

 Navigation

 	
 index

 	
 next |

 	CyberCAPTOR-P2DS 4.4.3 documentation

CyberCAPTOR-P2DS

Licence

This project contains ZHAW’s Contribution towards Privacy-Preserving
Data Sharing (P2DS) for the Cybersecurity GE in FIWARE.

Copyright © 2015 Zürcher Hochschule der Angewandten Wissenschaften
(ZHAW).

Licensed under the Apache License, Version 2.0 (the “License”); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Table of Contents

	1. Architecture

	2. P2DS Installation and Administration Guide
	2.1. Setting Up
	2.1.1. Installing the Services

	2.1.2. Generating Key Pairs

	2.2. Configuring the Services
	2.2.1. Group Management

	2.2.2. Peer

	2.3. Note about persistence.xml

	3. P2DS User and Programmer’s Guide
	3.1. Performing a Computation
	3.1.1. Creating a Group

	3.1.2. Registering the Peers

	3.1.3. Starting the Peers

	3.1.4. Giving the Peers Some Inputs

	3.1.5. Viewing the Results

	3.1.6. Useful Hints

	3.2. Using the APIs

	4. P2DS Workflow
	4.1. Step 1: Setting Up
	4.1.1. Step 1.1: Set Up Group Management

	4.1.2. Step 1.2: Set Up Peers

	4.1.3. Step 1.2: Generate Certificates

	4.2. Step 2: Define a Computation

	4.3. Step 3: Define the Group

	4.4. Step 4: Prepare the Data

	4.5. Step 5: Launch the Computation

	4.6. Step 6: Look at the Results

	CyberCAPTOR-Client [http://cybercaptor.readthedocs.org/projects/cybercaptor-client/en/latest/]

	CyberCAPTOR-Server [http://cybercaptor.readthedocs.org/projects/cybercaptor-server/en/latest/]

Information about development is also available in the README
file [https://github.com/fiware-cybercaptor/cybercaptor-P2DS/blob/master/p2ds/README.md].

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CyberCAPTOR-P2DS 4.4.3 documentation

1. Architecture

The SEPIA library has rather fixed ideas of how communication between
the various peers should happen, and it is unfortunately rather
difficult to untangle these from the basic protocols.

At its base, SEPIA creates a thread for every peer, and that thread
communicates with other peers through messages that signify events. When
a peer waits for a message, it blocks at a socket. Needless to say, this
is not nice when in the context of servlets. We solve this problem by
spawning a thread for every peer, and then connecting the input of the
thread to a blocking message queue. Whenever the servlet receives a
message that’s for a particular thread, the servlet extracts the
message, verifies its signature (which has to be done separately from
SSL for techncial reasons) and puts it into the message queue.

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CyberCAPTOR-P2DS 4.4.3 documentation

2. P2DS Installation and Administration Guide

2.1. Setting Up

You need at least four parties in order for P2DS to work: three parties
have data on which they want to perform a computation, and one party
manages that computation. Neither party needs to trust any other party.
The parties having the data host input and privacy peers and the
managing party hosters the group manager.

2.1.1. Installing the Services

2.1.1.1. Installing from WAR

You should have received three WAR files as part of the P2DS
distribution, or you can build them yourself; see below.

	p2ds-group-management.war contains the group manager

	p2ds-peer.war contains peers

	p2ds-receiver.war may be used for demo purposes (receives final
results)

These must be deployed on application servers. Deploy
p2ds-group-management.war on your group manager and deploy the
pe2ds-peer.war on each organisation that wants to participate in the
computation. Additionally you can also deploy the receiver, but you
should write your own endpoint.

2.1.1.2. Installing from Source

In order to build and compile the services from source code, first get
the source, then build:

git clone https://github.com/fiware-cybercaptor/cybercaptor-P2DS
cd sepia
mvn install -DskipTests
cd ../p2ds
mvn package

Now the directories group-management/target, peer/target, and
receiver/target will contain the respective WAR files.

2.1.2. Generating Key Pairs

All messages that are exchanged in P2DS are digitally signed.
Additionally, all parties should employ TLS. Digital signatures are
needed to be able to check the messages by the receiving parties in
addition to the transport security offered by TLS. And TLS is needed
because in some cases, sensitive information like an authentication
token is transported in the messages.

First, get and build the P2DS key generation program:

git clone https://github.engineering.zhaw.ch/munt/p2dsKeygen.git
cd p2dsKeygen
mvn package -DskipTests

Next, use it to generate a key pair:

java -cp target/keygen-0.0.0.1.jar ch.zhaw.ficore.p2ds.keygen/Main
base64 key.private > key.private.b64
base64 key.public > key.public.b64
srm -s key.private key.public

The last command deletes the (unneeded) binary key files, leaving only
the Base64-encoded ones.

This generates an Elliptic Curve DSA key of 409 bits, which is supposed
to have the equivalent RSA strength of more than 8192 bits (see
here [http://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography]).
However, it uses Java’s SecureRandom generator, which has had
trouble [https://en.wikipedia.org/wiki/Random_number_generator_attack-Java_nonce_collision]
in the past. So it is probably best to be on the lookout for messages
about SecureRandom.

This program generates two files, key.public and key.private,
both of which must be uploaded to the respective peer. They can in
principle be uploaded to any directory on the application server, but we
recommend a directory to which only the applicaiton server has read
access. Since it is not necessary to change the key files, once
uploaded, we also recommend setting the permissions on these files to
read-only. On Unix-like operating systems, do this:

sudo cp key.public.b64 key.private.b64 /var/p2ds
srm -s key.public.b64 key.private.b64
cd /var/p2ds
sudo chown apache key.public.b64 key.private.b64
sudo chmod 444 key.public.b64
sudo chmod 400 key.private.b64
sudo chmod 500 .

Again, the unneeded copies of the key files are securely deleted. This
is not important for the pubic key but very important indeed for the
private key.

Here, apache is the system’s pseudo user that runs the application
server’s processes.

2.2. Configuring the Services

2.2.1. Group Management

The Group Management’s database configuration is described in its
persistence.xml file:

<?xml version-"1.0"?>
<persistence version-"1.0" xmlns-"http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="p2ds-group-management" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.ejb.HibernatePersistence
 </provider>
 <class>ch.zhaw.ficore.p2ds.group.storage.Group</class>
 <class>ch.zhaw.ficore.p2ds.group.storage.Peer</class>
 <class>ch.zhaw.ficore.p2ds.group.storage.Registration</class>
 <properties>
 <property name="hibernate.connection.driver_class"
 value-"com.mysql.jdbc.Driver"/>
 <property name="hibernate.connection.url"
 value-"jdbc:mysql://localhost/p2ds"/>
 <property name="hibernate.connection.username"
 value-"sepia"/>
 <property name="hibernate.connection.password"
 value-"my=password"/>
 <property name="hibernate.dialect"
 value-"org.hibernate.dialect.MySQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value-"create"/>
 <property name="hibernate.show_sql" value-"true"/>
 <property name="hibernate.format_sql" value-"true"/>
 </properties>
 </persistence-unit>
</persistence>

The obviously configurable parameters are
hibernate.connection.driver_class, hibernate.connection.url,
hibernate.connection.username, and
hibernate.connection.password. Change these to suit your database
setup.

The group management service’s configuration can be found in the
web.xml. You only need to configure the group/adminKey option
which is the password for admin functionality.

<?xml version="1.0" encoding="UTF-8"?>
<!-- This web.xml file is not required when using Servlet 3.0 container,
 see implementation details http://jersey.java.net/nonav/documentation/latest/jax-rs.html#d4e194 -->
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>ch.zhaw.ficore.p2ds</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>default</servlet-name>
 <url-pattern>/res/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <env-entry>
 <env-entry-name>peer/adminKey</env-entry-name>
 <env-entry-value>default-admin-key</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>
</web-app>

Additionally you may want to add some security constraints to disable
the GUI from being public. You should read up on tomcat’s security
constraints documentation on how to setup security constraints, roles
and realms. We recommend using at least http basic auth. In general
everything except /group-mgmt/* is something you might not want to
be public:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>GUI</web-resource-name>
 <description>all pages</description>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admins</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>API</web-resource-name>
 <description>REST-API</description>
 <url-pattern>/group-mgmt/*</url-pattern>
 </web-resource-collection>
 <!-- without auth-constraint == public -->
</security-constraint>

2.2.2. Peer

The peer’s database configuration is also described in the
persistence.xml:

<?xml version="1.0"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="p2ds-peer" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.ejb.HibernatePersistence
 </provider>
 <class>ch.zhaw.ficore.p2ds.peer.storage.PeerConfiguration</class>
 <properties>
 <property name="hibernate.connection.driver_class" value="com.mysql.jdbc.Driver"/>
 <property name="hibernate.connection.url" value="jdbc:mysql://localhost/p2ds_input?user=sepia&password=8M07r8FlZZ"/>
 <property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>
 </properties>
 </persistence-unit>
</persistence>

You may and should change the properties based on your setup.

The input peer’s configuration is likewise in its web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This web.xml file is not required when using Servlet 3.0 container,
 see implementation details http://jersey.java.net/nonav/documentation/latest/jax-rs.html#d4e194 -->
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>ch.zhaw.ficore.p2ds</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <env-entry>
 <env-entry-name>peer/url</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-peer</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>peer/adminKey</env-entry-name>
 <env-entry-value>default-admin-key</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>
</web-app>

You only need to configure the peer/url and peer/adminKey
environment entries. peer/url is the url under which the peer
service can be contacted (the url you host it at) and peer/adminKey
is the admin key for REST-API methods only to be used by the admin.

2.3. Note about persistence.xml

<property name="hibernate.hbm2ddl.auto" value="create"/>

The hibernate.hbm2ddl.auto property set to create will re-create
the database (deleting existing entries) at every launch of the
services. This is a good setting if you are just experimenting with P2DS
but it’s not a production setting. You may leave the property on
create for the setup phase but once you go live you should
absolutely remove it.

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CyberCAPTOR-P2DS 4.4.3 documentation

3. P2DS User and Programmer’s Guide

3.1. Performing a Computation

This part manual is written mainly for the person who runs the group
manager. If you run a peer, start reading from here.

3.1.1. Creating a Group

First, locate your administration key. This can be given to you by the
person who installed the group manager WAR file, since it is contained
in the web services web.xml file. This administration key should
always be appended to any administration URL. For example, if the group
manager is installed on grpman.example.com, then the initial URL
should be
https://grpman.example.com:8080/p2ds-group-management?adminKey=key.
(Obviously, substitute the correct port numbers and key value.)

Navigate to the group manager GUI (typically
.../p2ds-group-management/). There you will initially see a simple form
field, asking you to supply a group name. Let’s say you enter
“SimpleGroup” and click on “Create group!”. When you return to the main
page and click on the name of your group, you will see something like
this:

[image: Overview]
Overview

Next, you should set up a configuration. This configuraiton says what
you want to compute and how to compute it. If you click on
“Configuration”, you should see the following.

[image: Configuration]
Configuration

The first element to fill in is “MpcProtocol”. This answers the question
“what do you want to compute?”. The only protocol we have definitive
demand for is “additive”, meaning that you can compute a vector sum. So
you have to put “additive” in that row. (Other protocols include
top-k, where you can compute the top k elements of each column. For
example, the maximum element would be top-1. However, at the time of
writing, we have no demand for that protocol, and, while it is
implemented, we do not support it.)

The next element you should fill in is “MaxElement”. This is the largest
intermediate result you envisage. For “additive” it’s the largest value
you think will occur in a result vector. For example, if you sample
“number of attacks” in 1-minute intervals, you should hardly expect more
than 1000 attacks, so 1000 is a good value.

Next should be “Field”. This is a prime number larger than MaxElement.
In our case, 1013 does the trick. If you are in doubt, you can put the
value 263 - 5 = 9223372036854775783 in that field, even though
computations in that field will take longer.

Next you should take care of NumberOfTimeSlots and NumberOfItems. What
this means is that of you have N = m x n items, you will serve these
items n at a time, m times. For example, let’s say you have 6 numbers in
your vector. You can choose to compute the vector sum by adding up two
numbers, three times; three numbers, two times; one number, six times;
or six numbers, once. They will all give the correct result, but some
settings will be faster than others, and some settings will also be more
robust. For example, if you have more items (large n), the computation
will generally be faster, but if you have more time slots (large m), the
computation will be more robust against peers failing occasionally. (In
R terms, you can have a few “N/A” terms in your result vector.)

A special value for NumberOfTimeSlots is “-1”. This value will cause the
peers to run in streaming mode. Usually, peers will run for
NumberOfTimeSlots time slots and then shut down. When peers are running
in streaming mode, they will forever wait for the next batch of numbers
to process. Upside: you don’t have to initiate a new computation when
you have new data. Downside: one downed or stuck peer will cause the
whole computation to stall.

Finally, you can set ResultBufferSize to control in how many chunks the
results are sent to the configured result endpoint (see the
configuration guide on how to configure this). If you have ten timeslots
and set the result buffer size to 1, then ten final results (one per
timeslot) will be sent to the result endpoint. If you configure the
result buffer size to be 10, only one large result will be sent, after
all timeslots have completed.

If the computation fails, no results are sent. If a peer fails, restart
the computation.

3.1.2. Registering the Peers

Next, talk to the administrators of all the participating organisations
and give them the URL of your group manager service. They should deploy
and configure a peer service on one of their application servers.

Now you can generate registration codes. These codes are one-time codes
that peers use to authorise their registration. If you plan on having m
input peers and n privacy peers, klick the “Create registration” button
m + n times:

[image: Actions]
Actions

For each registration code, you should see one “Open registration code”:

[image: Registration]
Registration

Give one code per peer to the admins. They will need these codes to
register the peers with the group manager. Eventually, you will find a
picture like this:

[image: Members]
Members

Here we show only one peer, but every peer should be present. Peers have
registered, and in registering, they have used up one of the
registration codes. There should therefore be no open registration codes
at this point.

Peers have registered, but they have not been activated. Only activated
peers can participate in the protocol. To do that, talk to each of the
admins of each participating organisation and read the public key of
their peers to them. These should be identtical to the public keys of
those peers that the admins have configured for their peers. Once that
is done, click on “Mark as verified”. Rinse and repeat until all peers
are verified.

The reason there is an additional verification step is that in
principle, everyone can register a peer, but only you, the group
manager, gets to decide who can participate in a computation. This step
also serves as an authentication step to make sure that the public keys
you got from the peers are authentic. This saves you from the hassle
that is PKI.

3.1.3. Starting the Peers

Starting the peers is very simple: go to “Actions” and click on “Start
peers”:

[image: Actions]
Actions

Once that is successful, you should see that “All peers are running”:

[image: Running]
Running

3.1.4. Giving the Peers Some Inputs

Once you have created input and privacy peers (refer to the API guide
how to do that), you need to give them some inputs. Ideally, you have a
web service that does that for you, but if not, you can do that by hand,
using curl. Let’s say that your peer is called
swisscom:ddos-input-peer-1 and that your NumberOfItems in the peer
configuration (see the Group Manager guide above) is 6, since you are
sampling every 10 minutes per hour. You have seen 1, 4, 2, 8, 9, and 23
DDoS-attempts, respectively, so there is clearly something going on.
Your peer runs on p2ds.swisscom.ch:8080 and your registration code
is JKSdh3h7njs (this is part of the peer service’s configuration).
Here is how to supply the peer with that input row:

curl -i -v -X POST --header "Content-Type: application/json" \
 -d '{"peerName":"swisscom:ddos-input-peer-1","data":"1;4;2;8;9;23"}' \
 https://p2ds.swisscom.ch:8080/p2ds-peer/input?registrationCode= JKSdh3h7njs

3.1.5. Viewing the Results

The input peers report results back to a URL that is set in the peer’s
configuration (the finalResultsURL property). We deliver a very
simple results viewer with P2DS, which runs under /receiver. If you
configure your input peer’s finalResultsURL to read
https://p2ds.swisscom.ch:8080/receiver/receive (substitute correct
protocol, hostname, and port), then your results might look like this:

[image: Results]
Results

3.1.6. Useful Hints

	Always use https, never use plain http when feeding data to the
input peers. The value of P2DS would be greatly diminished if the
supposedly secret data were sent in plain text. The protocol between
the peers can be plain http, since P2DS uses encrypted shares already
and additional encryption doesn’t buy you much security.

	Always use https for talking to the group manager.

3.2. Using the APIs

Please refer to the API
Documentation [http://docs.p2dsgroupmanager.apiary.io/#]. Exemplary
usage of the APIs can be found in the file grp.sh in the source
code’s main directory, available from the github
page [https://github.engineering.zhaw.ch/neut/p2ds.git].

Here is a more verbose version of that file (with some parts skipped to
keep this guide shorter). We assume that the admin key is
default-admin-key and that the registration codes for all peers is
TEST.

Please don’t use default-admin-key and testmode in a production
setting.

If you just want to experiment and/or play around otherwise on the shell
using curl setting testmode to on can be quite convenient. If in
testmode the registration codes generated by the group management
service will not be random and Please don’t use testmode=on in
production.

#Set group-mgmt service to test mode
#Don't do that in production!
curl -i -v -X POST http://localhost:12001/p2ds-group-management/group-mgmt/testmode?on=true\&adminKey=default-admin-key

To get started we need to create a group on the group management
service:

curl -i -v -X POST --header "Content-Type: application/json" -d '{"name":"SimpleGroup"}' http://localhost:12001/p2ds-group-management/group-mgmt/group?adminKey=default-admin-key

Once we have a group we can generate registration codes for peers. The
registration code is used by the peers to sign-up for a group. From the
output of the previous command (see above) we know the id of the group
(in this case 1)

curl -i -v -X POST http://localhost:12001/p2ds-group-management/group-mgmt/registration/1?adminKey=default-admin-key

The above command will give the group management admin a registration
code that the admin needs to communicate to the peer operator. In this
case the registration code is TEST. The peer operator can now create
a peer (named peerhans) on the peer service:

curl -i -v -X POST --header "Content-Type: application/json" -d @./demo/files/peerhans.json http://localhost:12001/p2ds-peer/peer?adminKey=default-admin-key

./demo/files/peerhans.json contains the configuration of the peer:

{
 "finalResultsURL":"http://localhost:12001/p2ds-receiver/receiver/receive",
 "peerType":1,
 "name":"peerhans",
 "privateKey":"MFECAQAwEAYHKoZIzj0CAQYFK4EEACQEOjA4AgEBBDNyjBeP85atxkIfiYqW+0kUB2H3guXcQWXT/tXVktbn3MyUdRmNIL99G3rK1XoGSRAM6js=",
 "publicKey":"MH4wEAYHKoZIzj0CAQYFK4EEACQDagAEAJig6xXX4SuME5lRB2ADn7T7CgyH7LXbxy/oS5XhIElBPwz/40cwDAc/VgGbDKa+HGBc/AGzwSlScoCDHc7WA1tSkRUkaW/lL9NbA6gIzJLMw+FV3RPor0vpJIofVcAaV6WI1r99v8Y=",
 "registrationCode":"TEST",
 "groupMgmtURL":"http://localhost:12001/p2ds-group-management/group-mgmt"}

privateKey and publicKey must be PKCS resp. X.509 encoded as
base64. Please generate your own keypairs. peerType=1 refers to an
input peer where as peerType=2 refers to a privacy peer.

The peer will automatically sign-up for group membership and will be a
member of the group on the group management service but marked as
unverified. The peer operater and group admin should exchange
fingerprints of the public key to verify the identity of the peer. If
the group admin has verified the keys he can then mark the peer as
verified:

curl -i -v -X POST http://localhost:12001/p2ds-group-management/group-mgmt/verify/hanspeer?adminKey=default-admin-key\&verified=true

Before we can start any peers we need to set a group configuration. The
group configuration defines the parameters of the computation to do:

curl -i -v -X POST --header "Content-Type: application/json" -d '{"field":"1013","gid":"1","maxElement":"1000","mpcProtocol":"additive","numberOfItems":"2","numberOfTimeSlots":"2"}' http://localhost:12001/p2ds-group-management/group-mgmt/configuration?adminKey=default-admin-key

Please note that you will need at least three privacy peers and two
input peers for the cryptographic protocol to work. You can start peers
individually or let the group management service start all peers
together. You can start individual peers by doing:

curl -i -v -X POST http://localhost:12001/p2ds-peer/start/hanspeer?registrationCode=TEST

Please note that the registration code is used as a means of
authentication to prevent anybody from starting a peer. It is thus
important that registration codes remain secret and are only known the
the group management admin and the peer operator of the corresponding
peer.

Once we have started all peers (in the case of grp.sh you will have
two input peers and three privacy peers) we can add inputs:

curl -i -v -X POST --header "Content-Type: application/json" -d '{"peerName":"hanspeer","data":["1;3","4;5"]}' http://localhost:12001/p2ds-peer/inputs?registrationCode=TEST

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	CyberCAPTOR-P2DS 4.4.3 documentation

4. P2DS Workflow

Recall the graphic from the README:

[image: Scenario]
Scenario

Let’s say we have three organisations, called Domain 1, Domain 2, and
Domain 3 in the graphic, that want to know the total number of attacks
seen in the last 24 hours, with a granularity of five minutes. In
mathematical terms, what these organisations want is x1 + x2 +
x3, where x1, x2, and x3 are vectors with 24*60/5 =
288 elements, and they want to do this without revealing their own
xi to any of the other domains. Here is how the three domains could
use P2DS for their needs.

4.1. Step 1: Setting Up

This section describes how to set up the group management and the
various peers. Some actions have to be done only once, whereas others
have to be done for each new computation.

4.1.1. Step 1.1: Set Up Group Management

4.1.2. Step 1.2: Set Up Peers

4.1.3. Step 1.2: Generate Certificates

This process is also described in SEPIA’s User
Manual [http://www.sepia.ee.ethz.ch/download/v0.9.1/UserManual.pdf].

First, each organisation generates a public key certificate for each
input and privacy peer. There must also be a certificate for the group
management service.

Key generation and management is something that is done vastly
differently from organisation to organisation. We sketch here a process
that will work with Java’s keytool; if your organisation follows a
different process, use that. The important thing is that at the end, you
have a Base64-encoded self-signed X.509 certificate.

In this example, we first generate a 2048-bit RSA key, which conforms to
current best practices; Each organisation should replace the names
privacypeer01 with a name that they are more comfortable with. Each
organisation must replace privacypeer01KeyPass, which will be the
password that unlocks the private key and privacypeer01StorePass,
which will be the password that unlocks the keystore.

This command line will generate the key pair, asking for some
information about the organisation in the process. This information will
be embedded into the key pair.

keytool -genkey -v \ -alias privacypeer01Alias \ -keystore privacypeer01KeyStore.jks \ -storepass privacypeer01StorePass \ -keypass privacypeer01KeyPass \ -keyalg RSA \
 -keysize 2048

Next, generate a self-signed certificate, again replacing the various
names with the ones that your organisation has chosen.

	~[STRIKEOUT:bashkeytool -export

	-alias privacypeer01Alias -keystore privacypeer01KeyStore.jks

-storepass privacypeer01StorePass -file privacypeer01Certificate.crt
~]

We will later describe how to upload these certificates to the Group
Management.

4.2. Step 2: Define a Computation

Now, all the organisations need to get together and define what they
want to compute. In this example, it’s x1 + x2 + x3, where
each xi is a 288-elements, and they want to do this without revealing
their own xi. This must be done outside the P2DS framework, and there
are important details to consider that are not part of the framework.

One such detail is the question of time synchronisation. If the local
clocks of the IDSes are skewed, then so will be the xi. Worse, if the
clocks also show significant drift, the xi will also drift and the
final computation will be more noisy and more unreliable. We recommend
to connect each timestamping participant to an NTP stratum 1 server (or
to connect a stratum 0 time source to it of course).

Once that is decided... (describe here group management -> New
Computation -> ...)

4.3. Step 3: Define the Group

Now it’s time for the organisations to decide what the peers are that
will take part in that computation. They need to drill holes in their
firewalls, set up the peers, ...

Then the group manager can either create a new group in the Group
Management GUI or reuse an existing one and link the computation defined
in the previous step with that group.

4.4. Step 4: Prepare the Data

Now the Input Peers need access to the data.

4.5. Step 5: Launch the Computation

4.6. Step 6: Look at the Results

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	CyberCAPTOR-P2DS 4.4.3 documentation

Index

 Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/down.png

_static/plus.png

_static/comment.png

_static/comment-bright.png

_images/regcodes.png
Open registration codes

Code: TEST | delete

Status

Group status: Stopped. All peers stopped.

_images/results.png
€

localhost:

FinalResultsReceiver

FROM WHEN DATA
127.0.0.1 16 Sep 2015 09:04:54 GMT _3;8
127.0.0.1 16 Sep 2015 09:04:54 GMT _3;8

127.0.0.1 16 Sep 2015 09:05:00 GMT _7;9
127.0.0.1 16 Sep 2015 09:05:00 GMT _7;9

_images/scenario_small.png
Domain 1

Domain 2

Domain 3

Privacy Peers
/ (simulated TTP)
Local dsta Input Peer o —
3
= K~
N
2 A [
@ | Privacy-Preserving | h |
3 { P
Localdsta it peer [
8
@ Aggregate
9_> g _ etstes
Localcata e
Private data Secret data Public data

(known to a single domain)

(nobody knows)

(known to all domains)

_images/config.png
Configuration

Field: 1013
MaxElement: 1000
MpcProtocol: additive
NumberOfitems: 2

NumberOfTimeSlots: 2
ResultBufferSize: 0
Set Configuration

_images/overview.png
Group Management

Groups

Click on the name of a group (headings) to expand and show more information!

Group creation:
Name Create group!

SimpleGroup

Actions
Configuration
Members

Open registration codes

Status

Group status: Running. All peers are running.

operation-guide/source/index.html

 Navigation

 		
 index

 		CyberCAPTOR-P2DS 4.4.3 documentation »

Cybersecurity GE Privacy-Preserving Data Sharing (P2DS) Operator’s Guide

Contents:

Indices and tables

		Index

		Module Index

		Search Page

Setting Up

You need at least four parties in order for P2DS to work: three
parties have data on which they want to perform a computation, and one
party manages that computation. Neither party needs to trust any other
party. The parties having the data host input and privacy peers
and the managing party hostrs the group manager.

Installing the Services

Installing from WAR

You should have received three WAR files as part of the P2DS
distribution, or you can build them yourself; see below.

		p2ds-group-management.war contains the group manager

		p2ds-input-peer.war contains the input peer

		p2ds-privacy-peer.war contains the privacy peer

These must be deployed on application servers. Deploy
p2ds-group-management.war on your group manager and deploy the other
two on each organisation that wants to participate in the
computation.

Installing from Source

In order to build and compile the services from source code, first get
the ZHAW modification of SEPIA:

git clone https://github.engineering.zhaw.ch/neut/sepia.git
cd sepia
mvn install -DskipTests
cd ..

Next, get the services:

git clone https://github.engineering.zhaw.ch/neut/p2ds.git
cd p2ds
mvn package

Now the directories group-management/target,
input-peer/target, and privacy-peer/target will contain the
respective WAR files.

Generating Key Pairs

All messages that are exchanged in P2DS are digitally
signed. Additionally, all parties should employ TLS. Digital
signatures are needed to be able to check the messages by the
receiving parties in addition to the transport security offered by
TLS. And TLS is needed because in some cases, sensitive information
like an authentication token is transported in the messages.

First, get and build the P2DS key generation program:

git clone https://github.engineering.zhaw.ch/munt/p2dsKeygen.git
cd p2dsKeygen
mvn package -DskipTests

Next, use it to generate a key pair:

java -cp target/keygen-0.0.0.1.jar ch.zhaw.ficore.p2ds.keygen/Main
base64 key.private > key.private.b64
base64 key.public > key.public.b64
srm -s key.private key.public

The last command deletes the (unneeded) binary key files, leaving only
the Base64-encoded ones.

This generates an Elliptic Curve DSA key of 409 bits, which is
supposed to have the equivalent RSA strength of more than 8192 bits
(see here [http://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography]). However,
it uses Java’s SecureRandom generator, which has had trouble [https://en.wikipedia.org/wiki/Random_number_generator_attack-Java_nonce_collision]
in the past. So it is probably best to be on the lookout for messages
about SecureRandom.

This program generates to files, key.public and key.private,
both of which must be uploaded to the respective peer. They can in
principle be uploaded to any directory on the application server, but
we recommend a directory to which only the applicaiton server has read
access. Since it is not necessary to change the key files, once
uploaded, we also recommend setting the permissions on these files to
read-only. On Unix-like operating systems, do this:

sudo cp key.public.b64 key.private.b64 /var/p2ds
srm -s key.public.b64 key.private.b64
cd /var/p2ds
sudo chown apache key.public.b64 key.private.b64
sudo chmod 444 key.public.b64
sudo chmod 400 key.private.b64
sudo chmod 500 .

Again, the unneeded copies of the key files are securely deleted. This
is not important for the pubic key but very important indeed for the
private key.

Here, apache is the system’s pseudo user that runs the application
server’s processes.

Configuring the Services

Group Management

The Group Management’s database configuration is described in its
persistence.xml file:

<?xml version-"1.0"?>
<persistence version-"1.0" xmlns-"http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="testjpa" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.ejb.HibernatePersistence
 </provider>
 <class>ch.zhaw.ficore.p2ds.group.storage.Group</class>
 <class>ch.zhaw.ficore.p2ds.group.storage.Peer</class>
 <class>ch.zhaw.ficore.p2ds.group.storage.Registration</class>
 <properties>
 <property name="hibernate.connection.driver_class"
 value-"com.mysql.jdbc.Driver"/>
 <property name="hibernate.connection.url"
 value-"jdbc:mysql://localhost/p2ds"/>
 <property name="hibernate.connection.username"
 value-"sepia"/>
 <property name="hibernate.connection.password"
 value-"my=password"/>
 <property name="hibernate.dialect"
 value-"org.hibernate.dialect.MySQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value-"create"/>
 <property name="hibernate.show_sql" value-"true"/>
 <property name="hibernate.format_sql" value-"true"/>
 </properties>
 </persistence-unit>
</persistence>

The obviously configurable parameters are
hibernate.connection.driver_class, hibernate.connection.url,
hibernate.connection.username, and
hibernate.connection.password. Change these to suit your database setup.

Input Peer

The input peer’s configuration is likewise in its web.xml:

<?xml version-"1.0" encoding-"UTF-8"?>
<!-- This web.xml file is not required when using Servlet 3.0 container,
 see implementation details http://jersey.java.net/nonav/documentation/latest/jax-rs.html-d4e194 -->
<web-app version-"2.5" xmlns-"http://java.sun.com/xml/ns/javaee" xmlns:xsi-"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation-"http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>ch.zhaw.ficore.p2ds</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <env-entry>
 <env-entry-name>inputPeer/hanspeer/registrationCode</env-entry-name>
 <env-entry-value>TEST</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/hanspeer/groupMgmtURL</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-group-management/group-mgmt</v-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/hanspeer/pubKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/hanspeer.public.b64</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/hanspeer/privKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/hanspeer.private</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/peerhans/registrationCode</env-entry-name>
 <env-entry-value>TEST</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/peerhans/groupMgmtURL</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-group-management/group-mgmt</v-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/peerhans/pubKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/peerhans.public.b64</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/peerhans/privKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/peerhans.private</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>inputPeer/url</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-input-peer/peer</env-entry- value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>
</web-app>

This file contains a number of very straightforward configuraiton
options and some not so straightforward ones. Each peer can operate as
one of several peer instances. These peers are distinguished by their
names. For example, if you want to run a peer called hanspeer,
you would tell the peer to register itself with the group manager
under the name hanspeer. If you wished the peer to run as
peerhans, you would tell the peer to register under that
name. Names must be unique and it’s a discussion between the
organisations running the peers who gets to choose which names.

Once a computation starts, the group manager will contact the peer and
tell it the name of the peer it should run as. This then determines
the public and private keys to use and hence the publicKeyPath and
privateKeyPath configuration options.

Privacy Peer

The privacy peer’s configuration is likewise in its web.xml:

<?xml version-"1.0" encoding-"UTF-8"?>
<!-- This web.xml file is not required when using Servlet 3.0 container,
 see implementation details http://jersey.java.net/nonav/documentation/latest/jax-rs.html-d4e194 -->
<web-app version-"2.5" xmlns-"http://java.sun.com/xml/ns/javaee" xmlns:xsi-"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation-"http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>ch.zhaw.ficore.p2ds</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer/registrationCode</env-entry-name>
 <env-entry-value>TEST</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer/groupMgmtURL</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-group-management/group-mgmt</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer/pubKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer.public.b64</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer/privKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer.private</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer2/registrationCode</env-entry-name>
 <env-entry-value>TEST</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer2/groupMgmtURL</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-group-management/group-mgmt</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer2/pubKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer2.public.b64</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer2/privKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer2.private</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer3/registrationCode</env-entry-name>
 <env-entry-value>TEST</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer3/groupMgmtURL</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-group-management/group-mgmt</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer3/pubKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer3.public.b64</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/ppeer3/privKeyPath</env-entry-name>
 <env-entry-value>/var/p2ds/ppeer3.private</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>privacyPeer/url</env-entry-name>
 <env-entry-value>http://localhost:12001/p2ds-privacy-peer/peer</env-entry-value>
 <env-entry-type> java.lang.String </env-entry-type>
 </env-entry>

</web-app>

Again, a privacy peer can operate under different names and can work
for different group managers and have different key pairs. The
privacyPeer/url entry tells the group manager under which URL it
can reach this privacy peer.

Performing a Computation

Configuring the Inputs

Creating a Group

Registering the Peers

Starting the Computation

Viewing the Results

 © Copyright 2015, FIWARE.
 Created using Sphinx 1.3.1.

_images/members.png
SimpleGroup

Actions
Configuration

Members

peerhans

Last status: 1

PeerType: 1

Pid: 1

URL: http://localhost:12001/p2ds-peer/peer
RegistrationCode: TEST

Verified: false

PublicKey

MHAWEAYHKOZ120CAQYFKAEEACODAGAEA g6 XXX4SUNES LRB2ADNTT7CayH7 LXbxy/0SSXhIELBPwz/40cWDAC/VgGbDKa+HGBC/AGZWS SCOCDHCTWAT t SKRUKaH/ LLONDASGT2]LMw+FU3RPOrOvpI o fVcAQVEHI1r99vEY=

Delete this peer

Mark as verified

_images/actions.png
SimpleGroup

Actions

Start peers
Stop peers
Delete group

Create registration

