Forecast command)

	Model based global forecast: (Forecast command with no account specified)

	2D pattern based forecast: (GlobalForecast command)

	Evaluation rules/Pricing models under evaluation:

Indices and tables

	Index

	Module Index

	Search Page

Building Cyclops

Cyclops framework is made available as a set of docker images, and full source
code is available licensed under ASL 2.0.

Building from source

Requirements

You will need following software packages to be installed before you start the
build and setup process from source files:

	Dependencies

	Supported Version

	Java

	Oracle Java 8 and higher

	Maven

	3.0.5 or higher

	Git

	2.x.x or higher

When deploying, additionally you will need the following services installed
and reachable by the Cyclops framework components.

	Dependencies

	Supported Version

	RabbitMQ

	3.6

	Postgresql

	9.6

During configuration and setup phase of all the microservices, it is assumed
that the RabbitMQ management plugin is enabled in the service. Post
configuration and installation, this plugin can be disabled if not needed
elsewhere.

Note: the default package version available under your linux/unix
distribution for the above listed dependecies may be different that listed. In
that case, please make sure you get the specific versions directly from the
respective developer’s website.

Download the source

Download the full source code via Git clone

git clone https://github.com/icclab/cyclops.git

Once source code download finishes, check the folder structure and you should
see all the microservices in their separate subfolders. We will now proceed
with building every microservice individually.

Building the binaries

Cyclops framework comprises of these micro services:

	usage data record generation microservice (udr)

	rating and charging microservice (cdr)

	billing microservice (billing)

	rule engine (coin)

Each one of the above needs to be built individually. Before proceeding with
the build phase of any component, make sure your JAVA_HOME environment
variable is properly set. On Ubuntu 16.04 machine, this can be normally be
done through -

source /etc/environment
export JAVA_HOME="/usr/lib/jvm/java-8-oracle"

Make sure you change the path appropriately.

Building udr

Change directory to UDR subfolder within cyclops folder.

mvn dependency:tree
mvn package assembly:single
mv target/cyclops-udr-3.0.0-jar-with-dependencies.jar target/udr.jar

The java binary file is located within cyclops/UDR/target/ as udr.jar

Building cdr

Change directory to CDR subfolder within cyclops folder.

mvn dependency:tree
mvn package assembly:single
mv target/cyclops-cdr-3.0.0-jar-with-dependencies.jar target/cdr.jar

The java binary file is located within cyclops/CDR/target/ as cdr.jar

Building billing

Change directory to Billing subfolder within cyclops folder.

mvn dependency:tree
mvn package assembly:single
mv target/cyclops-billing-3.0.0-jar-with-dependencies.jar target/billing.jar

The java binary file is located within cyclops/Billing/target/ as
billing.jar

Building rule-engine (coin)

Change directory to Coin subfolder within cyclops folder.

mvn dependency:tree
mvn package assembly:single
mv target/cyclops-coin-1.1-jar-with-dependencies.jar target/coin.jar

The java binary file is located within cyclops/Coin/target/ as coin.jar

Preparing the host

Now that you have successfully compiled and built binaries of each individual
Cyclops components, let us understand how to properly install and configure
them.

Assumption: An Ubuntu 16.04 OS is installed on nodes where Cyclops framework services will be executed

A few recommended housekeeping steps are receommended before actually starting
with the individual service configurations.

Adding a dedicated user

Since cyclops services will be executed as system processes, it is highly
recommended to create a dedicated user to execute these services.

sudo useradd -s /sbin/nologin cyclops

Optional softwares

As cyclops framework components generate extensive log messages, it is highly
recommended to setup logrotate process to ensure log files do not consume
the entire usable disk space.

cURL is used to setup RabbitMQ bindings for various Cyclops services later
on. It is recommended to install it to avoide setup using the graphical
interface.

System folders

Lets set up appropriate directories to place the binaries, configuration
files, and log files.

sudo mkdir -p /var/log/cyclops/
sudo mkdir -p /etc/cyclops/
sudo mkdir -p /usr/local/bin/cyclops/
sudo mkdir -p /var/lib/cyclops/

We will move the compiled binaries into /usr/local/bin/cyclops/ subtree,
configuration files under /etc/cyclops/ subtree, and the log files will be
stored within /var/log/cyclops/ directory subtree. /var/lib/cyclops/ is
used in case the services require a folder to store additional files.

Bootstrapping Postgresql

Please use the following statements to allow Cyclops micro-services to setup
service specific tables.

sudo -i -u postgres psql -c "alter system set idle_in_transaction_session_timeout='5min';"
sudo -i -u postgres psql -c "DROP USER IF EXISTS cyclops;"
sudo -i -u postgres psql -c "CREATE USER cyclops WITH PASSWORD 'pass1234';"
sudo -i -u postgres psql -c "ALTER USER cyclops CREATEDB;"
sudo -i -u postgres psql -c "CREATE DATABASE cyclops;"
sudo -i -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE cyclops TO cyclops;"

Please set a reasonably strong password while creating a Cyclops DB user

Configuring RabbitMQ

Since Cyclops services uses RabbitMQ for inter-process communication, it is
important that the messaging system is already preconfigured to enable
communication.

sudo rabbitmq-plugins enable rabbitmq_management
sudo rabbitmqctl add_user cyclops pass1234
sudo rabbitmqctl set_user_tags cyclops administrator
sudo rabbitmqctl add_vhost cyclops
sudo rabbitmqctl set_permissions -p cyclops cyclops ".*" ".*" ".*"

Please set a reasonably strong rabbitmq user password

For sake of ease, we will continue using pass1234 in subsequent pages, do
replace it with the actual value that was used instead. Figure 1 shows the
global exchange and queue bindings maps and relationship between various
Cyclops framework services.

[image: global binding schema]
Figure 1: Global bindings map and relations with Cyclops services

The above bindings will be setup part by part while setting up respective
services. Follow through the guide for installing each service individually.

Install & Configure: UDR

Let us setup UDR micro-service to run as a linux system service.

Preparing the host machine

Start by creating system folders for UDR service.

sudo mkdir -p /var/log/cyclops/udr/
sudo mkdir -p /etc/cyclops/udr/
sudo mkdir -p /usr/local/bin/cyclops/udr/

For logging to work properly, these files must exist, perform the next
commands to ensure the same.

	errors.log

	trace.log

	rest.log

	dispatch.log

	data.log

	commands.log

	timeseries.log

sudo touch /var/log/cyclops/udr/errors.log
sudo touch /var/log/cyclops/udr/trace.log
sudo touch /var/log/cyclops/udr/rest.log
sudo touch /var/log/cyclops/udr/dispatch.log
sudo touch /var/log/cyclops/udr/data.log
sudo touch /var/log/cyclops/udr/commands.log
sudo touch /var/log/cyclops/udr/timeseries.log

Let’s move the binary and the configuration files from the compiled locations
to the target system destinations.

sudo mv UDR/target/udr.jar /usr/local/bin/cyclops/udr/
sudo mv UDR/config/udr.conf /etc/cyclops/udr/

Preparing the Postgressql / TimescaleDB

Before working with the udr service, it is necessary to setup the appropriate
database and table schemas. This can be achieved by executing the following
commands on the host where the Postgresql service is running.

psql -U postgres -h localhost <<EOF
CREATE DATABASE cyclops_udr WITH OWNER cyclops;
GRANT ALL PRIVILEGES ON DATABASE cyclops_udr TO cyclops;
EOF

psql -U cyclops -h localhost -d cyclops_udr <<EOF
CREATE TABLE IF NOT EXISTS usage (
 time TIMESTAMP NOT NULL,
 metric TEXT NOT NULL,
 account TEXT NOT NULL,
 usage DOUBLE PRECISION NOT NULL,
 data JSONB,
 unit TEXT
);
CREATE INDEX IF NOT EXISTS usage_metric ON usage (metric, time DESC);
CREATE INDEX IF NOT EXISTS usage_account ON usage (account, time DESC);
CREATE INDEX IF NOT EXISTS usage_unit ON usage (unit, time DESC);
CREATE INDEX IF NOT EXISTS usage_data ON usage USING HASH (data);
EOF

psql -U cyclops -h localhost -d cyclops_udr <<EOF
CREATE TABLE IF NOT EXISTS udr (
 time_from TIMESTAMP NOT NULL,
 time_to TIMESTAMP NOT NULL,
 metric TEXT NOT NULL,
 account TEXT NOT NULL,
 usage DOUBLE PRECISION NOT NULL,
 data JSONB,
 unit TEXT
);
CREATE INDEX IF NOT EXISTS udr_metric ON udr (metric, time_from DESC);
CREATE INDEX IF NOT EXISTS udr_account ON udr (account, time_from DESC);
CREATE INDEX IF NOT EXISTS udr_unit ON udr (unit, time_from DESC);
CREATE INDEX IF NOT EXISTS udr_data ON udr USING HASH (data);
EOF

Preparing RabbitMQ

Assuming that RabbitMQ is running on the same machine where the following
commands are to be executed, running these will setup necessary exchanges,
queues and bindings between them for udr process to function properly.

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.udr.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.udr.commands

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.udr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"direct", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.udr.dispatch

In the above commands, do not forget to replace -u values cyclops and
pass1234 to correct RabbitMQ user/pass values that was setup earlier.

Configuring UDR

You can configure the service endpoints and dependencies in the configuration
file located under /etc/cyclops/udr/

Default content is shown next:

HTTP and/or HTTPS port to be exposed at
ServerHTTPPort=4567
#ServerHTTPSPort=5567
#ServerHTTPSCertPath=/path/to/cert.p12
#ServerHTTPSPassword=password

Health check every X seconds
ServerHealthCheck=30
ServerHealthShutdown=false

Database credentials to TimescaleDB
DatabasePort=5432
DatabaseHost=localhost
DatabaseUsername=cyclops
DatabasePassword=password
DatabaseName=cyclops_udr
DatabasePageLimit=500
DatabaseConnections=4

Publisher (RabbitMQ) credentials
PublisherHost=localhost
PublisherUsername=cyclops
PublisherPassword=password
PublisherPort=5672
PublisherVirtualHost=cyclops
PublisherDispatchExchange=cyclops.udr.dispatch
PublisherBroadcastExchange=cyclops.udr.broadcast

Consumer (RabbitMQ) credentials
ConsumerHost=localhost
ConsumerUsername=cyclops
ConsumerPassword=password
ConsumerPort=5672
ConsumerVirtualHost=cyclops
ConsumerDataQueue=cyclops.udr.consume
ConsumerCommandsQueue=cyclops.udr.commands

	ServerHTTPPort / ServerHTTPSPort: You can configure the port where the service will be running at. HTTPS is supported if you provide a valid certificate and the associated password.

	TimescaleDB parameters are same as Postgressql parameters

	RabbitMQ block configures how this service communicates with an existing RabbitMQ service endpoint, they are defined for both the consumer as well as publisher process.

Fixing permissions

Before running any of the Cyclops framework services via systemctl command,
make sure that the process user cyclops which was created earlier to run the
process has full read/write access to Cyclops specific system folder and files.

sudo chown -R cyclops:cyclops /var/log/cyclops/
sudo chown -R cyclops:cyclops /usr/local/bin/cyclops/
sudo chown -R cyclops:cyclops /etc/cyclops/
sudo chown -R cyclops:cyclops /var/lib/cyclops/

Setup as a service

Create a file called cyclops-udr.service in /etc/systemd/system/
directory. Add the following content to this file:

[Unit]
Description=Cyclops UDR Service
After=network.target rabbitmq-server.service postgresql-9.6.service

[Service]
ExecStartPre=/bin/sleep 2
Type=simple
User=cyclops
ExecStart=/usr/bin/java -jar /usr/local/bin/cyclops/udr/udr.jar /etc/cyclops/udr/udr.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

This assumes that the rabbitmq and postgres server is running in the same
machine where you are setting up udr service. If not then remove them from the
dependencies list by changing the After line above. Do make sure that
these services are running and reachable before udr service is started.

You can enable and manage the udr service and start it by using the following
systemctl commands.

sudo systemctl enable cyclops-udr.service
sudo systemctl start/stop/restart/status cyclops-udr.service

Install & Configure: CDR

Let us setup CDR micro-service to run as a linux system service.

Preparing the host machine

Start by creating system folders for CDR service.

sudo mkdir -p /var/log/cyclops/cdr/
sudo mkdir -p /etc/cyclops/cdr/
sudo mkdir -p /usr/local/bin/cyclops/cdr/

For logging to work properly, these files must exist, perform the next
commands to ensure the same.

	errors.log

	trace.log

	rest.log

	dispatch.log

	data.log

	commands.log

	timeseries.log

sudo touch /var/log/cyclops/cdr/errors.log
sudo touch /var/log/cyclops/cdr/trace.log
sudo touch /var/log/cyclops/cdr/rest.log
sudo touch /var/log/cyclops/cdr/dispatch.log
sudo touch /var/log/cyclops/cdr/data.log
sudo touch /var/log/cyclops/cdr/commands.log
sudo touch /var/log/cyclops/cdr/timeseries.log

Let’s move the binary and the configuration files from the compiled locations
to the target system destinations.

sudo mv CDR/target/cdr.jar /usr/local/bin/cyclops/cdr/
sudo mv CDR/config/cdr.conf /etc/cyclops/cdr/

Preparing the Postgressql / TimescaleDB

Before working with the cdr service, it is necessary to setup the appropriate
database and table schemas. This can be achieved by executing the following
commands on the host where the Postgresql service is running.

psql -U postgres -h localhost <<EOF
CREATE DATABASE cyclops_cdr WITH OWNER cyclops;
GRANT ALL PRIVILEGES ON DATABASE cyclops_cdr TO cyclops;
EOF

psql -U cyclops -h localhost -d cyclops_cdr <<EOF
CREATE TABLE IF NOT EXISTS cdr (
 time_from TIMESTAMP NOT NULL,
 time_to TIMESTAMP NOT NULL,
 metric TEXT NOT NULL,
 account TEXT NOT NULL,
 charge DOUBLE PRECISION NOT NULL,
 data JSONB,
 currency TEXT
);
CREATE INDEX IF NOT EXISTS cdr_metric ON cdr (metric, time_from DESC);
CREATE INDEX IF NOT EXISTS cdr_account ON cdr (account, time_from DESC);
CREATE INDEX IF NOT EXISTS cdr_currency ON cdr (currency, time_from DESC);
CREATE INDEX IF NOT EXISTS cdr_data ON cdr USING HASH (data);
EOF

Preparing RabbitMQ

Assuming that RabbitMQ is running on the same machine where the following
commands are to be executed, running these will setup necessary exchanges,
queues and bindings between them for cdr process to function properly.

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.cdr.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.cdr.commands

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coincdr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"direct", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.cdr.dispatch

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.cdr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d '{}' http://localhost:15672/api/bindings/cyclops/e/cyclops.coincdr.broadcast/q/cyclops.cdr.consume

In the above commands, do not forget to replace the -u values cyclops
and pass1234 to correct RabbitMQ user/pass values that was setup earlier.

Configuring CDR

You can configure the service endpoints and dependencies in the configuration
file located under /etc/cyclops/cdr/

Default content is shown next:

HTTP and/or HTTPS port to be exposed at
ServerHTTPPort=4568
#ServerHTTPSPort=5568
#ServerHTTPSCertPath=/path/to/cert.p12
#ServerHTTPSPassword=password

Health check every X seconds
ServerHealthCheck=30
ServerHealthShutdown=false

Database credentials to TimescaleDB
DatabasePort=5432
DatabaseHost=localhost
DatabaseUsername=cyclops
DatabasePassword=password
DatabaseName=cyclops_cdr
DatabasePageLimit=500
DatabaseConnections=2

Publisher (RabbitMQ) credentials
PublisherHost=localhost
PublisherUsername=cyclops
PublisherPassword=password
PublisherPort=5672
PublisherVirtualHost=cyclops
PublisherDispatchExchange=cyclops.cdr.dispatch
PublisherBroadcastExchange=cyclops.cdr.broadcast

Consumer (RabbitMQ) credentials
ConsumerHost=localhost
ConsumerUsername=cyclops
ConsumerPassword=password
ConsumerPort=5672
ConsumerVirtualHost=cyclops
ConsumerDataQueue=cyclops.cdr.consume
ConsumerCommandsQueue=cyclops.cdr.commands

	ServerHTTPPort / ServerHTTPSPort: You can configure the port where the service will be running at. HTTPS is supported if you provide a valid certificate and the associated password.

	TimescaleDB parameters are same as Postgressql parameters

	RabbitMQ block configures how this service communicates with an existing RabbitMQ service endpoint, they are defined for both the consumer as well as publisher process.

Fixing permissions

Before running any of the Cyclops framework services via systemctl command,
make sure that the process user cyclops which was created earlier to run the
process has full read/write access to Cyclops specific system folder and files.

sudo chown -R cyclops:cyclops /var/log/cyclops/
sudo chown -R cyclops:cyclops /usr/local/bin/cyclops/
sudo chown -R cyclops:cyclops /etc/cyclops/
sudo chown -R cyclops:cyclops /var/lib/cyclops/

Setup as a service

Create a file called cyclops-cdr.service in /etc/systemd/system/
directory. Add the following content to this file:

[Unit]
Description=Cyclops CDR Service
After=network.target rabbitmq-server.service postgresql-9.6.service

[Service]
ExecStartPre=/bin/sleep 2
Type=simple
User=cyclops
ExecStart=/usr/bin/java -jar /usr/local/bin/cyclops/cdr/cdr.jar /etc/cyclops/cdr/cdr.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

This assumes that the rabbitmq and postgres server is running in the same
machine where you are setting up cdr service. If not then remove them from the
dependencies list by changing the After line above. Do make sure that
these services are running and reachable before cdr service is started.

You can enable and manage the cdr service and start it by using the following
systemctl commands.

sudo systemctl enable cyclops-cdr.service
sudo systemctl start/stop/restart/status cyclops-cdr.service

Install & Configure: Billing

Let us setup Billing micro-service to run as a linux system service.

Preparing the host machine

Start by creating system folders for Billing service.

sudo mkdir -p /var/log/cyclops/billing/
sudo mkdir -p /etc/cyclops/billing/
sudo mkdir -p /usr/local/bin/cyclops/billing/

For logging to work properly, these files must exist, perform the next
commands to ensure the same.

	errors.log

	trace.log

	rest.log

	dispatch.log

	data.log

	commands.log

	timeseries.log

sudo touch /var/log/cyclops/billing/errors.log
sudo touch /var/log/cyclops/billing/trace.log
sudo touch /var/log/cyclops/billing/rest.log
sudo touch /var/log/cyclops/billing/dispatch.log
sudo touch /var/log/cyclops/billing/data.log
sudo touch /var/log/cyclops/billing/commands.log
sudo touch /var/log/cyclops/billing/timeseries.log

Let’s move the binary and the configuration files from the compiled locations
to the target system destinations.

sudo mv Billing/target/billing.jar /usr/local/bin/cyclops/billing/
sudo mv Billing/config/billing.conf /etc/cyclops/billing/

Preparing the Postgressql / TimescaleDB

Before working with the billing service, it is necessary to setup the
appropriate database and table schemas. This can be achieved by executing the
following commands on the host where the Postgresql service is running.

psql -U postgres -h localhost <<EOF
CREATE DATABASE cyclops_billing WITH OWNER cyclops;
GRANT ALL PRIVILEGES ON DATABASE cyclops_billing TO cyclops;
EOF

psql -U cyclops -h localhost -d cyclops_billing <<EOF
CREATE TABLE IF NOT EXISTS billrun (
 id SERIAL primary key,
 time TIMESTAMP NOT NULL,
 data JSONB
);
EOF

psql -U cyclops -h localhost -d cyclops_billing <<EOF
CREATE TABLE IF NOT EXISTS bill (
 id SERIAL,
 run INTEGER REFERENCES billrun,
 time_from TIMESTAMP NOT NULL,
 time_to TIMESTAMP NOT NULL,
 account TEXT NOT NULL,
 charge DOUBLE PRECISION NOT NULL,
 discount TEXT,
 data JSONB,
 currency TEXT
);
CREATE INDEX IF NOT EXISTS bill_account ON bill (account, time_from DESC);
CREATE INDEX IF NOT EXISTS bill_currency ON bill (currency, time_from DESC);
CREATE INDEX IF NOT EXISTS bill_data ON bill USING HASH (data);
EOF

Preparing RabbitMQ

Assuming that RabbitMQ is running on the same machine where the following
commands are to be executed, running these will setup necessary exchanges,
queues and bindings between them for billing process to function properly.

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.billing.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.billing.commands

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coinbill.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"direct", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.billing.dispatch

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.billing.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d '{}' http://localhost:15672/api/bindings/cyclops/e/cyclops.coinbill.broadcast/q/cyclops.billing.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.cdr.commands

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.coinbill.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d "{\"routing_key\":\"CDR\"}" http://localhost:15672/api/bindings/cyclops/e/cyclops.billing.dispatch/q/cyclops.cdr.commands

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d "{\"routing_key\":\"CoinBill\"}" http://localhost:15672/api/bindings/cyclops/e/cyclops.billing.dispatch/q/cyclops.coinbill.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d "{\"routing_key\":\"SelfPublish\"}" http://localhost:15672/api/bindings/cyclops/e/cyclops.billing.dispatch/q/cyclops.billing.commands

In the above commands, do not forget to replace the -u values cyclops
and pass1234 to correct RabbitMQ user/pass values that was setup earlier.

Configuring Billing

You can configure the service endpoints and dependencies in the configuration
file located under /etc/cyclops/billing/

Default content is shown next:

HTTP and/or HTTPS port to be exposed at
ServerHTTPPort=4569
#ServerHTTPSPort=5569
#ServerHTTPSCertPath=/path/to/cert.p12
#ServerHTTPSPassword=password

Health check every X seconds
ServerHealthCheck=30
ServerHealthShutdown=false

Database credentials to TimescaleDB
DatabasePort=5432
DatabaseHost=localhost
DatabaseUsername=cyclops
DatabasePassword=password
DatabaseName=cyclops_billing
DatabasePageLimit=500
DatabaseConnections=2

Publisher (RabbitMQ) credentials
PublisherHost=localhost
PublisherUsername=cyclops
PublisherPassword=password
PublisherPort=5672
PublisherVirtualHost=cyclops
PublisherDispatchExchange=cyclops.billing.dispatch
PublisherBroadcastExchange=cyclops.billing.broadcast

Consumer (RabbitMQ) credentials
ConsumerHost=localhost
ConsumerUsername=cyclops
ConsumerPassword=password
ConsumerPort=5672
ConsumerVirtualHost=cyclops
ConsumerDataQueue=cyclops.billing.consume
ConsumerCommandsQueue=cyclops.billing.commands

Bill generation workflow
PublishToCDRWithKey=CDR
PublishToCoinBillWithKey=CoinBill
PublishToSelf=SelfPublish

Connection to customer-database
CustomerDatabaseHost=localhost
CustomerDatabasePort=8888

	ServerHTTPPort / ServerHTTPSPort: You can configure the port where the service will be running at. HTTPS is supported if you provide a valid certificate and the associated password.

	TimescaleDB parameters are same as Postgressql parameters

	RabbitMQ block configures how this service communicates with an existing RabbitMQ service endpoint, they are defined for both the consumer as well as publisher process.

Fixing permissions

Before running any of the Cyclops framework services via systemctl command,
make sure that the process user cyclops which was created earlier to run the
process has full read/write access to Cyclops specific system folder and files.

sudo chown -R cyclops:cyclops /var/log/cyclops/
sudo chown -R cyclops:cyclops /usr/local/bin/cyclops/
sudo chown -R cyclops:cyclops /etc/cyclops/
sudo chown -R cyclops:cyclops /var/lib/cyclops/

Setup as a service

Create a file called cyclops-billing.service in /etc/systemd/system/
directory. Add the following content to this file:

[Unit]
Description=Cyclops billing Service
After=network.target rabbitmq-server.service postgresql-9.6.service

[Service]
ExecStartPre=/bin/sleep 2
Type=simple
User=cyclops
ExecStart=/usr/bin/java -jar /usr/local/bin/cyclops/billing/billing.jar /etc/cyclops/billing/billing.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

This assumes that the rabbitmq and postgres server is running in the same
machine where you are setting up billing service. If not then remove them from
the dependencies list by changing the After line above. Do make sure that
these services are running and reachable before billing service is started.

You can enable and manage the billing service and start it by using the
following systemctl commands.

sudo systemctl enable cyclops-billing.service
sudo systemctl start/stop/restart/status cyclops-billing.service

Install & Configure: Rule Engine

Coin is our rule engine and microservice enabling model insertion and its
execution. It supports the cdr and billing processes in model based pricing,
charging and discounting workflows.

Two rule engine processes have to be setup for each of the following microservices -

	cdr

	billing

These two rule engine processes in this guide are therefore named as follows -

	coincdr

	coinbill

Setup & configuration: coincdr

Preparing the host machine

Start by creating system folders for coincdr service.

sudo mkdir -p /var/log/cyclops/coincdr/
sudo mkdir -p /etc/cyclops/coincdr/
sudo mkdir -p /usr/local/bin/cyclops/coincdr/

For logging to work properly, these files must exist, perform the next
commands to ensure the same.

	errors.log

	trace.log

	hibernate.log

	facts.log

	rules.log

	timeline.log

	dispatch.log

	stream.log

sudo touch /var/log/cyclops/coincdr/errors.log
sudo touch /var/log/cyclops/coincdr/trace.log
sudo touch /var/log/cyclops/coincdr/hibernate.log
sudo touch /var/log/cyclops/coincdr/facts.log
sudo touch /var/log/cyclops/coincdr/rules.log
sudo touch /var/log/cyclops/coincdr/timeline.log
sudo touch /var/log/cyclops/coincdr/dispatch.log
sudo touch /var/log/cyclops/coincdr/stream.log

Let’s move the binary and the configuration files from the compiled locations
to the target system destinations.

sudo cp Coin/target/coin.jar /usr/local/bin/cyclops/coincdr/coincdr.jar
sudo cp CDR/config/coin.conf /etc/cyclops/coincdr/coincdr.conf

Preparing RabbitMQ

Assuming that RabbitMQ is running on the same machine where the following
commands are to be executed, running these will setup necessary exchanges,
queues and bindings between them for coincdr process to function properly.

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.coincdr.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.udr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d '{}' http://localhost:15672/api/bindings/cyclops/e/cyclops.udr.broadcast/q/cyclops.coincdr.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coincdr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"direct", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coincdr.dispatch

In the above commands, do not forget to replace the -u values cyclops
and pass1234 to correct RabbitMQ user/pass values that was setup earlier.

Configuring coincdr

You can configure the service endpoints and dependencies in the configuration
file located under /etc/cyclops/coincdr/

Default content is shown next:

HTTP and/or HTTPS port to be exposed at
ServerHTTPPort=4570
#ServerHTTPSPort=5570
#ServerHTTPSCertPath=/path/to/cert.p12
#ServerHTTPSPassword=pass1234

Health check every X seconds
ServerHealthCheck=30
ServerHealthShutdown=false

Hibernate connection credentials
HibernateURL=jdbc:postgresql://localhost/cyclops_cdr
HibernateUsername=cyclops
HibernatePassword=pass1234
HibernateDriver=org.postgresql.Driver
HibernateDialect=org.hibernate.dialect.PostgreSQL9Dialect

Publisher (RabbitMQ) credentials
PublisherHost=localhost
PublisherUsername=cyclops
PublisherPassword=pass1234
PublisherPort=5672
PublisherMngtPort=15672
PublisherVirtualHost=cyclops
PublisherDispatchExchange=cyclops.coincdr.dispatch
PublisherBroadcastExchange=cyclops.coincdr.broadcast

Consumer (RabbitMQ) credentials
ConsumerHost=localhost
ConsumerUsername=cyclops
ConsumerPassword=pass1234
ConsumerPort=5672
ConsumerMngtPort=15672
ConsumerVirtualHost=cyclops
ConsumeFromQueue=cyclops.coincdr.consume

Bind Coin CDR with UDR (flushing UDR records)
BindWithUDR=cyclops.udr.broadcast

	ServerHTTPPort / ServerHTTPSPort: You can configure the port where the service will be running at. HTTPS is supported if you provide a valid certificate and the associated password.

	Hibernate connections parameters are same as Postgressql parameters

	RabbitMQ block configures how this service communicates with an existing RabbitMQ service endpoint, they are defined for both the consumer as well as publisher process.

Fixing permissions

Before running any of the Cyclops framework services via systemctl command,
make sure that the process user cyclops which was created earlier to run the
process has full read/write access to Cyclops specific system folder and files.

sudo chown -R cyclops:cyclops /var/log/cyclops/
sudo chown -R cyclops:cyclops /usr/local/bin/cyclops/
sudo chown -R cyclops:cyclops /etc/cyclops/
sudo chown -R cyclops:cyclops /var/lib/cyclops/

Setup as a service

Create a file called cyclops-coincdr.service in /etc/systemd/system/
directory. Add the following content to this file:

[Unit]
Description=Cyclops Coin CDR Service
After=network.target rabbitmq-server.service postgresql-9.6.service

[Service]
ExecStartPre=/bin/sleep 2
Type=simple
User=cyclops
ExecStart=/usr/bin/java -jar /usr/local/bin/cyclops/coincdr/coincdr.jar /etc/cyclops/coincdr/coincdr.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

This assumes that the rabbitmq and postgres server is running in the same
machine where you are setting up coincdr service. If not then remove them from
the dependencies list by changing the After line above. Do make sure that
these services are running and reachable before coincdr service is started.

You can enable and manage the coincdr service and start it by using the
following systemctl commands.

sudo systemctl enable cyclops-coincdr.service
sudo systemctl start/stop/restart/status cyclops-coincdr.service

Setup & configuration: coinbill

Preparing the host machine

Start by creating system folders for coinbill service.

sudo mkdir -p /var/log/cyclops/coinbill/
sudo mkdir -p /etc/cyclops/coinbill/
sudo mkdir -p /usr/local/bin/cyclops/coinbill/

For logging to work properly, these files must exist, perform the next
commands to ensure the same.

	errors.log

	trace.log

	hibernate.log

	facts.log

	rules.log

	timeline.log

	dispatch.log

	stream.log

sudo touch /var/log/cyclops/coinbill/errors.log
sudo touch /var/log/cyclops/coinbill/trace.log
sudo touch /var/log/cyclops/coinbill/hibernate.log
sudo touch /var/log/cyclops/coinbill/facts.log
sudo touch /var/log/cyclops/coinbill/rules.log
sudo touch /var/log/cyclops/coinbill/timeline.log
sudo touch /var/log/cyclops/coinbill/dispatch.log
sudo touch /var/log/cyclops/coinbill/stream.log

Let’s move the binary and the configuration files from the compiled locations
to the target system destinations.

sudo mv Coin/target/coin.jar /usr/local/bin/cyclops/coinbill/coinbill.jar
sudo mv CDR/config/coin.conf /etc/cyclops/coinbill/coinbill.conf

Preparing RabbitMQ

Assuming that RabbitMQ is running on the same machine where the following
commands are to be executed, running these will setup necessary exchanges,
queues and bindings between them for coinbill process to function properly.

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"durable":true}' http://localhost:15672/api/queues/cyclops/cyclops.coinbill.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.cdr.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPOST -d '{}' http://localhost:15672/api/bindings/cyclops/e/cyclops.cdr.broadcast/q/cyclops.coinbill.consume

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"fanout", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coinbill.broadcast

curl -u "cyclops:pass1234" -H "content-type:application/json" -XPUT -d '{"type":"direct", "durable":true}' http://localhost:15672/api/exchanges/cyclops/cyclops.coinbill.dispatch

In the above commands, do not forget to replace the -u values cyclops
and pass1234 to correct RabbitMQ user/pass values that was setup earlier.

Configuring coinbill

You can configure the service endpoints and dependencies in the configuration
file located under /etc/cyclops/coinbill/

Default content is shown next:

HTTP and/or HTTPS port to be exposed at
ServerHTTPPort=4571
#ServerHTTPSPort=5571
#ServerHTTPSCertPath=/path/to/cert.p12
#ServerHTTPSPassword=pass1234

Health check every X seconds
ServerHealthCheck=30
ServerHealthShutdown=false

Hibernate connection credentials
HibernateURL=jdbc:postgresql://localhost/cyclops_billing
HibernateUsername=cyclops
HibernatePassword=pass1234
HibernateDriver=org.postgresql.Driver
HibernateDialect=org.hibernate.dialect.PostgreSQL9Dialect

Publisher (RabbitMQ) credentials
PublisherHost=localhost
PublisherUsername=cyclops
PublisherPassword=pass1234
PublisherPort=5672
PublisherMngtPort=15672
PublisherVirtualHost=cyclops
PublisherDispatchExchange=cyclops.coinbill.dispatch
PublisherBroadcastExchange=cyclops.coinbill.broadcast

Consumer (RabbitMQ) credentials
ConsumerHost=localhost
ConsumerUsername=cyclops
ConsumerPassword=pass1234
ConsumerPort=5672
ConsumerMngtPort=15672
ConsumerVirtualHost=cyclops
ConsumeFromQueue=cyclops.coinbill.consume

Bind Coin Bill with CDR (flushing CDR records)
BindWithCDR=cyclops.cdr.broadcast

	ServerHTTPPort / ServerHTTPSPort: You can configure the port where the service will be running at. HTTPS is supported if you provide a valid certificate and the associated password.

	Hibernate connections parameters are same as Postgressql parameters

	RabbitMQ block configures how this service communicates with an existing RabbitMQ service endpoint, they are defined for both the consumer as well as publisher process.

Fixing permissions

Before running any of the Cyclops framework services via systemctl command,
make sure that the process user cyclops which was created earlier to run the
process has full read/write access to Cyclops specific system folder and files.

sudo chown -R cyclops:cyclops /var/log/cyclops/
sudo chown -R cyclops:cyclops /usr/local/bin/cyclops/
sudo chown -R cyclops:cyclops /etc/cyclops/
sudo chown -R cyclops:cyclops /var/lib/cyclops/

Setup as a service

Create a file called cyclops-coinbill.service in /etc/systemd/system/
directory. Add the following content to this file:

[Unit]
Description=Cyclops Coin Bill Service
After=network.target rabbitmq-server.service postgresql-9.6.service

[Service]
ExecStartPre=/bin/sleep 2
Type=simple
User=cyclops
ExecStart=/usr/bin/java -jar /usr/local/bin/cyclops/coinbill/coinbill.jar /etc/cyclops/coinbill/coinbill.conf
Restart=on-abort

[Install]
WantedBy=multi-user.target

This assumes that the rabbitmq and postgres server is running in the same
machine where you are setting up coinbill service. If not then remove them
from the dependencies list by changing the After line above. Do make sure
that these services are running and reachable before coincdr service is
started.

You can enable and manage the coinbill service and start it by using the
following systemctl commands.

sudo systemctl enable cyclops-coinbill.service
sudo systemctl start/stop/restart/status cyclops-coinbill.service

Managing Cyclops

Now that we have the framework configured properly, lets look at how to manage
a live Cyclops service.

Configuring a collector

Rules management

It is assumed that you already know how to read/understand/write Drools rule.
If not please read further here [https://www.tutorialspoint.com/drools/drools_rules_writing.htm].

Managing rules in coincdr

Cyclops data transformation workflow is heavily guide by pricing and billing
models injected within the rule engines attached to the microservices cdr
and billing. These are called coincdr and coinbill.

Assuming that the usage data being sent to cyclops has the following form -

{
 "metric":"somemeter",
 "account":"customer-account",
 "usage":2,
 "unit":"GB",
 "time":1507593601000,
 "data":{
 "serviceId":"user1@cust-x.ch",
 "billingModel":"Smart"
 }
}

You can inject rules within the coincdr rule engine to manipulate any
fields you see in the JSON above. Fields inside the data block is accessible
via the corresponding Map object.

A sample rule is shown below -

import ch.icclab.cyclops.facts.Usage;
import ch.icclab.cyclops.facts.Charge;

rule "Rate somemeter usage value"
salience 50
when
 $usage: Usage(metric == "somemeter" && data != null && data contains "billingModel" && data["billingModel"]=="Smart")
then
 Charge charge = new Charge($usage);
 charge.setCharge($usage.getUsage() * 0.4);

 insert(charge);
 retract($usage);
end

Analyzing the rule above, if the usage record being processed contains a data
block and an element billingModel, then generates the charge by multiplying
the usage value with 0.4.

This example simply shows how with ease, Cyclops rule engines can be
programmed.

You can have multiple rules which can be potentially apply in a given
situation, but which one is triggered can be controlled by the weight assigned
to a rule. The weight is controlled via the salience parameter.

Lets assume one wishes to have a catch all rule for processing usage. This can
be written as shown below -

import ch.icclab.cyclops.facts.Usage;
import ch.icclab.cyclops.facts.Charge;

rule "Remaining services for free"
salience 40
when
 $usage: Usage()
then
 Charge charge = new Charge($usage);
 charge.setCharge(0);

 insert(charge);
 retract($usage);
end

Since the salience of the rule is lesser than the first rule, it will be
applied only when the first rule mentioned in this page is inapplicable.

You can even control data transmission behavior via rules. Say we want to push
all generated charge records over to a channel, specially within the Cyclops
framework we must push the cdr records to a specific RabbitMQ exchange, it can
be achieved via the following rule within coincdr.

import ch.icclab.cyclops.facts.Charge;
import java.util.List;
global ch.icclab.cyclops.publish.Messenger messenger;

rule "Broadcast CDRs"
salience 20
when
 $charge: List(size > 0) from collect (Charge())
then
 messenger.broadcast($charge);
 $charge.forEach(c->retract(c));
end

Managing rules in coinbill

Just like the rules for coincdr that governs the transformation of udr
records to cdr records, one needs to manage the rules in coinbill to govern
the generation of bill from cdr records.

Lets look at a sample coinbill rule that upon receipt of the bill generation
command and the list of cdr records, creates the bill for the requested set of
accounts -

import ch.icclab.cyclops.facts.BillRequest;
import ch.icclab.cyclops.facts.Charge;
import ch.icclab.cyclops.facts.Bill;
import java.util.List;

rule "Collect CDRs for the Bill Request"
salience 50
when
 $request: BillRequest($accounts: accounts)
 $CDRs: List(size > 0) from collect (Charge(account memberOf $accounts))
then
 // bills for each currency of account\'s CDRs
 List<Bill> bills = $request.process($CDRs);

 // add bills to the working memory
 bills.forEach(bill->insert(bill));

 // remove processed CDRs and the bill request
 $CDRs.forEach(c->retract(c));
 retract($request);
end

The statements of the rule above should be self explanatory. Similar to
coincdr where one had to prepare a rule for sending the generated records to
next stop in the data path, here too in Cyclops framework, the generated bill
records should be moved to the next stage in the messaging setup -

import ch.icclab.cyclops.facts.DatonusBill;
import java.util.List;

global ch.icclab.cyclops.publish.Messenger messenger;

rule "Broadcast generated Datonus bills"
salience 30
when
 $bills: List(size > 0) from collect (DatonusBill())
then
 // broadcast and remove processed bills
 messenger.broadcast($bills);
 $bills.forEach(bill->retract(bill));
end

As you can notice, usually all Java language constructs and objects are available to you while formulating a rule.

Rule management endpoints

The above shown example rules and any other that one may create must be
uploaded to the corresponding rule engines. This is achieved by sending a HTTP
POST request to the rule engine endpoint

	coin-cdr-url-or-ip:port/rule

	coin-bill-url-or-ip:port/rule

Generation of a bill

Advanced customizations

Working with the dashboard

Advanced RabbitMQ setup

Rule Versioning

It is possible to use git integration and rollback coin rules to previous versions.
This will also roll back all affected CDRs and bills

Setup rule versioning

To enable this functionality, a git repository needs to be created for the rules.
The credentials for this repository need to be specified in the conf file of
the coin service.

Git credentials:
GitRepo=
GitUsername=
GitPassword=
GitProjectPath=

Setting up checkpoints for the rules

To be able to roll back rules, they need to be uploaded to the git repository
after they are applied to coin. Different versions of the rules can be tagged
for easier reference.

Rolling back rules and affected records

To rollback rules to a previous version, a command request needs to be made to
coin with the following format:

{
 "commits": [
 {
 "added": [
 <list of rules added by the commit>
],
 "modified": [
 <list of rules modified by the commit>
]
 }
],
 "project_id": <id of the project>,
 "ref": <tag or branch to roll back to>,
 "time_from": <time of the commit to be undone>
}

A list of ‘bad’ commits can be provided, with lists of files added or modified
in those commits. The time_from parameter is important, as it will set the
checkpoint for the rolling back of CDRs and bills.
This request is made to:

<coinurl>/newrule?execute=true

The execute parameter forces all rules to be fired when a rule is rolled back.

Forecasting and Estimation Engine

Description of the implementation of the forecasting and estimation engine and
how it can be used to create cost forecasts and evaluate different pricing
models.

Per account forecast: (Forecast command)

	All historical records for account are retrieved from DB

	They are grouped by usage type

	A set of forecast records are generated for each usage type using the ARIMA model, UDRs, CDRs and Bills are generated using ‘evaluation rules’

Model based global forecast: (Forecast command with no account specified)

	Same as per account forecast, but ignores account and aggregates all records

	Depends on the ARIMA model itself to determine usage and account activity patterns and customize the forecast

2D pattern based forecast: (GlobalForecast command)

	Creates usage patterns by grouping the historical records by account and by type

	Creates an activity pattern by counting how many users were active for each day in the history

	Uses the ARIMA model to create a future activity forecast (how many accounts are expected to be active each day in the forecast period)

	For each active account for each day in the forecast period, assigns one of the generated usage patterns and uses ARIMA model to forecast the usage for each usage type

	As before, UDRs, CDRs and Bills are generated using ‘evaluation rules’

Evaluation rules/Pricing models under evaluation:

	Rules that are fired only when the records have a specific tag

	Groups of rules can have the same tag target so that they can be grouped into a separate pricing model to be evaluated

	The pricing model is marked by its tag, and the target model is specified by its tag in the forecast command payload

Request example (can be used as a payload either to the command HTTP endpoint
or to send a command through AMPQ:

{

 "command": "GlobalForecast",

 "target": "test1",

 "forecastSize": 15

}

Rule example:

rule "Test 1 rule for ram (12:3:58.4 11/Jun/2019)"

salience 60

when

 $usage: Usage(metric == "memory" && account.contains("test1"))

then

…

The important things to note about the rules are:

	The salience must be higher than the ‘real’ rules, so that it gets checked first, or it will never be triggered. This will not affect ‘real’ records, as they will not be tagged.

	The tag for this rule is ‘test1’. The forecast generator tags the records it creates in the account and data fields, so the rule can look for the tag in either place. In this example, for readability, the rule checks for its tag in the account field. In a real case, it is safer to check the data field for the “target”:”test1” pair. That excludes the possibility that real records from a user named ‘test1’ will fire the test rules.

	Rules with the same tag (as long as they comply with the above two points) can be targeted to evaluate a whole new pricing model (a set of charging and pricing rules in this context)

Index

 _images/rabbit_scheme.png
Usage

Collector

Data Dispatch

Exchange

Data Broadoast,

Data Consumer

Queve

Queue

Command Consumer

Data Consumer

Queve

Qu

Command Consumer

Data Consumer

Queve

Queue

Command Consumey|

Queue Queve

Command Consumer Data Consumer

)
UDR H/

Exchange

Data Dispatch

Exchange

Data Dispatch

e

change

Data Broadcast

CDR

nange

Data Dispatch

r

Data Broadcast

Coin Billing Bill

Routing Key

change

Data Broadcast Routing Key CDR

Routing Key CoinBil

Exchange

Data Dispatch

Queue

Command Consumer

ing

[seitPusiisn |
Exchange

Data Broadcast

nange

Data Dispatch

_images/v3.png
APl portals Dashboards Analytics
‘Cyclops 2
! clops
! yclop Load
N balancer
Usage collectors ! ¢
|
OpenStack | | CloudStack i UDR u service RC u service Billing u service
I [[|
: [[[
OpenShift | | Kubernetes [N, - UDR Rule engine - CDR Rule engine Billing
— = instance L instance L instance
T
! < — —
Hadoop Docker : Time Time Relational
! series series database
Cloud Apache : y \) \
Foundry Spark | T
:
|
|
|

Autoscaler

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cyclops’s documentation!

 		
 Building Cyclops

 		
 Building from source

 		
 Requirements

 		
 Download the source

 		
 Building the binaries

 		
 Preparing the host

 		
 Adding a dedicated user

 		
 Optional softwares

 		
 System folders

 		
 Bootstrapping Postgresql

 		
 Configuring RabbitMQ

 		
 Install & Configure: UDR

 		
 Preparing the host machine

 		
 Preparing the Postgressql / TimescaleDB

 		
 Preparing RabbitMQ

 		
 Configuring UDR

 		
 Fixing permissions

 		
 Setup as a service

 		
 Install & Configure: CDR

 		
 Preparing the host machine

 		
 Preparing the Postgressql / TimescaleDB

 		
 Preparing RabbitMQ

 		
 Configuring CDR

 		
 Fixing permissions

 		
 Setup as a service

 		
 Install & Configure: Billing

 		
 Preparing the host machine

 		
 Preparing the Postgressql / TimescaleDB

 		
 Preparing RabbitMQ

 		
 Configuring Billing

 		
 Fixing permissions

 		
 Setup as a service

 		
 Install & Configure: Rule Engine

 		
 Setup & configuration: coincdr

 		
 Preparing the host machine

 		
 Preparing RabbitMQ

 		
 Configuring coincdr

 		
 Fixing permissions

 		
 Setup as a service

 		
 Setup & configuration: coinbill

 		
 Preparing the host machine

 		
 Preparing RabbitMQ

 		
 Configuring coinbill

 		
 Fixing permissions

 		
 Setup as a service

 		
 Managing Cyclops

 		
 Configuring a collector

 		
 Rules management

 		
 Managing rules in coincdr

 		
 Managing rules in coinbill

 		
 Rule management endpoints

 		
 Generation of a bill

 		
 Advanced customizations

 		
 Working with the dashboard

 		
 Advanced RabbitMQ setup

 		
 Rule Versioning

 		
 Setup rule versioning

 		
 Setting up checkpoints for the rules

 		
 Rolling back rules and affected records

 		
 Forecasting and Estimation Engine

 		
 Per account forecast: (Forecast command)

 		
 Model based global forecast: (Forecast command with no account specified)

 		
 2D pattern based forecast: (GlobalForecast command)

 		
 Evaluation rules/Pricing models under evaluation:

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

