

CuPy – NumPy & SciPy for GPU

	Overview
	Project Goal

	Installation
	Requirements

	Installing CuPy

	Uninstalling CuPy

	Upgrading CuPy

	Reinstalling CuPy

	Using CuPy inside Docker

	FAQ

	Using CuPy on AMD GPU (experimental)
	Requirements

	Environment Variables

	Docker

	Installing Binary Packages

	Building CuPy for ROCm From Source

	Limitations

	User Guide
	Basics of CuPy

	User-Defined Kernels

	Accessing CUDA Functionalities

	Fast Fourier Transform with CuPy

	Memory Management

	Performance Best Practices

	Interoperability

	Differences between CuPy and NumPy

	API Compatibility Policy

	API Reference
	The N-dimensional array (ndarray)

	Universal functions (cupy.ufunc)

	Routines (NumPy)

	Routines (SciPy)

	CuPy-specific functions

	Low-level CUDA support

	Custom kernels

	Distributed

	Environment variables

	Comparison Table

	Python Array API Support

Development

	Contribution Guide
	Classification of Contributions

	Development Cycle

	Issues and Pull Requests

	Coding Guidelines

	Unit Testing

	Documentation

	Tips for Developers

Misc Notes

	Upgrade Guide
	CuPy v13

	CuPy v12

	CuPy v11

	CuPy v10

	CuPy v9

	CuPy v8

	CuPy v7

	CuPy v6

	CuPy v5

	CuPy v4

	CuPy v2

	Compatibility Matrix

	License
	NumPy

	SciPy

	cuSignal

Overview

CuPy [https://github.com/cupy/cupy] is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python.
CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on NVIDIA CUDA [https://developer.nvidia.com/cuda-toolkit] or AMD ROCm [https://www.amd.com/en/graphics/servers-solutions-rocm] platforms.

CuPy provides a ndarray, sparse matrices, and the associated routines for GPU devices, all having the same API as NumPy and SciPy:

	N-dimensional array (ndarray): cupy.ndarray

	Data types (dtypes): boolean (bool_), integer (int8, int16, int32, int64, uint8, uint16, uint32, uint64), float (float16, float32, float64), and complex (complex64, complex128)

	Supports the semantics identical to numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], including basic / advanced indexing and broadcasting

	Sparse matrices: cupyx.scipy.sparse

	2-D sparse matrix: csr_matrix, coo_matrix, csc_matrix, and dia_matrix

	NumPy Routines

	Module-level Functions (cupy.*)

	Linear Algebra Functions (cupy.linalg.*)

	Fast Fourier Transform (cupy.fft.*)

	Random Number Generator (cupy.random.*)

	SciPy Routines

	Discrete Fourier Transforms (cupyx.scipy.fft.* and cupyx.scipy.fftpack.*)

	Advanced Linear Algebra (cupyx.scipy.linalg.*)

	Multidimensional Image Processing (cupyx.scipy.ndimage.*)

	Sparse Matrices (cupyx.scipy.sparse.*)

	Sparse Linear Algebra (cupyx.scipy.sparse.linalg.*)

	Special Functions (cupyx.scipy.special.*)

	Signal Processing (cupyx.scipy.signal.*)

	Statistical Functions (cupyx.scipy.stats.*)

Routines are backed by CUDA libraries (cuBLAS, cuFFT, cuSPARSE, cuSOLVER, cuRAND), Thrust, CUB, and cuTENSOR to provide the best performance.

It is also possible to easily implement custom CUDA kernels that work with ndarray using:

	Kernel Templates: Quickly define element-wise and reduction operation as a single CUDA kernel

	Raw Kernel: Import existing CUDA C/C++ code

	Just-in-time Transpiler (JIT): Generate CUDA kernel from Python source code

	Kernel Fusion: Fuse multiple CuPy operations into a single CUDA kernel

CuPy can run in multi-GPU or cluster environments. The distributed communication package (cupyx.distributed) provides collective and peer-to-peer primitives for ndarray, backed by NCCL.

For users who need more fine-grain control for performance, accessing low-level CUDA features are available:

	Stream and Event: CUDA stream and per-thread default stream are supported by all APIs

	Memory Pool: Customizable memory allocator with a built-in memory pool

	Profiler: Supports profiling code using CUDA Profiler and NVTX

	Host API Binding: Directly call CUDA libraries, such as NCCL, cuDNN, cuTENSOR, and cuSPARSELt APIs from Python

CuPy implements standard APIs for data exchange and interoperability, such as DLPack [https://github.com/dmlc/dlpack], CUDA Array Interface [https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html], __array_ufunc__ (NEP 13 [https://numpy.org/neps/nep-0013-ufunc-overrides.html]), __array_function__ (NEP 18 [https://numpy.org/neps/nep-0018-array-function-protocol.html]), and Array API Standard [https://data-apis.org/array-api/latest/].
Thanks to these protocols, CuPy easily integrates with NumPy, PyTorch, TensorFlow, MPI4Py, and any other libraries supporting the standard.

Under AMD ROCm environment, CuPy automatically translates all CUDA API calls to ROCm HIP (hipBLAS, hipFFT, hipSPARSE, hipRAND, hipCUB, hipThrust, RCCL, etc.), allowing code written using CuPy to run on both NVIDIA and AMD GPU without any modification.

Project Goal

The goal of the CuPy project is to provide Python users GPU acceleration capabilities, without the in-depth knowledge of underlying GPU technologies.
The CuPy team focuses on providing:

	A complete NumPy and SciPy API coverage to become a full drop-in replacement, as well as advanced CUDA features to maximize the performance.

	Mature and quality library as a fundamental package for all projects needing acceleration, from a lab environment to a large-scale cluster.

Installation

Requirements

	NVIDIA CUDA GPU [https://developer.nvidia.com/cuda-gpus] with the Compute Capability 3.0 or larger.

	CUDA Toolkit [https://developer.nvidia.com/cuda-toolkit]: v11.2 / v11.3 / v11.4 / v11.5 / v11.6 / v11.7 / v11.8 / v12.0 / v12.1 / v12.2

	If you have multiple versions of CUDA Toolkit installed, CuPy will automatically choose one of the CUDA installations.
See Working with Custom CUDA Installation for details.

	This requirement is optional if you install CuPy from conda-forge. However, you still need to have a compatible
driver installed for your GPU. See Installing CuPy from Conda-Forge for details.

	Python [https://python.org/]: v3.9 / v3.10 / v3.11 / v3.12

Note

Currently, CuPy is tested against Ubuntu [https://www.ubuntu.com/] 20.04 LTS / 22.04 LTS (x86_64), CentOS [https://www.centos.org/] 7 / 8 (x86_64) and Windows Server 2016 (x86_64).

Python Dependencies

NumPy/SciPy-compatible API in CuPy v13 is based on NumPy 1.26 and SciPy 1.11, and has been tested against the following versions:

	NumPy [https://numpy.org/]: v1.22 / v1.23 / v1.24 / v1.25 / v1.26

	SciPy [https://scipy.org/] (optional): v1.7 / v1.8 / v1.9 / v1.10 / v1.11

	Required only when coping sparse matrices from GPU to CPU (see Sparse matrices (cupyx.scipy.sparse).)

	Optuna [https://optuna.org/] (optional): v3.x

	Required only when using Automatic Kernel Parameters Optimizations (cupyx.optimizing).

Note

SciPy and Optuna are optional dependencies and will not be installed automatically.

Note

Before installing CuPy, we recommend you to upgrade setuptools and pip:

$ python -m pip install -U setuptools pip

Additional CUDA Libraries

Part of the CUDA features in CuPy will be activated only when the corresponding libraries are installed.

	cuTENSOR [https://developer.nvidia.com/cutensor]: v2.0

	The library to accelerate tensor operations. See Environment variables for the details.

	NCCL [https://developer.nvidia.com/nccl]: v2.16 / v2.17

	The library to perform collective multi-GPU / multi-node computations.

	cuDNN [https://developer.nvidia.com/cudnn]: v8.8

	The library to accelerate deep neural network computations.

	cuSPARSELt [https://docs.nvidia.com/cuda/cusparselt/]: v0.2.0

	The library to accelerate sparse matrix-matrix multiplication.

Installing CuPy

Installing CuPy from PyPI

Wheels (precompiled binary packages) are available for Linux and Windows.
Package names are different depending on your CUDA Toolkit version.

	CUDA

	Command

	v11.2 ~ 11.8 (x86_64 / aarch64)

	pip install cupy-cuda11x

	v12.x (x86_64 / aarch64)

	pip install cupy-cuda12x

Note

To enable features provided by additional CUDA libraries (cuTENSOR / NCCL / cuDNN), you need to install them manually.
If you installed CuPy via wheels, you can use the installer command below to setup these libraries in case you don’t have a previous installation:

$ python -m cupyx.tools.install_library --cuda 11.x --library cutensor

Note

Append --pre -U -f https://pip.cupy.dev/pre options to install pre-releases (e.g., pip install cupy-cuda11x --pre -U -f https://pip.cupy.dev/pre).

When using wheels, please be careful not to install multiple CuPy packages at the same time.
Any of these packages and cupy package (source installation) conflict with each other.
Please make sure that only one CuPy package (cupy or cupy-cudaXX where XX is a CUDA version) is installed:

$ pip freeze | grep cupy

Installing CuPy from Conda-Forge

Conda/Anaconda is a cross-platform package management solution widely used in scientific computing and other fields.
The above pip install instruction is compatible with conda environments. Alternatively, for both Linux (x86_64,
ppc64le, aarch64-sbsa) and
Windows once the CUDA driver is correctly set up, you can also install CuPy from the conda-forge channel:

$ conda install -c conda-forge cupy

and conda will install a pre-built CuPy binary package for you, along with the CUDA runtime libraries
(cudatoolkit). It is not necessary to install CUDA Toolkit in advance.

Conda has a built-in mechanism to determine and install the latest version of cudatoolkit supported by your driver.
However, if for any reason you need to force-install a particular CUDA version (say 11.8), you can do:

$ conda install -c conda-forge cupy cuda-version=11.8

Note

cuDNN, cuTENSOR, and NCCL are available on conda-forge as optional dependencies. The following command can install them all at once:

$ conda install -c conda-forge cupy cudnn cutensor nccl

Each of them can also be installed separately as needed.

Note

If you encounter any problem with CuPy installed from conda-forge, please feel free to report to cupy-feedstock [https://github.com/conda-forge/cupy-feedstock/issues], and we will help investigate if it is just a packaging
issue in conda-forge’s recipe or a real issue in CuPy.

Note

If you did not install CUDA Toolkit by yourself, the nvcc compiler might not be available, as
the cudatoolkit package from conda-forge does not include the nvcc compiler toolchain. If you would like to use
it from a local CUDA installation, you need to make sure the version of CUDA Toolkit matches that of cudatoolkit to
avoid surprises.

Installing CuPy from Source

Use of wheel packages is recommended whenever possible.
However, if wheels cannot meet your requirements (e.g., you are running non-Linux environment or want to use a version of CUDA / cuDNN / NCCL not supported by wheels), you can also build CuPy from source.

Note

CuPy source build requires g++-6 or later.
For Ubuntu 18.04, run apt-get install g++.
For Ubuntu 16.04, CentOS 6 or 7, follow the instructions here.

Note

When installing CuPy from source, features provided by additional CUDA libraries will be disabled if these libraries are not available at the build time.
See Installing cuDNN and NCCL for the instructions.

Note

If you upgrade or downgrade the version of CUDA Toolkit, cuDNN, NCCL or cuTENSOR, you may need to reinstall CuPy.
See Reinstalling CuPy for details.

You can install the latest stable release version of the CuPy source package [https://pypi.python.org/pypi/cupy] via pip.

$ pip install cupy

If you want to install the latest development version of CuPy from a cloned Git repository:

$ git clone --recursive https://github.com/cupy/cupy.git
$ cd cupy
$ pip install .

Note

Cython 0.29.22 or later is required to build CuPy from source.
It will be automatically installed during the build process if not available.

Uninstalling CuPy

Use pip to uninstall CuPy:

$ pip uninstall cupy

Note

If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

Note

If CuPy is installed via conda, please do conda uninstall cupy instead.

Upgrading CuPy

Just use pip install with -U option:

$ pip install -U cupy

Note

If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

Reinstalling CuPy

To reinstall CuPy, please uninstall CuPy and then install it.
When reinstalling CuPy, we recommend using --no-cache-dir option as pip caches the previously built binaries:

$ pip uninstall cupy
$ pip install cupy --no-cache-dir

Note

If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

Using CuPy inside Docker

We are providing the official Docker images [https://hub.docker.com/r/cupy/cupy/].
Use NVIDIA Container Toolkit [https://github.com/NVIDIA/nvidia-docker] to run CuPy image with GPU.
You can login to the environment with bash, and run the Python interpreter:

$ docker run --gpus all -it cupy/cupy /bin/bash

Or run the interpreter directly:

$ docker run --gpus all -it cupy/cupy /usr/bin/python3

FAQ

pip fails to install CuPy

Please make sure that you are using the latest setuptools and pip:

$ pip install -U setuptools pip

Use -vvvv option with pip command.
This will display all logs of installation:

$ pip install cupy -vvvv

If you are using sudo to install CuPy, note that sudo command does not propagate environment variables.
If you need to pass environment variable (e.g., CUDA_PATH), you need to specify them inside sudo like this:

$ sudo CUDA_PATH=/opt/nvidia/cuda pip install cupy

If you are using certain versions of conda, it may fail to build CuPy with error g++: error: unrecognized command line option ‘-R’.
This is due to a bug in conda (see conda/conda#6030 [https://github.com/conda/conda/issues/6030] for details).
If you encounter this problem, please upgrade your conda.

Installing cuDNN and NCCL

We recommend installing cuDNN and NCCL using binary packages (i.e., using apt or yum) provided by NVIDIA.

If you want to install tar-gz version of cuDNN and NCCL, we recommend installing it under the CUDA_PATH directory.
For example, if you are using Ubuntu, copy *.h files to include directory and *.so* files to lib64 directory:

$ cp /path/to/cudnn.h $CUDA_PATH/include
$ cp /path/to/libcudnn.so* $CUDA_PATH/lib64

The destination directories depend on your environment.

If you want to use cuDNN or NCCL installed in another directory, please use CFLAGS, LDFLAGS and LD_LIBRARY_PATH environment variables before installing CuPy:

$ export CFLAGS=-I/path/to/cudnn/include
$ export LDFLAGS=-L/path/to/cudnn/lib
$ export LD_LIBRARY_PATH=/path/to/cudnn/lib:$LD_LIBRARY_PATH

Working with Custom CUDA Installation

If you have installed CUDA on the non-default directory or multiple CUDA versions on the same host, you may need to manually specify the CUDA installation directory to be used by CuPy.

CuPy uses the first CUDA installation directory found by the following order.

	CUDA_PATH environment variable.

	The parent directory of nvcc command. CuPy looks for nvcc command from PATH environment variable.

	/usr/local/cuda

For example, you can build CuPy using non-default CUDA directory by CUDA_PATH environment variable:

$ CUDA_PATH=/opt/nvidia/cuda pip install cupy

Note

CUDA installation discovery is also performed at runtime using the rule above.
Depending on your system configuration, you may also need to set LD_LIBRARY_PATH environment variable to $CUDA_PATH/lib64 at runtime.

CuPy always raises cupy.cuda.compiler.CompileException

If CuPy raises a CompileException for almost everything, it is possible that CuPy cannot detect CUDA installed on your system correctly.
The followings are error messages commonly observed in such cases.

	nvrtc: error: failed to load builtins

	catastrophic error: cannot open source file "cuda_fp16.h"

	error: cannot overload functions distinguished by return type alone

	error: identifier "__half_raw" is undefined

Please try setting LD_LIBRARY_PATH and CUDA_PATH environment variable.
For example, if you have CUDA installed at /usr/local/cuda-9.2:

$ export CUDA_PATH=/usr/local/cuda-9.2
$ export LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH

Also see Working with Custom CUDA Installation.

Build fails on Ubuntu 16.04, CentOS 6 or 7

In order to build CuPy from source on systems with legacy GCC (g++-5 or earlier), you need to manually set up g++-6 or later and configure NVCC environment variable.

On Ubuntu 16.04:

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt update
$ sudo apt install g++-6
$ export NVCC="nvcc --compiler-bindir gcc-6"

On CentOS 6 / 7:

$ sudo yum install centos-release-scl
$ sudo yum install devtoolset-7-gcc-c++
$ source /opt/rh/devtoolset-7/enable
$ export NVCC="nvcc --compiler-bindir gcc"

Using CuPy on AMD GPU (experimental)

CuPy has an experimental support for AMD GPU (ROCm).

Requirements

	AMD GPU supported by ROCm [https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support]

	
	ROCm [https://rocmdocs.amd.com/en/latest/index.html]: v4.3 / v5.0
	
	See the ROCm Installation Guide [https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html] for details.

The following ROCm libraries are required:

$ sudo apt install hipblas hipsparse rocsparse rocrand rocthrust rocsolver rocfft hipcub rocprim rccl

Environment Variables

When building or running CuPy for ROCm, the following environment variables are effective.

	ROCM_HOME: directory containing the ROCm software (e.g., /opt/rocm).

Docker

You can try running CuPy for ROCm using Docker.

$ docker run -it --device=/dev/kfd --device=/dev/dri --group-add video cupy/cupy-rocm

Installing Binary Packages

Wheels (precompiled binary packages) are available for Linux (x86_64).
Package names are different depending on your ROCm version.

	ROCm

	Command

	v4.3

	$ pip install cupy-rocm-4-3

	v5.0

	$ pip install cupy-rocm-5-0

Building CuPy for ROCm From Source

To build CuPy from source, set the CUPY_INSTALL_USE_HIP, ROCM_HOME, and HCC_AMDGPU_TARGET environment variables.
(HCC_AMDGPU_TARGET is the ISA name supported by your GPU.
Run rocminfo and use the value displayed in Name: line (e.g., gfx900).
You can specify a comma-separated list of ISAs if you have multiple GPUs of different architectures.)

$ export CUPY_INSTALL_USE_HIP=1
$ export ROCM_HOME=/opt/rocm
$ export HCC_AMDGPU_TARGET=gfx906
$ pip install cupy

Note

If you don’t specify the HCC_AMDGPU_TARGET environment variable, CuPy will be built for the GPU architectures available on the build host.
This behavior is specific to ROCm builds; when building CuPy for NVIDIA CUDA, the build result is not affected by the host configuration.

Limitations

The following features are not available due to the limitation of ROCm or because that they are specific to CUDA:

	CUDA Array Interface

	cuTENSOR

	Handling extremely large arrays whose size is around 32-bit boundary (HIP is known to fail with sizes 2**32-1024)

	Atomic addition in FP16 (cupy.ndarray.scatter_add and cupyx.scatter_add)

	Multi-GPU FFT and FFT callback

	Some random number generation algorithms

	Several options in RawKernel/RawModule APIs: Jitify, dynamic parallelism

	Per-thread default stream

The following features are not yet supported:

	Sparse matrices (cupyx.scipy.sparse)

	cuDNN (hipDNN)

	Hermitian/symmetric eigenvalue solver (cupy.linalg.eigh)

	Polynomial roots (uses Hermitian/symmetric eigenvalue solver)

	Splines in cupyx.scipy.interpolate (make_interp_spline, spline modes of RegularGridInterpolator/interpn), as they depend on sparse matrices.

The following features may not work in edge cases (e.g., some combinations of dtype):

Note

We are investigating the root causes of the issues. They are not necessarily
CuPy’s issues, but ROCm may have some potential bugs.

	cupy.ndarray.__getitem__ (#4653 [https://github.com/cupy/cupy/pull/4653])

	cupy.ix_ (#4654 [https://github.com/cupy/cupy/pull/4654])

	Some polynomial routines (#4758 [https://github.com/cupy/cupy/pull/4758], #4759 [https://github.com/cupy/cupy/pull/4759])

	cupy.broadcast (#4662 [https://github.com/cupy/cupy/pull/4662])

	cupy.convolve (#4668 [https://github.com/cupy/cupy/pull/4668])

	cupy.correlate (#4781 [https://github.com/cupy/cupy/pull/4781])

	Some random sampling routines (cupy.random, #4770 [https://github.com/cupy/cupy/pull/4770])

	cupy.linalg.einsum

	cupyx.scipy.ndimage and cupyx.scipy.signal (#4878 [https://github.com/cupy/cupy/pull/4878], #4879 [https://github.com/cupy/cupy/pull/4879], #4880 [https://github.com/cupy/cupy/pull/4880])

User Guide

This user guide provides an overview of CuPy and explains its important features; details are found in CuPy API Reference.

	Basics of CuPy

	User-Defined Kernels

	Accessing CUDA Functionalities

	Fast Fourier Transform with CuPy

	Memory Management

	Performance Best Practices

	Interoperability

	Differences between CuPy and NumPy

	API Compatibility Policy

Basics of CuPy

In this section, you will learn about the following things:

	Basics of cupy.ndarray

	The concept of current device

	host-device and device-device array transfer

Basics of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface.
In the following code, cp is an abbreviation of cupy, following the standard convention of abbreviating numpy as np:

>>> import numpy as np
>>> import cupy as cp

The cupy.ndarray class is at the core of CuPy and is a replacement class for NumPy’s numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

>>> x_gpu = cp.array([1, 2, 3])

x_gpu above is an instance of cupy.ndarray.
As one can see, CuPy’s syntax here is identical to that of NumPy.
The main difference between cupy.ndarray and numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] is that
the CuPy arrays are allocated on the current device, which we will talk about later.

Most of the array manipulations are also done in the way similar to NumPy.
Take the Euclidean norm (a.k.a L2 norm), for example.
NumPy has numpy.linalg.norm() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm] function that calculates it on CPU.

>>> x_cpu = np.array([1, 2, 3])
>>> l2_cpu = np.linalg.norm(x_cpu)

Using CuPy, we can perform the same calculations on GPU in a similar way:

>>> x_gpu = cp.array([1, 2, 3])
>>> l2_gpu = cp.linalg.norm(x_gpu)

CuPy implements many functions on cupy.ndarray objects.
See the reference for the supported subset of NumPy API.
Knowledge of NumPy will help you utilize most of the CuPy features.
We, therefore, recommend you familiarize yourself with the NumPy documentation [https://numpy.org/doc/stable/index.html].

Current Device

CuPy has a concept of a current device, which is the default GPU device on which
the allocation, manipulation, calculation, etc., of arrays take place.
Suppose ID of the current device is 0.
In such a case, the following code would create an array x_on_gpu0 on GPU 0.

>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

To switch to another GPU device, use the Device context manager:

>>> with cp.cuda.Device(1):
... x_on_gpu1 = cp.array([1, 2, 3, 4, 5])
>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

All CuPy operations (except for multi-GPU features and device-to-device copy) are performed on the currently active device.

In general, CuPy functions expect that the array is on the same device as the current one.
Passing an array stored on a non-current device may work depending on the hardware configuration but is generally discouraged as it may not be performant.

Note

If the array’s device and the current device mismatch, CuPy functions try to establish peer-to-peer memory access [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access] (P2P) between them so that the current device can directly read the array from another device.
Note that P2P is available only when the topology permits it.
If P2P is unavailable, such an attempt will fail with ValueError.

cupy.ndarray.device attribute indicates the device on which the array is allocated.

>>> with cp.cuda.Device(1):
... x = cp.array([1, 2, 3, 4, 5])
>>> x.device
<CUDA Device 1>

Note

When only one device is available, explicit device switching is not needed.

Current Stream

Associated with the concept of current devices are current streams, which help avoid explicitly passing streams
in every single operation so as to keep the APIs pythonic and user-friendly. In CuPy, all CUDA operations
such as data transfer (see the Data Transfer section) and kernel launches are enqueued onto the current stream,
and the queued tasks on the same stream will be executed in serial (but asynchronously with respect to the host).

The default current stream in CuPy is CUDA’s null stream (i.e., stream 0). It is also known as the legacy
default stream, which is unique per device. However, it is possible to change the current stream using the
cupy.cuda.Stream API, please see Accessing CUDA Functionalities for example. The current stream in CuPy can be
retrieved using cupy.cuda.get_current_stream().

It is worth noting that CuPy’s current stream is managed on a per thread, per device basis, meaning that on different
Python threads or different devices the current stream (if not the null stream) can be different.

Data Transfer

Move arrays to a device

cupy.asarray() can be used to move a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], a list, or any object
that can be passed to numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array] to the current device:

>>> x_cpu = np.array([1, 2, 3])
>>> x_gpu = cp.asarray(x_cpu) # move the data to the current device.

cupy.asarray() can accept cupy.ndarray, which means we can
transfer the array between devices with this function.

>>> with cp.cuda.Device(0):
... x_gpu_0 = cp.ndarray([1, 2, 3]) # create an array in GPU 0
>>> with cp.cuda.Device(1):
... x_gpu_1 = cp.asarray(x_gpu_0) # move the array to GPU 1

Note

cupy.asarray() does not copy the input array if possible.
So, if you put an array of the current device, it returns the input object itself.

If we do copy the array in this situation, you can use cupy.array() with copy=True.
Actually cupy.asarray() is equivalent to cupy.array(arr, dtype, copy=False).

Move array from a device to the host

Moving a device array to the host can be done by cupy.asnumpy() as follows:

>>> x_gpu = cp.array([1, 2, 3]) # create an array in the current device
>>> x_cpu = cp.asnumpy(x_gpu) # move the array to the host.

We can also use cupy.ndarray.get():

>>> x_cpu = x_gpu.get()

Memory management

Check Memory Management for a detailed description of how memory is managed in CuPy
using memory pools.

How to write CPU/GPU agnostic code

CuPy’s compatibility with NumPy makes it possible to write CPU/GPU agnostic code.
For this purpose, CuPy implements the cupy.get_array_module() function that
returns a reference to cupy if any of its arguments resides on a GPU
and numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] otherwise.
Here is an example of a CPU/GPU agnostic function that computes log1p:

>>> # Stable implementation of log(1 + exp(x))
>>> def softplus(x):
... xp = cp.get_array_module(x) # 'xp' is a standard usage in the community
... print("Using:", xp.__name__)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

When you need to manipulate CPU and GPU arrays, an explicit data
transfer may be required to move them to the same location – either CPU or GPU.
For this purpose, CuPy implements two sister methods called cupy.asnumpy() and
cupy.asarray(). Here is an example that demonstrates the use of both methods:

>>> x_cpu = np.array([1, 2, 3])
>>> y_cpu = np.array([4, 5, 6])
>>> x_cpu + y_cpu
array([5, 7, 9])
>>> x_gpu = cp.asarray(x_cpu)
>>> x_gpu + y_cpu
Traceback (most recent call last):
...
TypeError: Unsupported type <class 'numpy.ndarray'>
>>> cp.asnumpy(x_gpu) + y_cpu
array([5, 7, 9])
>>> cp.asnumpy(x_gpu) + cp.asnumpy(y_cpu)
array([5, 7, 9])
>>> x_gpu + cp.asarray(y_cpu)
array([5, 7, 9])
>>> cp.asarray(x_gpu) + cp.asarray(y_cpu)
array([5, 7, 9])

The cupy.asnumpy() method returns a NumPy array (array on the host),
whereas cupy.asarray() method returns a CuPy array (array on the current device).
Both methods can accept arbitrary input, meaning that they can be applied to any data that
is located on either the host or device and can be converted to an array.

User-Defined Kernels

CuPy provides easy ways to define three types of CUDA kernels: elementwise kernels, reduction kernels and raw kernels.
In this documentation, we describe how to define and call each kernels.

Basics of elementwise kernels

An elementwise kernel can be defined by the ElementwiseKernel class.
The instance of this class defines a CUDA kernel which can be invoked by the __call__ method of this instance.

A definition of an elementwise kernel consists of four parts: an input argument list, an output argument list, a loop body code, and the kernel name.
For example, a kernel that computes a squared difference \(f(x, y) = (x - y)^2\) is defined as follows:

>>> squared_diff = cp.ElementwiseKernel(
... 'float32 x, float32 y',
... 'float32 z',
... 'z = (x - y) * (x - y)',
... 'squared_diff')

The argument lists consist of comma-separated argument definitions.
Each argument definition consists of a type specifier and an argument name.
Names of NumPy data types can be used as type specifiers.

Note

n, i, and names starting with an underscore _ are reserved for the internal use.

The above kernel can be called on either scalars or arrays with broadcasting:

>>> x = cp.arange(10, dtype=np.float32).reshape(2, 5)
>>> y = cp.arange(5, dtype=np.float32)
>>> squared_diff(x, y)
array([[0., 0., 0., 0., 0.],
 [25., 25., 25., 25., 25.]], dtype=float32)
>>> squared_diff(x, 5)
array([[25., 16., 9., 4., 1.],
 [0., 1., 4., 9., 16.]], dtype=float32)

Output arguments can be explicitly specified (next to the input arguments):

>>> z = cp.empty((2, 5), dtype=np.float32)
>>> squared_diff(x, y, z)
array([[0., 0., 0., 0., 0.],
 [25., 25., 25., 25., 25.]], dtype=float32)

Type-generic kernels

If a type specifier is one character, then it is treated as a type placeholder.
It can be used to define a type-generic kernels.
For example, the above squared_diff kernel can be made type-generic as follows:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_generic')

Type placeholders of a same character in the kernel definition indicate the same type.
The actual type of these placeholders is determined by the actual argument type.
The ElementwiseKernel class first checks the output arguments and then the input arguments to determine the actual type.
If no output arguments are given on the kernel invocation, then only the input arguments are used to determine the type.

The type placeholder can be used in the loop body code:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... '''
... T diff = x - y;
... z = diff * diff;
... ''',
... 'squared_diff_generic')

More than one type placeholder can be used in a kernel definition.
For example, the above kernel can be further made generic over multiple arguments:

>>> squared_diff_super_generic = cp.ElementwiseKernel(
... 'X x, Y y',
... 'Z z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_super_generic')

Note that this kernel requires the output argument explicitly specified, because the type Z cannot be automatically determined from the input arguments.

Raw argument specifiers

The ElementwiseKernel class does the indexing with broadcasting automatically, which is useful to define most elementwise computations.
On the other hand, we sometimes want to write a kernel with manual indexing for some arguments.
We can tell the ElementwiseKernel class to use manual indexing by adding the raw keyword preceding the type specifier.

We can use the special variable i and method _ind.size() for the manual indexing.
i indicates the index within the loop.
_ind.size() indicates total number of elements to apply the elementwise operation.
Note that it represents the size after broadcast operation.

For example, a kernel that adds two vectors with reversing one of them can be written as follows:

>>> add_reverse = cp.ElementwiseKernel(
... 'T x, raw T y', 'T z',
... 'z = x + y[_ind.size() - i - 1]',
... 'add_reverse')

(Note that this is an artificial example and you can write such operation just by z = x + y[::-1] without defining a new kernel).
A raw argument can be used like an array.
The indexing operator y[_ind.size() - i - 1] involves an indexing computation on y, so y can be arbitrarily shaped and strode.

Note that raw arguments are not involved in the broadcasting.
If you want to mark all arguments as raw, you must specify the size argument on invocation, which defines the value of _ind.size().

Texture memory

Texture objects (TextureObject) can be passed to ElementwiseKernel with their type marked by a unique type placeholder distinct from any other types used in the same kernel, as its actual datatype is determined when populating the texture memory. The texture coordinates can be computed in the kernel by the per-thread loop index i.

Reduction kernels

Reduction kernels can be defined by the ReductionKernel class.
We can use it by defining four parts of the kernel code:

	Identity value: This value is used for the initial value of reduction.

	Mapping expression: It is used for the pre-processing of each element to be reduced.

	Reduction expression: It is an operator to reduce the multiple mapped values.
The special variables a and b are used for its operands.

	Post mapping expression: It is used to transform the resulting reduced values.
The special variable a is used as its input.
Output should be written to the output parameter.

ReductionKernel class automatically inserts other code fragments that are required for an efficient and flexible reduction implementation.

For example, L2 norm along specified axes can be written as follows:

>>> l2norm_kernel = cp.ReductionKernel(
... 'T x', # input params
... 'T y', # output params
... 'x * x', # map
... 'a + b', # reduce
... 'y = sqrt(a)', # post-reduction map
... '0', # identity value
... 'l2norm' # kernel name
...)
>>> x = cp.arange(10, dtype=np.float32).reshape(2, 5)
>>> l2norm_kernel(x, axis=1)
array([5.477226 , 15.9687195], dtype=float32)

Note

raw specifier is restricted for usages that the axes to be reduced are put at the head of the shape.
It means, if you want to use raw specifier for at least one argument, the axis argument must be 0 or a contiguous increasing sequence of integers starting from 0, like (0, 1), (0, 1, 2), etc.

Note

Texture memory is not yet supported in ReductionKernel.

Raw kernels

Raw kernels can be defined by the RawKernel class.
By using raw kernels, you can define kernels from raw CUDA source.

RawKernel object allows you to call the kernel with CUDA’s cuLaunchKernel interface.
In other words, you have control over grid size, block size, shared memory size and stream.

>>> add_kernel = cp.RawKernel(r'''
... extern "C" __global__
... void my_add(const float* x1, const float* x2, float* y) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... y[tid] = x1[tid] + x2[tid];
... }
... ''', 'my_add')
>>> x1 = cp.arange(25, dtype=cp.float32).reshape(5, 5)
>>> x2 = cp.arange(25, dtype=cp.float32).reshape(5, 5)
>>> y = cp.zeros((5, 5), dtype=cp.float32)
>>> add_kernel((5,), (5,), (x1, x2, y)) # grid, block and arguments
>>> y
array([[0., 2., 4., 6., 8.],
 [10., 12., 14., 16., 18.],
 [20., 22., 24., 26., 28.],
 [30., 32., 34., 36., 38.],
 [40., 42., 44., 46., 48.]], dtype=float32)

Raw kernels operating on complex-valued arrays can be created as well:

>>> complex_kernel = cp.RawKernel(r'''
... #include <cupy/complex.cuh>
... extern "C" __global__
... void my_func(const complex<float>* x1, const complex<float>* x2,
... complex<float>* y, float a) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... y[tid] = x1[tid] + a * x2[tid];
... }
... ''', 'my_func')
>>> x1 = cupy.arange(25, dtype=cupy.complex64).reshape(5, 5)
>>> x2 = 1j*cupy.arange(25, dtype=cupy.complex64).reshape(5, 5)
>>> y = cupy.zeros((5, 5), dtype=cupy.complex64)
>>> complex_kernel((5,), (5,), (x1, x2, y, cupy.float32(2.0))) # grid, block and arguments
>>> y
array([[0. +0.j, 1. +2.j, 2. +4.j, 3. +6.j, 4. +8.j],
 [5.+10.j, 6.+12.j, 7.+14.j, 8.+16.j, 9.+18.j],
 [10.+20.j, 11.+22.j, 12.+24.j, 13.+26.j, 14.+28.j],
 [15.+30.j, 16.+32.j, 17.+34.j, 18.+36.j, 19.+38.j],
 [20.+40.j, 21.+42.j, 22.+44.j, 23.+46.j, 24.+48.j]],
 dtype=complex64)

Note that while we encourage the usage of complex<T> types for complex numbers (available by including <cupy/complex.cuh> as shown above), for CUDA codes already written using functions from cuComplex.h there is no need to make the conversion yourself: just set the option translate_cucomplex=True when creating a RawKernel instance.

The CUDA kernel attributes can be retrieved by either accessing the attributes dictionary,
or by accessing the RawKernel object’s attributes directly; the latter can also be used to set certain
attributes:

>>> add_kernel = cp.RawKernel(r'''
... extern "C" __global__
... void my_add(const float* x1, const float* x2, float* y) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... y[tid] = x1[tid] + x2[tid];
... }
... ''', 'my_add')
>>> add_kernel.attributes
{'max_threads_per_block': 1024, 'shared_size_bytes': 0, 'const_size_bytes': 0, 'local_size_bytes': 0, 'num_regs': 10, 'ptx_version': 70, 'binary_version': 70, 'cache_mode_ca': 0, 'max_dynamic_shared_size_bytes': 49152, 'preferred_shared_memory_carveout': -1}
>>> add_kernel.max_dynamic_shared_size_bytes
49152
>>> add_kernel.max_dynamic_shared_size_bytes = 50000 # set a new value for the attribute
>>> add_kernel.max_dynamic_shared_size_bytes
50000

Dynamical parallelism is supported by RawKernel. You just need to provide the linking flag (such as -dc) to RawKernel’s options argument. The static CUDA device runtime library (cudadevrt) is automatically discovered by CuPy. For further detail, see CUDA Toolkit’s documentation [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compiling-and-linking].

Accessing texture (surface) memory in RawKernel is supported via CUDA Runtime’s Texture (Surface) Object API, see the documentation for TextureObject (SurfaceObject) as well as CUDA C Programming Guide. For using the Texture Reference API, which is marked as deprecated as of CUDA Toolkit 10.1, see the introduction to RawModule below.

If your kernel relies on the C++ std library headers such as <type_traits>, it is likely you will encounter compilation errors. In this case, try enabling CuPy’s Jitify [https://github.com/NVIDIA/jitify] support by setting jitify=True when creating the RawKernel instance. It provides basic C++ std support to remedy common errors.

Note

The kernel does not have return values.
You need to pass both input arrays and output arrays as arguments.

Note

When using printf() in your CUDA kernel, you may need to synchronize the stream to see the output.
You can use cupy.cuda.Stream.null.synchronize() if you are using the default stream.

Note

In all of the examples above, we declare the kernels in an extern "C" block,
indicating that the C linkage is used. This is to ensure the kernel names are not
mangled so that they can be retrived by name.

Kernel arguments

Python primitive types and NumPy scalars are passed to the kernel by value.
Array arguments (pointer arguments) have to be passed as CuPy ndarrays.
No validation is performed by CuPy for arguments passed to the kernel, including types and number of arguments.

Especially note that when passing a CuPy ndarray, its dtype should match with the type of the argument declared in the function signature of the CUDA source code (unless you are casting arrays intentionally).

As an example, cupy.float32 and cupy.uint64 arrays must be passed to the argument typed as float* and unsigned long long*, respectively. CuPy does not directly support arrays of non-primitive types such as float3, but nothing prevents you from casting a float* or void* to a float3* in a kernel.

Python primitive types, int, float, complex and bool map to long long, double, cuDoubleComplex and bool, respectively.

NumPy scalars (numpy.generic) and NumPy arrays (numpy.ndarray) of size one
are passed to the kernel by value.
This means that you can pass by value any base NumPy types such as numpy.int8 or numpy.float64, provided the kernel arguments match in size. You can refer to this table to match CuPy/NumPy dtype and CUDA types:

	CuPy/NumPy type

	Corresponding kernel types

	itemsize (bytes)

	bool

	bool

	1

	int8

	char, signed char

	1

	int16

	short, signed short

	2

	int32

	int, signed int

	4

	int64

	long long, signed long long

	8

	uint8

	unsigned char

	1

	uint16

	unsigned short

	2

	uint32

	unsigned int

	4

	uint64

	unsigned long long

	8

	float16

	half

	2

	float32

	float

	4

	float64

	double

	8

	complex64

	float2, cuFloatComplex, complex<float>

	8

	complex128

	double2, cuDoubleComplex, complex<double>

	16

The CUDA standard guarantees that the size of fundamental types on the host and device always match.
The itemsize of size_t, ptrdiff_t, intptr_t, uintptr_t,
long, signed long and unsigned long are however platform dependent.
To pass any CUDA vector builtins such as float3 or any other user defined structure
as kernel arguments (provided it matches the device-side kernel parameter type), see Custom user types below.

Custom user types

It is possible to use custom types (composite types such as structures and structures of structures)
as kernel arguments by defining a custom NumPy dtype.
When doing this, it is your responsibility to match host and device structure memory layout.
The CUDA standard guarantees that the size of fundamental types on the host and device always match.
It may however impose device alignment requirements on composite types.
This means that for composite types the struct member offsets may be different from what you might expect.

When a kernel argument is passed by value, the CUDA driver will copy exactly sizeof(param_type) bytes starting from the beginning of the NumPy object data pointer, where param_type is the parameter type in your kernel.
You have to match param_type’s memory layout (ex: size, alignment and struct padding/packing)
by defining a corresponding NumPy dtype [https://numpy.org/doc/stable/reference/arrays.dtypes.html].

For builtin CUDA vector types such as int2 and double4 and other packed structures with
named members you can directly define such NumPy dtypes as the following:

>>> import numpy as np
>>> names = ['x', 'y', 'z']
>>> types = [np.float32]*3
>>> float3 = np.dtype({'names': names, 'formats': types})
>>> arg = np.random.rand(3).astype(np.float32).view(float3)
>>> print(arg)
[(0.9940819, 0.62873816, 0.8953669)]
>>> arg['x'] = 42.0
>>> print(arg)
[(42., 0.62873816, 0.8953669)]

Here arg can be used directly as a kernel argument.
When there is no need to name fields you may prefer this syntax to define packed structures such as
vectors or matrices:

>>> import numpy as np
>>> float5x5 = np.dtype({'names': ['dummy'], 'formats': [(np.float32,(5,5))]})
>>> arg = np.random.rand(25).astype(np.float32).view(float5x5)
>>> print(arg.itemsize)
100

Here arg represents a 100-byte scalar (i.e. a NumPy array of size 1)
that can be passed by value to any kernel.
Kernel parameters are passed by value in a dedicated 4kB memory bank which has its own cache with broadcast.
Upper bound for total kernel parameters size is thus 4kB
(see this link [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#function-parameters]).
It may be important to note that this dedicated memory bank is not shared with the device __constant__ memory space.

For now, CuPy offers no helper routines to create user defined composite types.
Such composite types can however be built recursively using NumPy dtype offsets and itemsize capabilities,
see cupy/examples/custum_struct [https://github.com/cupy/cupy/tree/main/examples/custom_struct] for examples of advanced usage.

Warning

You cannot directly pass static arrays as kernel arguments with the type arg[N] syntax where N is a compile time constant. The signature of __global__ void kernel(float arg[5]) is seen as __global__ void kernel(float* arg) by the compiler. If you want to pass five floats to the kernel by value you need to define a custom structure struct float5 { float val[5]; }; and modify the kernel signature to __global__ void kernel(float5 arg).

Raw modules

For dealing a large raw CUDA source or loading an existing CUDA binary, the RawModule class can be more handy. It can be initialized either by a CUDA source code, or by a path to the CUDA binary. It accepts most of the arguments as in RawKernel. The needed kernels can then be retrieved by calling the get_function() method, which returns a RawKernel instance that can be invoked as discussed above.

>>> loaded_from_source = r'''
... extern "C"{
...
... __global__ void test_sum(const float* x1, const float* x2, float* y, \
... unsigned int N)
... {
... unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
... if (tid < N)
... {
... y[tid] = x1[tid] + x2[tid];
... }
... }
...
... __global__ void test_multiply(const float* x1, const float* x2, float* y, \
... unsigned int N)
... {
... unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
... if (tid < N)
... {
... y[tid] = x1[tid] * x2[tid];
... }
... }
...
... }'''
>>> module = cp.RawModule(code=loaded_from_source)
>>> ker_sum = module.get_function('test_sum')
>>> ker_times = module.get_function('test_multiply')
>>> N = 10
>>> x1 = cp.arange(N**2, dtype=cp.float32).reshape(N, N)
>>> x2 = cp.ones((N, N), dtype=cp.float32)
>>> y = cp.zeros((N, N), dtype=cp.float32)
>>> ker_sum((N,), (N,), (x1, x2, y, N**2)) # y = x1 + x2
>>> assert cp.allclose(y, x1 + x2)
>>> ker_times((N,), (N,), (x1, x2, y, N**2)) # y = x1 * x2
>>> assert cp.allclose(y, x1 * x2)

The instruction above for using complex numbers in RawKernel also applies to RawModule.

For CUDA kernels that need to access global symbols, such as constant memory, the get_global() method can be used, see its documentation for further detail.

Note that the deprecated API cupy.RawModule.get_texref() has been removed since CuPy vX.X due to the removal of texture reference support from CUDA.

To support C++ template kernels, RawModule additionally provide a name_expressions argument. A list of template specializations should be provided, so that the corresponding kernels can be generated and retrieved by type:

>>> code = r'''
... template<typename T>
... __global__ void fx3(T* arr, int N) {
... unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
... if (tid < N) {
... arr[tid] = arr[tid] * 3;
... }
... }
... '''
>>>
>>> name_exp = ['fx3<float>', 'fx3<double>']
>>> mod = cp.RawModule(code=code, options=('-std=c++11',),
... name_expressions=name_exp)
>>> ker_float = mod.get_function(name_exp[0]) # compilation happens here
>>> N=10
>>> a = cp.arange(N, dtype=cp.float32)
>>> ker_float((1,), (N,), (a, N))
>>> a
array([0., 3., 6., 9., 12., 15., 18., 21., 24., 27.], dtype=float32)
>>> ker_double = mod.get_function(name_exp[1])
>>> a = cp.arange(N, dtype=cp.float64)
>>> ker_double((1,), (N,), (a, N))
>>> a
array([0., 3., 6., 9., 12., 15., 18., 21., 24., 27.])

Note

The name expressions used to both initialize a RawModule instance and retrieve the kernels are
the original (un-mangled) kernel names with all template parameters unambiguously specified. The name mangling
and demangling are handled under the hood so that users do not need to worry about it.

Kernel fusion

cupy.fuse() is a decorator that fuses functions. This decorator can be used to define an elementwise or reduction kernel more easily than ElementwiseKernel or ReductionKernel.

By using this decorator, we can define the squared_diff kernel as follows:

>>> @cp.fuse()
... def squared_diff(x, y):
... return (x - y) * (x - y)

The above kernel can be called on either scalars, NumPy arrays or CuPy arrays likes the original function.

>>> x_cp = cp.arange(10)
>>> y_cp = cp.arange(10)[::-1]
>>> squared_diff(x_cp, y_cp)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])
>>> x_np = np.arange(10)
>>> y_np = np.arange(10)[::-1]
>>> squared_diff(x_np, y_np)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])

At the first function call, the fused function analyzes the original function based on the abstracted information of arguments (e.g. their dtypes and ndims) and creates and caches an actual CUDA kernel. From the second function call with the same input types, the fused function calls the previously cached kernel, so it is highly recommended to reuse the same decorated functions instead of decorating local functions that are defined multiple times.

cupy.fuse() also supports simple reduction kernel.

>>> @cp.fuse()
... def sum_of_products(x, y):
... return cp.sum(x * y, axis = -1)

You can specify the kernel name by using the kernel_name keyword argument as follows:

>>> @cp.fuse(kernel_name='squared_diff')
... def squared_diff(x, y):
... return (x - y) * (x - y)

Note

Currently, cupy.fuse() can fuse only simple elementwise and reduction operations. Most other routines (e.g. cupy.matmul(), cupy.reshape()) are not supported.

JIT kernel definition

The cupyx.jit.rawkernel decorator can create raw CUDA kernels from Python functions.

In this section, a Python function wrapped with the decorator is called a target function.

A target function consists of elementary scalar operations, and users have to manage how to parallelize them. CuPy’s array operations which automatically parallelize operations (e.g., add(), sum()) are not supported. If a custom kernel based on such array functions is desired, please refer to the Kernel fusion section.

Basic Usage

Here is a short example for how to write a cupyx.jit.rawkernel to copy the values from x to y using a grid-stride loop:

>>> from cupyx import jit
>>>
>>> @jit.rawkernel()
... def elementwise_copy(x, y, size):
... tid = jit.blockIdx.x * jit.blockDim.x + jit.threadIdx.x
... ntid = jit.gridDim.x * jit.blockDim.x
... for i in range(tid, size, ntid):
... y[i] = x[i]

>>> size = cupy.uint32(2 ** 22)
>>> x = cupy.random.normal(size=(size,), dtype=cupy.float32)
>>> y = cupy.empty((size,), dtype=cupy.float32)

>>> elementwise_copy((128,), (1024,), (x, y, size)) # RawKernel style
>>> assert (x == y).all()

>>> elementwise_copy[128, 1024](x, y, size) # Numba style
>>> assert (x == y).all()

Both styles to launch the kernel, as shown above, are supported. The first two entries are the grid and block sizes, respectively. grid (RawKernel style (128,) or Numba style [128]) is the sizes of the grid, i.e., the numbers of blocks in each dimension; block ((1024,) or [1024]) is the dimensions of each thread block, please refer to cupyx.jit._interface._JitRawKernel for details. Launching a CUDA kernel on a GPU with pre-determined grid/block sizes requires basic understanding in the CUDA Programming Model [https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/].

The compilation will be deferred until the first function call. CuPy’s JIT compiler infers the types of arguments at the call time, and will cache the compiled kernels for speeding up any subsequent calls.

See Custom kernels for a full list of API.

Basic Design

CuPy’s JIT compiler generates CUDA code via Python AST. We decided not to use Python bytecode to analyze the target function to avoid perforamance degradation. The CUDA source code generated from the Python bytecode will not effectively optimized by CUDA compiler, because for-loops and other control statements of the target function are fully transformed to jump instruction when converting the target function to bytecode.

Typing rule

The types of local variables are inferred at the first assignment in the function. The first assignment must be done at the top-level of the function; in other words, it must not be in if/else bodies or for-loops.

Limitations

JIT does not work inside Python’s interactive interpreter (REPL) as the compiler needs to get the source code of the target function.

Accessing CUDA Functionalities

Streams and Events

In this section we discuss basic usages for CUDA streams and events. For the API reference please see
Streams and events. For their roles in the CUDA programming model, please refer to CUDA Programming Guide [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html].

CuPy provides high-level Python APIs Stream and Event for creating
streams and events, respectively. Data copies and kernel launches are enqueued onto the Current Stream,
which can be queried via get_current_stream() and changed either by setting up a context
manager:

>>> import numpy as np
>>>
>>> a_np = np.arange(10)
>>> s = cp.cuda.Stream()
>>> with s:
... a_cp = cp.asarray(a_np) # H2D transfer on stream s
... b_cp = cp.sum(a_cp) # kernel launched on stream s
... assert s == cp.cuda.get_current_stream()
...
>>> # fall back to the previous stream in use (here the default stream)
>>> # when going out of the scope of s

or by using the use() method:

>>> s = cp.cuda.Stream()
>>> s.use() # any subsequent operations are done on steam s
<Stream ... (device ...)>
>>> b_np = cp.asnumpy(b_cp)
>>> assert s == cp.cuda.get_current_stream()
>>> cp.cuda.Stream.null.use() # fall back to the default (null) stream
<Stream 0 (device -1)>
>>> assert cp.cuda.Stream.null == cp.cuda.get_current_stream()

Events can be created either manually or through the record() method.
Event objects can be used for timing GPU activities (via get_elapsed_time())
or setting up inter-stream dependencies:

>>> e1 = cp.cuda.Event()
>>> e1.record()
>>> a_cp = b_cp * a_cp + 8
>>> e2 = cp.cuda.get_current_stream().record()
>>>
>>> # set up a stream order
>>> s2 = cp.cuda.Stream()
>>> s2.wait_event(e2)
>>> with s2:
... # the a_cp is guaranteed updated when this copy (on s2) starts
... a_np = cp.asnumpy(a_cp)
>>>
>>> # timing
>>> e2.synchronize()
>>> t = cp.cuda.get_elapsed_time(e1, e2) # only include the compute time, not the copy time

Just like the Device objects, Stream and Event
objects can also be used for synchronization.

Note

In CuPy, the Stream objects are managed on the per thread, per device basis.

Note

On NVIDIA GPUs, there are two stream singleton objects null and
ptds, referred to as the legacy default stream and the per-thread default
stream, respectively. CuPy uses the former as default when no user-defined stream is in use. To
change this behavior, set the environment variable CUPY_CUDA_PER_THREAD_DEFAULT_STREAM to 1,
see Environment variables. This is not applicable to AMD GPUs.

To interoperate with streams created in other Python libraries, CuPy provides the ExternalStream
API to wrap an existing stream pointer (given as a Python int). See Interoperability for details.

CUDA Driver and Runtime API

Under construction. Please see Runtime API for the API reference.

Fast Fourier Transform with CuPy

CuPy covers the full Fast Fourier Transform (FFT) functionalities provided in NumPy (cupy.fft) and a
subset in SciPy (cupyx.scipy.fft). In addition to those high-level APIs that can be used
as is, CuPy provides additional features to

	access advanced routines that cuFFT [https://docs.nvidia.com/cuda/cufft/index.html] offers for NVIDIA GPUs,

	control better the performance and behavior of the FFT routines.

Some of these features are experimental (subject to change, deprecation, or removal, see API Compatibility Policy)
or may be absent in hipFFT [https://hipfft.readthedocs.io/en/latest/]/rocFFT [https://rocfft.readthedocs.io/en/latest/] targeting AMD GPUs.

SciPy FFT backend

Since SciPy v1.4 a backend mechanism is provided so that users can register different FFT backends and use SciPy’s API to perform the actual transform
with the target backend, such as CuPy’s cupyx.scipy.fft module. For a one-time only usage, a context manager scipy.fft.set_backend() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_backend.html#scipy.fft.set_backend] can be used:

import cupy as cp
import cupyx.scipy.fft as cufft
import scipy.fft

a = cp.random.random(100).astype(cp.complex64)
with scipy.fft.set_backend(cufft):
 b = scipy.fft.fft(a) # equivalent to cufft.fft(a)

However, such usage can be tedious. Alternatively, users can register a backend through scipy.fft.register_backend() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend] or scipy.fft.set_global_backend() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_global_backend.html#scipy.fft.set_global_backend]
to avoid using context managers:

import cupy as cp
import cupyx.scipy.fft as cufft
import scipy.fft
scipy.fft.set_global_backend(cufft)

a = cp.random.random(100).astype(cp.complex64)
b = scipy.fft.fft(a) # equivalent to cufft.fft(a)

Note

Please refer to SciPy FFT documentation [https://docs.scipy.org/doc/scipy/reference/fft.html#backend-control] for further information.

Note

To use the backend together with an explicit plan argument requires SciPy version 1.5.0 or higher.
See below for how to create FFT plans.

User-managed FFT plans

For performance reasons, users may wish to create, reuse, and manage the FFT plans themselves. CuPy provides a high-level experimental API get_fft_plan() for this need. Users specify the transform to be performed as they would with most of the high-level FFT APIs, and a plan will be generated based on the input.

import cupy as cp
from cupyx.scipy.fft import get_fft_plan

a = cp.random.random((4, 64, 64)).astype(cp.complex64)
plan = get_fft_plan(a, axes=(1, 2), value_type='C2C') # for batched, C2C, 2D transform

The returned plan can be used either explicitly as an argument with the cupyx.scipy.fft APIs:

import cupyx.scipy.fft

the rest of the arguments must match those used when generating the plan
out = cupyx.scipy.fft.fft2(a, axes=(1, 2), plan=plan)

or as a context manager for the cupy.fft APIs:

with plan:
 # the arguments must match those used when generating the plan
 out = cp.fft.fft2(a, axes=(1, 2))

FFT plan cache

However, there are occasions when users may not want to manage the FFT plans by themselves. Moreover, plans could also be reused internally in CuPy’s routines, to which user-managed plans would not be applicable. Therefore, starting CuPy v8 we provide a built-in plan cache, enabled by default. The plan cache is done on a per device, per thread basis, and can be retrieved by the get_plan_cache() API.

>>> import cupy as cp
>>>
>>> cache = cp.fft.config.get_plan_cache()
>>> cache.show_info()
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 0 / 16 (counts)
current / max memsize: 0 / (unlimited) (bytes)
hits / misses: 0 / 0 (counts)

cached plans (most recently used first):

>>> # perform a transform, which would generate a plan and cache it
>>> a = cp.random.random((4, 64, 64))
>>> out = cp.fft.fftn(a, axes=(1, 2))
>>> cache.show_info() # hit = 0
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 1 / 16 (counts)
current / max memsize: 262144 / (unlimited) (bytes)
hits / misses: 0 / 1 (counts)

cached plans (most recently used first):
key: ((64, 64), (64, 64), 1, 4096, (64, 64), 1, 4096, 105, 4, 'C', 2, None), plan type: PlanNd, memory usage: 262144

>>> # perform the same transform again, the plan is looked up from cache and reused
>>> out = cp.fft.fftn(a, axes=(1, 2))
>>> cache.show_info() # hit = 1
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 1 / 16 (counts)
current / max memsize: 262144 / (unlimited) (bytes)
hits / misses: 1 / 1 (counts)

cached plans (most recently used first):
key: ((64, 64), (64, 64), 1, 4096, (64, 64), 1, 4096, 105, 4, 'C', 2, None), plan type: PlanNd, memory usage: 262144

>>> # clear the cache
>>> cache.clear()
>>> cp.fft.config.show_plan_cache_info() # = cache.show_info(), for all devices
=============== cuFFT plan cache info (all devices) ===============
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 0 / 16 (counts)
current / max memsize: 0 / (unlimited) (bytes)
hits / misses: 0 / 0 (counts)

cached plans (most recently used first):

The returned PlanCache object has other methods for finer control, such as setting the cache size (either by counts or by memory usage). If the size is set to 0, the cache is disabled. Please refer to its documentation for more detail.

Note

As shown above each FFT plan has an associated working area allocated. If an out-of-memory error happens, one may want to inspect, clear, or limit the plan cache.

Note

The plans returned by get_fft_plan() are not cached.

FFT callbacks

cuFFT [https://docs.nvidia.com/cuda/cufft/index.html] provides FFT callbacks for merging pre- and/or post- processing kernels with the FFT routines so as to reduce the access to global memory.
This capability is supported experimentally by CuPy. Users need to supply custom load and/or store kernels as strings, and set up a context manager
via set_cufft_callbacks(). Note that the load (store) kernel pointer has to be named as d_loadCallbackPtr (d_storeCallbackPtr).

import cupy as cp

a load callback that overwrites the input array to 1
code = r'''
__device__ cufftComplex CB_ConvertInputC(
 void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPtr)
{
 cufftComplex x;
 x.x = 1.;
 x.y = 0.;
 return x;
}
__device__ cufftCallbackLoadC d_loadCallbackPtr = CB_ConvertInputC;
'''

a = cp.random.random((64, 128, 128)).astype(cp.complex64)

this fftn call uses callback
with cp.fft.config.set_cufft_callbacks(cb_load=code):
 b = cp.fft.fftn(a, axes=(1,2))

this does not use
c = cp.fft.fftn(cp.ones(shape=a.shape, dtype=cp.complex64), axes=(1,2))

result agrees
assert cp.allclose(b, c)

"static" plans are also cached, but are distinct from their no-callback counterparts
cp.fft.config.get_plan_cache().show_info()

Note

Internally, this feature requires recompiling a Python module for each distinct pair of load and store kernels. Therefore, the first invocation will be very slow, and this cost is amortized if the callbacks can be reused in the subsequent calculations. The compiled modules are cached on disk, with a default position $HOME/.cupy/callback_cache that can be changed by the environment variable CUPY_CACHE_DIR.

Multi-GPU FFT

CuPy currently provides two kinds of experimental support for multi-GPU FFT.

Warning

Using multiple GPUs to perform FFT is not guaranteed to be more performant. The rule of thumb is if the transform fits in 1 GPU, you should avoid using multiple.

The first kind of support is with the high-level fft() and ifft() APIs, which requires the input array to reside on one of the participating GPUs. The multi-GPU calculation is done under the hood, and by the end of the calculation the result again resides on the device where it started. Currently only 1D complex-to-complex (C2C) transform is supported; complex-to-real (C2R) or real-to-complex (R2C) transforms (such as rfft() and friends) are not. The transform can be either batched (batch size > 1) or not (batch size = 1).

import cupy as cp

cp.fft.config.use_multi_gpus = True
cp.fft.config.set_cufft_gpus([0, 1]) # use GPU 0 & 1

shape = (64, 64) # batch size = 64
dtype = cp.complex64
a = cp.random.random(shape).astype(dtype) # reside on GPU 0

b = cp.fft.fft(a) # computed on GPU 0 & 1, reside on GPU 0

If you need to perform 2D/3D transforms (ex: fftn()) instead of 1D (ex: fft()), it would likely still work, but in this particular use case it loops over the transformed axes under the hood (which is exactly what is done in NumPy too), which could lead to suboptimal performance.

The second kind of usage is to use the low-level, private CuPy APIs. You need to construct a Plan1d object and use it as if you are programming in C/C++ with cuFFT [https://docs.nvidia.com/cuda/cufft/index.html]. Using this approach, your input array can reside on the host as a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] so that its size can be much larger than what a single GPU can accommodate, which is one of the main reasons to run multi-GPU FFT.

import numpy as np
import cupy as cp

no need to touch cp.fft.config, as we are using low-level API

shape = (64, 64)
dtype = np.complex64
a = np.random.random(shape).astype(dtype) # reside on CPU

if len(shape) == 1:
 batch = 1
 nx = shape[0]
elif len(shape) == 2:
 batch = shape[0]
 nx = shape[1]

compute via cuFFT
cufft_type = cp.cuda.cufft.CUFFT_C2C # single-precision c2c
plan = cp.cuda.cufft.Plan1d(nx, cufft_type, batch, devices=[0,1])
out_cp = np.empty_like(a) # output on CPU
plan.fft(a, out_cp, cufft.CUFFT_FORWARD)

out_np = numpy.fft.fft(a) # use NumPy's fft
np.fft.fft alway returns np.complex128
if dtype is numpy.complex64:
 out_np = out_np.astype(dtype)

check result
assert np.allclose(out_cp, out_np, rtol=1e-4, atol=1e-7)

For this use case, please consult the cuFFT [https://docs.nvidia.com/cuda/cufft/index.html] documentation on multi-GPU transform for further detail.

Note

The multi-GPU plans are cached if auto-generated via the high-level APIs, but not if manually generated via the low-level APIs.

Half-precision FFT

cuFFT [https://docs.nvidia.com/cuda/cufft/index.html] provides cufftXtMakePlanMany and cufftXtExec routines to support a wide range of FFT needs, including 64-bit indexing and half-precision FFT. CuPy provides an experimental support for this capability via the new (though private) XtPlanNd API. For half-precision FFT, on supported hardware it can be twice as fast than its single-precision counterpart. NumPy does not yet provide the necessary infrastructure for half-precision complex numbers (i.e., numpy.complex32), though, so the steps for this feature is currently a bit more involved than common cases.

import cupy as cp
import numpy as np

shape = (1024, 256, 256) # input array shape
idtype = odtype = edtype = 'E' # = numpy.complex32 in the future

store the input/output arrays as fp16 arrays twice as long, as complex32 is not yet available
a = cp.random.random((shape[0], shape[1], 2*shape[2])).astype(cp.float16)
out = cp.empty_like(a)

FFT with cuFFT
plan = cp.cuda.cufft.XtPlanNd(shape[1:],
 shape[1:], 1, shape[1]*shape[2], idtype,
 shape[1:], 1, shape[1]*shape[2], odtype,
 shape[0], edtype,
 order='C', last_axis=-1, last_size=None)

plan.fft(a, out, cp.cuda.cufft.CUFFT_FORWARD)

FFT with NumPy
a_np = cp.asnumpy(a).astype(np.float32) # upcast
a_np = a_np.view(np.complex64)
out_np = np.fft.fftn(a_np, axes=(-2,-1))
out_np = np.ascontiguousarray(out_np).astype(np.complex64) # downcast
out_np = out_np.view(np.float32)
out_np = out_np.astype(np.float16)

don't worry about accruacy for now, as we probably lost a lot during casting
print('ok' if cp.mean(cp.abs(out - cp.asarray(out_np))) < 0.1 else 'not ok')

The 64-bit indexing support for all high-level FFT APIs is planned for a future CuPy release.

Memory Management

CuPy uses memory pool for memory allocations by default.
The memory pool significantly improves the performance by mitigating the overhead of memory allocation and CPU/GPU synchronization.

There are two different memory pools in CuPy:

	Device memory pool (GPU device memory), which is used for GPU memory allocations.

	Pinned memory pool (non-swappable CPU memory), which is used during CPU-to-GPU data transfer.

Attention

When you monitor the memory usage (e.g., using nvidia-smi for GPU memory or ps for CPU memory), you may notice that memory not being freed even after the array instance become out of scope.
This is an expected behavior, as the default memory pool “caches” the allocated memory blocks.

See Low-level CUDA support for the details of memory management APIs.

For using pinned memory more conveniently, we also provide a few high-level APIs in the cupyx namespace,
including cupyx.empty_pinned(), cupyx.empty_like_pinned(), cupyx.zeros_pinned(), and
cupyx.zeros_like_pinned(). They return NumPy arrays backed by pinned memory. If CuPy’s pinned memory pool
is in use, the pinned memory is allocated from the pool.

Note

CuPy v8 and above provides a FFT plan cache that could use a portion of device memory if FFT and related functions are used.
The memory taken can be released by shrinking or disabling the cache.

Memory Pool Operations

The memory pool instance provides statistics about memory allocation.
To access the default memory pool instance, use cupy.get_default_memory_pool() and cupy.get_default_pinned_memory_pool().
You can also free all unused memory blocks hold in the memory pool.
See the example code below for details:

import cupy
import numpy

mempool = cupy.get_default_memory_pool()
pinned_mempool = cupy.get_default_pinned_memory_pool()

Create an array on CPU.
NumPy allocates 400 bytes in CPU (not managed by CuPy memory pool).
a_cpu = numpy.ndarray(100, dtype=numpy.float32)
print(a_cpu.nbytes) # 400

You can access statistics of these memory pools.
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0
print(pinned_mempool.n_free_blocks()) # 0

Transfer the array from CPU to GPU.
This allocates 400 bytes from the device memory pool, and another 400
bytes from the pinned memory pool. The allocated pinned memory will be
released just after the transfer is complete. Note that the actual
allocation size may be rounded to larger value than the requested size
for performance.
a = cupy.array(a_cpu)
print(a.nbytes) # 400
print(mempool.used_bytes()) # 512
print(mempool.total_bytes()) # 512
print(pinned_mempool.n_free_blocks()) # 1

When the array goes out of scope, the allocated device memory is released
and kept in the pool for future reuse.
a = None # (or `del a`)
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 512
print(pinned_mempool.n_free_blocks()) # 1

You can clear the memory pool by calling `free_all_blocks`.
mempool.free_all_blocks()
pinned_mempool.free_all_blocks()
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0
print(pinned_mempool.n_free_blocks()) # 0

See cupy.cuda.MemoryPool and cupy.cuda.PinnedMemoryPool for details.

Limiting GPU Memory Usage

You can hard-limit the amount of GPU memory that can be allocated by using CUPY_GPU_MEMORY_LIMIT environment variable (see Environment variables for details).

Set the hard-limit to 1 GiB:
$ export CUPY_GPU_MEMORY_LIMIT="1073741824"

You can also specify the limit in fraction of the total amount of memory
on the GPU. If you have a GPU with 2 GiB memory, the following is
equivalent to the above configuration.
$ export CUPY_GPU_MEMORY_LIMIT="50%"

import cupy
print(cupy.get_default_memory_pool().get_limit()) # 1073741824

You can also set the limit (or override the value specified via the environment variable) using cupy.cuda.MemoryPool.set_limit().
In this way, you can use a different limit for each GPU device.

import cupy

mempool = cupy.get_default_memory_pool()

with cupy.cuda.Device(0):
 mempool.set_limit(size=1024**3) # 1 GiB

with cupy.cuda.Device(1):
 mempool.set_limit(size=2*1024**3) # 2 GiB

Note

CUDA allocates some GPU memory outside of the memory pool (such as CUDA context, library handles, etc.).
Depending on the usage, such memory may take one to few hundred MiB.
That will not be counted in the limit.

Changing Memory Pool

You can use your own memory allocator instead of the default memory pool by passing the memory allocation function to cupy.cuda.set_allocator() / cupy.cuda.set_pinned_memory_allocator().
The memory allocator function should take 1 argument (the requested size in bytes) and return cupy.cuda.MemoryPointer / cupy.cuda.PinnedMemoryPointer.

CuPy provides two such allocators for using managed memory and stream ordered memory on GPU,
see cupy.cuda.malloc_managed() and cupy.cuda.malloc_async(), respectively, for details.
To enable a memory pool backed by managed memory, you can construct a new MemoryPool instance with its allocator
set to malloc_managed() as follows

import cupy

Use managed memory
cupy.cuda.set_allocator(cupy.cuda.MemoryPool(cupy.cuda.malloc_managed).malloc)

Note that if you pass malloc_managed() directly to set_allocator() without constructing
a MemoryPool instance, when the memory is freed it will be released back to the system immediately,
which may or may not be desired.

Stream Ordered Memory Allocator is a new feature added since CUDA 11.2. CuPy provides an experimental interface to it.
Similar to CuPy’s memory pool, Stream Ordered Memory Allocator also allocates/deallocates memory asynchronously from/to
a memory pool in a stream-ordered fashion. The key difference is that it is a built-in feature implemented in the CUDA
driver by NVIDIA, so other CUDA applications in the same processs can easily allocate memory from the same pool.

To enable a memory pool that manages stream ordered memory, you can construct a new MemoryAsyncPool
instance:

import cupy

Use asynchronous stream ordered memory
cupy.cuda.set_allocator(cupy.cuda.MemoryAsyncPool().malloc)

Create a custom stream
s = cupy.cuda.Stream()

This would allocate memory asynchronously on stream s
with s:
 a = cupy.empty((100,), dtype=cupy.float64)

Note that in this case we do not use the MemoryPool class. The MemoryAsyncPool takes
a different input argument from that of MemoryPool to indicate which pool to use.
Please refer to MemoryAsyncPool’s documentation for further detail.

Note that if you pass malloc_async() directly to set_allocator() without constructing
a MemoryAsyncPool instance, the device’s current memory pool will be used.

When using stream ordered memory, it is important that you maintain a correct stream semantics yourselves using, for example,
the Stream and Event APIs (see Streams and Events for details); CuPy does not
attempt to act smartly for you. Upon deallocation, the memory is freed asynchronously either on the stream it was
allocated (first attempt), or on any current CuPy stream (second attempt). It is permitted that the stream on which the
memory was allocated gets destroyed before all memory allocated on it is freed.

In addition, applications/libraries internally use cudaMalloc (CUDA’s default, synchronous allocator) could have unexpected
interplay with Stream Ordered Memory Allocator. Specifically, memory freed to the memory pool might not be immediately visible
to cudaMalloc, leading to potential out-of-memory errors. In this case, you can either call free_all_blocks()
or just manually perform a (event/stream/device) synchronization, and retry.

Currently the MemoryAsyncPool interface is experimental. In particular, while its API is largely identical
to that of MemoryPool, several of the pool’s methods require a sufficiently new driver (and of course, a
supported hardware, CUDA version, and platform) due to CUDA’s limitation.

You can even disable the default memory pool by the code below.
Be sure to do this before any other CuPy operations.

import cupy

Disable memory pool for device memory (GPU)
cupy.cuda.set_allocator(None)

Disable memory pool for pinned memory (CPU).
cupy.cuda.set_pinned_memory_allocator(None)

Performance Best Practices

Here we gather a few tricks and advices for improving CuPy’s performance.

Benchmarking

It is utterly important to first identify the performance bottleneck before making any attempt to optimize
your code. To help set up a baseline benchmark, CuPy provides a useful utility cupyx.profiler.benchmark()
for timing the elapsed time of a Python function on both CPU and GPU:

>>> from cupyx.profiler import benchmark
>>>
>>> def my_func(a):
... return cp.sqrt(cp.sum(a**2, axis=-1))
...
>>> a = cp.random.random((256, 1024))
>>> print(benchmark(my_func, (a,), n_repeat=20))
my_func : CPU: 44.407 us +/- 2.428 (min: 42.516 / max: 53.098) us GPU-0: 181.565 us +/- 1.853 (min: 180.288 / max: 188.608) us

Because GPU executions run asynchronously with respect to CPU executions, a common pitfall in GPU programming is to mistakenly
measure the elapsed time using CPU timing utilities (such as time.perf_counter() [https://docs.python.org/3/library/time.html#time.perf_counter] from the Python Standard Library
or the %timeit magic from IPython), which have no knowledge in the GPU runtime. cupyx.profiler.benchmark() addresses
this by setting up CUDA events on the Current Stream right before and after the function to be measured and
synchronizing over the end event (see Streams and Events for detail). Below we sketch what is done internally in cupyx.profiler.benchmark():

>>> import time
>>> start_gpu = cp.cuda.Event()
>>> end_gpu = cp.cuda.Event()
>>>
>>> start_gpu.record()
>>> start_cpu = time.perf_counter()
>>> out = my_func(a)
>>> end_cpu = time.perf_counter()
>>> end_gpu.record()
>>> end_gpu.synchronize()
>>> t_gpu = cp.cuda.get_elapsed_time(start_gpu, end_gpu)
>>> t_cpu = end_cpu - start_cpu

Additionally, cupyx.profiler.benchmark() runs a few warm-up runs to reduce timing fluctuation and exclude the overhead in first invocations.

One-Time Overheads

Be aware of these overheads when benchmarking CuPy code.

Context Initialization

It may take several seconds when calling a CuPy function for the first time in a process.
This is because the CUDA driver creates a CUDA context during the first CUDA API call in CUDA applications.

Kernel Compilation

CuPy uses on-the-fly kernel synthesis. When a kernel call is required, it compiles a kernel code optimized for the dimensions and dtypes of the given arguments, sends them to the GPU device, and executes the kernel.

CuPy caches the kernel code sent to GPU device within the process, which reduces the kernel compilation time on further calls.

The compiled code is also cached in the directory ${HOME}/.cupy/kernel_cache (the path can be overwritten by setting the CUPY_CACHE_DIR environment variable).
This allows reusing the compiled kernel binary across the process.

In-depth profiling

Under construction. To mark with NVTX/rocTX ranges, you can use the cupyx.profiler.time_range() API. To start/stop the profiler, you can use the cupyx.profiler.profile() API.

Use CUB/cuTENSOR backends for reduction and other routines

For reduction operations (such as sum(), prod(), amin(), amax(), argmin(), argmax()) and many more routines built upon them, CuPy ships with our own implementations so that things just work out of the box. However, there are dedicated efforts to further accelerate these routines, such as CUB [https://github.com/NVIDIA/cub] and cuTENSOR [https://developer.nvidia.com/cutensor].

In order to support more performant backends wherever applicable, starting v8 CuPy introduces an environment variable CUPY_ACCELERATORS to allow users to specify the desired backends (and in what order they are tried). For example, consider summing over a 256-cubic array:

>>> from cupyx.profiler import benchmark
>>> a = cp.random.random((256, 256, 256), dtype=cp.float32)
>>> print(benchmark(a.sum, (), n_repeat=100))
sum : CPU: 12.101 us +/- 0.694 (min: 11.081 / max: 17.649) us GPU-0:10174.898 us +/-180.551 (min:10084.576 / max:10595.936) us

We can see that it takes about 10 ms to run (on this GPU). However, if we launch the Python session using CUPY_ACCELERATORS=cub python, we get a ~100x speedup for free (only ~0.1 ms):

>>> print(benchmark(a.sum, (), n_repeat=100))
sum : CPU: 20.569 us +/- 5.418 (min: 13.400 / max: 28.439) us GPU-0: 114.740 us +/- 4.130 (min: 108.832 / max: 122.752) us

CUB is a backend shipped together with CuPy.
It also accelerates other routines, such as inclusive scans (ex: cumsum()), histograms,
sparse matrix-vector multiplications (not applicable in CUDA 11), and ReductionKernel.
cuTENSOR offers optimized performance for binary elementwise ufuncs, reduction and tensor contraction.
If cuTENSOR is installed, setting CUPY_ACCELERATORS=cub,cutensor, for example, would try CUB first and fall back to cuTENSOR if CUB does not provide the needed support. In the case that both backends are not applicable, it falls back to CuPy’s default implementation.

Note that while in general the accelerated reductions are faster, there could be exceptions
depending on the data layout. In particular, the CUB reduction only supports reduction over
contiguous axes.
In any case, we recommend to perform some benchmarks to determine whether CUB/cuTENSOR offers
better performance or not.

Note

CuPy v11 and above uses CUB by default. To turn it off, you need to explicitly specify the environment variable CUPY_ACCELERATORS="".

Overlapping work using streams

Under construction.

Use JIT compiler

Under construction. For now please refer to JIT kernel definition for a quick introduction.

Prefer float32 over float64

Under construction.

Interoperability

CuPy can be used in conjunction with other libraries.

NumPy

cupy.ndarray implements __array_ufunc__ interface (see NEP 13 — A Mechanism for Overriding Ufuncs [http://www.numpy.org/neps/nep-0013-ufunc-overrides.html] for details).
This enables NumPy ufuncs to be directly operated on CuPy arrays.
__array_ufunc__ feature requires NumPy 1.13 or later.

import cupy
import numpy

arr = cupy.random.randn(1, 2, 3, 4).astype(cupy.float32)
result = numpy.sum(arr)
print(type(result)) # => <class 'cupy._core.core.ndarray'>

cupy.ndarray also implements __array_function__ interface (see NEP 18 — A dispatch mechanism for NumPy’s high level array functions [http://www.numpy.org/neps/nep-0018-array-function-protocol.html] for details).
This enables code using NumPy to be directly operated on CuPy arrays.
__array_function__ feature requires NumPy 1.16 or later; As of NumPy 1.17, __array_function__ is enabled by default.

Numba

Numba [https://numba.pydata.org/] is a Python JIT compiler with NumPy support.

cupy.ndarray implements __cuda_array_interface__, which is the CUDA array interchange interface compatible with Numba v0.39.0 or later (see CUDA Array Interface [https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html] for details).
It means you can pass CuPy arrays to kernels JITed with Numba.
The following is a simple example code borrowed from numba/numba#2860 [https://github.com/numba/numba/pull/2860]:

import cupy
from numba import cuda

@cuda.jit
def add(x, y, out):
 start = cuda.grid(1)
 stride = cuda.gridsize(1)
 for i in range(start, x.shape[0], stride):
 out[i] = x[i] + y[i]

a = cupy.arange(10)
b = a * 2
out = cupy.zeros_like(a)

print(out) # => [0 0 0 0 0 0 0 0 0 0]

add[1, 32](a, b, out)

print(out) # => [0 3 6 9 12 15 18 21 24 27]

In addition, cupy.asarray() supports zero-copy conversion from Numba CUDA array to CuPy array.

import numpy
import numba
import cupy

x = numpy.arange(10) # type: numpy.ndarray
x_numba = numba.cuda.to_device(x) # type: numba.cuda.cudadrv.devicearray.DeviceNDArray
x_cupy = cupy.asarray(x_numba) # type: cupy.ndarray

Warning

__cuda_array_interface__ specifies that the object lifetime must be managed by the user, so it is an undefined behavior if the
exported object is destroyed while still in use by the consumer library.

Note

CuPy uses two environment variables controlling the exchange behavior: CUPY_CUDA_ARRAY_INTERFACE_SYNC and CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION.

mpi4py

MPI for Python (mpi4py) [https://mpi4py.readthedocs.io/en/latest/] is a Python wrapper for the Message Passing Interface (MPI) libraries.

MPI is the most widely used standard for high-performance inter-process communications. Recently several MPI vendors, including MPICH, Open MPI and MVAPICH, have extended their support beyond the MPI-3.1 standard to enable “CUDA-awareness”; that is, passing CUDA device pointers directly to MPI calls to avoid explicit data movement between the host and the device.

With the __cuda_array_interface__ (as mentioned above) and DLPack data exchange protocols (see DLPack below) implemented in CuPy, mpi4py now provides (experimental) support for passing CuPy arrays to MPI calls, provided that mpi4py is built against a CUDA-aware MPI implementation. The following is a simple example code borrowed from mpi4py Tutorial [https://mpi4py.readthedocs.io/en/latest/tutorial.html]:

To run this script with N MPI processes, do
mpiexec -n N python this_script.py

import cupy
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()

Allreduce
sendbuf = cupy.arange(10, dtype='i')
recvbuf = cupy.empty_like(sendbuf)
comm.Allreduce(sendbuf, recvbuf)
assert cupy.allclose(recvbuf, sendbuf*size)

This new feature is added since mpi4py 3.1.0. See the mpi4py website [https://mpi4py.readthedocs.io/en/latest/] for more information.

PyTorch

PyTorch [https://pytorch.org/] is a machine learning framefork that provides high-performance, differentiable tensor operations.

PyTorch also supports __cuda_array_interface__, so zero-copy data exchange between CuPy and PyTorch can be achieved at no cost.
The only caveat is PyTorch by default creates CPU tensors, which do not have the __cuda_array_interface__ property defined, and
users need to ensure the tensor is already on GPU before exchanging.

>>> import cupy as cp
>>> import torch
>>>
>>> # convert a torch tensor to a cupy array
>>> a = torch.rand((4, 4), device='cuda')
>>> b = cp.asarray(a)
>>> b *= b
>>> b
array([[0.8215962 , 0.82399917, 0.65607935, 0.30354425],
 [0.422695 , 0.8367199 , 0.00208597, 0.18545236],
 [0.00226746, 0.46201342, 0.6833052 , 0.47549972],
 [0.5208748 , 0.6059282 , 0.1909013 , 0.5148635]], dtype=float32)
>>> a
tensor([[0.8216, 0.8240, 0.6561, 0.3035],
 [0.4227, 0.8367, 0.0021, 0.1855],
 [0.0023, 0.4620, 0.6833, 0.4755],
 [0.5209, 0.6059, 0.1909, 0.5149]], device='cuda:0')
>>> # check the underlying memory pointer is the same
>>> assert a.__cuda_array_interface__['data'][0] == b.__cuda_array_interface__['data'][0]
>>>
>>> # convert a cupy array to a torch tensor
>>> a = cp.arange(10)
>>> b = torch.as_tensor(a, device='cuda')
>>> b += 3
>>> b
tensor([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], device='cuda:0')
>>> a
array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
>>> assert a.__cuda_array_interface__['data'][0] == b.__cuda_array_interface__['data'][0]

PyTorch also supports zero-copy data exchange through DLPack (see DLPack below):

import cupy
import torch

Create a PyTorch tensor.
tx1 = torch.randn(1, 2, 3, 4).cuda()

Convert it into a CuPy array.
cx = cupy.from_dlpack(tx1)

Convert it back to a PyTorch tensor.
tx2 = torch.from_dlpack(cx)

pytorch-pfn-extras [https://github.com/pfnet/pytorch-pfn-extras/] library provides additional integration features with PyTorch, including memory pool sharing and stream sharing:

>>> import cupy
>>> import torch
>>> import pytorch_pfn_extras as ppe
>>>
>>> # Perform CuPy memory allocation using the PyTorch memory pool.
>>> ppe.cuda.use_torch_mempool_in_cupy()
>>> torch.cuda.memory_allocated()
0
>>> arr = cupy.arange(10)
>>> torch.cuda.memory_allocated()
512
>>>
>>> # Change the default stream in PyTorch and CuPy:
>>> stream = torch.cuda.Stream()
>>> with ppe.cuda.stream(stream):
... ...

Using custom kernels in PyTorch

With the DLPack protocol, it becomes very simple to implement functions in PyTorch using CuPy user-defined kernels. Below is the example of a PyTorch autograd function
that computes the forward and backward pass of the logarithm using cupy.RawKernel s.

import cupy
import torch

cupy_custom_kernel_fwd = cupy.RawKernel(
 r"""
extern "C" __global__
void cupy_custom_kernel_fwd(const float* x, float* y, int size) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if (tid < size)
 y[tid] = log(x[tid]);
}
""",
 "cupy_custom_kernel_fwd",
)

cupy_custom_kernel_bwd = cupy.RawKernel(
 r"""
extern "C" __global__
void cupy_custom_kernel_bwd(const float* x, float* gy, float* gx, int size) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if (tid < size)
 gx[tid] = gy[tid] / x[tid];
}
""",
 "cupy_custom_kernel_bwd",
)

class CuPyLog(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.input = x
 # Enforce contiguous arrays to simplify RawKernel indexing.
 cupy_x = cupy.ascontiguousarray(cupy.from_dlpack(x.detach()))
 cupy_y = cupy.empty(cupy_x.shape, dtype=cupy_x.dtype)
 x_size = cupy_x.size
 bs = 128
 cupy_custom_kernel_fwd(
 (bs,), ((x_size + bs - 1) // bs,), (cupy_x, cupy_y, x_size)
)
 # the ownership of the device memory backing cupy_y is implicitly
 # transferred to torch_y, so this operation is safe even after
 # going out of scope of this function.
 torch_y = torch.from_dlpack(cupy_y)
 return torch_y

 @staticmethod
 def backward(ctx, grad_y):
 # Enforce contiguous arrays to simplify RawKernel indexing.
 cupy_input = cupy.from_dlpack(ctx.input.detach()).ravel()
 cupy_grad_y = cupy.from_dlpack(grad_y.detach()).ravel()
 cupy_grad_x = cupy.zeros(cupy_grad_y.shape, dtype=cupy_grad_y.dtype)
 gy_size = cupy_grad_y.size
 bs = 128
 cupy_custom_kernel_bwd(
 (bs,),
 ((gy_size + bs - 1) // bs,),
 (cupy_input, cupy_grad_y, cupy_grad_x, gy_size),
)
 # the ownership of the device memory backing cupy_grad_x is implicitly
 # transferred to torch_y, so this operation is safe even after
 # going out of scope of this function.
 torch_grad_x = torch.from_dlpack(cupy_grad_x)
 return torch_grad_x

Note

Directly feeding a torch.Tensor to cupy.from_dlpack() is only supported in the (new) DLPack data exchange protocol added in CuPy v10+ and PyTorch 1.10+.
For earlier versions, you will need to wrap the Tensor with torch.utils.dlpack.to_dlpack() as shown in the above examples.

RMM

RMM (RAPIDS Memory Manager) [https://docs.rapids.ai/api/rmm/stable/index.html] provides highly configurable memory allocators.

RMM provides an interface to allow CuPy to allocate memory from the RMM memory pool instead of from CuPy’s own pool. It can be set up
as simple as:

import cupy
import rmm
cupy.cuda.set_allocator(rmm.rmm_cupy_allocator)

Sometimes, a more performant allocator may be desirable. RMM provides an option to switch the allocator:

import cupy
import rmm
rmm.reinitialize(pool_allocator=True) # can also set init pool size etc here
cupy.cuda.set_allocator(rmm.rmm_cupy_allocator)

For more information on CuPy’s memory management, see Memory Management.

DLPack

DLPack [https://github.com/dmlc/dlpack] is a specification of tensor structure to share tensors among frameworks.

CuPy supports importing from and exporting to DLPack data structure (cupy.from_dlpack() and cupy.ndarray.toDlpack()).

Here is a simple example:

import cupy

Create a CuPy array.
cx1 = cupy.random.randn(1, 2, 3, 4).astype(cupy.float32)

Convert it into a DLPack tensor.
dx = cx1.toDlpack()

Convert it back to a CuPy array.
cx2 = cupy.from_dlpack(dx)

TensorFlow [https://www.tensorflow.org] also supports DLpack, so zero-copy data exchange between CuPy and TensorFlow through
DLPack is possible:

>>> import tensorflow as tf
>>> import cupy as cp
>>>
>>> # convert a TF tensor to a cupy array
>>> with tf.device('/GPU:0'):
... a = tf.random.uniform((10,))
...
>>> a
<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([0.9672388 , 0.57568085, 0.53163004, 0.6536236 , 0.20479882,
 0.84908986, 0.5852566 , 0.30355775, 0.1733712 , 0.9177849],
 dtype=float32)>
>>> a.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> cap = tf.experimental.dlpack.to_dlpack(a)
>>> b = cp.from_dlpack(cap)
>>> b *= 3
>>> b
array([1.4949363 , 0.60699713, 1.3276931 , 1.5781245 , 1.1914308 ,
 2.3180873 , 1.9560868 , 1.3932796 , 1.9299742 , 2.5352407],
 dtype=float32)
>>> a
<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([1.4949363 , 0.60699713, 1.3276931 , 1.5781245 , 1.1914308 ,
 2.3180873 , 1.9560868 , 1.3932796 , 1.9299742 , 2.5352407],
 dtype=float32)>
>>>
>>> # convert a cupy array to a TF tensor
>>> a = cp.arange(10)
>>> cap = a.toDlpack()
>>> b = tf.experimental.dlpack.from_dlpack(cap)
>>> b.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> b
<tf.Tensor: shape=(10,), dtype=int64, numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Be aware that in TensorFlow all tensors are immutable, so in the latter case any changes in b cannot be reflected in the CuPy array a.

Note that as of DLPack v0.5 for correctness the above approach (implicitly) requires users to ensure that such conversion (both importing and exporting a CuPy array) must happen on the same CUDA/HIP stream. If in doubt, the current CuPy stream in use can be fetched by, for example, calling cupy.cuda.get_current_stream(). Please consult the other framework’s documentation for how to access and control the streams.

DLPack data exchange protocol

To obviate user-managed streams and DLPack tensor objects, the DLPack data exchange protocol [https://data-apis.org/array-api/latest/design_topics/data_interchange.html] provides a mechanism to shift the responsibility from users to libraries. Any compliant objects (such as cupy.ndarray) must implement a pair of methods __dlpack__ and __dlpack_device__. The function cupy.from_dlpack() accepts such object and returns a cupy.ndarray that is safely accessible on CuPy’s current stream. Likewise, cupy.ndarray can be exported via any compliant library’s from_dlpack() function.

Note

CuPy uses CUPY_DLPACK_EXPORT_VERSION to control how to handle tensors backed by CUDA managed memory.

Device Memory Pointers

Import

CuPy provides UnownedMemory API that allows interoperating with GPU device memory allocated in other libraries.

Create a memory chunk from raw pointer and its size.
mem = cupy.cuda.UnownedMemory(140359025819648, 1024, owner=None)

Wrap it as a MemoryPointer.
memptr = cupy.cuda.MemoryPointer(mem, offset=0)

Create an ndarray view backed by the memory pointer.
arr = cupy.ndarray((16, 16), dtype=cupy.float32, memptr=memptr)
assert arr.nbytes <= arr.data.mem.size

Be aware that you are responsible for specifying a correct shape, dtype, strides, and order such that it fits in the chunk when creating an ndarray view.

The UnownedMemory API does not manage the lifetime of the memory allocation.
You must ensure that the pointer is alive while in use by CuPy.
In case the pointer lifetime is managed by a Python object, you can pass it to the owner argument of the UnownedMemory to keep the reference to the object.

Export

You can pass memory pointers allocated in CuPy to other libraries.

arr = cupy.arange(10)
print(arr.data.ptr, arr.nbytes) # => (140359025819648, 80)

The memory allocated by CuPy will be freed when the ndarray (arr) gets destructed.
You must keep ndarray instance alive while the pointer is in use by other libraries.

CUDA Stream Pointers

Import

CuPy provides ExternalStream API that allows interoperating with CUDA streams created in other libraries.

import torch

Create a stream on PyTorch.
s = torch.cuda.Stream()

Switch the current stream in PyTorch.
with torch.cuda.stream(s):
 # Switch the current stream in CuPy, using the pointer of the stream created in PyTorch.
 with cupy.cuda.ExternalStream(s.cuda_stream):
 # This block runs on the same CUDA stream.
 torch.arange(10, device='cuda')
 cupy.arange(10)

The ExternalStream API does not manage the lifetime of the stream.
You must ensure that the stream pointer is alive while in use by CuPy.

You also need to make sure that the ExternalStream object is used on the device where the stream was created.
CuPy can validate that for you if you pass device_id argument when creating ExternalStream.

Export

You can pass streams created in CuPy to other libraries.

s = cupy.cuda.Stream()
print(s.ptr, s.device_id) # => (93997451352336, 0)

The CUDA stream will be destroyed when the Stream (s) gets destructed.
You must keep the Stream instance alive while the pointer is in use by other libraries.

Differences between CuPy and NumPy

The interface of CuPy is designed to obey that of NumPy.
However, there are some differences.

Cast behavior from float to integer

Some casting behaviors from float to integer are not defined in C++ specification.
The casting from a negative float to unsigned integer and infinity to integer is one of such examples.
The behavior of NumPy depends on your CPU architecture.
This is the result on an Intel CPU:

>>> np.array([-1], dtype=np.float32).astype(np.uint32)
array([4294967295], dtype=uint32)
>>> cupy.array([-1], dtype=np.float32).astype(np.uint32)
array([0], dtype=uint32)

>>> np.array([float('inf')], dtype=np.float32).astype(np.int32)
array([-2147483648], dtype=int32)
>>> cupy.array([float('inf')], dtype=np.float32).astype(np.int32)
array([2147483647], dtype=int32)

Random methods support dtype argument

NumPy’s random value generator does not support a dtype argument and instead always returns a float64 value.
We support the option in CuPy because cuRAND, which is used in CuPy, supports both float32 and float64.

>>> np.random.randn(dtype=np.float32)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: randn() got an unexpected keyword argument 'dtype'
>>> cupy.random.randn(dtype=np.float32)
array(0.10689262300729752, dtype=float32)

Out-of-bounds indices

CuPy handles out-of-bounds indices differently by default from NumPy when
using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> x = np.array([0, 1, 2])
>>> x[[1, 3]] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 1 with size 3
>>> x = cupy.array([0, 1, 2])
>>> x[[1, 3]] = 10
>>> x
array([10, 10, 2])

Duplicate values in indices

CuPy’s __setitem__ behaves differently from NumPy when integer arrays
reference the same location multiple times.
In that case, the value that is actually stored is undefined.
Here is an example of CuPy.

>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(np.float32)
>>> a[i] = v
>>> a
array([9150., 9151.])

NumPy stores the value corresponding to the
last element among elements referencing duplicate locations.

>>> a_cpu = np.zeros((2,))
>>> i_cpu = np.arange(10000) % 2
>>> v_cpu = np.arange(10000).astype(np.float32)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([9998., 9999.])

Zero-dimensional array

Reduction methods

NumPy’s reduction functions (e.g. numpy.sum() [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum]) return scalar values (e.g. numpy.float32).
However CuPy counterparts return zero-dimensional cupy.ndarray s.
That is because CuPy scalar values (e.g. cupy.float32) are aliases of NumPy scalar values and are allocated in CPU memory.
If these types were returned, it would be required to synchronize between GPU and CPU.
If you want to use scalar values, cast the returned arrays explicitly.

>>> type(np.sum(np.arange(3))) == np.int64
True
>>> type(cupy.sum(cupy.arange(3))) == cupy.ndarray
True

Type promotion

CuPy automatically promotes dtypes of cupy.ndarray s in a function with two or more operands, the result dtype is determined by the dtypes of the inputs.
This is different from NumPy’s rule on type promotion, when operands contain zero-dimensional arrays.
Zero-dimensional numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] s are treated as if they were scalar values if they appear in operands of NumPy’s function,
This may affect the dtype of its output, depending on the values of the “scalar” inputs.

>>> (np.array(3, dtype=np.int32) * np.array([1., 2.], dtype=np.float32)).dtype
dtype('float32')
>>> (np.array(300000, dtype=np.int32) * np.array([1., 2.], dtype=np.float32)).dtype
dtype('float64')
>>> (cupy.array(3, dtype=np.int32) * cupy.array([1., 2.], dtype=np.float32)).dtype
dtype('float64')

Matrix type (numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix])

SciPy returns numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] (a subclass of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) when dense matrices are computed from sparse matrices (e.g., coo_matrix + ndarray). However, CuPy returns cupy.ndarray for such operations.

There is no plan to provide numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] equivalent in CuPy.
This is because the use of numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] is no longer recommended since NumPy 1.15.

Data types

Data type of CuPy arrays cannot be non-numeric like strings or objects.
See Overview for details.

Universal Functions only work with CuPy array or scalar

Unlike NumPy, Universal Functions in CuPy only work with CuPy array or scalar.
They do not accept other objects (e.g., lists or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]).

>>> np.power([np.arange(5)], 2)
array([[0, 1, 4, 9, 16]])

>>> cupy.power([cupy.arange(5)], 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Unsupported type <class 'list'>

Random seed arrays are hashed to scalars

Like Numpy, CuPy’s RandomState objects accept seeds either as numbers or as
full numpy arrays.

>>> seed = np.array([1, 2, 3, 4, 5])
>>> rs = cupy.random.RandomState(seed=seed)

However, unlike Numpy, array seeds will be hashed down to a single number and
so may not communicate as much entropy to the underlying random number
generator.

NaN (not-a-number) handling

By default CuPy’s reduction functions (e.g., cupy.sum()) handle NaNs in complex numbers differently from NumPy’s
counterparts:

>>> a = [0.5 + 3.7j, complex(0.7, np.nan), complex(np.nan, -3.9), complex(np.nan, np.nan)]
>>>
>>> a_np = np.asarray(a)
>>> print(a_np.max(), a_np.min())
(0.7+nanj) (0.7+nanj)
>>>
>>> a_cp = cp.asarray(a_np)
>>> print(a_cp.max(), a_cp.min())
(nan-3.9j) (nan-3.9j)

The reason is that internally the reduction is performed in a strided fashion, thus it does not ensure a proper
comparison order and cannot follow NumPy’s rule to always propagate the first-encountered NaN.
Note that this difference does not apply when CUB is enabled (which is the default for CuPy v11 or later.)

Contiguity / Strides

To provide the best performance, the contiguity of a resulting ndarray is not guaranteed to match with that of NumPy’s output.

>>> a = np.array([[1, 2], [3, 4]], order='F')
>>> print((a + a).flags.f_contiguous)
True

>>> a = cp.array([[1, 2], [3, 4]], order='F')
>>> print((a + a).flags.f_contiguous)
False

API Compatibility Policy

This document expresses the design policy on compatibilities of CuPy APIs.
Development team should obey this policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers.
Users can decide the level of dependencies on CuPy’s implementations in their codes based on this document.
Developers should read through this document before creating pull requests that contain changes on the interface.
Note that this document may contain ambiguities on the level of supported compatibilities.

Versioning and Backward Compatibilities

The updates of CuPy are classified into three levels: major, minor, and revision.
These types have distinct levels of backward compatibilities.

	Major update contains disruptive changes that break the backward compatibility.

	Minor update contains additions and extensions to the APIs that keep the backward compatibility supported.

	Revision update contains improvements on the API implementations without changing any API specifications.

Note that we do not support full backward compatibility, which is almost infeasible for Python-based APIs, since there is no way to completely hide the implementation details.

Processes to Break Backward Compatibilities

Deprecation, Dropping, and Its Preparation

Any APIs may be deprecated at some minor updates.
In such a case, the deprecation note is added to the API documentation, and the API implementation is changed to fire a deprecation warning (if possible).
There should be another way to reimplement the same functionality previously written using the deprecated APIs.

Any APIs may be marked as to be dropped in the future.
In such a case, the dropping is stated in the documentation with the major version number on which the API is planned to be dropped, and the API implementation is changed to fire a future warning (if possible).

The actual dropping should be done through the following steps:

	Make the API deprecated.
At this point, users should not use the deprecated API in their new application codes.

	After that, mark the API as to be dropped in the future.
It must be done in the minor update different from that of the deprecation.

	At the major version announced in the above update, drop the API.

Consequently, it takes at least two minor versions to drop any APIs after the first deprecation.

API Changes and Its Preparation

Any APIs may be marked as to be changed in the future for changes without backward compatibility.
In such a case, the change is stated in the documentation with the version number on which the API is planned to be changed, and the API implementation is changed to fire the future warning on the certain usages.

The actual change should be done in the following steps:

	Announce that the API will be changed in the future.
At this point, the actual version of change need not be accurate.

	After the announcement, mark the API as to be changed in the future with version number of planned changes.
At this point, users should not use the marked API in their new application codes.

	At the major update announced in the above update, change the API.

Supported Backward Compatibility

This section defines backward compatibilities that minor updates must maintain.

Documented Interface

CuPy has an official API documentation.
Many applications can be written based on the documented features.
We support backward compatibilities of documented features.
In other words, codes only based on the documented features run correctly with minor-/revision- updated versions.

Developers are encouraged to use apparent names for objects of implementation details.
For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.

Undocumented behaviors

Behaviors of CuPy implementation not stated in the documentation are undefined.
Undocumented behaviors are not guaranteed to be stable between different minor/revision versions.

Minor update may contain changes to undocumented behaviors.
For example, suppose an API X is added at the minor update.
In the previous version, attempts to use X cause AttributeError.
This behavior is not stated in the documentation, so this is undefined.
Thus, adding the API X in minor version is permissible.

Revision update may also contain changes to undefined behaviors.
Typical example is a bug fix.
Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation.
As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.

Documentation Error

Compatibility is basically determined based on the documentation, though it sometimes contains errors.
It may make the APIs confusing to assume the documentation always stronger than the implementations.
We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.

Note

Developers MUST NOT fix the documentation and implementation of the same functionality at the same time in revision updates as “bug fix”.
Such a change completely breaks the backward compatibility.
If you want to fix the bugs in both sides, first fix the documentation to fit it into the implementation, and start the API changing procedure described above.

Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other at minor updates.
It does not break the user codes, except for the codes depending on how the attributes and properties are implemented.

Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values in minor updates.
It does not break the user codes, except for the codes depending on how the methods and callable attributes are implemented.

Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities.
No exception is raised in the future versions with correct usages that the documentation allows, unless the API changing process is completed.

On the other hand, warnings may be added at any minor updates for any APIs.
It means minor updates do not keep backward compatibility of warnings.

Installation Compatibility

The installation process is another concern of compatibilities.
We support environmental compatibilities in the following ways.

	Any changes of dependent libraries that force modifications on the existing environments must be done in major updates.
Such changes include following cases:

	dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

	adding new mandatory dependencies (e.g. adding h5py to setup_requires)

	Supporting optional packages/libraries may be done in minor updates (e.g. supporting h5py in optional features).

Note

The installation compatibility does not guarantee that all the features of CuPy correctly run on supported environments.
It may contain bugs that only occurs in certain environments.
Such bugs should be fixed in some updates.

API Reference

	Index

	Module Index

	The N-dimensional array (ndarray)
	cupy.ndarray

	Conversion to/from NumPy arrays

	Code compatibility features

	Universal functions (cupy.ufunc)
	ufunc

	Available ufuncs

	Generalized Universal Functions

	Routines (NumPy)
	Array creation routines

	Array manipulation routines

	Binary operations

	Data type routines

	Discrete Fourier Transform (cupy.fft)

	Functional programming

	Indexing routines

	Input and output

	Linear algebra (cupy.linalg)

	Logic functions

	Mathematical functions

	Miscellaneous routines

	Padding arrays

	Polynomials

	Random sampling (cupy.random)

	Set routines

	Sorting, searching, and counting

	Statistics

	Test support (cupy.testing)

	Window functions

	Routines (SciPy)
	Discrete Fourier transforms (cupyx.scipy.fft)

	Legacy discrete fourier transforms (cupyx.scipy.fftpack)

	Interpolation (cupyx.scipy.interpolate)

	Linear algebra (cupyx.scipy.linalg)

	Multidimensional image processing (cupyx.scipy.ndimage)

	Signal processing (cupyx.scipy.signal)

	Signal processing windows (cupyx.scipy.signal.windows)

	Sparse matrices (cupyx.scipy.sparse)

	Sparse linear algebra (cupyx.scipy.sparse.linalg)

	Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)

	Spatial algorithms and data structures (cupyx.scipy.spatial)

	Distance computations (cupyx.scipy.spatial.distance)

	Special functions (cupyx.scipy.special)

	Statistical functions (cupyx.scipy.stats)

	CuPy-specific functions
	cupyx.rsqrt

	cupyx.scatter_add

	cupyx.scatter_max

	cupyx.scatter_min

	cupyx.empty_pinned

	cupyx.empty_like_pinned

	cupyx.zeros_pinned

	cupyx.zeros_like_pinned

	non-SciPy compat Signal API

	Profiling utilities

	DLPack utilities

	Automatic Kernel Parameters Optimizations (cupyx.optimizing)

	Low-level CUDA support
	Device management

	Memory management

	Memory hook

	Streams and events

	Graphs

	Texture and surface memory

	NVTX

	NCCL

	Version

	Runtime API

	Custom kernels
	cupy.ElementwiseKernel

	cupy.ReductionKernel

	cupy.RawKernel

	cupy.RawModule

	cupy.fuse

	JIT kernel definition

	Kernel binary memoization

	Distributed
	Communication between processes

	ndarray distributed across devices

	Environment variables
	For runtime

	For installation

	Comparison Table
	NumPy / CuPy APIs

	SciPy / CuPy APIs

	Python Array API Support
	Array API Functions

	Array API Compliant Object

The N-dimensional array (ndarray)

cupy.ndarray is the CuPy counterpart of NumPy numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
It provides an intuitive interface for a fixed-size multidimensional array which resides
in a CUDA device.

For the basic concept of ndarrays, please refer to the NumPy documentation [https://numpy.org/doc/stable/reference/arrays.ndarray.html].

	cupy.ndarray(self, shape[, dtype, memptr, ...])

	Multi-dimensional array on a CUDA device.

Conversion to/from NumPy arrays

cupy.ndarray and numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] are not implicitly convertible to each other.
That means, NumPy functions cannot take cupy.ndarrays as inputs, and vice versa.

	To convert numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] to cupy.ndarray, use cupy.array() or cupy.asarray().

	To convert cupy.ndarray to numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], use cupy.asnumpy() or cupy.ndarray.get().

Note that converting between cupy.ndarray and numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] incurs data transfer between
the host (CPU) device and the GPU device, which is costly in terms of performance.

	cupy.array(obj[, dtype, copy, order, subok, ...])

	Creates an array on the current device.

	cupy.asarray(a[, dtype, order, blocking])

	Converts an object to array.

	cupy.asnumpy(a[, stream, order, out, blocking])

	Returns an array on the host memory from an arbitrary source array.

Code compatibility features

cupy.ndarray is designed to be interchangeable with numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] in terms of code compatibility as much as possible.
But occasionally, you will need to know whether the arrays you’re handling are cupy.ndarray or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
One example is when invoking module-level functions such as cupy.sum() or numpy.sum() [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum].
In such situations, cupy.get_array_module() can be used.

	cupy.get_array_module(*args)

	Returns the array module for arguments.

	cupyx.scipy.get_array_module(*args)

	Returns the array module for arguments.

cupy.ndarray

	
class cupy.ndarray(self, shape, dtype=float, memptr=None, strides=None, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/core.pyx]

	Multi-dimensional array on a CUDA device.

This class implements a subset of methods of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
The difference is that this class allocates the array content on the
current GPU device.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Length of axes.

	dtype – Data type. It must be an argument of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	memptr (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	strides (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints or None) – Strides of data in memory.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Variables:

	
	base (None or cupy.ndarray) – Base array from which this array is
created as a view.

	data (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	~ndarray.dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]) – Dtype object of element type.

See also

Data type objects (dtype) [https://numpy.org/doc/stable/reference/arrays.dtypes.html]

	~ndarray.size (int [https://docs.python.org/3/library/functions.html#int]) – Number of elements this array holds.

This is equivalent to product over the shape tuple.

See also

numpy.ndarray.size [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size]

Methods

	
__getitem__()

	x.__getitem__(y) <==> x[y]

Supports both basic and advanced indexing.

Note

Currently, it does not support slices that consists of more
than one boolean arrays

Note

CuPy handles out-of-bounds indices differently from NumPy.
NumPy handles them by raising an error, but CuPy wraps around them.

Example

>>> a = cupy.arange(3)
>>> a[[1, 3]]
array([1, 0])

	
__setitem__()

	x.__setitem__(slices, y) <==> x[slices] = y

Supports both basic and advanced indexing.

Note

Currently, it does not support slices that consists of more
than one boolean arrays

Note

CuPy handles out-of-bounds indices differently from NumPy when
using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> import cupy
>>> x = cupy.arange(3)
>>> x[[1, 3]] = 10
>>> x
array([10, 10, 2])

Note

The behavior differs from NumPy when integer arrays in slices
reference the same location multiple times.
In that case, the value that is actually stored is undefined.

>>> import cupy
>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(cupy.float_)
>>> a[i] = v
>>> a
array([9150., 9151.])

On the other hand, NumPy stores the value corresponding to the
last index among the indices referencing duplicate locations.

>>> import numpy
>>> a_cpu = numpy.zeros((2,))
>>> i_cpu = numpy.arange(10000) % 2
>>> v_cpu = numpy.arange(10000).astype(numpy.float_)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([9998., 9999.])

	
__len__()

	Return len(self).

	
__iter__()

	Implement iter(self).

	
__copy__(self)

	

	
all(self, axis=None, out=None, keepdims=False) → ndarray

	

	
any(self, axis=None, out=None, keepdims=False) → ndarray

	

	
argmax(self, axis=None, out=None, dtype=None, keepdims=False) → ndarray

	Returns the indices of the maximum along a given axis.

Note

dtype and keepdim arguments are specific to CuPy. They are
not in NumPy.

Note

axis argument accepts a tuple of ints, but this is specific to
CuPy. NumPy does not support it.

See also

cupy.argmax() for full documentation,
numpy.ndarray.argmax() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax]

	
argmin(self, axis=None, out=None, dtype=None, keepdims=False) → ndarray

	Returns the indices of the minimum along a given axis.

Note

dtype and keepdim arguments are specific to CuPy. They are
not in NumPy.

Note

axis argument accepts a tuple of ints, but this is specific to
CuPy. NumPy does not support it.

See also

cupy.argmin() for full documentation,
numpy.ndarray.argmin() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin]

	
argpartition(self, kth, axis=-1) → ndarray

	Returns the indices that would partially sort an array.

	Parameters:

	
	kth (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Element index to partition by. If
supplied with a sequence of k-th it will partition all elements
indexed by k-th of them into their sorted position at once.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array
is flattened before sorting.

	Returns:

	Array of the same type and shape as a.

	Return type:

	cupy.ndarray

See also

cupy.argpartition() for full documentation,
numpy.ndarray.argpartition() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argpartition.html#numpy.ndarray.argpartition]

	
argsort(self, axis=-1) → ndarray

	Returns the indices that would sort an array with stable sorting

	Parameters:

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array
is flattened before sorting.

	Returns:

	Array of indices that sort the array.

	Return type:

	cupy.ndarray

See also

cupy.argsort() for full documentation,
numpy.ndarray.argsort() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort]

	
astype(self, dtype, order='K', casting=None, subok=None, copy=True) → ndarray

	Casts the array to given data type.

	Parameters:

	
	dtype – Type specifier.

	order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major
(Fortran-style) order.
When order is ‘A’, it uses ‘F’ if a is column-major and
uses ‘C’ otherwise.
And when order is ‘K’, it keeps strides as closely as
possible.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If it is False and no cast happens, then this method
returns the array itself. Otherwise, a copy is returned.

	Returns:

	If copy is False and no cast is required, then the array itself
is returned. Otherwise, it returns a (possibly casted) copy of the
array.

Note

This method currently does not support casting, and subok
arguments.

See also

numpy.ndarray.astype() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype]

	
choose(self, choices, out=None, mode='raise')

	

	
clip(self, min=None, max=None, out=None) → ndarray

	Returns an array with values limited to [min, max].

See also

cupy.clip() for full documentation,
numpy.ndarray.clip() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip]

	
compress(self, condition, axis=None, out=None) → ndarray

	Returns selected slices of this array along given axis.

Warning

This function may synchronize the device.

See also

cupy.compress() for full documentation,
numpy.ndarray.compress() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress]

	
conj(self) → ndarray

	

	
conjugate(self) → ndarray

	

	
copy(self, order='C') → ndarray

	Returns a copy of the array.

This method makes a copy of a given array in the current device.
Even when a given array is located in another device, you can copy it
to the current device.

	Parameters:

	order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major
(Fortran-style) order.
When order is ‘A’, it uses ‘F’ if a is column-major and
uses ‘C’ otherwise.
And when order is ‘K’, it keeps strides as closely as
possible.

See also

cupy.copy() for full documentation,
numpy.ndarray.copy() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy]

	
cumprod(self, axis=None, dtype=None, out=None) → ndarray

	Returns the cumulative product of an array along a given axis.

See also

cupy.cumprod() for full documentation,
numpy.ndarray.cumprod() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod]

	
cumsum(self, axis=None, dtype=None, out=None) → ndarray

	Returns the cumulative sum of an array along a given axis.

See also

cupy.cumsum() for full documentation,
numpy.ndarray.cumsum() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum]

	
diagonal(self, offset=0, axis1=0, axis2=1) → ndarray

	Returns a view of the specified diagonals.

See also

cupy.diagonal() for full documentation,
numpy.ndarray.diagonal() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal]

	
dot(self, ndarray b, ndarray out=None)

	Returns the dot product with given array.

See also

cupy.dot() for full documentation,
numpy.ndarray.dot() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot]

	
dump(self, file)

	Dumps a pickle of the array to a file.

Dumped file can be read back to cupy.ndarray by
cupy.load().

	
dumps(self) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Dumps a pickle of the array to a string.

	
fill(self, value)

	Fills the array with a scalar value.

	Parameters:

	value – A scalar value to fill the array content.

See also

numpy.ndarray.fill() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill]

	
flatten(self, order='C') → ndarray

	Returns a copy of the array flatten into one dimension.

	Parameters:

	order ({'C', 'F', 'A', 'K'}) – ‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if self is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
self in the order the elements occur in memory.
The default is ‘C’.

	Returns:

	A copy of the array with one dimension.

	Return type:

	cupy.ndarray

See also

numpy.ndarray.flatten() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]

	
get(self, stream=None, order='C', out=None, blocking=True)

	Returns a copy of the array on host memory.

	Parameters:

	
	stream (cupy.cuda.Stream) – CUDA stream object. If given, the
stream is used to perform the copy. Otherwise, the current
stream is used.

	order ({'C', 'F', 'A'}) – The desired memory layout of the host
array. When order is ‘A’, it uses ‘F’ if the array is
fortran-contiguous and ‘C’ otherwise. The order will be
ignored if out is specified.

	out (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Output array. In order to enable asynchronous
copy, the underlying memory should be a pinned memory.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to False, the copy runs asynchronously
on the given (if given) or current stream, and users are
responsible for ensuring the stream order. Default is True,
so the copy is synchronous (with respect to the host).

	Returns:

	Copy of the array on host memory.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
item(self)

	Converts the array with one element to a Python scalar

	Returns:

	The element of the array.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]

See also

numpy.ndarray.item() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item]

	
max(self, axis=None, out=None, keepdims=False) → ndarray

	Returns the maximum along a given axis.

See also

cupy.amax() for full documentation,
numpy.ndarray.max() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max]

	
mean(self, axis=None, dtype=None, out=None, keepdims=False) → ndarray

	Returns the mean along a given axis.

See also

cupy.mean() for full documentation,
numpy.ndarray.mean() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean]

	
min(self, axis=None, out=None, keepdims=False) → ndarray

	Returns the minimum along a given axis.

See also

cupy.amin() for full documentation,
numpy.ndarray.min() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min]

	
nonzero(self) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Return the indices of the elements that are non-zero.

Returned Array is containing the indices of the non-zero elements
in that dimension.

	Returns:

	Indices of elements that are non-zero.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays

Warning

This function may synchronize the device.

See also

numpy.nonzero() [https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero]

	
partition(self, kth, int axis=-1)

	Partitions an array.

	Parameters:

	
	kth (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Element index to partition by. If
supplied with a sequence of k-th it will partition all elements
indexed by k-th of them into their sorted position at once.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which to sort. Default is -1, which means
sort along the last axis.

See also

cupy.partition() for full documentation,
numpy.ndarray.partition() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.partition.html#numpy.ndarray.partition]

	
prod(self, axis=None, dtype=None, out=None, keepdims=None) → ndarray

	Returns the product along a given axis.

See also

cupy.prod() for full documentation,
numpy.ndarray.prod() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod]

	
ptp(self, axis=None, out=None, keepdims=False) → ndarray

	Returns (maximum - minimum) along a given axis.

See also

cupy.ptp() for full documentation,
numpy.ndarray.ptp() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html#numpy.ndarray.ptp]

	
put(self, indices, values, mode='wrap')

	Replaces specified elements of an array with given values.

See also

cupy.put() for full documentation,
numpy.ndarray.put() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.put.html#numpy.ndarray.put]

	
ravel(self, order='C') → ndarray

	Returns an array flattened into one dimension.

See also

cupy.ravel() for full documentation,
numpy.ndarray.ravel() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel]

	
reduced_view(self, dtype=None) → ndarray

	Returns a view of the array with minimum number of dimensions.

	Parameters:

	dtype – (Deprecated) Data type specifier.
If it is given, then the memory
sequence is reinterpreted as the new type.

	Returns:

	A view of the array with reduced dimensions.

	Return type:

	cupy.ndarray

	
repeat(self, repeats, axis=None)

	Returns an array with repeated arrays along an axis.

See also

cupy.repeat() for full documentation,
numpy.ndarray.repeat() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat]

	
reshape(self, *shape, order='C')

	Returns an array of a different shape and the same content.

See also

cupy.reshape() for full documentation,
numpy.ndarray.reshape() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]

	
round(self, decimals=0, out=None) → ndarray

	Returns an array with values rounded to the given number of decimals.

See also

cupy.around() for full documentation,
numpy.ndarray.round() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.round.html#numpy.ndarray.round]

	
scatter_add(self, slices, value)

	Adds given values to specified elements of an array.

See also

cupyx.scatter_add() for full documentation.

	
scatter_max(self, slices, value)

	Stores a maximum value of elements specified by indices to an array.

See also

cupyx.scatter_max() for full documentation.

	
scatter_min(self, slices, value)

	Stores a minimum value of elements specified by indices to an array.

See also

cupyx.scatter_min() for full documentation.

	
searchsorted(self, v, side='left', sorter=None)

	Finds indices where elements of v should be inserted to maintain order.

For full documentation, see cupy.searchsorted()

Returns:

See also

numpy.searchsorted() [https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted]

	
set(self, arr, stream=None)

	Copies an array on the host memory to cupy.ndarray.

	Parameters:

	
	arr (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The source array on the host memory.

	stream (cupy.cuda.Stream) – CUDA stream object. If given, the
stream is used to perform the copy. Otherwise, the current
stream is used.

	
sort(self, int axis=-1)

	Sort an array, in-place with a stable sorting algorithm.

	Parameters:

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which to sort. Default is -1, which means
sort along the last axis.

Note

For its implementation reason, ndarray.sort currently supports
only arrays with their own data, and does not support kind and
order parameters that numpy.ndarray.sort does support.

See also

cupy.sort() for full documentation,
numpy.ndarray.sort() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort]

	
squeeze(self, axis=None) → ndarray

	Returns a view with size-one axes removed.

See also

cupy.squeeze() for full documentation,
numpy.ndarray.squeeze() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze]

	
std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False) → ndarray

	Returns the standard deviation along a given axis.

See also

cupy.std() for full documentation,
numpy.ndarray.std() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std]

	
sum(self, axis=None, dtype=None, out=None, keepdims=False) → ndarray

	Returns the sum along a given axis.

See also

cupy.sum() for full documentation,
numpy.ndarray.sum() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum]

	
swapaxes(self, Py_ssize_t axis1, Py_ssize_t axis2) → ndarray

	Returns a view of the array with two axes swapped.

See also

cupy.swapaxes() for full documentation,
numpy.ndarray.swapaxes() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes]

	
take(self, indices, axis=None, out=None) → ndarray

	Returns an array of elements at given indices along the axis.

See also

cupy.take() for full documentation,
numpy.ndarray.take() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take]

	
toDlpack(self)

	Zero-copy conversion to a DLPack tensor.

DLPack is a open in memory tensor structure proposed in this
repository: dmlc/dlpack [https://github.com/dmlc/dlpack].

This function returns a PyCapsule object which contains a
pointer to a DLPack tensor converted from the own ndarray. This
function does not copy the own data to the output DLpack tensor
but it shares the pointer which is pointing to the same memory region
for the data.

	Returns:

	Output DLPack tensor which is
encapsulated in a PyCapsule object.

	Return type:

	dltensor (PyCapsule)

See also

fromDlpack() is a method for zero-copy conversion from
a DLPack tensor (which is encapsulated in a PyCapsule
object) to a ndarray

Warning

As of the DLPack v0.3 specification, it is (implicitly) assumed
that the user is responsible to ensure the Producer and the
Consumer are operating on the same stream. This requirement might
be relaxed/changed in a future DLPack version.

Example

>>> import cupy
>>> array1 = cupy.array([0, 1, 2], dtype=cupy.float32)
>>> dltensor = array1.toDlpack()
>>> array2 = cupy.fromDlpack(dltensor)
>>> cupy.testing.assert_array_equal(array1, array2)

	
tobytes(self, order='C') → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Turns the array into a Python bytes object.

	
tofile(self, fid, sep='', format='%s')

	Writes the array to a file.

See also

numpy.ndarray.tofile() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile]

	
tolist(self)

	Converts the array to a (possibly nested) Python list.

	Returns:

	The possibly nested Python list of array elements.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

numpy.ndarray.tolist() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]

	
trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) → ndarray

	Returns the sum along diagonals of the array.

See also

cupy.trace() for full documentation,
numpy.ndarray.trace() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace]

	
transpose(self, *axes)

	Returns a view of the array with axes permuted.

See also

cupy.transpose() for full documentation,
numpy.ndarray.reshape() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]

	
var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False) → ndarray

	Returns the variance along a given axis.

See also

cupy.var() for full documentation,
numpy.ndarray.var() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var]

	
view(self, dtype=None, type=None)

	Returns a view of the array.

	Parameters:

	dtype – If this is different from the data type of the array, the
returned view reinterpret the memory sequence as an array of
this type.

	Returns:

	A view of the array. A reference to the original
array is stored at the base attribute.

	Return type:

	cupy.ndarray

See also

numpy.ndarray.view() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

	
__bool__()

	True if self else False

Attributes

	
T

	Shape-reversed view of the array.

If ndim < 2, then this is just a reference to the array itself.

	
base

	

	
cstruct

	C representation of the array.

This property is used for sending an array to CUDA kernels. The type of
returned C structure is different for different dtypes and ndims. The
definition of C type is written in cupy/carray.cuh.

	
data

	

	
device

	CUDA device on which this array resides.

	
dtype

	

	
flags

	Object containing memory-layout information.

It only contains c_contiguous, f_contiguous, and owndata
attributes. All of these are read-only. Accessing by indexes is also
supported.

See also

numpy.ndarray.flags [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags]

	
flat

	

	
imag

	

	
itemsize

	Size of each element in bytes.

See also

numpy.ndarray.itemsize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize]

	
nbytes

	Total size of all elements in bytes.

It does not count skips between elements.

See also

numpy.ndarray.nbytes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes]

	
ndim

	Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also

numpy.ndarray.ndim [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim]

	
real

	

	
shape

	Lengths of axes.

Setter of this property involves reshaping without copy. If the array
cannot be reshaped without copy, it raises an exception.

	
size

	

	
strides

	Strides of axes in bytes.

See also

numpy.ndarray.strides [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides]

cupy.array

	
cupy.array(obj, dtype=None, copy=True, order='K', subok=False, ndmin=0, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L7]

	Creates an array on the current device.

This function currently does not support the subok option.

	Parameters:

	
	obj – cupy.ndarray object or any other object that can be
passed to numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array].

	dtype – Data type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, this function returns obj if possible.
Otherwise this function always returns a new array.

	order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major
(Fortran-style) order.
When order is 'A', it uses 'F' if a is column-major
and uses 'C' otherwise.
And when order is 'K', it keeps strides as closely as
possible.
If obj is numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], the function returns 'C'
or 'F' order array.

	subok (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then sub-classes will be passed-through,
otherwise the returned array will be forced to be a base-class
array (default).

	ndmin (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of dimensions. Ones are inserted to the
head of the shape if needed.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Default is False, meaning if a H2D copy is needed
it would run asynchronously on the current stream, and users are
responsible for ensuring the stream order. For example, writing to
the source obj without proper ordering while copying would
result in a race condition. If set to True, the copy is
synchronous (with respect to the host).

	Returns:

	An array on the current device.

	Return type:

	cupy.ndarray

Note

This method currently does not support subok argument.

Note

If obj is an numpy.ndarray instance that contains big-endian data,
this function automatically swaps its byte order to little-endian,
which is the NVIDIA and AMD GPU architecture’s native use.

See also

numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array]

cupy.asarray

	
cupy.asarray(a, dtype=None, order=None, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L56]

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False, order=order).

	Parameters:

	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	order ({'C', 'F', 'A', 'K'}) – Whether to use row-major (C-style) or column-major (Fortran-style)
memory representation. Defaults to 'K'. order is ignored
for objects that are not cupy.ndarray, but have the
__cuda_array_interface__ attribute.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Default is False, meaning if a H2D copy is needed
it would run asynchronously on the current stream, and users are
responsible for ensuring the stream order. For example, writing to
the source a without proper ordering while copying would
result in a race condition. If set to True, the copy is
synchronous (with respect to the host).

	Returns:

	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:

	cupy.ndarray

Note

If a is an numpy.ndarray instance that contains big-endian data,
this function automatically swaps its byte order to little-endian,
which is the NVIDIA and AMD GPU architecture’s native use.

See also

numpy.asarray() [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asnumpy

	
cupy.asnumpy(a, stream=None, order='C', out=None, *, blocking=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L795]

	Returns an array on the host memory from an arbitrary source array.

	Parameters:

	
	a – Arbitrary object that can be converted to numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	stream (cupy.cuda.Stream) – CUDA stream object. If given, the
stream is used to perform the copy. Otherwise, the current
stream is used. Note that if a is not a cupy.ndarray
object, then this argument has no effect.

	order ({'C', 'F', 'A'}) – The desired memory layout of the host
array. When order is ‘A’, it uses ‘F’ if the array is
fortran-contiguous and ‘C’ otherwise. The order will be
ignored if out is specified.

	out (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The output array to be written to. It must have
compatible shape and dtype with those of a’s.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to False, the copy runs asynchronously
on the given (if given) or current stream, and users are
responsible for ensuring the stream order. Default is True,
so the copy is synchronous (with respect to the host).

	Returns:

	Converted array on the host memory.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

cupy.get_array_module

	
cupy.get_array_module(*args)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L836]

	Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of
the arguments is a cupy.ndarray object, the cupy module is
returned.

	Parameters:

	args – Values to determine whether NumPy or CuPy should be used.

	Returns:

	cupy or numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] is returned based on the types of
the arguments.

	Return type:

	module

Example

A NumPy/CuPy generic function can be written as follows

>>> def softplus(x):
... xp = cupy.get_array_module(x)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

cupyx.scipy.get_array_module

	
cupyx.scipy.get_array_module(*args)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/__init__.py#L17]

	Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of
the arguments is a cupy.ndarray object, the cupyx.scipy
module is returned.

	Parameters:

	args – Values to determine whether NumPy or CuPy should be used.

	Returns:

	cupyx.scipy or scipy [https://docs.scipy.org/doc/scipy/index.html#module-scipy] is returned based on the
types of the arguments.

	Return type:

	module

Universal functions (cupy.ufunc)

Hint

NumPy API Reference: Universal functions (numpy.ufunc) [https://numpy.org/doc/stable/reference/ufuncs.html]

CuPy provides universal functions (a.k.a. ufuncs) to support various elementwise operations.
CuPy’s ufunc supports following features of NumPy’s one:

	Broadcasting

	Output type determination

	Casting rules

ufunc

	ufunc(name, nin, nout, _Ops ops[, preamble, ...])

	Universal function.

Methods

These methods are only available for selected ufuncs.

	ufunc.reduce: add(), multiply()

	ufunc.accumulate: add(), multiply()

	ufunc.reduceat: add()

	ufunc.outer: All ufuncs

	ufunc.at: add(), subtract(), maximum(), minimum(), bitwise_and(), bitwise_or(), bitwise_xor()

Hint

In case you need support for other ufuncs, submit a feature request along with your use-case in the tracker issue [https://github.com/cupy/cupy/issues/7082].

Available ufuncs

Math operations

	add(x1, x2, /[, out, casting, dtype])

	Adds two arrays elementwise.

	subtract(x1, x2, /[, out, casting, dtype])

	Subtracts arguments elementwise.

	multiply(x1, x2, /[, out, casting, dtype])

	Multiplies two arrays elementwise.

	matmul

	matmul(x1, x2, /, out=None, **kwargs)

	divide

	true_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	logaddexp(x1, x2, /[, out, casting, dtype])

	Computes log(exp(x1) + exp(x2)) elementwise.

	logaddexp2(x1, x2, /[, out, casting, dtype])

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

	true_divide(x1, x2, /[, out, casting, dtype])

	Elementwise true division (i.e.

	floor_divide(x1, x2, /[, out, casting, dtype])

	Elementwise floor division (i.e.

	negative(x, /[, out, casting, dtype])

	Takes numerical negative elementwise.

	positive(x, /[, out, casting, dtype])

	Takes numerical positive elementwise.

	power(x1, x2, /[, out, casting, dtype])

	Computes x1 ** x2 elementwise.

	float_power(x1, x2, /[, out, casting, dtype])

	First array elements raised to powers from second array, element-wise.

	remainder

	mod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	mod(x1, x2, /[, out, casting, dtype])

	Computes the remainder of Python division elementwise.

	fmod(x1, x2, /[, out, casting, dtype])

	Computes the remainder of C division elementwise.

	divmod(x1, x2[, out1, out2], / [[, out, ...])

	

	absolute(x, /[, out, casting, dtype])

	Elementwise absolute value function.

	fabs(x, /[, out, casting, dtype])

	Calculates absolute values element-wise.

	rint(x, /[, out, casting, dtype])

	Rounds each element of an array to the nearest integer.

	sign(x, /[, out, casting, dtype])

	Elementwise sign function.

	heaviside(x1, x2, /[, out, casting, dtype])

	Compute the Heaviside step function.

	conj

	conjugate(x, /, out=None, *, casting='same_kind', dtype=None)

	conjugate(x, /[, out, casting, dtype])

	Returns the complex conjugate, element-wise.

	exp(x, /[, out, casting, dtype])

	Elementwise exponential function.

	exp2(x, /[, out, casting, dtype])

	Elementwise exponentiation with base 2.

	log(x, /[, out, casting, dtype])

	Elementwise natural logarithm function.

	log2(x, /[, out, casting, dtype])

	Elementwise binary logarithm function.

	log10(x, /[, out, casting, dtype])

	Elementwise common logarithm function.

	expm1(x, /[, out, casting, dtype])

	Computes exp(x) - 1 elementwise.

	log1p(x, /[, out, casting, dtype])

	Computes log(1 + x) elementwise.

	sqrt(x, /[, out, casting, dtype])

	Elementwise square root function.

	square(x, /[, out, casting, dtype])

	Elementwise square function.

	cbrt(x, /[, out, casting, dtype])

	Elementwise cube root function.

	reciprocal(x, /[, out, casting, dtype])

	Computes 1 / x elementwise.

	gcd(x1, x2, /[, out, casting, dtype])

	Computes gcd of x1 and x2 elementwise.

	lcm(x1, x2, /[, out, casting, dtype])

	Computes lcm of x1 and x2 elementwise.

Trigonometric functions

	sin(x, /[, out, casting, dtype])

	Elementwise sine function.

	cos(x, /[, out, casting, dtype])

	Elementwise cosine function.

	tan(x, /[, out, casting, dtype])

	Elementwise tangent function.

	arcsin(x, /[, out, casting, dtype])

	Elementwise inverse-sine function (a.k.a.

	arccos(x, /[, out, casting, dtype])

	Elementwise inverse-cosine function (a.k.a.

	arctan(x, /[, out, casting, dtype])

	Elementwise inverse-tangent function (a.k.a.

	arctan2(x1, x2, /[, out, casting, dtype])

	Elementwise inverse-tangent of the ratio of two arrays.

	hypot(x1, x2, /[, out, casting, dtype])

	Computes the hypoteneous of orthogonal vectors of given length.

	sinh(x, /[, out, casting, dtype])

	Elementwise hyperbolic sine function.

	cosh(x, /[, out, casting, dtype])

	Elementwise hyperbolic cosine function.

	tanh(x, /[, out, casting, dtype])

	Elementwise hyperbolic tangent function.

	arcsinh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic sine function.

	arccosh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic cosine function.

	arctanh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic tangent function.

	degrees

	rad2deg(x, /, out=None, *, casting='same_kind', dtype=None)

	radians(x, /[, out, casting, dtype])

	Converts angles from degrees to radians elementwise.

	deg2rad

	radians(x, /, out=None, *, casting='same_kind', dtype=None)

	rad2deg(x, /[, out, casting, dtype])

	Converts angles from radians to degrees elementwise.

Bit-twiddling functions

	bitwise_and(x1, x2, /[, out, casting, dtype])

	Computes the bitwise AND of two arrays elementwise.

	bitwise_or(x1, x2, /[, out, casting, dtype])

	Computes the bitwise OR of two arrays elementwise.

	bitwise_xor(x1, x2, /[, out, casting, dtype])

	Computes the bitwise XOR of two arrays elementwise.

	invert(x, /[, out, casting, dtype])

	Computes the bitwise NOT of an array elementwise.

	left_shift(x1, x2, /[, out, casting, dtype])

	Shifts the bits of each integer element to the left.

	right_shift(x1, x2, /[, out, casting, dtype])

	Shifts the bits of each integer element to the right.

Comparison functions

	greater(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 > x2.

	greater_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 >= x2.

	less(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 < x2.

	less_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 <= x2.

	not_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 != x2.

	equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 == x2.

	logical_and(x1, x2, /[, out, casting, dtype])

	Computes the logical AND of two arrays.

	logical_or(x1, x2, /[, out, casting, dtype])

	Computes the logical OR of two arrays.

	logical_xor(x1, x2, /[, out, casting, dtype])

	Computes the logical XOR of two arrays.

	logical_not(x, /[, out, casting, dtype])

	Computes the logical NOT of an array.

	maximum(x1, x2, /[, out, casting, dtype])

	Takes the maximum of two arrays elementwise.

	minimum(x1, x2, /[, out, casting, dtype])

	Takes the minimum of two arrays elementwise.

	fmax(x1, x2, /[, out, casting, dtype])

	Takes the maximum of two arrays elementwise.

	fmin(x1, x2, /[, out, casting, dtype])

	Takes the minimum of two arrays elementwise.

Floating functions

	isfinite(x, /[, out, casting, dtype])

	Tests finiteness elementwise.

	isinf(x, /[, out, casting, dtype])

	Tests if each element is the positive or negative infinity.

	isnan(x, /[, out, casting, dtype])

	Tests if each element is a NaN.

	fabs(x, /[, out, casting, dtype])

	Calculates absolute values element-wise.

	signbit(x, /[, out, casting, dtype])

	Tests elementwise if the sign bit is set (i.e.

	copysign(x1, x2, /[, out, casting, dtype])

	Returns the first argument with the sign bit of the second elementwise.

	nextafter(x1, x2, /[, out, casting, dtype])

	Computes the nearest neighbor float values towards the second argument.

	modf(x[, out1, out2], / [[, out, casting, dtype])

	Extracts the fractional and integral parts of an array elementwise.

	ldexp(x1, x2, /[, out, casting, dtype])

	Computes x1 * 2 ** x2 elementwise.

	frexp(x[, out1, out2], / [[, out, casting, ...])

	Decomposes each element to mantissa and two's exponent.

	fmod(x1, x2, /[, out, casting, dtype])

	Computes the remainder of C division elementwise.

	floor(x, /[, out, casting, dtype])

	Rounds each element of an array to its floor integer.

	ceil(x, /[, out, casting, dtype])

	Rounds each element of an array to its ceiling integer.

	trunc(x, /[, out, casting, dtype])

	Rounds each element of an array towards zero.

Generalized Universal Functions

In addition to regular ufuncs, CuPy also provides a wrapper class to convert
regular cupy functions into Generalized Universal Functions as in NumPy https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html.
This allows to automatically use keyword arguments such as axes, order, dtype
without needing to explicitly implement them in the wrapped function.

	GeneralizedUFunc(func, signature, **kwargs)

	Creates a Generalized Universal Function by wrapping a user provided function with the signature.

cupy.ufunc

	
class cupy.ufunc(name, nin, nout, _Ops ops, preamble=u'', loop_prep=u'', doc=u'', default_casting=None, _Ops out_ops=None, *, cutensor_op=None, scatter_op=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/_kernel.pyx]

	Universal function.

	Variables:

	
	~ufunc.name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the universal function.

	~ufunc.nin (int [https://docs.python.org/3/library/functions.html#int]) – Number of input arguments.

	~ufunc.nout (int [https://docs.python.org/3/library/functions.html#int]) – Number of output arguments.

	~ufunc.nargs (int [https://docs.python.org/3/library/functions.html#int]) – Number of all arguments.

Methods

	
__call__()

	Applies the universal function to arguments elementwise.

	Parameters:

	
	args – Input arguments. Each of them can be a cupy.ndarray
object or a scalar. The output arguments can be omitted or be
specified by the out argument.

	out (cupy.ndarray) – Output array. It outputs to new arrays
default.

	dtype – Data type specifier.

	Returns:

	Output array or a tuple of output arrays.

	
accumulate(self, array, axis=0, dtype=None, out=None)

	Accumulate array applying ufunc.

See also

numpy.ufunc.accumulate() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.accumulate.html#numpy.ufunc.accumulate]

	
at(self, a, indices, b=None)

	Apply in place operation on the operand a for elements
specified by indices.

See also

numpy.ufunc.at() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.at.html#numpy.ufunc.at]

	
outer(self, A, B, **kwargs)

	Apply the ufunc operation to all pairs of elements in A and B.

See also

numpy.ufunc.outer() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.outer.html#numpy.ufunc.outer]

	
reduce(self, array, axis=0, dtype=None, out=None, keepdims=False)

	Reduce array applying ufunc.

See also

numpy.ufunc.reduce() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.reduce.html#numpy.ufunc.reduce]

	
reduceat(self, array, indices, axis=0, dtype=None, out=None)

	Reduce array applying ufunc with indices.

See also

numpy.ufunc.reduceat() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.reduceat.html#numpy.ufunc.reduceat]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
name

	

	
nargs

	

	
nin

	

	
nout

	

	
types

	A list of type signatures.

Each type signature is represented by type character codes of inputs
and outputs separated by ‘->’.

cupy.add

	
cupy.add(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Adds two arrays elementwise.

See also

numpy.add [https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add]

cupy.subtract

	
cupy.subtract(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Subtracts arguments elementwise.

See also

numpy.subtract [https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract]

cupy.multiply

	
cupy.multiply(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Multiplies two arrays elementwise.

See also

numpy.multiply [https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply]

cupy.matmul

	
cupy.matmul = <cupy._core._gufuncs._GUFunc object>

	matmul(x1, x2, /, out=None, **kwargs)

Matrix product of two arrays.

Returns the matrix product of two arrays and is the implementation of
the @ operator introduced in Python 3.5 following PEP465.

The main difference against cupy.dot are the handling of arrays with more
than 2 dimensions. For more information see numpy.matmul().

	Parameters:

	
	x1 (cupy.ndarray) – The left argument.

	x2 (cupy.ndarray) – The right argument.

	out (cupy.ndarray, optional) – Output array.

	**kwargs – ufunc keyword arguments.

	Returns:

	Output array.

	Return type:

	cupy.ndarray

See also

numpy.matmul()

cupy.divide

	
cupy.divide()

	true_divide(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.logaddexp

	
cupy.logaddexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes log(exp(x1) + exp(x2)) elementwise.

See also

numpy.logaddexp [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html#numpy.logaddexp]

cupy.logaddexp2

	
cupy.logaddexp2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also

numpy.logaddexp2 [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]

cupy.true_divide

	
cupy.true_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.floor_divide

	
cupy.floor_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise floor division (i.e. integer quotient).

See also

numpy.floor_divide [https://numpy.org/doc/stable/reference/generated/numpy.floor_divide.html#numpy.floor_divide]

cupy.negative

	
cupy.negative(x, /, out=None, *, casting='same_kind', dtype=None)

	Takes numerical negative elementwise.

See also

numpy.negative [https://numpy.org/doc/stable/reference/generated/numpy.negative.html#numpy.negative]

cupy.positive

	
cupy.positive(x, /, out=None, *, casting='same_kind', dtype=None)

	Takes numerical positive elementwise.

See also

numpy.positive [https://numpy.org/doc/stable/reference/generated/numpy.positive.html#numpy.positive]

cupy.power

	
cupy.power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes x1 ** x2 elementwise.

See also

numpy.power [https://numpy.org/doc/stable/reference/generated/numpy.power.html#numpy.power]

cupy.float_power

	
cupy.float_power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.float_power [https://numpy.org/doc/stable/reference/generated/numpy.float_power.html#numpy.float_power]

cupy.remainder

	
cupy.remainder()

	mod(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.mod

	
cupy.mod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.fmod

	
cupy.fmod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.divmod

	
cupy.divmod(x1, x2, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	

cupy.absolute

	
cupy.absolute(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise absolute value function.

See also

numpy.absolute [https://numpy.org/doc/stable/reference/generated/numpy.absolute.html#numpy.absolute]

cupy.fabs

	
cupy.fabs(x, /, out=None, *, casting='same_kind', dtype=None)

	
	Calculates absolute values element-wise.
	Only real values are handled.

See also

numpy.fabs [https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs]

cupy.rint

	
cupy.rint(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to the nearest integer.

See also

numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint]

cupy.sign

	
cupy.sign(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also

numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign]

cupy.heaviside

	
cupy.heaviside(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Compute the Heaviside step function.

See also

numpy.heaviside [https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html#numpy.heaviside]

cupy.conj

	
cupy.conj()

	conjugate(x, /, out=None, *, casting=’same_kind’, dtype=None)

Returns the complex conjugate, element-wise.

See also

numpy.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate]

cupy.conjugate

	
cupy.conjugate(x, /, out=None, *, casting='same_kind', dtype=None)

	Returns the complex conjugate, element-wise.

See also

numpy.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate]

cupy.exp

	
cupy.exp(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise exponential function.

See also

numpy.exp [https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp]

cupy.exp2

	
cupy.exp2(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise exponentiation with base 2.

See also

numpy.exp2 [https://numpy.org/doc/stable/reference/generated/numpy.exp2.html#numpy.exp2]

cupy.log

	
cupy.log(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise natural logarithm function.

See also

numpy.log [https://numpy.org/doc/stable/reference/generated/numpy.log.html#numpy.log]

cupy.log2

	
cupy.log2(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise binary logarithm function.

See also

numpy.log2 [https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2]

cupy.log10

	
cupy.log10(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise common logarithm function.

See also

numpy.log10 [https://numpy.org/doc/stable/reference/generated/numpy.log10.html#numpy.log10]

cupy.expm1

	
cupy.expm1(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes exp(x) - 1 elementwise.

See also

numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1]

cupy.log1p

	
cupy.log1p(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes log(1 + x) elementwise.

See also

numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p]

cupy.sqrt

	
cupy.sqrt(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise square root function.

See also

numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt]

cupy.square

	
cupy.square(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise square function.

See also

numpy.square [https://numpy.org/doc/stable/reference/generated/numpy.square.html#numpy.square]

cupy.cbrt

	
cupy.cbrt(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise cube root function.

See also

numpy.cbrt [https://numpy.org/doc/stable/reference/generated/numpy.cbrt.html#numpy.cbrt]

cupy.reciprocal

	
cupy.reciprocal(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes 1 / x elementwise.

See also

numpy.reciprocal [https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html#numpy.reciprocal]

cupy.gcd

	
cupy.gcd(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes gcd of x1 and x2 elementwise.

See also

numpy.gcd [https://numpy.org/doc/stable/reference/generated/numpy.gcd.html#numpy.gcd]

cupy.lcm

	
cupy.lcm(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes lcm of x1 and x2 elementwise.

See also

numpy.lcm [https://numpy.org/doc/stable/reference/generated/numpy.lcm.html#numpy.lcm]

cupy.sin

	
cupy.sin(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sine function.

See also

numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin]

cupy.cos

	
cupy.cos(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise cosine function.

See also

numpy.cos [https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos]

cupy.tan

	
cupy.tan(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise tangent function.

See also

numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan]

cupy.arcsin

	
cupy.arcsin(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-sine function (a.k.a. arcsine function).

See also

numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin]

cupy.arccos

	
cupy.arccos(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-cosine function (a.k.a. arccosine function).

See also

numpy.arccos [https://numpy.org/doc/stable/reference/generated/numpy.arccos.html#numpy.arccos]

cupy.arctan

	
cupy.arctan(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-tangent function (a.k.a. arctangent function).

See also

numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan]

cupy.arctan2

	
cupy.arctan2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-tangent of the ratio of two arrays.

See also

numpy.arctan2 [https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html#numpy.arctan2]

cupy.hypot

	
cupy.hypot(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is
more efficient.

See also

numpy.hypot [https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot]

cupy.sinh

	
cupy.sinh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic sine function.

See also

numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh]

cupy.cosh

	
cupy.cosh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic cosine function.

See also

numpy.cosh [https://numpy.org/doc/stable/reference/generated/numpy.cosh.html#numpy.cosh]

cupy.tanh

	
cupy.tanh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic tangent function.

See also

numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh]

cupy.arcsinh

	
cupy.arcsinh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic sine function.

See also

numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh]

cupy.arccosh

	
cupy.arccosh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic cosine function.

See also

numpy.arccosh [https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html#numpy.arccosh]

cupy.arctanh

	
cupy.arctanh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic tangent function.

See also

numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh]

cupy.degrees

	
cupy.degrees()

	rad2deg(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.radians

	
cupy.radians(x, /, out=None, *, casting='same_kind', dtype=None)

	Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians]

cupy.deg2rad

	
cupy.deg2rad()

	radians(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians]

cupy.rad2deg

	
cupy.rad2deg(x, /, out=None, *, casting='same_kind', dtype=None)

	Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.bitwise_and

	
cupy.bitwise_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_and [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]

cupy.bitwise_or

	
cupy.bitwise_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_or [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]

cupy.bitwise_xor

	
cupy.bitwise_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_xor [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]

cupy.invert

	
cupy.invert(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

Note

cupy.bitwise_not() is an alias for cupy.invert().

See also

numpy.invert [https://numpy.org/doc/stable/reference/generated/numpy.invert.html#numpy.invert]

cupy.left_shift

	
cupy.left_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also

numpy.left_shift [https://numpy.org/doc/stable/reference/generated/numpy.left_shift.html#numpy.left_shift]

cupy.right_shift

	
cupy.right_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also

numpy.right_shift [https://numpy.org/doc/stable/reference/generated/numpy.right_shift.html#numpy.right_shift]

cupy.greater

	
cupy.greater(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 > x2.

See also

numpy.greater [https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater]

cupy.greater_equal

	
cupy.greater_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 >= x2.

See also

numpy.greater_equal [https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal]

cupy.less

	
cupy.less(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 < x2.

See also

numpy.less [https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less]

cupy.less_equal

	
cupy.less_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 <= x2.

See also

numpy.less_equal [https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal]

cupy.not_equal

	
cupy.not_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 != x2.

See also

numpy.equal [https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal]

cupy.equal

	
cupy.equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 == x2.

See also

numpy.equal [https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal]

cupy.logical_and

	
cupy.logical_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical AND of two arrays.

See also

numpy.logical_and [https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and]

cupy.logical_or

	
cupy.logical_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical OR of two arrays.

See also

numpy.logical_or [https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or]

cupy.logical_xor

	
cupy.logical_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical XOR of two arrays.

See also

numpy.logical_xor [https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor]

cupy.logical_not

	
cupy.logical_not(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical NOT of an array.

See also

numpy.logical_not [https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not]

cupy.maximum

	
cupy.maximum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.maximum [https://numpy.org/doc/stable/reference/generated/numpy.maximum.html#numpy.maximum]

cupy.minimum

	
cupy.minimum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.minimum [https://numpy.org/doc/stable/reference/generated/numpy.minimum.html#numpy.minimum]

cupy.fmax

	
cupy.fmax(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmax [https://numpy.org/doc/stable/reference/generated/numpy.fmax.html#numpy.fmax]

cupy.fmin

	
cupy.fmin(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmin [https://numpy.org/doc/stable/reference/generated/numpy.fmin.html#numpy.fmin]

cupy.isfinite

	
cupy.isfinite(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests finiteness elementwise.

Each element of returned array is True only if the corresponding
element of the input is finite (i.e. not an infinity nor NaN).

See also

numpy.isfinite [https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite]

cupy.isinf

	
cupy.isinf(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests if each element is the positive or negative infinity.

See also

numpy.isinf [https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf]

cupy.isnan

	
cupy.isnan(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests if each element is a NaN.

See also

numpy.isnan [https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan]

cupy.fabs

	
cupy.fabs(x, /, out=None, *, casting='same_kind', dtype=None)

	
	Calculates absolute values element-wise.
	Only real values are handled.

See also

numpy.fabs [https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs]

cupy.signbit

	
cupy.signbit(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if the sign bit is set (i.e. less than zero).

See also

numpy.signbit [https://numpy.org/doc/stable/reference/generated/numpy.signbit.html#numpy.signbit]

cupy.copysign

	
cupy.copysign(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Returns the first argument with the sign bit of the second elementwise.

See also

numpy.copysign [https://numpy.org/doc/stable/reference/generated/numpy.copysign.html#numpy.copysign]

cupy.nextafter

	
cupy.nextafter(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the nearest neighbor float values towards the second argument.

Note

For values that are close to zero (or denormal numbers),
results of cupy.nextafter() may be different from those of
numpy.nextafter(), because CuPy sets -ftz=true.

See also

numpy.nextafter [https://numpy.org/doc/stable/reference/generated/numpy.nextafter.html#numpy.nextafter]

cupy.modf

	
cupy.modf(x, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also

numpy.modf [https://numpy.org/doc/stable/reference/generated/numpy.modf.html#numpy.modf]

cupy.ldexp

	
cupy.ldexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes x1 * 2 ** x2 elementwise.

See also

numpy.ldexp [https://numpy.org/doc/stable/reference/generated/numpy.ldexp.html#numpy.ldexp]

cupy.frexp

	
cupy.frexp(x, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also

numpy.frexp [https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp]

cupy.fmod

	
cupy.fmod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.floor

	
cupy.floor(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to its floor integer.

See also

numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor]

cupy.ceil

	
cupy.ceil(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to its ceiling integer.

See also

numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil]

cupy.trunc

	
cupy.trunc(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array towards zero.

See also

numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc]

cupyx.GeneralizedUFunc

	
class cupyx.GeneralizedUFunc(func, signature, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_gufunc.py#L4]

	Creates a Generalized Universal Function by wrapping a user
provided function with the signature.

signature determines if the function consumes or produces core
dimensions. The remaining dimensions in given input arrays (*args)
are considered loop dimensions and are required to broadcast
naturally against each other.

	Parameters:

	
	func (callable) – Function to call like func(*args, **kwargs) on input arrays
(*args) that returns an array or tuple of arrays. If
multiple arguments with non-matching dimensions are supplied,
this function is expected to vectorize (broadcast) over axes of
positional arguments in the style of NumPy universal functions.

	signature (string) – Specifies what core dimensions are consumed and produced by
func. According to the specification of numpy.gufunc
signature.

	supports_batched (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If the wrapped function supports to pass the complete input
array with the loop and the core dimensions.
Defaults to False. Dimensions will be iterated in the
GUFunc processing code.

	supports_out (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If the wrapped function supports out as one of its kwargs.
Defaults to False.

	signatures (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Contains strings in the form of ‘ii->i’ with i being the char of a
dtype. Each element of the list is a tuple with the string
and a alternative function to func to be executed when the inputs
of the function can be casted as described by this function.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name for the GUFunc object. If not specified, func’s name
is used.

	doc (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Docstring for the GUFunc object. If not specified, func.__doc__
is used.

Methods

	
__call__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/_gufuncs.py#L539]

	Apply a generalized ufunc.

	Parameters:

	
	args – Input arguments. Each of them can be a cupy.ndarray
object or a scalar. The output arguments can be omitted or be
specified by the out argument.

	axes (List of tuples of int [https://docs.python.org/3/library/functions.html#int], optional) – A list of tuples with indices of axes a generalized ufunc
should operate on.
For instance, for a signature of '(i,j),(j,k)->(i,k)'
appropriate for matrix multiplication, the base elements are
two-dimensional matrices and these are taken to be stored in
the two last axes of each argument. The corresponding
axes keyword would be [(-2, -1), (-2, -1), (-2, -1)].
For simplicity, for generalized ufuncs that operate on
1-dimensional arrays (vectors), a single integer is accepted
instead of a single-element tuple, and for generalized ufuncs
for which all outputs are scalars, the output tuples
can be omitted.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – A single axis over which a generalized ufunc should operate.
This is a short-cut for ufuncs that operate over a single,
shared core dimension, equivalent to passing in axes with
entries of (axis,) for each single-core-dimension argument
and () for all others.
For instance, for a signature '(i),(i)->()', it is
equivalent to passing in axes=[(axis,), (axis,), ()].

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If this is set to True, axes which are reduced over will be
left in the result as a dimension with size one, so that the
result will broadcast correctly against the inputs. This
option can only be used for generalized ufuncs that operate
on inputs that all have the same number of core dimensions
and with outputs that have no core dimensions , i.e., with
signatures like '(i),(i)->()' or '(m,m)->()'.
If used, the location of the dimensions in the output can
be controlled with axes and axis.

	casting (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Provides a policy for what kind of casting is permitted.
Defaults to 'same_kind'

	dtype (dtype, optional) – Overrides the dtype of the calculation and output arrays.
Similar to signature.

	signature (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of dtype, optional) – Either a data-type, a tuple of data-types, or a special
signature string indicating the input and output types of a
ufunc. This argument allows you to provide a specific
signature for the function to be used if registered in the
signatures kwarg of the __init__ method.
If the loop specified does not exist for the ufunc, then
a TypeError is raised. Normally, a suitable loop is found
automatically by comparing the input types with what is
available and searching for a loop with data-types to
which all inputs can be cast safely. This keyword argument
lets you bypass that search and choose a particular loop.

	order (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Specifies the memory layout of the output array. Defaults to
'K'.``’C’`` means the output should be C-contiguous,
'F' means F-contiguous, 'A' means F-contiguous
if the inputs are F-contiguous and not also not C-contiguous,
C-contiguous otherwise, and 'K' means to match the element
ordering of the inputs as closely as possible.

	out (cupy.ndarray) – Output array. It outputs to new arrays
default.

	Returns:

	Output array or a tuple of output arrays.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Routines (NumPy)

The following pages describe NumPy-compatible routines.
These functions cover a subset of
NumPy routines [https://numpy.org/doc/stable/reference/routines.html].

	Array creation routines
	Ones and zeros

	From existing data

	Numerical ranges

	Building matrices

	Array manipulation routines
	Basic operations

	Changing array shape

	Transpose-like operations

	Changing number of dimensions

	Changing kind of array

	Joining arrays

	Splitting arrays

	Tiling arrays

	Adding and removing elements

	Rearranging elements

	Binary operations
	Elementwise bit operations

	Bit packing

	Output formatting

	Data type routines
	cupy.can_cast

	cupy.min_scalar_type

	cupy.result_type

	cupy.common_type

	Creating data types

	Data type information

	Data type testing

	Miscellaneous

	Discrete Fourier Transform (cupy.fft)
	Standard FFTs

	Real FFTs

	Hermitian FFTs

	Helper routines

	CuPy-specific APIs

	Normalization

	Code compatibility features

	Multi-GPU FFT

	Functional programming
	cupy.apply_along_axis

	cupy.vectorize

	cupy.piecewise

	Indexing routines
	Generating index arrays

	Indexing-like operations

	Inserting data into arrays

	Iterating over arrays

	Input and output
	NumPy binary files (NPY, NPZ)

	Text files

	String formatting

	Base-n representations

	Linear algebra (cupy.linalg)
	Matrix and vector products

	Decompositions

	Matrix eigenvalues

	Norms and other numbers

	Solving equations and inverting matrices

	Logic functions
	Truth value testing

	Array contents

	Array type testing

	Logic operations

	Comparison

	Mathematical functions
	Trigonometric functions

	Hyperbolic functions

	Rounding

	Sums, products, differences

	Exponents and logarithms

	Other special functions

	Floating point routines

	Rational routines

	Arithmetic operations

	Handling complex numbers

	Miscellaneous

	Miscellaneous routines
	Memory ranges

	Utility

	Matlab-like Functions

	Padding arrays
	cupy.pad

	Polynomials
	Power Series (cupy.polynomial.polynomial)

	Polyutils

	Poly1d

	Random sampling (cupy.random)
	New Random Generator API

	Legacy Random Generation

	Set routines
	Making proper sets

	Boolean operations

	Sorting, searching, and counting
	Sorting

	Searching

	Counting

	Statistics
	Order statistics

	Averages and variances

	Correlations

	Histograms

	Test support (cupy.testing)
	Asserts

	CuPy-specific APIs

	Window functions
	Various windows

Array creation routines

Hint

NumPy API Reference: Array creation routines [https://numpy.org/doc/stable/reference/routines.array-creation.html]

Ones and zeros

	empty(shape[, dtype, order])

	Returns an array without initializing the elements.

	empty_like(prototype[, dtype, order, subok, ...])

	Returns a new array with same shape and dtype of a given array.

	eye(N[, M, k, dtype, order])

	Returns a 2-D array with ones on the diagonals and zeros elsewhere.

	identity(n[, dtype])

	Returns a 2-D identity array.

	ones(shape[, dtype, order])

	Returns a new array of given shape and dtype, filled with ones.

	ones_like(a[, dtype, order, subok, shape])

	Returns an array of ones with same shape and dtype as a given array.

	zeros(shape[, dtype, order])

	Returns a new array of given shape and dtype, filled with zeros.

	zeros_like(a[, dtype, order, subok, shape])

	Returns an array of zeros with same shape and dtype as a given array.

	full(shape, fill_value[, dtype, order])

	Returns a new array of given shape and dtype, filled with a given value.

	full_like(a, fill_value[, dtype, order, ...])

	Returns a full array with same shape and dtype as a given array.

From existing data

	array(obj[, dtype, copy, order, subok, ...])

	Creates an array on the current device.

	asarray(a[, dtype, order, blocking])

	Converts an object to array.

	asanyarray(a[, dtype, order, blocking])

	Converts an object to array.

	ascontiguousarray(a[, dtype])

	Returns a C-contiguous array.

	copy(a[, order])

	Creates a copy of a given array on the current device.

	frombuffer(*args, **kwargs)

	Interpret a buffer as a 1-dimensional array.

	fromfile(*args, **kwargs)

	Reads an array from a file.

	fromfunction(*args, **kwargs)

	Construct an array by executing a function over each coordinate.

	fromiter(*args, **kwargs)

	Create a new 1-dimensional array from an iterable object.

	fromstring(*args, **kwargs)

	A new 1-D array initialized from text data in a string.

	loadtxt(*args, **kwargs)

	Load data from a text file.

Numerical ranges

	arange(start[, stop, step, dtype])

	Returns an array with evenly spaced values within a given interval.

	linspace(start, stop[, num, endpoint, ...])

	Returns an array with evenly-spaced values within a given interval.

	logspace(start, stop[, num, endpoint, base, ...])

	Returns an array with evenly-spaced values on a log-scale.

	meshgrid(*xi, **kwargs)

	Return coordinate matrices from coordinate vectors.

	mgrid

	Construct a multi-dimensional "meshgrid".

	ogrid

	Construct a multi-dimensional "meshgrid".

Building matrices

	diag(v[, k])

	Returns a diagonal or a diagonal array.

	diagflat(v[, k])

	Creates a diagonal array from the flattened input.

	tri(N[, M, k, dtype])

	Creates an array with ones at and below the given diagonal.

	tril(m[, k])

	Returns a lower triangle of an array.

	triu(m[, k])

	Returns an upper triangle of an array.

	vander(x[, N, increasing])

	Returns a Vandermonde matrix.

cupy.empty

	
cupy.empty(shape, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L12]

	Returns an array without initializing the elements.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	dtype (data-type, optional) – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	A new array with elements not initialized.

	Return type:

	cupy.ndarray

See also

numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty]

cupy.empty_like

	
cupy.empty_like(prototype, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L65]

	Returns a new array with same shape and dtype of a given array.

This function currently does not support subok option.

	Parameters:

	
	a (cupy.ndarray) – Base array.

	dtype (data-type, optional) – Data type specifier.
The data type of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok (None) – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	A new array with same shape and dtype of a with
elements not initialized.

	Return type:

	cupy.ndarray

See also

numpy.empty_like() [https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like]

cupy.eye

	
cupy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L107]

	Returns a 2-D array with ones on the diagonals and zeros elsewhere.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of columns. M == N by default.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonal. Zero indicates the main diagonal,
a positive index an upper diagonal, and a negative index a lower
diagonal.

	dtype (data-type, optional) – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	A 2-D array with given diagonals filled with ones and
zeros elsewhere.

	Return type:

	cupy.ndarray

See also

numpy.eye() [https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye]

cupy.identity

	
cupy.identity(n, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L142]

	Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows and columns.

	dtype (data-type, optional) – Data type specifier.

	Returns:

	A 2-D identity array.

	Return type:

	cupy.ndarray

See also

numpy.identity() [https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity]

cupy.ones

	
cupy.ones(shape, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L160]

	Returns a new array of given shape and dtype, filled with ones.

This function currently does not support order option.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	dtype (data-type, optional) – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	An array filled with ones.

	Return type:

	cupy.ndarray

See also

numpy.ones() [https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones]

cupy.ones_like

	
cupy.ones_like(a, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L186]

	Returns an array of ones with same shape and dtype as a given array.

This function currently does not support subok option.

	Parameters:

	
	a (cupy.ndarray) – Base array.

	dtype (data-type, optional) – Data type specifier.
The dtype of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok (None) – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	An array filled with ones.

	Return type:

	cupy.ndarray

See also

numpy.ones_like() [https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like]

cupy.zeros

	
cupy.zeros(shape, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L229]

	Returns a new array of given shape and dtype, filled with zeros.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	dtype (data-type, optional) – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	An array filled with zeros.

	Return type:

	cupy.ndarray

See also

numpy.zeros() [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros]

cupy.zeros_like

	
cupy.zeros_like(a, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L253]

	Returns an array of zeros with same shape and dtype as a given array.

This function currently does not support subok option.

	Parameters:

	
	a (cupy.ndarray) – Base array.

	dtype (data-type, optional) – Data type specifier.
The dtype of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok (None) – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	An array filled with zeros.

	Return type:

	cupy.ndarray

See also

numpy.zeros_like() [https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like]

cupy.full

	
cupy.full(shape, fill_value, dtype=None, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L296]

	Returns a new array of given shape and dtype, filled with a given value.

This function currently does not support order option.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	fill_value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A scalar value to fill a new array.

	dtype (data-type, optional) – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	An array filled with fill_value.

	Return type:

	cupy.ndarray

See also

numpy.full() [https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full]

cupy.full_like

	
cupy.full_like(a, fill_value, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/basic.py#L329]

	Returns a full array with same shape and dtype as a given array.

This function currently does not support subok option.

	Parameters:

	
	a (cupy.ndarray) – Base array.

	fill_value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A scalar value to fill a new array.

	dtype (data-type, optional) – Data type specifier.
The dtype of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok (None) – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	An array filled with fill_value.

	Return type:

	cupy.ndarray

See also

numpy.full_like() [https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like]

cupy.array

	
cupy.array(obj, dtype=None, copy=True, order='K', subok=False, ndmin=0, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L7]

	Creates an array on the current device.

This function currently does not support the subok option.

	Parameters:

	
	obj – cupy.ndarray object or any other object that can be
passed to numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array].

	dtype – Data type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, this function returns obj if possible.
Otherwise this function always returns a new array.

	order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major
(Fortran-style) order.
When order is 'A', it uses 'F' if a is column-major
and uses 'C' otherwise.
And when order is 'K', it keeps strides as closely as
possible.
If obj is numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], the function returns 'C'
or 'F' order array.

	subok (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then sub-classes will be passed-through,
otherwise the returned array will be forced to be a base-class
array (default).

	ndmin (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of dimensions. Ones are inserted to the
head of the shape if needed.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Default is False, meaning if a H2D copy is needed
it would run asynchronously on the current stream, and users are
responsible for ensuring the stream order. For example, writing to
the source obj without proper ordering while copying would
result in a race condition. If set to True, the copy is
synchronous (with respect to the host).

	Returns:

	An array on the current device.

	Return type:

	cupy.ndarray

Note

This method currently does not support subok argument.

Note

If obj is an numpy.ndarray instance that contains big-endian data,
this function automatically swaps its byte order to little-endian,
which is the NVIDIA and AMD GPU architecture’s native use.

See also

numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array]

cupy.asarray

	
cupy.asarray(a, dtype=None, order=None, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L56]

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False, order=order).

	Parameters:

	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	order ({'C', 'F', 'A', 'K'}) – Whether to use row-major (C-style) or column-major (Fortran-style)
memory representation. Defaults to 'K'. order is ignored
for objects that are not cupy.ndarray, but have the
__cuda_array_interface__ attribute.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Default is False, meaning if a H2D copy is needed
it would run asynchronously on the current stream, and users are
responsible for ensuring the stream order. For example, writing to
the source a without proper ordering while copying would
result in a race condition. If set to True, the copy is
synchronous (with respect to the host).

	Returns:

	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:

	cupy.ndarray

Note

If a is an numpy.ndarray instance that contains big-endian data,
this function automatically swaps its byte order to little-endian,
which is the NVIDIA and AMD GPU architecture’s native use.

See also

numpy.asarray() [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asanyarray

	
cupy.asanyarray(a, dtype=None, order=None, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L91]

	Converts an object to array.

This is currently equivalent to cupy.asarray(), since there is no
subclass of cupy.ndarray in CuPy. Note that the original
numpy.asanyarray() [https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray] returns the input array as is if it is an instance
of a subtype of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

See also

cupy.asarray(), numpy.asanyarray() [https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray]

cupy.ascontiguousarray

	
cupy.ascontiguousarray(a, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L105]

	Returns a C-contiguous array.

	Parameters:

	
	a (cupy.ndarray) – Source array.

	dtype – Data type specifier.

	Returns:

	If no copy is required, it returns a. Otherwise, it
returns a copy of a.

	Return type:

	cupy.ndarray

See also

numpy.ascontiguousarray() [https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]

cupy.copy

	
cupy.copy(a, order='K')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L124]

	Creates a copy of a given array on the current device.

This function allocates the new array on the current device. If the given
array is allocated on the different device, then this function tries to
copy the contents over the devices.

	Parameters:

	
	a (cupy.ndarray) – The source array.

	order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major
(Fortran-style) order.
When order is 'A', it uses 'F' if a is column-major
and uses 'C' otherwise.
And when order is 'K', it keeps strides as closely as
possible.

	Returns:

	The copy of a on the current device.

	Return type:

	cupy.ndarray

See also

numpy.copy() [https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy], cupy.ndarray.copy()

cupy.frombuffer

	
cupy.frombuffer(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L158]

	Interpret a buffer as a 1-dimensional array.

Note

Uses NumPy’s frombuffer and coerces the result to a CuPy array.

See also

numpy.frombuffer() [https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html#numpy.frombuffer]

cupy.fromfile

	
cupy.fromfile(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L170]

	Reads an array from a file.

Note

Uses NumPy’s fromfile and coerces the result to a CuPy array.

Note

If you let NumPy’s fromfile read the file in big-endian, CuPy
automatically swaps its byte order to little-endian, which is the NVIDIA
and AMD GPU architecture’s native use.

See also

numpy.fromfile() [https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile]

cupy.fromfunction

	
cupy.fromfunction(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L187]

	Construct an array by executing a function over each coordinate.

Note

Uses NumPy’s fromfunction and coerces the result to a CuPy array.

See also

numpy.fromfunction() [https://numpy.org/doc/stable/reference/generated/numpy.fromfunction.html#numpy.fromfunction]

cupy.fromiter

	
cupy.fromiter(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L198]

	Create a new 1-dimensional array from an iterable object.

Note

Uses NumPy’s fromiter and coerces the result to a CuPy array.

See also

numpy.fromiter() [https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter]

cupy.fromstring

	
cupy.fromstring(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L209]

	A new 1-D array initialized from text data in a string.

Note

Uses NumPy’s fromstring and coerces the result to a CuPy array.

See also

numpy.fromstring() [https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring]

cupy.loadtxt

	
cupy.loadtxt(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L220]

	Load data from a text file.

Note

Uses NumPy’s loadtxt and coerces the result to a CuPy array.

See also

numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt]

cupy.arange

	
cupy.arange(start, stop=None, step=1, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/ranges.py#L9]

	Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first
three arguments are mapped like the range built-in function, i.e. start
and step are optional.

	Parameters:

	
	start – Start of the interval.

	stop – End of the interval.

	step – Step width between each pair of consecutive values.

	dtype – Data type specifier. It is inferred from other arguments by
default.

	Returns:

	The 1-D array of range values.

	Return type:

	cupy.ndarray

See also

numpy.arange() [https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange]

cupy.linspace

	
cupy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/ranges.py#L122]

	Returns an array with evenly-spaced values within a given interval.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.

	Parameters:

	
	start (scalar or array_like) – Starting value(s) of the sequence.

	stop (scalar or array_like) – Ending value(s) of the sequence, unless
endpoint is set to False. In that case, the sequence
consists of all but the last of num + 1 evenly spaced samples,
so that stop is excluded. Note that the step size changes when
endpoint is False.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	retstep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function returns (array, step).
Otherwise, it returns only the array.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis in the result to store the samples. Relevant
only if start or stop are array-like. By default 0, the
samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

	Returns:

	The 1-D array of ranged values.

	Return type:

	cupy.ndarray

See also

numpy.linspace() [https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace]

cupy.logspace

	
cupy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/ranges.py#L219]

	Returns an array with evenly-spaced values on a log-scale.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.

	Parameters:

	
	start – Start of the interval.

	stop – End of the interval.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	base (float [https://docs.python.org/3/library/functions.html#float]) – Base of the log space. The step sizes between the
elements on a log-scale are the same as base.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis in the result to store the samples. Relevant
only if start or stop are array-like. By default 0, the
samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

	Returns:

	The 1-D array of ranged values.

	Return type:

	cupy.ndarray

See also

numpy.logspace() [https://numpy.org/doc/stable/reference/generated/numpy.logspace.html#numpy.logspace]

cupy.meshgrid

	
cupy.meshgrid(*xi, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/ranges.py#L257]

	Return coordinate matrices from coordinate vectors.

Given one-dimensional coordinate arrays x1, x2, ... , xn this
function makes N-D grids.

For one-dimensional arrays x1, x2, ... , xn with lengths
Ni = len(xi), this function returns (N1, N2, N3, ..., Nn) shaped
arrays if indexing=’ij’ or (N2, N1, N3, ..., Nn) shaped arrays
if indexing=’xy’.

Unlike NumPy, CuPy currently only supports 1-D arrays as inputs.

	Parameters:

	
	xi (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays) – 1-D arrays representing the coordinates
of a grid.

	indexing ({'xy', 'ij'}, optional) – Cartesian (‘xy’, default) or
matrix (‘ij’) indexing of output.

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, a sparse grid is returned in
order to conserve memory. Default is False.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, a view
into the original arrays are returned. Default is True.

	Returns:

	list of cupy.ndarray

See also

numpy.meshgrid() [https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid]

cupy.mgrid

	
cupy.mgrid = <cupy._creation.ranges.nd_grid object>

	Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.

	Parameters:

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the grid is sparse or not.
Default is False.

See also

numpy.mgrid [https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid] and numpy.ogrid [https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid]

cupy.ogrid

	
cupy.ogrid = <cupy._creation.ranges.nd_grid object>

	Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.

	Parameters:

	sparse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the grid is sparse or not.
Default is False.

See also

numpy.mgrid [https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid] and numpy.ogrid [https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid]

cupy.diag

	
cupy.diag(v, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L7]

	Returns a diagonal or a diagonal array.

	Parameters:

	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	Returns:

	If v indicates a 1-D array, then it returns a 2-D
array with the specified diagonal filled by v. If v indicates a
2-D array, then it returns the specified diagonal of v. In latter
case, if v is a cupy.ndarray object, then its view is
returned.

	Return type:

	cupy.ndarray

See also

numpy.diag() [https://numpy.org/doc/stable/reference/generated/numpy.diag.html#numpy.diag]

cupy.diagflat

	
cupy.diagflat(v, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L47]

	Creates a diagonal array from the flattened input.

	Parameters:

	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. See cupy.diag() for detail.

	Returns:

	A 2-D diagonal array with the diagonal copied from v.

	Return type:

	cupy.ndarray

See also

numpy.diagflat() [https://numpy.org/doc/stable/reference/generated/numpy.diagflat.html#numpy.diagflat]

cupy.tri

	
cupy.tri(N, M=None, k=0, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L78]

	Creates an array with ones at and below the given diagonal.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of columns. M == N by default.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The sub-diagonal at and below which the array is filled. Zero
is the main diagonal, a positive value is above it, and a negative
value is below.

	dtype – Data type specifier.

	Returns:

	An array with ones at and below the given diagonal.

	Return type:

	cupy.ndarray

See also

numpy.tri() [https://numpy.org/doc/stable/reference/generated/numpy.tri.html#numpy.tri]

cupy.tril

	
cupy.tril(m, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L102]

	Returns a lower triangle of an array.

	Parameters:

	
	m (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The diagonal above which to zero elements. Zero is the main
diagonal, a positive value is above it, and a negative value is
below.

	Returns:

	A lower triangle of an array.

	Return type:

	cupy.ndarray

See also

numpy.tril() [https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril]

cupy.triu

	
cupy.triu(m, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L123]

	Returns an upper triangle of an array.

	Parameters:

	
	m (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The diagonal below which to zero elements. Zero is the main
diagonal, a positive value is above it, and a negative value is
below.

	Returns:

	An upper triangle of an array.

	Return type:

	cupy.ndarray

See also

numpy.triu() [https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu]

cupy.vander

	
cupy.vander(x, N=None, increasing=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L144]

	Returns a Vandermonde matrix.

	Parameters:

	
	x (array-like) – 1-D array or array-like object.

	N (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of columns in the output.
N = len(x) by default.

	increasing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Order of the powers of the columns.
If True, the powers increase from right to left,
if False (the default) they are reversed.

	Returns:

	A Vandermonde matrix.

	Return type:

	cupy.ndarray

See also

numpy.vander() [https://numpy.org/doc/stable/reference/generated/numpy.vander.html#numpy.vander]

Array manipulation routines

Hint

NumPy API Reference: Array manipulation routines [https://numpy.org/doc/stable/reference/routines.array-manipulation.html]

Basic operations

	copyto(dst, src[, casting, where])

	Copies values from one array to another with broadcasting.

	shape(a)

	Returns the shape of an array

Changing array shape

	reshape(a, newshape[, order])

	Returns an array with new shape and same elements.

	ravel(a[, order])

	Returns a flattened array.

See also

cupy.ndarray.flat and cupy.ndarray.flatten()

Transpose-like operations

	moveaxis(a, source, destination)

	Moves axes of an array to new positions.

	rollaxis(a, axis[, start])

	Moves the specified axis backwards to the given place.

	swapaxes(a, axis1, axis2)

	Swaps the two axes.

	transpose(a[, axes])

	Permutes the dimensions of an array.

See also

cupy.ndarray.T

Changing number of dimensions

	atleast_1d(*arys)

	Converts arrays to arrays with dimensions >= 1.

	atleast_2d(*arys)

	Converts arrays to arrays with dimensions >= 2.

	atleast_3d(*arys)

	Converts arrays to arrays with dimensions >= 3.

	broadcast(*arrays)

	Object that performs broadcasting.

	broadcast_to(array, shape)

	Broadcast an array to a given shape.

	broadcast_arrays(*args)

	Broadcasts given arrays.

	expand_dims(a, axis)

	Expands given arrays.

	squeeze(a[, axis])

	Removes size-one axes from the shape of an array.

Changing kind of array

	asarray(a[, dtype, order, blocking])

	Converts an object to array.

	asanyarray(a[, dtype, order, blocking])

	Converts an object to array.

	asfarray(a[, dtype])

	Converts array elements to float type.

	asfortranarray(a[, dtype])

	Return an array laid out in Fortran order in memory.

	ascontiguousarray(a[, dtype])

	Returns a C-contiguous array.

	asarray_chkfinite(a[, dtype, order])

	Converts the given input to an array, and raises an error if the input contains NaNs or Infs.

	require(a[, dtype, requirements])

	Return an array which satisfies the requirements.

Joining arrays

	concatenate(tup[, axis, out, dtype, casting])

	Joins arrays along an axis.

	stack(tup[, axis, out, dtype, casting])

	Stacks arrays along a new axis.

	vstack(tup, *[, dtype, casting])

	Stacks arrays vertically.

	hstack(tup, *[, dtype, casting])

	Stacks arrays horizontally.

	dstack(tup)

	Stacks arrays along the third axis.

	column_stack(tup)

	Stacks 1-D and 2-D arrays as columns into a 2-D array.

	row_stack(tup, *[, dtype, casting])

	Stacks arrays vertically.

Splitting arrays

	split(ary, indices_or_sections[, axis])

	Splits an array into multiple sub arrays along a given axis.

	array_split(ary, indices_or_sections[, axis])

	Splits an array into multiple sub arrays along a given axis.

	dsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the third axis.

	hsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays horizontally.

	vsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the first axis.

Tiling arrays

	tile(A, reps)

	Construct an array by repeating A the number of times given by reps.

	repeat(a, repeats[, axis])

	Repeat arrays along an axis.

Adding and removing elements

	delete(arr, indices[, axis])

	Delete values from an array along the specified axis.

	append(arr, values[, axis])

	Append values to the end of an array.

	resize(a, new_shape)

	Return a new array with the specified shape.

	unique(ar[, return_index, return_inverse, ...])

	Find the unique elements of an array.

	trim_zeros(filt[, trim])

	Trim the leading and/or trailing zeros from a 1-D array or sequence.

Rearranging elements

	flip(a[, axis])

	Reverse the order of elements in an array along the given axis.

	fliplr(a)

	Flip array in the left/right direction.

	flipud(a)

	Flip array in the up/down direction.

	reshape(a, newshape[, order])

	Returns an array with new shape and same elements.

	roll(a, shift[, axis])

	Roll array elements along a given axis.

	rot90(a[, k, axes])

	Rotate an array by 90 degrees in the plane specified by axes.

cupy.copyto

	
cupy.copyto(dst, src, casting='same_kind', where=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/basic.py#L12]

	Copies values from one array to another with broadcasting.

This function can be called for arrays on different devices. In this case,
casting, where, and broadcasting is not supported, and an exception is
raised if these are used.

	Parameters:

	
	dst (cupy.ndarray) – Target array.

	src (cupy.ndarray) – Source array.

	casting (str [https://docs.python.org/3/library/stdtypes.html#str]) – Casting rule. See numpy.can_cast() [https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast] for detail.

	where (cupy.ndarray of bool [https://docs.python.org/3/library/functions.html#bool]) – If specified, this array acts as a mask,
and an element is copied only if the corresponding element of
where is True.

See also

numpy.copyto() [https://numpy.org/doc/stable/reference/generated/numpy.copyto.html#numpy.copyto]

cupy.shape

	
cupy.shape(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/shape.py#L6]

	Returns the shape of an array

	Parameters:

	a (array_like) – Input array

	Returns:

	The elements of the shape tuple give the lengths of the
corresponding array dimensions.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints

cupy.reshape

	
cupy.reshape(a, newshape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/shape.py#L23]

	Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

	Parameters:

	
	a (cupy.ndarray) – Array to be reshaped.

	newshape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The new shape of the array to return.
If it is an integer, then it is treated as a tuple of length one.
It should be compatible with a.size. One of the elements can be
-1, which is automatically replaced with the appropriate value to
make the shape compatible with a.size.

	order ({'C', 'F', 'A'}) – Read the elements of a using this index order, and place the
elements into the reshaped array using this index order.
‘C’ means to read / write the elements using C-like index order,
with the last axis index changing fastest, back to the first axis
index changing slowest. ‘F’ means to read / write the elements
using Fortran-like index order, with the first index changing
fastest, and the last index changing slowest. Note that the ‘C’
and ‘F’ options take no account of the memory layout of the
underlying array, and only refer to the order of indexing. ‘A’
means to read / write the elements in Fortran-like index order if
a is Fortran contiguous in memory, C-like order otherwise.

	Returns:

	A reshaped view of a if possible, otherwise a copy.

	Return type:

	cupy.ndarray

See also

numpy.reshape() [https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape]

cupy.ravel

	
cupy.ravel(a, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/shape.py#L58]

	Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

	Parameters:

	
	a (cupy.ndarray) – Array to be flattened.

	order ({'C', 'F', 'A', 'K'}) – The elements of a are read using this index order. ‘C’ means
to index the elements in row-major, C-style order,
with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to index the elements
in column-major, Fortran-style order, with the
first index changing fastest, and the last index changing
slowest. Note that the ‘C’ and ‘F’ options take no account of
the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in
Fortran-like index order if a is Fortran contiguous in
memory, C-like order otherwise. ‘K’ means to read the
elements in the order they occur in memory, except for
reversing the data when strides are negative. By default, ‘C’
index order is used.

	Returns:

	A flattened view of a if possible, otherwise a copy.

	Return type:

	cupy.ndarray

See also

numpy.ravel() [https://numpy.org/doc/stable/reference/generated/numpy.ravel.html#numpy.ravel]

cupy.moveaxis

	
cupy.moveaxis(a, source, destination)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/transpose.py#L40]

	Moves axes of an array to new positions.

Other axes remain in their original order.

	Parameters:

	
	a (cupy.ndarray) – Array whose axes should be reordered.

	source (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – Original positions of the axes to move. These must be unique.

	destination (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – Destination positions for each of the original axes. These must
also be unique.

	Returns:

	Array with moved axes. This array is a view of the input array.

	Return type:

	cupy.ndarray

See also

numpy.moveaxis() [https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html#numpy.moveaxis]

cupy.rollaxis

	
cupy.rollaxis(a, axis, start=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/transpose.py#L5]

	Moves the specified axis backwards to the given place.

	Parameters:

	
	a (cupy.ndarray) – Array to move the axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to move.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The place to which the axis is moved.

	Returns:

	A view of a that the axis is moved to start.

	Return type:

	cupy.ndarray

See also

numpy.rollaxis() [https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis]

cupy.swapaxes

	
cupy.swapaxes(a, axis1, axis2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/transpose.py#L22]

	Swaps the two axes.

	Parameters:

	
	a (cupy.ndarray) – Array to swap the axes.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to swap.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to swap.

	Returns:

	A view of a that the two axes are swapped.

	Return type:

	cupy.ndarray

See also

numpy.swapaxes() [https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html#numpy.swapaxes]

cupy.transpose

	
cupy.transpose(a, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/transpose.py#L67]

	Permutes the dimensions of an array.

	Parameters:

	
	a (cupy.ndarray) – Array to permute the dimensions.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Permutation of the dimensions. This function
reverses the shape by default.

	Returns:

	A view of a that the dimensions are permuted.

	Return type:

	cupy.ndarray

See also

numpy.transpose() [https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose]

cupy.atleast_1d

	
cupy.atleast_1d(*arys)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L34]

	Converts arrays to arrays with dimensions >= 1.

	Parameters:

	arys (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects. Only zero-dimensional array is
affected.

	Returns:

	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_1d() [https://numpy.org/doc/stable/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d]

cupy.atleast_2d

	
cupy.atleast_2d(*arys)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L52]

	Converts arrays to arrays with dimensions >= 2.

If an input array has dimensions less than two, then this function inserts
new axes at the head of dimensions to make it have two dimensions.

	Parameters:

	arys (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

	Returns:

	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_2d() [https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d]

cupy.atleast_3d

	
cupy.atleast_3d(*arys)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L72]

	Converts arrays to arrays with dimensions >= 3.

If an input array has dimensions less than three, then this function
inserts new axes to make it have three dimensions. The place of the new
axes are following:

	If its shape is (), then the shape of output is (1, 1, 1).

	If its shape is (N,), then the shape of output is (1, N, 1).

	If its shape is (M, N), then the shape of output is (M, N, 1).

	Otherwise, the output is the input array itself.

	Parameters:

	arys (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

	Returns:

	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_3d() [https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d]

cupy.broadcast

	
class cupy.broadcast(*arrays)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/_routines_manipulation.pyx]

	Object that performs broadcasting.

CuPy actually uses this class to support broadcasting in various
operations. Note that this class does not provide an iterator.

	Parameters:

	arrays (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays) – Arrays to be broadcasted.

	Variables:

	
	~broadcast.shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The broadcasted shape.

	nd (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of the broadcasted shape.

	~broadcast.size (int [https://docs.python.org/3/library/functions.html#int]) – Total size of the broadcasted shape.

	values (list [https://docs.python.org/3/library/stdtypes.html#list] of arrays) – The broadcasted arrays.

See also

numpy.broadcast [https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html#numpy.broadcast]

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
nd

	

	
shape

	

	
size

	

	
values

	

cupy.broadcast_to

	
cupy.broadcast_to(array, shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L116]

	Broadcast an array to a given shape.

	Parameters:

	
	array (cupy.ndarray) – Array to broadcast.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – The shape of the desired array.

	Returns:

	Broadcasted view.

	Return type:

	cupy.ndarray

See also

numpy.broadcast_to() [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to]

cupy.broadcast_arrays

	
cupy.broadcast_arrays(*args)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L101]

	Broadcasts given arrays.

	Parameters:

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays) – Arrays to broadcast for each other.

	Returns:

	A list of broadcasted arrays.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

numpy.broadcast_arrays() [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays]

cupy.expand_dims

	
cupy.expand_dims(a, axis)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L132]

	Expands given arrays.

	Parameters:

	
	a (cupy.ndarray) – Array to be expanded.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Position where new axis is to be inserted.

	Returns:

	The number of dimensions is one greater than that of
the input array.

	Return type:

	cupy.ndarray

See also

numpy.expand_dims() [https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims]

cupy.squeeze

	
cupy.squeeze(a, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/dims.py#L151]

	Removes size-one axes from the shape of an array.

	Parameters:

	
	a (cupy.ndarray) – Array to be reshaped.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes to be removed. This function removes
all size-one axes by default. If one of the specified axes is not
of size one, an exception is raised.

	Returns:

	An array without (specified) size-one axes.

	Return type:

	cupy.ndarray

See also

numpy.squeeze() [https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze]

cupy.asarray

	
cupy.asarray(a, dtype=None, order=None, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L56]

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False, order=order).

	Parameters:

	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	order ({'C', 'F', 'A', 'K'}) – Whether to use row-major (C-style) or column-major (Fortran-style)
memory representation. Defaults to 'K'. order is ignored
for objects that are not cupy.ndarray, but have the
__cuda_array_interface__ attribute.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Default is False, meaning if a H2D copy is needed
it would run asynchronously on the current stream, and users are
responsible for ensuring the stream order. For example, writing to
the source a without proper ordering while copying would
result in a race condition. If set to True, the copy is
synchronous (with respect to the host).

	Returns:

	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:

	cupy.ndarray

Note

If a is an numpy.ndarray instance that contains big-endian data,
this function automatically swaps its byte order to little-endian,
which is the NVIDIA and AMD GPU architecture’s native use.

See also

numpy.asarray() [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asanyarray

	
cupy.asanyarray(a, dtype=None, order=None, *, blocking=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L91]

	Converts an object to array.

This is currently equivalent to cupy.asarray(), since there is no
subclass of cupy.ndarray in CuPy. Note that the original
numpy.asanyarray() [https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray] returns the input array as is if it is an instance
of a subtype of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

See also

cupy.asarray(), numpy.asanyarray() [https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray]

cupy.asfarray

	
cupy.asfarray(a, dtype=<class 'numpy.float64'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/kind.py#L30]

	Converts array elements to float type.

	Parameters:

	
	a (cupy.ndarray) – Source array.

	dtype – str or dtype object, optional

	Returns:

	The input array a as a float ndarray.

	Return type:

	cupy.ndarray

See also

numpy.asfarray() [https://numpy.org/doc/stable/reference/generated/numpy.asfarray.html#numpy.asfarray]

cupy.asfortranarray

	
cupy.asfortranarray(a, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/kind.py#L48]

	Return an array laid out in Fortran order in memory.

	Parameters:

	
	a (ndarray) – The input array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype object, optional) – By default, the data-type is
inferred from the input data.

	Returns:

	The input a in Fortran, or column-major, order.

	Return type:

	ndarray

See also

numpy.asfortranarray() [https://numpy.org/doc/stable/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray]

cupy.ascontiguousarray

	
cupy.ascontiguousarray(a, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L105]

	Returns a C-contiguous array.

	Parameters:

	
	a (cupy.ndarray) – Source array.

	dtype – Data type specifier.

	Returns:

	If no copy is required, it returns a. Otherwise, it
returns a copy of a.

	Return type:

	cupy.ndarray

See also

numpy.ascontiguousarray() [https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]

cupy.asarray_chkfinite

	
cupy.asarray_chkfinite(a, dtype=None, order=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/kind.py#L5]

	Converts the given input to an array,
and raises an error if the input contains NaNs or Infs.

	Parameters:

	
	a – array like.

	dtype – data type, optional

	order – {‘C’, ‘F’, ‘A’, ‘K’}, optional

	Returns:

	An array on the current device.

	Return type:

	cupy.ndarray

Note

This function performs device synchronization.

See also

numpy.asarray_chkfinite() [https://numpy.org/doc/stable/reference/generated/numpy.asarray_chkfinite.html#numpy.asarray_chkfinite]

cupy.require

	
cupy.require(a, dtype=None, requirements=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/kind.py#L65]

	Return an array which satisfies the requirements.

	Parameters:

	
	a (ndarray) – The input array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype object, optional) – The required data-type.
If None preserve the current dtype.

	requirements (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The requirements can be any
of the following

	’F_CONTIGUOUS’ (‘F’, ‘FORTRAN’) - ensure a Fortran-contiguous array.

	’C_CONTIGUOUS’ (‘C’, ‘CONTIGUOUS’) - ensure a C-contiguous array.

	’OWNDATA’ (‘O’) - ensure an array that owns its own data.

	Returns:

	The input array a with specified requirements and
type if provided.

	Return type:

	ndarray

See also

numpy.require() [https://numpy.org/doc/stable/reference/generated/numpy.require.html#numpy.require]

cupy.concatenate

	
cupy.concatenate(tup, axis=0, out=None, *, dtype=None, casting='same_kind')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L35]

	Joins arrays along an axis.

	Parameters:

	
	tup (sequence of arrays) – Arrays to be joined. All of these should have
same dimensionalities except the specified axis.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – The axis to join arrays along.
If axis is None, arrays are flattened before use.
Default is 0.

	out (cupy.ndarray) – Output array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype) – If provided, the destination array will have this
dtype. Cannot be provided together with out.

	casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to
'same_kind'.

	Returns:

	Joined array.

	Return type:

	cupy.ndarray

See also

numpy.concatenate() [https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate]

cupy.stack

	
cupy.stack(tup, axis=0, out=None, *, dtype=None, casting='same_kind')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L133]

	Stacks arrays along a new axis.

	Parameters:

	
	tup (sequence of arrays) – Arrays to be stacked.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the arrays are stacked.

	out (cupy.ndarray) – Output array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype) – If provided, the destination array will have this
dtype. Cannot be provided together with out.

	casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to
'same_kind'.

	Returns:

	Stacked array.

	Return type:

	cupy.ndarray

See also

numpy.stack() [https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack]

cupy.vstack

	
cupy.vstack(tup, *, dtype=None, casting='same_kind')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L107]

	Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the additional axis at the head.
Otherwise, the array is stacked along the first axis.

	Parameters:

	
	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_2d() before stacking.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype) – If provided, the destination array will have this
dtype.

	casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to
'same_kind'.

	Returns:

	Stacked array.

	Return type:

	cupy.ndarray

See also

numpy.dstack() [https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack]

cupy.hstack

	
cupy.hstack(tup, *, dtype=None, casting='same_kind')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L79]

	Stacks arrays horizontally.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the first axis. Otherwise, the array is
stacked along the second axis.

	Parameters:

	
	tup (sequence of arrays) – Arrays to be stacked.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype) – If provided, the destination array will have this
dtype.

	casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to
'same_kind'.

	Returns:

	Stacked array.

	Return type:

	cupy.ndarray

See also

numpy.hstack() [https://numpy.org/doc/stable/reference/generated/numpy.hstack.html#numpy.hstack]

cupy.dstack

	
cupy.dstack(tup)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L63]

	Stacks arrays along the third axis.

	Parameters:

	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_3d() before stacking.

	Returns:

	Stacked array.

	Return type:

	cupy.ndarray

See also

numpy.dstack() [https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack]

cupy.column_stack

	
cupy.column_stack(tup)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L5]

	Stacks 1-D and 2-D arrays as columns into a 2-D array.

A 1-D array is first converted to a 2-D column array. Then, the 2-D arrays
are concatenated along the second axis.

	Parameters:

	tup (sequence of arrays) – 1-D or 2-D arrays to be stacked.

	Returns:

	A new 2-D array of stacked columns.

	Return type:

	cupy.ndarray

See also

numpy.column_stack() [https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack]

cupy.row_stack

	
cupy.row_stack(tup, *, dtype=None, casting='same_kind')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/join.py#L107]

	Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the additional axis at the head.
Otherwise, the array is stacked along the first axis.

	Parameters:

	
	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_2d() before stacking.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype) – If provided, the destination array will have this
dtype.

	casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) – Controls what kind of data casting may occur. Defaults to
'same_kind'.

	Returns:

	Stacked array.

	Return type:

	cupy.ndarray

See also

numpy.dstack() [https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack]

cupy.split

	
cupy.split(ary, indices_or_sections, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/split.py#L49]

	Splits an array into multiple sub arrays along a given axis.

	Parameters:

	
	ary (cupy.ndarray) – Array to split.

	indices_or_sections (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – A value indicating how
to divide the axis. If it is an integer, then is treated as the
number of sections, and the axis is evenly divided. Otherwise,
the integers indicate indices to split at. Note that the sequence
on the device memory is not allowed.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the array is split.

	Returns:

	A list of sub arrays. Each array is a view of the corresponding input
array.

See also

numpy.split() [https://numpy.org/doc/stable/reference/generated/numpy.split.html#numpy.split]

cupy.array_split

	
cupy.array_split(ary, indices_or_sections, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/split.py#L6]

	Splits an array into multiple sub arrays along a given axis.

This function is almost equivalent to cupy.split(). The only
difference is that this function allows an integer sections that does not
evenly divide the axis.

See also

cupy.split() for more detail, numpy.array_split() [https://numpy.org/doc/stable/reference/generated/numpy.array_split.html#numpy.array_split]

cupy.dsplit

	
cupy.dsplit(ary, indices_or_sections)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/split.py#L19]

	Splits an array into multiple sub arrays along the third axis.

This is equivalent to split with axis=2.

See also

cupy.split() for more detail, numpy.dsplit() [https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit]

cupy.hsplit

	
cupy.hsplit(ary, indices_or_sections)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/split.py#L32]

	Splits an array into multiple sub arrays horizontally.

This is equivalent to split with axis=0 if ary has one
dimension, and otherwise that with axis=1.

See also

cupy.split() for more detail, numpy.hsplit() [https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit]

cupy.vsplit

	
cupy.vsplit(ary, indices_or_sections)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/split.py#L81]

	Splits an array into multiple sub arrays along the first axis.

This is equivalent to split with axis=0.

See also

cupy.split() for more detail, numpy.dsplit() [https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit]

cupy.tile

	
cupy.tile(A, reps)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/tiling.py#L5]

	Construct an array by repeating A the number of times given by reps.

	Parameters:

	
	A (cupy.ndarray) – Array to transform.

	reps (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.

	Returns:

	Transformed array with repeats.

	Return type:

	cupy.ndarray

See also

numpy.tile() [https://numpy.org/doc/stable/reference/generated/numpy.tile.html#numpy.tile]

cupy.repeat

	
cupy.repeat(a, repeats, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/tiling.py#L56]

	Repeat arrays along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to transform.

	repeats (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to repeat.

	Returns:

	Transformed array with repeats.

	Return type:

	cupy.ndarray

See also

numpy.repeat() [https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy.repeat]

cupy.delete

	
cupy.delete(arr, indices, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L8]

	Delete values from an array along the specified axis.

	Parameters:

	
	arr (cupy.ndarray) – Values are deleted from a copy of this array.

	indices (slice [https://docs.python.org/3/library/functions.html#slice], int [https://docs.python.org/3/library/functions.html#int] or array of ints) – These indices correspond to values that will be deleted from the
copy of arr.
Boolean indices are treated as a mask of elements to remove.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – The axis along which indices correspond to values that will be
deleted. If axis is not given, arr will be flattened.

	Returns:

	A copy of arr with values specified by indices deleted along
axis.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.delete() [https://numpy.org/doc/stable/reference/generated/numpy.delete.html#numpy.delete].

cupy.append

	
cupy.append(arr, values, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L57]

	Append values to the end of an array.

	Parameters:

	
	arr (array_like) – Values are appended to a copy of this array.

	values (array_like) – These values are appended to a copy of arr. It must be of the
correct shape (the same shape as arr, excluding axis). If
axis is not specified, values can be any shape and will be
flattened before use.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – The axis along which values are appended. If axis is not
given, both arr and values are flattened before use.

	Returns:

	A copy of arr with values appended to axis. Note that
append does not occur in-place: a new array is allocated and
filled. If axis is None, out is a flattened array.

	Return type:

	cupy.ndarray

See also

numpy.append() [https://numpy.org/doc/stable/reference/generated/numpy.append.html#numpy.append]

cupy.resize

	
cupy.resize(a, new_shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L97]

	Return a new array with the specified shape.

If the new array is larger than the original array, then the new
array is filled with repeated copies of a. Note that this behavior
is different from a.resize(new_shape) which fills with zeros instead
of repeated copies of a.

	Parameters:

	
	a (array_like) – Array to be resized.

	new_shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Shape of resized array.

	Returns:

	The new array is formed from the data in the old array, repeated
if necessary to fill out the required number of elements. The
data are repeated in the order that they are stored in memory.

	Return type:

	cupy.ndarray

See also

numpy.resize() [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]

cupy.unique

	
cupy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L176]

	Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements:

	the indices of the input array that give the unique values

	the indices of the unique array that reconstruct the input array

	the number of times each unique value comes up in the input array

	Parameters:

	
	ar (array_like) – Input array. This will be flattened if it is not
already 1-D.

	return_index (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the indices of ar
(along the specified axis, if provided, or in the flattened array)
that result in the unique array.

	return_inverse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the indices of the
unique array (for the specified axis, if provided) that can be used
to reconstruct ar.

	return_counts (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the number of times
each unique item appears in ar.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – The axis to operate on. If None, ar will
be flattened. If an integer, the subarrays indexed by the given
axis will be flattened and treated as the elements of a 1-D array
with the dimension of the given axis, see the notes for more
details. The default is None.

	equal_nan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, collapse multiple NaN values in the
return array into one.

	Returns:

	If there are no optional outputs, it returns the
cupy.ndarray of the sorted unique values. Otherwise, it
returns the tuple which contains the sorted unique values and
followings.

	The indices of the first occurrences of the unique values in the
original array. Only provided if return_index is True.

	The indices to reconstruct the original array from the
unique array. Only provided if return_inverse is True.

	The number of times each of the unique values comes up in the
original array. Only provided if return_counts is True.

	Return type:

	cupy.ndarray or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Notes

When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the
array (move the axis to the first dimension to keep the order of the
other axes) and then flattening the subarrays in C order.

Warning

This function may synchronize the device.

See also

numpy.unique() [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique]

cupy.trim_zeros

	
cupy.trim_zeros(filt, trim='fb')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L138]

	Trim the leading and/or trailing zeros from a 1-D array or sequence.

Returns the trimmed array

	Parameters:

	
	filt (cupy.ndarray) – Input array

	trim (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – ‘fb’ default option trims the array from both sides.
‘f’ option trim zeros from front.
‘b’ option trim zeros from back.

	Returns:

	trimmed input

	Return type:

	cupy.ndarray

See also

numpy.trim_zeros() [https://numpy.org/doc/stable/reference/generated/numpy.trim_zeros.html#numpy.trim_zeros]

cupy.flip

	
cupy.flip(a, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/rearrange.py#L9]

	Reverse the order of elements in an array along the given axis.

Note that flip function has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.

	Parameters:

	
	a (ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] or None) – Axis or axes along which to flip
over. The default, axis=None, will flip over all of the axes of
the input array. If axis is negative it counts from the last to the
first axis. If axis is a tuple of ints, flipping is performed on
all of the axes specified in the tuple.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.flip() [https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip]

cupy.fliplr

	
cupy.fliplr(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/rearrange.py#L33]

	Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns
are preserved, but appear in a different order than before.

	Parameters:

	a (ndarray) – Input array.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.fliplr() [https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr]

cupy.flipud

	
cupy.flipud(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/rearrange.py#L53]

	Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are
preserved, but appear in a different order than before.

	Parameters:

	a (ndarray) – Input array.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.flipud() [https://numpy.org/doc/stable/reference/generated/numpy.flipud.html#numpy.flipud]

cupy.reshape

	
cupy.reshape(a, newshape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/shape.py#L23]

	Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

	Parameters:

	
	a (cupy.ndarray) – Array to be reshaped.

	newshape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The new shape of the array to return.
If it is an integer, then it is treated as a tuple of length one.
It should be compatible with a.size. One of the elements can be
-1, which is automatically replaced with the appropriate value to
make the shape compatible with a.size.

	order ({'C', 'F', 'A'}) – Read the elements of a using this index order, and place the
elements into the reshaped array using this index order.
‘C’ means to read / write the elements using C-like index order,
with the last axis index changing fastest, back to the first axis
index changing slowest. ‘F’ means to read / write the elements
using Fortran-like index order, with the first index changing
fastest, and the last index changing slowest. Note that the ‘C’
and ‘F’ options take no account of the memory layout of the
underlying array, and only refer to the order of indexing. ‘A’
means to read / write the elements in Fortran-like index order if
a is Fortran contiguous in memory, C-like order otherwise.

	Returns:

	A reshaped view of a if possible, otherwise a copy.

	Return type:

	cupy.ndarray

See also

numpy.reshape() [https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape]

cupy.roll

	
cupy.roll(a, shift, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/rearrange.py#L73]

	Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.

	Parameters:

	
	a (ndarray) – Array to be rolled.

	shift (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – The number of places by which elements are
shifted. If a tuple, then axis must be a tuple of the same size,
and each of the given axes is shifted by the corresponding number.
If an int while axis is a tuple of ints, then the same value is
used for all given axes.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] or None) – The axis along which elements are
shifted. By default, the array is flattened before shifting, after
which the original shape is restored.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.roll() [https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll]

cupy.rot90

	
cupy.rot90(a, k=1, axes=(0, 1))[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/rearrange.py#L148]

	Rotate an array by 90 degrees in the plane specified by axes.

Note that axes argument has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.

	Parameters:

	
	a (ndarray) – Array of two or more dimensions.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of times the array is rotated by 90 degrees.

	axes – (tuple of ints): The array is rotated in the plane defined by
the axes. Axes must be different.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.rot90() [https://numpy.org/doc/stable/reference/generated/numpy.rot90.html#numpy.rot90]

Binary operations

Hint

NumPy API Reference: Binary operations [https://numpy.org/doc/stable/reference/routines.bitwise.html]

Elementwise bit operations

	bitwise_and(x1, x2, /[, out, casting, dtype])

	Computes the bitwise AND of two arrays elementwise.

	bitwise_or(x1, x2, /[, out, casting, dtype])

	Computes the bitwise OR of two arrays elementwise.

	bitwise_xor(x1, x2, /[, out, casting, dtype])

	Computes the bitwise XOR of two arrays elementwise.

	invert(x, /[, out, casting, dtype])

	Computes the bitwise NOT of an array elementwise.

	left_shift(x1, x2, /[, out, casting, dtype])

	Shifts the bits of each integer element to the left.

	right_shift(x1, x2, /[, out, casting, dtype])

	Shifts the bits of each integer element to the right.

Bit packing

	packbits(a[, axis, bitorder])

	Packs the elements of a binary-valued array into bits in a uint8 array.

	unpackbits(a[, axis, bitorder])

	Unpacks elements of a uint8 array into a binary-valued output array.

Output formatting

	binary_repr(num[, width])

	Return the binary representation of the input number as a string.

cupy.bitwise_and

	
cupy.bitwise_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_and [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]

cupy.bitwise_or

	
cupy.bitwise_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_or [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]

cupy.bitwise_xor

	
cupy.bitwise_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_xor [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]

cupy.invert

	
cupy.invert(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

Note

cupy.bitwise_not() is an alias for cupy.invert().

See also

numpy.invert [https://numpy.org/doc/stable/reference/generated/numpy.invert.html#numpy.invert]

cupy.left_shift

	
cupy.left_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also

numpy.left_shift [https://numpy.org/doc/stable/reference/generated/numpy.left_shift.html#numpy.left_shift]

cupy.right_shift

	
cupy.right_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also

numpy.right_shift [https://numpy.org/doc/stable/reference/generated/numpy.right_shift.html#numpy.right_shift]

cupy.packbits

	
cupy.packbits(a, axis=None, bitorder='big')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_binary/packing.py#L27]

	Packs the elements of a binary-valued array into bits in a uint8 array.

This function currently does not support axis option.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Not supported yet.

	bitorder (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – bit order to use when packing the array,
allowed values are ‘little’ and ‘big’. Defaults to ‘big’.

	Returns:

	The packed array.

	Return type:

	cupy.ndarray

Note

When the input array is empty, this function returns a copy of it,
i.e., the type of the output array is not necessarily always uint8.
This exactly follows the NumPy’s behaviour (as of version 1.11),
alghough this is inconsistent to the documentation.

See also

numpy.packbits() [https://numpy.org/doc/stable/reference/generated/numpy.packbits.html#numpy.packbits]

cupy.unpackbits

	
cupy.unpackbits(a, axis=None, bitorder='big')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_binary/packing.py#L79]

	Unpacks elements of a uint8 array into a binary-valued output array.

This function currently does not support axis option.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	bitorder (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – bit order to use when unpacking the array,
allowed values are ‘little’ and ‘big’. Defaults to ‘big’.

	Returns:

	The unpacked array.

	Return type:

	cupy.ndarray

See also

numpy.unpackbits() [https://numpy.org/doc/stable/reference/generated/numpy.unpackbits.html#numpy.unpackbits]

cupy.binary_repr

	
cupy.binary_repr(num, width=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L307]

	Return the binary representation of the input number as a string.

See also

numpy.binary_repr() [https://numpy.org/doc/stable/reference/generated/numpy.binary_repr.html#numpy.binary_repr]

Data type routines

Hint

NumPy API Reference: Data type routines [https://numpy.org/doc/stable/reference/routines.dtype.html]

	can_cast(from_, to[, casting])

	Returns True if cast between data types can occur according to the casting rule.

	min_scalar_type(a)

	For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value.

	result_type(*arrays_and_dtypes)

	Returns the type that results from applying the NumPy type promotion rules to the arguments.

	common_type(*arrays)

	Return a scalar type which is common to the input arrays.

	promote_types (alias of numpy.promote_types() [https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types])

	obj2sctype (alias of numpy.obj2sctype() [https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype])

Creating data types

	dtype (alias of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype])

	format_parser (alias of numpy.format_parser [https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser])

Data type information

	finfo (alias of numpy.finfo [https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo])

	iinfo (alias of numpy.iinfo [https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo])

	MachAr (alias of numpy.MachAr)

Data type testing

	issctype (alias of numpy.issctype() [https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype])

	issubdtype (alias of numpy.issubdtype() [https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype])

	issubsctype (alias of numpy.issubsctype() [https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype])

	issubclass_ (alias of numpy.issubclass_() [https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_])

	find_common_type (alias of numpy.find_common_type() [https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type])

Miscellaneous

	typename (alias of numpy.typename() [https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename])

	sctype2char (alias of numpy.sctype2char() [https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char])

	mintypecode (alias of numpy.mintypecode() [https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode])

cupy.can_cast

	
cupy.can_cast(from_, to, casting='safe')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L318]

	Returns True if cast between data types can occur according to the
casting rule. If from is a scalar or array scalar, also returns True if the
scalar value can be cast without overflow or truncation to an integer.

See also

numpy.can_cast() [https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast]

cupy.min_scalar_type

	
cupy.min_scalar_type(a)

	For scalar a, returns the data type with the smallest size
and smallest scalar kind which can hold its value. For non-scalar
array a, returns the vector’s dtype unmodified.

See also

numpy.min_scalar_type() [https://numpy.org/doc/stable/reference/generated/numpy.min_scalar_type.html#numpy.min_scalar_type]

cupy.result_type

	
cupy.result_type(*arrays_and_dtypes)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L350]

	Returns the type that results from applying the NumPy type promotion
rules to the arguments.

See also

numpy.result_type() [https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type]

cupy.common_type

	
cupy.common_type(*arrays)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L329]

	Return a scalar type which is common to the input arrays.

See also

numpy.common_type() [https://numpy.org/doc/stable/reference/generated/numpy.common_type.html#numpy.common_type]

Discrete Fourier Transform (cupy.fft)

Hint

NumPy API Reference: Discrete Fourier Transform (numpy.fft) [https://numpy.org/doc/stable/reference/routines.fft.html]

See also

Discrete Fourier transforms (cupyx.scipy.fft), Fast Fourier Transform with CuPy

Standard FFTs

	fft(a[, n, axis, norm])

	Compute the one-dimensional FFT.

	ifft(a[, n, axis, norm])

	Compute the one-dimensional inverse FFT.

	fft2(a[, s, axes, norm])

	Compute the two-dimensional FFT.

	ifft2(a[, s, axes, norm])

	Compute the two-dimensional inverse FFT.

	fftn(a[, s, axes, norm])

	Compute the N-dimensional FFT.

	ifftn(a[, s, axes, norm])

	Compute the N-dimensional inverse FFT.

Real FFTs

	rfft(a[, n, axis, norm])

	Compute the one-dimensional FFT for real input.

	irfft(a[, n, axis, norm])

	Compute the one-dimensional inverse FFT for real input.

	rfft2(a[, s, axes, norm])

	Compute the two-dimensional FFT for real input.

	irfft2(a[, s, axes, norm])

	Compute the two-dimensional inverse FFT for real input.

	rfftn(a[, s, axes, norm])

	Compute the N-dimensional FFT for real input.

	irfftn(a[, s, axes, norm])

	Compute the N-dimensional inverse FFT for real input.

Hermitian FFTs

	hfft(a[, n, axis, norm])

	Compute the FFT of a signal that has Hermitian symmetry.

	ihfft(a[, n, axis, norm])

	Compute the FFT of a signal that has Hermitian symmetry.

Helper routines

	fftfreq(n[, d])

	Return the FFT sample frequencies.

	rfftfreq(n[, d])

	Return the FFT sample frequencies for real input.

	fftshift(x[, axes])

	Shift the zero-frequency component to the center of the spectrum.

	ifftshift(x[, axes])

	The inverse of fftshift().

CuPy-specific APIs

See the description below for details.

	config.set_cufft_callbacks(...)

	A context manager for setting up load and/or store callbacks.

	config.set_cufft_gpus(gpus)

	Set the GPUs to be used in multi-GPU FFT.

	config.get_plan_cache()

	Get the per-thread, per-device plan cache, or create one if not found.

	config.show_plan_cache_info()

	Show all of the plan caches' info on this thread.

Normalization

The default normalization (norm is "backward" or None) has the direct transforms unscaled and the inverse transforms scaled by \(1/n\).
If the keyword argument norm is "forward", it is the exact opposite of "backward":
the direct transforms are scaled by \(1/n\) and the inverse transforms are unscaled.
Finally, if the keyword argument norm is "ortho", both transforms are scaled by \(1/\sqrt{n}\).

Code compatibility features

FFT functions of NumPy always return numpy.ndarray which type is numpy.complex128 or numpy.float64.
CuPy functions do not follow the behavior, they will return numpy.complex64 or numpy.float32 if the type of the input is numpy.float16, numpy.float32, or numpy.complex64.

Internally, cupy.fft always generates a cuFFT plan (see the cuFFT documentation [https://docs.nvidia.com/cuda/cufft/index.html] for detail) corresponding to the desired transform. When possible, an n-dimensional plan will be used, as opposed to applying separate 1D plans for each axis to be transformed. Using n-dimensional planning can provide better performance for multidimensional transforms, but requires more GPU memory than separable 1D planning. The user can disable n-dimensional planning by setting cupy.fft.config.enable_nd_planning = False. This ability to adjust the planning type is a deviation from the NumPy API, which does not use precomputed FFT plans.

Moreover, the automatic plan generation can be suppressed by using an existing plan returned by cupyx.scipy.fftpack.get_fft_plan() as a context manager. This is again a deviation from NumPy.

Finally, when using the high-level NumPy-like FFT APIs as listed above, internally the cuFFT plans are cached for possible reuse. The plan cache can be retrieved by get_plan_cache(), and its current status can be queried by show_plan_cache_info(). For finer control of the plan cache, see PlanCache.

Multi-GPU FFT

cupy.fft can use multiple GPUs. To enable (disable) this feature, set cupy.fft.config.use_multi_gpus to True (False). Next, to set the number of GPUs or the participating GPU IDs, use the function cupy.fft.config.set_cufft_gpus(). All of the limitations listed in the cuFFT documentation [https://docs.nvidia.com/cuda/cufft/index.html] apply here. In particular, using more than one GPU does not guarantee better performance.

cupy.fft.fft

	
cupy.fft.fft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L665]

	Compute the one-dimensional FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft]

cupy.fft.ifft

	
cupy.fft.ifft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L689]

	Compute the one-dimensional inverse FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.ifft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft]

cupy.fft.fft2

	
cupy.fft.fft2(a, s=None, axes=(-2, -1), norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L713]

	Compute the two-dimensional FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along the
axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.fft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2]

cupy.fft.ifft2

	
cupy.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L739]

	Compute the two-dimensional inverse FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along the
axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.ifft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2]

cupy.fft.fftn

	
cupy.fft.fftn(a, s=None, axes=None, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L765]

	Compute the N-dimensional FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along the
axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.fftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn]

cupy.fft.ifftn

	
cupy.fft.ifftn(a, s=None, axes=None, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L791]

	Compute the N-dimensional inverse FFT.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along the
axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other.

	Return type:

	cupy.ndarray

See also

numpy.fft.ifftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn]

cupy.fft.rfft

	
cupy.fft.rfft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L817]

	Compute the one-dimensional FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Number of points along transformation axis in the
input to use. If n is not given, the length of the input along
the axis specified by axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. The length of the
transformed axis is n//2+1.

	Return type:

	cupy.ndarray

See also

numpy.fft.rfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft]

cupy.fft.irfft

	
cupy.fft.irfft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L843]

	Compute the one-dimensional inverse FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. For
n output points, n//2+1 input points are necessary. If
n is not given, it is determined from the length of the input
along the axis specified by axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. If n is not
given, the length of the transformed axis is`2*(m-1)` where m
is the length of the transformed axis of the input.

	Return type:

	cupy.ndarray

See also

numpy.fft.irfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft]

cupy.fft.rfft2

	
cupy.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L871]

	Compute the two-dimensional FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape to use from the input. If s is not
given, the lengths of the input along the axes specified by
axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. The length of the
last axis transformed will be s[-1]//2+1.

	Return type:

	cupy.ndarray

See also

numpy.fft.rfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2]

cupy.fft.irfft2

	
cupy.fft.irfft2(a, s=None, axes=(-2, -1), norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L898]

	Compute the two-dimensional inverse FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the output. If s is not given,
they are determined from the lengths of the input along the axes
specified by axes.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. If s is not
given, the length of final transformed axis of output will be
2*(m-1) where m is the length of the final transformed axis of
the input.

	Return type:

	cupy.ndarray

See also

numpy.fft.irfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2]

cupy.fft.rfftn

	
cupy.fft.rfftn(a, s=None, axes=None, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L927]

	Compute the N-dimensional FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape to use from the input. If s is not
given, the lengths of the input along the axes specified by
axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. The length of the
last axis transformed will be s[-1]//2+1.

	Return type:

	cupy.ndarray

See also

numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn]

cupy.fft.irfftn

	
cupy.fft.irfftn(a, s=None, axes=None, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L963]

	Compute the N-dimensional inverse FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the output. If s is not given,
they are determined from the lengths of the input along the axes
specified by axes.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. If s is not
given, the length of final transformed axis of output will be
2*(m-1) where m is the length of the final transformed axis
of the input.

	Return type:

	cupy.ndarray

See also

numpy.fft.irfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn]

cupy.fft.hfft

	
cupy.fft.hfft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1003]

	Compute the FFT of a signal that has Hermitian symmetry.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. For
n output points, n//2+1 input points are necessary. If
n is not given, it is determined from the length of the input
along the axis specified by axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. If n is not
given, the length of the transformed axis is 2*(m-1) where m
is the length of the transformed axis of the input.

	Return type:

	cupy.ndarray

See also

numpy.fft.hfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft]

cupy.fft.ihfft

	
cupy.fft.ihfft(a, n=None, axis=-1, norm=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1029]

	Compute the FFT of a signal that has Hermitian symmetry.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Number of points along transformation axis in the
input to use. If n is not given, the length of the input along
the axis specified by axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. The length of the
transformed axis is n//2+1.

	Return type:

	cupy.ndarray

See also

numpy.fft.ihfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft]

cupy.fft.fftfreq

	
cupy.fft.fftfreq(n, d=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1053]

	Return the FFT sample frequencies.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Window length.

	d (scalar) – Sample spacing.

	Returns:

	Array of length n containing the sample frequencies.

	Return type:

	cupy.ndarray

See also

numpy.fft.fftfreq() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq]

cupy.fft.rfftfreq

	
cupy.fft.rfftfreq(n, d=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1069]

	Return the FFT sample frequencies for real input.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Window length.

	d (scalar) – Sample spacing.

	Returns:

	Array of length n//2+1 containing the sample frequencies.

	Return type:

	cupy.ndarray

See also

numpy.fft.rfftfreq() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq]

cupy.fft.fftshift

	
cupy.fft.fftshift(x, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1085]

	Shift the zero-frequency component to the center of the spectrum.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	axes (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to shift. Default is
None, which shifts all axes.

	Returns:

	The shifted array.

	Return type:

	cupy.ndarray

See also

numpy.fft.fftshift() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift]

cupy.fft.ifftshift

	
cupy.fft.ifftshift(x, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1106]

	The inverse of fftshift().

	Parameters:

	
	x (cupy.ndarray) – Input array.

	axes (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to shift. Default is
None, which shifts all axes.

	Returns:

	The shifted array.

	Return type:

	cupy.ndarray

See also

numpy.fft.ifftshift() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift]

cupy.fft.config.set_cufft_callbacks

	
class cupy.fft.config.set_cufft_callbacks(unicode cb_load=u'', unicode cb_store=u'', ndarray cb_load_aux_arr=None, *, ndarray cb_store_aux_arr=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_callback.pyx]

	A context manager for setting up load and/or store callbacks.

	Parameters:

	
	cb_load (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string contains the device kernel for the load
callback. It must define d_loadCallbackPtr.

	cb_store (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string contains the device kernel for the store
callback. It must define d_storeCallbackPtr.

	cb_load_aux_arr (cupy.ndarray, optional) – A CuPy array containing
data to be used in the load callback.

	cb_store_aux_arr (cupy.ndarray, optional) – A CuPy array containing
data to be used in the store callback.

Note

Any FFT calls living in this context will have callbacks set up. An
example for a load callback is shown below:

code = r'''
__device__ cufftComplex CB_ConvertInputC(
 void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPtr) {
 // implementation
}

__device__ cufftCallbackLoadC d_loadCallbackPtr = CB_ConvertInputC;
'''

with cp.fft.config.set_cufft_callbacks(cb_load=code):
 out_arr = cp.fft.fft(in_arr, ...)

Note

Below are the runtime requirements for using this feature:

	cython >= 0.29.0

	A host compiler that supports C++11 and above; might need to set
up the CXX environment variable.

	nvcc and the full CUDA Toolkit. Note that the cudatoolkit
package from Conda-Forge is not enough, as it does not contain
static libraries.

Note

Callbacks only work for transforms over contiguous axes; the behavior
for non-contiguous transforms is in general undefined.

Warning

Using cuFFT callbacks requires compiling and loading a Python module at
runtime as well as static linking for each distinct transform and
callback, so the first invocation for each combination will be very
slow. This is a limitation of cuFFT, so use this feature only when the
callback-enabled transform is known more performant and can be reused
to amortize the cost.

Warning

The generated Python modules are by default cached in
~/.cupy/callback_cache for possible reuse (with the same set of
load/store callbacks). Due to static linking, however, the file sizes
can be excessive! The cache position can be changed via setting
CUPY_CACHE_DIR.

See also

cuFFT Callback Routines [https://docs.nvidia.com/cuda/cufft/index.html#callback-routines]

Methods

	
__enter__(self)

	

	
__exit__(self, exc_type, exc_value, traceback)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.fft.config.set_cufft_gpus

	
cupy.fft.config.set_cufft_gpus(gpus)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/config.py#L31]

	Set the GPUs to be used in multi-GPU FFT.

	Parameters:

	gpus (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – The number of GPUs or a list of GPUs
to be used. For the former case, the first gpus GPUs
will be used.

Warning

This API is currently experimental and may be changed in the future
version.

See also

Multiple GPU cuFFT Transforms [https://docs.nvidia.com/cuda/cufft/index.html#multiple-GPU-cufft-transforms]

cupy.fft.config.get_plan_cache

	
cupy.fft.config.get_plan_cache() → PlanCache

	Get the per-thread, per-device plan cache, or create one if not found.

See also

PlanCache

cupy.fft.config.show_plan_cache_info

	
cupy.fft.config.show_plan_cache_info()

	Show all of the plan caches’ info on this thread.

See also

PlanCache

Functional programming

Hint

NumPy API Reference: Functional programming [https://numpy.org/doc/stable/reference/routines.functional.html]

Note

cupy.vectorize applies JIT compiler to the given Python function.
See JIT kernel definition for details.

	apply_along_axis(func1d, axis, arr, *args, ...)

	Apply a function to 1-D slices along the given axis.

	vectorize(pyfunc[, otypes, doc, excluded, ...])

	Generalized function class.

	piecewise(x, condlist, funclist)

	Evaluate a piecewise-defined function.

cupy.apply_along_axis

	
cupy.apply_along_axis(func1d, axis, arr, *args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_shape_base.py#L7]

	Apply a function to 1-D slices along the given axis.

	Parameters:

	
	func1d (function (M,) -> (Nj...)) – This function should accept 1-D
arrays. It is applied to 1-D slices of arr along the specified
axis. It must return a 1-D cupy.ndarray.

	axis (integer) – Axis along which arr is sliced.

	arr (cupy.ndarray (Ni..., M, Nk...)) – Input array.

	args – Additional arguments for func1d.

	kwargs – Additional keyword arguments for func1d.

	Returns:

	The output array. The shape of out is identical to
the shape of arr, except along the axis dimension. This
axis is removed, and replaced with new dimensions equal to the
shape of the return value of func1d. So if func1d returns a
scalar out will have one fewer dimensions than arr.

	Return type:

	cupy.ndarray

See also

numpy.apply_along_axis() [https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis]

cupy.vectorize

	
class cupy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_functional/vectorize.py#L18]

	Generalized function class.

See also

numpy.vectorize [https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize]

Methods

	
__call__(*args)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_functional/vectorize.py#L77]

	Call self as a function.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.piecewise

	
cupy.piecewise(x, condlist, funclist)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_functional/piecewise.py#L13]

	Evaluate a piecewise-defined function.

	Parameters:

	
	x (cupy.ndarray) – input domain

	condlist (list [https://docs.python.org/3/library/stdtypes.html#list] of cupy.ndarray) – Each boolean array/ scalar corresponds to a function
in funclist. Length of funclist is equal to that of
condlist. If one extra function is given, it is used
as the default value when the otherwise condition is met

	funclist (list [https://docs.python.org/3/library/stdtypes.html#list] of scalars) – list of scalar functions.

	Returns:

	the scalar values in funclist on portions of x
defined by condlist.

	Return type:

	cupy.ndarray

Warning

This function currently doesn’t support callable functions,
args and kw parameters.

See also

numpy.piecewise() [https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html#numpy.piecewise]

Indexing routines

Hint

NumPy API Reference: Indexing routines [https://numpy.org/doc/stable/reference/routines.indexing.html]

Generating index arrays

	c_

	

	r_

	

	nonzero(a)

	Return the indices of the elements that are non-zero.

	where(condition[, x, y])

	Return elements, either from x or y, depending on condition.

	indices(dimensions[, dtype])

	Returns an array representing the indices of a grid.

	mask_indices(n, mask_func[, k])

	Return the indices to access (n, n) arrays, given a masking function.

	tril_indices(n[, k, m])

	Returns the indices of the lower triangular matrix.

	tril_indices_from(arr[, k])

	Returns the indices for the lower-triangle of arr.

	triu_indices(n[, k, m])

	Returns the indices of the upper triangular matrix.

	triu_indices_from(arr[, k])

	Returns indices for the upper-triangle of arr.

	ix_(*args)

	Construct an open mesh from multiple sequences.

	ravel_multi_index(multi_index, dims[, mode, ...])

	Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

	unravel_index(indices, dims[, order])

	Converts array of flat indices into a tuple of coordinate arrays.

	diag_indices(n[, ndim])

	Return the indices to access the main diagonal of an array.

	diag_indices_from(arr)

	Return the indices to access the main diagonal of an n-dimensional array.

Indexing-like operations

	take(a, indices[, axis, out])

	Takes elements of an array at specified indices along an axis.

	take_along_axis(a, indices, axis)

	Take values from the input array by matching 1d index and data slices.

	choose(a, choices[, out, mode])

	

	compress(condition, a[, axis, out])

	Returns selected slices of an array along given axis.

	diag(v[, k])

	Returns a diagonal or a diagonal array.

	diagonal(a[, offset, axis1, axis2])

	Returns specified diagonals.

	select(condlist, choicelist[, default])

	Return an array drawn from elements in choicelist, depending on conditions.

	lib.stride_tricks.as_strided(x[, shape, strides])

	Create a view into the array with the given shape and strides.

Inserting data into arrays

	place(arr, mask, vals)

	Change elements of an array based on conditional and input values.

	put(a, ind, v[, mode])

	Replaces specified elements of an array with given values.

	putmask(a, mask, values)

	Changes elements of an array inplace, based on a conditional mask and input values.

	fill_diagonal(a, val[, wrap])

	Fills the main diagonal of the given array of any dimensionality.

Iterating over arrays

	flatiter(a)

	Flat iterator object to iterate over arrays.

cupy.c_

	
cupy.c_ = <cupy._indexing.generate.CClass object>

	

cupy.r_

	
cupy.r_ = <cupy._indexing.generate.RClass object>

	

cupy.nonzero

	
cupy.nonzero(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L120]

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that dimension.

	Parameters:

	a (cupy.ndarray) – array

	Returns:

	Indices of elements that are non-zero.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays

Warning

This function may synchronize the device.

See also

numpy.nonzero() [https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero]

cupy.where

	
cupy.where(condition, x=None, y=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L177]

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	Parameters:

	
	condition (cupy.ndarray) – When True, take x, otherwise take y.

	x (cupy.ndarray) – Values from which to choose on True.

	y (cupy.ndarray) – Values from which to choose on False.

	Returns:

	Each element of output contains elements of x when
condition is True, otherwise elements of y. If only
condition is given, return the tuple condition.nonzero(),
the indices where condition is True.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device if both x and y are
omitted.

See also

numpy.where() [https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where]

cupy.indices

	
cupy.indices(dimensions, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L150]

	Returns an array representing the indices of a grid.

Computes an array where the subarrays contain index values 0,1,…
varying only along the corresponding axis.

	Parameters:

	
	dimensions – The shape of the grid.

	dtype – Data type specifier. It is int by default.

	Returns:

	The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

	Return type:

	ndarray

Examples

>>> grid = cupy.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],
 [1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],
 [0, 1, 2]])

See also

numpy.indices() [https://numpy.org/doc/stable/reference/generated/numpy.indices.html#numpy.indices]

cupy.mask_indices

	
cupy.mask_indices(n, mask_func, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L423]

	Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of
size (n, n) with a possible offset argument k, when called
as mask_func(a, k) returns a new array with zeros in certain
locations (functions like triu() or tril() do
precisely this). Then this function returns the indices where the non-zero
values would be located.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The returned indices will be valid to access arrays
of shape (n, n).

	mask_func (callable) – A function whose call signature is
similar to that of triu(), tril(). That is,
mask_func(x, k) returns a boolean array, shaped like
x. k is an optional argument to the function.

	k (scalar) – An optional argument which is passed through to
mask_func. Functions like triu(), tril()
take a second argument that is interpreted as an offset.

	Returns:

	The n arrays of indices corresponding to
the locations where mask_func(np.ones((n, n)), k) is
True.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays

Warning

This function may synchronize the device.

See also

numpy.mask_indices() [https://numpy.org/doc/stable/reference/generated/numpy.mask_indices.html#numpy.mask_indices]

cupy.tril_indices

	
cupy.tril_indices(n, k=0, m=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L466]

	Returns the indices of the lower triangular matrix.
Here, the first group of elements contains row coordinates
of all indices and the second group of elements
contains column coordinates.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The row dimension of the arrays for which the returned
indices will be valid.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Diagonal above which to zero elements. k = 0
(the default) is the main diagonal, k < 0 is
below it and k > 0 is above.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The column dimension of the arrays for which the
returned arrays will be valid. By default, m = n.

	Returns:

	y – The indices for the triangle. The returned tuple
contains two arrays, each with the indices along
one dimension of the array.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

numpy.tril_indices [https://numpy.org/doc/stable/reference/generated/numpy.tril_indices.html#numpy.tril_indices]

cupy.tril_indices_from

	
cupy.tril_indices_from(arr, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L504]

	Returns the indices for the lower-triangle of arr.

	Parameters:

	
	arr (cupy.ndarray) – The indices are valid for square arrays
whose dimensions are the same as arr.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Diagonal offset.

See also

numpy.tril_indices_from [https://numpy.org/doc/stable/reference/generated/numpy.tril_indices_from.html#numpy.tril_indices_from]

cupy.triu_indices

	
cupy.triu_indices(n, k=0, m=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L526]

	Returns the indices of the upper triangular matrix.
Here, the first group of elements contains row coordinates
of all indices and the second group of elements
contains column coordinates.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The size of the arrays for which the returned indices will
be valid.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Refers to the diagonal offset. By default, k = 0 i.e.
the main dialogal. The positive value of k
denotes the diagonals above the main diagonal, while the negative
value includes the diagonals below the main diagonal.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The column dimension of the arrays for which the
returned arrays will be valid. By default, m = n.

	Returns:

	y – The indices for the triangle. The returned tuple
contains two arrays, each with the indices along
one dimension of the array.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

numpy.triu_indices [https://numpy.org/doc/stable/reference/generated/numpy.triu_indices.html#numpy.triu_indices]

cupy.triu_indices_from

	
cupy.triu_indices_from(arr, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L565]

	Returns indices for the upper-triangle of arr.

	Parameters:

	
	arr (cupy.ndarray) – The indices are valid for square arrays.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Diagonal offset (see ‘triu_indices` for details).

	Returns:

	triu_indices_from – Indices for the upper-triangle of arr.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

numpy.triu_indices_from [https://numpy.org/doc/stable/reference/generated/numpy.triu_indices_from.html#numpy.triu_indices_from]

cupy.ix_

	
cupy.ix_(*args)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L191]

	Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.

Using ix_ one can quickly construct index arrays that will index
the cross product. a[cupy.ix_([1,3],[2,5])] returns the array
[[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

	Parameters:

	*args – 1-D sequences

	Returns:

	N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

Examples

>>> a = cupy.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> ixgrid = cupy.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],
 [1]]), array([[2, 4]]))

Warning

This function may synchronize the device.

See also

numpy.ix_() [https://numpy.org/doc/stable/reference/generated/numpy.ix_.html#numpy.ix_]

cupy.ravel_multi_index

	
cupy.ravel_multi_index(multi_index, dims, mode='wrap', order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L246]

	Converts a tuple of index arrays into an array of flat indices, applying
boundary modes to the multi-index.

	Parameters:

	
	multi_index (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of cupy.ndarray) – A tuple of integer arrays, one
array for each dimension.

	dims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of array into which the indices from
multi_index apply.

	mode ('raise', 'wrap' or 'clip') – Specifies how out-of-bounds
indices are handled. Can specify either one mode or a tuple of
modes, one mode per index:

	’raise’ – raise an error

	’wrap’ – wrap around (default)

	’clip’ – clip to the range

In ‘clip’ mode, a negative index which would normally wrap will
clip to 0 instead.

	order ('C' or 'F') – Determines whether the multi-index should
be viewed as indexing in row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	An array of indices into the flattened
version of an array of dimensions dims.

	Return type:

	raveled_indices (cupy.ndarray)

Warning

This function may synchronize the device when mode == 'raise'.

Notes

Note that the default mode ('wrap') is different than in NumPy. This
is done to avoid potential device synchronization.

Examples

>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (7,6))
array([22, 41, 37])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (7,6),
... order='F')
array([31, 41, 13])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (4,6),
... mode='clip')
array([22, 23, 19])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (4,4),
... mode=('clip', 'wrap'))
array([12, 13, 13])
>>> cupy.ravel_multi_index(cupy.asarray((3,1,4,1)), (6,7,8,9))
array(1621)

See also

numpy.ravel_multi_index() [https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index], unravel_index()

cupy.unravel_index

	
cupy.unravel_index(indices, dims, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/generate.py#L362]

	Converts array of flat indices into a tuple of coordinate arrays.

	Parameters:

	
	indices (cupy.ndarray) – An integer array whose elements are indices
into the flattened version of an array of dimensions dims.

	dims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array to use for unraveling
indices.

	order ('C' or 'F') – Determines whether the indices should be viewed as
indexing in row-major (C-style) or column-major (Fortran-style)
order.

	Returns:

	Each array in the tuple has the same shape as the indices array.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

Examples

>>> cupy.unravel_index(cupy.array([22, 41, 37]), (7, 6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> cupy.unravel_index(cupy.array([31, 41, 13]), (7, 6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

Warning

This function may synchronize the device.

See also

numpy.unravel_index() [https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html#numpy.unravel_index], ravel_multi_index()

cupy.diag_indices

	
cupy.diag_indices(n, ndim=2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L183]

	Return the indices to access the main diagonal of an array.

Returns a tuple of indices that can be used to access the main
diagonal of an array with ndim >= 2 dimensions and shape
(n, n, …, n).

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The size, along each dimension of the arrays for which
the indices are to be returned.

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – The number of dimensions. default 2.

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = cupy.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = cupy.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],
 [4, 100, 6, 7],
 [8, 9, 100, 11],
 [12, 13, 14, 100]])

Create indices to manipulate a 3-D array:

>>> d3 = cupy.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = cupy.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],
 [0, 0]],

 [[0, 0],
 [0, 1]]])

See also

numpy.diag_indices() [https://numpy.org/doc/stable/reference/generated/numpy.diag_indices.html#numpy.diag_indices]

cupy.diag_indices_from

	
cupy.diag_indices_from(arr)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L239]

	Return the indices to access the main diagonal of an n-dimensional array.
See diag_indices for full details.

	Parameters:

	arr (cupy.ndarray) – At least 2-D.

See also

numpy.diag_indices_from() [https://numpy.org/doc/stable/reference/generated/numpy.diag_indices_from.html#numpy.diag_indices_from]

cupy.take

	
cupy.take(a, indices, axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L5]

	Takes elements of an array at specified indices along an axis.

This is an implementation of “fancy indexing” at single axis.

This function does not support mode option.

	Parameters:

	
	a (cupy.ndarray) – Array to extract elements.

	indices (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Indices of elements that this function
takes.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which to select indices. The flattened input
is used by default.

	out (cupy.ndarray) – Output array. If provided, it should be of
appropriate shape and dtype.

	Returns:

	The result of fancy indexing.

	Return type:

	cupy.ndarray

See also

numpy.take() [https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take]

cupy.take_along_axis

	
cupy.take_along_axis(a, indices, axis)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L31]

	Take values from the input array by matching 1d index and data slices.

	Parameters:

	
	a (cupy.ndarray) – Array to extract elements.

	indices (cupy.ndarray) – Indices to take along each 1d slice of a.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to take 1d slices along.

	Returns:

	The indexed result.

	Return type:

	cupy.ndarray

See also

numpy.take_along_axis() [https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html#numpy.take_along_axis]

cupy.choose

	
cupy.choose(a, choices, out=None, mode='raise')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L71]

	

cupy.compress

	
cupy.compress(condition, a, axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L75]

	Returns selected slices of an array along given axis.

	Parameters:

	
	condition (1-D array of bools) – Array that selects which entries to
return. If len(condition) is less than the size of a along the
given axis, then output is truncated to the length of the condition
array.

	a (cupy.ndarray) – Array from which to extract a part.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which to take slices. If None (default), work
on the flattened array.

	out (cupy.ndarray) – Output array. If provided, it should be of
appropriate shape and dtype.

	Returns:

	A copy of a without the slices along axis for which
condition is false.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.compress() [https://numpy.org/doc/stable/reference/generated/numpy.compress.html#numpy.compress]

cupy.diag

	
cupy.diag(v, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/matrix.py#L7]

	Returns a diagonal or a diagonal array.

	Parameters:

	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	Returns:

	If v indicates a 1-D array, then it returns a 2-D
array with the specified diagonal filled by v. If v indicates a
2-D array, then it returns the specified diagonal of v. In latter
case, if v is a cupy.ndarray object, then its view is
returned.

	Return type:

	cupy.ndarray

See also

numpy.diag() [https://numpy.org/doc/stable/reference/generated/numpy.diag.html#numpy.diag]

cupy.diagonal

	
cupy.diagonal(a, offset=0, axis1=0, axis2=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L104]

	Returns specified diagonals.

This function extracts the diagonals along two specified axes. The other
axes are not changed. This function returns a writable view of this array
as NumPy 1.10 will do.

	Parameters:

	
	a (cupy.ndarray) – Array from which the diagonals are taken.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonals. Zero indicates the main
diagonals, a positive value upper diagonals, and a negative value
lower diagonals.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to take diagonals from.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to take diagonals from.

	Returns:

	A view of the diagonals of a.

	Return type:

	cupy.ndarray

See also

numpy.diagonal() [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]

cupy.select

	
cupy.select(condlist, choicelist, default=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L163]

	Return an array drawn from elements in choicelist, depending on conditions.

	Parameters:

	
	condlist (list [https://docs.python.org/3/library/stdtypes.html#list] of bool arrays) – The list of conditions which determine
from which array in choicelist the output elements are taken.
When multiple conditions are satisfied, the first one encountered
in condlist is used.

	choicelist (list [https://docs.python.org/3/library/stdtypes.html#list] of cupy.ndarray) – The list of arrays from which the
output elements are taken. It has to be of the same length
as condlist.

	default (scalar) – If provided, will fill element inserted in output
when all conditions evaluate to False. default value is 0.

	Returns:

	The output at position m is the m-th element of the
array in choicelist where the m-th element of the corresponding
array in condlist is True.

	Return type:

	cupy.ndarray

See also

numpy.select() [https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select]

cupy.lib.stride_tricks.as_strided

	
cupy.lib.stride_tricks.as_strided(x, shape=None, strides=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/stride_tricks.py#L5]

	Create a view into the array with the given shape and strides.

Warning

This function has to be used with extreme care, see notes.

	Parameters:

	
	x (ndarray) – Array to create a new.

	shape (sequence of int [https://docs.python.org/3/library/functions.html#int], optional) – The shape of the new array. Defaults to x.shape.

	strides (sequence of int [https://docs.python.org/3/library/functions.html#int], optional) – The strides of the new array. Defaults to x.strides.

	Returns:

	view

	Return type:

	ndarray

See also

numpy.lib.stride_tricks.as_strided [https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided]

	reshape
	reshape an array.

Notes

as_strided creates a view into the array given the exact strides
and shape. This means it manipulates the internal data structure of
ndarray and, if done incorrectly, the array elements can point to
invalid memory and can corrupt results or crash your program.

cupy.place

	
cupy.place(arr, mask, vals)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L7]

	Change elements of an array based on conditional and input values.

This function uses the first N elements of vals, where N is the number
of true values in mask.

	Parameters:

	
	arr (cupy.ndarray) – Array to put data into.

	mask (array-like) – Boolean mask array. Must have the same size as a.

	vals (array-like) – Values to put into a. Only the first
N elements are used, where N is the number of True values in
mask. If vals is smaller than N, it will be repeated, and if
elements of a are to be masked, this sequence must be non-empty.

Examples

>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[0, 1, 2],
 [44, 55, 44]])

Warning

This function may synchronize the device.

See also

numpy.place() [https://numpy.org/doc/stable/reference/generated/numpy.place.html#numpy.place]

cupy.put

	
cupy.put(a, ind, v, mode='wrap')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L49]

	Replaces specified elements of an array with given values.

	Parameters:

	
	a (cupy.ndarray) – Target array.

	ind (array-like) – Target indices, interpreted as integers.

	v (array-like) – Values to place in a at target indices.
If v is shorter than ind it will be repeated as necessary.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – How out-of-bounds indices will behave. Its value must be
either ‘raise’, ‘wrap’ or ‘clip’. Otherwise,
TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] is raised.

Note

Default mode is set to ‘wrap’ to avoid unintended performance drop.
If you need NumPy’s behavior, please pass mode=’raise’ manually.

See also

numpy.put() [https://numpy.org/doc/stable/reference/generated/numpy.put.html#numpy.put]

cupy.putmask

	
cupy.putmask(a, mask, values)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L79]

	Changes elements of an array inplace, based on a conditional mask and
input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.
If values is not the same size as a and mask then it will repeat.

	Parameters:

	
	a (cupy.ndarray) – Target array.

	mask (cupy.ndarray) – Boolean mask array. It has to be
the same shape as a.

	values (cupy.ndarray or scalar) – Values to put into a where mask
is True. If values is smaller than a, then it will be
repeated.

Examples

>>> x = cupy.arange(6).reshape(2, 3)
>>> cupy.putmask(x, x>2, x**2)
>>> x
array([[0, 1, 2],
 [9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = cupy.arange(6)
>>> cupy.putmask(x, x>2, cupy.array([-33, -44]))
>>> x
array([0, 1, 2, -44, -33, -44])

See also

numpy.putmask() [https://numpy.org/doc/stable/reference/generated/numpy.putmask.html#numpy.putmask]

cupy.fill_diagonal

	
cupy.fill_diagonal(a, val, wrap=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/insert.py#L142]

	Fills the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of
locations with indices a[i, i, ..., i] all identical. This function
modifies the input array in-place, it does not return a value.

	Parameters:

	
	a (cupy.ndarray) – The array, at least 2-D.

	val (scalar) – The value to be written on the diagonal.
Its type must be compatible with that of the array a.

	wrap (bool [https://docs.python.org/3/library/functions.html#bool]) – If specified, the diagonal is “wrapped” after N columns.
This affects only tall matrices.

Examples

>>> a = cupy.zeros((3, 3), int)
>>> cupy.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
 [0, 5, 0],
 [0, 0, 5]])

See also

numpy.fill_diagonal() [https://numpy.org/doc/stable/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal]

cupy.flatiter

	
class cupy.flatiter(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L8]

	Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x.flat for any array x. It
allows iterating over the array as if it were a 1-D array, either in a
for-loop or by calling its next method.

Iteration is done in row-major, C-style order (the last index varying the
fastest).

	Variables:

	base (cupy.ndarray) – A reference to the array that is iterated over.

Note

Restricted support of basic slicing is currently supplied. Advanced
indexing is not supported yet.

See also

numpy.flatiter()

Methods

	
__getitem__(ind)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L72]

	

	
__setitem__(ind, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L33]

	

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L142]

	

	
__next__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L110]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L107]

	

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/iterate.py#L117]

	Get a copy of the iterator as a 1-D array.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
base

	A reference to the array that is iterated over.

Input and output

Hint

NumPy API Reference: Input and output [https://numpy.org/doc/stable/reference/routines.io.html]

NumPy binary files (NPY, NPZ)

	load(file[, mmap_mode, allow_pickle])

	Loads arrays or pickled objects from .npy, .npz or pickled file.

	save(file, arr[, allow_pickle])

	Saves an array to a binary file in .npy format.

	savez(file, *args, **kwds)

	Saves one or more arrays into a file in uncompressed .npz format.

	savez_compressed(file, *args, **kwds)

	Saves one or more arrays into a file in compressed .npz format.

Text files

	loadtxt(*args, **kwargs)

	Load data from a text file.

	savetxt(fname, X, *args, **kwargs)

	Save an array to a text file.

	genfromtxt(*args, **kwargs)

	Load data from text file, with missing values handled as specified.

	fromstring(*args, **kwargs)

	A new 1-D array initialized from text data in a string.

String formatting

	array2string(a, *args, **kwargs)

	Return a string representation of an array.

	array_repr(arr[, max_line_width, precision, ...])

	Returns the string representation of an array.

	array_str(arr[, max_line_width, precision, ...])

	Returns the string representation of the content of an array.

	format_float_positional(x, *args, **kwargs)

	Format a floating-point scalar as a decimal string in positional notation.

	format_float_scientific(x, *args, **kwargs)

	Format a floating-point scalar as a decimal string in scientific notation.

Base-n representations

	binary_repr(num[, width])

	Return the binary representation of the input number as a string.

	base_repr(number[, base, padding])

	Return a string representation of a number in the given base system.

cupy.load

	
cupy.load(file, mmap_mode=None, allow_pickle=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/npz.py#L31]

	Loads arrays or pickled objects from .npy, .npz or pickled file.

This function just calls numpy.load and then sends the arrays to the
current device. NPZ file is converted to NpzFile object, which defers the
transfer to the time of accessing the items.

	Parameters:

	
	file (file-like object or string) – The file to read.

	mmap_mode (None, 'r+', 'r', 'w+', 'c') – If not None, memory-map the
file to construct an intermediate numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] object and
transfer it to the current device.

	allow_pickle (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow loading pickled object arrays stored in npy
files. Reasons for disallowing pickles include security, as
loading pickled data can execute arbitrary code. If pickles are
disallowed, loading object arrays will fail.
Please be aware that CuPy does not support arrays with dtype of
object.
The default is False.
This option is available only for NumPy 1.10 or later.
In NumPy 1.9, this option cannot be specified (loading pickled
objects is always allowed).

	Returns:

	CuPy array or NpzFile object depending on the type of the file. NpzFile
object is a dictionary-like object with the context manager protocol
(which enables us to use with statement on it).

See also

numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load]

cupy.save

	
cupy.save(file, arr, allow_pickle=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/npz.py#L78]

	Saves an array to a binary file in .npy format.

	Parameters:

	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	arr (array_like) – Array to save. It should be able to feed to
cupy.asnumpy().

	allow_pickle (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow saving object arrays using Python pickles.
Reasons for disallowing pickles include security (loading pickled
data can execute arbitrary code) and portability (pickled objects
may not be loadable on different Python installations, for example
if the stored objects require libraries that are not available,
and not all pickled data is compatible between Python 2 and Python
3).
The default is True.
This option is available only for NumPy 1.10 or later.
In NumPy 1.9, this option cannot be specified (saving objects
using pickles is always allowed).

See also

numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save]

cupy.savez

	
cupy.savez(file, *args, **kwds)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/npz.py#L109]

	Saves one or more arrays into a file in uncompressed .npz format.

Arguments without keys are treated as arguments with automatic keys named
arr_0, arr_1, etc. corresponding to the positions in the argument
list. The keys of arguments are used as keys in the .npz file, which
are used for accessing NpzFile object when the file is read by
cupy.load() function.

	Parameters:

	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	*args – Arrays with implicit keys.

	**kwds – Arrays with explicit keys.

See also

numpy.savez() [https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez]

cupy.savez_compressed

	
cupy.savez_compressed(file, *args, **kwds)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/npz.py#L132]

	Saves one or more arrays into a file in compressed .npz format.

It is equivalent to cupy.savez() function except the output file is
compressed.

See also

cupy.savez() for more detail,
numpy.savez_compressed() [https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed]

cupy.loadtxt

	
cupy.loadtxt(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L220]

	Load data from a text file.

Note

Uses NumPy’s loadtxt and coerces the result to a CuPy array.

See also

numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt]

cupy.savetxt

	
cupy.savetxt(fname, X, *args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/text.py#L5]

	Save an array to a text file.

Note

Uses NumPy’s savetxt.

See also

numpy.savetxt() [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt]

cupy.genfromtxt

	
cupy.genfromtxt(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L231]

	Load data from text file, with missing values handled as specified.

Note

Uses NumPy’s genfromtxt and coerces the result to a CuPy array.

See also

numpy.genfromtxt() [https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]

cupy.fromstring

	
cupy.fromstring(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_creation/from_data.py#L209]

	A new 1-D array initialized from text data in a string.

Note

Uses NumPy’s fromstring and coerces the result to a CuPy array.

See also

numpy.fromstring() [https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring]

cupy.array2string

	
cupy.array2string(a, *args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/formatting.py#L46]

	Return a string representation of an array.

See also

numpy.array2string() [https://numpy.org/doc/stable/reference/generated/numpy.array2string.html#numpy.array2string]

cupy.array_repr

	
cupy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/formatting.py#L5]

	Returns the string representation of an array.

	Parameters:

	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small numbers are printed as
zeros

	Returns:

	The string representation of arr.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

numpy.array_repr() [https://numpy.org/doc/stable/reference/generated/numpy.array_repr.html#numpy.array_repr]

cupy.array_str

	
cupy.array_str(arr, max_line_width=None, precision=None, suppress_small=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/formatting.py#L27]

	Returns the string representation of the content of an array.

	Parameters:

	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small number are printed as
zeros.

See also

numpy.array_str() [https://numpy.org/doc/stable/reference/generated/numpy.array_str.html#numpy.array_str]

cupy.format_float_positional

	
cupy.format_float_positional(x, *args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/formatting.py#L56]

	Format a floating-point scalar as a decimal string in positional notation.

See numpy.format_float_positional() [https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional] for the list of arguments.

See also

numpy.format_float_positional() [https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional]

cupy.format_float_scientific

	
cupy.format_float_scientific(x, *args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_io/formatting.py#L67]

	Format a floating-point scalar as a decimal string in scientific notation.

See numpy.format_float_scientific() [https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific] for the list of arguments.

See also

numpy.format_float_scientific() [https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific]

cupy.binary_repr

	
cupy.binary_repr(num, width=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L307]

	Return the binary representation of the input number as a string.

See also

numpy.binary_repr() [https://numpy.org/doc/stable/reference/generated/numpy.binary_repr.html#numpy.binary_repr]

cupy.base_repr

	
cupy.base_repr(number, base=2, padding=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L447]

	Return a string representation of a number in the given base system.

See also

numpy.base_repr() [https://numpy.org/doc/stable/reference/generated/numpy.base_repr.html#numpy.base_repr]

Linear algebra (cupy.linalg)

Hint

NumPy API Reference: Linear algebra (numpy.linalg) [https://numpy.org/doc/stable/reference/routines.linalg.html]

See also

Linear algebra (cupyx.scipy.linalg)

Matrix and vector products

	dot(a, b[, out])

	Returns a dot product of two arrays.

	vdot(a, b)

	Returns the dot product of two vectors.

	inner(a, b)

	Returns the inner product of two arrays.

	outer(a, b[, out])

	Returns the outer product of two vectors.

	matmul

	matmul(x1, x2, /, out=None, **kwargs)

	tensordot(a, b[, axes])

	Returns the tensor dot product of two arrays along specified axes.

	einsum(subscripts, *operands[, dtype, optimize])

	Evaluates the Einstein summation convention on the operands.

	linalg.matrix_power(M, n)

	Raise a square matrix to the (integer) power n.

	kron(a, b)

	Returns the kronecker product of two arrays.

Decompositions

	linalg.cholesky(a)

	Cholesky decomposition.

	linalg.qr(a[, mode])

	QR decomposition.

	linalg.svd(a[, full_matrices, compute_uv])

	Singular Value Decomposition.

Matrix eigenvalues

	linalg.eigh(a[, UPLO])

	Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.

	linalg.eigvalsh(a[, UPLO])

	Compute the eigenvalues of a complex Hermitian or real symmetric matrix.

Norms and other numbers

	linalg.norm(x[, ord, axis, keepdims])

	Returns one of matrix norms specified by ord parameter.

	linalg.det(a)

	Returns the determinant of an array.

	linalg.matrix_rank(M[, tol])

	Return matrix rank of array using SVD method

	linalg.slogdet(a)

	Returns sign and logarithm of the determinant of an array.

	trace(a[, offset, axis1, axis2, dtype, out])

	Returns the sum along the diagonals of an array.

Solving equations and inverting matrices

	linalg.solve(a, b)

	Solves a linear matrix equation.

	linalg.tensorsolve(a, b[, axes])

	Solves tensor equations denoted by ax = b.

	linalg.lstsq(a, b[, rcond])

	Return the least-squares solution to a linear matrix equation.

	linalg.inv(a)

	Computes the inverse of a matrix.

	linalg.pinv(a[, rcond])

	Compute the Moore-Penrose pseudoinverse of a matrix.

	linalg.tensorinv(a[, ind])

	Computes the inverse of a tensor.

cupy.dot

	
cupy.dot(a, b, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L43]

	Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the
last axis of a and the second-to-last axis of b. This is just a
matrix product if the both arrays are 2-D. For 1-D arrays, it uses their
unique axis as an axis to take dot product over.

	Parameters:

	
	a (cupy.ndarray) – The left argument.

	b (cupy.ndarray) – The right argument.

	out (cupy.ndarray) – Output array.

	Returns:

	The dot product of a and b.

	Return type:

	cupy.ndarray

See also

numpy.dot() [https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot]

cupy.vdot

	
cupy.vdot(a, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L66]

	Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner
product of these vectors.

	Parameters:

	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	Returns:

	Zero-dimensional array of the dot product result.

	Return type:

	cupy.ndarray

See also

numpy.vdot() [https://numpy.org/doc/stable/reference/generated/numpy.vdot.html#numpy.vdot]

cupy.inner

	
cupy.inner(a, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L212]

	Returns the inner product of two arrays.

It uses the last axis of each argument to take sum product.

	Parameters:

	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	Returns:

	The inner product of a and b.

	Return type:

	cupy.ndarray

See also

numpy.inner() [https://numpy.org/doc/stable/reference/generated/numpy.inner.html#numpy.inner]

cupy.outer

	
cupy.outer(a, b, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L252]

	Returns the outer product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs outer
product of these vectors.

	Parameters:

	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	out (cupy.ndarray) – Output array.

	Returns:

	2-D array of the outer product of a and b.

	Return type:

	cupy.ndarray

See also

numpy.outer() [https://numpy.org/doc/stable/reference/generated/numpy.outer.html#numpy.outer]

cupy.matmul

	
cupy.matmul = <cupy._core._gufuncs._GUFunc object>

	matmul(x1, x2, /, out=None, **kwargs)

Matrix product of two arrays.

Returns the matrix product of two arrays and is the implementation of
the @ operator introduced in Python 3.5 following PEP465.

The main difference against cupy.dot are the handling of arrays with more
than 2 dimensions. For more information see numpy.matmul().

	Parameters:

	
	x1 (cupy.ndarray) – The left argument.

	x2 (cupy.ndarray) – The right argument.

	out (cupy.ndarray, optional) – Output array.

	**kwargs – ufunc keyword arguments.

	Returns:

	Output array.

	Return type:

	cupy.ndarray

See also

numpy.matmul()

cupy.tensordot

	
cupy.tensordot(a, b, axes=2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L272]

	Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which
are treated as one axis by reshaping.

	Parameters:

	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	axes –
	If it is an integer, then axes axes at the last of a and
the first of b are used.

	If it is a pair of sequences of integers, then these two
sequences specify the list of axes for a and b. The
corresponding axes are paired for sum-product.

	Returns:

	The tensor dot product of a and b along the
axes specified by axes.

	Return type:

	cupy.ndarray

See also

numpy.tensordot() [https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html#numpy.tensordot]

cupy.einsum

	
cupy.einsum(subscripts, *operands, dtype=None, optimize=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_einsum.py#L444]

	Evaluates the Einstein summation convention on the operands.
Using the Einstein summation convention, many common multi-dimensional
array operations can be represented in a simple fashion. This function
provides a way to compute such summations.

Note

	Memory contiguity of the returned array is not always compatible with
that of numpy.einsum() [https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum].

	out, order, and casting options are not supported.

	If CUPY_ACCELERATORS includes cutensornet, the einsum
calculation will be performed by the cuTensorNet backend if possible.

	The support of the optimize option is limited (currently, only
False, ‘cutensornet’, or a custom path for pairwise contraction
is supported, and the maximum intermediate size is ignored). If
you need finer control for path optimization, consider replacing
cupy.einsum() by cuquantum.contract() [https://docs.nvidia.com/cuda/cuquantum/latest/python/api/generated/cuquantum.contract.html#cuquantum.contract] instead.

	Requires cuQuantum Python [https://docs.nvidia.com/cuda/cuquantum/python/] (v22.03+).

	If CUPY_ACCELERATORS includes cutensor, einsum will be
accelerated by the cuTENSOR backend whenever possible.

	Parameters:

	
	subscripts (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the subscripts for summation.

	operands (sequence of arrays) – These are the arrays for the operation.

	dtype – If provided, forces the calculation to use the data type
specified. Default is None.

	optimize – Valid options include {False, True, ‘greedy’, ‘optimal’}.
Controls if intermediate optimization should occur. No optimization
will occur if False, and True will default to the ‘greedy’
algorithm. Also accepts an explicit contraction list from
numpy.einsum_path() [https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path]. Defaults to False. If a pair is
supplied, the second argument is assumed to be the maximum
intermediate size created.

	Returns:

	The calculation based on the Einstein summation convention.

	Return type:

	cupy.ndarray

See also

numpy.einsum() [https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum]

cupy.linalg.matrix_power

	
cupy.linalg.matrix_power(M, n)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L338]

	Raise a square matrix to the (integer) power n.

	Parameters:

	
	M (ndarray) – Matrix to raise by power n.

	n (~int) – Power to raise matrix to.

	Returns:

	Output array.

	Return type:

	ndarray

..seealso:: numpy.linalg.matrix_power() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power]

cupy.kron

	
cupy.kron(a, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L382]

	Returns the kronecker product of two arrays.

	Parameters:

	
	a (ndarray) – The first argument.

	b (ndarray) – The second argument.

	Returns:

	Output array.

	Return type:

	ndarray

See also

numpy.kron() [https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron]

cupy.linalg.cholesky

	
cupy.linalg.cholesky(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_decomposition.py#L157]

	Cholesky decomposition.

Decompose a given two-dimensional square matrix into L * L.H,
where L is a lower-triangular matrix and .H is a conjugate
transpose operator.

	Parameters:

	a (cupy.ndarray) – Hermitian (symmetric if all elements are real),
positive-definite input matrix with dimension (..., M, M).

	Returns:

	The lower-triangular matrix of shape (..., M, M).

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.cholesky() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky]

cupy.linalg.qr

	
cupy.linalg.qr(a, mode='reduced')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_decomposition.py#L263]

	QR decomposition.

Decompose a given two-dimensional matrix into Q * R, where Q
is an orthonormal and R is an upper-triangular matrix.

	Parameters:

	
	a (cupy.ndarray) – The input matrix.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mode of decomposition. Currently ‘reduced’,
‘complete’, ‘r’, and ‘raw’ modes are supported. The default mode
is ‘reduced’, in which matrix A = (..., M, N) is decomposed
into Q, R with dimensions (..., M, K), (..., K, N),
where K = min(M, N).

	Returns:

	Although the type of returned object depends on the mode,
it returns a tuple of (Q, R) by default.
For details, please see the document of numpy.linalg.qr() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr].

	Return type:

	cupy.ndarray, or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.qr() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr]

cupy.linalg.svd

	
cupy.linalg.svd(a, full_matrices=True, compute_uv=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_decomposition.py#L463]

	Singular Value Decomposition.

Factorizes the matrix a as u * np.diag(s) * v, where u and
v are unitary and s is an one-dimensional array of a’s
singular values.

	Parameters:

	
	a (cupy.ndarray) – The input matrix with dimension (..., M, N).

	full_matrices (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns u and v with dimensions
(..., M, M) and (..., N, N). Otherwise, the dimensions
of u and v are (..., M, K) and (..., K, N), respectively,
where K = min(M, N).

	compute_uv (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it only returns singular values.

	Returns:

	A tuple of (u, s, v) such that a = u * np.diag(s) * v.

	Return type:

	tuple of cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

Note

On CUDA, when a.ndim > 2 and the matrix dimensions <= 32, a fast
code path based on Jacobian method (gesvdj) is taken. Otherwise,
a QR method (gesvd) is used.

On ROCm, there is no such a fast code path that switches the underlying
algorithm.

See also

numpy.linalg.svd() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd]

cupy.linalg.eigh

	
cupy.linalg.eigh(a, UPLO='L')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_eigenvalue.py#L94]

	Return the eigenvalues and eigenvectors of a complex Hermitian
(conjugate symmetric) or a real symmetric matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and
a 2-D square array or matrix (depending on the input type) of the
corresponding eigenvectors (in columns).

	Parameters:

	
	a (cupy.ndarray) – A symmetric 2-D square matrix (M, M) or a batch
of symmetric 2-D square matrices (..., M, M).

	UPLO (str [https://docs.python.org/3/library/stdtypes.html#str]) – Select from 'L' or 'U'. It specifies which
part of a is used. 'L' uses the lower triangular part of
a, and 'U' uses the upper triangular part of a.

	Returns:

	Returns a tuple (w, v). w contains eigenvalues and
v contains eigenvectors. v[:, i] is an eigenvector
corresponding to an eigenvalue w[i]. For batch input,
v[k, :, i] is an eigenvector corresponding to an eigenvalue
w[k, i] of a[k].

	Return type:

	tuple of ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.eigh() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh]

cupy.linalg.eigvalsh

	
cupy.linalg.eigvalsh(a, UPLO='L')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_eigenvalue.py#L147]

	Compute the eigenvalues of a complex Hermitian or real symmetric matrix.

Main difference from eigh: the eigenvectors are not computed.

	Parameters:

	
	a (cupy.ndarray) – A symmetric 2-D square matrix (M, M) or a batch
of symmetric 2-D square matrices (..., M, M).

	UPLO (str [https://docs.python.org/3/library/stdtypes.html#str]) – Select from 'L' or 'U'. It specifies which
part of a is used. 'L' uses the lower triangular part of
a, and 'U' uses the upper triangular part of a.

	Returns:

	Returns eigenvalues as a vector w. For batch input,
w[k] is a vector of eigenvalues of matrix a[k].

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.eigvalsh() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh]

cupy.linalg.norm

	
cupy.linalg.norm(x, ord=None, axis=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_norms.py#L31]

	Returns one of matrix norms specified by ord parameter.

See numpy.linalg.norm for more detail.

	Parameters:

	
	x (cupy.ndarray) – Array to take norm. If axis is None,
x must be 1-D or 2-D.

	ord (non-zero int, inf, -inf, 'fro') – Norm type.

	axis (int [https://docs.python.org/3/library/functions.html#int], 2-tuple of ints, None) – 1-D or 2-D norm is cumputed over
axis.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is set True, the axes which are normed
over are left.

	Returns:

	cupy.ndarray

cupy.linalg.det

	
cupy.linalg.det(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_norms.py#L163]

	Returns the determinant of an array.

	Parameters:

	a (cupy.ndarray) – The input matrix with dimension (..., N, N).

	Returns:

	Determinant of a. Its shape is a.shape[:-2].

	Return type:

	cupy.ndarray

See also

numpy.linalg.det() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det]

cupy.linalg.matrix_rank

	
cupy.linalg.matrix_rank(M, tol=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_norms.py#L178]

	Return matrix rank of array using SVD method

	Parameters:

	
	M (cupy.ndarray) – Input array. Its ndim must be less than or equal to
2.

	tol (None or float [https://docs.python.org/3/library/functions.html#float]) – Threshold of singular value of M.
When tol is None, and eps is the epsilon value for datatype
of M, then tol is set to S.max() * max(M.shape) * eps,
where S is the singular value of M.
It obeys numpy.linalg.matrix_rank() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank].

	Returns:

	Rank of M.

	Return type:

	cupy.ndarray

See also

numpy.linalg.matrix_rank() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank]

cupy.linalg.slogdet

	
cupy.linalg.slogdet(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_norms.py#L204]

	Returns sign and logarithm of the determinant of an array.

It calculates the natural logarithm of the determinant of a given value.

	Parameters:

	a (cupy.ndarray) – The input matrix with dimension (..., N, N).

	Returns:

	It returns a tuple (sign, logdet). sign represents each
sign of the determinant as a real number 0, 1 or -1.
‘logdet’ represents the natural logarithm of the absolute of the
determinant.
If the determinant is zero, sign will be 0 and logdet
will be -inf.
The shapes of both sign and logdet are equal to
a.shape[:-2].

	Return type:

	tuple of ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

Warning

To produce the same results as numpy.linalg.slogdet() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet] for
singular inputs, set the linalg configuration to raise.

See also

numpy.linalg.slogdet() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet]

cupy.trace

	
cupy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_norms.py#L282]

	Returns the sum along the diagonals of an array.

It computes the sum along the diagonals at axis1 and axis2.

	Parameters:

	
	a (cupy.ndarray) – Array to take trace.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis along which the trace is taken.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis along which the trace is taken.

	dtype – Data type specifier of the output.

	out (cupy.ndarray) – Output array.

	Returns:

	The trace of a along axes (axis1, axis2).

	Return type:

	cupy.ndarray

See also

numpy.trace() [https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace]

cupy.linalg.solve

	
cupy.linalg.solve(a, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L14]

	Solves a linear matrix equation.

It computes the exact solution of x in ax = b,
where a is a square and full rank matrix.

	Parameters:

	
	a (cupy.ndarray) – The matrix with dimension (..., M, M).

	b (cupy.ndarray) – The matrix with dimension (..., M) or
(..., M, K).

	Returns:

	The matrix with dimension (..., M) or (..., M, K).

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.solve() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve]

cupy.linalg.tensorsolve

	
cupy.linalg.tensorsolve(a, b, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L84]

	Solves tensor equations denoted by ax = b.

Suppose that b is equivalent to cupy.tensordot(a, x).
This function computes tensor x from a and b.

	Parameters:

	
	a (cupy.ndarray) – The tensor with len(shape) >= 1

	b (cupy.ndarray) – The tensor with len(shape) >= 1

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes in a to reorder to the right
before inversion.

	Returns:

	The tensor with shape Q such that b.shape + Q == a.shape.

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.tensorsolve() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve]

cupy.linalg.lstsq

	
cupy.linalg.lstsq(a, b, rcond='warn')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L131]

	Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that
minimizes the Euclidean 2-norm || b - a x ||^2. The equation may
be under-, well-, or over- determined (i.e., the number of
linearly independent rows of a can be less than, equal to, or
greater than its number of linearly independent columns). If a
is square and of full rank, then x (but for round-off error) is
the “exact” solution of the equation.

	Parameters:

	
	a (cupy.ndarray) – “Coefficient” matrix with dimension (M, N)

	b (cupy.ndarray) – “Dependent variable” values with dimension (M,)
or (M, K)

	rcond (float [https://docs.python.org/3/library/functions.html#float]) – Cutoff parameter for small singular values.
For stability it computes the largest singular value denoted by
s, and sets all singular values smaller than s to zero.

	Returns:

	A tuple of (x, residuals, rank, s). Note x is the
least-squares solution with shape (N,) or (N, K) depending
if b was two-dimensional. The sums of residuals is the
squared Euclidean 2-norm for each column in b - a*x. The
residuals is an empty array if the rank of a is < N or M <= N,
but iff b is 1-dimensional, this is a (1,) shape array, Otherwise
the shape is (K,). The rank of matrix a is an integer. The
singular values of a are s.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.lstsq() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq]

cupy.linalg.inv

	
cupy.linalg.inv(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L222]

	Computes the inverse of a matrix.

This function computes matrix a_inv from n-dimensional regular matrix
a such that dot(a, a_inv) == eye(n).

	Parameters:

	a (cupy.ndarray) – The regular matrix

	Returns:

	The inverse of a matrix.

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.inv() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv]

cupy.linalg.pinv

	
cupy.linalg.pinv(a, rcond=1e-15)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L327]

	Compute the Moore-Penrose pseudoinverse of a matrix.

It computes a pseudoinverse of a matrix a, which is a generalization
of the inverse matrix with Singular Value Decomposition (SVD).
Note that it automatically removes small singular values for stability.

	Parameters:

	
	a (cupy.ndarray) – The matrix with dimension (..., M, N)

	rcond (float [https://docs.python.org/3/library/functions.html#float] or cupy.ndarray) – Cutoff parameter for small singular
values. For stability it computes the largest singular value
denoted by s, and sets all singular values smaller than
rcond * s to zero. Broadcasts against the stack of matrices.

	Returns:

	The pseudoinverse of a with dimension
(..., N, M).

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.pinv() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv]

cupy.linalg.tensorinv

	
cupy.linalg.tensorinv(a, ind=2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_solve.py#L373]

	Computes the inverse of a tensor.

This function computes tensor a_inv from tensor a such that
tensordot(a_inv, a, ind) == I, where I denotes the identity tensor.

	Parameters:

	
	a (cupy.ndarray) – The tensor such that
prod(a.shape[:ind]) == prod(a.shape[ind:]).

	ind (int [https://docs.python.org/3/library/functions.html#int]) – The positive number used in axes option of tensordot.

	Returns:

	The inverse of a tensor whose shape is equivalent to
a.shape[ind:] + a.shape[:ind].

	Return type:

	cupy.ndarray

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

numpy.linalg.tensorinv() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv]

Logic functions

Hint

NumPy API Reference: Logic functions [https://numpy.org/doc/stable/reference/routines.logic.html]

Truth value testing

	all(a[, axis, out, keepdims])

	Tests whether all array elements along a given axis evaluate to True.

	any(a[, axis, out, keepdims])

	Tests whether any array elements along a given axis evaluate to True.

	union1d(arr1, arr2)

	Find the union of two arrays.

Array contents

	isfinite(x, /[, out, casting, dtype])

	Tests finiteness elementwise.

	isinf(x, /[, out, casting, dtype])

	Tests if each element is the positive or negative infinity.

	isnan(x, /[, out, casting, dtype])

	Tests if each element is a NaN.

	isneginf(x[, out])

	Test element-wise for negative infinity, return result as bool array.

	isposinf(x[, out])

	Test element-wise for positive infinity, return result as bool array.

Array type testing

	iscomplex(x)

	Returns a bool array, where True if input element is complex.

	iscomplexobj(x)

	Check for a complex type or an array of complex numbers.

	isfortran(a)

	Returns True if the array is Fortran contiguous but not C contiguous.

	isreal(x)

	Returns a bool array, where True if input element is real.

	isrealobj(x)

	Return True if x is a not complex type or an array of complex numbers.

	isscalar(element)

	Returns True if the type of num is a scalar type.

Logic operations

	logical_and(x1, x2, /[, out, casting, dtype])

	Computes the logical AND of two arrays.

	logical_or(x1, x2, /[, out, casting, dtype])

	Computes the logical OR of two arrays.

	logical_not(x, /[, out, casting, dtype])

	Computes the logical NOT of an array.

	logical_xor(x1, x2, /[, out, casting, dtype])

	Computes the logical XOR of two arrays.

Comparison

	allclose(a, b[, rtol, atol, equal_nan])

	Returns True if two arrays are element-wise equal within a tolerance.

	isclose(a, b[, rtol, atol, equal_nan])

	Returns a boolean array where two arrays are equal within a tolerance.

	array_equal(a1, a2[, equal_nan])

	Returns True if two arrays are element-wise exactly equal.

	array_equiv(a1, a2)

	Returns True if all elements are equal or shape consistent, i.e., one input array can be broadcasted to create the same shape as the other.

	greater(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 > x2.

	greater_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 >= x2.

	less(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 < x2.

	less_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 <= x2.

	equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 == x2.

	not_equal(x1, x2, /[, out, casting, dtype])

	Tests elementwise if x1 != x2.

cupy.all

	
cupy.all(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L18]

	Tests whether all array elements along a given axis evaluate to True.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Along which axis to compute all.
The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of size one.

	Returns:

	y – An array reduced of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.all [https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all]

cupy.any

	
cupy.any(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L55]

	Tests whether any array elements along a given axis evaluate to True.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Along which axis to compute all.
The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of size one.

	Returns:

	y – An array reduced of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.any [https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any]

cupy.union1d

	
cupy.union1d(arr1, arr2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L297]

	Find the union of two arrays.

Returns the unique, sorted array of values that are in either of
the two input arrays.

	Parameters:

	
	arr1 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

	arr2 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

	Returns:

	union1d – Sorted union of the input arrays.

	Return type:

	cupy.ndarray

See also

numpy.union1d [https://numpy.org/doc/stable/reference/generated/numpy.union1d.html#numpy.union1d]

cupy.isfinite

	
cupy.isfinite(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests finiteness elementwise.

Each element of returned array is True only if the corresponding
element of the input is finite (i.e. not an infinity nor NaN).

See also

numpy.isfinite [https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite]

cupy.isinf

	
cupy.isinf(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests if each element is the positive or negative infinity.

See also

numpy.isinf [https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf]

cupy.isnan

	
cupy.isnan(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests if each element is a NaN.

See also

numpy.isnan [https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan]

cupy.isneginf

	
cupy.isneginf(x, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/content.py#L44]

	Test element-wise for negative infinity, return result as bool array.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	out (cupy.ndarray, optional) – A location into which the result is stored. If provided,
it should have a shape that input broadcasts to.
By default, None, a freshly- allocated boolean array,
is returned.

	Returns:

	y – Boolean array of same shape as x.

	Return type:

	cupy.ndarray

Examples

>>> cupy.isneginf(0)
array(False)
>>> cupy.isneginf(-cupy.inf)
array(True)
>>> cupy.isneginf(cupy.array([-cupy.inf, -4, cupy.nan, 0, 4, cupy.inf]))
array([True, False, False, False, False, False])

See also

numpy.isneginf [https://numpy.org/doc/stable/reference/generated/numpy.isneginf.html#numpy.isneginf]

cupy.isposinf

	
cupy.isposinf(x, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/content.py#L89]

	Test element-wise for positive infinity, return result as bool array.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	out (cupy.ndarray) – A location into which the result is stored. If provided,
it should have a shape that input broadcasts to.
By default, None, a freshly- allocated boolean array,
is returned.

	Returns:

	y – Boolean array of same shape as x.

	Return type:

	cupy.ndarray

Examples

>>> cupy.isposinf(0)
array(False)
>>> cupy.isposinf(cupy.inf)
array(True)
>>> cupy.isposinf(cupy.array([-cupy.inf, -4, cupy.nan, 0, 4, cupy.inf]))
array([False, False, False, False, False, True])

See also

numpy.isposinf [https://numpy.org/doc/stable/reference/generated/numpy.isposinf.html#numpy.isposinf]

cupy.iscomplex

	
cupy.iscomplex(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/type_testing.py#L6]

	Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if
the input type is complex.

	Parameters:

	x (cupy.ndarray) – Input array.

	Returns:

	Boolean array of the same shape as x.

	Return type:

	cupy.ndarray

See also

isreal(), iscomplexobj()

Examples

>>> cupy.iscomplex(cupy.array([1+1j, 1+0j, 4.5, 3, 2, 2j]))
array([True, False, False, False, False, True])

cupy.iscomplexobj

	
cupy.iscomplexobj(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/type_testing.py#L36]

	Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input
has an imaginary part equal to zero, iscomplexobj evaluates to True.

	Parameters:

	x (cupy.ndarray) – Input array.

	Returns:

	The return value, True if x is of a complex type or
has at least one complex element.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

isrealobj(), iscomplex()

Examples

>>> cupy.iscomplexobj(cupy.array([3, 1+0j, True]))
True
>>> cupy.iscomplexobj(cupy.array([3, 1, True]))
False

cupy.isfortran

	
cupy.isfortran(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/type_testing.py#L65]

	Returns True if the array is Fortran contiguous but not C contiguous.

If you only want to check if an array is Fortran contiguous use
a.flags.f_contiguous instead.

	Parameters:

	a (cupy.ndarray) – Input array.

	Returns:

	The return value, True if a is Fortran contiguous but not C
contiguous.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

isfortran() [https://numpy.org/doc/stable/reference/generated/numpy.isfortran.html#numpy.isfortran]

Examples

cupy.array allows to specify whether the array is written in C-contiguous
order (last index varies the fastest), or FORTRAN-contiguous order in
memory (first index varies the fastest).

>>> a = cupy.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
 [4, 5, 6]])
>>> cupy.isfortran(a)
False

>>> b = cupy.array([[1, 2, 3], [4, 5, 6]], order='F')
>>> b
array([[1, 2, 3],
 [4, 5, 6]])
>>> cupy.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

>>> a = cupy.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
 [4, 5, 6]])
>>> cupy.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> cupy.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> cupy.isfortran(np.array([1, 2], order='F'))
False

cupy.isreal

	
cupy.isreal(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/type_testing.py#L127]

	Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value
for that element is True.

	Parameters:

	x (cupy.ndarray) – Input array.

	Returns:

	Boolean array of same shape as x.

	Return type:

	cupy.ndarray

See also

iscomplex(), isrealobj()

Examples

>>> cupy.isreal(cp.array([1+1j, 1+0j, 4.5, 3, 2, 2j]))
array([False, True, True, True, True, False])

cupy.isrealobj

	
cupy.isrealobj(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/type_testing.py#L157]

	Return True if x is a not complex type or an array of complex numbers.

The type of the input is checked, not the value. So even if the input
has an imaginary part equal to zero, isrealobj evaluates to False
if the data type is complex.

	Parameters:

	x (cupy.ndarray) – The input can be of any type and shape.

	Returns:

	The return value, False if x is of a complex type.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

iscomplexobj(), isreal()

Examples

>>> cupy.isrealobj(cupy.array([3, 1+0j, True]))
False
>>> cupy.isrealobj(cupy.array([3, 1, True]))
True

cupy.isscalar

	
cupy.isscalar(element)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L510]

	Returns True if the type of num is a scalar type.

See also

numpy.isscalar() [https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html#numpy.isscalar]

cupy.logical_and

	
cupy.logical_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical AND of two arrays.

See also

numpy.logical_and [https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and]

cupy.logical_or

	
cupy.logical_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical OR of two arrays.

See also

numpy.logical_or [https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or]

cupy.logical_not

	
cupy.logical_not(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical NOT of an array.

See also

numpy.logical_not [https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not]

cupy.logical_xor

	
cupy.logical_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the logical XOR of two arrays.

See also

numpy.logical_xor [https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor]

cupy.allclose

	
cupy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/comparison.py#L71]

	Returns True if two arrays are element-wise equal within a tolerance.

Two values in a and b are considiered equal when the following
equation is satisfied.

\[|a - b| \le \mathrm{atol} + \mathrm{rtol} |b|\]

	Parameters:

	
	a (cupy.ndarray) – Input array to compare.

	b (cupy.ndarray) – Input array to compare.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – The relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – The absolute tolerance.

	equal_nan (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, NaN’s in a will be considered equal
to NaN’s in b.

	Returns:

	A boolean 0-dim array.
If its value is True, two arrays are element-wise equal within
a tolerance.

	Return type:

	cupy.ndarray

See also

numpy.allclose() [https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose]

cupy.isclose

	
cupy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/comparison.py#L100]

	Returns a boolean array where two arrays are equal within a tolerance.

Two values in a and b are considiered equal when the following
equation is satisfied.

\[|a - b| \le \mathrm{atol} + \mathrm{rtol} |b|\]

	Parameters:

	
	a (cupy.ndarray) – Input array to compare.

	b (cupy.ndarray) – Input array to compare.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – The relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – The absolute tolerance.

	equal_nan (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, NaN’s in a will be considered equal
to NaN’s in b.

	Returns:

	A boolean array storing where a and b are equal.

	Return type:

	cupy.ndarray

See also

numpy.isclose() [https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose]

cupy.array_equal

	
cupy.array_equal(a1, a2, equal_nan=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/comparison.py#L42]

	Returns True if two arrays are element-wise exactly equal.

	Parameters:

	
	a1 (cupy.ndarray) – Input array to compare.

	a2 (cupy.ndarray) – Input array to compare.

	equal_nan (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, NaN’s in a1 will be considered equal
to NaN’s in a2.

	Returns:

	A boolean 0-dim array.
If its value is True, two arrays are element-wise equal.

	Return type:

	cupy.ndarray

See also

numpy.array_equal() [https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal]

cupy.array_equiv

	
cupy.array_equiv(a1, a2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/comparison.py#L133]

	Returns True if all elements are equal or shape consistent,
i.e., one input array can be broadcasted to create the same
shape as the other.

	Parameters:

	
	a1 (cupy.ndarray) – Input array.

	a2 (cupy.ndarray) – Input array.

	Returns:

	
	A boolean 0-dim array.
	True if equivalent, otherwise False.

	Return type:

	cupy.ndarray

See also

numpy.array_equiv() [https://numpy.org/doc/stable/reference/generated/numpy.array_equiv.html#numpy.array_equiv]

cupy.greater

	
cupy.greater(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 > x2.

See also

numpy.greater [https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater]

cupy.greater_equal

	
cupy.greater_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 >= x2.

See also

numpy.greater_equal [https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal]

cupy.less

	
cupy.less(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 < x2.

See also

numpy.less [https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less]

cupy.less_equal

	
cupy.less_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 <= x2.

See also

numpy.less_equal [https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal]

cupy.equal

	
cupy.equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 == x2.

See also

numpy.equal [https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal]

cupy.not_equal

	
cupy.not_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if x1 != x2.

See also

numpy.equal [https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal]

Mathematical functions

Hint

NumPy API Reference: Mathematical functions [https://numpy.org/doc/stable/reference/routines.math.html]

Trigonometric functions

	sin(x, /[, out, casting, dtype])

	Elementwise sine function.

	cos(x, /[, out, casting, dtype])

	Elementwise cosine function.

	tan(x, /[, out, casting, dtype])

	Elementwise tangent function.

	arcsin(x, /[, out, casting, dtype])

	Elementwise inverse-sine function (a.k.a.

	arccos(x, /[, out, casting, dtype])

	Elementwise inverse-cosine function (a.k.a.

	arctan(x, /[, out, casting, dtype])

	Elementwise inverse-tangent function (a.k.a.

	hypot(x1, x2, /[, out, casting, dtype])

	Computes the hypoteneous of orthogonal vectors of given length.

	arctan2(x1, x2, /[, out, casting, dtype])

	Elementwise inverse-tangent of the ratio of two arrays.

	degrees

	rad2deg(x, /, out=None, *, casting='same_kind', dtype=None)

	radians(x, /[, out, casting, dtype])

	Converts angles from degrees to radians elementwise.

	unwrap(p[, discont, axis, period])

	Unwrap by taking the complement of large deltas w.r.t.

	deg2rad

	radians(x, /, out=None, *, casting='same_kind', dtype=None)

	rad2deg(x, /[, out, casting, dtype])

	Converts angles from radians to degrees elementwise.

Hyperbolic functions

	sinh(x, /[, out, casting, dtype])

	Elementwise hyperbolic sine function.

	cosh(x, /[, out, casting, dtype])

	Elementwise hyperbolic cosine function.

	tanh(x, /[, out, casting, dtype])

	Elementwise hyperbolic tangent function.

	arcsinh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic sine function.

	arccosh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic cosine function.

	arctanh(x, /[, out, casting, dtype])

	Elementwise inverse of hyperbolic tangent function.

Rounding

	around(a[, decimals, out])

	Rounds to the given number of decimals.

	round_(a[, decimals, out])

	

	rint(x, /[, out, casting, dtype])

	Rounds each element of an array to the nearest integer.

	fix(x, /[, out, casting, dtype])

	If given value x is positive, it return floor(x).

	floor(x, /[, out, casting, dtype])

	Rounds each element of an array to its floor integer.

	ceil(x, /[, out, casting, dtype])

	Rounds each element of an array to its ceiling integer.

	trunc(x, /[, out, casting, dtype])

	Rounds each element of an array towards zero.

Sums, products, differences

	prod(a[, axis, dtype, out, keepdims])

	Returns the product of an array along given axes.

	sum(a[, axis, dtype, out, keepdims])

	Returns the sum of an array along given axes.

	nanprod(a[, axis, dtype, out, keepdims])

	Returns the product of an array along given axes treating Not a Numbers (NaNs) as zero.

	nansum(a[, axis, dtype, out, keepdims])

	Returns the sum of an array along given axes treating Not a Numbers (NaNs) as zero.

	cumprod(a[, axis, dtype, out])

	Returns the cumulative product of an array along a given axis.

	cumsum(a[, axis, dtype, out])

	Returns the cumulative sum of an array along a given axis.

	nancumprod(a[, axis, dtype, out])

	Returns the cumulative product of an array along a given axis treating Not a Numbers (NaNs) as one.

	nancumsum(a[, axis, dtype, out])

	Returns the cumulative sum of an array along a given axis treating Not a Numbers (NaNs) as zero.

	diff(a[, n, axis, prepend, append])

	Calculate the n-th discrete difference along the given axis.

	gradient(f, *varargs[, axis, edge_order])

	Return the gradient of an N-dimensional array.

	ediff1d(arr[, to_end, to_begin])

	Calculates the difference between consecutive elements of an array.

	cross(a, b[, axisa, axisb, axisc, axis])

	Returns the cross product of two vectors.

	trapz(y[, x, dx, axis])

	Integrate along the given axis using the composite trapezoidal rule.

Exponents and logarithms

	exp(x, /[, out, casting, dtype])

	Elementwise exponential function.

	expm1(x, /[, out, casting, dtype])

	Computes exp(x) - 1 elementwise.

	exp2(x, /[, out, casting, dtype])

	Elementwise exponentiation with base 2.

	log(x, /[, out, casting, dtype])

	Elementwise natural logarithm function.

	log10(x, /[, out, casting, dtype])

	Elementwise common logarithm function.

	log2(x, /[, out, casting, dtype])

	Elementwise binary logarithm function.

	log1p(x, /[, out, casting, dtype])

	Computes log(1 + x) elementwise.

	logaddexp(x1, x2, /[, out, casting, dtype])

	Computes log(exp(x1) + exp(x2)) elementwise.

	logaddexp2(x1, x2, /[, out, casting, dtype])

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

Other special functions

	i0(x, /[, out, casting, dtype])

	Modified Bessel function of the first kind, order 0.

	sinc(x, /[, out, casting, dtype])

	Elementwise sinc function.

Floating point routines

	signbit(x, /[, out, casting, dtype])

	Tests elementwise if the sign bit is set (i.e.

	copysign(x1, x2, /[, out, casting, dtype])

	Returns the first argument with the sign bit of the second elementwise.

	frexp(x[, out1, out2], / [[, out, casting, ...])

	Decomposes each element to mantissa and two's exponent.

	ldexp(x1, x2, /[, out, casting, dtype])

	Computes x1 * 2 ** x2 elementwise.

	nextafter(x1, x2, /[, out, casting, dtype])

	Computes the nearest neighbor float values towards the second argument.

Rational routines

	lcm(x1, x2, /[, out, casting, dtype])

	Computes lcm of x1 and x2 elementwise.

	gcd(x1, x2, /[, out, casting, dtype])

	Computes gcd of x1 and x2 elementwise.

Arithmetic operations

	add(x1, x2, /[, out, casting, dtype])

	Adds two arrays elementwise.

	reciprocal(x, /[, out, casting, dtype])

	Computes 1 / x elementwise.

	positive(x, /[, out, casting, dtype])

	Takes numerical positive elementwise.

	negative(x, /[, out, casting, dtype])

	Takes numerical negative elementwise.

	multiply(x1, x2, /[, out, casting, dtype])

	Multiplies two arrays elementwise.

	divide

	true_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	power(x1, x2, /[, out, casting, dtype])

	Computes x1 ** x2 elementwise.

	subtract(x1, x2, /[, out, casting, dtype])

	Subtracts arguments elementwise.

	true_divide(x1, x2, /[, out, casting, dtype])

	Elementwise true division (i.e.

	floor_divide(x1, x2, /[, out, casting, dtype])

	Elementwise floor division (i.e.

	float_power(x1, x2, /[, out, casting, dtype])

	First array elements raised to powers from second array, element-wise.

	fmod(x1, x2, /[, out, casting, dtype])

	Computes the remainder of C division elementwise.

	mod(x1, x2, /[, out, casting, dtype])

	Computes the remainder of Python division elementwise.

	modf(x[, out1, out2], / [[, out, casting, dtype])

	Extracts the fractional and integral parts of an array elementwise.

	remainder

	mod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	divmod(x1, x2[, out1, out2], / [[, out, ...])

	

Handling complex numbers

	angle(z[, deg])

	Returns the angle of the complex argument.

	real(val)

	Returns the real part of the elements of the array.

	imag(val)

	Returns the imaginary part of the elements of the array.

	conj

	conjugate(x, /, out=None, *, casting='same_kind', dtype=None)

	conjugate(x, /[, out, casting, dtype])

	Returns the complex conjugate, element-wise.

Miscellaneous

	convolve(a, v[, mode])

	Returns the discrete, linear convolution of two one-dimensional sequences.

	clip(a, a_min, a_max[, out])

	Clips the values of an array to a given interval.

	sqrt(x, /[, out, casting, dtype])

	Elementwise square root function.

	cbrt(x, /[, out, casting, dtype])

	Elementwise cube root function.

	square(x, /[, out, casting, dtype])

	Elementwise square function.

	absolute(x, /[, out, casting, dtype])

	Elementwise absolute value function.

	fabs(x, /[, out, casting, dtype])

	Calculates absolute values element-wise.

	sign(x, /[, out, casting, dtype])

	Elementwise sign function.

	maximum(x1, x2, /[, out, casting, dtype])

	Takes the maximum of two arrays elementwise.

	minimum(x1, x2, /[, out, casting, dtype])

	Takes the minimum of two arrays elementwise.

	fmax(x1, x2, /[, out, casting, dtype])

	Takes the maximum of two arrays elementwise.

	fmin(x1, x2, /[, out, casting, dtype])

	Takes the minimum of two arrays elementwise.

	nan_to_num(x[, copy, nan, posinf, neginf])

	Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the nan, posinf and/or neginf keywords.

	heaviside(x1, x2, /[, out, casting, dtype])

	Compute the Heaviside step function.

	real_if_close(a[, tol])

	If input is complex with all imaginary parts close to zero, return real parts.

	interp(x, xp, fp[, left, right, period])

	One-dimensional linear interpolation.

cupy.sin

	
cupy.sin(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sine function.

See also

numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin]

cupy.cos

	
cupy.cos(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise cosine function.

See also

numpy.cos [https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos]

cupy.tan

	
cupy.tan(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise tangent function.

See also

numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan]

cupy.arcsin

	
cupy.arcsin(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-sine function (a.k.a. arcsine function).

See also

numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin]

cupy.arccos

	
cupy.arccos(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-cosine function (a.k.a. arccosine function).

See also

numpy.arccos [https://numpy.org/doc/stable/reference/generated/numpy.arccos.html#numpy.arccos]

cupy.arctan

	
cupy.arctan(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-tangent function (a.k.a. arctangent function).

See also

numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan]

cupy.hypot

	
cupy.hypot(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is
more efficient.

See also

numpy.hypot [https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot]

cupy.arctan2

	
cupy.arctan2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse-tangent of the ratio of two arrays.

See also

numpy.arctan2 [https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html#numpy.arctan2]

cupy.degrees

	
cupy.degrees()

	rad2deg(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.radians

	
cupy.radians(x, /, out=None, *, casting='same_kind', dtype=None)

	Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians]

cupy.unwrap

	
cupy.unwrap(p, discont=None, axis=-1, *, period=6.283185307179586)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/trigonometric.py#L106]

	Unwrap by taking the complement of large deltas w.r.t. the period.

This unwraps a signal p by changing elements which have an absolute
difference from their predecessor of more than max(discont, period/2)
to their period-complementary values.

For the default case where period is \(2\pi\) and is discont
is \(\pi\), this unwraps a radian phase p such that adjacent
differences are never greater than \(\pi\) by adding \(2k\pi\)
for some integer \(k\).

	Parameters:

	
	p (cupy.ndarray) – Input array.
discont (float): Maximum discontinuity between values, default is
period/2. Values below period/2 are treated as if they were
period/2. To have an effect different from the default,
discont should be larger than period/2.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which unwrap will operate, default is the last
axis.

	period – float, optional
Size of the range over which the input wraps. By default, it is
\(2\pi\).

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.unwrap() [https://numpy.org/doc/stable/reference/generated/numpy.unwrap.html#numpy.unwrap]

cupy.deg2rad

	
cupy.deg2rad()

	radians(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians]

cupy.rad2deg

	
cupy.rad2deg(x, /, out=None, *, casting='same_kind', dtype=None)

	Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.sinh

	
cupy.sinh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic sine function.

See also

numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh]

cupy.cosh

	
cupy.cosh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic cosine function.

See also

numpy.cosh [https://numpy.org/doc/stable/reference/generated/numpy.cosh.html#numpy.cosh]

cupy.tanh

	
cupy.tanh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise hyperbolic tangent function.

See also

numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh]

cupy.arcsinh

	
cupy.arcsinh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic sine function.

See also

numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh]

cupy.arccosh

	
cupy.arccosh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic cosine function.

See also

numpy.arccosh [https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html#numpy.arccosh]

cupy.arctanh

	
cupy.arctanh(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise inverse of hyperbolic tangent function.

See also

numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh]

cupy.around

	
cupy.around(a, decimals=0, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/rounding.py#L8]

	Rounds to the given number of decimals.

	Parameters:

	
	a (cupy.ndarray) – The source array.

	decimals (int [https://docs.python.org/3/library/functions.html#int]) – Number of decimal places to round to (default: 0).
If decimals is negative, it specifies the number of positions to
the left of the decimal point.

	out (cupy.ndarray) – Output array.

	Returns:

	Rounded array.

	Return type:

	cupy.ndarray

See also

numpy.around() [https://numpy.org/doc/stable/reference/generated/numpy.around.html#numpy.around]

cupy.round_

	
cupy.round_(a, decimals=0, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/rounding.py#L35]

	

cupy.rint

	
cupy.rint(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to the nearest integer.

See also

numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint]

cupy.fix

	
cupy.fix(x, /, out=None, *, casting='same_kind', dtype=None)

	
	If given value x is positive, it return floor(x).
	Else, it return ceil(x).

See also

numpy.fix() [https://numpy.org/doc/stable/reference/generated/numpy.fix.html#numpy.fix]

cupy.floor

	
cupy.floor(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to its floor integer.

See also

numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor]

cupy.ceil

	
cupy.ceil(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array to its ceiling integer.

See also

numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil]

cupy.trunc

	
cupy.trunc(x, /, out=None, *, casting='same_kind', dtype=None)

	Rounds each element of an array towards zero.

See also

numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc]

cupy.prod

	
cupy.prod(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L43]

	Returns the product of an array along given axes.

	Parameters:

	
	a (cupy.ndarray) – Array to take product.

	axis (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Axes along which the product is taken.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.prod() [https://numpy.org/doc/stable/reference/generated/numpy.prod.html#numpy.prod]

cupy.sum

	
cupy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L11]

	Returns the sum of an array along given axes.

	Parameters:

	
	a (cupy.ndarray) – Array to take sum.

	axis (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Axes along which the sum is taken.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.sum() [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum]

cupy.nanprod

	
cupy.nanprod(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L110]

	Returns the product of an array along given axes treating Not a Numbers
(NaNs) as zero.

	Parameters:

	
	a (cupy.ndarray) – Array to take product.

	axis (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Axes along which the product is taken.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.nanprod() [https://numpy.org/doc/stable/reference/generated/numpy.nanprod.html#numpy.nanprod]

cupy.nansum

	
cupy.nansum(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L75]

	Returns the sum of an array along given axes treating Not a Numbers
(NaNs) as zero.

	Parameters:

	
	a (cupy.ndarray) – Array to take sum.

	axis (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Axes along which the sum is taken.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.nansum() [https://numpy.org/doc/stable/reference/generated/numpy.nansum.html#numpy.nansum]

cupy.cumprod

	
cupy.cumprod(a, axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L162]

	Returns the cumulative product of an array along a given axis.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the cumulative product is taken. If it is
not specified, the input is flattened.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.cumprod() [https://numpy.org/doc/stable/reference/generated/numpy.cumprod.html#numpy.cumprod]

cupy.cumsum

	
cupy.cumsum(a, axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L143]

	Returns the cumulative sum of an array along a given axis.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the cumulative sum is taken. If it is not
specified, the input is flattened.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.cumsum() [https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum]

cupy.nancumprod

	
cupy.nancumprod(a, axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L201]

	Returns the cumulative product of an array along a given axis treating
Not a Numbers (NaNs) as one.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the cumulative product is taken. If it is
not specified, the input is flattened.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.nancumprod() [https://numpy.org/doc/stable/reference/generated/numpy.nancumprod.html#numpy.nancumprod]

cupy.nancumsum

	
cupy.nancumsum(a, axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L181]

	Returns the cumulative sum of an array along a given axis treating Not a
Numbers (NaNs) as zero.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the cumulative sum is taken. If it is not
specified, the input is flattened.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.nancumsum() [https://numpy.org/doc/stable/reference/generated/numpy.nancumsum.html#numpy.nancumsum]

cupy.diff

	
cupy.diff(a, n=1, axis=-1, prepend=None, append=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L233]

	Calculate the n-th discrete difference along the given axis.

	Parameters:

	
	a (cupy.ndarray) – Input array.

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of times values are differenced. If zero, the input
is returned as-is.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which the difference is taken, default is
the last axis.

	prepend (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], cupy.ndarray) – Value to prepend to a.

	append (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], cupy.ndarray) – Value to append to a.

	Returns:

	The result array.

	Return type:

	cupy.ndarray

See also

numpy.diff() [https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff]

cupy.gradient

	
cupy.gradient(f, *varargs, axis=None, edge_order=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L298]

	Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences
in the interior points and either first or second order accurate one-sides
(forward or backwards) differences at the boundaries.
The returned gradient hence has the same shape as the input array.

	Parameters:

	
	f (cupy.ndarray) – An N-dimensional array containing samples of a scalar
function.

	varargs (list [https://docs.python.org/3/library/stdtypes.html#list] of scalar or array, optional) – Spacing between f values.
Default unitary spacing for all dimensions. Spacing can be
specified using:

	single scalar to specify a sample distance for all dimensions.

	N scalars to specify a constant sample distance for each
dimension. i.e. dx, dy, dz, …

	N arrays to specify the coordinates of the values along each
dimension of F. The length of the array must match the size of
the corresponding dimension

	Any combination of N scalars/arrays with the meaning of 2. and
3.

If axis is given, the number of varargs must equal the number of
axes. Default: 1.

	edge_order ({1, 2}, optional) – The gradient is calculated using N-th
order accurate differences at the boundaries. Default: 1.

	axis (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – The gradient is
calculated only along the given axis or axes. The default
(axis = None) is to calculate the gradient for all the axes of the
input array. axis may be negative, in which case it counts from the
last to the first axis.

	Returns:

	A set of ndarrays
(or a single ndarray if there is only one dimension) corresponding
to the derivatives of f with respect to each dimension. Each
derivative has the same shape as f.

	Return type:

	gradient (cupy.ndarray or list [https://docs.python.org/3/library/stdtypes.html#list] of cupy.ndarray)

See also

numpy.gradient() [https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient]

cupy.ediff1d

	
cupy.ediff1d(arr, to_end=None, to_begin=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L512]

	Calculates the difference between consecutive elements of an array.

	Parameters:

	
	arr (cupy.ndarray) – Input array.

	to_end (cupy.ndarray, optional) – Numbers to append at the end
of the returend differences.

	to_begin (cupy.ndarray, optional) – Numbers to prepend at the
beginning of the returned differences.

	Returns:

	New array consisting differences among succeeding
elements.

	Return type:

	cupy.ndarray

See also

numpy.ediff1d() [https://numpy.org/doc/stable/reference/generated/numpy.ediff1d.html#numpy.ediff1d]

cupy.cross

	
cupy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/linalg/_product.py#L90]

	Returns the cross product of two vectors.

The cross product of a and b in \(R^3\) is a vector
perpendicular to both a and b. If a and b are arrays
of vectors, the vectors are defined by the last axis of a and b
by default, and these axes can have dimensions 2 or 3. Where the
dimension of either a or b is 2, the third component of the input
vector is assumed to be zero and the cross product calculated accordingly.
In cases where both input vectors have dimension 2, the z-component of
the cross product is returned.

	Parameters:

	
	a (cupy.ndarray) – Components of the first vector(s).

	b (cupy.ndarray) – Components of the second vector(s).

	axisa (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis of a that defines the vector(s).
By default, the last axis.

	axisb (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis of b that defines the vector(s).
By default, the last axis.

	axisc (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis of c containing the cross product vector(s). Ignored if
both input vectors have dimension 2, as the return is scalar.
By default, the last axis.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – If defined, the axis of a, b and c
that defines the vector(s) and cross product(s).
Overrides axisa, axisb and axisc.

	Returns:

	Vector cross product(s).

	Return type:

	cupy.ndarray

See also

numpy.cross() [https://numpy.org/doc/stable/reference/generated/numpy.cross.html#numpy.cross]

cupy.trapz

	
cupy.trapz(y, x=None, dx=1.0, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/sumprod.py#L582]

	Integrate along the given axis using the composite trapezoidal rule.
Integrate y (x) along the given axis.

	Parameters:

	
	y (cupy.ndarray) – Input array to integrate.

	x (cupy.ndarray) – Sample points over which to integrate. If None equal
spacing dx is assumed.

	dx (float [https://docs.python.org/3/library/functions.html#float]) – Spacing between sample points, used if x is None, default
is 1.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which the integral is taken, default is
the last axis.

	Returns:

	Definite integral as approximated by the trapezoidal
rule.

	Return type:

	cupy.ndarray

See also

numpy.trapz() [https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#numpy.trapz]

cupy.exp

	
cupy.exp(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise exponential function.

See also

numpy.exp [https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp]

cupy.expm1

	
cupy.expm1(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes exp(x) - 1 elementwise.

See also

numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1]

cupy.exp2

	
cupy.exp2(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise exponentiation with base 2.

See also

numpy.exp2 [https://numpy.org/doc/stable/reference/generated/numpy.exp2.html#numpy.exp2]

cupy.log

	
cupy.log(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise natural logarithm function.

See also

numpy.log [https://numpy.org/doc/stable/reference/generated/numpy.log.html#numpy.log]

cupy.log10

	
cupy.log10(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise common logarithm function.

See also

numpy.log10 [https://numpy.org/doc/stable/reference/generated/numpy.log10.html#numpy.log10]

cupy.log2

	
cupy.log2(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise binary logarithm function.

See also

numpy.log2 [https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2]

cupy.log1p

	
cupy.log1p(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes log(1 + x) elementwise.

See also

numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p]

cupy.logaddexp

	
cupy.logaddexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes log(exp(x1) + exp(x2)) elementwise.

See also

numpy.logaddexp [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html#numpy.logaddexp]

cupy.logaddexp2

	
cupy.logaddexp2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also

numpy.logaddexp2 [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]

cupy.i0

	
cupy.i0(x, /, out=None, *, casting='same_kind', dtype=None)

	Modified Bessel function of the first kind, order 0.

See also

numpy.i0() [https://numpy.org/doc/stable/reference/generated/numpy.i0.html#numpy.i0]

cupy.sinc

	
cupy.sinc(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sinc function.

See also

numpy.sinc() [https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc]

cupy.signbit

	
cupy.signbit(x, /, out=None, *, casting='same_kind', dtype=None)

	Tests elementwise if the sign bit is set (i.e. less than zero).

See also

numpy.signbit [https://numpy.org/doc/stable/reference/generated/numpy.signbit.html#numpy.signbit]

cupy.copysign

	
cupy.copysign(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Returns the first argument with the sign bit of the second elementwise.

See also

numpy.copysign [https://numpy.org/doc/stable/reference/generated/numpy.copysign.html#numpy.copysign]

cupy.frexp

	
cupy.frexp(x, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also

numpy.frexp [https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp]

cupy.ldexp

	
cupy.ldexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes x1 * 2 ** x2 elementwise.

See also

numpy.ldexp [https://numpy.org/doc/stable/reference/generated/numpy.ldexp.html#numpy.ldexp]

cupy.nextafter

	
cupy.nextafter(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the nearest neighbor float values towards the second argument.

Note

For values that are close to zero (or denormal numbers),
results of cupy.nextafter() may be different from those of
numpy.nextafter(), because CuPy sets -ftz=true.

See also

numpy.nextafter [https://numpy.org/doc/stable/reference/generated/numpy.nextafter.html#numpy.nextafter]

cupy.lcm

	
cupy.lcm(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes lcm of x1 and x2 elementwise.

See also

numpy.lcm [https://numpy.org/doc/stable/reference/generated/numpy.lcm.html#numpy.lcm]

cupy.gcd

	
cupy.gcd(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes gcd of x1 and x2 elementwise.

See also

numpy.gcd [https://numpy.org/doc/stable/reference/generated/numpy.gcd.html#numpy.gcd]

cupy.add

	
cupy.add(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Adds two arrays elementwise.

See also

numpy.add [https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add]

cupy.reciprocal

	
cupy.reciprocal(x, /, out=None, *, casting='same_kind', dtype=None)

	Computes 1 / x elementwise.

See also

numpy.reciprocal [https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html#numpy.reciprocal]

cupy.positive

	
cupy.positive(x, /, out=None, *, casting='same_kind', dtype=None)

	Takes numerical positive elementwise.

See also

numpy.positive [https://numpy.org/doc/stable/reference/generated/numpy.positive.html#numpy.positive]

cupy.negative

	
cupy.negative(x, /, out=None, *, casting='same_kind', dtype=None)

	Takes numerical negative elementwise.

See also

numpy.negative [https://numpy.org/doc/stable/reference/generated/numpy.negative.html#numpy.negative]

cupy.multiply

	
cupy.multiply(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Multiplies two arrays elementwise.

See also

numpy.multiply [https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply]

cupy.divide

	
cupy.divide()

	true_divide(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.power

	
cupy.power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes x1 ** x2 elementwise.

See also

numpy.power [https://numpy.org/doc/stable/reference/generated/numpy.power.html#numpy.power]

cupy.subtract

	
cupy.subtract(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Subtracts arguments elementwise.

See also

numpy.subtract [https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract]

cupy.true_divide

	
cupy.true_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.floor_divide

	
cupy.floor_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise floor division (i.e. integer quotient).

See also

numpy.floor_divide [https://numpy.org/doc/stable/reference/generated/numpy.floor_divide.html#numpy.floor_divide]

cupy.float_power

	
cupy.float_power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	First array elements raised to powers from second array, element-wise.

See also

numpy.float_power [https://numpy.org/doc/stable/reference/generated/numpy.float_power.html#numpy.float_power]

cupy.fmod

	
cupy.fmod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.mod

	
cupy.mod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.modf

	
cupy.modf(x, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also

numpy.modf [https://numpy.org/doc/stable/reference/generated/numpy.modf.html#numpy.modf]

cupy.remainder

	
cupy.remainder()

	mod(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.divmod

	
cupy.divmod(x1, x2, [out1, out2,]/, [out=(None, None),]*, casting='same_kind', dtype=None)

	

cupy.angle

	
cupy.angle(z, deg=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/arithmetic.py#L65]

	Returns the angle of the complex argument.

See also

numpy.angle() [https://numpy.org/doc/stable/reference/generated/numpy.angle.html#numpy.angle]

cupy.real

	
cupy.real(val)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/arithmetic.py#L76]

	Returns the real part of the elements of the array.

See also

numpy.real() [https://numpy.org/doc/stable/reference/generated/numpy.real.html#numpy.real]

cupy.imag

	
cupy.imag(val)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/arithmetic.py#L89]

	Returns the imaginary part of the elements of the array.

See also

numpy.imag() [https://numpy.org/doc/stable/reference/generated/numpy.imag.html#numpy.imag]

cupy.conj

	
cupy.conj()

	conjugate(x, /, out=None, *, casting=’same_kind’, dtype=None)

Returns the complex conjugate, element-wise.

See also

numpy.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate]

cupy.conjugate

	
cupy.conjugate(x, /, out=None, *, casting='same_kind', dtype=None)

	Returns the complex conjugate, element-wise.

See also

numpy.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate]

cupy.convolve

	
cupy.convolve(a, v, mode='full')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/misc.py#L45]

	Returns the discrete, linear convolution of two one-dimensional sequences.

	Parameters:

	
	a (cupy.ndarray) – first 1-dimensional input.

	v (cupy.ndarray) – second 1-dimensional input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – valid, same, full

	Returns:

	Discrete, linear convolution of a and v.

	Return type:

	cupy.ndarray

See also

numpy.convolve() [https://numpy.org/doc/stable/reference/generated/numpy.convolve.html#numpy.convolve]

cupy.clip

	
cupy.clip(a, a_min, a_max, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/misc.py#L147]

	Clips the values of an array to a given interval.

This is equivalent to maximum(minimum(a, a_max), a_min), while this
function is more efficient.

	Parameters:

	
	a (cupy.ndarray) – The source array.

	a_min (scalar, cupy.ndarray or None) – The left side of the interval.
When it is None, it is ignored.

	a_max (scalar, cupy.ndarray or None) – The right side of the interval.
When it is None, it is ignored.

	out (cupy.ndarray) – Output array.

	Returns:

	Clipped array.

	Return type:

	cupy.ndarray

See also

numpy.clip() [https://numpy.org/doc/stable/reference/generated/numpy.clip.html#numpy.clip]

Notes

When a_min is greater than a_max, clip returns an
array in which all values are equal to a_max.

cupy.sqrt

	
cupy.sqrt(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise square root function.

See also

numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt]

cupy.cbrt

	
cupy.cbrt(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise cube root function.

See also

numpy.cbrt [https://numpy.org/doc/stable/reference/generated/numpy.cbrt.html#numpy.cbrt]

cupy.square

	
cupy.square(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise square function.

See also

numpy.square [https://numpy.org/doc/stable/reference/generated/numpy.square.html#numpy.square]

cupy.absolute

	
cupy.absolute(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise absolute value function.

See also

numpy.absolute [https://numpy.org/doc/stable/reference/generated/numpy.absolute.html#numpy.absolute]

cupy.fabs

	
cupy.fabs(x, /, out=None, *, casting='same_kind', dtype=None)

	
	Calculates absolute values element-wise.
	Only real values are handled.

See also

numpy.fabs [https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs]

cupy.sign

	
cupy.sign(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also

numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign]

cupy.maximum

	
cupy.maximum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.maximum [https://numpy.org/doc/stable/reference/generated/numpy.maximum.html#numpy.maximum]

cupy.minimum

	
cupy.minimum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.minimum [https://numpy.org/doc/stable/reference/generated/numpy.minimum.html#numpy.minimum]

cupy.fmax

	
cupy.fmax(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmax [https://numpy.org/doc/stable/reference/generated/numpy.fmax.html#numpy.fmax]

cupy.fmin

	
cupy.fmin(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmin [https://numpy.org/doc/stable/reference/generated/numpy.fmin.html#numpy.fmin]

cupy.nan_to_num

	
cupy.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/misc.py#L409]

	Replace NaN with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the nan,
posinf and/or neginf keywords.

See also

numpy.nan_to_num() [https://numpy.org/doc/stable/reference/generated/numpy.nan_to_num.html#numpy.nan_to_num]

cupy.heaviside

	
cupy.heaviside(x1, x2, /, out=None, *, casting='same_kind', dtype=None)

	Compute the Heaviside step function.

See also

numpy.heaviside [https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html#numpy.heaviside]

cupy.real_if_close

	
cupy.real_if_close(a, tol=100)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/misc.py#L428]

	If input is complex with all imaginary parts close to zero, return real
parts.
“Close to zero” is defined as tol * (machine epsilon of the type for
a).

Warning

This function may synchronize the device.

See also

numpy.real_if_close() [https://numpy.org/doc/stable/reference/generated/numpy.real_if_close.html#numpy.real_if_close]

cupy.interp

	
cupy.interp(x, xp, fp, left=None, right=None, period=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/misc.py#L493]

	One-dimensional linear interpolation.

	Parameters:

	
	x (cupy.ndarray) – a 1D array of points on which the interpolation
is performed.

	xp (cupy.ndarray) – a 1D array of points on which the function values
(fp) are known.

	fp (cupy.ndarray) – a 1D array containing the function values at the
the points xp.

	left (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – value to return if x < xp[0]. Default is
fp[0].

	right (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – value to return if x > xp[-1]. Default is
fp[-1].

	period (None or float [https://docs.python.org/3/library/functions.html#float]) – a period for the x-coordinates. Parameters
left and right are ignored if period is specified.
Default is None.

	Returns:

	The interpolated values, same shape as x.

	Return type:

	cupy.ndarray

Note

This function may synchronize if left or right is not already
on the device.

See also

numpy.interp() [https://numpy.org/doc/stable/reference/generated/numpy.interp.html#numpy.interp]

Miscellaneous routines

Hint

NumPy API Reference: Miscellaneous routines [https://numpy.org/doc/stable/reference/routines.other.html]

Memory ranges

	byte_bounds(a)

	Returns pointers to the end-points of an array.

	shares_memory(a, b[, max_work])

	

	may_share_memory(a, b[, max_work])

	

Utility

	show_config(*[, _full])

	Prints the current runtime configuration to standard output.

Matlab-like Functions

	who([vardict])

	Print the CuPy arrays in the given dictionary.

cupy.byte_bounds

	
cupy.byte_bounds(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_misc/byte_bounds.py#L1]

	Returns pointers to the end-points of an array.

	Parameters:

	a – ndarray

	Returns:

	pointers to the end-points of an array

	Return type:

	Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

See also

numpy.byte_bounds() [https://numpy.org/doc/stable/reference/generated/numpy.byte_bounds.html#numpy.byte_bounds]

cupy.shares_memory

	
cupy.shares_memory(a, b, max_work=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_misc/memory_ranges.py#L30]

	

cupy.may_share_memory

	
cupy.may_share_memory(a, b, max_work=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_misc/memory_ranges.py#L7]

	

cupy.show_config

	
cupy.show_config(*, _full=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L910]

	Prints the current runtime configuration to standard output.

cupy.who

	
cupy.who(vardict=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_misc/who.py#L5]

	Print the CuPy arrays in the given dictionary.

Prints out the name, shape, bytes and type of all of the ndarrays
present in vardict.

If there is no dictionary passed in or vardict is None then returns
CuPy arrays in the globals() dictionary (all CuPy arrays in the
namespace).

	Parameters:

	vardict – (None or dict) A dictionary possibly containing ndarrays.
Default is globals() if None specified

Example

>>> a = cupy.arange(10)
>>> b = cupy.ones(20)
>>> cupy.who()
Name Shape Bytes Type
===

a 10 80 int64
b 20 160 float64

Upper bound on total bytes = 240
>>> d = {'x': cupy.arange(2.0),
... 'y': cupy.arange(3.0), 'txt': 'Some str',
... 'idx':5}
>>> cupy.who(d)
Name Shape Bytes Type
===

x 2 16 float64
y 3 24 float64

Upper bound on total bytes = 40

Padding arrays

Hint

NumPy API Reference: Padding arrays [https://numpy.org/doc/stable/reference/routines.padding.html]

	pad(array, pad_width[, mode])

	Pads an array with specified widths and values.

cupy.pad

	
cupy.pad(array, pad_width, mode='constant', **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_padding/pad.py#L418]

	Pads an array with specified widths and values.

	Parameters:

	
	array (cupy.ndarray) – The array to pad.

	pad_width (sequence, array_like or int [https://docs.python.org/3/library/functions.html#int]) – Number of values padded to the
edges of each axis. ((before_1, after_1), … (before_N, after_N))
unique pad widths for each axis. ((before, after),) yields same
before and after pad for each axis. (pad,) or int is a shortcut for
before = after = pad width for all axes. You cannot specify
cupy.ndarray.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str] or function, optional) – One of the following string values or a
user supplied function

	’constant’ (default)
	Pads with a constant value.

	’edge’
	Pads with the edge values of array.

	’linear_ramp’
	Pads with the linear ramp between end_value and the array edge
value.

	’maximum’
	Pads with the maximum value of all or part of the vector along
each axis.

	’mean’
	Pads with the mean value of all or part of the vector along each
axis.

	’median’
	Pads with the median value of all or part of the vector along
each axis. (Not Implemented)

	’minimum’
	Pads with the minimum value of all or part of the vector along
each axis.

	’reflect’
	Pads with the reflection of the vector mirrored on the first and
last values of the vector along each axis.

	’symmetric’
	Pads with the reflection of the vector mirrored along the edge
of the array.

	’wrap’
	Pads with the wrap of the vector along the axis. The first
values are used to pad the end and the end values are used to
pad the beginning.

	’empty’
	Pads with undefined values.

	<function>
	Padding function, see Notes.

	stat_length (sequence or int [https://docs.python.org/3/library/functions.html#int], optional) – Used in ‘maximum’, ‘mean’,
‘median’, and ‘minimum’. Number of values at edge of each axis used
to calculate the statistic value.
((before_1, after_1), … (before_N, after_N)) unique statistic
lengths for each axis. ((before, after),) yields same before and
after statistic lengths for each axis. (stat_length,) or int is a
shortcut for before = after = statistic length for all axes.
Default is None, to use the entire axis. You cannot specify
cupy.ndarray.

	constant_values (sequence or scalar, optional) – Used in ‘constant’. The
values to set the padded values for each axis.
((before_1, after_1), … (before_N, after_N)) unique pad constants
for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or constant is a shortcut for before = after = constant
for all axes.
Default is 0. You cannot specify cupy.ndarray.

	end_values (sequence or scalar, optional) – Used in ‘linear_ramp’. The
values used for the ending value of the linear_ramp and that will
form the edge of the padded array.
((before_1, after_1), … (before_N, after_N)) unique end values
for each axis.
((before, after),) yields same before and after end
values for each axis.
(constant,) or constant is a shortcut for before = after = constant
for all axes.
Default is 0. You cannot specify cupy.ndarray.

	reflect_type ({'even', 'odd'}, optional) – Used in ‘reflect’, and
‘symmetric’. The ‘even’ style is the default with an unaltered
reflection around the edge value. For the ‘odd’ style, the extended
part of the array is created by subtracting the reflected values from
two times the edge value.

	Returns:

	Padded array with shape extended by pad_width.

	Return type:

	cupy.ndarray

Note

For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place.
It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

	vector (cupy.ndarray)
	A rank 1 array already padded with zeros. Padded values are
vector[:iaxis_pad_width[0]] and
vector[-iaxis_pad_width[1]:].

	iaxis_pad_width (tuple)
	A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.

	iaxis (int)
	The axis currently being calculated.

	kwargs (dict)
	Any keyword arguments the function requires.

Examples

>>> a = cupy.array([1, 2, 3, 4, 5])
>>> cupy.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

>>> cupy.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

>>> cupy.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> cupy.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> cupy.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = cupy.array([[1, 2], [3, 4]])
>>> cupy.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [3, 3, 3, 4, 3, 3, 3],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1]])

>>> a = cupy.array([1, 2, 3, 4, 5])
>>> cupy.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> cupy.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> cupy.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> cupy.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> cupy.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = cupy.arange(6)
>>> a = a.reshape((2, 3))
>>> cupy.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 0, 1, 2, 10, 10],
 [10, 10, 3, 4, 5, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10]])
>>> cupy.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
 [100, 100, 100, 100, 100, 100, 100],
 [100, 100, 0, 1, 2, 100, 100],
 [100, 100, 3, 4, 5, 100, 100],
 [100, 100, 100, 100, 100, 100, 100],
 [100, 100, 100, 100, 100, 100, 100]])

Polynomials

Hint

NumPy API Reference: Polynomials [https://numpy.org/doc/stable/reference/routines.polynomials.html]

Power Series (cupy.polynomial.polynomial)

Hint

NumPy API Reference: Power Series (numpy.polynomial.polynomial) [https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html]

Misc Functions

	polyvander(x, deg)

	Computes the Vandermonde matrix of given degree.

	polycompanion(c)

	Computes the companion matrix of c.

	polyval(x, c[, tensor])

	Evaluate a polynomial at points x.

	polyvalfromroots(x, r[, tensor])

	Evaluate a polynomial specified by its roots at points x.

Polyutils

Hint

NumPy API Reference: Polyutils [https://numpy.org/doc/stable/reference/routines.polynomials.polyutils.html]

Functions

	as_series(alist[, trim])

	Returns argument as a list of 1-d arrays.

	trimseq(seq)

	Removes small polynomial series coefficients.

	trimcoef(c[, tol])

	Removes small trailing coefficients from a polynomial.

Poly1d

Hint

NumPy API Reference: Poly1d [https://numpy.org/doc/stable/reference/routines.polynomials.poly1d.html]

Basics

	poly1d(c_or_r[, r, variable])

	A one-dimensional polynomial class.

	cupy.poly(seq_of_zeros)

	Computes the coefficients of a polynomial with the given roots sequence.

	polyval(p, x)

	Evaluates a polynomial at specific values.

	roots(p)

	Computes the roots of a polynomial with given coefficients.

Fitting

	polyfit(x, y, deg[, rcond, full, w, cov])

	Returns the least squares fit of polynomial of degree deg to the data y sampled at x.

Arithmetic

	polyadd(a1, a2)

	Computes the sum of two polynomials.

	polysub(a1, a2)

	Computes the difference of two polynomials.

	polymul(a1, a2)

	Computes the product of two polynomials.

cupy.polynomial.polynomial.polyvander

	
cupy.polynomial.polynomial.polyvander(x, deg)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polynomial.py#L4]

	Computes the Vandermonde matrix of given degree.

	Parameters:

	
	x (cupy.ndarray) – array of points

	deg (int [https://docs.python.org/3/library/functions.html#int]) – degree of the resulting matrix.

	Returns:

	The Vandermonde matrix

	Return type:

	cupy.ndarray

See also

numpy.polynomial.polynomial.polyvander() [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander.html#numpy.polynomial.polynomial.polyvander]

cupy.polynomial.polynomial.polycompanion

	
cupy.polynomial.polynomial.polycompanion(c)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polynomial.py#L27]

	Computes the companion matrix of c.

	Parameters:

	c (cupy.ndarray) – 1-D array of polynomial coefficients
ordered from low to high degree.

	Returns:

	Companion matrix of dimensions (deg, deg).

	Return type:

	cupy.ndarray

See also

numpy.polynomial.polynomial.polycompanion() [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polycompanion.html#numpy.polynomial.polynomial.polycompanion]

cupy.polynomial.polynomial.polyval

	
cupy.polynomial.polynomial.polyval(x, c, tensor=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polynomial.py#L49]

	Evaluate a polynomial at points x.

If c is of length n + 1, this function returns the value

\[p(x) = c_0 + c_1 * x + ... + c_n * x^n\]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:

	
	x (array_like, compatible object) – If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

	c (array_like) – Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

	tensor (boolean, optional) – If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

	Returns:

	values – The shape of the returned array is described above.

	Return type:

	ndarray, compatible object

See also

numpy.polynomial.polynomial.polyval [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval.html#numpy.polynomial.polynomial.polyval]

Notes

The evaluation uses Horner’s method.

cupy.polynomial.polynomial.polyvalfromroots

	
cupy.polynomial.polynomial.polyvalfromroots(x, r, tensor=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polynomial.py#L121]

	Evaluate a polynomial specified by its roots at points x.

If r is of length N, this function returns the value

\[p(x) = \prod_{n=1}^{N} (x - r_n)\]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of r.

If r is a 1-D array, then p(x) will have the same shape as x. If r
is multidimensional, then the shape of the result depends on the value of
tensor. If tensor is True the shape will be r.shape[1:] + x.shape;
that is, each polynomial is evaluated at every value of x. If tensor is
False, the shape will be r.shape[1:]; that is, each polynomial is
evaluated only for the corresponding broadcast value of x. Note that
scalars have shape (,).

	Parameters:

	
	x (array_like, compatible object) – If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of r.

	r (array_like) – Array of roots. If r is multidimensional the first index is the
root index, while the remaining indices enumerate multiple
polynomials. For instance, in the two dimensional case the roots
of each polynomial may be thought of as stored in the columns of r.

	tensor (boolean, optional) – If True, the shape of the roots array is extended with ones on the
right, one for each dimension of x. Scalars have dimension 0 for this
action. The result is that every column of coefficients in r is
evaluated for every element of x. If False, x is broadcast over the
columns of r for the evaluation. This keyword is useful when r is
multidimensional. The default value is True.

	Returns:

	values – The shape of the returned array is described above.

	Return type:

	ndarray, compatible object

See also

numpy.polynomial.polynomial.polyvalfroomroots

cupy.polynomial.polyutils.as_series

	
cupy.polynomial.polyutils.as_series(alist, trim=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polyutils.py#L50]

	Returns argument as a list of 1-d arrays.

	Parameters:

	
	alist (cupy.ndarray or list [https://docs.python.org/3/library/stdtypes.html#list] of cupy.ndarray) – 1-D or 2-D input array.

	trim (bool [https://docs.python.org/3/library/functions.html#bool], optional) – trim trailing zeros.

	Returns:

	list of 1-D arrays.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of cupy.ndarray

See also

numpy.polynomial.polyutils.as_series() [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.as_series.html#numpy.polynomial.polyutils.as_series]

cupy.polynomial.polyutils.trimseq

	
cupy.polynomial.polyutils.trimseq(seq)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polyutils.py#L29]

	Removes small polynomial series coefficients.

	Parameters:

	seq (cupy.ndarray) – input array.

	Returns:

	input array with trailing zeros removed. If the
resulting output is empty, it returns the first element.

	Return type:

	cupy.ndarray

See also

numpy.polynomial.polyutils.trimseq() [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimseq.html#numpy.polynomial.polyutils.trimseq]

cupy.polynomial.polyutils.trimcoef

	
cupy.polynomial.polyutils.trimcoef(c, tol=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/polynomial/polyutils.py#L80]

	Removes small trailing coefficients from a polynomial.

	Parameters:

	
	c (cupy.ndarray) – 1d array of coefficients from lowest to highest order.

	tol (number, optional) – trailing coefficients whose absolute value are
less than or equal to tol are trimmed.

	Returns:

	trimmed 1d array.

	Return type:

	cupy.ndarray

See also

numpy.polynomial.polyutils.trimcoef() [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimcoef.html#numpy.polynomial.polyutils.trimcoef]

cupy.poly1d

	
class cupy.poly1d(c_or_r, r=False, variable=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_polynomial.pyx]

	A one-dimensional polynomial class.

Note

This is a counterpart of an old polynomial class in NumPy.
Note that the new NumPy polynomial API
(numpy.polynomial.polynomial [https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html#module-numpy.polynomial.polynomial])
has different convention, e.g. order of coefficients is reversed.

	Parameters:

	
	c_or_r (array_like) – The polynomial’s
coefficients in decreasing powers

	r (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, c_or_r specifies the
polynomial’s roots; the default is False.

	variable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Changes the variable used when
printing the polynomial from x to variable

See also

numpy.poly1d [https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d]

Methods

	
__call__(*args, **kwargs)

	Call self as a function.

	
__getitem__(key, /)

	Return self[key].

	
__setitem__(key, value, /)

	Set self[key] to value.

	
__len__()

	Return len(self).

	
__iter__()

	Implement iter(self).

	
deriv(self, m=1)

	

	
get(self, stream=None)

	Returns a copy of poly1d object on host memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.
The default uses CUDA stream object of the current context.

	Returns:

	Copy of poly1d object on host memory.

	Return type:

	numpy.poly1d [https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d]

	
integ(self, m=1, k=0)

	

	
set(self, polyin, stream=None)

	Copies a poly1d object on the host memory to cupy.poly1d.

	Parameters:

	
	polyin (numpy.poly1d [https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d]) – The source object on the host memory.

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.
The default uses CUDA stream object of the current context.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
coef

	

	
coefficients

	

	
coeffs

	

	
o

	

	
order

	

	
r

	

	
roots

	

	
variable

	

cupy.poly

	
cupy.poly(seq_of_zeros)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L38]

	Computes the coefficients of a polynomial with the given roots sequence.

	Parameters:

	seq_of_zeros (cupy.ndarray) – a sequence of polynomial roots.

	Returns:

	polynomial coefficients from highest to lowest degree.

	Return type:

	cupy.ndarray

Warning

This function doesn’t support general 2d square arrays currently.
Only complex Hermitian and real symmetric 2d arrays are allowed.

See also

numpy.poly() [https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly]

cupy.polyval

	
cupy.polyval(p, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L307]

	Evaluates a polynomial at specific values.

	Parameters:

	
	p (cupy.ndarray or cupy.poly1d) – input polynomial.

	x (scalar, cupy.ndarray) – values at which the polynomial

	evaluated. (is) –

	Returns:

	polynomial evaluated at x.

	Return type:

	cupy.ndarray or cupy.poly1d

Warning

This function doesn’t currently support poly1d values to evaluate.

See also

numpy.polyval() [https://numpy.org/doc/stable/reference/generated/numpy.polyval.html#numpy.polyval]

cupy.roots

	
cupy.roots(p)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L352]

	Computes the roots of a polynomial with given coefficients.

	Parameters:

	p (cupy.ndarray or cupy.poly1d) – polynomial coefficients.

	Returns:

	polynomial roots.

	Return type:

	cupy.ndarray

Warning

This function doesn’t support currently polynomial coefficients
whose companion matrices are general 2d square arrays. Only those
with complex Hermitian or real symmetric 2d arrays are allowed.

The current cupy.roots doesn’t guarantee the order of results.

See also

numpy.roots() [https://numpy.org/doc/stable/reference/generated/numpy.roots.html#numpy.roots]

cupy.polyfit

	
cupy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L192]

	Returns the least squares fit of polynomial of degree deg
to the data y sampled at x.

	Parameters:

	
	x (cupy.ndarray) – x-coordinates of the sample points of shape (M,).

	y (cupy.ndarray) – y-coordinates of the sample points of shape
(M,) or (M, K).

	deg (int [https://docs.python.org/3/library/functions.html#int]) – degree of the fitting polynomial.

	rcond (float [https://docs.python.org/3/library/functions.html#float], optional) – relative condition number of the fit.
The default value is len(x) * eps.

	full (bool [https://docs.python.org/3/library/functions.html#bool], optional) – indicator of the return value nature.
When False (default), only the coefficients are returned.
When True, diagnostic information is also returned.

	w (cupy.ndarray, optional) – weights applied to the y-coordinates
of the sample points of shape (M,).

	cov (bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if given, returns the coefficients
along with the covariance matrix.

	Returns:

	
	p (cupy.ndarray of shape (deg + 1,) or (deg + 1, K)):
	Polynomial coefficients from highest to lowest degree

	residuals, rank, singular_values, rcond (cupy.ndarray, int, cupy.ndarray, float):
	Present only if full=True.
Sum of squared residuals of the least-squares fit,
rank of the scaled Vandermonde coefficient matrix,
its singular values, and the specified value of rcond.

	V (cupy.ndarray of shape (M, M) or (M, M, K)):
	Present only if full=False and cov=True.
The covariance matrix of the polynomial coefficient estimates.

	Return type:

	cupy.ndarray or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Warning

numpy.RankWarning: The rank of the coefficient matrix in the
least-squares fit is deficient. It is raised if full=False.

See also

numpy.polyfit() [https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html#numpy.polyfit]

cupy.polyadd

	
cupy.polyadd(a1, a2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L81]

	Computes the sum of two polynomials.

	Parameters:

	
	a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

	a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

	Returns:

	The sum of the inputs.

	Return type:

	cupy.ndarray or cupy.poly1d

See also

numpy.polyadd() [https://numpy.org/doc/stable/reference/generated/numpy.polyadd.html#numpy.polyadd]

cupy.polysub

	
cupy.polysub(a1, a2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L103]

	Computes the difference of two polynomials.

	Parameters:

	
	a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

	a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

	Returns:

	The difference of the inputs.

	Return type:

	cupy.ndarray or cupy.poly1d

See also

numpy.polysub() [https://numpy.org/doc/stable/reference/generated/numpy.polysub.html#numpy.polysub]

cupy.polymul

	
cupy.polymul(a1, a2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/lib/_routines_poly.py#L128]

	Computes the product of two polynomials.

	Parameters:

	
	a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

	a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

	Returns:

	The product of the inputs.

	Return type:

	cupy.ndarray or cupy.poly1d

See also

numpy.polymul() [https://numpy.org/doc/stable/reference/generated/numpy.polymul.html#numpy.polymul]

Random sampling (cupy.random)

Differences between cupy.random and numpy.random [https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random]:

	Most functions under cupy.random support the dtype option, which do not exist in the corresponding NumPy APIs.
This option enables generation of float32 values directly without any space overhead.

	cupy.random.default_rng() uses XORWOW bit generator by default.

	Random states cannot be serialized. See the description below for details.

	CuPy does not guarantee that the same number generator is used across major versions.
This means that numbers generated by cupy.random by new major version may not be the same as the previous one, even if the same seed and distribution are used.

New Random Generator API

Hint

NumPy API Reference: Random sampling (numpy.random) [https://numpy.org/doc/stable/reference/random/]

Random Generator

Hint

NumPy API Reference: Random Generator [https://numpy.org/doc/stable/reference/random/generator.html]

	default_rng([seed])

	Construct a new Generator with the default BitGenerator (XORWOW).

	Generator(bit_generator)

	Container for the BitGenerators.

Bit Generators

Hint

NumPy API Reference: Bit Generators [https://numpy.org/doc/stable/reference/random/bit_generators/index.html]

	BitGenerator([seed])

	Generic BitGenerator.

CuPy provides the following bit generator implementations:

	XORWOW([seed, size])

	BitGenerator that uses cuRAND XORWOW device generator.

	MRG32k3a([seed, size])

	BitGenerator that uses cuRAND MRG32k3a device generator.

	Philox4x3210([seed, size])

	BitGenerator that uses cuRAND Philox4x3210 device generator.

Legacy Random Generation

Hint

	NumPy API Reference: Legacy Random Generation [https://numpy.org/doc/stable/reference/random/legacy.html]

	NumPy 1.16 Reference [https://numpy.org/doc/1.16/reference/routines.random.html]

	RandomState([seed, method])

	Portable container of a pseudo-random number generator.

Functions in cupy.random

	beta(a, b[, size, dtype])

	Beta distribution.

	binomial(n, p[, size, dtype])

	Binomial distribution.

	bytes(length)

	Returns random bytes.

	chisquare(df[, size, dtype])

	Chi-square distribution.

	choice(a[, size, replace, p])

	Returns an array of random values from a given 1-D array.

	dirichlet(alpha[, size, dtype])

	Dirichlet distribution.

	exponential(scale[, size, dtype])

	Exponential distribution.

	f(dfnum, dfden[, size, dtype])

	F distribution.

	gamma(shape[, scale, size, dtype])

	Gamma distribution.

	geometric(p[, size, dtype])

	Geometric distribution.

	gumbel([loc, scale, size, dtype])

	Returns an array of samples drawn from a Gumbel distribution.

	hypergeometric(ngood, nbad, nsample[, size, ...])

	hypergeometric distribution.

	laplace([loc, scale, size, dtype])

	Laplace distribution.

	logistic([loc, scale, size, dtype])

	Logistic distribution.

	lognormal([mean, sigma, size, dtype])

	Returns an array of samples drawn from a log normal distribution.

	logseries(p[, size, dtype])

	Log series distribution.

	multinomial(n, pvals[, size])

	Returns an array from multinomial distribution.

	multivariate_normal(mean, cov[, size, ...])

	Multivariate normal distribution.

	negative_binomial(n, p[, size, dtype])

	Negative binomial distribution.

	noncentral_chisquare(df, nonc[, size, dtype])

	Noncentral chisquare distribution.

	noncentral_f(dfnum, dfden, nonc[, size, dtype])

	Noncentral F distribution.

	normal([loc, scale, size, dtype])

	Returns an array of normally distributed samples.

	pareto(a[, size, dtype])

	Pareto II or Lomax distribution.

	permutation(a)

	Returns a permuted range or a permutation of an array.

	poisson([lam, size, dtype])

	Poisson distribution.

	power(a[, size, dtype])

	Power distribution.

	rand(*size, **kwarg)

	Returns an array of uniform random values over the interval [0, 1).

	randint(low[, high, size, dtype])

	Returns a scalar or an array of integer values over [low, high).

	randn(*size, **kwarg)

	Returns an array of standard normal random values.

	random([size, dtype])

	Returns an array of random values over the interval [0, 1).

	random_integers(low[, high, size])

	Return a scalar or an array of integer values over [low, high]

	random_sample([size, dtype])

	Returns an array of random values over the interval [0, 1).

	ranf([size, dtype])

	Returns an array of random values over the interval [0, 1).

	rayleigh([scale, size, dtype])

	Rayleigh distribution.

	sample([size, dtype])

	Returns an array of random values over the interval [0, 1).

	seed([seed])

	Resets the state of the random number generator with a seed.

	shuffle(a)

	Shuffles an array.

	standard_cauchy([size, dtype])

	Standard cauchy distribution.

	standard_exponential([size, dtype])

	Standard exponential distribution.

	standard_gamma(shape[, size, dtype])

	Standard gamma distribution.

	standard_normal([size, dtype])

	Returns an array of samples drawn from the standard normal distribution.

	standard_t(df[, size, dtype])

	Standard Student's t distribution.

	triangular(left, mode, right[, size, dtype])

	Triangular distribution.

	uniform([low, high, size, dtype])

	Returns an array of uniformly-distributed samples over an interval.

	vonmises(mu, kappa[, size, dtype])

	von Mises distribution.

	wald(mean, scale[, size, dtype])

	Wald distribution.

	weibull(a[, size, dtype])

	weibull distribution.

	zipf(a[, size, dtype])

	Zipf distribution.

CuPy does not provide cupy.random.get_state nor cupy.random.set_state at this time.
Use the following CuPy-specific APIs instead.
Note that these functions use cupy.random.RandomState instance to represent the internal state, which cannot be serialized.

	get_random_state()

	Gets the state of the random number generator for the current device.

	set_random_state(rs)

	Sets the state of the random number generator for the current device.

cupy.random.default_rng

	
cupy.random.default_rng(seed=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/__init__.py#L20]

	Construct a new Generator with the default BitGenerator (XORWOW).

	Parameters:

	seed (None, int [https://docs.python.org/3/library/functions.html#int], array_like[ints], numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence], cupy.random.BitGenerator, cupy.random.Generator, optional) – A seed to initialize the cupy.random.BitGenerator. If an
int or array_like[ints] or None is passed, then it will be
passed to numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence] to detive the initial
BitGenerator state. One may also pass in a SeedSequence
instance. Adiditionally, when passed :class:`BitGenerator, it will
be wrapped by Generator. If passed a Generator,
it will be returned unaltered.

	Returns:

	The initialized generator object.

	Return type:

	Generator

cupy.random.Generator

	
class cupy.random.Generator(bit_generator)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator_api.pyx]

	Container for the BitGenerators.

Generator exposes a number of methods for generating random
numbers drawn from a variety of probability distributions. In addition to
the distribution-specific arguments, each method takes a keyword argument
size that defaults to None. If size is None, then a single
value is generated and returned. If size is an integer, then a 1-D
array filled with generated values is returned. If size is a tuple,
then an array with that shape is filled and returned.
The function numpy.random.default_rng() [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng] will instantiate
a Generator with numpy’s default BitGenerator.
No Compatibility Guarantee
Generator does not provide a version compatibility guarantee. In
particular, as better algorithms evolve the bit stream may change.

	Parameters:

	bit_generator – (cupy.random.BitGenerator): BitGenerator to use
as the core generator.

Methods

	
beta(self, a, b, size=None, dtype=numpy.float64)

	Beta distribution.

Returns an array of samples drawn from the beta distribution. Its
probability density function is defined as

\[f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the beta distribution \(\alpha\).

	b (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the beta distribution \(\beta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the beta distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.beta() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.beta.html#numpy.random.Generator.beta]

	
binomial(self, n, p, size=None)

	Binomial distribution.

Returns an array of samples drawn from the binomial distribution. Its
probability mass function is defined as

\[f(x) = \binom{n}{x}p^x(1-p)^(n-x).\]

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints) – Parameter of the distribution,
>= 0. Floats are also accepted, but they will be truncated to
integers.

	p (float [https://docs.python.org/3/library/functions.html#float] or cupy.ndarray of floats) – Parameter of the distribution,
>= 0 and <= 1.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – The shape of the output
array. If None (default), a single value is returned if
n and p are both scalars. Otherwise,
cupy.broadcast(n, p).size samples are drawn.

	Returns:

	Samples drawn from the binomial distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.binomial() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.binomial.html#numpy.random.Generator.binomial]

	
chisquare(self, df, size=None)

	Chi-square distribution.

Returns an array of samples drawn from the chi-square distribution. Its
probability density function is defined as

\[f(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}x^{k/2-1}e^{-x/2}.\]

	Parameters:

	
	df (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Degree of freedom \(k\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	Returns:

	Samples drawn from the chi-square distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.chisquare() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.chisquare.html#numpy.random.Generator.chisquare]

	
dirichlet(self, alpha, size=None)

	Dirichlet distribution.

Returns an array of samples drawn from the dirichlet distribution. Its
probability density function is defined as

\[f(x) = \frac{\Gamma(\sum_{i=1}^K\alpha_i)} {\prod_{i=1}^{K}\Gamma(\alpha_i)} \prod_{i=1}^Kx_i^{\alpha_i-1}.\]

	Parameters:

	
	alpha (array) – Parameters of the dirichlet distribution
\(\alpha\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None,
array of alpha.shape is generated

	Returns:

	Samples drawn from the dirichlet distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.dirichlet() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.dirichlet.html#numpy.random.Generator.dirichlet]

	
exponential(self, scale=1.0, size=None)

	Exponential distribution.

Returns an array of samples drawn from the exponential distribution.
Its probability density function is defined as

\[f(x) = \frac{1}{\beta}\exp (-\frac{x}{\beta}).\]

	Parameters:

	
	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – The scale parameter
\(\beta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	Returns:

	Samples drawn from the exponential distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.exponential.html#numpy.random.Generator.exponential]

	
f(self, dfnum, dfden, size=None)

	F distribution.

Returns an array of samples drawn from the f distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{B(\frac{d_1}{2},\frac{d_2}{2})} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2}-1} \left(1+\frac{d_1}{d_2}x\right) ^{-\frac{d_1+d_2}{2}}.\]

	Parameters:

	
	dfnum (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Degrees of freedom in
numerator, \(d_1\).

	dfden (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Degrees of freedom in
denominator, \(d_2\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	Returns:

	Samples drawn from the f distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.f() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.f.html#numpy.random.Generator.f]

	
gamma(self, shape, scale=1.0, size=None)

	Gamma distribution.

Returns an array of samples drawn from the gamma distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{\Gamma(k)\theta^k}x^{k-1}e^{-x/\theta}.\]

	Parameters:

	
	shape (float [https://docs.python.org/3/library/functions.html#float] or array_like of float [https://docs.python.org/3/library/functions.html#float]) – The shape of the
gamma distribution. Must be non-negative.

	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of float [https://docs.python.org/3/library/functions.html#float]) – The scale of the
gamma distribution. Must be non-negative.
Default equals to 1

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.
If None, a zero-dimensional array is generated.

See also

	numpy.random.Generator.gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.gamma.html#numpy.random.Generator.gamma]

	
geometric(self, p, size=None)

	Geometric distribution.

Returns an array of samples drawn from the geometric distribution. Its
probability mass function is defined as

\[f(x) = p(1-p)^{k-1}.\]

	Parameters:

	
	p (float [https://docs.python.org/3/library/functions.html#float] or cupy.ndarray of floats) – Success probability of
the geometric distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – The shape of the output
array. If None (default), a single value is returned if
p is scalar. Otherwise, p.size samples are drawn.

	Returns:

	Samples drawn from the geometric distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.geometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.geometric.html#numpy.random.Generator.geometric]

	
hypergeometric(self, ngood, nbad, nsample, size=None)

	Hypergeometric distribution.

Returns an array of samples drawn from the hypergeometric distribution.
Its probability mass function is defined as

\[f(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}}.\]

	Parameters:

	
	ngood (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the hypergeometric
distribution \(n\).

	nbad (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the hypergeometric
distribution \(m\).

	nsample (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the
hypergeometric distribution \(N\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	Returns:

	Samples drawn from the hypergeometric distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.hypergeometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.hypergeometric.html#numpy.random.Generator.hypergeometric]

	
integers(self, low, high=None, size=None, dtype=numpy.int64, endpoint=False)

	Returns a scalar or an array of integer values over an interval.

Each element of returned values are independently sampled from
uniform distribution over the [low, high) or [low, high]
intervals.

	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and lower bound of the interval is set to 0.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of returned value.

	dtype – Data type specifier.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, sample from [low, high].
Defaults to False

	Returns:

	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints

See also

	numpy.random.Generator.integers() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.integers.html#numpy.random.Generator.integers]

	
logseries(self, p, size=None)

	Log series distribution.

Returns an array of samples drawn from the log series distribution.
Its probability mass function is defined as

\[f(x) = \frac{-p^x}{x\ln(1-p)}.\]

	Parameters:

	
	p (float [https://docs.python.org/3/library/functions.html#float] or cupy.ndarray of floats) – Parameter of the log series
distribution. Must be in the range (0, 1).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – The shape of the output
array. If None (default), a single value is returned if
p is scalar. Otherwise, p.size samples are drawn.

	Returns:

	Samples drawn from the log series distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.logseries() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.logseries.html#numpy.random.Generator.logseries]

	
poisson(self, lam=1.0, size=None)

	Poisson distribution.

Returns an array of samples drawn from the poisson distribution. Its
probability mass function is defined as

\[f(x) = \frac{\lambda^xe^{-\lambda}}{x!}.\]

	Parameters:

	
	lam (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Parameter of
the poisson distribution
\(\lambda\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None,
this function generate an array whose shape is lam.shape.

	Returns:

	Samples drawn from the poisson distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.poisson() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.poisson.html#numpy.random.Generator.poisson]

	
power(self, a, size=None)

	Power distribution.

Returns an array of samples drawn from the power distribution. Its
probability density function is defined as

\[f(x) = ax^{a-1}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Parameter of the power
distribution \(a\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	Returns:

	Samples drawn from the power distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.power() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.power.html#numpy.random.Generator.power]

	
random(self, size=None, dtype=numpy.float64, out=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random by (b-a) and add a:

(b - a) * random() + a

	Parameters:

	
	size (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of returned value.

	dtype – Data type specifier.

	out (cupy.ndarray, optional) – If specified, values will be written
to this array

	Returns:

	Samples uniformly drawn from the [0, 1) interval

	Return type:

	cupy.ndarray

See also

	numpy.random.Generator.random() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.random.html#numpy.random.Generator.random]

	
standard_exponential(self, size=None, dtype=numpy.float64, method='inv', out=None)

	Standard exponential distribution.

Returns an array of samples drawn from the standard exponential
distribution. Its probability density function is defined as

\[f(x) = e^{-x}.\]

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None,
a zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method to sample. Currently only 'inv', sampling
from the default inverse CDF, is supported.

	out (cupy.ndarray, optional) – If specified, values will be written
to this array

	Returns:

	Samples drawn from the standard exponential
distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.Generator.standard_exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_exponential.html#numpy.random.Generator.standard_exponential]

	
standard_gamma(self, shape, size=None, dtype=numpy.float64, out=None)

	Standard gamma distribution.

Returns an array of samples drawn from the standard gamma distribution.
Its probability density function is defined as

\[f(x) = \frac{1}{\Gamma(k)}x^{k-1}e^{-x}.\]

	Parameters:

	
	shape (float [https://docs.python.org/3/library/functions.html#float] or array_like of float [https://docs.python.org/3/library/functions.html#float]) – The shape of the
gamma distribution. Must be non-negative.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.
If None, a zero-dimensional array is generated.

	dtype – Data type specifier.

	out (cupy.ndarray, optional) – If specified, values will be written
to this array

See also

	numpy.random.Generator.standard_gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_gamma.html#numpy.random.Generator.standard_gamma]

	
standard_normal(self, size=None, dtype=numpy.float64, out=None)

	Standard normal distribution.

Returns an array of samples drawn from the standard normal
distribution.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.

	out (cupy.ndarray, optional) – If specified, values will be written
to this array

	Returns:

	Samples drawn from the standard normal distribution.

	Return type:

	cupy.ndarray

See also

	numpy.random.Generator.standard_normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_normal.html#numpy.random.Generator.standard_normal]

	
uniform(self, low=0.0, high=1.0, size=None, dtype=numpy.float64)

	Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by uniform.

	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats, optional) – Lower boundary of the output interval. All values generated will
be greater than or equal to low. The default value is 0.

	high (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Upper boundary of the output interval. All values generated will
be less than high. The high limit may be included in the returned
array of floats due to floating-point rounding in the equation
low + (high-low) * random(). high - low must be
non-negative. The default value is 1.0.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if low and high are both
scalars. Otherwise, cupy.broadcast(low, high).size samples are
drawn.

	Returns:

	out – Drawn samples from the parameterized uniform distribution.

	Return type:

	ndarray or scalar

See also

	-
	meth:numpy.random.Generator.uniform

	-
	meth:integers: Discrete uniform distribution, yielding integers.

	-
	meth:random: Floats uniformly distributed over [0, 1).

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.random.BitGenerator

	
class cupy.random.BitGenerator(seed=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_bit_generator.pyx]

	Generic BitGenerator.

Base Class for generic BitGenerators, which provide a stream
of random bits based on different algorithms. Must be overridden.

	Parameters:

	seed (int [https://docs.python.org/3/library/functions.html#int], array_like[ints], numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence], optional) – A seed to initialize the BitGenerator. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator
state. One may also pass in a SeedSequence instance.

Methods

	
random_raw(self, size=None, output=True)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.random.XORWOW

	
class cupy.random.XORWOW(seed=None, *, size=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_bit_generator.pyx]

	BitGenerator that uses cuRAND XORWOW device generator.

This generator allocates the state using the cuRAND device API.

	Parameters:

	
	seed (None, int [https://docs.python.org/3/library/functions.html#int], array_like[ints], numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence]) – A seed to initialize the BitGenerator. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator
state. One may also pass in a SeedSequence instance.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of samples that can be generated at once.
defaults to 1000 * 256.

Methods

	
random_raw(self, size=None, output=True)

	Return randoms as generated by the underlying BitGenerator.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which
case a single value is returned.

	output (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Output values. Used for performance testing since the
generated values are not returned.

	Returns:

	Drawn samples.

	Return type:

	cupy.ndarray

Note

This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.

	
state(self)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
generator = 0

	

cupy.random.MRG32k3a

	
class cupy.random.MRG32k3a(seed=None, *, size=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_bit_generator.pyx]

	BitGenerator that uses cuRAND MRG32k3a device generator.

This generator allocates the state using the cuRAND device API.

	Parameters:

	
	seed (int [https://docs.python.org/3/library/functions.html#int], array_like[ints], numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence], optional) – A seed to initialize the BitGenerator. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator
state. One may also pass in a SeedSequence instance.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of samples that can be generated at once.
defaults to 1000 * 256.

Methods

	
random_raw(self, size=None, output=True)

	Return randoms as generated by the underlying BitGenerator.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which
case a single value is returned.

	output (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Output values. Used for performance testing since the
generated values are not returned.

	Returns:

	Drawn samples.

	Return type:

	cupy.ndarray

Note

This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.

	
state(self)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
generator = 1

	

cupy.random.Philox4x3210

	
class cupy.random.Philox4x3210(seed=None, *, size=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_bit_generator.pyx]

	BitGenerator that uses cuRAND Philox4x3210 device generator.

This generator allocates the state using the cuRAND device API.

	Parameters:

	
	seed (int [https://docs.python.org/3/library/functions.html#int], array_like[ints], numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence], optional) – A seed to initialize the BitGenerator. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator
state. One may also pass in a SeedSequence instance.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of samples that can be generated at once.
defaults to 1000 * 256.

Methods

	
random_raw(self, size=None, output=True)

	Return randoms as generated by the underlying BitGenerator.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which
case a single value is returned.

	output (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Output values. Used for performance testing since the
generated values are not returned.

	Returns:

	Drawn samples.

	Return type:

	cupy.ndarray

Note

This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.

	
state(self)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
generator = 2

	

cupy.random.RandomState

	
class cupy.random.RandomState(seed=None, method=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L27]

	Portable container of a pseudo-random number generator.

An instance of this class holds the state of a random number generator. The
state is available only on the device which has been current at the
initialization of the instance.

Functions of cupy.random use global instances of this class.
Different instances are used for different devices. The global state for
the current device can be obtained by the
cupy.random.get_random_state() function.

	Parameters:

	
	seed (None or int [https://docs.python.org/3/library/functions.html#int]) – Seed of the random number generator. See the
seed() method for detail.

	method (int [https://docs.python.org/3/library/functions.html#int]) – Method of the random number generator. Following values
are available:

cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_PSEUDO_XORWOW
cupy.cuda.curand.CURAND_RNG_PSEUDO_MRG32K3A
cupy.cuda.curand.CURAND_RNG_PSEUDO_MTGP32
cupy.cuda.curand.CURAND_RNG_PSEUDO_MT19937
cupy.cuda.curand.CURAND_RNG_PSEUDO_PHILOX4_32_10

Methods

	
beta(a, b, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L95]

	Returns an array of samples drawn from the beta distribution.

See also

	cupy.random.beta() for full documentation

	numpy.random.RandomState.beta() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.beta.html#numpy.random.RandomState.beta]

	
binomial(n, p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L110]

	Returns an array of samples drawn from the binomial distribution.

See also

	cupy.random.binomial() for full documentation

	numpy.random.RandomState.binomial() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.binomial.html#numpy.random.RandomState.binomial]

	
chisquare(df, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L125]

	Returns an array of samples drawn from the chi-square distribution.

See also

	cupy.random.chisquare() for full documentation

	numpy.random.RandomState.chisquare() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.chisquare.html#numpy.random.RandomState.chisquare]

	
choice(a, size=None, replace=True, p=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1074]

	Returns an array of random values from a given 1-D array.

See also

	cupy.random.choice() for full documentation

	numpy.random.choice()

	
dirichlet(alpha, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L140]

	Returns an array of samples drawn from the dirichlet distribution.

See also

	cupy.random.dirichlet() for full documentation

	numpy.random.RandomState.dirichlet() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.dirichlet.html#numpy.random.RandomState.dirichlet]

	
exponential(scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L160]

	Returns an array of samples drawn from a exponential distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.exponential() for full documentation

	numpy.random.RandomState.exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.exponential.html#numpy.random.RandomState.exponential]

	
f(dfnum, dfden, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L180]

	Returns an array of samples drawn from the f distribution.

See also

	cupy.random.f() for full documentation

	numpy.random.RandomState.f() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.f.html#numpy.random.RandomState.f]

	
gamma(shape, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L195]

	Returns an array of samples drawn from a gamma distribution.

See also

	cupy.random.gamma() for full documentation

	numpy.random.RandomState.gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.gamma.html#numpy.random.RandomState.gamma]

	
geometric(p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L211]

	Returns an array of samples drawn from the geometric distribution.

See also

	cupy.random.geometric() for full documentation

	numpy.random.RandomState.geometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.geometric.html#numpy.random.RandomState.geometric]

	
gumbel(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1191]

	Returns an array of samples drawn from a Gumbel distribution.

See also

	cupy.random.gumbel() for full documentation

	numpy.random.RandomState.gumbel() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.gumbel.html#numpy.random.RandomState.gumbel]

	
hypergeometric(ngood, nbad, nsample, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L226]

	Returns an array of samples drawn from the hypergeometric distribution.

See also

	cupy.random.hypergeometric() for full documentation

	numpy.random.RandomState.hypergeometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.hypergeometric.html#numpy.random.RandomState.hypergeometric]

	
laplace(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L247]

	Returns an array of samples drawn from the laplace distribution.

See also

	cupy.random.laplace() for full documentation

	numpy.random.RandomState.laplace() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.laplace.html#numpy.random.RandomState.laplace]

	
logistic(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L262]

	Returns an array of samples drawn from the logistic distribution.

See also

	cupy.random.logistic() for full documentation

	numpy.random.RandomState.logistic() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.logistic.html#numpy.random.RandomState.logistic]

	
lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L281]

	Returns an array of samples drawn from a log normal distribution.

See also

	cupy.random.lognormal() for full documentation

	numpy.random.RandomState.lognormal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.lognormal.html#numpy.random.RandomState.lognormal]

	
logseries(p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L304]

	Returns an array of samples drawn from a log series distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.logseries() for full documentation

	numpy.random.RandomState.logseries() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.logseries.html#numpy.random.RandomState.logseries]

	
multivariate_normal(mean, cov, size=None, check_valid='ignore', tol=1e-08, method='cholesky', dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L328]

	Returns an array of samples drawn from the multivariate normal
distribution.

Warning

This function calls one or more cuSOLVER routine(s) which may yield
invalid results if input conditions are not met.
To detect these invalid results, you can set the linalg
configuration to a value that is not ignore in
cupyx.errstate() or cupyx.seterr().

See also

	cupy.random.multivariate_normal() for full documentation

	numpy.random.RandomState.multivariate_normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.multivariate_normal.html#numpy.random.RandomState.multivariate_normal]

	
negative_binomial(n, p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L424]

	Returns an array of samples drawn from the negative binomial distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.negative_binomial() for full documentation

	numpy.random.RandomState.negative_binomial() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.negative_binomial.html#numpy.random.RandomState.negative_binomial]

	
noncentral_chisquare(df, nonc, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L489]

	Returns an array of samples drawn from the noncentral chi-square
distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.noncentral_chisquare() for full documentation

	numpy.random.RandomState.noncentral_chisquare() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.noncentral_chisquare.html#numpy.random.RandomState.noncentral_chisquare]

	
noncentral_f(dfnum, dfden, nonc, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L513]

	Returns an array of samples drawn from the noncentral F distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.noncentral_f() for full documentation

	numpy.random.RandomState.noncentral_f() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.noncentral_f.html#numpy.random.RandomState.noncentral_f]

	
normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L446]

	Returns an array of normally distributed samples.

See also

	cupy.random.normal() for full documentation

	numpy.random.RandomState.normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.normal.html#numpy.random.RandomState.normal]

	
pareto(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L474]

	Returns an array of samples drawn from the pareto II distribution.

See also

	cupy.random.pareto() for full documentation

	numpy.random.RandomState.pareto() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.pareto.html#numpy.random.RandomState.pareto]

	
permutation(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1170]

	Returns a permuted range or a permutation of an array.

	
poisson(lam=1.0, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L539]

	Returns an array of samples drawn from the poisson distribution.

See also

	cupy.random.poisson() for full documentation

	numpy.random.RandomState.poisson() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.poisson.html#numpy.random.RandomState.poisson]

	
power(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L554]

	Returns an array of samples drawn from the power distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.power() for full documentation

	numpy.random.RandomState.power() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.power.html#numpy.random.RandomState.power]

	
rand(*size, **kwarg)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L576]

	Returns uniform random values over the interval [0, 1).

See also

	cupy.random.rand() for full documentation

	numpy.random.RandomState.rand() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.rand.html#numpy.random.RandomState.rand]

	
randint(low, high=None, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1208]

	Returns a scalar or an array of integer values over [low, high).

See also

	cupy.random.randint() for full documentation

	numpy.random.RandomState.randint() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.randint.html#numpy.random.RandomState.randint]

	
randn(*size, **kwarg)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L590]

	Returns an array of standard normal random values.

See also

	cupy.random.randn() for full documentation

	numpy.random.RandomState.randn() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.randn.html#numpy.random.RandomState.randn]

	
random_sample(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L619]

	Returns an array of random values over the interval [0, 1).

See also

	cupy.random.random_sample() for full documentation

	numpy.random.RandomState.random_sample() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.random_sample.html#numpy.random.RandomState.random_sample]

	
rayleigh(scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L633]

	Returns an array of samples drawn from a rayleigh distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.rayleigh() for full documentation

	numpy.random.RandomState.rayleigh() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.rayleigh.html#numpy.random.RandomState.rayleigh]

	
seed(seed=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L792]

	Resets the state of the random number generator with a seed.

See also

	cupy.random.seed() for full documentation

	numpy.random.RandomState.seed() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.seed.html#numpy.random.RandomState.seed]

	
shuffle(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1154]

	Returns a shuffled array.

See also

	cupy.random.shuffle() for full documentation

	numpy.random.shuffle()

	
standard_cauchy(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L822]

	Returns an array of samples drawn from the standard cauchy distribution.

See also

	cupy.random.standard_cauchy() for full documentation

	numpy.random.RandomState.standard_cauchy() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_cauchy.html#numpy.random.RandomState.standard_cauchy]

	
standard_exponential(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L832]

	Returns an array of samples drawn from the standard exp distribution.

See also

	cupy.random.standard_exponential() for full documentation

	numpy.random.RandomState.standard_exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_exponential.html#numpy.random.RandomState.standard_exponential]

	
standard_gamma(shape, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L844]

	Returns an array of samples drawn from a standard gamma distribution.

See also

	cupy.random.standard_gamma() for full documentation

	numpy.random.RandomState.standard_gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_gamma.html#numpy.random.RandomState.standard_gamma]

	
standard_normal(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L859]

	Returns samples drawn from the standard normal distribution.

See also

	cupy.random.standard_normal() for full documentation

	numpy.random.RandomState.standard_normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_normal.html#numpy.random.RandomState.standard_normal]

	
standard_t(df, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L869]

	Returns an array of samples drawn from the standard t distribution.

See also

	cupy.random.standard_t() for full documentation

	numpy.random.RandomState.standard_t() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_t.html#numpy.random.RandomState.standard_t]

	
tomaxint(size=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L884]

	Draws integers between 0 and max integer inclusive.

Return a sample of uniformly distributed random integers in the
interval [0, np.iinfo(np.int_).max]. The np.int_ type translates
to the C long integer type and its precision is platform dependent.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Output shape.

	Returns:

	Drawn samples.

	Return type:

	cupy.ndarray

See also

numpy.random.RandomState.tomaxint()

	
triangular(left, mode, right, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L937]

	Returns an array of samples drawn from the triangular distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.triangular() for full documentation

	numpy.random.RandomState.triangular() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.triangular.html#numpy.random.RandomState.triangular]

	
uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L966]

	Returns an array of uniformly-distributed samples over an interval.

See also

	cupy.random.uniform() for full documentation

	numpy.random.RandomState.uniform() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.uniform.html#numpy.random.RandomState.uniform]

	
vonmises(mu, kappa, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L986]

	Returns an array of samples drawn from the von Mises distribution.

See also

	cupy.random.vonmises() for full documentation

	numpy.random.RandomState.vonmises() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.vonmises.html#numpy.random.RandomState.vonmises]

	
wald(mean, scale, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1016]

	Returns an array of samples drawn from the Wald distribution.

See also

	cupy.random.wald() for full documentation

	numpy.random.RandomState.wald() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.wald.html#numpy.random.RandomState.wald]

	
weibull(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1031]

	Returns an array of samples drawn from the weibull distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.weibull() for full documentation

	numpy.random.RandomState.weibull() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.weibull.html#numpy.random.RandomState.weibull]

	
zipf(a, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1053]

	Returns an array of samples drawn from the Zipf distribution.

Warning

This function may synchronize the device.

See also

	cupy.random.zipf() for full documentation

	numpy.random.RandomState.zipf() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.zipf.html#numpy.random.RandomState.zipf]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.random.beta

	
cupy.random.beta(a, b, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L8]

	Beta distribution.

Returns an array of samples drawn from the beta distribution. Its
probability density function is defined as

\[f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the beta distribution \(\alpha\).

	b (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the beta distribution \(\beta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the beta distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.beta() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.beta.html#numpy.random.beta]

cupy.random.binomial

	
cupy.random.binomial(n, p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L35]

	Binomial distribution.

Returns an array of samples drawn from the binomial distribution. Its
probability mass function is defined as

\[f(x) = \binom{n}{x}p^x(1-p)^{n-x}.\]

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Trial number of the binomial distribution.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Success probability of the binomial distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the binomial distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.binomial() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.binomial.html#numpy.random.binomial]

cupy.random.bytes

	
cupy.random.bytes(length)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/__init__.py#L7]

	Returns random bytes.

Note

This function is just a wrapper for numpy.random.bytes [https://numpy.org/doc/stable/reference/random/generated/numpy.random.bytes.html#numpy.random.bytes].
The resulting bytes are generated on the host (NumPy), not GPU.

See also

numpy.random.bytes

cupy.random.chisquare

	
cupy.random.chisquare(df, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L62]

	Chi-square distribution.

Returns an array of samples drawn from the chi-square distribution. Its
probability density function is defined as

\[f(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}x^{k/2-1}e^{-x/2}.\]

	Parameters:

	
	df (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Degree of freedom \(k\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the chi-square distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.chisquare() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.chisquare.html#numpy.random.chisquare]

cupy.random.choice

	
cupy.random.choice(a, size=None, replace=True, p=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L159]

	Returns an array of random values from a given 1-D array.

Each element of the returned array is independently sampled
from a according to p or uniformly.

Note

Currently p is not supported when replace=False.

	Parameters:

	
	a (1-D array-like or int [https://docs.python.org/3/library/functions.html#int]) – If an array-like,
a random sample is generated from its elements.
If an int, the random sample is generated as if a was
cupy.arange(n)

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.

	replace (boolean) – Whether the sample is with or without replacement.

	p (1-D array-like) – The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.

	Returns:

	An array of a values distributed according to
p or uniformly.

	Return type:

	cupy.ndarray

See also

numpy.random.choice()

cupy.random.dirichlet

	
cupy.random.dirichlet(alpha, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L88]

	Dirichlet distribution.

Returns an array of samples drawn from the dirichlet distribution. Its
probability density function is defined as

\[f(x) = \frac{\Gamma(\sum_{i=1}^K\alpha_i)} {\prod_{i=1}^{K}\Gamma(\alpha_i)} \prod_{i=1}^Kx_i^{\alpha_i-1}.\]

	Parameters:

	
	alpha (array) – Parameters of the dirichlet distribution
\(\alpha\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the dirichlet distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.dirichlet() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.dirichlet.html#numpy.random.dirichlet]

cupy.random.exponential

	
cupy.random.exponential(scale, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L117]

	Exponential distribution.

Returns an array of samples drawn from the exponential distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{\beta}\exp (-\frac{x}{\beta}).\]

	Parameters:

	
	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – The scale parameter
\(\beta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the exponential distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html#numpy.random.exponential]

cupy.random.f

	
cupy.random.f(dfnum, dfden, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L144]

	F distribution.

Returns an array of samples drawn from the f distribution. Its probability
density function is defined as

\[f(x) = \frac{1}{B(\frac{d_1}{2},\frac{d_2}{2})} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2}-1} \left(1+\frac{d_1}{d_2}x\right) ^{-\frac{d_1+d_2}{2}}.\]

	Parameters:

	
	dfnum (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Parameter of the f distribution
\(d_1\).

	dfden (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Parameter of the f distribution
\(d_2\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the f distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.f() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.f.html#numpy.random.f]

cupy.random.gamma

	
cupy.random.gamma(shape, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L177]

	Gamma distribution.

Returns an array of samples drawn from the gamma distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{\Gamma(k)\theta^k}x^{k-1}e^{-x/\theta}.\]

	Parameters:

	
	shape (array) – Parameter of the gamma distribution \(k\).

	scale (array) – Parameter of the gamma distribution \(\theta\)

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

Returns:cupy.ndarray: Samples drawn from the gamma distribution.

See also

numpy.random.gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.gamma.html#numpy.random.gamma]

cupy.random.geometric

	
cupy.random.geometric(p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L203]

	Geometric distribution.

Returns an array of samples drawn from the geometric distribution. Its
probability mass function is defined as

\[f(x) = p(1-p)^{k-1}.\]

	Parameters:

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Success probability of the geometric distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the geometric distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.geometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.geometric.html#numpy.random.geometric]

cupy.random.gumbel

	
cupy.random.gumbel(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L229]

	Returns an array of samples drawn from a Gumbel distribution.

The samples are drawn from a Gumbel distribution with location loc
and scale scale.
Its probability density function is defined as

\[f(x) = \frac{1}{\eta} \exp\left\{ - \frac{x - \mu}{\eta} \right\} \exp\left[-\exp\left\{-\frac{x - \mu}{\eta} \right\}\right],\]

where \(\mu\) is loc and \(\eta\) is scale.

	Parameters:

	
	loc (float [https://docs.python.org/3/library/functions.html#float]) – The location of the mode \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scale parameter \(\eta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the Gumbel distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.gumbel() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.gumbel.html#numpy.random.gumbel]

cupy.random.hypergeometric

	
cupy.random.hypergeometric(ngood, nbad, nsample, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L262]

	hypergeometric distribution.

Returns an array of samples drawn from the hypergeometric distribution. Its
probability mass function is defined as

\[f(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}}.\]

	Parameters:

	
	ngood (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the hypergeometric
distribution \(n\).

	nbad (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the hypergeometric
distribution \(m\).

	nsample (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – Parameter of the hypergeometric
distribution \(N\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the hypergeometric distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.hypergeometric() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.hypergeometric.html#numpy.random.hypergeometric]

cupy.random.laplace

	
cupy.random.laplace(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L320]

	Laplace distribution.

Returns an array of samples drawn from the laplace distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{2b}\exp\left(-\frac{|x-\mu|}{b}\right).\]

	Parameters:

	
	loc (float [https://docs.python.org/3/library/functions.html#float]) – The location of the mode \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scale parameter \(b\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the laplace distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.laplace() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.laplace.html#numpy.random.laplace]

cupy.random.logistic

	
cupy.random.logistic(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L293]

	Logistic distribution.

Returns an array of samples drawn from the logistic distribution. Its
probability density function is defined as

\[f(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}.\]

	Parameters:

	
	loc (float [https://docs.python.org/3/library/functions.html#float]) – The location of the mode \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scale parameter \(s\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the logistic distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.logistic() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.logistic.html#numpy.random.logistic]

cupy.random.lognormal

	
cupy.random.lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L347]

	Returns an array of samples drawn from a log normal distribution.

The samples are natural log of samples drawn from a normal distribution
with mean mean and deviation sigma.

	Parameters:

	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Mean of the normal distribution.

	sigma (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the log normal distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.lognormal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.lognormal.html#numpy.random.lognormal]

cupy.random.logseries

	
cupy.random.logseries(p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L371]

	Log series distribution.

Returns an array of samples drawn from the log series distribution. Its
probability mass function is defined as

\[f(x) = \frac{-p^x}{x\ln(1-p)}.\]

	Parameters:

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the log series distribution \(p\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the log series distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.logseries() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.logseries.html#numpy.random.logseries]

cupy.random.multinomial

	
cupy.random.multinomial(n, pvals, size=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L199]

	Returns an array from multinomial distribution.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of trials.

	pvals (cupy.ndarray) – Probabilities of each of the p different
outcomes. The sum of these values must be 1.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints or None) – Shape of a sample in each trial.
For example when size is (a, b), shape of returned value is
(a, b, p) where p is len(pvals).
If size is None, it is treated as (). So, shape of
returned value is (p,).

	Returns:

	An array drawn from multinomial distribution.

	Return type:

	cupy.ndarray

Note

It does not support sum(pvals) < 1 case.

See also

numpy.random.multinomial()

cupy.random.multivariate_normal

	
cupy.random.multivariate_normal(mean, cov, size=None, check_valid='ignore', tol=1e-08, method='cholesky', dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L424]

	Multivariate normal distribution.

Returns an array of samples drawn from the multivariate normal
distribution. Its probability density function is defined as

\[f(x) = \frac{1}{(2\pi|\Sigma|)^(n/2)} \exp\left(-\frac{1}{2} (x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right).\]

	Parameters:

	
	mean (1-D array_like, of length N) – Mean of the multivariate normal
distribution \(\mu\).

	cov (2-D array_like, of shape (N, N)) – Covariance matrix
\(\Sigma\) of the multivariate normal distribution. It must be
symmetric and positive-semidefinite for proper sampling.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	check_valid ('warn', 'raise', 'ignore') – Behavior when the covariance
matrix is not positive semidefinite.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance when checking the singular values in
covariance matrix.

	method – { ‘cholesky’, ‘eigh’, ‘svd’}, optional
The cov input is used to compute a factor matrix A such that
A @ A.T = cov. This argument is used to select the method
used to compute the factor matrix A. The default method ‘cholesky’
is the fastest, while ‘svd’ is the slowest but more robust than
the fastest method. The method eigh uses eigen decomposition to
compute A and is faster than svd but slower than cholesky.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the multivariate normal distribution.

	Return type:

	cupy.ndarray

Note

Default method is set to fastest, ‘cholesky’, unlike numpy
which defaults to ‘svd’. Cholesky decomposition in CuPy will fail
silently if the input covariance matrix is not positive definite and
give invalid results, unlike in numpy, where an invalid covariance
matrix will raise an exception. Setting check_valid to ‘raise’ will
replicate numpy behavior by checking the input, but will also force
device synchronization. If validity of input is unknown, setting
method to ‘einh’ or ‘svd’ and check_valid to ‘warn’ will use
cholesky decomposition for positive definite matrices, and fallback to
the specified method for other matrices (i.e., not positive
semi-definite), and will warn if decomposition is suspect.

See also

numpy.random.multivariate_normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html#numpy.random.multivariate_normal]

cupy.random.negative_binomial

	
cupy.random.negative_binomial(n, p, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L397]

	Negative binomial distribution.

Returns an array of samples drawn from the negative binomial distribution.
Its probability mass function is defined as

\[f(x) = \binom{x + n - 1}{n - 1}p^n(1-p)^{x}.\]

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Parameter of the negative binomial distribution \(n\).

	p (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the negative binomial distribution \(p\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the negative binomial distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.negative_binomial() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial]

cupy.random.noncentral_chisquare

	
cupy.random.noncentral_chisquare(df, nonc, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L530]

	Noncentral chisquare distribution.

Returns an array of samples drawn from the noncentral chisquare
distribution. Its probability density function is defined as

\[f(x) = \frac{1}{2}e^{-(x+\lambda)/2} \
 \left(\frac{x}{\lambda}\right)^{k/4 - 1/2} \
 I_{k/2 - 1}(\sqrt{\lambda x}),\]

where \(I\) is the modified Bessel function of the first kind.

	Parameters:

	
	df (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the noncentral chisquare distribution
\(k\).

	nonc (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the noncentral chisquare distribution
\(\lambda\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the noncentral chisquare distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.noncentral_chisquare() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare]

cupy.random.noncentral_f

	
cupy.random.noncentral_f(dfnum, dfden, nonc, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L563]

	Noncentral F distribution.

Returns an array of samples drawn from the noncentral F
distribution.

Reference: https://en.wikipedia.org/wiki/Noncentral_F-distribution

	Parameters:

	
	dfnum (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the noncentral F distribution.

	dfden (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the noncentral F distribution.

	nonc (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the noncentral F distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the noncentral F distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.noncentral_f() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_f.html#numpy.random.noncentral_f]

cupy.random.normal

	
cupy.random.normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L482]

	Returns an array of normally distributed samples.

	Parameters:

	
	loc (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Mean of the normal distribution.

	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Normally distributed samples.

	Return type:

	cupy.ndarray

See also

numpy.random.normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html#numpy.random.normal]

cupy.random.pareto

	
cupy.random.pareto(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L504]

	Pareto II or Lomax distribution.

Returns an array of samples drawn from the Pareto II distribution. Its
probability density function is defined as

\[f(x) = \alpha(1+x)^{-(\alpha+1)}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Parameter of the Pareto II
distribution \(\alpha\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, this
function generate an array whose shape is a.shape.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the Pareto II distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.pareto() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html#numpy.random.pareto]

cupy.random.permutation

	
cupy.random.permutation(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_permutations.py#L17]

	Returns a permuted range or a permutation of an array.

	Parameters:

	a (int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray) – The range or the array to be shuffled.

	Returns:

	If a is an integer, it is permutation range between 0
and a - 1.
Otherwise, it is a permutation of a.

	Return type:

	cupy.ndarray

See also

numpy.random.permutation()

cupy.random.poisson

	
cupy.random.poisson(lam=1.0, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L590]

	Poisson distribution.

Returns an array of samples drawn from the poisson distribution. Its
probability mass function is defined as

\[f(x) = \frac{\lambda^xe^{-\lambda}}{k!}.\]

	Parameters:

	
	lam (array_like of floats) – Parameter of the poisson distribution
\(\lambda\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, this
function generate an array whose shape is lam.shape.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the poisson distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.poisson() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.poisson.html#numpy.random.poisson]

cupy.random.power

	
cupy.random.power(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L616]

	Power distribution.

Returns an array of samples drawn from the power distribution. Its
probability density function is defined as

\[f(x) = ax^{a-1}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the power distribution \(a\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the power distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.power() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.power.html#numpy.random.power]

cupy.random.rand

	
cupy.random.rand(*size, **kwarg)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L7]

	Returns an array of uniform random values over the interval [0, 1).

Each element of the array is uniformly distributed on the half-open
interval [0, 1). All elements are identically and independently
distributed (i.i.d.).

	Parameters:

	
	size (ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed. The default is
numpy.float64.

	Returns:

	A random array.

	Return type:

	cupy.ndarray

See also

numpy.random.rand()

Example

>>> cupy.random.rand(3, 2)
array([[0.86476479, 0.05633727], # random
 [0.27283185, 0.38255354], # random
 [0.16592278, 0.75150313]]) # random

>>> cupy.random.rand(3, 2, dtype=cupy.float32)
array([[0.9672306 , 0.9590486], # random
 [0.6851264 , 0.70457625], # random
 [0.22382522, 0.36055237]], dtype=float32) # random

cupy.random.randint

	
cupy.random.randint(low, high=None, size=None, dtype='l')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L87]

	Returns a scalar or an array of integer values over [low, high).

Each element of returned values are independently sampled from
uniform distribution over left-close and right-open interval
[low, high).

	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and lower bound of the interval is set to 0.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of returned value.

	dtype – Data type specifier.

	Returns:

	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints

cupy.random.randn

	
cupy.random.randn(*size, **kwarg)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L47]

	Returns an array of standard normal random values.

Each element of the array is normally distributed with zero mean and unit
variance. All elements are identically and independently distributed
(i.i.d.).

	Parameters:

	
	size (ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.
The default is numpy.float64.

	Returns:

	An array of standard normal random values.

	Return type:

	cupy.ndarray

See also

numpy.random.randn()

Example

>>> cupy.random.randn(3, 2)
array([[0.41193321, 1.59579542], # random
 [0.47904589, 0.18566376], # random
 [0.59748424, 2.32602829]]) # random

>>> cupy.random.randn(3, 2, dtype=cupy.float32)
array([[0.1373886 , 2.403238], # random
 [0.84020025, 1.5089266], # random
 [-1.2268474 , -0.48219103]], dtype=float32) # random

cupy.random.random

	
cupy.random.random(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L139]

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	An array of uniformly distributed random values.

	Return type:

	cupy.ndarray

See also

numpy.random.random_sample()

cupy.random.random_integers

	
cupy.random.random_integers(low, high=None, size=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L113]

	Return a scalar or an array of integer values over [low, high]

Each element of returned values are independently sampled from
uniform distribution over closed interval [low, high].

	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and the lower bound is set to 1.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of returned value.

	Returns:

	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints

cupy.random.random_sample

	
cupy.random.random_sample(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L139]

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	An array of uniformly distributed random values.

	Return type:

	cupy.ndarray

See also

numpy.random.random_sample()

cupy.random.ranf

	
cupy.random.ranf(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L139]

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	An array of uniformly distributed random values.

	Return type:

	cupy.ndarray

See also

numpy.random.random_sample()

cupy.random.rayleigh

	
cupy.random.rayleigh(scale=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L642]

	Rayleigh distribution.

Returns an array of samples drawn from the rayleigh distribution.
Its probability density function is defined as

\[f(x) = \frac{x}{\sigma^2}e^{\frac{-x^2}{2-\sigma^2}}, x \ge 0.\]

	Parameters:

	
	scale (array) – Parameter of the rayleigh distribution \(\sigma\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the rayleigh distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.rayleigh() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html#numpy.random.rayleigh]

cupy.random.sample

	
cupy.random.sample(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_sample.py#L139]

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	An array of uniformly distributed random values.

	Return type:

	cupy.ndarray

See also

numpy.random.random_sample()

cupy.random.seed

	
cupy.random.seed(seed=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1260]

	Resets the state of the random number generator with a seed.

This function resets the state of the global random number generator for
the current device. Be careful that generators for other devices are not
affected.

	Parameters:

	seed (None or int [https://docs.python.org/3/library/functions.html#int]) – Seed for the random number generator. If None,
it uses os.urandom() [https://docs.python.org/3/library/os.html#os.urandom] if available or time.time() [https://docs.python.org/3/library/time.html#time.time]
otherwise. Note that this function does not support seeding by
an integer array.

cupy.random.shuffle

	
cupy.random.shuffle(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_permutations.py#L4]

	Shuffles an array.

	Parameters:

	a (cupy.ndarray) – The array to be shuffled.

See also

numpy.random.shuffle()

cupy.random.standard_cauchy

	
cupy.random.standard_cauchy(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L667]

	Standard cauchy distribution.

Returns an array of samples drawn from the standard cauchy distribution.
Its probability density function is defined as

\[f(x) = \frac{1}{\pi(1+x^2)}.\]

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the standard cauchy distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.standard_cauchy() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_cauchy.html#numpy.random.standard_cauchy]

cupy.random.standard_exponential

	
cupy.random.standard_exponential(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L691]

	Standard exponential distribution.

Returns an array of samples drawn from the standard exponential
distribution. Its probability density function is defined as

\[f(x) = e^{-x}.\]

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the standard exponential distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.standard_exponential() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_exponential.html#numpy.random.standard_exponential]

cupy.random.standard_gamma

	
cupy.random.standard_gamma(shape, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L715]

	Standard gamma distribution.

Returns an array of samples drawn from the standard gamma distribution. Its
probability density function is defined as

\[f(x) = \frac{1}{\Gamma(k)}x^{k-1}e^{-x}.\]

	Parameters:

	
	shape (array) – Parameter of the gamma distribution \(k\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the standard gamma distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.standard_gamma() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_gamma.html#numpy.random.standard_gamma]

cupy.random.standard_normal

	
cupy.random.standard_normal(size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L741]

	Returns an array of samples drawn from the standard normal distribution.

This is a variant of cupy.random.randn().

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.

	Returns:

	Samples drawn from the standard normal distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.standard_normal() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_normal.html#numpy.random.standard_normal]

cupy.random.standard_t

	
cupy.random.standard_t(df, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L761]

	Standard Student’s t distribution.

Returns an array of samples drawn from the standard Student’s t
distribution. Its probability density function is defined as

\[f(x) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}.\]

	Parameters:

	
	df (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Degree of freedom \(\nu\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the standard Student’s t distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.standard_t() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_t.html#numpy.random.standard_t]

cupy.random.triangular

	
cupy.random.triangular(left, mode, right, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L789]

	Triangular distribution.

Returns an array of samples drawn from the triangular distribution. Its
probability density function is defined as

\[\begin{split}f(x) = \begin{cases}
 \frac{2(x-l)}{(r-l)(m-l)} & \text{for } l \leq x \leq m, \\
 \frac{2(r-x)}{(r-l)(r-m)} & \text{for } m \leq x \leq r, \\
 0 & \text{otherwise}.
 \end{cases}\end{split}\]

	Parameters:

	
	left (float [https://docs.python.org/3/library/functions.html#float]) – Lower limit \(l\).

	mode (float [https://docs.python.org/3/library/functions.html#float]) – The value where the peak of the distribution occurs.
\(m\).

	right (float [https://docs.python.org/3/library/functions.html#float]) – Higher Limit \(r\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the triangular distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.triangular() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html#numpy.random.triangular]

cupy.random.uniform

	
cupy.random.uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L822]

	Returns an array of uniformly-distributed samples over an interval.

Samples are drawn from a uniform distribution over the half-open interval
[low, high). The samples may contain the high limit due to
floating-point rounding.

	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower end of the interval.

	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper end of the interval.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.

	Returns:

	Samples drawn from the uniform distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.uniform() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy.random.uniform]

cupy.random.vonmises

	
cupy.random.vonmises(mu, kappa, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L846]

	von Mises distribution.

Returns an array of samples drawn from the von Mises distribution. Its
probability density function is defined as

\[f(x) = \frac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)}.\]

	Parameters:

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the von Mises distribution \(\mu\).

	kappa (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the von Mises distribution \(\kappa\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the von Mises distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.vonmises() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html#numpy.random.vonmises]

cupy.random.wald

	
cupy.random.wald(mean, scale, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L873]

	Wald distribution.

Returns an array of samples drawn from the Wald distribution. Its
probability density function is defined as

\[f(x) = \sqrt{\frac{\lambda}{2\pi x^3}}\
 e^{\frac{-\lambda(x-\mu)^2}{2\mu^2x}}.\]

	Parameters:

	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the wald distribution \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the wald distribution \(\lambda\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the wald distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.wald() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.wald.html#numpy.random.wald]

cupy.random.weibull

	
cupy.random.weibull(a, size=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L901]

	weibull distribution.

Returns an array of samples drawn from the weibull distribution. Its
probability density function is defined as

\[f(x) = ax^{(a-1)}e^{-x^a}.\]

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the weibull distribution \(a\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:

	Samples drawn from the weibull distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.weibull() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.weibull.html#numpy.random.weibull]

cupy.random.zipf

	
cupy.random.zipf(a, size=None, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_distributions.py#L927]

	Zipf distribution.

Returns an array of samples drawn from the Zipf distribution. Its
probability mass function is defined as

\[f(x) = \frac{x^{-a}}{ \zeta (a)},\]

where \(\zeta\) is the Riemann Zeta function.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Parameter of the beta distribution \(a\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.int32 and
numpy.int64 types are allowed.

	Returns:

	Samples drawn from the Zipf distribution.

	Return type:

	cupy.ndarray

See also

numpy.random.zipf() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.zipf.html#numpy.random.zipf]

cupy.random.get_random_state

	
cupy.random.get_random_state()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1288]

	Gets the state of the random number generator for the current device.

If the state for the current device is not created yet, this function
creates a new one, initializes it, and stores it as the state for the
current device.

	Returns:

	The state of the random number generator for the
device.

	Return type:

	RandomState

cupy.random.set_random_state

	
cupy.random.set_random_state(rs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/random/_generator.py#L1311]

	Sets the state of the random number generator for the current device.

	Parameters:

	state (RandomState) – Random state to set for the current device.

Set routines

Hint

NumPy API Reference: Set routines [https://numpy.org/doc/stable/reference/routines.set.html]

Making proper sets

	unique(ar[, return_index, return_inverse, ...])

	Find the unique elements of an array.

Boolean operations

	in1d(ar1, ar2[, assume_unique, invert])

	Tests whether each element of a 1-D array is also present in a second array.

	intersect1d(arr1, arr2[, assume_unique, ...])

	Find the intersection of two arrays.

	isin(element, test_elements[, ...])

	Calculates element in test_elements, broadcasting over element only.

	setdiff1d(ar1, ar2[, assume_unique])

	Find the set difference of two arrays.

	setxor1d(ar1, ar2[, assume_unique])

	Find the set exclusive-or of two arrays.

cupy.unique

	
cupy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_manipulation/add_remove.py#L176]

	Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements:

	the indices of the input array that give the unique values

	the indices of the unique array that reconstruct the input array

	the number of times each unique value comes up in the input array

	Parameters:

	
	ar (array_like) – Input array. This will be flattened if it is not
already 1-D.

	return_index (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the indices of ar
(along the specified axis, if provided, or in the flattened array)
that result in the unique array.

	return_inverse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the indices of the
unique array (for the specified axis, if provided) that can be used
to reconstruct ar.

	return_counts (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, also return the number of times
each unique item appears in ar.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – The axis to operate on. If None, ar will
be flattened. If an integer, the subarrays indexed by the given
axis will be flattened and treated as the elements of a 1-D array
with the dimension of the given axis, see the notes for more
details. The default is None.

	equal_nan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, collapse multiple NaN values in the
return array into one.

	Returns:

	If there are no optional outputs, it returns the
cupy.ndarray of the sorted unique values. Otherwise, it
returns the tuple which contains the sorted unique values and
followings.

	The indices of the first occurrences of the unique values in the
original array. Only provided if return_index is True.

	The indices to reconstruct the original array from the
unique array. Only provided if return_inverse is True.

	The number of times each of the unique values comes up in the
original array. Only provided if return_counts is True.

	Return type:

	cupy.ndarray or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Notes

When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the
array (move the axis to the first dimension to keep the order of the
other axes) and then flattening the subarrays in C order.

Warning

This function may synchronize the device.

See also

numpy.unique() [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique]

cupy.in1d

	
cupy.in1d(ar1, ar2, assume_unique=False, invert=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L92]

	Tests whether each element of a 1-D array is also present in a second
array.

Returns a boolean array the same length as ar1 that is True
where an element of ar1 is in ar2 and False otherwise.

	Parameters:

	
	ar1 (cupy.ndarray) – Input array.

	ar2 (cupy.ndarray) – The values against which to test each value of ar1.

	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ignored

	invert (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the values in the returned array
are inverted (that is, False where an element of ar1 is in
ar2 and True otherwise). Default is False.

	Returns:

	y – The values ar1[in1d] are in ar2.

	Return type:

	cupy.ndarray, bool [https://docs.python.org/3/library/functions.html#bool]

cupy.intersect1d

	
cupy.intersect1d(arr1, arr2, assume_unique=False, return_indices=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L132]

	Find the intersection of two arrays.
Returns the sorted, unique values that are in both of the input arrays.

	Parameters:

	
	arr1 (cupy.ndarray) – Input arrays. Arrays will be flattened if they are not in 1D.

	arr2 (cupy.ndarray) – Input arrays. Arrays will be flattened if they are not in 1D.

	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, False. If set True, the input arrays will be
assumend to be unique, which speeds up the calculation. If set True,
but the arrays are not unique, incorrect results and out-of-bounds
indices could result.

	return_indices (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, False. If True, the indices which correspond to the
intersection of the two arrays are returned.

	Returns:

	
	intersect1d (cupy.ndarray) – Sorted 1D array of common and unique elements.

	comm1 (cupy.ndarray) – The indices of the first occurrences of the common values
in arr1. Only provided if return_indices is True.

	comm2 (cupy.ndarray) – The indices of the first occurrences of the common values
in arr2. Only provided if return_indices is True.

See also

numpy.intersect1d [https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html#numpy.intersect1d]

cupy.isin

	
cupy.isin(element, test_elements, assume_unique=False, invert=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L193]

	Calculates element in test_elements, broadcasting over element
only. Returns a boolean array of the same shape as element that is
True where an element of element is in test_elements and
False otherwise.

	Parameters:

	
	element (cupy.ndarray) – Input array.

	test_elements (cupy.ndarray) – The values against which to test each
value of element. This argument is flattened if it is an
array or array_like.

	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ignored

	invert (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the values in the returned array
are inverted, as if calculating element not in test_elements.
Default is False.

	Returns:

	y – Has the same shape as element. The values element[isin]
are in test_elements.

	Return type:

	cupy.ndarray, bool [https://docs.python.org/3/library/functions.html#bool]

cupy.setdiff1d

	
cupy.setdiff1d(ar1, ar2, assume_unique=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L225]

	Find the set difference of two arrays. It returns unique
values in ar1 that are not in ar2.

	Parameters:

	
	ar1 (cupy.ndarray) – Input array

	ar2 (cupy.ndarray) – Input array for comparision

	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, False, i.e. input arrays are not unique.
If True, input arrays are assumed to be unique. This can
speed up the calculation.

	Returns:

	setdiff1d – Returns a 1D array of values in ar1 that are not in ar2.
It always returns a sorted output for unsorted input only
if assume_unique=False.

	Return type:

	cupy.ndarray

See also

numpy.setdiff1d [https://numpy.org/doc/stable/reference/generated/numpy.setdiff1d.html#numpy.setdiff1d]

cupy.setxor1d

	
cupy.setxor1d(ar1, ar2, assume_unique=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_logic/truth.py#L260]

	Find the set exclusive-or of two arrays.

	Parameters:

	
	ar1 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

	ar2 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, False, i.e. input arrays are not unique.
If True, input arrays are assumed to be unique. This can
speed up the calculation.

	Returns:

	setxor1d – Return the sorted, unique values that are in only one
(not both) of the input arrays.

	Return type:

	cupy.ndarray

See also

numpy.setxor1d [https://numpy.org/doc/stable/reference/generated/numpy.setxor1d.html#numpy.setxor1d]

Sorting, searching, and counting

Hint

NumPy API Reference: Sorting, searching, and counting [https://numpy.org/doc/stable/reference/routines.sort.html]

Sorting

	sort(a[, axis, kind])

	Returns a sorted copy of an array with a stable sorting algorithm.

	lexsort(keys)

	Perform an indirect sort using an array of keys.

	argsort(a[, axis, kind])

	Returns the indices that would sort an array with a stable sorting.

	msort(a)

	Returns a copy of an array sorted along the first axis.

	sort_complex(a)

	Sort a complex array using the real part first, then the imaginary part.

	partition(a, kth[, axis])

	Returns a partitioned copy of an array.

	argpartition(a, kth[, axis])

	Returns the indices that would partially sort an array.

See also

cupy.ndarray.sort()

Searching

	argmax(a[, axis, dtype, out, keepdims])

	Returns the indices of the maximum along an axis.

	nanargmax(a[, axis, dtype, out, keepdims])

	Return the indices of the maximum values in the specified axis ignoring NaNs.

	argmin(a[, axis, dtype, out, keepdims])

	Returns the indices of the minimum along an axis.

	nanargmin(a[, axis, dtype, out, keepdims])

	Return the indices of the minimum values in the specified axis ignoring NaNs.

	argwhere(a)

	Return the indices of the elements that are non-zero.

	nonzero(a)

	Return the indices of the elements that are non-zero.

	flatnonzero(a)

	Return indices that are non-zero in the flattened version of a.

	where(condition[, x, y])

	Return elements, either from x or y, depending on condition.

	searchsorted(a, v[, side, sorter])

	Finds indices where elements should be inserted to maintain order.

	extract(condition, a)

	Return the elements of an array that satisfy some condition.

Counting

	count_nonzero(a[, axis])

	Counts the number of non-zero values in the array.

cupy.sort

	
cupy.sort(a, axis=-1, kind=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L9]

	Returns a sorted copy of an array with a stable sorting algorithm.

	Parameters:

	
	a (cupy.ndarray) – Array to be sorted.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array is
flattened before sorting.

	kind – Default is None, which is equivalent to ‘stable’. Unlike in
NumPy any other options are not accepted here.

	Returns:

	Array of the same type and shape as a.

	Return type:

	cupy.ndarray

Note

For its implementation reason, cupy.sort currently does not support
kind and order parameters that numpy.sort does
support.

See also

numpy.sort() [https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort]

cupy.lexsort

	
cupy.lexsort(keys)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L42]

	Perform an indirect sort using an array of keys.

	Parameters:

	keys (cupy.ndarray) – (k, N) array containing k (N,)-shaped
arrays. The k different “rows” to be sorted. The last row is
the primary sort key.

	Returns:

	Array of indices that sort the keys.

	Return type:

	cupy.ndarray

Note

For its implementation reason, cupy.lexsort currently supports only
keys with their rank of one or two and does not support axis
parameter that numpy.lexsort supports.

See also

numpy.lexsort() [https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html#numpy.lexsort]

cupy.argsort

	
cupy.argsort(a, axis=-1, kind=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L93]

	Returns the indices that would sort an array with a stable sorting.

	Parameters:

	
	a (cupy.ndarray) – Array to sort.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array is
flattened before sorting.

	kind – Default is None, which is equivalent to ‘stable’. Unlike in
NumPy any other options are not accepted here.

	Returns:

	Array of indices that sort a.

	Return type:

	cupy.ndarray

Note

For its implementation reason, cupy.argsort does not support
kind and order parameters.

See also

numpy.argsort() [https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort]

cupy.msort

	
cupy.msort(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L119]

	Returns a copy of an array sorted along the first axis.

	Parameters:

	a (cupy.ndarray) – Array to be sorted.

	Returns:

	Array of the same type and shape as a.

	Return type:

	cupy.ndarray

See also

numpy.msort()

cupy.sort_complex

	
cupy.sort_complex(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L141]

	Sort a complex array using the real part first,
then the imaginary part.

	Parameters:

	a (cupy.ndarray) – Array to be sorted.

	Returns:

	sorted complex array.

	Return type:

	cupy.ndarray

See also

numpy.sort_complex() [https://numpy.org/doc/stable/reference/generated/numpy.sort_complex.html#numpy.sort_complex]

cupy.partition

	
cupy.partition(a, kth, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L162]

	Returns a partitioned copy of an array.

Creates a copy of the array whose elements are rearranged such that the
value of the element in k-th position would occur in that position in a
sorted array. All of the elements before the new k-th element are less
than or equal to the elements after the new k-th element.

	Parameters:

	
	a (cupy.ndarray) – Array to be sorted.

	kth (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Element index to partition by. If
supplied with a sequence of k-th it will partition all elements
indexed by k-th of them into their sorted position at once.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array is
flattened before sorting.

	Returns:

	Array of the same type and shape as a.

	Return type:

	cupy.ndarray

See also

numpy.partition() [https://numpy.org/doc/stable/reference/generated/numpy.partition.html#numpy.partition]

cupy.argpartition

	
cupy.argpartition(a, kth, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/sort.py#L194]

	Returns the indices that would partially sort an array.

	Parameters:

	
	a (cupy.ndarray) – Array to be sorted.

	kth (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – Element index to partition by. If
supplied with a sequence of k-th it will partition all elements
indexed by k-th of them into their sorted position at once.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array is
flattened before sorting.

	Returns:

	Array of the same type and shape as a.

	Return type:

	cupy.ndarray

Note

For its implementation reason, cupy.argpartition fully sorts the
given array as cupy.argsort does. It also does not support kind
and order parameters that numpy.argpartition supports.

See also

numpy.argpartition() [https://numpy.org/doc/stable/reference/generated/numpy.argpartition.html#numpy.argpartition]

cupy.argmax

	
cupy.argmax(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L10]

	Returns the indices of the maximum along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to take argmax.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the maximum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.

	Returns:

	The indices of the maximum of a along an axis.

	Return type:

	cupy.ndarray

Note

dtype and keepdim arguments are specific to CuPy. They are
not in NumPy.

Note

axis argument accepts a tuple of ints, but this is specific to
CuPy. NumPy does not support it.

See also

numpy.argmax() [https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax]

cupy.nanargmax

	
cupy.nanargmax(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L40]

	Return the indices of the maximum values in the specified axis ignoring
NaNs. For all-NaN slice -1 is returned.
Subclass cannot be passed yet, subok=True still unsupported

	Parameters:

	
	a (cupy.ndarray) – Array to take nanargmax.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the maximum. a is flattened by
default.

	Returns:

	The indices of the maximum of a
along an axis ignoring NaN values.

	Return type:

	cupy.ndarray

Note

For performance reasons, cupy.nanargmax returns
out of range values for all-NaN slice
whereas numpy.nanargmax raises ValueError

See also

numpy.nanargmax() [https://numpy.org/doc/stable/reference/generated/numpy.nanargmax.html#numpy.nanargmax]

cupy.argmin

	
cupy.argmin(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L65]

	Returns the indices of the minimum along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to take argmin.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the minimum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.

	Returns:

	The indices of the minimum of a along an axis.

	Return type:

	cupy.ndarray

Note

dtype and keepdim arguments are specific to CuPy. They are
not in NumPy.

Note

axis argument accepts a tuple of ints, but this is specific to
CuPy. NumPy does not support it.

See also

numpy.argmin() [https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin]

cupy.nanargmin

	
cupy.nanargmin(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L95]

	Return the indices of the minimum values in the specified axis ignoring
NaNs. For all-NaN slice -1 is returned.
Subclass cannot be passed yet, subok=True still unsupported

	Parameters:

	
	a (cupy.ndarray) – Array to take nanargmin.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the minimum. a is flattened by
default.

	Returns:

	The indices of the minimum of a
along an axis ignoring NaN values.

	Return type:

	cupy.ndarray

Note

For performance reasons, cupy.nanargmin returns
out of range values for all-NaN slice
whereas numpy.nanargmin raises ValueError

See also

numpy.nanargmin() [https://numpy.org/doc/stable/reference/generated/numpy.nanargmin.html#numpy.nanargmin]

cupy.argwhere

	
cupy.argwhere(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L214]

	Return the indices of the elements that are non-zero.

Returns a (N, ndim) dimantional array containing the
indices of the non-zero elements. Where N is number of
non-zero elements and ndim is dimension of the given array.

	Parameters:

	a (cupy.ndarray) – array

	Returns:

	Indices of elements that are non-zero.

	Return type:

	cupy.ndarray

See also

numpy.argwhere() [https://numpy.org/doc/stable/reference/generated/numpy.argwhere.html#numpy.argwhere]

cupy.nonzero

	
cupy.nonzero(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L120]

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that dimension.

	Parameters:

	a (cupy.ndarray) – array

	Returns:

	Indices of elements that are non-zero.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of arrays

Warning

This function may synchronize the device.

See also

numpy.nonzero() [https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero]

cupy.flatnonzero

	
cupy.flatnonzero(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L143]

	Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

	Parameters:

	a (cupy.ndarray) – input array

	Returns:

	Output array,
containing the indices of the elements of a.ravel() that are non-zero.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.flatnonzero() [https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero]

cupy.where

	
cupy.where(condition, x=None, y=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L177]

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	Parameters:

	
	condition (cupy.ndarray) – When True, take x, otherwise take y.

	x (cupy.ndarray) – Values from which to choose on True.

	y (cupy.ndarray) – Values from which to choose on False.

	Returns:

	Each element of output contains elements of x when
condition is True, otherwise elements of y. If only
condition is given, return the tuple condition.nonzero(),
the indices where condition is True.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device if both x and y are
omitted.

See also

numpy.where() [https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where]

cupy.searchsorted

	
cupy.searchsorted(a, v, side='left', sorter=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/search.py#L393]

	Finds indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that,
if the corresponding elements in v were inserted before the indices,
the order of a would be preserved.

	Parameters:

	
	a (cupy.ndarray) – Input array. If sorter is None, then
it must be sorted in ascending order,
otherwise sorter must be an array of indices that sort it.

	v (cupy.ndarray) – Values to insert into a.

	side – {‘left’, ‘right’}
If left, return the index of the first suitable location found
If right, return the last such index.
If there is no suitable index, return either 0 or length of a.

	sorter – 1-D array_like
Optional array of integer indices that sort array a into
ascending order. They are typically the result of
argsort().

	Returns:

	Array of insertion points with the same shape as v.

	Return type:

	cupy.ndarray

Note

When a is not in ascending order, behavior is undefined.

See also

numpy.searchsorted() [https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted]

cupy.extract

	
cupy.extract(condition, a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_indexing/indexing.py#L129]

	Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)).
If condition is boolean, np.extract is equivalent to
arr[condition].

	Parameters:

	
	condition (int [https://docs.python.org/3/library/functions.html#int] or array_like) – An array whose nonzero or True entries
indicate the elements of array to extract.

	a (cupy.ndarray) – Input array of the same size as condition.

	Returns:

	Rank 1 array of values from arr where condition is True.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.extract() [https://numpy.org/doc/stable/reference/generated/numpy.extract.html#numpy.extract]

cupy.count_nonzero

	
cupy.count_nonzero(a, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_sorting/count.py#L4]

	Counts the number of non-zero values in the array.

Note

numpy.count_nonzero() [https://numpy.org/doc/stable/reference/generated/numpy.count_nonzero.html#numpy.count_nonzero] returns int value when axis=None,
but cupy.count_nonzero() returns zero-dimensional array to reduce
CPU-GPU synchronization.

	Parameters:

	
	a (cupy.ndarray) – The array for which to count non-zeros.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Axis or tuple of axes along which to
count non-zeros. Default is None, meaning that non-zeros will be
counted along a flattened version of a

	Returns:

	Number of non-zero values in the array
along a given axis. Otherwise, the total number of non-zero values
in the array is returned.

	Return type:

	cupy.ndarray of int [https://docs.python.org/3/library/functions.html#int]

Statistics

Hint

NumPy API Reference: Statistics [https://numpy.org/doc/stable/reference/routines.statistics.html]

Order statistics

	amin(a[, axis, out, keepdims])

	Returns the minimum of an array or the minimum along an axis.

	amax(a[, axis, out, keepdims])

	Returns the maximum of an array or the maximum along an axis.

	nanmin(a[, axis, out, keepdims])

	Returns the minimum of an array along an axis ignoring NaN.

	nanmax(a[, axis, out, keepdims])

	Returns the maximum of an array along an axis ignoring NaN.

	ptp(a[, axis, out, keepdims])

	Returns the range of values (maximum - minimum) along an axis.

	percentile(a, q[, axis, out, ...])

	Computes the q-th percentile of the data along the specified axis.

	quantile(a, q[, axis, out, overwrite_input, ...])

	Computes the q-th quantile of the data along the specified axis.

Averages and variances

	median(a[, axis, out, overwrite_input, keepdims])

	Compute the median along the specified axis.

	average(a[, axis, weights, returned, keepdims])

	Returns the weighted average along an axis.

	mean(a[, axis, dtype, out, keepdims])

	Returns the arithmetic mean along an axis.

	std(a[, axis, dtype, out, ddof, keepdims])

	Returns the standard deviation along an axis.

	var(a[, axis, dtype, out, ddof, keepdims])

	Returns the variance along an axis.

	nanmedian(a[, axis, out, overwrite_input, ...])

	Compute the median along the specified axis, while ignoring NaNs.

	nanmean(a[, axis, dtype, out, keepdims])

	Returns the arithmetic mean along an axis ignoring NaN values.

	nanstd(a[, axis, dtype, out, ddof, keepdims])

	Returns the standard deviation along an axis ignoring NaN values.

	nanvar(a[, axis, dtype, out, ddof, keepdims])

	Returns the variance along an axis ignoring NaN values.

Correlations

	corrcoef(a[, y, rowvar, bias, ddof, dtype])

	Returns the Pearson product-moment correlation coefficients of an array.

	correlate(a, v[, mode])

	Returns the cross-correlation of two 1-dimensional sequences.

	cov(a[, y, rowvar, bias, ddof, fweights, ...])

	Returns the covariance matrix of an array.

Histograms

	histogram(x[, bins, range, weights, density])

	Computes the histogram of a set of data.

	histogram2d(x, y[, bins, range, weights, ...])

	Compute the bi-dimensional histogram of two data samples.

	histogramdd(sample[, bins, range, weights, ...])

	Compute the multidimensional histogram of some data.

	bincount(x[, weights, minlength])

	Count number of occurrences of each value in array of non-negative ints.

	digitize(x, bins[, right])

	Finds the indices of the bins to which each value in input array belongs.

cupy.amin

	
cupy.amin(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L10]

	Returns the minimum of an array or the minimum along an axis.

Note

When at least one element is NaN, the corresponding min value will be
NaN.

	Parameters:

	
	a (cupy.ndarray) – Array to take the minimum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the minimum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The minimum of a, along the axis if specified.

	Return type:

	cupy.ndarray

Note

When cuTENSOR accelerator is used, the output value might be collapsed
for reduction axes that have one or more NaN elements.

See also

numpy.amin() [https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin]

cupy.amax

	
cupy.amax(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L47]

	Returns the maximum of an array or the maximum along an axis.

Note

When at least one element is NaN, the corresponding min value will be
NaN.

	Parameters:

	
	a (cupy.ndarray) – Array to take the maximum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the maximum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The maximum of a, along the axis if specified.

	Return type:

	cupy.ndarray

Note

When cuTENSOR accelerator is used, the output value might be collapsed
for reduction axes that have one or more NaN elements.

See also

numpy.amax() [https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax]

cupy.nanmin

	
cupy.nanmin(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L84]

	Returns the minimum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.

	Parameters:

	
	a (cupy.ndarray) – Array to take the minimum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the minimum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The minimum of a, along the axis if specified.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.nanmin() [https://numpy.org/doc/stable/reference/generated/numpy.nanmin.html#numpy.nanmin]

cupy.nanmax

	
cupy.nanmax(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L115]

	Returns the maximum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.

	Parameters:

	
	a (cupy.ndarray) – Array to take the maximum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the maximum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The maximum of a, along the axis if specified.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.nanmax() [https://numpy.org/doc/stable/reference/generated/numpy.nanmax.html#numpy.nanmax]

cupy.ptp

	
cupy.ptp(a, axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L146]

	Returns the range of values (maximum - minimum) along an axis.

Note

The name of the function comes from the acronym for ‘peak to peak’.

When at least one element is NaN, the corresponding ptp value will be
NaN.

	Parameters:

	
	a (cupy.ndarray) – Array over which to take the range.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which to take the minimum. The flattened
array is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is retained as an axis of
size one.

	Returns:

	The minimum of a, along the axis if specified.

	Return type:

	cupy.ndarray

Note

When cuTENSOR accelerator is used, the output value might be collapsed
for reduction axes that have one or more NaN elements.

See also

numpy.amin() [https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin]

cupy.percentile

	
cupy.percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L293]

	Computes the q-th percentile of the data along the specified axis.

	Parameters:

	
	a (cupy.ndarray) – Array for which to compute percentiles.

	q (float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of floats or cupy.ndarray) – Percentiles to compute
in the range between 0 and 100 inclusive.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Along which axis or axes to compute the
percentiles. The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	overwrite_input (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then allow the input array a
to be modified by the intermediate calculations, to save
memory. In this case, the contents of the input a after this
function completes is undefined.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Interpolation method when a quantile lies between
two data points. linear interpolation is used by default.
Supported interpolations are``lower``, higher, midpoint,
nearest and linear.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	interpolation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Deprecated name for the method keyword argument.

	Returns:

	The percentiles of a, along the axis if specified.

	Return type:

	cupy.ndarray

See also

numpy.percentile() [https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile]

cupy.quantile

	
cupy.quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/order.py#L340]

	Computes the q-th quantile of the data along the specified axis.

	Parameters:

	
	a (cupy.ndarray) – Array for which to compute quantiles.

	q (float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of floats or cupy.ndarray) – Quantiles to compute
in the range between 0 and 1 inclusive.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Along which axis or axes to compute the
quantiles. The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	overwrite_input (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then allow the input array a
to be modified by the intermediate calculations, to save
memory. In this case, the contents of the input a after this
function completes is undefined.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Interpolation method when a quantile lies between
two data points. linear interpolation is used by default.
Supported interpolations are``lower``, higher, midpoint,
nearest and linear.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	interpolation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Deprecated name for the method keyword argument.

	Returns:

	The quantiles of a, along the axis if specified.

	Return type:

	cupy.ndarray

See also

numpy.quantile() [https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile]

cupy.median

	
cupy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L8]

	Compute the median along the specified axis.

Returns the median of the array elements.

	Parameters:

	
	a (cupy.ndarray) – Array to compute the median.

	axis (int [https://docs.python.org/3/library/functions.html#int], sequence of int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which the medians are
computed. The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	overwrite_input (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then allow use of memory of input
array a for calculations. The input array will be modified by the
call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as
undefined, but it will probably be fully or partially sorted.
Default is False. If overwrite_input is True and a
is not already an ndarray, an error will be raised.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of size
one.

	Returns:

	The median of a, along the axis if specified.

	Return type:

	cupy.ndarray

See also

numpy.median() [https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median]

cupy.average

	
cupy.average(a, axis=None, weights=None, returned=False, *, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L70]

	Returns the weighted average along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to compute average.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute average. The flattened array
is used by default.

	weights (cupy.ndarray) – Array of weights where each element
corresponds to the value in a. If None, all the values
in a have a weight equal to one.

	returned (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a tuple of the average and the sum
of weights is returned, otherwise only the average is returned.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of size
one.

	Returns:

	The average of the input array
along the axis and the sum of weights.

	Return type:

	cupy.ndarray or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of cupy.ndarray

Warning

This function may synchronize the device if weight is given.

See also

numpy.average() [https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average]

cupy.mean

	
cupy.mean(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L143]

	Returns the arithmetic mean along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to compute mean.

	axis (int [https://docs.python.org/3/library/functions.html#int], sequence of int [https://docs.python.org/3/library/functions.html#int] or None) – Along which axis to compute mean.
The flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The mean of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.mean() [https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean]

cupy.std

	
cupy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L188]

	Returns the standard deviation along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to compute standard deviation.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute standard deviation. The
flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The standard deviation of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.std() [https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std]

cupy.var

	
cupy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L165]

	Returns the variance along an axis.

	Parameters:

	
	a (cupy.ndarray) – Array to compute variance.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute variance. The flattened array
is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The variance of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.var() [https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var]

cupy.nanmedian

	
cupy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L37]

	Compute the median along the specified axis, while ignoring NaNs.

Returns the median of the array elements.

	Parameters:

	
	a (cupy.ndarray) – Array to compute the median.

	axis (int [https://docs.python.org/3/library/functions.html#int], sequence of int [https://docs.python.org/3/library/functions.html#int] or None) – Axis along which the medians are
computed. The flattened array is used by default.

	out (cupy.ndarray) – Output array.

	overwrite_input (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then allow use of memory of input
array a for calculations. The input array will be modified by the
call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as
undefined, but it will probably be fully or partially sorted.
Default is False. If overwrite_input is True and a
is not already an ndarray, an error will be raised.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of size
one.

	Returns:

	The median of a, along the axis if specified.

	Return type:

	cupy.ndarray

See also

numpy.nanmedian() [https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian]

cupy.nanmean

	
cupy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L211]

	Returns the arithmetic mean along an axis ignoring NaN values.

	Parameters:

	
	a (cupy.ndarray) – Array to compute mean.

	axis (int [https://docs.python.org/3/library/functions.html#int], sequence of int [https://docs.python.org/3/library/functions.html#int] or None) – Along which axis to compute mean.
The flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The mean of the input array along the axis ignoring NaNs.

	Return type:

	cupy.ndarray

See also

numpy.nanmean() [https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean]

cupy.nanstd

	
cupy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L264]

	Returns the standard deviation along an axis ignoring NaN values.

	Parameters:

	
	a (cupy.ndarray) – Array to compute standard deviation.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute standard deviation. The
flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The standard deviation of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.nanstd() [https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd]

cupy.nanvar

	
cupy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/meanvar.py#L237]

	Returns the variance along an axis ignoring NaN values.

	Parameters:

	
	a (cupy.ndarray) – Array to compute variance.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute variance. The flattened array
is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:

	The variance of the input array along the axis.

	Return type:

	cupy.ndarray

See also

numpy.nanvar() [https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar]

cupy.corrcoef

	
cupy.corrcoef(a, y=None, rowvar=True, bias=None, ddof=None, *, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/correlation.py#L10]

	Returns the Pearson product-moment correlation coefficients of an array.

	Parameters:

	
	a (cupy.ndarray) – Array to compute the Pearson product-moment
correlation coefficients.

	y (cupy.ndarray) – An additional set of variables and observations.

	rowvar (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then each row represents a variable, with
observations in the columns. Otherwise, the relationship is
transposed.

	bias (None) – Has no effect, do not use.

	ddof (None) – Has no effect, do not use.

	dtype – Data type specifier. By default, the return data-type will have
at least numpy.float64 precision.

	Returns:

	The Pearson product-moment correlation coefficients of
the input array.

	Return type:

	cupy.ndarray

See also

numpy.corrcoef() [https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef]

cupy.correlate

	
cupy.correlate(a, v, mode='valid')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/correlation.py#L53]

	Returns the cross-correlation of two 1-dimensional sequences.

	Parameters:

	
	a (cupy.ndarray) – first 1-dimensional input.

	v (cupy.ndarray) – second 1-dimensional input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – valid, same, full

	Returns:

	Discrete cross-correlation of a and v.

	Return type:

	cupy.ndarray

See also

numpy.correlate() [https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate]

cupy.cov

	
cupy.cov(a, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/correlation.py#L83]

	Returns the covariance matrix of an array.

This function currently does not support fweights and aweights
options.

	Parameters:

	
	a (cupy.ndarray) – Array to compute covariance matrix.

	y (cupy.ndarray) – An additional set of variables and observations.

	rowvar (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then each row represents a variable, with
observations in the columns. Otherwise, the relationship is
transposed.

	bias (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, normalization is by (N - 1), where N is
the number of observations given (unbiased estimate). If True,
then normalization is by N.

	ddof (int [https://docs.python.org/3/library/functions.html#int]) – If not None the default value implied by bias is
overridden. Note that ddof=1 will return the unbiased estimate
and ddof=0 will return the simple average.

	fweights (cupy.ndarray, int [https://docs.python.org/3/library/functions.html#int]) – 1-D array of integer frequency weights.
the number of times each observation vector should be repeated.
It is required that fweights >= 0. However, the function will not
error when fweights < 0 for performance reasons.

	aweights (cupy.ndarray) – 1-D array of observation vector weights.
These relative weights are typically large for observations
considered “important” and smaller for observations considered
less “important”. If ddof=0 the array of weights can be used
to assign probabilities to observation vectors.
It is required that aweights >= 0. However, the function will not
error when aweights < 0 for performance reasons.

	dtype – Data type specifier. By default, the return data-type will have
at least numpy.float64 precision.

	Returns:

	The covariance matrix of the input array.

	Return type:

	cupy.ndarray

See also

numpy.cov() [https://numpy.org/doc/stable/reference/generated/numpy.cov.html#numpy.cov]

cupy.histogram

	
cupy.histogram(x, bins=10, range=None, weights=None, density=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/histogram.py#L174]

	Computes the histogram of a set of data.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	bins (int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray) – If bins is an int, it represents the
number of bins. If bins is an ndarray, it
represents a bin edges.

	range (2-tuple of float [https://docs.python.org/3/library/functions.html#float], optional) – The lower and upper range of the
bins. If not provided, range is simply (x.min(), x.max()).
Values outside the range are ignored. The first element of the
range must be less than or equal to the second. range affects the
automatic bin computation as well. While bin width is computed to
be optimal based on the actual data within range, the bin count
will fill the entire range including portions containing no data.

	density (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, the default, returns the number of
samples in each bin. If True, returns the probability density
function at the bin, bin_count / sample_count / bin_volume.

	weights (cupy.ndarray, optional) – An array of weights, of the same
shape as x. Each value in x only contributes its associated
weight towards the bin count (instead of 1).

	Returns:

	(hist, bin_edges) where hist is a cupy.ndarray
storing the values of the histogram, and bin_edges is a
cupy.ndarray storing the bin edges.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Warning

This function may synchronize the device.

See also

numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram]

cupy.histogram2d

	
cupy.histogram2d(x, y, bins=10, range=None, weights=None, density=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/histogram.py#L410]

	Compute the bi-dimensional histogram of two data samples.

	Parameters:

	
	x (cupy.ndarray) – The first array of samples to be histogrammed.

	y (cupy.ndarray) – The second array of samples to be histogrammed.

	bins (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray) – The bin specification:

	A sequence of arrays describing the monotonically increasing bin
edges along each dimension.

	The number of bins for each dimension (nx, ny)

	The number of bins for all dimensions (nx=ny=bins).

	range (sequence, optional) – A sequence of length two, each an optional
(lower, upper) tuple giving the outer bin edges to be used if the
edges are not given explicitly in bins. An entry of None in the
sequence results in the minimum and maximum values being used for
the corresponding dimension. The default, None, is equivalent to
passing a tuple of two None values.

	weights (cupy.ndarray) – An array of values w_i weighing each sample
(x_i, y_i). The values of the returned histogram are equal to the
sum of the weights belonging to the samples falling into each bin.

	density (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, the default, returns the number of
samples in each bin. If True, returns the probability density
function at the bin, bin_count / sample_count / bin_volume.

	Returns:

	
	H (cupy.ndarray):
	The multidimensional histogram of sample x. See
normed and weights for the different possible semantics.

	edges0 (tuple of cupy.ndarray):
	A list of D arrays describing the bin
edges for the first dimension.

	edges1 (tuple of cupy.ndarray):
	A list of D arrays describing the bin
edges for the second dimension.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Warning

This function may synchronize the device.

See also

numpy.histogram2d() [https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html#numpy.histogram2d]

cupy.histogramdd

	
cupy.histogramdd(sample, bins=10, range=None, weights=None, density=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/histogram.py#L253]

	Compute the multidimensional histogram of some data.

	Parameters:

	
	sample (cupy.ndarray) – The data to be histogrammed. (N, D) or (D, N)
array

Note the unusual interpretation of sample when an array_like:

	When an array, each row is a coordinate in a D-dimensional
space - such as histogramdd(cupy.array([p1, p2, p3])).

	When an array_like, each element is the list of values for single
coordinate - such as histogramdd((X, Y, Z)).

The first form should be preferred.

	bins (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray) – The bin specification:

	A sequence of arrays describing the monotonically increasing bin
edges along each dimension.

	The number of bins for each dimension (nx, ny, … =bins)

	The number of bins for all dimensions (nx=ny=…=bins).

	range (sequence, optional) – A sequence of length D, each an optional
(lower, upper) tuple giving the outer bin edges to be used if the
edges are not given explicitly in bins. An entry of None in the
sequence results in the minimum and maximum values being used for
the corresponding dimension. The default, None, is equivalent to
passing a tuple of D None values.

	weights (cupy.ndarray) – An array of values w_i weighing each sample
(x_i, y_i, z_i, …). The values of the returned histogram are
equal to the sum of the weights belonging to the samples falling
into each bin.

	density (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, the default, returns the number of
samples in each bin. If True, returns the probability density
function at the bin, bin_count / sample_count / bin_volume.

	Returns:

	
	H (cupy.ndarray):
	The multidimensional histogram of sample x. See
normed and weights for the different possible semantics.

	edges (list of cupy.ndarray):
	A list of D arrays describing the bin
edges for each dimension.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Warning

This function may synchronize the device.

See also

numpy.histogramdd() [https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html#numpy.histogramdd]

cupy.bincount

	
cupy.bincount(x, weights=None, minlength=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/histogram.py#L481]

	Count number of occurrences of each value in array of non-negative ints.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	weights (cupy.ndarray) – Weights array which has the same shape as
x.

	minlength (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of bins for the output array.

	Returns:

	The result of binning the input array. The length of
output is equal to max(cupy.max(x) + 1, minlength).

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

numpy.bincount() [https://numpy.org/doc/stable/reference/generated/numpy.bincount.html#numpy.bincount]

cupy.digitize

	
cupy.digitize(x, bins, right=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_statistics/histogram.py#L533]

	Finds the indices of the bins to which each value in input array belongs.

Note

In order to avoid device synchronization, digitize does not raise
an exception when the array is not monotonic

	Parameters:

	
	x (cupy.ndarray) – Input array.

	bins (cupy.ndarray) – Array of bins.
It has to be 1-dimensional and monotonic increasing or decreasing.

	right (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the intervals include the right or the left bin
edge.

	Returns:

	Output array of indices, of same shape as x.

	Return type:

	cupy.ndarray

See also

numpy.digitize() [https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize]

Test support (cupy.testing)

Hint

NumPy API Reference: Test support (numpy.testing) [https://numpy.org/doc/stable/reference/routines.testing.html]

Asserts

Hint

These APIs can accept both numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and cupy.ndarray.

	assert_array_almost_equal(x, y[, decimal, ...])

	Raises an AssertionError if objects are not equal up to desired precision.

	assert_allclose(actual, desired[, rtol, ...])

	Raises an AssertionError if objects are not equal up to desired tolerance.

	assert_array_almost_equal_nulp(x, y[, nulp])

	Compare two arrays relatively to their spacing.

	assert_array_max_ulp(a, b[, maxulp, dtype])

	Check that all items of arrays differ in at most N Units in the Last Place.

	assert_array_equal(x, y[, err_msg, verbose, ...])

	Raises an AssertionError if two array_like objects are not equal.

	assert_array_less(x, y[, err_msg, verbose])

	Raises an AssertionError if array_like objects are not ordered by less than.

CuPy-specific APIs

Asserts

	assert_array_list_equal(xlist, ylist[, ...])

	Compares lists of arrays pairwise with assert_array_equal.

NumPy-CuPy Consistency Check

The following decorators are for testing consistency
between CuPy’s functions and corresponding NumPy’s ones.

	numpy_cupy_allclose([rtol, atol, err_msg, ...])

	Decorator that checks NumPy results and CuPy ones are close.

	numpy_cupy_array_almost_equal([decimal, ...])

	Decorator that checks NumPy results and CuPy ones are almost equal.

	numpy_cupy_array_almost_equal_nulp([nulp, ...])

	Decorator that checks results of NumPy and CuPy are equal w.r.t.

	numpy_cupy_array_max_ulp([maxulp, dtype, ...])

	Decorator that checks results of NumPy and CuPy ones are equal w.r.t.

	numpy_cupy_array_equal([err_msg, verbose, ...])

	Decorator that checks NumPy results and CuPy ones are equal.

	numpy_cupy_array_list_equal([err_msg, ...])

	Decorator that checks the resulting lists of NumPy and CuPy's one are equal.

	numpy_cupy_array_less([err_msg, verbose, ...])

	Decorator that checks the CuPy result is less than NumPy result.

Parameterized dtype Test

The following decorators offer the standard way for
parameterized test with respect to single or the
combination of dtype(s).

	for_dtypes(dtypes[, name])

	Decorator for parameterized dtype test.

	for_all_dtypes([name, no_float16, no_bool, ...])

	Decorator that checks the fixture with all dtypes.

	for_float_dtypes([name, no_float16])

	Decorator that checks the fixture with float dtypes.

	for_signed_dtypes([name])

	Decorator that checks the fixture with signed dtypes.

	for_unsigned_dtypes([name])

	Decorator that checks the fixture with unsinged dtypes.

	for_int_dtypes([name, no_bool])

	Decorator that checks the fixture with integer and optionally bool dtypes.

	for_complex_dtypes([name])

	Decorator that checks the fixture with complex dtypes.

	for_dtypes_combination(types[, names, full])

	Decorator that checks the fixture with a product set of dtypes.

	for_all_dtypes_combination([names, ...])

	Decorator that checks the fixture with a product set of all dtypes.

	for_signed_dtypes_combination([names, full])

	Decorator for parameterized test w.r.t.

	for_unsigned_dtypes_combination([names, full])

	Decorator for parameterized test w.r.t.

	for_int_dtypes_combination([names, no_bool, ...])

	Decorator for parameterized test w.r.t.

Parameterized order Test

The following decorators offer the standard way to parameterize tests with
orders.

	for_orders(orders[, name])

	Decorator to parameterize tests with order.

	for_CF_orders([name])

	Decorator that checks the fixture with orders 'C' and 'F'.

cupy.testing.assert_array_almost_equal

	
cupy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L29]

	Raises an AssertionError if objects are not equal up to desired precision.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.

See also

numpy.testing.assert_array_almost_equal() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_almost_equal.html#numpy.testing.assert_array_almost_equal]

cupy.testing.assert_allclose

	
cupy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L8]

	Raises an AssertionError if objects are not equal up to desired tolerance.

	Parameters:

	
	actual (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	desired (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.

See also

numpy.testing.assert_allclose() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose]

cupy.testing.assert_array_almost_equal_nulp

	
cupy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L47]

	Compare two arrays relatively to their spacing.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.

See also

numpy.testing.assert_array_almost_equal_nulp() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_almost_equal_nulp.html#numpy.testing.assert_array_almost_equal_nulp]

cupy.testing.assert_array_max_ulp

	
cupy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L61]

	Check that all items of arrays differ in at most N Units in the Last Place.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	b (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of a and b can differ.

	dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert a and b to if given.

See also

numpy.testing.assert_array_max_ulp() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_max_ulp.html#numpy.testing.assert_array_max_ulp]

cupy.testing.assert_array_equal

	
cupy.testing.assert_array_equal(x, y, err_msg='', verbose=True, strides_check=False, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L77]

	Raises an AssertionError if two array_like objects are not equal.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	strides_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of strides is also
checked.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, raise an AssertionError when either
the shape or the data type of the array_like objects does not
match. Requires NumPy version 1.24 or above.

See also

numpy.testing.assert_array_equal() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]

cupy.testing.assert_array_less

	
cupy.testing.assert_array_less(x, y, err_msg='', verbose=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L147]

	Raises an AssertionError if array_like objects are not ordered by less than.

	Parameters:

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The smaller object to check.

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The larger object to compare.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

See also

numpy.testing.assert_array_less() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_less.html#numpy.testing.assert_array_less]

cupy.testing.assert_array_list_equal

	
cupy.testing.assert_array_list_equal(xlist, ylist, err_msg='', verbose=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_array.py#L110]

	Compares lists of arrays pairwise with assert_array_equal.

	Parameters:

	
	x (array_like) – Array of the actual objects.

	y (array_like) – Array of the desired, expected objects.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

Each element of x and y must be either numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
or cupy.ndarray. x and y must have same length.
Otherwise, this function raises AssertionError.
It compares elements of x and y pairwise
with assert_array_equal() and raises error if at least one
pair is not equal.

See also

numpy.testing.assert_array_equal() [https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]

cupy.testing.numpy_cupy_allclose

	
cupy.testing.numpy_cupy_allclose(rtol=1e-07, atol=0, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None, contiguous_check=True, *, _check_sparse_format=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L446]

	Decorator that checks NumPy results and CuPy ones are close.

	Parameters:

	
	rtol (float [https://docs.python.org/3/library/functions.html#float] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Relative tolerance. Besides a float value, a
dictionary that maps a dtypes to a float value can be supplied to
adjust tolerance per dtype. If the dictionary has 'default'
string as its key, its value is used as the default tolerance in
case any dtype keys do not match.

	atol (float [https://docs.python.org/3/library/functions.html#float] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Absolute tolerance. Besides a float value, a
dictionary can be supplied as rtol.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

	contiguous_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of contiguity is
also checked.

Decorated test fixture is required to return the arrays whose values are
close between numpy case and cupy case.
For example, this test case checks numpy.zeros and cupy.zeros
should return same value.

>>> import unittest
>>> from cupy import testing
>>> class TestFoo(unittest.TestCase):
...
... @testing.numpy_cupy_allclose()
... def test_foo(self, xp):
... # ...
... # Prepare data with xp
... # ...
...
... xp_result = xp.zeros(10)
... return xp_result

See also

cupy.testing.assert_allclose()

cupy.testing.numpy_cupy_array_almost_equal

	
cupy.testing.numpy_cupy_array_almost_equal(decimal=6, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L519]

	Decorator that checks NumPy results and CuPy ones are almost equal.

	Parameters:

	
	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_almost_equal()

cupy.testing.numpy_cupy_array_almost_equal_nulp

	
cupy.testing.numpy_cupy_array_almost_equal_nulp(nulp=1, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L558]

	Decorator that checks results of NumPy and CuPy are equal w.r.t. spacing.

	Parameters:

	
	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True, all error types are acceptable.
If it is False, no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal_nulp()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_almost_equal_nulp()

cupy.testing.numpy_cupy_array_max_ulp

	
cupy.testing.numpy_cupy_array_max_ulp(maxulp=1, dtype=None, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L593]

	Decorator that checks results of NumPy and CuPy ones are equal w.r.t. ulp.

	Parameters:

	
	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of resulting two arrays can differ.

	dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert the resulting
two array to if given.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

Decorated test fixture is required to return the same arrays
in the sense of assert_array_max_ulp()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_max_ulp()

cupy.testing.numpy_cupy_array_equal

	
cupy.testing.numpy_cupy_array_equal(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None, strides_check=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L632]

	Decorator that checks NumPy results and CuPy ones are equal.

	Parameters:

	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

	strides_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of strides is also
checked.

Decorated test fixture is required to return the same arrays
in the sense of numpy_cupy_array_equal()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_equal()

cupy.testing.numpy_cupy_array_list_equal

	
cupy.testing.numpy_cupy_array_list_equal(err_msg='', verbose=True, name='xp', sp_name=None, scipy_name=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L671]

	Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.

	Parameters:

	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are appended
to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

Decorated test fixture is required to return the same list of arrays
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_list_equal()

cupy.testing.numpy_cupy_array_less

	
cupy.testing.numpy_cupy_array_less(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False, sp_name=None, scipy_name=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L704]

	Decorator that checks the CuPy result is less than NumPy result.

	Parameters:

	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Specify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

	sp_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either
scipy.sparse or cupyx.scipy.sparse module. If None, no
argument is given for the modules.

	scipy_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Argument name whose value is either scipy
or cupyx.scipy module. If None, no argument is given for
the modules.

Decorated test fixture is required to return the smaller array
when xp is cupy than the one when xp is numpy.

See also

cupy.testing.assert_array_less()

cupy.testing.for_dtypes

	
cupy.testing.for_dtypes(dtypes, name='dtype')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L825]

	Decorator for parameterized dtype test.

	Parameters:

	
	dtypes (list [https://docs.python.org/3/library/stdtypes.html#list] of dtypes) – dtypes to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

This decorator adds a keyword argument specified by name
to the test fixture. Then, it runs the fixtures in parallel
by passing the each element of dtypes to the named
argument.

cupy.testing.for_all_dtypes

	
cupy.testing.for_all_dtypes(name='dtype', no_float16=False, no_bool=False, no_complex=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L882]

	Decorator that checks the fixture with all dtypes.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	no_complex (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.complex64 and
numpy.complex128 are omitted from candidate dtypes.

dtypes to be tested: numpy.complex64 (optional),
numpy.complex128 (optional),
numpy.float16 (optional), numpy.float32,
numpy.float64, numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

The usage is as follows.
This test fixture checks if cPickle successfully reconstructs
cupy.ndarray for various dtypes.
dtype is an argument inserted by the decorator.

>>> import unittest
>>> from cupy import testing
>>> class TestNpz(unittest.TestCase):
...
... @testing.for_all_dtypes()
... def test_pickle(self, dtype):
... a = testing.shaped_arange((2, 3, 4), dtype=dtype)
... s = pickle.dumps(a)
... b = pickle.loads(s)
... testing.assert_array_equal(a, b)

Typically, we use this decorator in combination with
decorators that check consistency between NumPy and CuPy like
cupy.testing.numpy_cupy_allclose().
The following is such an example.

>>> import unittest
>>> from cupy import testing
>>> class TestMean(unittest.TestCase):
...
... @testing.for_all_dtypes()
... @testing.numpy_cupy_allclose()
... def test_mean_all(self, xp, dtype):
... a = testing.shaped_arange((2, 3), xp, dtype)
... return a.mean()

See also

cupy.testing.for_dtypes()

cupy.testing.for_float_dtypes

	
cupy.testing.for_float_dtypes(name='dtype', no_float16=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L940]

	Decorator that checks the fixture with float dtypes.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.float16 is
omitted from candidate dtypes.

dtypes to be tested are numpy.float16 (optional), numpy.float32,
and numpy.float64.

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_signed_dtypes

	
cupy.testing.for_signed_dtypes(name='dtype')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L960]

	Decorator that checks the fixture with signed dtypes.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), and numpy.dtype('q').

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_unsigned_dtypes

	
cupy.testing.for_unsigned_dtypes(name='dtype')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L975]

	Decorator that checks the fixture with unsinged dtypes.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('B'), numpy.dtype('H'),

numpy.dtype('I'), numpy.dtype('L'), and numpy.dtype('Q').

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_int_dtypes

	
cupy.testing.for_int_dtypes(name='dtype', no_bool=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L991]

	Decorator that checks the fixture with integer and optionally bool dtypes.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_complex_dtypes

	
cupy.testing.for_complex_dtypes(name='dtype')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1013]

	Decorator that checks the fixture with complex dtypes.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.complex64 and numpy.complex128.

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_dtypes_combination

	
cupy.testing.for_dtypes_combination(types, names=('dtype',), full=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1027]

	Decorator that checks the fixture with a product set of dtypes.

	Parameters:

	
	types (list [https://docs.python.org/3/library/stdtypes.html#list] of dtypes) – dtypes to be tested.

	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations
of dtypes will be tested.
Otherwise, the subset of combinations will be tested
(see the description below).

Decorator adds the keyword arguments specified by names
to the test fixture. Then, it runs the fixtures in parallel
with passing (possibly a subset of) the product set of dtypes.
The range of dtypes is specified by types.

The combination of dtypes to be tested changes depending
on the option full. If full is True,
all combinations of types are tested.
Sometimes, such an exhaustive test can be costly.
So, if full is False, only a subset of possible combinations
is randomly sampled. If full is None, the behavior is
determined by an environment variable CUPY_TEST_FULL_COMBINATION.
If the value is set to '1', it behaves as if full=True, and
otherwise full=False.

cupy.testing.for_all_dtypes_combination

	
cupy.testing.for_all_dtypes_combination(names=('dtyes',), no_float16=False, no_bool=False, full=None, no_complex=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1098]

	Decorator that checks the fixture with a product set of all dtypes.

	Parameters:

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument names to which dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

	no_complex (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.complex64 and
numpy.complex128 are omitted from candidate dtypes.

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_signed_dtypes_combination

	
cupy.testing.for_signed_dtypes_combination(names=('dtype',), full=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1122]

	Decorator for parameterized test w.r.t. the product set of signed dtypes.

	Parameters:

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_unsigned_dtypes_combination

	
cupy.testing.for_unsigned_dtypes_combination(names=('dtype',), full=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1137]

	Decorator for parameterized test w.r.t. the product set of unsigned dtypes.

	Parameters:

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_int_dtypes_combination

	
cupy.testing.for_int_dtypes_combination(names=('dtype',), no_bool=False, full=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1152]

	Decorator for parameterized test w.r.t. the product set of int and boolean.

	Parameters:

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument names to which dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_orders

	
cupy.testing.for_orders(orders, name='order')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1173]

	Decorator to parameterize tests with order.

	Parameters:

	
	orders (list [https://docs.python.org/3/library/stdtypes.html#list] of order) – orders to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.

This decorator adds a keyword argument specified by name
to the test fixtures. Then, the fixtures run by passing each element of
orders to the named argument.

cupy.testing.for_CF_orders

	
cupy.testing.for_CF_orders(name='order')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/testing/_loops.py#L1200]

	Decorator that checks the fixture with orders ‘C’ and ‘F’.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.

See also

cupy.testing.for_all_dtypes()

Window functions

Hint

NumPy API Reference: Window functions [https://numpy.org/doc/stable/reference/routines.window.html]

Various windows

	bartlett(M)

	Returns the Bartlett window.

	blackman(M)

	Returns the Blackman window.

	hamming(M)

	Returns the Hamming window.

	hanning(M)

	Returns the Hanning window.

	kaiser(M, beta)

	Return the Kaiser window.

cupy.bartlett

	
cupy.bartlett(M)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/window.py#L25]

	Returns the Bartlett window.

The Bartlett window is defined as

\[w(n) = \frac{2}{M-1} \left(
\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
\right)\]

	Parameters:

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	Returns:

	Output ndarray.

	Return type:

	ndarray

See also

numpy.bartlett() [https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett]

cupy.blackman

	
cupy.blackman(M)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/window.py#L54]

	Returns the Blackman window.

The Blackman window is defined as

\[w(n) = 0.42 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right)
+ 0.08 \cos\left(\frac{4\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

	Parameters:

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	Returns:

	Output ndarray.

	Return type:

	ndarray

See also

numpy.blackman() [https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman]

cupy.hamming

	
cupy.hamming(M)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/window.py#L91]

	Returns the Hamming window.

The Hamming window is defined as

\[w(n) = 0.54 - 0.46\cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

	Parameters:

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	Returns:

	Output ndarray.

	Return type:

	ndarray

See also

numpy.hamming() [https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming]

cupy.hanning

	
cupy.hanning(M)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/window.py#L127]

	Returns the Hanning window.

The Hanning window is defined as

\[w(n) = 0.5 - 0.5\cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

	Parameters:

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	Returns:

	Output ndarray.

	Return type:

	ndarray

See also

numpy.hanning() [https://numpy.org/doc/stable/reference/generated/numpy.hanning.html#numpy.hanning]

cupy.kaiser

	
cupy.kaiser(M, beta)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/window.py#L165]

	Return the Kaiser window.
The Kaiser window is a taper formed by using a Bessel function.

\[w(n) = I_0\left(\beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
\right)/I_0(\beta)\]

with

\[\quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2}\]

where \(I_0\) is the modified zeroth-order Bessel function.

	Args:
	
	M (int):
	Number of points in the output window. If zero or less, an empty
array is returned.

	beta (float):
	Shape parameter for window

	Returns:

	The window, with the maximum value normalized to one
(the value one appears only if the number of samples is odd).

	Return type:

	ndarray

See also

numpy.kaiser() [https://numpy.org/doc/stable/reference/generated/numpy.kaiser.html#numpy.kaiser]

Routines (SciPy)

The following pages describe SciPy-compatible routines.
These functions cover a subset of
SciPy routines [https://docs.scipy.org/doc/scipy/reference/#api-reference].

	Discrete Fourier transforms (cupyx.scipy.fft)
	Fast Fourier Transforms (FFTs)

	Discrete Cosine and Sine Transforms (DST and DCT)

	Fast Hankel Transforms

	Helper functions

	Code compatibility features

	Legacy discrete fourier transforms (cupyx.scipy.fftpack)
	Fast Fourier Transforms (FFTs)

	Code compatibility features

	Interpolation (cupyx.scipy.interpolate)
	Univariate interpolation

	1-D Splines

	Multivariate interpolation

	Linear algebra (cupyx.scipy.linalg)
	Basics

	Matrix Functions

	Decompositions

	Special Matrices

	Multidimensional image processing (cupyx.scipy.ndimage)
	Filters

	Fourier filters

	Interpolation

	Measurements

	Morphology

	OpenCV mode

	Signal processing (cupyx.scipy.signal)
	Convolution

	B-Splines

	Filtering

	Filter design

	Matlab-style IIR filter design

	Low-level filter design functions

	LTI representations

	Continuous-time linear systems

	Discrete-time linear systems

	Waveforms

	Window functions

	Wavelets

	Peak finding

	Spectral analysis

	Chirp Z-transform and Zoom FFT

	Signal processing windows (cupyx.scipy.signal.windows)
	cupyx.scipy.signal.windows.get_window

	cupyx.scipy.signal.windows.barthann

	cupyx.scipy.signal.windows.bartlett

	cupyx.scipy.signal.windows.blackman

	cupyx.scipy.signal.windows.blackmanharris

	cupyx.scipy.signal.windows.bohman

	cupyx.scipy.signal.windows.boxcar

	cupyx.scipy.signal.windows.chebwin

	cupyx.scipy.signal.windows.cosine

	cupyx.scipy.signal.windows.exponential

	cupyx.scipy.signal.windows.flattop

	cupyx.scipy.signal.windows.gaussian

	cupyx.scipy.signal.windows.general_cosine

	cupyx.scipy.signal.windows.general_gaussian

	cupyx.scipy.signal.windows.general_hamming

	cupyx.scipy.signal.windows.hamming

	cupyx.scipy.signal.windows.hann

	cupyx.scipy.signal.windows.kaiser

	cupyx.scipy.signal.windows.nuttall

	cupyx.scipy.signal.windows.parzen

	cupyx.scipy.signal.windows.taylor

	cupyx.scipy.signal.windows.triang

	cupyx.scipy.signal.windows.tukey

	Sparse matrices (cupyx.scipy.sparse)
	Conversion to/from SciPy sparse matrices

	Conversion to/from CuPy ndarrays

	Contents

	Sparse linear algebra (cupyx.scipy.sparse.linalg)
	Abstract linear operators

	Matrix norms

	Solving linear problems

	Matrix factorizations

	Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)
	Contents

	Spatial algorithms and data structures (cupyx.scipy.spatial)
	Functions

	Distance computations (cupyx.scipy.spatial.distance)
	Distance matrix computations

	Distance functions

	Special functions (cupyx.scipy.special)
	Bessel functions

	Raw statistical functions

	Information Theory functions

	Gamma and related functions

	Elliptic integrals

	Error function and Fresnel integrals

	Legendre functions

	Other special functions

	Convenience functions

	Statistical functions (cupyx.scipy.stats)
	Summary statistics

	Other statistical functionality

Discrete Fourier transforms (cupyx.scipy.fft)

Hint

SciPy API Reference: Discrete Fourier transforms (scipy.fft) [https://docs.scipy.org/doc/scipy/reference/fft.html]

See also

Fast Fourier Transform with CuPy

Fast Fourier Transforms (FFTs)

	fft(x[, n, axis, norm, overwrite_x, plan])

	Compute the one-dimensional FFT.

	ifft(x[, n, axis, norm, overwrite_x, plan])

	Compute the one-dimensional inverse FFT.

	fft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the two-dimensional FFT.

	ifft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the two-dimensional inverse FFT.

	fftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the N-dimensional FFT.

	ifftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the N-dimensional inverse FFT.

	rfft(x[, n, axis, norm, overwrite_x, plan])

	Compute the one-dimensional FFT for real input.

	irfft(x[, n, axis, norm, overwrite_x, plan])

	Compute the one-dimensional inverse FFT for real input.

	rfft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the two-dimensional FFT for real input.

	irfft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the two-dimensional inverse FFT for real input.

	rfftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the N-dimensional FFT for real input.

	irfftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the N-dimensional inverse FFT for real input.

	hfft(x[, n, axis, norm, overwrite_x, plan])

	Compute the FFT of a signal that has Hermitian symmetry.

	ihfft(x[, n, axis, norm, overwrite_x, plan])

	Compute the FFT of a signal that has Hermitian symmetry.

	hfft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the FFT of a two-dimensional signal that has Hermitian symmetry.

	ihfft2(x[, s, axes, norm, overwrite_x, plan])

	Compute the Inverse FFT of a two-dimensional signal that has Hermitian symmetry.

	hfftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the FFT of a N-dimensional signal that has Hermitian symmetry.

	ihfftn(x[, s, axes, norm, overwrite_x, plan])

	Compute the Inverse FFT of a N-dimensional signal that has Hermitian symmetry.

Discrete Cosine and Sine Transforms (DST and DCT)

	dct(x[, type, n, axis, norm, overwrite_x])

	Return the Discrete Cosine Transform of an array, x.

	idct(x[, type, n, axis, norm, overwrite_x])

	Return the Inverse Discrete Cosine Transform of an array, x.

	dctn(x[, type, s, axes, norm, overwrite_x])

	Compute a multidimensional Discrete Cosine Transform.

	idctn(x[, type, s, axes, norm, overwrite_x])

	Compute a multidimensional Discrete Cosine Transform.

	dst(x[, type, n, axis, norm, overwrite_x])

	Return the Discrete Sine Transform of an array, x.

	idst(x[, type, n, axis, norm, overwrite_x])

	Return the Inverse Discrete Sine Transform of an array, x.

	dstn(x[, type, s, axes, norm, overwrite_x])

	Compute a multidimensional Discrete Sine Transform.

	idstn(x[, type, s, axes, norm, overwrite_x])

	Compute a multidimensional Discrete Sine Transform.

Fast Hankel Transforms

	fht(a, dln, mu[, offset, bias])

	Compute the fast Hankel transform.

	ifht(A, dln, mu[, offset, bias])

	Compute the inverse fast Hankel transform.

Helper functions

	fftshift(x[, axes])

	Shift the zero-frequency component to the center of the spectrum.

	ifftshift(x[, axes])

	The inverse of fftshift().

	fftfreq(n[, d])

	Return the FFT sample frequencies.

	rfftfreq(n[, d])

	Return the FFT sample frequencies for real input.

	next_fast_len(target[, real])

	Find the next fast size to fft.

Code compatibility features

	As with other FFT modules in CuPy, FFT functions in this module can take advantage of an existing cuFFT plan (returned by get_fft_plan()) to accelerate the computation. The plan can be either passed in explicitly via the keyword-only plan argument or used as a context manager. One exception to this are the DCT and DST transforms, which do not currently support a plan argument.

	The boolean switch cupy.fft.config.enable_nd_planning also affects the FFT functions in this module, see Discrete Fourier Transform (cupy.fft). This switch is neglected when planning manually using get_fft_plan().

	Like in scipy.fft, all FFT functions in this module have an optional argument overwrite_x (default is False), which has the same semantics as in scipy.fft: when it is set to True, the input array x can (not will) be overwritten arbitrarily. For this reason, when an in-place FFT is desired, the user should always reassign the input in the following manner: x = cupyx.scipy.fftpack.fft(x, ..., overwrite_x=True, ...).

	The cupyx.scipy.fft module can also be used as a backend for scipy.fft e.g. by installing with scipy.fft.set_backend(cupyx.scipy.fft). This can allow scipy.fft to work with both numpy and cupy arrays. For more information, see SciPy FFT backend.

	The boolean switch cupy.fft.config.use_multi_gpus also affects the FFT functions in this module, see Discrete Fourier Transform (cupy.fft). Moreover, this switch is honored when planning manually using get_fft_plan().

	Both type II and III DCT and DST transforms are implemented. Type I and IV transforms are currently unavailable.

cupyx.scipy.fft.fft

	
cupyx.scipy.fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L78]

	Compute the one-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.fft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft]

cupyx.scipy.fft.ifft

	
cupyx.scipy.fft.ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L112]

	Compute the one-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.ifft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft]

cupyx.scipy.fft.fft2

	
cupyx.scipy.fft.fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L146]

	Compute the two-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2]

cupyx.scipy.fft.ifft2

	
cupyx.scipy.fft.ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L178]

	Compute the two-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.ifft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2]

cupyx.scipy.fft.fftn

	
cupyx.scipy.fft.fftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L211]

	Compute the N-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.fftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn]

cupyx.scipy.fft.ifftn

	
cupyx.scipy.fft.ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L249]

	Compute the N-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If s is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fft.ifftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn]

cupyx.scipy.fft.rfft

	
cupyx.scipy.fft.rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L287]

	Compute the one-dimensional FFT for real input.

The returned array contains the positive frequency components of the
corresponding fft(), up to and including the Nyquist frequency.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis,
 value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array.

	Return type:

	cupy.ndarray

See also

scipy.fft.rfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft]

cupyx.scipy.fft.irfft

	
cupyx.scipy.fft.irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L326]

	Compute the one-dimensional inverse FFT for real input.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis,
 value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array.

	Return type:

	cupy.ndarray

See also

scipy.fft.irfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft]

cupyx.scipy.fft.rfft2

	
cupyx.scipy.fft.rfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L360]

	Compute the two-dimensional FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape to use from the input. If s is not
given, the lengths of the input along the axes specified by
axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
 value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. The length of the
last axis transformed will be s[-1]//2+1.

	Return type:

	cupy.ndarray

See also

scipy.fft.rfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2]

cupyx.scipy.fft.irfft2

	
cupyx.scipy.fft.irfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L395]

	Compute the two-dimensional inverse FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the output. If s is not given,
they are determined from the lengths of the input along the axes
specified by axes.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
 value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. If s is not
given, the length of final transformed axis of output will be
2*(m-1) where m is the length of the final transformed axis of
the input.

	Return type:

	cupy.ndarray

See also

scipy.fft.irfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2]

cupyx.scipy.fft.rfftn

	
cupyx.scipy.fft.rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L432]

	Compute the N-dimensional FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape to use from the input. If s is not
given, the lengths of the input along the axes specified by
axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
 value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. The length of the
last axis transformed will be s[-1]//2+1.

	Return type:

	cupy.ndarray

See also

scipy.fft.rfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn]

cupyx.scipy.fft.irfftn

	
cupyx.scipy.fft.irfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L472]

	Compute the N-dimensional inverse FFT for real input.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the output. If s is not given,
they are determined from the lengths of the input along the axes
specified by axes.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
 value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use
an auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by s and type
will convert to complex if the input is other. If s is not
given, the length of final transformed axis of output will be
2*(m-1) where m is the length of the final transformed axis
of the input.

	Return type:

	cupy.ndarray

See also

scipy.fft.irfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn]

cupyx.scipy.fft.hfft

	
cupyx.scipy.fft.hfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L514]

	Compute the FFT of a signal that has Hermitian symmetry.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. For
n output points, n//2+1 input points are necessary. If
n is not given, it is determined from the length of the input
along the axis specified by axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (None) – This argument is currently not supported.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. If n is not
given, the length of the transformed axis is 2*(m-1) where m
is the length of the transformed axis of the input.

	Return type:

	cupy.ndarray

See also

scipy.fft.hfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft]

cupyx.scipy.fft.ihfft

	
cupyx.scipy.fft.ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L546]

	Compute the FFT of a signal that has Hermitian symmetry.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Number of points along transformation axis in the
input to use. If n is not given, the length of the input along
the axis specified by axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (None) – This argument is currently not supported.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if the input is other. The length of the
transformed axis is n//2+1.

	Return type:

	cupy.ndarray

See also

scipy.fft.ihfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft]

cupyx.scipy.fft.hfft2

	
cupyx.scipy.fft.hfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L576]

	Compute the FFT of a two-dimensional signal that has Hermitian symmetry.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the real output.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.
(This argument is currently not supported)

	plan (None) – This argument is currently not supported.

	Returns:

	The real result of the 2-D Hermitian complex real FFT.

	Return type:

	cupy.ndarray

See also

scipy.fft.hfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft2.html#scipy.fft.hfft2]

cupyx.scipy.fft.ihfft2

	
cupyx.scipy.fft.ihfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L603]

	Compute the Inverse FFT of a two-dimensional signal that has Hermitian
symmetry.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the real output.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.
(This argument is currently not supported)

	plan (None) – This argument is currently not supported.

	Returns:

	The real result of the 2-D Hermitian inverse complex real FFT.

	Return type:

	cupy.ndarray

See also

scipy.fft.ihfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft2.html#scipy.fft.ihfft2]

cupyx.scipy.fft.hfftn

	
cupyx.scipy.fft.hfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L631]

	Compute the FFT of a N-dimensional signal that has Hermitian symmetry.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the real output.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.
(This argument is currently not supported)

	plan (None) – This argument is currently not supported.

	Returns:

	The real result of the N-D Hermitian complex real FFT.

	Return type:

	cupy.ndarray

See also

scipy.fft.hfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfftn.html#scipy.fft.hfftn]

cupyx.scipy.fft.ihfftn

	
cupyx.scipy.fft.ihfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fft.py#L658]

	Compute the Inverse FFT of a N-dimensional signal that has Hermitian
symmetry.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	s (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the real output.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	norm ("backward", "ortho", or "forward") – Optional keyword
to specify the normalization mode. Default is None, which is
an alias of "backward".

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.
(This argument is currently not supported)

	plan (None) – This argument is currently not supported.

	Returns:

	The real result of the N-D Hermitian inverse complex real FFT.

	Return type:

	cupy.ndarray

See also

scipy.fft.ihfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfftn.html#scipy.fft.ihfftn]

cupyx.scipy.fft.dct

	
cupyx.scipy.fft.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L343]

	Return the Discrete Cosine Transform of an array, x.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2. Currently CuPy only
supports types 2 and 3.

	n (int [https://docs.python.org/3/library/functions.html#int], optional:) – Length of the transform. If n < x.shape[axis], x is
truncated. If n > x.shape[axis], x is zero-padded.
The default results in n = x.shape[axis].

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the dct is computed; the default is over the
last axis (i.e., axis=-1).

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	y – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.dct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct]

Notes

For a single dimension array x, dct(x, norm='ortho') is equal
to MATLAB dct(x).

For norm="ortho" both the dct and idct are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 1, 2 and 3 means the transform definition is
modified to give orthogonality of the DCT matrix (see below).

For norm="backward", there is no scaling on dct and the idct is
scaled by 1/N where N is the “logical” size of the DCT. For
norm="forward" the 1/N normalization is applied to the forward
dct instead and the idct is unnormalized.

CuPy currently only supports DCT types 2 and 3. ‘The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT
type 3 [1]. See the scipy.fft.dct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct] documentation for a full
description of each type.

References

[1]
Wikipedia, “Discrete cosine transform”,
https://en.wikipedia.org/wiki/Discrete_cosine_transform

cupyx.scipy.fft.idct

	
cupyx.scipy.fft.idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L494]

	Return the Inverse Discrete Cosine Transform of an array, x.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the transform. If n < x.shape[axis], x is
truncated. If n > x.shape[axis], x is zero-padded. The
default results in n = x.shape[axis].

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the idct is computed; the default is over the
last axis (i.e., axis=-1).

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	idct – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.idct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct]

Notes

For a single dimension array x, idct(x, norm='ortho') is equal to
MATLAB idct(x).

For norm="ortho" both the dct and idct are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 1, 2 and 3 means the transform definition is
modified to give orthogonality of the IDCT matrix (see dct for the full
definitions).

‘The’ IDCT is the IDCT-II, which is the same as the normalized DCT-III
[1]. See the scipy.fft.dct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct] documentation for a full description of
each type. CuPy currently only supports DCT types 2 and 3.

References

[1]
Wikipedia, “Discrete sine transform”,
https://en.wikipedia.org/wiki/Discrete_sine_transform

cupyx.scipy.fft.dctn

	
cupyx.scipy.fft.dctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L687]

	Compute a multidimensional Discrete Cosine Transform.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

	s (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – The shape of the result. If both s and axes (see below) are None,
s is x.shape; if s is None but axes is not None, then s is
numpy.take(x.shape, axes, axis=0).
If s[i] > x.shape[i], the ith dimension is padded with zeros.
If s[i] < x.shape[i], the ith dimension is truncated to length
s[i].
If any element of s is -1, the size of the corresponding dimension of
x is used.

	axes (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – Axes over which the DCT is computed. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	y – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.dctn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dctn.html#scipy.fft.dctn]

Notes

For full details of the DCT types and normalization modes, as well as
references, see dct.

cupyx.scipy.fft.idctn

	
cupyx.scipy.fft.idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L747]

	Compute a multidimensional Discrete Cosine Transform.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

	s (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – The shape of the result. If both s and axes (see below) are None,
s is x.shape; if s is None but axes is not None, then s is
numpy.take(x.shape, axes, axis=0).
If s[i] > x.shape[i], the ith dimension is padded with zeros.
If s[i] < x.shape[i], the ith dimension is truncated to length
s[i].
If any element of s is -1, the size of the corresponding dimension of
x is used.

	axes (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – Axes over which the IDCT is computed. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	y – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.idctn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idctn.html#scipy.fft.idctn]

Notes

For full details of the IDCT types and normalization modes, as well as
references, see scipy.fft.idct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct].

cupyx.scipy.fft.dst

	
cupyx.scipy.fft.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L425]

	Return the Discrete Sine Transform of an array, x.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the transform. If n < x.shape[axis], x is
truncated. If n > x.shape[axis], x is zero-padded. The
default results in n = x.shape[axis].

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the dst is computed; the default is over the
last axis (i.e., axis=-1).

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	dst – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst]

Notes

For norm="ortho" both the dst and idst are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 2 and 3 means the transform definition is
modified to give orthogonality of the DST matrix (see below).

For norm="backward", there is no scaling on the dst and the idst is
scaled by 1/N where N is the “logical” size of the DST.

See the scipy.fft.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst] documentation for a full description of each
type. CuPy currently only supports DST types 2 and 3.

cupyx.scipy.fft.idst

	
cupyx.scipy.fft.idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L567]

	Return the Inverse Discrete Sine Transform of an array, x.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the transform. If n < x.shape[axis], x is
truncated. If n > x.shape[axis], x is zero-padded. The
default results in n = x.shape[axis].

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the idst is computed; the default is over the
last axis (i.e., axis=-1).

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	idst – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.idst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst]

Notes

For full details of the DST types and normalization modes, as well as
references, see scipy.fft.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst].

cupyx.scipy.fft.dstn

	
cupyx.scipy.fft.dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L807]

	Compute a multidimensional Discrete Sine Transform.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

	s (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – The shape of the result. If both s and axes (see below) are None,
s is x.shape; if s is None but axes is not None, then s is
numpy.take(x.shape, axes, axis=0).
If s[i] > x.shape[i], the ith dimension is padded with zeros.
If s[i] < x.shape[i], the ith dimension is truncated to length
s[i].
If any element of s is -1, the size of the corresponding dimension of
x is used.

	axes (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – Axes over which the DST is computed. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	y – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.dstn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dstn.html#scipy.fft.dstn]

Notes

For full details of the DST types and normalization modes, as well as
references, see scipy.fft.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst].

cupyx.scipy.fft.idstn

	
cupyx.scipy.fft.idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_realtransforms.py#L867]

	Compute a multidimensional Discrete Sine Transform.

	Parameters:

	
	x (cupy.ndarray) – The input array.

	type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

	s (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – The shape of the result. If both s and axes (see below) are None,
s is x.shape; if s is None but axes is not None, then s is
numpy.take(x.shape, axes, axis=0).
If s[i] > x.shape[i], the ith dimension is padded with zeros.
If s[i] < x.shape[i], the ith dimension is truncated to length
s[i].
If any element of s is -1, the size of the corresponding dimension of
x is used.

	axes (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints or None, optional) – Axes over which the IDST is computed. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see Notes). Default is “backward”.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the contents of x can be destroyed; the default is False.

	Returns:

	y – The transformed input array.

	Return type:

	cupy.ndarray of real

See also

scipy.fft.idstn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idstn.html#scipy.fft.idstn]

Notes

For full details of the IDST types and normalization modes, as well as
references, see scipy.fft.idst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst].

cupyx.scipy.fft.fht

	
cupyx.scipy.fft.fht(a, dln, mu, offset=0.0, bias=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fftlog.py#L32]

	Compute the fast Hankel transform.

Computes the discrete Hankel transform of a logarithmically spaced periodic
sequence using the FFTLog algorithm [1], [2].

	Parameters:

	
	a (cupy.ndarray (..., n)) – Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.

	dln (float [https://docs.python.org/3/library/functions.html#float]) – Uniform logarithmic spacing of the input array.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Order of the Hankel transform, any positive or negative real number.

	offset (float [https://docs.python.org/3/library/functions.html#float], optional) – Offset of the uniform logarithmic spacing of the output array.

	bias (float [https://docs.python.org/3/library/functions.html#float], optional) – Exponent of power law bias, any positive or negative real number.

	Returns:

	A – The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.

	Return type:

	cupy.ndarray (…, n)

See also

scipy.special.fht()

	scipy.special.fhtoffset()
	Return an optimal offset for fht.

References

[1]
Talman J. D., 1978, J. Comp. Phys., 29, 35

[2]
Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

cupyx.scipy.fft.ifht

	
cupyx.scipy.fft.ifht(A, dln, mu, offset=0.0, bias=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_fftlog.py#L95]

	Compute the inverse fast Hankel transform.

Computes the discrete inverse Hankel transform of a logarithmically spaced
periodic sequence. This is the inverse operation to fht.

	Parameters:

	
	A (cupy.ndarray (..., n)) – Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.

	dln (float [https://docs.python.org/3/library/functions.html#float]) – Uniform logarithmic spacing of the input array.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Order of the Hankel transform, any positive or negative real number.

	offset (float [https://docs.python.org/3/library/functions.html#float], optional) – Offset of the uniform logarithmic spacing of the output array.

	bias (float [https://docs.python.org/3/library/functions.html#float], optional) – Exponent of power law bias, any positive or negative real number.

	Returns:

	a – The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.

	Return type:

	cupy.ndarray (…, n)

See also

scipy.special.ifht()

	scipy.special.fhtoffset()
	Return an optimal offset for fht.

cupyx.scipy.fft.fftshift

	
cupyx.scipy.fft.fftshift(x, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1085]

	Shift the zero-frequency component to the center of the spectrum.

	Parameters:

	
	x (cupy.ndarray) – Input array.

	axes (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to shift. Default is
None, which shifts all axes.

	Returns:

	The shifted array.

	Return type:

	cupy.ndarray

See also

numpy.fft.fftshift() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift]

cupyx.scipy.fft.ifftshift

	
cupyx.scipy.fft.ifftshift(x, axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1106]

	The inverse of fftshift().

	Parameters:

	
	x (cupy.ndarray) – Input array.

	axes (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to shift. Default is
None, which shifts all axes.

	Returns:

	The shifted array.

	Return type:

	cupy.ndarray

See also

numpy.fft.ifftshift() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift]

cupyx.scipy.fft.fftfreq

	
cupyx.scipy.fft.fftfreq(n, d=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1053]

	Return the FFT sample frequencies.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Window length.

	d (scalar) – Sample spacing.

	Returns:

	Array of length n containing the sample frequencies.

	Return type:

	cupy.ndarray

See also

numpy.fft.fftfreq() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq]

cupyx.scipy.fft.rfftfreq

	
cupyx.scipy.fft.rfftfreq(n, d=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_fft.py#L1069]

	Return the FFT sample frequencies for real input.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Window length.

	d (scalar) – Sample spacing.

	Returns:

	Array of length n//2+1 containing the sample frequencies.

	Return type:

	cupy.ndarray

See also

numpy.fft.rfftfreq() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq]

cupyx.scipy.fft.next_fast_len

	
cupyx.scipy.fft.next_fast_len(target, real=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fft/_helper.py#L25]

	Find the next fast size to fft.

	Parameters:

	
	target (int [https://docs.python.org/3/library/functions.html#int]) – The size of input array.

	real (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the FFT involves real input or output.
This parameter is of no use, and only for compatibility to
SciPy’s interface.

	Returns:

	The smallest fast length greater than or equal to the input value.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

See also

scipy.fft.next_fast_len() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len]

Note

It may return a different value to scipy.fft.next_fast_len() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len]
as pocketfft’s prime factors are different from cuFFT’s factors.
For details, see the cuFFT documentation [https://docs.nvidia.com/cuda/cufft/index.html#accuracy-and-performance].

Legacy discrete fourier transforms (cupyx.scipy.fftpack)

Note

As of SciPy version 1.4.0, scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] is recommended over
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack]. Consider using cupyx.scipy.fft instead.

Hint

SciPy API Reference: Legacy discrete Fourier transforms (scipy.fftpack) [https://docs.scipy.org/doc/scipy/reference/fftpack.html]

Fast Fourier Transforms (FFTs)

	fft(x[, n, axis, overwrite_x, plan])

	Compute the one-dimensional FFT.

	ifft(x[, n, axis, overwrite_x, plan])

	Compute the one-dimensional inverse FFT.

	fft2(x[, shape, axes, overwrite_x, plan])

	Compute the two-dimensional FFT.

	ifft2(x[, shape, axes, overwrite_x, plan])

	Compute the two-dimensional inverse FFT.

	fftn(x[, shape, axes, overwrite_x, plan])

	Compute the N-dimensional FFT.

	ifftn(x[, shape, axes, overwrite_x, plan])

	Compute the N-dimensional inverse FFT.

	rfft(x[, n, axis, overwrite_x, plan])

	Compute the one-dimensional FFT for real input.

	irfft(x[, n, axis, overwrite_x])

	Compute the one-dimensional inverse FFT for real input.

	get_fft_plan(a[, shape, axes, value_type])

	Generate a CUDA FFT plan for transforming up to three axes.

Code compatibility features

	As with other FFT modules in CuPy, FFT functions in this module can take advantage of an existing cuFFT plan (returned by get_fft_plan()) to accelarate the computation. The plan can be either passed in explicitly via the plan argument or used as a context manager. The argument plan is currently experimental and the interface may be changed in the future version. The get_fft_plan() function has no counterpart in scipy.fftpack.

	The boolean switch cupy.fft.config.enable_nd_planning also affects the FFT functions in this module, see Discrete Fourier Transform (cupy.fft). This switch is neglected when planning manually using get_fft_plan().

	Like in scipy.fftpack, all FFT functions in this module have an optional argument overwrite_x (default is False), which has the same semantics as in scipy.fftpack: when it is set to True, the input array x can (not will) be overwritten arbitrarily. For this reason, when an in-place FFT is desired, the user should always reassign the input in the following manner: x = cupyx.scipy.fftpack.fft(x, ..., overwrite_x=True, ...).

	The boolean switch cupy.fft.config.use_multi_gpus also affects the FFT functions in this module, see Discrete Fourier Transform (cupy.fft). Moreover, this switch is honored when planning manually using get_fft_plan().

cupyx.scipy.fftpack.fft

	
cupyx.scipy.fftpack.fft(x, n=None, axis=-1, overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L170]

	Compute the one-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axis)

Note that plan is defaulted to None, meaning CuPy will use an
auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

See also

scipy.fftpack.fft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft]

cupyx.scipy.fftpack.ifft

	
cupyx.scipy.fftpack.ifft(x, n=None, axis=-1, overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L204]

	Compute the one-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axis)

Note that plan is defaulted to None, meaning CuPy will use an
auto-generated plan behind the scene.

	Returns:

	The transformed array which shape is specified by n and type
will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

See also

scipy.fftpack.ifft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft]

cupyx.scipy.fftpack.fft2

	
cupyx.scipy.fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L238]

	Compute the two-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	shape (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If shape is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either
use an auto-generated plan behind the scene if cupy.fft.config.
enable_nd_planning = True, or use no cuFFT plan if it is set to
False.

	Returns:

	The transformed array which shape is specified by shape and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2]

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

cupyx.scipy.fftpack.ifft2

	
cupyx.scipy.fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L276]

	Compute the two-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	shape (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If shape is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either
use an auto-generated plan behind the scene if cupy.fft.config.
enable_nd_planning = True, or use no cuFFT plan if it is set to
False.

	Returns:

	The transformed array which shape is specified by shape and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.ifft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2]

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

cupyx.scipy.fftpack.fftn

	
cupyx.scipy.fftpack.fftn(x, shape=None, axes=None, overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L314]

	Compute the N-dimensional FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	shape (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If shape is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either
use an auto-generated plan behind the scene if cupy.fft.config.
enable_nd_planning = True, or use no cuFFT plan if it is set to
False.

	Returns:

	The transformed array which shape is specified by shape and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.fftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn]

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

cupyx.scipy.fftpack.ifftn

	
cupyx.scipy.fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L352]

	Compute the N-dimensional inverse FFT.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	shape (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If shape is not given, the lengths of the input along
the axes specified by axes are used.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axes over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for
transforming x over axes, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either
use an auto-generated plan behind the scene if cupy.fft.config.
enable_nd_planning = True, or use no cuFFT plan if it is set to
False.

	Returns:

	The transformed array which shape is specified by shape and
type will convert to complex if that of the input is another.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.ifftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn]

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

cupyx.scipy.fftpack.rfft

	
cupyx.scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False, plan=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L390]

	Compute the one-dimensional FFT for real input.

The returned real array contains

[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] # if n is even
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] # if n is odd

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for
transforming x over axis, which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(
 x, axes, value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will either
use an auto-generated plan behind the scene if cupy.fft.config.
enable_nd_planning = True, or use no cuFFT plan if it is set to
False.

	Returns:

	The transformed array.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.rfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft]

Note

The argument plan is currently experimental and the interface may be
changed in the future version.

cupyx.scipy.fftpack.irfft

	
cupyx.scipy.fftpack.irfft(x, n=None, axis=-1, overwrite_x=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L457]

	Compute the one-dimensional inverse FFT for real input.

	Parameters:

	
	x (cupy.ndarray) – Array to be transformed.

	n (None or int [https://docs.python.org/3/library/functions.html#int]) – Length of the transformed axis of the output. If n
is not given, the length of the input along the axis specified by
axis is used.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis over which to compute the FFT.

	overwrite_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the contents of x can be destroyed.

	Returns:

	The transformed array.

	Return type:

	cupy.ndarray

See also

scipy.fftpack.irfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft]

Note

This function does not support a precomputed plan. If you need this
capability, please consider using cupy.fft.irfft() or :func:`
cupyx.scipy.fft.irfft`.

cupyx.scipy.fftpack.get_fft_plan

	
cupyx.scipy.fftpack.get_fft_plan(a, shape=None, axes=None, value_type='C2C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/fftpack/_fft.py#L11]

	Generate a CUDA FFT plan for transforming up to three axes.

	Parameters:

	
	a (cupy.ndarray) – Array to be transform, assumed to be either C- or
F- contiguous.

	shape (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of the transformed axes of the
output. If shape is not given, the lengths of the input along
the axes specified by axes are used.

	axes (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – The axes of the array to
transform. If None, it is assumed that all axes are transformed.

Currently, for performing N-D transform these must be a set of up
to three adjacent axes, and must include either the first or the
last axis of the array.

	value_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The FFT type to perform. Acceptable values are:

	’C2C’: complex-to-complex transform (default)

	’R2C’: real-to-complex transform

	’C2R’: complex-to-real transform

	Returns:

	a cuFFT plan for either 1D transform (cupy.cuda.cufft.Plan1d) or
N-D transform (cupy.cuda.cufft.PlanNd).

Note

The returned plan can not only be passed as one of the arguments of
the functions in cupyx.scipy.fftpack, but also be used as a
context manager for both cupy.fft and cupyx.scipy.fftpack
functions:

x = cupy.random.random(16).reshape(4, 4).astype(complex)
plan = cupyx.scipy.fftpack.get_fft_plan(x)
with plan:
 y = cupy.fft.fftn(x)
 # alternatively:
 y = cupyx.scipy.fftpack.fftn(x) # no explicit plan is given!
alternatively:
y = cupyx.scipy.fftpack.fftn(x, plan=plan) # pass plan explicitly

In the first case, no cuFFT plan will be generated automatically,
even if cupy.fft.config.enable_nd_planning = True is set.

Note

If this function is called under the context of
set_cufft_callbacks(), the generated plan will
have callbacks enabled.

Warning

This API is a deviation from SciPy’s, is currently experimental, and
may be changed in the future version.

Interpolation (cupyx.scipy.interpolate)

Hint

SciPy API Reference: Interpolation functions (scipy.interpolate) [https://docs.scipy.org/doc/scipy/reference/interpolate.html]

Univariate interpolation

	BarycentricInterpolator(xi[, yi, axis])

	The interpolating polynomial for a set of points.

	KroghInterpolator(xi, yi[, axis])

	Interpolating polynomial for a set of points.

	barycentric_interpolate(xi, yi, x[, axis])

	Convenience function for polynomial interpolation.

	krogh_interpolate(xi, yi, x[, der, axis])

	Convenience function for polynomial interpolation

	pchip_interpolate(xi, yi, x[, der, axis])

	Convenience function for pchip interpolation.

	CubicHermiteSpline(x, y, dydx[, axis, ...])

	Piecewise-cubic interpolator matching values and first derivatives.

	PchipInterpolator(x, y[, axis, extrapolate])

	PCHIP 1-D monotonic cubic interpolation.

	Akima1DInterpolator(x, y[, axis])

	Akima interpolator

	PPoly(c, x[, extrapolate, axis])

	Piecewise polynomial in terms of coefficients and breakpoints The polynomial between x[i] and x[i + 1] is written in the local power basis.

	BPoly(c, x[, extrapolate, axis])

	Piecewise polynomial in terms of coefficients and breakpoints.

1-D Splines

	BSpline(t, c, k[, extrapolate, axis])

	Univariate spline in the B-spline basis.

	make_interp_spline(x, y[, k, t, bc_type, ...])

	Compute the (coefficients of) interpolating B-spline.

	splder(tck[, n])

	Compute the spline representation of the derivative of a given spline

	splantider(tck[, n])

	Compute the spline for the antiderivative (integral) of a given spline.

Multivariate interpolation

Unstructured data:

	RBFInterpolator(y, d[, neighbors, ...])

	Radial basis function (RBF) interpolation in N dimensions.

For data on a grid:

	interpn(points, values, xi[, method, ...])

	Multidimensional interpolation on regular or rectilinear grids.

	RegularGridInterpolator(points, values[, ...])

	Interpolation on a regular or rectilinear grid in arbitrary dimensions.

Tensor product polynomials:

	NdPPoly(c, x[, extrapolate])

	Piecewise tensor product polynomial

cupyx.scipy.interpolate.BarycentricInterpolator

	
class cupyx.scipy.interpolate.BarycentricInterpolator(xi, yi=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L204]

	The interpolating polynomial for a set of points.

Constructs a polynomial that passes through a given set of points.
Allows evaluation of the polynomial, efficient changing of the y
values to be interpolated, and updating by adding more x values.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial.
The value yi need to be provided before the function is
evaluated, but none of the preprocessing depends on them,
so rapid updates are possible.

	Parameters:

	
	xi (cupy.ndarray) – 1-D array of x-coordinates of the points the polynomial should
pass through

	yi (cupy.ndarray, optional) – The y-coordinates of the points the polynomial should pass through.
If None, the y values will be supplied later via the set_y method

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate values

See also

scipy.interpolate.BarycentricInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.html#scipy.interpolate.BarycentricInterpolator]

Methods

	
__call__(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L318]

	Evaluate the interpolating polynomial at the points x.

	Parameters:

	x (cupy.ndarray) – Points to evaluate the interpolant at

	Returns:

	y – Interpolated values. Shape is determined by replacing the
interpolation axis in the original array with the shape of x

	Return type:

	cupy.ndarray

Notes

Currently the code computes an outer product between x and the
weights, that is, it constructs an intermediate array of size
N by len(x), where N is the degree of the polynomial.

	
add_xi(xi, yi=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L275]

	Add more x values to the set to be interpolated.

The barycentric interpolation algorithm allows easy updating
by adding more points for the polynomial to pass through.

	Parameters:

	
	xi (cupy.ndarray) – The x-coordinates of the points that the polynomial should
pass through

	yi (cupy.ndarray, optional) – The y-coordinates of the points the polynomial should pass
through. Should have shape (xi.size, R); if R > 1 then
the polynomial is vector-valued
If yi is not given, the y values will be supplied later.
yi should be given if and only if the interpolator has y
values specified

	
set_yi(yi, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L251]

	Update the y values to be interpolated.

The barycentric interpolation algorithm requires the calculation
of weights, but these depend only on the xi. The yi can be changed
at any time.

	Parameters:

	
	yi (cupy.ndarray) – The y-coordinates of the points the polynomial should pass
through. If None, the y values will be supplied later.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate values

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.interpolate.KroghInterpolator

	
class cupyx.scipy.interpolate.KroghInterpolator(xi, yi, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L398]

	Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may
additionally specify a number of derivatives at each point xi;
this is done by repeating the value xi and specifying the
derivatives as successive yi values
Allows evaluation of the polynomial and all its derivatives.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial, although they can be obtained
by evaluating all the derivatives.

	Parameters:

	
	xi (cupy.ndarray, length N) – x-coordinate, must be sorted in increasing order

	yi (cupy.ndarray) – y-coordinate, when a xi occurs two or more times in a row,
the corresponding yi’s represent derivative values

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate values.

Methods

	
__call__(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L47]

	Evaluate the interpolant

	Parameters:

	x (cupy.ndarray) – The points to evaluate the interpolant

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x

	Return type:

	cupy.ndarray

Notes

Input values x must be convertible to float values like int
or float.

	
derivative(x, der=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L175]

	Evaluate one derivative of the polynomial at the point x

	Parameters:

	
	x (cupy.ndarray) – Point or points at which to evaluate the derivatives

	der (integer, optional) – Which derivative to extract. This number includes the
function value as 0th derivative

	Returns:

	d – Derivative interpolated at the x-points. Shape of d is
determined by replacing the interpolation axis in the
original array with the shape of x

	Return type:

	cupy.ndarray

Notes

This is computed by evaluating all derivatives up to the desired
one (using self.derivatives()) and then discarding the rest.

	
derivatives(x, der=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L138]

	Evaluate many derivatives of the polynomial at the point x.

The function produce an array of all derivative values at
the point x.

	Parameters:

	
	x (cupy.ndarray) – Point or points at which to evaluate the derivatives

	der (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points). This number includes the function value as 0th
derivative

	Returns:

	d – Array with derivatives; d[j] contains the jth derivative.
Shape of d[j] is determined by replacing the interpolation
axis in the original array with the shape of x

	Return type:

	cupy.ndarray

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.interpolate.barycentric_interpolate

	
cupyx.scipy.interpolate.barycentric_interpolate(xi, yi, x, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L360]

	Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given
set of points, then evaluates the polynomial. For
reasons of numerical stability, this function does
not compute the coefficients of the polynomial.

	Parameters:

	
	xi (cupy.ndarray) – 1-D array of coordinates of the points the polynomial
should pass through

	yi (cupy.ndarray) – y-coordinates of the points the polynomial should pass
through

	x (scalar or cupy.ndarray) – Points to evaluate the interpolator at

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate
values

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the
shape x

	Return type:

	scalar or cupy.ndarray

See also

scipy.interpolate.barycentric_interpolate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.barycentric_interpolate.html#scipy.interpolate.barycentric_interpolate]

cupyx.scipy.interpolate.krogh_interpolate

	
cupyx.scipy.interpolate.krogh_interpolate(xi, yi, x, der=0, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_polyint.py#L488]

	Convenience function for polynomial interpolation

	Parameters:

	
	xi (cupy.ndarray) – x-coordinate

	yi (cupy.ndarray) – y-coordinates, of shape (xi.size, R). Interpreted as
vectors of length R, or scalars if R=1

	x (cupy.ndarray) – Point or points at which to evaluate the derivatives

	der (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate values

	Returns:

	d – If the interpolator’s values are R-D then the
returned array will be the number of derivatives by N by R.
If x is a scalar, the middle dimension will be dropped; if
the yi are scalars then the last dimension will be dropped

	Return type:

	cupy.ndarray

See also

scipy.interpolate.krogh_interpolate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.krogh_interpolate.html#scipy.interpolate.krogh_interpolate]

cupyx.scipy.interpolate.pchip_interpolate

	
cupyx.scipy.interpolate.pchip_interpolate(xi, yi, x, der=0, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L281]

	Convenience function for pchip interpolation.

xi and yi are arrays of values used to approximate some function f,
with yi = f(xi). The interpolant uses monotonic cubic splines
to find the value of new points x and the derivatives there.
See scipy.interpolate.PchipInterpolator for details.

	Parameters:

	
	xi (array_like) – A sorted list of x-coordinates, of length N.

	yi (array_like) – A 1-D array of real values. yi’s length along the interpolation
axis must be equal to the length of xi. If N-D array, use axis
parameter to select correct axis.

	x (scalar or array_like) – Of length M.

	der (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Derivatives to extract. The 0th derivative can be included to
return the function value.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the yi array corresponding to the x-coordinate values.

See also

	PchipInterpolator
	PCHIP 1-D monotonic cubic interpolator.

	Returns:

	y – The result, of length R or length M or M by R.

	Return type:

	scalar or array_like

cupyx.scipy.interpolate.CubicHermiteSpline

	
class cupyx.scipy.interpolate.CubicHermiteSpline(x, y, dydx, axis=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L66]

	Piecewise-cubic interpolator matching values and first derivatives.

The result is represented as a PPoly instance. [1]

	Parameters:

	
	x (array_like, shape (n,)) – 1-D array containing values of the independent variable.
Values must be real, finite and in strictly increasing order.

	y (array_like) – Array containing values of the dependent variable. It can have
arbitrary number of dimensions, but the length along axis
(see below) must match the length of x. Values must be finite.

	dydx (array_like) – Array containing derivatives of the dependent variable. It can have
arbitrary number of dimensions, but the length along axis
(see below) must match the length of x. Values must be finite.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which y is assumed to be varying. Meaning that for
x[i] the corresponding values are cupy.take(y, i, axis=axis).
Default is 0.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If ‘periodic’,
periodic extrapolation is used. If None (default), it is set to True.

	Variables:

	
	x (ndarray, shape (n,)) – Breakpoints. The same x which was passed to the constructor.

	c (ndarray, shape (4, n-1, ...)) – Coefficients of the polynomials on each segment. The trailing
dimensions match the dimensions of y, excluding axis.
For example, if y is 1-D, then c[k, i] is a coefficient for
(x-x[i])**(3-k) on the segment between x[i] and x[i+1].

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Interpolation axis. The same axis which was passed to the
constructor.

See also

	Akima1DInterpolator
	Akima 1D interpolator.

	PchipInterpolator
	PCHIP 1-D monotonic cubic interpolator.

	PPoly
	Piecewise polynomial in terms of coefficients and breakpoints

Notes

If you want to create a higher-order spline matching higher-order
derivatives, use BPoly.from_derivatives.

References

[1]
Cubic Hermite spline [https://en.wikipedia.org/wiki/Cubic_Hermite_spline]
on Wikipedia.

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L992]

	Evaluate the piecewise polynomial or its derivative.

	Parameters:

	
	x (array_like) – Points to evaluate the interpolant at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Must be non-negative.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array_like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1144]

	Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.

	Return type:

	PPoly

Notes

The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

	
classmethod construct_fast(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L884]

	Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1100]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k - n representing the
derivative of this polynomial.

	Return type:

	PPoly

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
extend(c, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L912]

	Add additional breakpoints and coefficients to the polynomial.

	Parameters:

	
	c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
self.x end points.

	x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current
breakpoints.

	
classmethod from_bernstein_basis(bp, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1378]

	Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.

	Parameters:

	
	bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
classmethod from_spline(tck, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1348]

	Construct a piecewise polynomial from a spline

	Parameters:

	
	tck – A spline, as a (knots, coefficients, degree) tuple or
a BSpline object.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1198]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower integration bound

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper integration bound

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	ig – Definite integral of the piecewise polynomial over [a, b]

	Return type:

	array_like

	
roots(discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1320]

	Find real roots of the piecewise polynomial.

	Parameters:

	
	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

See also

PPoly.solve

	
solve(y=0.0, discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1281]

	Find real solutions of the equation pp(x) == y.

	Parameters:

	
	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Right-hand side. Default is zero.

	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

Notes

This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are
identically zero, the root list will contain the start point
of the corresponding interval, followed by a nan value.
If the polynomial is discontinuous across a breakpoint, and
there is a sign change across the breakpoint, this is reported
if the discont parameter is True.

At the moment, there is not an actual implementation.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
x

	

	
extrapolate

	

	
axis

	

cupyx.scipy.interpolate.PchipInterpolator

	
class cupyx.scipy.interpolate.PchipInterpolator(x, y, axis=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L144]

	PCHIP 1-D monotonic cubic interpolation.

x and y are arrays of values used to approximate some function f,
with y = f(x). The interpolant uses monotonic cubic splines
to find the value of new points. (PCHIP stands for Piecewise Cubic
Hermite Interpolating Polynomial).

	Parameters:

	
	x (ndarray) – A 1-D array of monotonically increasing real values. x cannot
include duplicate values (otherwise f is overspecified)

	y (ndarray) – A 1-D array of real values. y’s length along the interpolation
axis must be equal to the length of x. If N-D array, use axis
parameter to select correct axis.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis in the y array corresponding to the x-coordinate values.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.

See also

	CubicHermiteSpline
	Piecewise-cubic interpolator.

	Akima1DInterpolator
	Akima 1D interpolator.

	PPoly
	Piecewise polynomial in terms of coefficients and breakpoints.

Notes

The interpolator preserves monotonicity in the interpolation data and does
not overshoot if the data is not smooth.

The first derivatives are guaranteed to be continuous, but the second
derivatives may jump at \(x_k\).

Determines the derivatives at the points \(x_k\), \(f'_k\),
by using PCHIP algorithm [1].

Let \(h_k = x_{k+1} - x_k\), and \(d_k = (y_{k+1} - y_k) / h_k\)
are the slopes at internal points \(x_k\).
If the signs of \(d_k\) and \(d_{k-1}\) are different or either of
them equals zero, then \(f'_k = 0\). Otherwise, it is given by the
weighted harmonic mean

\[\frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k}\]

where \(w_1 = 2 h_k + h_{k-1}\) and \(w_2 = h_k + 2 h_{k-1}\).

The end slopes are set using a one-sided scheme [2].

References

[1]
F. N. Fritsch and J. Butland,
A method for constructing local
monotone piecewise cubic interpolants,
SIAM J. Sci. Comput., 5(2), 300-304 (1984).
10.1137/0905021 [https://doi.org/10.1137/0905021].

[2]
see, e.g., C. Moler, Numerical Computing with Matlab, 2004.
10.1137/1.9780898717952 [https://doi.org/10.1137/1.9780898717952]

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L992]

	Evaluate the piecewise polynomial or its derivative.

	Parameters:

	
	x (array_like) – Points to evaluate the interpolant at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Must be non-negative.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array_like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1144]

	Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.

	Return type:

	PPoly

Notes

The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

	
classmethod construct_fast(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L884]

	Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1100]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k - n representing the
derivative of this polynomial.

	Return type:

	PPoly

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
extend(c, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L912]

	Add additional breakpoints and coefficients to the polynomial.

	Parameters:

	
	c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
self.x end points.

	x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current
breakpoints.

	
classmethod from_bernstein_basis(bp, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1378]

	Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.

	Parameters:

	
	bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
classmethod from_spline(tck, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1348]

	Construct a piecewise polynomial from a spline

	Parameters:

	
	tck – A spline, as a (knots, coefficients, degree) tuple or
a BSpline object.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1198]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower integration bound

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper integration bound

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	ig – Definite integral of the piecewise polynomial over [a, b]

	Return type:

	array_like

	
roots(discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1320]

	Find real roots of the piecewise polynomial.

	Parameters:

	
	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

See also

PPoly.solve

	
solve(y=0.0, discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1281]

	Find real solutions of the equation pp(x) == y.

	Parameters:

	
	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Right-hand side. Default is zero.

	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

Notes

This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are
identically zero, the root list will contain the start point
of the corresponding interval, followed by a nan value.
If the polynomial is discontinuous across a breakpoint, and
there is a sign change across the breakpoint, this is reported
if the discont parameter is True.

At the moment, there is not an actual implementation.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
x

	

	
extrapolate

	

	
axis

	

cupyx.scipy.interpolate.Akima1DInterpolator

	
class cupyx.scipy.interpolate.Akima1DInterpolator(x, y, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L325]

	Akima interpolator

Fit piecewise cubic polynomials, given vectors x and y. The interpolation
method by Akima uses a continuously differentiable sub-spline built from
piecewise cubic polynomials. The resultant curve passes through the given
data points and will appear smooth and natural [1].

	Parameters:

	
	x (ndarray, shape (m,)) – 1-D array of monotonically increasing real values.

	y (ndarray, shape (m, ...)) – N-D array of real values. The length of y along the first axis
must be equal to the length of x.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Specifies the axis of y along which to interpolate. Interpolation
defaults to the first axis of y.

See also

	CubicHermiteSpline
	Piecewise-cubic interpolator.

	PchipInterpolator
	PCHIP 1-D monotonic cubic interpolator.

	PPoly
	Piecewise polynomial in terms of coefficients and breakpoints

Notes

Use only for precise data, as the fitted curve passes through the given
points exactly. This routine is useful for plotting a pleasingly smooth
curve through a few given points for purposes of plotting.

References

[1]
A new method of interpolation and smooth curve fitting based
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4),
589-602.

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L992]

	Evaluate the piecewise polynomial or its derivative.

	Parameters:

	
	x (array_like) – Points to evaluate the interpolant at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Must be non-negative.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array_like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1144]

	Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.

	Return type:

	PPoly

Notes

The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

	
classmethod construct_fast(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L884]

	Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1100]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k - n representing the
derivative of this polynomial.

	Return type:

	PPoly

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
extend(c, x, right=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L400]

	Add additional breakpoints and coefficients to the polynomial.

	Parameters:

	
	c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
self.x end points.

	x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current
breakpoints.

	
classmethod from_bernstein_basis(bp, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L411]

	Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.

	Parameters:

	
	bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
classmethod from_spline(tck, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_cubic.py#L406]

	Construct a piecewise polynomial from a spline

	Parameters:

	
	tck – A spline, as a (knots, coefficients, degree) tuple or
a BSpline object.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1198]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower integration bound

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper integration bound

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	ig – Definite integral of the piecewise polynomial over [a, b]

	Return type:

	array_like

	
roots(discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1320]

	Find real roots of the piecewise polynomial.

	Parameters:

	
	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

See also

PPoly.solve

	
solve(y=0.0, discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1281]

	Find real solutions of the equation pp(x) == y.

	Parameters:

	
	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Right-hand side. Default is zero.

	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

Notes

This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are
identically zero, the root list will contain the start point
of the corresponding interval, followed by a nan value.
If the polynomial is discontinuous across a breakpoint, and
there is a sign change across the breakpoint, this is reported
if the discont parameter is True.

At the moment, there is not an actual implementation.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
x

	

	
extrapolate

	

	
axis

	

cupyx.scipy.interpolate.PPoly

	
class cupyx.scipy.interpolate.PPoly(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1048]

	Piecewise polynomial in terms of coefficients and breakpoints
The polynomial between x[i] and x[i + 1] is written in the
local power basis:

S = sum(c[m, i] * (xp - x[i]) ** (k - m) for m in range(k + 1))

where k is the degree of the polynomial.

	Parameters:

	
	c (ndarray, shape (k, m, ...)) – Polynomial coefficients, order k and m intervals.

	x (ndarray, shape (m+1,)) – Polynomial breakpoints. Must be sorted in either increasing or
decreasing order.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If ‘periodic’,
periodic extrapolation is used. Default is True.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Interpolation axis. Default is zero.

	Variables:

	
	x (ndarray) – Breakpoints.

	c (ndarray) – Coefficients of the polynomials. They are reshaped
to a 3-D array with the last dimension representing
the trailing dimensions of the original coefficient array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Interpolation axis.

See also

	BPoly
	piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically
unstable. Precision problems can start to appear for orders
larger than 20-30.

See also

scipy.interpolate.BSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline]

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L992]

	Evaluate the piecewise polynomial or its derivative.

	Parameters:

	
	x (array_like) – Points to evaluate the interpolant at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Must be non-negative.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array_like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1144]

	Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.

	Return type:

	PPoly

Notes

The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

	
classmethod construct_fast(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L884]

	Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1100]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k - n representing the
derivative of this polynomial.

	Return type:

	PPoly

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
extend(c, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L912]

	Add additional breakpoints and coefficients to the polynomial.

	Parameters:

	
	c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
self.x end points.

	x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current
breakpoints.

	
classmethod from_bernstein_basis(bp, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1378]

	Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.

	Parameters:

	
	bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
classmethod from_spline(tck, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1348]

	Construct a piecewise polynomial from a spline

	Parameters:

	
	tck – A spline, as a (knots, coefficients, degree) tuple or
a BSpline object.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1198]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower integration bound

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper integration bound

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	ig – Definite integral of the piecewise polynomial over [a, b]

	Return type:

	array_like

	
roots(discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1320]

	Find real roots of the piecewise polynomial.

	Parameters:

	
	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

See also

PPoly.solve

	
solve(y=0.0, discontinuity=True, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1281]

	Find real solutions of the equation pp(x) == y.

	Parameters:

	
	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Right-hand side. Default is zero.

	discontinuity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to report sign changes across discontinuities at
breakpoints as roots.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, ‘periodic’ works
the same as False. If None (default), use self.extrapolate.

	Returns:

	roots – Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.

	Return type:

	ndarray

Notes

This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are
identically zero, the root list will contain the start point
of the corresponding interval, followed by a nan value.
If the polynomial is discontinuous across a breakpoint, and
there is a sign change across the breakpoint, this is reported
if the discont parameter is True.

At the moment, there is not an actual implementation.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
x

	

	
extrapolate

	

	
axis

	

cupyx.scipy.interpolate.BPoly

	
class cupyx.scipy.interpolate.BPoly(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1415]

	Piecewise polynomial in terms of coefficients and breakpoints.

The polynomial between x[i] and x[i + 1] is written in the

Bernstein polynomial basis:

S = sum(c[a, i] * b(a, k; x) for a in range(k+1)),

where k is the degree of the polynomial, and:

b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a),

with t = (x - x[i]) / (x[i+1] - x[i]) and binom is the binomial
coefficient.

	Parameters:

	
	c (ndarray, shape (k, m, ...)) – Polynomial coefficients, order k and m intervals

	x (ndarray, shape (m+1,)) – Polynomial breakpoints. Must be sorted in either increasing or
decreasing order.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If ‘periodic’,
periodic extrapolation is used. Default is True.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Interpolation axis. Default is zero.

	Variables:

	
	x (ndarray) – Breakpoints.

	c (ndarray) – Coefficients of the polynomials. They are reshaped
to a 3-D array with the last dimension representing
the trailing dimensions of the original coefficient array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Interpolation axis.

See also

	PPoly
	piecewise polynomials in the power basis

Notes

Properties of Bernstein polynomials are well documented in the literature,
see for example [1] [2] [3].

References

[1]
https://en.wikipedia.org/wiki/Bernstein_polynomial

[2]
Kenneth I. Joy, Bernstein polynomials,
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf

[3]
E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems,
vol 2011, article ID 829546,
10.1155/2011/829543 [https://doi.org/10.1155/2011/829543].

Examples

>>> from cupyx.scipy.interpolate import BPoly
>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)

This creates a 2nd order polynomial

\[\begin{split}B(x) = 1 \times b_{0, 2}(x) + 2 \times b_{1, 2}(x) +
 3 \times b_{2, 2}(x) \\
 = 1 \times (1-x)^2 + 2 \times 2 x (1 - x) + 3 \times x^2\end{split}\]

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L992]

	Evaluate the piecewise polynomial or its derivative.

	Parameters:

	
	x (array_like) – Points to evaluate the interpolant at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Must be non-negative.

	extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array_like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1553]

	Construct a new piecewise polynomial representing the antiderivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.

	Returns:

	bp – Piecewise polynomial of order k + nu representing the
antiderivative of this polynomial.

	Return type:

	BPoly

Notes

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

	
classmethod construct_fast(c, x, extrapolate=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L884]

	Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1501]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.

	Returns:

	bp – Piecewise polynomial of order k - nu representing the derivative of
this polynomial.

	Return type:

	BPoly

	
extend(c, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1674]

	Add additional breakpoints and coefficients to the polynomial.

	Parameters:

	
	c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
self.x end points.

	x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current
breakpoints.

	
classmethod from_derivatives(xi, yi, orders=None, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1756]

	Construct a piecewise polynomial in the Bernstein basis,
compatible with the specified values and derivatives at breakpoints.

	Parameters:

	
	xi (array_like) – sorted 1-D array of x-coordinates

	yi (array_like or list [https://docs.python.org/3/library/stdtypes.html#list] of array_likes) – yi[i][j] is the j th derivative known at xi[i]

	orders (None or int [https://docs.python.org/3/library/functions.html#int] or array_like of ints. Default: None.) – Specifies the degree of local polynomials. If not None, some
derivatives are ignored.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

Notes

If k derivatives are specified at a breakpoint x, the
constructed polynomial is exactly k times continuously
differentiable at x, unless the order is provided explicitly.
In the latter case, the smoothness of the polynomial at
the breakpoint is controlled by the order.

Deduces the number of derivatives to match at each end
from order and the number of derivatives available. If
possible it uses the same number of derivatives from
each end; if the number is odd it tries to take the
extra one from y2. In any case if not enough derivatives
are available at one end or another it draws enough to
make up the total from the other end.

If the order is too high and not enough derivatives are available,
an exception is raised.

Examples

>>> from cupyx.scipy.interpolate import BPoly
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])

Creates a polynomial f(x) of degree 3, defined on [0, 1]
such that f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4

>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])

Creates a piecewise polynomial f(x), such that
f(0) = f(1) = 0, f(2) = 2, and df/dx(0) = 1.
Based on the number of derivatives provided, the order of the
local polynomials is 2 on [0, 1] and 1 on [1, 2].
Notice that no restriction is imposed on the derivatives at
x = 1 and x = 2.

Indeed, the explicit form of the polynomial is:

f(x) = | x * (1 - x), 0 <= x < 1
 | 2 * (x - 1), 1 <= x <= 2

So that f’(1-0) = -1 and f’(1+0) = 2

	
classmethod from_power_basis(pp, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1721]

	Construct a piecewise polynomial in Bernstein basis
from a power basis polynomial.

	Parameters:

	
	pp (PPoly) – A piecewise polynomial in the power basis

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. Default is True.

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1611]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower integration bound

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper integration bound

	extrapolate ({bool, 'periodic', None}, optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

	Returns:

	Definite integral of the piecewise polynomial over [a, b]

	Return type:

	array_like

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
c

	

	
x

	

	
extrapolate

	

	
axis

	

cupyx.scipy.interpolate.BSpline

	
class cupyx.scipy.interpolate.BSpline(t, c, k, extrapolate=True, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L445]

	Univariate spline in the B-spline basis.

\[S(x) = \sum_{j=0}^{n-1} c_j B_{j, k; t}(x)\]

where \(B_{j, k; t}\) are B-spline basis functions of degree k
and knots t.

	Parameters:

	
	t (ndarray, shape (n+k+1,)) – knots

	c (ndarray, shape (>=n, ...)) – spline coefficients

	k (int [https://docs.python.org/3/library/functions.html#int]) – B-spline degree

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – whether to extrapolate beyond the base interval, t[k] .. t[n],
or to return nans.
If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.
If ‘periodic’, periodic extrapolation is used.
Default is True.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Interpolation axis. Default is zero.

	Variables:

	
	t (ndarray) – knot vector

	c (ndarray) – spline coefficients

	k (int [https://docs.python.org/3/library/functions.html#int]) – spline degree

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Interpolation axis.

	tck (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A read-only equivalent of (self.t, self.c, self.k)

Notes

B-spline basis elements are defined via

\[\begin{align}\begin{aligned}B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise 0,}\\B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
 + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)\end{aligned}\end{align} \]

Implementation details

	At least k+1 coefficients are required for a spline of degree k,
so that n >= k+1. Additional coefficients, c[j] with
j > n, are ignored.

	B-spline basis elements of degree k form a partition of unity on the
base interval, t[k] <= x <= t[n].

	Based on [1] and [2]

See also

scipy.interpolate.BSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline]

References

[1]
Tom Lyche and Knut Morken, Spline methods,
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/

[2]
Carl de Boor, A practical guide to splines, Springer, 2001.

Methods

	
__call__(x, nu=0, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L709]

	Evaluate a spline function.

	Parameters:

	
	x (array_like) – points to evaluate the spline at.

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – derivative to evaluate (default is 0).

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – whether to extrapolate based on the first and last intervals
or return nans. If ‘periodic’, periodic extrapolation is used.
Default is self.extrapolate.

	Returns:

	y – Shape is determined by replacing the interpolation axis
in the coefficient array with the shape of x.

	Return type:

	array_like

	
antiderivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L799]

	Return a B-spline representing the antiderivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Antiderivative order. Default is 1.

	Returns:

	b – A new instance representing the antiderivative.

	Return type:

	BSpline object

Notes

If antiderivative is computed and self.extrapolate='periodic',
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

See also

splder, splantider

	
classmethod basis_element(t, extrapolate=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L582]

	Return a B-spline basis element B(x | t[0], ..., t[k+1]).

	Parameters:

	
	t (ndarray, shape (k+2,)) – internal knots

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – whether to extrapolate beyond the base interval,
t[0] .. t[k+1], or to return nans.
If ‘periodic’, periodic extrapolation is used.
Default is True.

	Returns:

	basis_element – A callable representing a B-spline basis element for the knot
vector t.

	Return type:

	callable

Notes

The degree of the B-spline, k, is inferred from the length of t as
len(t)-2. The knot vector is constructed by appending and
prepending k+1 elements to internal knots t.

See also

scipy.interpolate.BSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline]

	
classmethod construct_fast(t, c, k, extrapolate=True, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L564]

	Construct a spline without making checks.
Accepts same parameters as the regular constructor. Input arrays
t and c must of correct shape and dtype.

	
derivative(nu=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L771]

	Return a B-spline representing the derivative.

	Parameters:

	nu (int [https://docs.python.org/3/library/functions.html#int], optional) – Derivative order.
Default is 1.

	Returns:

	b – A new instance representing the derivative.

	Return type:

	BSpline object

See also

splder, splantider

	
classmethod design_matrix(x, t, k, extrapolate=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L617]

	Returns a design matrix as a CSR format sparse array.

	Parameters:

	
	x (array_like, shape (n,)) – Points to evaluate the spline at.

	t (array_like, shape (nt,)) – Sorted 1D array of knots.

	k (int [https://docs.python.org/3/library/functions.html#int]) – B-spline degree.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – Whether to extrapolate based on the first and last intervals
or raise an error. If ‘periodic’, periodic extrapolation is used.
Default is False.

	Returns:

	design_matrix – Sparse matrix in CSR format where each row contains all the basis
elements of the input row (first row = basis elements of x[0],
…, last row = basis elements x[-1]).

	Return type:

	csr_matrix object

Notes

In each row of the design matrix all the basis elements are evaluated
at the certain point (first row - x[0], …, last row - x[-1]).
nt is a length of the vector of knots: as far as there are
nt - k - 1 basis elements, nt should be not less than 2 * k + 2
to have at least k + 1 basis element.

Out of bounds x raises a ValueError.

Note

This method returns a csr_matrix instance as CuPy still does not
have csr_array.

See also

scipy.interpolate.BSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline]

	
integrate(a, b, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L839]

	Compute a definite integral of the spline.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower limit of integration.

	b (float [https://docs.python.org/3/library/functions.html#float]) – Upper limit of integration.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool] or 'periodic', optional) – whether to extrapolate beyond the base interval,
t[k] .. t[-k-1], or take the spline to be zero outside of the
base interval. If ‘periodic’, periodic extrapolation is used.
If None (default), use self.extrapolate.

	Returns:

	I – Definite integral of the spline over the interval [a, b].

	Return type:

	array_like

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
tck

	Equivalent to (self.t, self.c, self.k) (read-only).

cupyx.scipy.interpolate.make_interp_spline

	
cupyx.scipy.interpolate.make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0, check_finite=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline2.py#L112]

	Compute the (coefficients of) interpolating B-spline.

	Parameters:

	
	x (array_like, shape (n,)) – Abscissas.

	y (array_like, shape (n, ...)) – Ordinates.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – B-spline degree. Default is cubic, k = 3.

	t (array_like, shape (nt + k + 1,), optional.) – Knots.
The number of knots needs to agree with the number of data points and
the number of derivatives at the edges. Specifically, nt - n must
equal len(deriv_l) + len(deriv_r).

	bc_type (2-tuple or None) – Boundary conditions.
Default is None, which means choosing the boundary conditions
automatically. Otherwise, it must be a length-two tuple where the first
element (deriv_l) sets the boundary conditions at x[0] and
the second element (deriv_r) sets the boundary conditions at
x[-1]. Each of these must be an iterable of pairs
(order, value) which gives the values of derivatives of specified
orders at the given edge of the interpolation interval.
Alternatively, the following string aliases are recognized:

	
	"clamped": The first derivatives at the ends are zero. This is
	equivalent to bc_type=([(1, 0.0)], [(1, 0.0)]).

	"natural": The second derivatives at ends are zero. This is
equivalent to bc_type=([(2, 0.0)], [(2, 0.0)]).

	"not-a-knot" (default): The first and second segments are the
same polynomial. This is equivalent to having bc_type=None.

	"periodic": The values and the first k-1 derivatives at the
ends are equivalent.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Interpolation axis. Default is 0.

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default is True.

	Returns:

	b

	Return type:

	a BSpline object of the degree k and with knots t.

cupyx.scipy.interpolate.splder

	
cupyx.scipy.interpolate.splder(tck, n=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L331]

	Compute the spline representation of the derivative of a given spline

	Parameters:

	
	tck (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (t, c, k)) – Spline whose derivative to compute

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of derivative to evaluate. Default: 1

	Returns:

	tck_der – Spline of order k2=k-n representing the derivative
of the input spline.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (t2, c2, k2)

Notes

See also

scipy.interpolate.splder

See also

splantider, splev, spalde

cupyx.scipy.interpolate.splantider

	
cupyx.scipy.interpolate.splantider(tck, n=1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_bspline.py#L391]

	Compute the spline for the antiderivative (integral) of a given spline.

	Parameters:

	
	tck (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (t, c, k)) – Spline whose antiderivative to compute

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Order of antiderivative to evaluate. Default: 1

	Returns:

	tck_ader – Spline of order k2=k+n representing the antiderivative of the input
spline.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (t2, c2, k2)

See also

splder, splev, spalde

Notes

The splder function is the inverse operation of this function.
Namely, splder(splantider(tck)) is identical to tck, modulo
rounding error.

See also

scipy.interpolate.splantider

cupyx.scipy.interpolate.RBFInterpolator

	
class cupyx.scipy.interpolate.RBFInterpolator(y, d, neighbors=None, smoothing=0.0, kernel='thin_plate_spline', epsilon=None, degree=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_rbfinterp.py#L472]

	Radial basis function (RBF) interpolation in N dimensions.

	Parameters:

	
	y ((P, N) array_like) – Data point coordinates.

	d ((P, ...) array_like) – Data values at y.

	neighbors (int [https://docs.python.org/3/library/functions.html#int], optional) – If specified, the value of the interpolant at each evaluation point
will be computed using only this many nearest data points. All the data
points are used by default.

	smoothing (float [https://docs.python.org/3/library/functions.html#float] or (P,) array_like, optional) – Smoothing parameter. The interpolant perfectly fits the data when this
is set to 0. For large values, the interpolant approaches a least
squares fit of a polynomial with the specified degree. Default is 0.

	kernel (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of RBF. This should be one of

	’linear’ : -r

	’thin_plate_spline’ : r**2 * log(r)

	’cubic’ : r**3

	’quintic’ : -r**5

	’multiquadric’ : -sqrt(1 + r**2)

	’inverse_multiquadric’ : 1/sqrt(1 + r**2)

	’inverse_quadratic’ : 1/(1 + r**2)

	’gaussian’ : exp(-r**2)

Default is ‘thin_plate_spline’.

	epsilon (float [https://docs.python.org/3/library/functions.html#float], optional) – Shape parameter that scales the input to the RBF. If kernel is
‘linear’, ‘thin_plate_spline’, ‘cubic’, or ‘quintic’, this defaults to
1 and can be ignored because it has the same effect as scaling the
smoothing parameter. Otherwise, this must be specified.

	degree (int [https://docs.python.org/3/library/functions.html#int], optional) – Degree of the added polynomial. For some RBFs the interpolant may not
be well-posed if the polynomial degree is too small. Those RBFs and
their corresponding minimum degrees are

	’multiquadric’ : 0

	’linear’ : 0

	’thin_plate_spline’ : 1

	’cubic’ : 1

	’quintic’ : 2

The default value is the minimum degree for kernel or 0 if there is
no minimum degree. Set this to -1 for no added polynomial.

Notes

An RBF is a scalar valued function in N-dimensional space whose value at
\(x\) can be expressed in terms of \(r=||x - c||\), where \(c\)
is the center of the RBF.

An RBF interpolant for the vector of data values \(d\), which are from
locations \(y\), is a linear combination of RBFs centered at \(y\)
plus a polynomial with a specified degree. The RBF interpolant is written
as

\[f(x) = K(x, y) a + P(x) b,\]

where \(K(x, y)\) is a matrix of RBFs with centers at \(y\)
evaluated at the points \(x\), and \(P(x)\) is a matrix of
monomials, which span polynomials with the specified degree, evaluated at
\(x\). The coefficients \(a\) and \(b\) are the solution to the
linear equations

\[(K(y, y) + \lambda I) a + P(y) b = d\]

and

\[P(y)^T a = 0,\]

where \(\lambda\) is a non-negative smoothing parameter that controls
how well we want to fit the data. The data are fit exactly when the
smoothing parameter is 0.

The above system is uniquely solvable if the following requirements are
met:

	\(P(y)\) must have full column rank. \(P(y)\) always has full
column rank when degree is -1 or 0. When degree is 1,
\(P(y)\) has full column rank if the data point locations are not
all collinear (N=2), coplanar (N=3), etc.

	If kernel is ‘multiquadric’, ‘linear’, ‘thin_plate_spline’,
‘cubic’, or ‘quintic’, then degree must not be lower than the
minimum value listed above.

	If smoothing is 0, then each data point location must be distinct.

When using an RBF that is not scale invariant (‘multiquadric’,
‘inverse_multiquadric’, ‘inverse_quadratic’, or ‘gaussian’), an appropriate
shape parameter must be chosen (e.g., through cross validation). Smaller
values for the shape parameter correspond to wider RBFs. The problem can
become ill-conditioned or singular when the shape parameter is too small.

The memory required to solve for the RBF interpolation coefficients
increases quadratically with the number of data points, which can become
impractical when interpolating more than about a thousand data points.
To overcome memory limitations for large interpolation problems, the
neighbors argument can be specified to compute an RBF interpolant for
each evaluation point using only the nearest data points.

See also

scipy.interpolate.RBFInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RBFInterpolator.html#scipy.interpolate.RBFInterpolator]

Methods

	
__call__(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_rbfinterp.py#L748]

	Evaluate the interpolant at x.

	Parameters:

	x ((Q, N) array_like) – Evaluation point coordinates.

	Returns:

	Values of the interpolant at x.

	Return type:

	(Q, …) ndarray

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.interpolate.interpn

	
cupyx.scipy.interpolate.interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_rgi.py#L501]

	Multidimensional interpolation on regular or rectilinear grids.

Strictly speaking, not all regular grids are supported - this function
works on rectilinear grids, that is, a rectangular grid with even or
uneven spacing.

	Parameters:

	
	points (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of cupy.ndarray of float [https://docs.python.org/3/library/functions.html#float], with shapes (m1,), ..., (mn,)) – The points defining the regular grid in n dimensions. The points in
each dimension (i.e. every elements of the points tuple) must be
strictly ascending or descending.

	values (cupy.ndarray of shape (m1, ..., mn, ...)) – The data on the regular grid in n dimensions. Complex data can be
acceptable.

	xi (cupy.ndarray of shape (..., ndim)) – The coordinates to sample the gridded data at

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The method of interpolation to perform. Supported are “linear”,
“nearest”, “slinear”, “cubic”, “quintic” and “pchip”.

	bounds_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, when interpolated values are requested outside of the
domain of the input data, a ValueError is raised.
If False, then fill_value is used.

	fill_value (number, optional) – If provided, the value to use for points outside of the
interpolation domain. If None, values outside
the domain are extrapolated.

	Returns:

	values_x – Interpolated values at xi. See notes for behaviour when
xi.ndim == 1.

	Return type:

	ndarray, shape xi.shape[:-1] + values.shape[ndim:]

Notes

In the case that xi.ndim == 1 a new axis is inserted into
the 0 position of the returned array, values_x, so its shape is
instead (1,) + values.shape[ndim:].

If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolation.

Examples

Evaluate a simple example function on the points of a regular 3-D grid:

>>> import cupy as cp
>>> from cupyx.scipy.interpolate import interpn
>>> def value_func_3d(x, y, z):
... return 2 * x + 3 * y - z
>>> x = cp.linspace(0, 4, 5)
>>> y = cp.linspace(0, 5, 6)
>>> z = cp.linspace(0, 6, 7)
>>> points = (x, y, z)
>>> values = value_func_3d(*cp.meshgrid(*points, indexing='ij'))

Evaluate the interpolating function at a point

>>> point = cp.array([2.21, 3.12, 1.15])
>>> print(interpn(points, values, point))
[12.63]

See also

	RegularGridInterpolator
	interpolation on a regular or rectilinear grid in arbitrary dimensions (interpn wraps this class).

	cupyx.scipy.ndimage.map_coordinates
	interpolation on grids with equal spacing (suitable for e.g., N-D image resampling)

cupyx.scipy.interpolate.RegularGridInterpolator

	
class cupyx.scipy.interpolate.RegularGridInterpolator(points, values, method='linear', bounds_error=True, fill_value=nan)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_rgi.py#L70]

	Interpolation on a regular or rectilinear grid in arbitrary dimensions.

The data must be defined on a rectilinear grid; that is, a rectangular
grid with even or uneven spacing. Linear and nearest-neighbor
interpolations are supported. After setting up the interpolator object,
the interpolation method may be chosen at each evaluation.

	Parameters:

	
	points (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarray of float [https://docs.python.org/3/library/functions.html#float], with shapes (m1,), ..., (mn,)) – The points defining the regular grid in n dimensions. The points in
each dimension (i.e. every elements of the points tuple) must be
strictly ascending or descending.

	values (ndarray, shape (m1, ..., mn, ...)) – The data on the regular grid in n dimensions. Complex data can be
acceptable.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The method of interpolation to perform. Supported are “linear”,
“nearest”, “slinear”, “cubic”, “quintic” and “pchip”.
This parameter will become the default for the object’s
__call__ method. Default is “linear”.

	bounds_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, when interpolated values are requested outside of the
domain of the input data, a ValueError is raised.
If False, then fill_value is used.
Default is True.

	fill_value (float [https://docs.python.org/3/library/functions.html#float] or None, optional) – The value to use for points outside of the interpolation domain.
If None, values outside the domain are extrapolated.
Default is cp.nan.

Notes

Contrary to scipy’s LinearNDInterpolator and NearestNDInterpolator,
this class avoids expensive triangulation of the input data by taking
advantage of the regular grid structure.

In other words, this class assumes that the data is defined on a
rectilinear grid.

If the input data is such that dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolating.

Examples

Evaluate a function on the points of a 3-D grid

As a first example, we evaluate a simple example function on the points of
a 3-D grid:

>>> from cupyx.scipy.interpolate import RegularGridInterpolator
>>> import cupy as cp
>>> def f(x, y, z):
... return 2 * x**3 + 3 * y**2 - z
>>> x = cp.linspace(1, 4, 11)
>>> y = cp.linspace(4, 7, 22)
>>> z = cp.linspace(7, 9, 33)
>>> xg, yg ,zg = cp.meshgrid(x, y, z, indexing='ij', sparse=True)
>>> data = f(xg, yg, zg)

data is now a 3-D array with data[i, j, k] = f(x[i], y[j], z[k]).
Next, define an interpolating function from this data:

>>> interp = RegularGridInterpolator((x, y, z), data)

Evaluate the interpolating function at the two points
(x,y,z) = (2.1, 6.2, 8.3) and (3.3, 5.2, 7.1):

>>> pts = cp.array([[2.1, 6.2, 8.3],
... [3.3, 5.2, 7.1]])
>>> interp(pts)
array([125.80469388, 146.30069388])

which is indeed a close approximation to

>>> f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)
(125.54200000000002, 145.894)

Interpolate and extrapolate a 2D dataset

As a second example, we interpolate and extrapolate a 2D data set:

>>> x, y = cp.array([-2, 0, 4]), cp.array([-2, 0, 2, 5])
>>> def ff(x, y):
... return x**2 + y**2

>>> xg, yg = cp.meshgrid(x, y, indexing='ij')
>>> data = ff(xg, yg)
>>> interp = RegularGridInterpolator((x, y), data,
... bounds_error=False, fill_value=None)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> ax.scatter(xg.ravel().get(), yg.ravel().get(), data.ravel().get(),
... s=60, c='k', label='data')

Evaluate and plot the interpolator on a finer grid

>>> xx = cp.linspace(-4, 9, 31)
>>> yy = cp.linspace(-4, 9, 31)
>>> X, Y = cp.meshgrid(xx, yy, indexing='ij')

>>> # interpolator
>>> ax.plot_wireframe(X.get(), Y.get(), interp((X, Y)).get(),
 rstride=3, cstride=3, alpha=0.4, color='m',
 label='linear interp')

>>> # ground truth
>>> ax.plot_wireframe(X.get(), Y.get(), ff(X, Y).get(),
 rstride=3, cstride=3,
... alpha=0.4, label='ground truth')
>>> plt.legend()
>>> plt.show()

See also

	interpn
	a convenience function which wraps RegularGridInterpolator

	scipy.ndimage.map_coordinates [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates]
	interpolation on grids with equal spacing (suitable for e.g., N-D image resampling)

References

	[1] Python package regulargrid by Johannes Buchner, see
	https://pypi.python.org/pypi/regulargrid/

	[2] Wikipedia, “Trilinear interpolation”,
	https://en.wikipedia.org/wiki/Trilinear_interpolation

	[3] Weiser, Alan, and Sergio E. Zarantonello. “A note on piecewise
	linear and multilinear table interpolation in many dimensions.”
MATH. COMPUT. 50.181 (1988): 189-196.
https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf

Methods

	
__call__(xi, method=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_rgi.py#L264]

	Interpolation at coordinates.

	Parameters:

	
	xi (cupy.ndarray of shape (..., ndim)) – The coordinates to evaluate the interpolator at.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The method of interpolation to perform. Supported are “linear” and
“nearest”. Default is the method chosen when the interpolator was
created.

	Returns:

	values_x – Interpolated values at xi. See notes for behaviour when
xi.ndim == 1.

	Return type:

	cupy.ndarray, shape xi.shape[:-1] + values.shape[ndim:]

Notes

In the case that xi.ndim == 1 a new axis is inserted into
the 0 position of the returned array, values_x, so its shape is
instead (1,) + values.shape[ndim:].

Examples

Here we define a nearest-neighbor interpolator of a simple function

>>> import cupy as cp
>>> x, y = cp.array([0, 1, 2]), cp.array([1, 3, 7])
>>> def f(x, y):
... return x**2 + y**2
>>> data = f(*cp.meshgrid(x, y, indexing='ij', sparse=True))
>>> from cupyx.scipy.interpolate import RegularGridInterpolator
>>> interp = RegularGridInterpolator((x, y), data, method='nearest')

By construction, the interpolator uses the nearest-neighbor
interpolation

>>> interp([[1.5, 1.3], [0.3, 4.5]])
array([2., 9.])

We can however evaluate the linear interpolant by overriding the
method parameter

>>> interp([[1.5, 1.3], [0.3, 4.5]], method='linear')
array([4.7, 24.3])

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.interpolate.NdPPoly

	
class cupyx.scipy.interpolate.NdPPoly(c, x, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L1964]

	Piecewise tensor product polynomial

The value at point xp = (x', y', z', ...) is evaluated by first
computing the interval indices i such that:

x[0][i[0]] <= x' < x[0][i[0]+1]
x[1][i[1]] <= y' < x[1][i[1]+1]
...

and then computing:

S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]]
 * (xp[0] - x[0][i[0]])**m0
 * ...
 * (xp[n] - x[n][i[n]])**mn
 for m0 in range(k[0]+1)
 ...
 for mn in range(k[n]+1))

where k[j] is the degree of the polynomial in dimension j. This
representation is the piecewise multivariate power basis.

	Parameters:

	
	c (ndarray, shape (k0, ..., kn, m0, ..., mn, ...)) – Polynomial coefficients, with polynomial order kj and
mj+1 intervals for each dimension j.

	x (ndim-tuple of ndarrays, shapes (mj+1,)) – Polynomial breakpoints for each dimension. These must be
sorted in increasing order.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs. Default: True.

	Variables:

	
	x (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays) – Breakpoints.

	c (ndarray) – Coefficients of the polynomials.

See also

	PPoly
	piecewise polynomials in 1D

Notes

High-order polynomials in the power basis can be numerically
unstable.

Methods

	
__call__(x, nu=None, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2071]

	Evaluate the piecewise polynomial or its derivative

	Parameters:

	
	x (array-like) – Points to evaluate the interpolant at.

	nu (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Orders of derivatives to evaluate. Each must be non-negative.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.

	Returns:

	y – Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.

	Return type:

	array-like

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
[a, b), except for the last interval which is closed
[a, b].

	
antiderivative(nu)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2238]

	Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.

	Parameters:

	nu (ndim-tuple of int [https://docs.python.org/3/library/functions.html#int]) – Order of derivatives to evaluate for each dimension.
If negative, the derivative is returned.

	Returns:

	pp – Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.

	Return type:

	PPoly

Notes

The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.

	
classmethod construct_fast(c, x, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2040]

	Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments
c and x must be arrays of the correct shape and type. The
c array can only be of dtypes float and complex, and x
array must have dtype float.

	
derivative(nu)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2206]

	Construct a new piecewise polynomial representing the derivative.

	Parameters:

	nu (ndim-tuple of int [https://docs.python.org/3/library/functions.html#int]) – Order of derivatives to evaluate for each dimension.
If negative, the antiderivative is returned.

	Returns:

	pp – Piecewise polynomial of orders (k[0] - nu[0], …, k[n] - nu[n])
representing the derivative of this polynomial.

	Return type:

	NdPPoly

Notes

Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals in each dimension are
considered half-open, [a, b), except for the last interval
which is closed [a, b].

	
integrate(ranges, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2328]

	Compute a definite integral over a piecewise polynomial.

	Parameters:

	
	ranges (ndim-tuple of 2-tuples float) – Sequence of lower and upper bounds for each dimension,
[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.

	Returns:

	ig – Definite integral of the piecewise polynomial over
[a[0], b[0]] x … x [a[ndim-1], b[ndim-1]]

	Return type:

	array_like

	
integrate_1d(a, b, axis, extrapolate=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/interpolate/_interpolate.py#L2270]

	Compute NdPPoly representation for one dimensional definite integral
The result is a piecewise polynomial representing the integral:

\[p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...)\]

where the dimension integrated over is specified with the
axis parameter.

	Parameters:

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lower and upper bound for integration.

	b (float [https://docs.python.org/3/library/functions.html#float]) – Lower and upper bound for integration.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Dimension over which to compute the 1-D integrals

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.

	Returns:

	ig – Definite integral of the piecewise polynomial over [a, b].
If the polynomial was 1D, an array is returned,
otherwise, an NdPPoly object.

	Return type:

	NdPPoly or array-like

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Linear algebra (cupyx.scipy.linalg)

Hint

SciPy API Reference: Linear algebra (scipy.linalg) [https://docs.scipy.org/doc/scipy/reference/linalg.html]

Basics

	solve_triangular(a, b[, trans, lower, ...])

	Solve the equation a x = b for x, assuming a is a triangular matrix.

	tril(m[, k])

	Make a copy of a matrix with elements above the k-th diagonal zeroed.

	triu(m[, k])

	Make a copy of a matrix with elements below the k-th diagonal zeroed.

Matrix Functions

	expm(a)

	Compute the matrix exponential.

Decompositions

	lu(a[, permute_l, overwrite_a, check_finite])

	LU decomposition.

	lu_factor(a[, overwrite_a, check_finite])

	LU decomposition.

	lu_solve(lu_and_piv, b[, trans, ...])

	Solve an equation system, a * x = b, given the LU factorization of a

Special Matrices

	block_diag(*arrs)

	Create a block diagonal matrix from provided arrays.

	circulant(c)

	Construct a circulant matrix.

	companion(a)

	Create a companion matrix.

	convolution_matrix(a, n[, mode])

	Construct a convolution matrix.

	dft(n[, scale])

	Discrete Fourier transform matrix.

	fiedler(a)

	Returns a symmetric Fiedler matrix

	fiedler_companion(a)

	Returns a Fiedler companion matrix

	hadamard(n[, dtype])

	Construct an Hadamard matrix.

	hankel(c[, r])

	Construct a Hankel matrix.

	helmert(n[, full])

	Create an Helmert matrix of order n.

	hilbert(n)

	Create a Hilbert matrix of order n.

	kron(a, b)

	Kronecker product.

	leslie(f, s)

	Create a Leslie matrix.

	toeplitz(c[, r])

	Construct a Toeplitz matrix.

	tri(N[, M, k, dtype])

	Construct (N, M) matrix filled with ones at and below the k-th diagonal.

cupyx.scipy.linalg.solve_triangular

	
cupyx.scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, check_finite=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_solve_triangular.py#L10]

	Solve the equation a x = b for x, assuming a is a triangular matrix.

	Parameters:

	
	a (cupy.ndarray) – The matrix with dimension (M, M).

	b (cupy.ndarray) – The matrix with dimension (M,) or
(M, N).

	lower (bool [https://docs.python.org/3/library/functions.html#bool]) – Use only data contained in the lower triangle of a.
Default is to use upper triangle.

	trans (0, 1, 2, 'N', 'T' or 'C') – Type of system to solve:

	’0’ or ‘N’ – \(a x = b\)

	’1’ or ‘T’ – \(a^T x = b\)

	’2’ or ‘C’ – \(a^H x = b\)

	unit_diagonal (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, diagonal elements of a are
assumed to be 1 and will not be referenced.

	overwrite_b (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow overwriting data in b (may enhance
performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to check that the input matrices contain
only finite numbers. Disabling may give a performance gain, but may
result in problems (crashes, non-termination) if the inputs do
contain infinities or NaNs.

	Returns:

	The matrix with dimension (M,) or (M, N).

	Return type:

	cupy.ndarray

See also

scipy.linalg.solve_triangular() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular]

cupyx.scipy.linalg.tril

	
cupyx.scipy.linalg.tril(m, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L41]

	Make a copy of a matrix with elements above the k-th diagonal
zeroed.

	Parameters:

	
	m (cupy.ndarray) – Matrix whose elements to return

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Diagonal above which to zero elements.
k == 0 is the main diagonal, k < 0 subdiagonal and
k > 0 superdiagonal.

	Returns:

	Return is the same shape and type as m.

	Return type:

	(cupy.ndarray)

See also

scipy.linalg.tril() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tril.html#scipy.linalg.tril]

cupyx.scipy.linalg.triu

	
cupyx.scipy.linalg.triu(m, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L65]

	Make a copy of a matrix with elements below the k-th diagonal
zeroed.

	Parameters:

	
	m (cupy.ndarray) – Matrix whose elements to return

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Diagonal above which to zero elements.
k == 0 is the main diagonal, k < 0 subdiagonal and
k > 0 superdiagonal.

	Returns:

	Return matrix with zeroed elements below the kth
diagonal and has same shape and type as m.

	Return type:

	(cupy.ndarray)

See also

scipy.linalg.triu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.triu.html#scipy.linalg.triu]

cupyx.scipy.linalg.expm

	
cupyx.scipy.linalg.expm(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_matfuncs.py#L61]

	Compute the matrix exponential.

	Parameters:

	a (ndarray, 2D) –

	Return type:

	matrix exponential of a

Notes

Uses (a simplified) version of Algorithm 2.3 of [1]:
a [13 / 13] Pade approximant with scaling and squaring.

Simplifications:

	we always use a [13/13] approximate

	no matrix balancing

References

[1]
N. Higham, SIAM J. MATRIX ANAL. APPL. Vol. 26(4), p. 1179 (2005)
https://doi.org/10.1137/04061101X

cupyx.scipy.linalg.lu

	
cupyx.scipy.linalg.lu(a, permute_l=False, overwrite_a=False, check_finite=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_decomp_lu.py#L44]

	LU decomposition.

Decomposes a given two-dimensional matrix into P @ L @ U, where P
is a permutation matrix, L is a lower triangular or trapezoidal matrix
with unit diagonal, and U is a upper triangular or trapezoidal matrix.

	Parameters:

	
	a (cupy.ndarray) – The input matrix with dimension (M, N).

	permute_l (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perform the multiplication P @ L.

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow overwriting data in a (may enhance
performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to check that the input matrices contain
only finite numbers. Disabling may give a performance gain, but may
result in problems (crashes, non-termination) if the inputs do
contain infinities or NaNs.

	Returns:

	(P, L, U) if permute_l == False, otherwise (PL, U).
P is a cupy.ndarray storing permutation matrix with
dimension (M, M). L is a cupy.ndarray storing
lower triangular or trapezoidal matrix with unit diagonal with
dimension (M, K) where K = min(M, N). U is a
cupy.ndarray storing upper triangular or trapezoidal
matrix with dimension (K, N). PL is a cupy.ndarray
storing permuted L matrix with dimension (M, K).

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.linalg.lu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu.html#scipy.linalg.lu]

cupyx.scipy.linalg.lu_factor

	
cupyx.scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_decomp_lu.py#L13]

	LU decomposition.

Decompose a given two-dimensional square matrix into P * L * U,
where P is a permutation matrix, L lower-triangular with
unit diagonal elements, and U upper-triangular matrix.

	Parameters:

	
	a (cupy.ndarray) – The input matrix with dimension (M, N)

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow overwriting data in a (may enhance
performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to check that the input matrices contain
only finite numbers. Disabling may give a performance gain, but may
result in problems (crashes, non-termination) if the inputs do
contain infinities or NaNs.

	Returns:

	(lu, piv) where lu is a cupy.ndarray
storing U in its upper triangle, and L without
unit diagonal elements in its lower triangle, and piv is
a cupy.ndarray storing pivot indices representing
permutation matrix P. For 0 <= i < min(M,N), row
i of the matrix was interchanged with row piv[i]

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.linalg.lu_factor() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor]

cupyx.scipy.linalg.lu_solve

	
cupyx.scipy.linalg.lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_decomp_lu.py#L259]

	Solve an equation system, a * x = b, given the LU factorization of a

	Parameters:

	
	lu_and_piv (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – LU factorization of matrix a ((M, M))
together with pivot indices.

	b (cupy.ndarray) – The matrix with dimension (M,) or
(M, N).

	trans ({0, 1, 2}) – Type of system to solve:

	trans

	system

	0

	a x = b

	1

	a^T x = b

	2

	a^H x = b

	overwrite_b (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow overwriting data in b (may enhance
performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to check that the input matrices contain
only finite numbers. Disabling may give a performance gain, but may
result in problems (crashes, non-termination) if the inputs do
contain infinities or NaNs.

	Returns:

	The matrix with dimension (M,) or (M, N).

	Return type:

	cupy.ndarray

See also

scipy.linalg.lu_solve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve]

cupyx.scipy.linalg.block_diag

	
cupyx.scipy.linalg.block_diag(*arrs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L269]

	Create a block diagonal matrix from provided arrays.

Given the inputs A, B, and C, the output will have these
arrays arranged on the diagonal:

[A, 0, 0]
[0, B, 0]
[0, 0, C]

	Parameters:

	
	A (cupy.ndarray) – Input arrays. A 1-D array of length n
is treated as a 2-D array with shape (1,n).

	B (cupy.ndarray) – Input arrays. A 1-D array of length n
is treated as a 2-D array with shape (1,n).

	C (cupy.ndarray) – Input arrays. A 1-D array of length n
is treated as a 2-D array with shape (1,n).

	... (cupy.ndarray) – Input arrays. A 1-D array of length n
is treated as a 2-D array with shape (1,n).

	Returns:

	Array with A, B, C, … on the diagonal.
Output has the same dtype as A.

	Return type:

	(cupy.ndarray)

See also

scipy.linalg.block_diag() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag]

cupyx.scipy.linalg.circulant

	
cupyx.scipy.linalg.circulant(c)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L123]

	Construct a circulant matrix.

	Parameters:

	c (cupy.ndarray) – 1-D array, the first column of the matrix.

	Returns:

	A circulant matrix whose first column is c.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.linalg.toeplitz()

See also

cupyx.scipy.linalg.hankel()

See also

cupyx.scipy.linalg.solve_circulant()

See also

cupyx.scipy.linalg.fiedler()

See also

scipy.linalg.circulant() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html#scipy.linalg.circulant]

cupyx.scipy.linalg.companion

	
cupyx.scipy.linalg.companion(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L315]

	Create a companion matrix.

Create the companion matrix associated with the polynomial whose
coefficients are given in a.

	Parameters:

	a (cupy.ndarray) – 1-D array of polynomial coefficients. The length of
a must be at least two, and a[0] must not be zero.

	Returns:

	The first row of the output is -a[1:]/a[0], and the
first sub-diagonal is all ones. The data-type of the array is the
same as the data-type of -a[1:]/a[0].

	Return type:

	(cupy.ndarray)

See also

cupyx.scipy.linalg.fiedler_companion()

See also

scipy.linalg.companion() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.companion.html#scipy.linalg.companion]

cupyx.scipy.linalg.convolution_matrix

	
cupyx.scipy.linalg.convolution_matrix(a, n, mode='full')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L521]

	Construct a convolution matrix.

Constructs the Toeplitz matrix representing one-dimensional convolution.

	Parameters:

	
	a (cupy.ndarray) – The 1-D array to convolve.

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of columns in the resulting matrix. It gives the
length of the input to be convolved with a. This is analogous
to the length of v in numpy.convolve(a, v).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – This must be one of ('full', 'valid', 'same').
This is analogous to mode in numpy.convolve(v, a, mode).

	Returns:

	The convolution matrix whose row count k depends on
mode:

	mode

	k

	'full'

	m + n - 1

	'same'

	max(m, n)

	'valid'

	max(m, n) - min(m, n) + 1

	Return type:

	cupy.ndarray

See also

cupyx.scipy.linalg.toeplitz()

See also

scipy.linalg.convolution_matrix() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix]

cupyx.scipy.linalg.dft

	
cupyx.scipy.linalg.dft(n, scale=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L403]

	Discrete Fourier transform matrix.

Create the matrix that computes the discrete Fourier transform of a
sequence. The nth primitive root of unity used to generate the matrix is
exp(-2*pi*i/n), where i = sqrt(-1).

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Size the matrix to create.

	scale (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Must be None, ‘sqrtn’, or ‘n’.
If scale is ‘sqrtn’, the matrix is divided by sqrt(n).
If scale is ‘n’, the matrix is divided by n.
If scale is None (default), the matrix is not normalized, and
the return value is simply the Vandermonde matrix of the roots of
unity.

	Returns:

	The DFT matrix.

	Return type:

	(cupy.ndarray)

Notes

When scale is None, multiplying a vector by the matrix returned by
dft is mathematically equivalent to (but much less efficient than)
the calculation performed by scipy.fft.fft.

See also

scipy.linalg.dft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.dft.html#scipy.linalg.dft]

cupyx.scipy.linalg.fiedler

	
cupyx.scipy.linalg.fiedler(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L442]

	Returns a symmetric Fiedler matrix

Given an sequence of numbers a, Fiedler matrices have the structure
F[i, j] = np.abs(a[i] - a[j]), and hence zero diagonals and nonnegative
entries. A Fiedler matrix has a dominant positive eigenvalue and other
eigenvalues are negative. Although not valid generally, for certain inputs,
the inverse and the determinant can be derived explicitly.

	Parameters:

	a (cupy.ndarray) – coefficient array

	Returns:

	the symmetric Fiedler matrix

	Return type:

	cupy.ndarray

See also

cupyx.scipy.linalg.circulant()

See also

cupyx.scipy.linalg.toeplitz()

See also

scipy.linalg.fiedler() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler]

cupyx.scipy.linalg.fiedler_companion

	
cupyx.scipy.linalg.fiedler_companion(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L472]

	Returns a Fiedler companion matrix

Given a polynomial coefficient array a, this function forms a
pentadiagonal matrix with a special structure whose eigenvalues coincides
with the roots of a.

	Parameters:

	a (cupy.ndarray) – 1-D array of polynomial coefficients in descending
order with a nonzero leading coefficient. For N < 2, an empty
array is returned.

	Returns:

	Resulting companion matrix

	Return type:

	cupy.ndarray

Notes

Similar to companion the leading coefficient should be nonzero. In
the case the leading coefficient is not 1, other coefficients are
rescaled before the array generation. To avoid numerical issues, it is
best to provide a monic polynomial.

See also

cupyx.scipy.linalg.companion()

See also

scipy.linalg.fiedler_companion() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion]

cupyx.scipy.linalg.hadamard

	
cupyx.scipy.linalg.hadamard(n, dtype=<class 'int'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L181]

	Construct an Hadamard matrix.

Constructs an n-by-n Hadamard matrix, using Sylvester’s construction. n
must be a power of 2.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The order of the matrix. n must be a power of 2.

	dtype (dtype, optional) – The data type of the array to be constructed.

	Returns:

	The Hadamard matrix.

	Return type:

	(cupy.ndarray)

See also

scipy.linalg.hadamard() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard]

cupyx.scipy.linalg.hankel

	
cupyx.scipy.linalg.hankel(c, r=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L143]

	Construct a Hankel matrix.

The Hankel matrix has constant anti-diagonals, with c as its first
column and r as its last row. If r is not given, then
r = zeros_like(c) is assumed.

	Parameters:

	
	c (cupy.ndarray) – First column of the matrix. Whatever the actual shape
of c, it will be converted to a 1-D array.

	r (cupy.ndarray, optionnal) – Last row of the matrix. If None,
r = zeros_like(c) is assumed. r[0] is ignored; the last row
of the returned matrix is [c[-1], r[1:]]. Whatever the actual
shape of r, it will be converted to a 1-D array.

	Returns:

	The Hankel matrix. Dtype is the same as
(c[0] + r[0]).dtype.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.linalg.toeplitz()

See also

cupyx.scipy.linalg.circulant()

See also

scipy.linalg.hankel() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html#scipy.linalg.hankel]

cupyx.scipy.linalg.helmert

	
cupyx.scipy.linalg.helmert(n, full=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L350]

	Create an Helmert matrix of order n.

This has applications in statistics, compositional or simplicial analysis,
and in Aitchison geometry.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The size of the array to create.

	full (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True the (n, n) ndarray will be returned.
Otherwise, the default, the submatrix that does not include the
first row will be returned.

	Returns:

	The Helmert matrix. The shape is (n, n) or (n-1, n)
depending on the full argument.

	Return type:

	cupy.ndarray

See also

scipy.linalg.helmert() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.helmert.html#scipy.linalg.helmert]

cupyx.scipy.linalg.hilbert

	
cupyx.scipy.linalg.hilbert(n)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L379]

	Create a Hilbert matrix of order n.

Returns the n by n array with entries h[i,j] = 1 / (i + j + 1).

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – The size of the array to create.

	Returns:

	The Hilbert matrix.

	Return type:

	cupy.ndarray

See also

scipy.linalg.hilbert() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert]

cupyx.scipy.linalg.kron

	
cupyx.scipy.linalg.kron(a, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L245]

	Kronecker product.

	The result is the block matrix::
	a[0,0]*b a[0,1]*b … a[0,-1]*b
a[1,0]*b a[1,1]*b … a[1,-1]*b
…
a[-1,0]*b a[-1,1]*b … a[-1,-1]*b

	Parameters:

	
	a (cupy.ndarray) – Input array

	b (cupy.ndarray) – Input array

	Returns:

	Kronecker product of a and b.

	Return type:

	cupy.ndarray

See also

scipy.linalg.kron() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.kron.html#scipy.linalg.kron]

cupyx.scipy.linalg.leslie

	
cupyx.scipy.linalg.leslie(f, s)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L210]

	Create a Leslie matrix.

Given the length n array of fecundity coefficients f and the length n-1
array of survival coefficients s, return the associated Leslie matrix.

	Parameters:

	
	f (cupy.ndarray) – The “fecundity” coefficients.

	s (cupy.ndarray) – The “survival” coefficients, has to be 1-D. The
length of s must be one less than the length of f, and it
must be at least 1.

	Returns:

	The array is zero except for the first row, which is
f, and the first sub-diagonal, which is s. The data-type of
the array will be the data-type of f[0]+s[0].

	Return type:

	cupy.ndarray

See also

scipy.linalg.leslie() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.leslie.html#scipy.linalg.leslie]

cupyx.scipy.linalg.toeplitz

	
cupyx.scipy.linalg.toeplitz(c, r=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L91]

	Construct a Toeplitz matrix.

The Toeplitz matrix has constant diagonals, with c as its first column
and r as its first row. If r is not given, r == conjugate(c) is
assumed.

	Parameters:

	
	c (cupy.ndarray) – First column of the matrix. Whatever the actual shape
of c, it will be converted to a 1-D array.

	r (cupy.ndarray, optional) – First row of the matrix. If None,
r = conjugate(c) is assumed; in this case, if c[0] is real,
the result is a Hermitian matrix. r[0] is ignored; the first row of
the returned matrix is [c[0], r[1:]]. Whatever the actual shape
of r, it will be converted to a 1-D array.

	Returns:

	The Toeplitz matrix. Dtype is the same as
(c[0] + r[0]).dtype.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.linalg.circulant()

See also

cupyx.scipy.linalg.hankel()

See also

cupyx.scipy.linalg.solve_toeplitz()

See also

cupyx.scipy.linalg.fiedler()

See also

scipy.linalg.toeplitz() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz]

cupyx.scipy.linalg.tri

	
cupyx.scipy.linalg.tri(N, M=None, k=0, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/linalg/_special_matrices.py#L9]

	Construct (N, M) matrix filled with ones at and below the
k-th diagonal. The matrix has A[i,j] == 1 for i <= j + k.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The size of the first dimension of the matrix.

	M (int [https://docs.python.org/3/library/functions.html#int], optional) – The size of the second dimension of the matrix. If
M is None, M = N is assumed.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of subdiagonal below which matrix is filled
with ones. k = 0 is the main diagonal, k < 0 subdiagonal
and k > 0 superdiagonal.

	dtype (dtype, optional) – Data type of the matrix.

	Returns:

	Tri matrix.

	Return type:

	cupy.ndarray

See also

scipy.linalg.tri() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tri.html#scipy.linalg.tri]

Multidimensional image processing (cupyx.scipy.ndimage)

Hint

SciPy API Reference: Multidimensional image processing (scipy.ndimage) [https://docs.scipy.org/doc/scipy/reference/ndimage.html]

Filters

	convolve(input, weights[, output, mode, ...])

	Multi-dimensional convolution.

	convolve1d(input, weights[, axis, output, ...])

	One-dimensional convolution.

	correlate(input, weights[, output, mode, ...])

	Multi-dimensional correlate.

	correlate1d(input, weights[, axis, output, ...])

	One-dimensional correlate.

	gaussian_filter(input, sigma[, order, ...])

	Multi-dimensional Gaussian filter.

	gaussian_filter1d(input, sigma[, axis, ...])

	One-dimensional Gaussian filter along the given axis.

	gaussian_gradient_magnitude(input, sigma[, ...])

	Multi-dimensional gradient magnitude using Gaussian derivatives.

	gaussian_laplace(input, sigma[, output, ...])

	Multi-dimensional Laplace filter using Gaussian second derivatives.

	generic_filter(input, function[, size, ...])

	Compute a multi-dimensional filter using the provided raw kernel or reduction kernel.

	generic_filter1d(input, function, filter_size)

	Compute a 1D filter along the given axis using the provided raw kernel.

	generic_gradient_magnitude(input, derivative)

	Multi-dimensional gradient magnitude filter using a provided derivative function.

	generic_laplace(input, derivative2[, ...])

	Multi-dimensional Laplace filter using a provided second derivative function.

	laplace(input[, output, mode, cval])

	Multi-dimensional Laplace filter based on approximate second derivatives.

	maximum_filter(input[, size, footprint, ...])

	Multi-dimensional maximum filter.

	maximum_filter1d(input, size[, axis, ...])

	Compute the maximum filter along a single axis.

	median_filter(input[, size, footprint, ...])

	Multi-dimensional median filter.

	minimum_filter(input[, size, footprint, ...])

	Multi-dimensional minimum filter.

	minimum_filter1d(input, size[, axis, ...])

	Compute the minimum filter along a single axis.

	percentile_filter(input, percentile[, size, ...])

	Multi-dimensional percentile filter.

	prewitt(input[, axis, output, mode, cval])

	Compute a Prewitt filter along the given axis.

	rank_filter(input, rank[, size, footprint, ...])

	Multi-dimensional rank filter.

	sobel(input[, axis, output, mode, cval])

	Compute a Sobel filter along the given axis.

	uniform_filter(input[, size, output, mode, ...])

	Multi-dimensional uniform filter.

	uniform_filter1d(input, size[, axis, ...])

	One-dimensional uniform filter along the given axis.

Fourier filters

	fourier_ellipsoid(input, size[, n, axis, output])

	Multidimensional ellipsoid Fourier filter.

	fourier_gaussian(input, sigma[, n, axis, output])

	Multidimensional Gaussian shift filter.

	fourier_shift(input, shift[, n, axis, output])

	Multidimensional Fourier shift filter.

	fourier_uniform(input, size[, n, axis, output])

	Multidimensional uniform shift filter.

Interpolation

	affine_transform(input, matrix[, offset, ...])

	Apply an affine transformation.

	map_coordinates(input, coordinates[, ...])

	Map the input array to new coordinates by interpolation.

	rotate(input, angle[, axes, reshape, ...])

	Rotate an array.

	shift(input, shift[, output, order, mode, ...])

	Shift an array.

	spline_filter(input[, order, output, mode])

	Multidimensional spline filter.

	spline_filter1d(input[, order, axis, ...])

	Calculate a 1-D spline filter along the given axis.

	zoom(input, zoom[, output, order, mode, ...])

	Zoom an array.

Measurements

	center_of_mass(input[, labels, index])

	Calculate the center of mass of the values of an array at labels.

	extrema(input[, labels, index])

	Calculate the minimums and maximums of the values of an array at labels, along with their positions.

	histogram(input, min, max, bins[, labels, index])

	Calculate the histogram of the values of an array, optionally at labels.

	label(input[, structure, output])

	Labels features in an array.

	labeled_comprehension(input, labels, index, ...)

	Array resulting from applying func to each labeled region.

	maximum(input[, labels, index])

	Calculate the maximum of the values of an array over labeled regions.

	maximum_position(input[, labels, index])

	Find the positions of the maximums of the values of an array at labels.

	mean(input[, labels, index])

	Calculates the mean of the values of an n-D image array, optionally

	median(input[, labels, index])

	Calculate the median of the values of an array over labeled regions.

	minimum(input[, labels, index])

	Calculate the minimum of the values of an array over labeled regions.

	minimum_position(input[, labels, index])

	Find the positions of the minimums of the values of an array at labels.

	standard_deviation(input[, labels, index])

	Calculates the standard deviation of the values of an n-D image array, optionally at specified sub-regions.

	sum_labels(input[, labels, index])

	Calculates the sum of the values of an n-D image array, optionally

	value_indices(arr, *[, ignore_value, ...])

	Find indices of each distinct value in given array.

	variance(input[, labels, index])

	Calculates the variance of the values of an n-D image array, optionally at specified sub-regions.

Morphology

	binary_closing(input[, structure, ...])

	Multidimensional binary closing with the given structuring element.

	binary_dilation(input[, structure, ...])

	Multidimensional binary dilation with the given structuring element.

	binary_erosion(input[, structure, ...])

	Multidimensional binary erosion with a given structuring element.

	binary_fill_holes(input[, structure, ...])

	Fill the holes in binary objects.

	binary_hit_or_miss(input[, structure1, ...])

	Multidimensional binary hit-or-miss transform.

	binary_opening(input[, structure, ...])

	Multidimensional binary opening with the given structuring element.

	binary_propagation(input[, structure, mask, ...])

	Multidimensional binary propagation with the given structuring element.

	black_tophat(input[, size, footprint, ...])

	Multidimensional black tophat filter.

	distance_transform_edt(image[, sampling, ...])

	Exact Euclidean distance transform.

	generate_binary_structure(rank, connectivity)

	Generate a binary structure for binary morphological operations.

	grey_closing(input[, size, footprint, ...])

	Calculates a multi-dimensional greyscale closing.

	grey_dilation(input[, size, footprint, ...])

	Calculates a greyscale dilation.

	grey_erosion(input[, size, footprint, ...])

	Calculates a greyscale erosion.

	grey_opening(input[, size, footprint, ...])

	Calculates a multi-dimensional greyscale opening.

	iterate_structure(structure, iterations[, ...])

	Iterate a structure by dilating it with itself.

	morphological_gradient(input[, size, ...])

	Multidimensional morphological gradient.

	morphological_laplace(input[, size, ...])

	Multidimensional morphological laplace.

	white_tophat(input[, size, footprint, ...])

	Multidimensional white tophat filter.

OpenCV mode

cupyx.scipy.ndimage supports additional mode, opencv.
If it is given, the function performs like cv2.warpAffine [https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983] or cv2.resize [https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d]. Example:

import cupyx.scipy.ndimage
import cupy as cp
import cv2

im = cv2.imread('TODO') # pls fill in your image path

trans_mat = cp.eye(4)
trans_mat[0][0] = trans_mat[1][1] = 0.5

smaller_shape = (im.shape[0] // 2, im.shape[1] // 2, 3)
smaller = cp.zeros(smaller_shape) # preallocate memory for resized image

cupyx.scipy.ndimage.affine_transform(im, trans_mat, output_shape=smaller_shape,
 output=smaller, mode='opencv')

cv2.imwrite('smaller.jpg', cp.asnumpy(smaller)) # smaller image saved locally

cupyx.scipy.ndimage.convolve

	
cupyx.scipy.ndimage.convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L46]

	Multi-dimensional convolution.

The array is convolved with the given kernel.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	weights (cupy.ndarray) – Array of weights, same number of dimensions as
input

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of convolution.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.convolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.convolve1d

	
cupyx.scipy.ndimage.convolve1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L117]

	One-dimensional convolution.

The array is convolved with the given kernel.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	weights (cupy.ndarray) – One-dimensional array of weights

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the 1D convolution.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.convolve1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.correlate

	
cupyx.scipy.ndimage.correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L12]

	Multi-dimensional correlate.

The array is correlated with the given kernel.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	weights (cupy.ndarray) – Array of weights, same number of dimensions as
input

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of correlate.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.correlate() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate.html#scipy.ndimage.correlate]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.correlate1d

	
cupyx.scipy.ndimage.correlate1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L81]

	One-dimensional correlate.

The array is correlated with the given kernel.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	weights (cupy.ndarray) – One-dimensional array of weights

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the 1D correlation.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.correlate1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate1d.html#scipy.ndimage.correlate1d]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_filter

	
cupyx.scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L329]

	Multi-dimensional Gaussian filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	sigma (scalar or sequence of scalar) – Standard deviations for each axis
of Gaussian kernel. A single value applies to all axes.

	order (int [https://docs.python.org/3/library/functions.html#int] or sequence of scalar) – An order of 0, the default,
corresponds to convolution with a Gaussian kernel. A positive order
corresponds to convolution with that derivative of a Gaussian. A
single value applies to all axes.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	truncate (float [https://docs.python.org/3/library/functions.html#float]) – Truncate the filter at this many standard deviations.
Default is 4.0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.gaussian_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_filter1d

	
cupyx.scipy.ndimage.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L287]

	One-dimensional Gaussian filter along the given axis.

The lines of the array along the given axis are filtered with a Gaussian
filter of the given standard deviation.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	sigma (scalar) – Standard deviation for Gaussian kernel.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	order (int [https://docs.python.org/3/library/functions.html#int]) – An order of 0, the default, corresponds to convolution
with a Gaussian kernel. A positive order corresponds to convolution
with that derivative of a Gaussian.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	truncate (float [https://docs.python.org/3/library/functions.html#float]) – Truncate the filter at this many standard deviations.
Default is 4.0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.gaussian_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_gradient_magnitude

	
cupyx.scipy.ndimage.gaussian_gradient_magnitude(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L665]

	Multi-dimensional gradient magnitude using Gaussian derivatives.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	sigma (scalar or sequence of scalar) – Standard deviations for each axis
of Gaussian kernel. A single value applies to all axes.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – dict of extra keyword arguments to pass gaussian_filter().

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.gaussian_gradient_magnitude() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_gradient_magnitude.html#scipy.ndimage.gaussian_gradient_magnitude]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_laplace

	
cupyx.scipy.ndimage.gaussian_laplace(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L567]

	Multi-dimensional Laplace filter using Gaussian second derivatives.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	sigma (scalar or sequence of scalar) – Standard deviations for each axis
of Gaussian kernel. A single value applies to all axes.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – dict of extra keyword arguments to pass gaussian_filter().

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.gaussian_laplace() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_laplace.html#scipy.ndimage.gaussian_laplace]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.generic_filter

	
cupyx.scipy.ndimage.generic_filter(input, function, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L1124]

	Compute a multi-dimensional filter using the provided raw kernel or
reduction kernel.

Unlike the scipy.ndimage function, this does not support the
extra_arguments or extra_keywordsdict arguments and has significant
restrictions on the function provided.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	function (cupy.ReductionKernel or cupy.RawKernel) – The kernel or function to apply to each region.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

Note

If the function is a cupy.RawKernel then it must be for a
function that has the following signature. Unlike most functions, this
should not utilize blockDim/blockIdx/threadIdx:

__global__ void func(double *buffer, int filter_size,
 double *return_value)

If the function is a cupy.ReductionKernel then it must be
for a kernel that takes 1 array input and produces 1 ‘scalar’ output.

See also

scipy.ndimage.generic_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html#scipy.ndimage.generic_filter]

cupyx.scipy.ndimage.generic_filter1d

	
cupyx.scipy.ndimage.generic_filter1d(input, function, filter_size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L1192]

	Compute a 1D filter along the given axis using the provided raw kernel.

Unlike the scipy.ndimage function, this does not support the
extra_arguments or extra_keywordsdict arguments and has significant
restrictions on the function provided.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	function (cupy.RawKernel) – The kernel to apply along each axis.

	filter_size (int [https://docs.python.org/3/library/functions.html#int]) – Length of the filter.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

Note

The provided function (as a RawKernel) must have the following
signature. Unlike most functions, this should not utilize
blockDim/blockIdx/threadIdx:

__global__ void func(double *input_line, ptrdiff_t input_length,
 double *output_line, ptrdiff_t output_length)

See also

scipy.ndimage.generic_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter1d.html#scipy.ndimage.generic_filter1d]

cupyx.scipy.ndimage.generic_gradient_magnitude

	
cupyx.scipy.ndimage.generic_gradient_magnitude(input, derivative, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L603]

	Multi-dimensional gradient magnitude filter using a provided derivative
function.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	derivative (callable) – Function or other callable with the following
signature that is called once per axis:

derivative(input, axis, output, mode, cval,
 *extra_arguments, **extra_keywords)

where input and output are cupy.ndarray, axis is an
int from 0 to the number of dimensions, and mode,
cval, extra_arguments, extra_keywords are the values
given to this function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	extra_arguments (sequence, optional) – Sequence of extra positional arguments to pass to derivative2.

	extra_keywords (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – dict of extra keyword arguments to pass derivative2.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.generic_gradient_magnitude() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_gradient_magnitude.html#scipy.ndimage.generic_gradient_magnitude]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.generic_laplace

	
cupyx.scipy.ndimage.generic_laplace(input, derivative2, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L476]

	Multi-dimensional Laplace filter using a provided second derivative
function.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	derivative2 (callable) – Function or other callable with the following
signature that is called once per axis:

derivative2(input, axis, output, mode, cval,
 *extra_arguments, **extra_keywords)

where input and output are cupy.ndarray, axis is an
int from 0 to the number of dimensions, and mode,
cval, extra_arguments, extra_keywords are the values
given to this function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	extra_arguments (sequence, optional) – Sequence of extra positional arguments to pass to derivative2.

	extra_keywords (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – dict of extra keyword arguments to pass derivative2.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.generic_laplace() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_laplace.html#scipy.ndimage.generic_laplace]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.laplace

	
cupyx.scipy.ndimage.laplace(input, output=None, mode='reflect', cval=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L535]

	Multi-dimensional Laplace filter based on approximate second
derivatives.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.laplace() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.laplace.html#scipy.ndimage.laplace]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.maximum_filter

	
cupyx.scipy.ndimage.maximum_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L734]

	Multi-dimensional maximum filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.maximum_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html#scipy.ndimage.maximum_filter]

cupyx.scipy.ndimage.maximum_filter1d

	
cupyx.scipy.ndimage.maximum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L827]

	Compute the maximum filter along a single axis.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Length of the maximum filter.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.maximum_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter1d.html#scipy.ndimage.maximum_filter1d]

cupyx.scipy.ndimage.median_filter

	
cupyx.scipy.ndimage.median_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L937]

	Multi-dimensional median filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.median_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter]

cupyx.scipy.ndimage.minimum_filter

	
cupyx.scipy.ndimage.minimum_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L701]

	Multi-dimensional minimum filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.minimum_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter.html#scipy.ndimage.minimum_filter]

cupyx.scipy.ndimage.minimum_filter1d

	
cupyx.scipy.ndimage.minimum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L800]

	Compute the minimum filter along a single axis.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Length of the minimum filter.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.minimum_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter1d.html#scipy.ndimage.minimum_filter1d]

cupyx.scipy.ndimage.percentile_filter

	
cupyx.scipy.ndimage.percentile_filter(input, percentile, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L970]

	Multi-dimensional percentile filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	percentile (scalar) – The percentile of the element to get (from 0
to 100). Can be negative, thus -20 equals 80.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.percentile_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter]

cupyx.scipy.ndimage.prewitt

	
cupyx.scipy.ndimage.prewitt(input, axis=-1, output=None, mode='reflect', cval=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L408]

	Compute a Prewitt filter along the given axis.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.prewitt() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.prewitt.html#scipy.ndimage.prewitt]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.rank_filter

	
cupyx.scipy.ndimage.rank_filter(input, rank, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L901]

	Multi-dimensional rank filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	rank (int [https://docs.python.org/3/library/functions.html#int]) – The rank of the element to get. Can be negative to count
from the largest value, e.g. -1 indicates the largest value.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – One of size or footprint must be
provided. If footprint is given, size is ignored. Otherwise
footprint = cupy.ones(size) with size automatically made to
match the number of dimensions in input.

	footprint (cupy.ndarray) – a boolean array which specifies which of the
elements within this shape will get passed to the filter function.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.rank_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rank_filter.html#scipy.ndimage.rank_filter]

cupyx.scipy.ndimage.sobel

	
cupyx.scipy.ndimage.sobel(input, axis=-1, output=None, mode='reflect', cval=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L437]

	Compute a Sobel filter along the given axis.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.sobel() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html#scipy.ndimage.sobel]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.uniform_filter

	
cupyx.scipy.ndimage.uniform_filter(input, size=3, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L248]

	Multi-dimensional uniform filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – Lengths of the uniform filter for each
dimension. A single value applies to all axes.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int] or sequence of int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.uniform_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html#scipy.ndimage.uniform_filter]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.uniform_filter1d

	
cupyx.scipy.ndimage.uniform_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_filters.py#L211]

	One-dimensional uniform filter along the given axis.

The lines of the array along the given axis are filtered with a uniform
filter of the given size.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Length of the uniform filter.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis of input along which to calculate. Default is -1.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output. Default is is same dtype as the input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
'constant'. Default is 0.0.

	origin (int [https://docs.python.org/3/library/functions.html#int]) – The origin parameter controls the placement of the
filter, relative to the center of the current element of the
input. Default is 0.

	Returns:

	The result of the filtering.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.uniform_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html#scipy.ndimage.uniform_filter1d]

Note

When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.fourier_ellipsoid

	
cupyx.scipy.ndimage.fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_fourier.py#L187]

	Multidimensional ellipsoid Fourier filter.

The array is multiplied with the fourier transform of a ellipsoid of
given sizes.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (float [https://docs.python.org/3/library/functions.html#float] or sequence of float [https://docs.python.org/3/library/functions.html#float]) – The size of the box used for
filtering. If a float, size is the same for all axes. If a
sequence, size has to contain one value for each axis.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If n is negative (default), then the input is
assumed to be the result of a complex fft. If n is larger than or
equal to zero, the input is assumed to be the result of a real fft,
and n gives the length of the array before transformation along
the real transform direction.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the real transform (only used when
n > -1).

	output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in this array.

	Returns:

	The filtered output.

	Return type:

	output (cupy.ndarray)

cupyx.scipy.ndimage.fourier_gaussian

	
cupyx.scipy.ndimage.fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_fourier.py#L35]

	Multidimensional Gaussian shift filter.

The array is multiplied with the Fourier transform of a (separable)
Gaussian kernel.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	sigma (float [https://docs.python.org/3/library/functions.html#float] or sequence of float [https://docs.python.org/3/library/functions.html#float]) – The sigma of the Gaussian kernel.
If a float, sigma is the same for all axes. If a sequence,
sigma has to contain one value for each axis.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If n is negative (default), then the input is
assumed to be the result of a complex fft. If n is larger than or
equal to zero, the input is assumed to be the result of a real fft,
and n gives the length of the array before transformation along
the real transform direction.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the real transform (only used when
n > -1).

	output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in this array.

	Returns:

	The filtered output.

	Return type:

	output (cupy.ndarray)

cupyx.scipy.ndimage.fourier_shift

	
cupyx.scipy.ndimage.fourier_shift(input, shift, n=-1, axis=-1, output=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_fourier.py#L138]

	Multidimensional Fourier shift filter.

The array is multiplied with the Fourier transform of a shift operation.

	Parameters:

	
	input (cupy.ndarray) – The input array. This should be in the Fourier
domain.

	shift (float [https://docs.python.org/3/library/functions.html#float] or sequence of float [https://docs.python.org/3/library/functions.html#float]) – The size of shift. If a float,
shift is the same for all axes. If a sequence, shift has to
contain one value for each axis.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If n is negative (default), then the input is
assumed to be the result of a complex fft. If n is larger than or
equal to zero, the input is assumed to be the result of a real fft,
and n gives the length of the array before transformation along
the real transform direction.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the real transform (only used when
n > -1).

	output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in this array.

	Returns:

	The shifted output (in the Fourier domain).

	Return type:

	output (cupy.ndarray)

cupyx.scipy.ndimage.fourier_uniform

	
cupyx.scipy.ndimage.fourier_uniform(input, size, n=-1, axis=-1, output=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_fourier.py#L88]

	Multidimensional uniform shift filter.

The array is multiplied with the Fourier transform of a box of given size.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (float [https://docs.python.org/3/library/functions.html#float] or sequence of float [https://docs.python.org/3/library/functions.html#float]) – The sigma of the box used for
filtering. If a float, size is the same for all axes. If a
sequence, size has to contain one value for each axis.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – If n is negative (default), then the input is
assumed to be the result of a complex fft. If n is larger than or
equal to zero, the input is assumed to be the result of a real fft,
and n gives the length of the array before transformation along
the real transform direction.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the real transform (only used when
n > -1).

	output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in this array.

	Returns:

	The filtered output.

	Return type:

	output (cupy.ndarray)

cupyx.scipy.ndimage.affine_transform

	
cupyx.scipy.ndimage.affine_transform(input, matrix, offset=0.0, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, texture_memory=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L319]

	Apply an affine transformation.

Given an output image pixel index vector o, the pixel value is
determined from the input image at position
cupy.dot(matrix, o) + offset.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	matrix (cupy.ndarray) – The inverse coordinate transformation matrix,
mapping output coordinates to input coordinates. If ndim is the
number of dimensions of input, the given matrix must have one
of the following shapes:

	(ndim, ndim): the linear transformation matrix for each
output coordinate.

	(ndim,): assume that the 2D transformation matrix is
diagonal, with the diagonal specified by the given value.

	(ndim + 1, ndim + 1): assume that the transformation is
specified using homogeneous coordinates. In this case, any
value passed to offset is ignored.

	(ndim, ndim + 1): as above, but the bottom row of a
homogeneous transformation matrix is always
[0, 0, ..., 1], and may be omitted.

	offset (float [https://docs.python.org/3/library/functions.html#float] or sequence) – The offset into the array where the
transform is applied. If a float, offset is the same for each
axis. If a sequence, offset should contain one value for each
axis.

	output_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape tuple.

	output (cupy.ndarray or dtype) – The array in which to place the
output, or the dtype of the returned array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	cval (scalar) – Value used for points outside the boundaries of
the input if mode='constant' or mode='opencv'. Default is
0.0

	prefilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if the input array is prefiltered with
spline_filter before interpolation. The default is True, which
will create a temporary float64 array of filtered values if
order > 1. If setting this to False, the output will be
slightly blurred if order > 1, unless the input is prefiltered,
i.e. it is the result of calling spline_filter on the original
input.

	texture_memory (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, uses GPU texture memory. Supports only:

	2D and 3D float32 arrays as input

	
	(ndim + 1, ndim + 1) homogeneous float32 transformation
	matrix

	mode='constant' and mode='nearest'

	
	order=0 (nearest neighbor) and order=1 (linear
	interpolation)

	NVIDIA CUDA GPUs

	Returns:

	The transformed input. If output is given as a parameter,
None is returned.

	Return type:

	cupy.ndarray or None

See also

scipy.ndimage.affine_transform() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html#scipy.ndimage.affine_transform]

cupyx.scipy.ndimage.map_coordinates

	
cupyx.scipy.ndimage.map_coordinates(input, coordinates, output=None, order=3, mode='constant', cval=0.0, prefilter=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L252]

	Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the
corresponding coordinates in the input. The value of the input at those
coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by
dropping the first axis. The values of the array along the first axis are
the coordinates in the input array at which the output value is found.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	coordinates (array_like) – The coordinates at which input is
evaluated.

	output (cupy.ndarray or dtype) – The array in which to place the
output, or the dtype of the returned array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	cval (scalar) – Value used for points outside the boundaries of
the input if mode='constant' or mode='opencv'. Default is
0.0

	prefilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if the input array is prefiltered with
spline_filter before interpolation. The default is True, which
will create a temporary float64 array of filtered values if
order > 1. If setting this to False, the output will be
slightly blurred if order > 1, unless the input is prefiltered,
i.e. it is the result of calling spline_filter on the original
input.

	Returns:

	The result of transforming the input. The shape of the output is
derived from that of coordinates by dropping the first axis.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates]

cupyx.scipy.ndimage.rotate

	
cupyx.scipy.ndimage.rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, mode='constant', cval=0.0, prefilter=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L481]

	Rotate an array.

The array is rotated in the plane defined by the two axes given by the
axes parameter using spline interpolation of the requested order.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – The rotation angle in degrees.

	axes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of 2 ints) – The two axes that define the plane of rotation.
Default is the first two axes.

	reshape (bool [https://docs.python.org/3/library/functions.html#bool]) – If reshape is True, the output shape is adapted so
that the input array is contained completely in the output. Default
is True.

	output (cupy.ndarray or dtype) – The array in which to place the
output, or the dtype of the returned array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	cval (scalar) – Value used for points outside the boundaries of
the input if mode='constant' or mode='opencv'. Default is
0.0

	prefilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if the input array is prefiltered with
spline_filter before interpolation. The default is True, which
will create a temporary float64 array of filtered values if
order > 1. If setting this to False, the output will be
slightly blurred if order > 1, unless the input is prefiltered,
i.e. it is the result of calling spline_filter on the original
input.

	Returns:

	The rotated input.

	Return type:

	cupy.ndarray or None

See also

scipy.ndimage.rotate() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rotate.html#scipy.ndimage.rotate]

cupyx.scipy.ndimage.shift

	
cupyx.scipy.ndimage.shift(input, shift, output=None, order=3, mode='constant', cval=0.0, prefilter=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L582]

	Shift an array.

The array is shifted using spline interpolation of the requested order.
Points outside the boundaries of the input are filled according to the
given mode.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	shift (float [https://docs.python.org/3/library/functions.html#float] or sequence) – The shift along the axes. If a float,
shift is the same for each axis. If a sequence, shift
should contain one value for each axis.

	output (cupy.ndarray or dtype) – The array in which to place the
output, or the dtype of the returned array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	cval (scalar) – Value used for points outside the boundaries of
the input if mode='constant' or mode='opencv'. Default is
0.0

	prefilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if the input array is prefiltered with
spline_filter before interpolation. The default is True, which
will create a temporary float64 array of filtered values if
order > 1. If setting this to False, the output will be
slightly blurred if order > 1, unless the input is prefiltered,
i.e. it is the result of calling spline_filter on the original
input.

	Returns:

	The shifted input.

	Return type:

	cupy.ndarray or None

See also

scipy.ndimage.shift() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift]

cupyx.scipy.ndimage.spline_filter

	
cupyx.scipy.ndimage.spline_filter(input, order=3, output=<class 'numpy.float64'>, mode='mirror')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L155]

	Multidimensional spline filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	output (cupy.ndarray or dtype, optional) – The array in which to place
the output, or the dtype of the returned array. Default is
numpy.float64.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	Returns:

	The result of prefiltering the input.

	Return type:

	cupy.ndarray

See also

scipy.spline_filter1d()

cupyx.scipy.ndimage.spline_filter1d

	
cupyx.scipy.ndimage.spline_filter1d(input, order=3, axis=-1, output=<class 'numpy.float64'>, mode='mirror')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L71]

	Calculate a 1-D spline filter along the given axis.

The lines of the array along the given axis are filtered by a
spline filter. The order of the spline must be >= 2 and <= 5.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which the spline filter is applied. Default
is the last axis.

	output (cupy.ndarray or dtype, optional) – The array in which to place
the output, or the dtype of the returned array. Default is
numpy.float64.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	Returns:

	The result of prefiltering the input.

	Return type:

	cupy.ndarray

See also

scipy.spline_filter1d()

cupyx.scipy.ndimage.zoom

	
cupyx.scipy.ndimage.zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, grid_mode=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_interpolation.py#L659]

	Zoom an array.

The array is zoomed using spline interpolation of the requested order.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	zoom (float [https://docs.python.org/3/library/functions.html#float] or sequence) – The zoom factor along the axes. If a float,
zoom is the same for each axis. If a sequence, zoom should
contain one value for each axis.

	output (cupy.ndarray or dtype) – The array in which to place the
output, or the dtype of the returned array.

	order (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline interpolation, default is 3. Must
be in the range 0-5.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest',
'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

	cval (scalar) – Value used for points outside the boundaries of
the input if mode='constant' or mode='opencv'. Default is
0.0

	prefilter (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if the input array is prefiltered with
spline_filter before interpolation. The default is True, which
will create a temporary float64 array of filtered values if
order > 1. If setting this to False, the output will be
slightly blurred if order > 1, unless the input is prefiltered,
i.e. it is the result of calling spline_filter on the original
input.

	grid_mode (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, the distance from the pixel
centers is zoomed. Otherwise, the distance including the full pixel
extent is used. For example, a 1d signal of length 5 is considered
to have length 4 when grid_mode is False, but length 5 when
grid_mode is True. See the following visual illustration:

| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
 |<-------------------------------------->|
 vs.
|<--->|

The starting point of the arrow in the diagram above corresponds to
coordinate location 0 in each mode.

	Returns:

	The zoomed input.

	Return type:

	cupy.ndarray or None

See also

scipy.ndimage.zoom() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html#scipy.ndimage.zoom]

cupyx.scipy.ndimage.center_of_mass

	
cupyx.scipy.ndimage.center_of_mass(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L1037]

	Calculate the center of mass of the values of an array at labels.

	Parameters:

	
	input (cupy.ndarray) – Data from which to calculate center-of-mass. The
masses can either be positive or negative.

	labels (cupy.ndarray, optional) – Labels for objects in input, as
enerated by ndimage.label. Only used with index. Dimensions
must be the same as input.

	index (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints, optional) – Labels for which to
calculate centers-of-mass. If not specified, all labels greater
than zero are used. Only used with labels.

	Returns:

	Coordinates of centers-of-mass.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list] of tuples

See also

scipy.ndimage.center_of_mass() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass]

cupyx.scipy.ndimage.extrema

	
cupyx.scipy.ndimage.extrema(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L973]

	Calculate the minimums and maximums of the values of an array at labels,
along with their positions.

	Parameters:

	
	input (cupy.ndarray) – N-D image data to process.

	labels (cupy.ndarray, optional) – Labels of features in input. If not
None, must be same shape as input.

	index (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints, optional) – Labels to include in output.
If None (default), all values where non-zero labels are used.

	Returns:

	A tuple that contains the following values.

minimums (cupy.ndarray): Values of minimums in each feature.

maximums (cupy.ndarray): Values of maximums in each feature.

min_positions (tuple or list of tuples): Each tuple gives the N-D
coordinates of the corresponding minimum.

max_positions (tuple or list of tuples): Each tuple gives the N-D
coordinates of the corresponding maximum.

See also

scipy.ndimage.extrema() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.extrema.html#scipy.ndimage.extrema]

cupyx.scipy.ndimage.histogram

	
cupyx.scipy.ndimage.histogram(input, min, max, bins, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L1208]

	Calculate the histogram of the values of an array, optionally at labels.

Histogram calculates the frequency of values in an array within bins
determined by min, max, and bins. The labels and index
keywords can limit the scope of the histogram to specified sub-regions
within the array.

	Parameters:

	
	input (cupy.ndarray) – Data for which to calculate histogram.

	min (int [https://docs.python.org/3/library/functions.html#int]) – Minimum values of range of histogram bins.

	max (int [https://docs.python.org/3/library/functions.html#int]) – Maximum values of range of histogram bins.

	bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins.

	labels (cupy.ndarray, optional) – Labels for objects in input. If not
None, must be same shape as input.

	index (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints, optional) – Label or labels for which to
calculate histogram. If None, all values where label is greater
than zero are used.

	Returns:

	Histogram counts.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.histogram() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.histogram.html#scipy.ndimage.histogram]

cupyx.scipy.ndimage.label

	
cupyx.scipy.ndimage.label(input, structure=None, output=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L10]

	Labels features in an array.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	structure (array_like or None) – A structuring element that defines
feature connections. `structure` must be centersymmetric. If
None, structure is automatically generated with a squared
connectivity equal to one.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	Returns:

	An integer array where each unique feature in
`input` has a unique label in the array.

num_features (int): Number of features found.

	Return type:

	label (cupy.ndarray)

Warning

This function may synchronize the device.

See also

scipy.ndimage.label() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html#scipy.ndimage.label]

cupyx.scipy.ndimage.labeled_comprehension

	
cupyx.scipy.ndimage.labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L1076]

	Array resulting from applying func to each labeled region.

Roughly equivalent to [func(input[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like input)
to subsets of an N-D image array specified by labels and index.
The option exists to provide the function with positional parameters as the
second argument.

	Parameters:

	
	input (cupy.ndarray) – Data from which to select labels to process.

	labels (cupy.ndarray or None) – Labels to objects in input. If not
None, array must be same shape as input. If None, func is
applied to raveled input.

	index (int [https://docs.python.org/3/library/functions.html#int], sequence of ints or None) – Subset of labels to which to
apply func. If a scalar, a single value is returned. If None,
func is applied to all non-zero values of labels.

	func (callable) – Python function to apply to labels from input.

	out_dtype (dtype) – Dtype to use for result.

	default (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] or None) – Default return value when a element of
index does not exist in labels.

	pass_positions (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, pass linear indices to func
as a second argument.

	Returns:

	Result of applying func to each of labels to input
in index.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.labeled_comprehension() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.labeled_comprehension.html#scipy.ndimage.labeled_comprehension]

cupyx.scipy.ndimage.maximum

	
cupyx.scipy.ndimage.maximum(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L803]

	Calculate the maximum of the values of an array over labeled regions.

	Parameters:

	
	input (cupy.ndarray) – Array of values. For each region specified by labels, the
maximal values of input over the region is computed.

	labels (cupy.ndarray, optional) – An array of integers marking different
regions over which the maximum value of input is to be computed.
labels must have the same shape as input. If labels is not
specified, the maximum over the whole array is returned.

	index (array_like, optional) – A list of region labels that are taken
into account for computing the maxima. If index is None, the
maximum over all elements where labels is non-zero is returned.

	Returns:

	Array of maxima of input over the regions
determaxed by labels and whose index is in index. If index or
labels are not specified, a 0-dimensional cupy.ndarray is
returned: the maximal value of input if labels is None,
and the maximal value of elements where labels is greater than
zero if index is None.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.maximum() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum.html#scipy.ndimage.maximum]

cupyx.scipy.ndimage.maximum_position

	
cupyx.scipy.ndimage.maximum_position(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L916]

	Find the positions of the maximums of the values of an array at labels.

For each region specified by labels, the position of the maximum
value of input within the region is returned.

	Parameters:

	
	input (cupy.ndarray) – Array of values. For each region specified by labels, the
maximal values of input over the region is computed.

	labels (cupy.ndarray, optional) – An array of integers marking different
regions over which the position of the maximum value of input is
to be computed. labels must have the same shape as input. If
labels is not specified, the location of the first maximum over
the whole array is returned.

The labels argument only works when index is specified.

	index (array_like, optional) – A list of region labels that are taken
into account for finding the location of the maxima. If index is
None, the first maximum over all elements where labels is
non-zero is returned.

The index argument only works when labels is specified.

	Returns:

	Tuple of ints or list of tuples of ints that specify the location of
maxima of input over the regions determaxed by labels and whose
index is in index.

If index or labels are not specified, a tuple of ints is returned
specifying the location of the first maximal value of input.

Note

When input has multiple identical maxima within a labeled region,
the coordinates returned are not guaranteed to match those returned by
SciPy.

See also

scipy.ndimage.maximum_position() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_position.html#scipy.ndimage.maximum_position]

cupyx.scipy.ndimage.mean

	
cupyx.scipy.ndimage.mean(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L457]

	
	Calculates the mean of the values of an n-D image array, optionally
	at specified sub-regions.

	Parameters:

	
	input (cupy.ndarray) – Nd-image data to process.

	labels (cupy.ndarray or None) – Labels defining sub-regions in input.
If not None, must be same shape as input.

	index (cupy.ndarray or None) – labels to include in output. If None
(default), all values where labels is non-zero are used.

	Returns:

	mean of values, for each sub-region if
labels and index are specified.

	Return type:

	mean (cupy.ndarray)

See also

scipy.ndimage.mean() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.mean.html#scipy.ndimage.mean]

cupyx.scipy.ndimage.median

	
cupyx.scipy.ndimage.median(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L831]

	Calculate the median of the values of an array over labeled regions.

	Parameters:

	
	input (cupy.ndarray) – Array of values. For each region specified by labels, the
median values of input over the region is computed.

	labels (cupy.ndarray, optional) – An array of integers marking different
regions over which the median value of input is to be computed.
labels must have the same shape as input. If labels is not
specified, the median over the whole array is returned.

	index (array_like, optional) – A list of region labels that are taken
into account for computing the medians. If index is None, the
median over all elements where labels is non-zero is returned.

	Returns:

	Array of medians of input over the regions
determined by labels and whose index is in index. If index or
labels are not specified, a 0-dimensional cupy.ndarray is
returned: the median value of input if labels is None,
and the median value of elements where labels is greater than
zero if index is None.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.median() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median.html#scipy.ndimage.median]

cupyx.scipy.ndimage.minimum

	
cupyx.scipy.ndimage.minimum(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L775]

	Calculate the minimum of the values of an array over labeled regions.

	Parameters:

	
	input (cupy.ndarray) – Array of values. For each region specified by labels, the
minimal values of input over the region is computed.

	labels (cupy.ndarray, optional) – An array of integers marking different
regions over which the minimum value of input is to be computed.
labels must have the same shape as input. If labels is not
specified, the minimum over the whole array is returned.

	index (array_like, optional) – A list of region labels that are taken
into account for computing the minima. If index is None, the
minimum over all elements where labels is non-zero is returned.

	Returns:

	Array of minima of input over the regions
determined by labels and whose index is in index. If index or
labels are not specified, a 0-dimensional cupy.ndarray is
returned: the minimal value of input if labels is None,
and the minimal value of elements where labels is greater than
zero if index is None.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.minimum() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum.html#scipy.ndimage.minimum]

cupyx.scipy.ndimage.minimum_position

	
cupyx.scipy.ndimage.minimum_position(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L859]

	Find the positions of the minimums of the values of an array at labels.

For each region specified by labels, the position of the minimum
value of input within the region is returned.

	Parameters:

	
	input (cupy.ndarray) – Array of values. For each region specified by labels, the
minimal values of input over the region is computed.

	labels (cupy.ndarray, optional) – An array of integers marking different
regions over which the position of the minimum value of input is
to be computed. labels must have the same shape as input. If
labels is not specified, the location of the first minimum over
the whole array is returned.

The labels argument only works when index is specified.

	index (array_like, optional) – A list of region labels that are taken
into account for finding the location of the minima. If index is
None, the first minimum over all elements where labels is
non-zero is returned.

The index argument only works when labels is specified.

	Returns:

	Tuple of ints or list of tuples of ints that specify the location of
minima of input over the regions determined by labels and whose
index is in index.

If index or labels are not specified, a tuple of ints is returned
specifying the location of the first minimal value of input.

Note

When input has multiple identical minima within a labeled region,
the coordinates returned are not guaranteed to match those returned by
SciPy.

See also

scipy.ndimage.minimum_position() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_position.html#scipy.ndimage.minimum_position]

cupyx.scipy.ndimage.standard_deviation

	
cupyx.scipy.ndimage.standard_deviation(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L524]

	Calculates the standard deviation of the values of an n-D image array,
optionally at specified sub-regions.

	Parameters:

	
	input (cupy.ndarray) – Nd-image data to process.

	labels (cupy.ndarray or None) – Labels defining sub-regions in input.
If not None, must be same shape as input.

	index (cupy.ndarray or None) – labels to include in output. If None
(default), all values where labels is non-zero are used.

	Returns:

	standard deviation of values, for
each sub-region if labels and index are specified.

	Return type:

	standard_deviation (cupy.ndarray)

See also

scipy.ndimage.standard_deviation() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.standard_deviation.html#scipy.ndimage.standard_deviation]

cupyx.scipy.ndimage.sum_labels

	
cupyx.scipy.ndimage.sum_labels(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L368]

	
	Calculates the sum of the values of an n-D image array, optionally
	at specified sub-regions.

	Parameters:

	
	input (cupy.ndarray) – Nd-image data to process.

	labels (cupy.ndarray or None) – Labels defining sub-regions in input.
If not None, must be same shape as input.

	index (cupy.ndarray or None) – labels to include in output. If None
(default), all values where labels is non-zero are used.

	Returns:

	sum of values, for each sub-region if
labels and index are specified.

	Return type:

	sum (cupy.ndarray)

See also

scipy.ndimage.sum_labels() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sum_labels.html#scipy.ndimage.sum_labels]

cupyx.scipy.ndimage.value_indices

	
cupyx.scipy.ndimage.value_indices(arr, *, ignore_value=None, adaptive_index_dtype=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L1242]

	Find indices of each distinct value in given array.

	Parameters:

	
	arr (ndarray of ints) – Array containing integer values.

	ignore_value (int [https://docs.python.org/3/library/functions.html#int], optional) – This value will be ignored in searching the arr array. If not
given, all values found will be included in output. Default
is None.

	adaptive_index_dtype (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, instead of returning the default CuPy signed integer
dtype, the smallest signed integer dtype capable of representing the
image coordinate range will be used. This can substantially reduce
memory usage and slightly reduce runtime. Note that this optional
parameter is not available in the SciPy API.

	Returns:

	indices – A Python dictionary of array indices for each distinct value. The
dictionary is keyed by the distinct values, the entries are array
index tuples covering all occurrences of the value within the
array.

This dictionary can occupy significant memory, often several times
the size of the input array. To help reduce memory overhead, the
argument adaptive_index_dtype can be set to True.

	Return type:

	dictionary

Notes

For a small array with few distinct values, one might use
numpy.unique() to find all possible values, and (arr == val) to
locate each value within that array. However, for large arrays,
with many distinct values, this can become extremely inefficient,
as locating each value would require a new search through the entire
array. Using this function, there is essentially one search, with
the indices saved for all distinct values.

This is useful when matching a categorical image (e.g. a segmentation
or classification) to an associated image of other data, allowing
any per-class statistic(s) to then be calculated. Provides a
more flexible alternative to functions like scipy.ndimage.mean()
and scipy.ndimage.variance().

Some other closely related functionality, with different strengths and
weaknesses, can also be found in scipy.stats.binned_statistic() and
the scikit-image [https://scikit-image.org/] function
skimage.measure.regionprops().

Note for IDL users: this provides functionality equivalent to IDL’s
REVERSE_INDICES option (as per the IDL documentation for the
HISTOGRAM [https://www.l3harrisgeospatial.com/docs/histogram.html]
function).

New in version 1.10.0.

See also

label, maximum, median, minimum_position, extrema, sum [https://docs.python.org/3/library/functions.html#sum], mean, variance, standard_deviation, cupy.where, cupy.unique

Examples

>>> import cupy
>>> from cupyx.scipy import ndimage
>>> a = cupy.zeros((6, 6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],
 [2, 2, 2, 0, 0, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0]])
>>> val_indices = ndimage.value_indices(a)

The dictionary val_indices will have an entry for each distinct
value in the input array.

>>> val_indices.keys()
dict_keys([0, 1, 2, 3])

The entry for each value is an index tuple, locating the elements
with that value.

>>> ndx1 = val_indices[1]
>>> ndx1
(array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4]))

This can be used to index into the original array, or any other
array with the same shape.

>>> a[ndx1]
array([1, 1, 1, 1, 1])

If the zeros were to be ignored, then the resulting dictionary
would no longer have an entry for zero.

>>> val_indices = ndimage.value_indices(a, ignore_value=0)
>>> val_indices.keys()
dict_keys([1, 2, 3])

cupyx.scipy.ndimage.variance

	
cupyx.scipy.ndimage.variance(input, labels=None, index=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_measurements.py#L292]

	Calculates the variance of the values of an n-D image array, optionally
at specified sub-regions.

	Parameters:

	
	input (cupy.ndarray) – Nd-image data to process.

	labels (cupy.ndarray or None) – Labels defining sub-regions in input.
If not None, must be same shape as input.

	index (cupy.ndarray or None) – labels to include in output. If None
(default), all values where labels is non-zero are used.

	Returns:

	Values of variance, for each sub-region if
labels and index are specified.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.variance() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.variance.html#scipy.ndimage.variance]

cupyx.scipy.ndimage.binary_closing

	
cupyx.scipy.ndimage.binary_closing(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L415]

	Multidimensional binary closing with the given structuring element.

The closing of an input image by a structuring element is the
erosion of the dilation of the image by the structuring element.

	Parameters:

	
	input (cupy.ndarray) – The input binary array to be closed.
Non-zero (True) elements form the subset to be closed.

	structure (cupy.ndarray, optional) – The structuring element used for the
closing. Non-zero elements are considered True. If no structuring
element is provided an element is generated with a square
connectivity equal to one. (Default value = None).

	iterations (int [https://docs.python.org/3/library/functions.html#int], optional) – The closing is repeated iterations times
(one, by default). If iterations is less than 1, the closing is
repeated until the result does not change anymore. Only an integer
of iterations is accepted.

	output (cupy.ndarray, optional) – Array of the same shape as input, into
which the output is placed. By default, a new array is created.

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the filter, by
default 0.

	mask (cupy.ndarray or None, optional) – If a mask is given, only those
elements with a True value at the corresponding mask element are
modified at each iteration. (Default value = None)

	border_value (int [https://docs.python.org/3/library/functions.html#int] (cast to 0 or 1), optional) – Value at the
border in the output array. (Default value = 0)

	brute_force (boolean, optional) – Memory condition: if False, only the
pixels whose value was changed in the last iteration are tracked as
candidates to be updated (dilated) in the current iteration; if
True all pixels are considered as candidates for closing,
regardless of what happened in the previous iteration.

	Returns:

	The result of binary closing.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_closing() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_closing.html#scipy.ndimage.binary_closing]

cupyx.scipy.ndimage.binary_dilation

	
cupyx.scipy.ndimage.binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L312]

	Multidimensional binary dilation with the given structuring element.

	Parameters:

	
	input (cupy.ndarray) – The input binary array_like to be dilated.
Non-zero (True) elements form the subset to be dilated.

	structure (cupy.ndarray, optional) – The structuring element used for the
dilation. Non-zero elements are considered True. If no structuring
element is provided an element is generated with a square
connectivity equal to one. (Default value = None).

	iterations (int [https://docs.python.org/3/library/functions.html#int], optional) – The dilation is repeated iterations
times (one, by default). If iterations is less than 1, the dilation
is repeated until the result does not change anymore. Only an
integer of iterations is accepted.

	mask (cupy.ndarray or None, optional) – If a mask is given, only those
elements with a True value at the corresponding mask element are
modified at each iteration. (Default value = None)

	output (cupy.ndarray, optional) – Array of the same shape as input, into
which the output is placed. By default, a new array is created.

	border_value (int [https://docs.python.org/3/library/functions.html#int] (cast to 0 or 1), optional) – Value at the
border in the output array. (Default value = 0)

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the filter, by
default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the
pixels whose value was changed in the last iteration are tracked as
candidates to be updated (dilated) in the current iteration; if
True all pixels are considered as candidates for dilation,
regardless of what happened in the previous iteration.

	Returns:

	The result of binary dilation.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_dilation() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html#scipy.ndimage.binary_dilation]

cupyx.scipy.ndimage.binary_erosion

	
cupyx.scipy.ndimage.binary_erosion(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L266]

	Multidimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image
processing.

	Parameters:

	
	input (cupy.ndarray) – The input binary array_like to be eroded.
Non-zero (True) elements form the subset to be eroded.

	structure (cupy.ndarray, optional) – The structuring element used for the
erosion. Non-zero elements are considered True. If no structuring
element is provided an element is generated with a square
connectivity equal to one. (Default value = None).

	iterations (int [https://docs.python.org/3/library/functions.html#int], optional) – The erosion is repeated iterations times
(one, by default). If iterations is less than 1, the erosion is
repeated until the result does not change anymore. Only an integer
of iterations is accepted.

	mask (cupy.ndarray or None, optional) – If a mask is given, only those
elements with a True value at the corresponding mask element are
modified at each iteration. (Default value = None)

	output (cupy.ndarray, optional) – Array of the same shape as input, into
which the output is placed. By default, a new array is created.

	border_value (int [https://docs.python.org/3/library/functions.html#int] (cast to 0 or 1), optional) – Value at the
border in the output array. (Default value = 0)

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the filter, by
default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the
pixels whose value was changed in the last iteration are tracked as
candidates to be updated (eroded) in the current iteration; if
True all pixels are considered as candidates for erosion,
regardless of what happened in the previous iteration.

	Returns:

	The result of binary erosion.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_erosion() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html#scipy.ndimage.binary_erosion]

cupyx.scipy.ndimage.binary_fill_holes

	
cupyx.scipy.ndimage.binary_fill_holes(input, structure=None, output=None, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L560]

	Fill the holes in binary objects.

	Parameters:

	
	input (cupy.ndarray) – N-D binary array with holes to be filled.

	structure (cupy.ndarray, optional) – Structuring element used in the
computation; large-size elements make computations faster but may
miss holes separated from the background by thin regions. The
default element (with a square connectivity equal to one) yields
the intuitive result where all holes in the input have been filled.

	output (cupy.ndarray, dtype or None, optional) – Array of the same shape
as input, into which the output is placed. By default, a new array
is created.

	origin (int [https://docs.python.org/3/library/functions.html#int], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Position of the structuring
element.

	Returns:

	Transformation of the initial image input where holes
have been filled.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_fill_holes() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html#scipy.ndimage.binary_fill_holes]

cupyx.scipy.ndimage.binary_hit_or_miss

	
cupyx.scipy.ndimage.binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L467]

	Multidimensional binary hit-or-miss transform.

The hit-or-miss transform finds the locations of a given pattern
inside the input image.

	Parameters:

	
	input (cupy.ndarray) – Binary image where a pattern is to be detected.

	structure1 (cupy.ndarray, optional) – Part of the structuring element to
be fitted to the foreground (non-zero elements) of input. If no
value is provided, a structure of square connectivity 1 is chosen.

	structure2 (cupy.ndarray, optional) – Second part of the structuring
element that has to miss completely the foreground. If no value is
provided, the complementary of structure1 is taken.

	output (cupy.ndarray, dtype or None, optional) – Array of the same shape
as input, into which the output is placed. By default, a new array
is created.

	origin1 (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the first part
of the structuring element structure1, by default 0 for a
centered structure.

	origin2 (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints or None, optional) – Placement of the
second part of the structuring element structure2, by default 0
for a centered structure. If a value is provided for origin1
and not for origin2, then origin2 is set to origin1.

	Returns:

	Hit-or-miss transform of input with the given
structuring element (structure1, structure2).

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_hit_or_miss() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_hit_or_miss.html#scipy.ndimage.binary_hit_or_miss]

cupyx.scipy.ndimage.binary_opening

	
cupyx.scipy.ndimage.binary_opening(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L363]

	Multidimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the
dilation of the erosion of the image by the structuring element.

	Parameters:

	
	input (cupy.ndarray) – The input binary array to be opened.
Non-zero (True) elements form the subset to be opened.

	structure (cupy.ndarray, optional) – The structuring element used for the
opening. Non-zero elements are considered True. If no structuring
element is provided an element is generated with a square
connectivity equal to one. (Default value = None).

	iterations (int [https://docs.python.org/3/library/functions.html#int], optional) – The opening is repeated iterations times
(one, by default). If iterations is less than 1, the opening is
repeated until the result does not change anymore. Only an integer
of iterations is accepted.

	output (cupy.ndarray, optional) – Array of the same shape as input, into
which the output is placed. By default, a new array is created.

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the filter, by
default 0.

	mask (cupy.ndarray or None, optional) – If a mask is given, only those
elements with a True value at the corresponding mask element are
modified at each iteration. (Default value = None)

	border_value (int [https://docs.python.org/3/library/functions.html#int] (cast to 0 or 1), optional) – Value at the
border in the output array. (Default value = 0)

	brute_force (boolean, optional) – Memory condition: if False, only the
pixels whose value was changed in the last iteration are tracked as
candidates to be updated (dilated) in the current iteration; if
True all pixels are considered as candidates for opening,
regardless of what happened in the previous iteration.

	Returns:

	The result of binary opening.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_opening() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_opening.html#scipy.ndimage.binary_opening]

cupyx.scipy.ndimage.binary_propagation

	
cupyx.scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L527]

	Multidimensional binary propagation with the given structuring element.

	Parameters:

	
	input (cupy.ndarray) – Binary image to be propagated inside mask.

	structure (cupy.ndarray, optional) – Structuring element used in the
successive dilations. The output may depend on the structuring
element, especially if mask has several connex components. If
no structuring element is provided, an element is generated with a
squared connectivity equal to one.

	mask (cupy.ndarray, optional) – Binary mask defining the region into
which input is allowed to propagate.

	output (cupy.ndarray, optional) – Array of the same shape as input, into
which the output is placed. By default, a new array is created.

	border_value (int [https://docs.python.org/3/library/functions.html#int], optional) – Value at the border in the output array.
The value is cast to 0 or 1.

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Placement of the filter.

	Returns:

	Binary propagation of input inside mask.

	Return type:

	cupy.ndarray

Warning

This function may synchronize the device.

See also

scipy.ndimage.binary_propagation() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_propagation.html#scipy.ndimage.binary_propagation]

cupyx.scipy.ndimage.black_tophat

	
cupyx.scipy.ndimage.black_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L962]

	Multidimensional black tophat filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the black tophat. Optional if footprint or structure is
provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for the black tophat. Non-zero values
give the set of neighbors of the center over which opening is
chosen.

	structure (array of ints) – Structuring element used for the black
tophat. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	Result of the filter of input with structure.

	Return type:

	cupy.ndarry

See also

scipy.ndimage.black_tophat() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.black_tophat.html#scipy.ndimage.black_tophat]

cupyx.scipy.ndimage.distance_transform_edt

	
cupyx.scipy.ndimage.distance_transform_edt(image, sampling=None, return_distances=True, return_indices=False, distances=None, indices=None, *, block_params=None, float64_distances=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_distance_transform.py#L7]

	Exact Euclidean distance transform.

This function calculates the distance transform of the input, by
replacing each foreground (non-zero) element, with its shortest distance to
the background (any zero-valued element).

In addition to the distance transform, the feature transform can be
calculated. In this case the index of the closest background element to
each foreground element is returned in a separate array.

	Parameters:

	
	image (array_like) – Input data to transform. Can be any type but will be converted into
binary: 1 wherever image equates to True, 0 elsewhere.

	sampling (float [https://docs.python.org/3/library/functions.html#float], or sequence of float [https://docs.python.org/3/library/functions.html#float], optional) – Spacing of elements along each dimension. If a sequence, must be of
length equal to the image rank; if a single number, this is used for
all axes. If not specified, a grid spacing of unity is implied.

	return_distances (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to calculate the distance transform.

	return_indices (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to calculate the feature transform.

	distances (cupy.ndarray, optional) – An output array to store the calculated distance transform, instead of
returning it. return_distances must be True. It must be the same
shape as image. Should have dtype cp.float32 if
float64_distances is False, otherwise it should be
cp.float64.

	indices (cupy.ndarray, optional) – An output array to store the calculated feature transform, instead of
returning it. return_indicies must be True. Its shape must be
(image.ndim,) + image.shape. Its dtype must be a signed or unsigned
integer type of at least 16-bits in 2D or 32-bits in 3D.

	block_params (3-tuple of int [https://docs.python.org/3/library/functions.html#int]) – The m1, m2, m3 algorithm parameters as described in [2]. If None,
suitable defaults will be chosen. Note: This parameter is specific to
cuCIM and does not exist in SciPy.

	float64_distances (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, use double precision in the distance computation (to match
SciPy behavior). Otherwise, single precision will be used for
efficiency. Note: This parameter is specific to cuCIM and does not
exist in SciPy.

	Returns:

	
	distances (cupy.ndarray, optional) – The calculated distance transform. Returned only when
return_distances is True and distances is not supplied. It will
have the same shape as image. Will have dtype cp.float64 if
float64_distances is True, otherwise it will have dtype
cp.float32.

	indices (ndarray, optional) – The calculated feature transform. It has an image-shaped array for each
dimension of the image. See example below. Returned only when
return_indices is True and indices is not supplied.

Notes

The Euclidean distance transform gives values of the Euclidean distance.

\[y_i = \sqrt{\sum_{i}^{n} (x[i] - b[i])^2}\]

where \(b[i]\) is the background point (value 0) with the smallest
Euclidean distance to input points \(x[i]\), and \(n\) is the
number of dimensions.

Note that the indices output may differ from the one given by
scipy.ndimage.distance_transform_edt() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html#scipy.ndimage.distance_transform_edt] in the case of input pixels
that are equidistant from multiple background points.

The parallel banding algorithm implemented here was originally described in
[1]. The kernels used here correspond to the revised PBA+ implementation
that is described on the author’s website [2]. The source code of the
author’s PBA+ implementation is available at [3].

References

[1]
Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-Seng Tan. 2010.
Parallel Banding Algorithm to compute exact distance transform with the
GPU. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive
3D Graphics and Games (I3D ’10). Association for Computing Machinery,
New York, NY, USA, 83–90.
DOI:https://doi.org/10.1145/1730804.1730818

[2]
(1,2)
https://www.comp.nus.edu.sg/~tants/pba.html

[3]
https://github.com/orzzzjq/Parallel-Banding-Algorithm-plus

Examples

>>> import cupy as cp
>>> from cucim.core.operations import morphology
>>> a = cp.array(([0,1,1,1,1],
... [0,0,1,1,1],
... [0,1,1,1,1],
... [0,1,1,1,0],
... [0,1,1,0,0]))
>>> morphology.distance_transform_edt(a)
array([[0. , 1. , 1.4142, 2.2361, 3.],
 [0. , 0. , 1. , 2. , 2.],
 [0. , 1. , 1.4142, 1.4142, 1.],
 [0. , 1. , 1.4142, 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])

With a sampling of 2 units along x, 1 along y:

>>> morphology.distance_transform_edt(a, sampling=[2,1])
array([[0. , 1. , 2. , 2.8284, 3.6056],
 [0. , 0. , 1. , 2. , 3.],
 [0. , 1. , 2. , 2.2361, 2.],
 [0. , 1. , 2. , 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])

Asking for indices as well:

>>> edt, inds = morphology.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],
 [1, 1, 1, 1, 3],
 [2, 2, 1, 3, 3],
 [3, 3, 4, 4, 3],
 [4, 4, 4, 4, 4]],
 [[0, 0, 1, 1, 4],
 [0, 1, 1, 1, 4],
 [0, 0, 1, 4, 4],
 [0, 0, 3, 3, 4],
 [0, 0, 3, 3, 4]]])

cupyx.scipy.ndimage.generate_binary_structure

	
cupyx.scipy.ndimage.generate_binary_structure(rank, connectivity)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L123]

	Generate a binary structure for binary morphological operations.

	Parameters:

	
	rank (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of the array to which the structuring
element will be applied, as returned by np.ndim.

	connectivity (int [https://docs.python.org/3/library/functions.html#int]) – connectivity determines which elements of the
output array belong to the structure, i.e., are considered as
neighbors of the central element. Elements up to a squared distance
of connectivity from the center are considered neighbors.
connectivity may range from 1 (no diagonal elements are
neighbors) to rank (all elements are neighbors).

	Returns:

	Structuring element which may be used for binary
morphological operations, with rank dimensions and all
dimensions equal to 3.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.generate_binary_structure() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generate_binary_structure.html#scipy.ndimage.generate_binary_structure]

cupyx.scipy.ndimage.grey_closing

	
cupyx.scipy.ndimage.grey_closing(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L701]

	Calculates a multi-dimensional greyscale closing.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the greyscale closing. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for greyscale closing. Non-zero values
give the set of neighbors of the center over which closing is
chosen.

	structure (array of ints) – Structuring element used for the greyscale
closing. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of greyscale closing.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.grey_closing() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_closing.html#scipy.ndimage.grey_closing]

cupyx.scipy.ndimage.grey_dilation

	
cupyx.scipy.ndimage.grey_dilation(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L641]

	Calculates a greyscale dilation.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the greyscale dilation. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for greyscale dilation. Non-zero values
give the set of neighbors of the center over which maximum is
chosen.

	structure (array of ints) – Structuring element used for the greyscale
dilation. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of greyscale dilation.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.grey_dilation() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_dilation.html#scipy.ndimage.grey_dilation]

cupyx.scipy.ndimage.grey_erosion

	
cupyx.scipy.ndimage.grey_erosion(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L601]

	Calculates a greyscale erosion.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the greyscale erosion. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for greyscale erosion. Non-zero values
give the set of neighbors of the center over which minimum is
chosen.

	structure (array of ints) – Structuring element used for the greyscale
erosion. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of greyscale erosion.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.grey_erosion() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_erosion.html#scipy.ndimage.grey_erosion]

cupyx.scipy.ndimage.grey_opening

	
cupyx.scipy.ndimage.grey_opening(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L742]

	Calculates a multi-dimensional greyscale opening.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the greyscale opening. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for greyscale opening. Non-zero values
give the set of neighbors of the center over which opening is
chosen.

	structure (array of ints) – Structuring element used for the greyscale
opening. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The result of greyscale opening.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.grey_opening() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_opening.html#scipy.ndimage.grey_opening]

cupyx.scipy.ndimage.iterate_structure

	
cupyx.scipy.ndimage.iterate_structure(structure, iterations, origin=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L85]

	Iterate a structure by dilating it with itself.

	Parameters:

	
	structure (array_like) – Structuring element (an array of bools,
for example), to be dilated with itself.

	iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of dilations performed on the structure
with itself.

	origin (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int], optional) – If origin is None, only the
iterated structure is returned. If not, a tuple of the iterated
structure and the modified origin is returned.

	Returns:

	A new structuring element obtained by dilating
structure (iterations - 1) times with itself.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.iterate_structure() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.iterate_structure.html#scipy.ndimage.iterate_structure]

cupyx.scipy.ndimage.morphological_gradient

	
cupyx.scipy.ndimage.morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L783]

	Multidimensional morphological gradient.

The morphological gradient is calculated as the difference between a
dilation and an erosion of the input with a given structuring element.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the morphological gradient. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for morphological gradient. Non-zero
values give the set of neighbors of the center over which opening
is chosen.

	structure (array of ints) – Structuring element used for the
morphological gradient. structure may be a non-flat
structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The morphological gradient of the input.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.morphological_gradient() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html#scipy.ndimage.morphological_gradient]

cupyx.scipy.ndimage.morphological_laplace

	
cupyx.scipy.ndimage.morphological_laplace(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L842]

	Multidimensional morphological laplace.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the morphological laplace. Optional if footprint or
structure is provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for morphological laplace. Non-zero
values give the set of neighbors of the center over which opening
is chosen.

	structure (array of ints) – Structuring element used for the
morphological laplace. structure may be a non-flat
structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	The morphological laplace of the input.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.morphological_laplace() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_laplace.html#scipy.ndimage.morphological_laplace]

cupyx.scipy.ndimage.white_tophat

	
cupyx.scipy.ndimage.white_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/ndimage/_morphology.py#L904]

	Multidimensional white tophat filter.

	Parameters:

	
	input (cupy.ndarray) – The input array.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of a flat and full structuring element used
for the white tophat. Optional if footprint or structure is
provided.

	footprint (array of ints) – Positions of non-infinite elements of a flat
structuring element used for the white tophat. Non-zero values
give the set of neighbors of the center over which opening is
chosen.

	structure (array of ints) – Structuring element used for the white
tophat. structure may be a non-flat structuring element.

	output (cupy.ndarray, dtype or None) – The array in which to place the
output.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The array borders are handled according to the given mode
('reflect', 'constant', 'nearest', 'mirror',
'wrap'). Default is 'reflect'.

	cval (scalar) – Value to fill past edges of input if mode is
constant. Default is 0.0.

	origin (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar) – The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
(0,)*input.ndim.

	Returns:

	Result of the filter of input with structure.

	Return type:

	cupy.ndarray

See also

scipy.ndimage.white_tophat() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.white_tophat.html#scipy.ndimage.white_tophat]

Signal processing (cupyx.scipy.signal)

Hint

SciPy API Reference: Signal processing (scipy.signal) [https://docs.scipy.org/doc/scipy/reference/signal.html]

Convolution

	convolve(in1, in2[, mode, method])

	Convolve two N-dimensional arrays.

	correlate(in1, in2[, mode, method])

	Cross-correlate two N-dimensional arrays.

	fftconvolve(in1, in2[, mode, axes])

	Convolve two N-dimensional arrays using FFT.

	oaconvolve(in1, in2[, mode, axes])

	Convolve two N-dimensional arrays using the overlap-add method.

	convolve2d(in1, in2[, mode, boundary, fillvalue])

	Convolve two 2-dimensional arrays.

	correlate2d(in1, in2[, mode, boundary, ...])

	Cross-correlate two 2-dimensional arrays.

	sepfir2d(input, hrow, hcol)

	Convolve with a 2-D separable FIR filter.

	choose_conv_method(in1, in2[, mode])

	Find the fastest convolution/correlation method.

	correlation_lags(in1_len, in2_len[, mode])

	Calculates the lag / displacement indices array for 1D cross-correlation.

B-Splines

	gauss_spline(x, n)

	Gaussian approximation to B-spline basis function of order n.

	cspline1d(signal[, lamb])

	Compute cubic spline coefficients for rank-1 array.

	qspline1d(signal[, lamb])

	Compute quadratic spline coefficients for rank-1 array.

	cspline2d(signal[, lamb, precision])

	Coefficients for 2-D cubic (3rd order) B-spline.

	qspline2d(signal[, lamb, precision])

	Coefficients for 2-D quadratic (2nd order) B-spline.

	cspline1d_eval(cj, newx[, dx, x0])

	Evaluate a cubic spline at the new set of points.

	qspline1d_eval(cj, newx[, dx, x0])

	Evaluate a quadratic spline at the new set of points.

	spline_filter(Iin[, lmbda])

	Smoothing spline (cubic) filtering of a rank-2 array.

Filtering

	order_filter(a, domain, rank)

	Perform an order filter on an N-D array.

	medfilt(volume[, kernel_size])

	Perform a median filter on an N-dimensional array.

	medfilt2d(input[, kernel_size])

	Median filter a 2-dimensional array.

	wiener(im[, mysize, noise])

	Perform a Wiener filter on an N-dimensional array.

	symiirorder1(input, c0, z1[, precision])

	Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order sections. The second section uses a reversed sequence. This implements a system with the following transfer function and mirror-symmetric boundary conditions::.

	symiirorder2(input, r, omega[, precision])

	Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order sections. The second section uses a reversed sequence. This implements the following transfer function::.

	lfilter(b, a, x[, axis, zi])

	Filter data along one-dimension with an IIR or FIR filter.

	lfiltic(b, a, y[, x])

	Construct initial conditions for lfilter given input and output vectors.

	lfilter_zi(b, a)

	Construct initial conditions for lfilter for step response steady-state.

	filtfilt(b, a, x[, axis, padtype, padlen, ...])

	Apply a digital filter forward and backward to a signal.

	savgol_filter(x, window_length, polyorder[, ...])

	Apply a Savitzky-Golay filter to an array.

	deconvolve(signal, divisor)

	Deconvolves divisor out of signal using inverse filtering.

	sosfilt(sos, x[, axis, zi])

	Filter data along one dimension using cascaded second-order sections.

	sosfilt_zi(sos)

	Construct initial conditions for sosfilt for step response steady-state.

	sosfiltfilt(sos, x[, axis, padtype, padlen])

	A forward-backward digital filter using cascaded second-order sections.

	hilbert(x[, N, axis])

	Compute the analytic signal, using the Hilbert transform.

	hilbert2(x[, N])

	Compute the '2-D' analytic signal of x

	decimate(x, q[, n, ftype, axis, zero_phase])

	Downsample the signal after applying an anti-aliasing filter.

	detrend(data[, axis, type, bp, overwrite_data])

	Remove linear trend along axis from data.

	resample(x, num[, t, axis, window, domain])

	Resample x to num samples using Fourier method along the given axis.

	resample_poly(x, up, down[, axis, window, ...])

	Resample x along the given axis using polyphase filtering.

	upfirdn(h, x[, up, down, axis, mode, cval])

	Upsample, FIR filter, and downsample.

Filter design

	bilinear(b, a[, fs])

	Return a digital IIR filter from an analog one using a bilinear transform.

	bilinear_zpk(z, p, k, fs)

	Return a digital IIR filter from an analog one using a bilinear transform.

	findfreqs(num, den, N[, kind])

	Find array of frequencies for computing the response of an analog filter.

	freqs(b, a[, worN, plot])

	Compute frequency response of analog filter.

	freqs_zpk(z, p, k[, worN])

	Compute frequency response of analog filter.

	freqz(b[, a, worN, whole, plot, fs, ...])

	Compute the frequency response of a digital filter.

	freqz_zpk(z, p, k[, worN, whole, fs])

	Compute the frequency response of a digital filter in ZPK form.

	sosfreqz(sos[, worN, whole, fs])

	Compute the frequency response of a digital filter in SOS format.

	firwin(numtaps, cutoff[, width, window, ...])

	FIR filter design using the window method.

	firwin2(numtaps, freq, gain[, nfreqs, ...])

	FIR filter design using the window method.

	firls(numtaps, bands, desired[, weight, fs])

	FIR filter design using least-squares error minimization.

	minimum_phase(h[, method, n_fft])

	Convert a linear-phase FIR filter to minimum phase

	savgol_coeffs(window_length, polyorder[, ...])

	Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

	gammatone(freq, ftype[, order, numtaps, fs])

	Gammatone filter design.

	group_delay(system[, w, whole, fs])

	Compute the group delay of a digital filter.

	iirdesign(wp, ws, gpass, gstop[, analog, ...])

	Complete IIR digital and analog filter design.

	iirfilter(N, Wn[, rp, rs, btype, analog, ...])

	IIR digital and analog filter design given order and critical points.

	kaiser_atten(numtaps, width)

	Compute the attenuation of a Kaiser FIR filter.

	kaiser_beta(a)

	Compute the Kaiser parameter beta, given the attenuation a.

	kaiserord(ripple, width)

	Determine the filter window parameters for the Kaiser window method.

	unique_roots(p[, tol, rtype])

	Determine unique roots and their multiplicities from a list of roots.

	residue(b, a[, tol, rtype])

	Compute partial-fraction expansion of b(s) / a(s).

	residuez(b, a[, tol, rtype])

	Compute partial-fraction expansion of b(z) / a(z).

	invres(r, p, k[, tol, rtype])

	Compute b(s) and a(s) from partial fraction expansion.

	invresz(r, p, k[, tol, rtype])

	Compute b(z) and a(z) from partial fraction expansion.

	BadCoefficients

	Warning about badly conditioned filter coefficients

Matlab-style IIR filter design

	butter(N, Wn[, btype, analog, output, fs])

	Butterworth digital and analog filter design.

	buttord(wp, ws, gpass, gstop[, analog, fs])

	Butterworth filter order selection.

	ellip(N, rp, rs, Wn[, btype, analog, output, fs])

	Elliptic (Cauer) digital and analog filter design.

	ellipord(wp, ws, gpass, gstop[, analog, fs])

	Elliptic (Cauer) filter order selection.

	cheby1(N, rp, Wn[, btype, analog, output, fs])

	Chebyshev type I digital and analog filter design.

	cheb1ord(wp, ws, gpass, gstop[, analog, fs])

	Chebyshev type I filter order selection.

	cheby2(N, rs, Wn[, btype, analog, output, fs])

	Chebyshev type II digital and analog filter design.

	cheb2ord(wp, ws, gpass, gstop[, analog, fs])

	Chebyshev type II filter order selection.

	iircomb(w0, Q[, ftype, fs, pass_zero])

	Design IIR notching or peaking digital comb filter.

	iirnotch(w0, Q[, fs])

	Design second-order IIR notch digital filter.

	iirpeak(w0, Q[, fs])

	Design second-order IIR peak (resonant) digital filter.

Low-level filter design functions

	abcd_normalize([A, B, C, D])

	Check state-space matrices and ensure they are 2-D.

	band_stop_obj(wp, ind, passb, stopb, gpass, ...)

	Band Stop Objective Function for order minimization.

	buttap(N)

	Return (z,p,k) for analog prototype of Nth-order Butterworth filter.

	cheb1ap(N, rp)

	Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

	cheb2ap(N, rs)

	Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

	ellipap(N, rp, rs)

	Return (z,p,k) of Nth-order elliptic analog lowpass filter.

	lp2bp(b, a[, wo, bw])

	Transform a lowpass filter prototype to a bandpass filter.

	lp2bp_zpk(z, p, k[, wo, bw])

	Transform a lowpass filter prototype to a bandpass filter.

	lp2bs(b, a[, wo, bw])

	Transform a lowpass filter prototype to a bandstop filter.

	lp2bs_zpk(z, p, k[, wo, bw])

	Transform a lowpass filter prototype to a bandstop filter.

	lp2hp(b, a[, wo])

	Transform a lowpass filter prototype to a highpass filter.

	lp2hp_zpk(z, p, k[, wo])

	Transform a lowpass filter prototype to a highpass filter.

	lp2lp(b, a[, wo])

	Transform a lowpass filter prototype to a different frequency.

	lp2lp_zpk(z, p, k[, wo])

	Transform a lowpass filter prototype to a different frequency.

	normalize(b, a)

	Normalize numerator/denominator of a continuous-time transfer function.

LTI representations

	zpk2tf(z, p, k)

	Return polynomial transfer function representation from zeros and poles

	zpk2sos(z, p, k[, pairing, analog])

	Return second-order sections from zeros, poles, and gain of a system

	zpk2ss(z, p, k)

	Zero-pole-gain representation to state-space representation

	tf2zpk(b, a)

	Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

	tf2sos(b, a[, pairing, analog])

	Return second-order sections from transfer function representation

	tf2ss(num, den)

	Transfer function to state-space representation.

	ss2tf(A, B, C, D[, input])

	State-space to transfer function.

	ss2zpk(A, B, C, D[, input])

	State-space representation to zero-pole-gain representation.

	sos2tf(sos)

	Return a single transfer function from a series of second-order sections

	sos2zpk(sos)

	Return zeros, poles, and gain of a series of second-order sections

	cont2discrete(system, dt[, method, alpha])

	Transform a continuous to a discrete state-space system.

	place_poles(A, B, poles[, method, rtol, maxiter])

	Compute K such that eigenvalues (A - dot(B, K))=poles.

Continuous-time linear systems

	lti(*system)

	Continuous-time linear time invariant system base class.

	StateSpace(*system, **kwargs)

	Linear Time Invariant system in state-space form.

	TransferFunction(*system, **kwargs)

	Linear Time Invariant system class in transfer function form.

	ZerosPolesGain(*system, **kwargs)

	Linear Time Invariant system class in zeros, poles, gain form.

	lsim(system, U, T[, X0, interp])

	Simulate output of a continuous-time linear system.

	impulse(system[, X0, T, N])

	Impulse response of continuous-time system.

	step(system[, X0, T, N])

	Step response of continuous-time system.

	freqresp(system[, w, n])

	Calculate the frequency response of a continuous-time system.

	bode(system[, w, n])

	Calculate Bode magnitude and phase data of a continuous-time system.

Discrete-time linear systems

	dlti(*system, **kwargs)

	Discrete-time linear time invariant system base class.

	StateSpace(*system, **kwargs)

	Linear Time Invariant system in state-space form.

	TransferFunction(*system, **kwargs)

	Linear Time Invariant system class in transfer function form.

	ZerosPolesGain(*system, **kwargs)

	Linear Time Invariant system class in zeros, poles, gain form.

	dlsim(system, u[, t, x0])

	Simulate output of a discrete-time linear system.

	dimpulse(system[, x0, t, n])

	Impulse response of discrete-time system.

	dstep(system[, x0, t, n])

	Step response of discrete-time system.

	dfreqresp(system[, w, n, whole])

	Calculate the frequency response of a discrete-time system.

	dbode(system[, w, n])

	Calculate Bode magnitude and phase data of a discrete-time system.

Waveforms

	chirp(t, f0, t1, f1[, method, phi, vertex_zero])

	Frequency-swept cosine generator.

	gausspulse(t[, fc, bw, bwr, tpr, retquad, ...])

	Return a Gaussian modulated sinusoid:

	max_len_seq(nbits[, state, length, taps])

	Maximum length sequence (MLS) generator.

	sawtooth(t[, width])

	Return a periodic sawtooth or triangle waveform.

	square(t[, duty])

	Return a periodic square-wave waveform.

	unit_impulse(shape[, idx, dtype])

	Unit impulse signal (discrete delta function) or unit basis vector.

Window functions

For window functions, see the cupyx.scipy.signal.windows namespace.

In the cupyx.scipy.signal namespace, there is a convenience function
to obtain these windows by name:

	get_window(window, Nx[, fftbins])

	Return a window of a given length and type.

Wavelets

	morlet(M[, w, s, complete])

	Complex Morlet wavelet.

	qmf(hk)

	Return high-pass qmf filter from low-pass

	ricker(points, a)

	Return a Ricker wavelet, also known as the "Mexican hat wavelet".

	morlet2(M, s[, w])

	Complex Morlet wavelet, designed to work with cwt. Returns the complete version of morlet wavelet, normalised according to s::.

	cwt(data, wavelet, widths)

	Continuous wavelet transform.

Peak finding

	argrelmin(data[, axis, order, mode])

	Calculate the relative minima of data.

	argrelmax(data[, axis, order, mode])

	Calculate the relative maxima of data.

	argrelextrema(data, comparator[, axis, ...])

	Calculate the relative extrema of data.

	find_peaks(x[, height, threshold, distance, ...])

	Find peaks inside a signal based on peak properties.

	peak_prominences(x, peaks[, wlen])

	Calculate the prominence of each peak in a signal.

	peak_widths(x, peaks[, rel_height, ...])

	Calculate the width of each peak in a signal.

Spectral analysis

	periodogram(x[, fs, window, nfft, detrend, ...])

	Estimate power spectral density using a periodogram.

	welch(x[, fs, window, nperseg, noverlap, ...])

	Estimate power spectral density using Welch's method.

	csd(x, y[, fs, window, nperseg, noverlap, ...])

	Estimate the cross power spectral density, Pxy, using Welch's method.

	coherence(x, y[, fs, window, nperseg, ...])

	Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch's method.

	spectrogram(x[, fs, window, nperseg, ...])

	Compute a spectrogram with consecutive Fourier transforms.

	lombscargle(x, y, freqs)

	Computes the Lomb-Scargle periodogram.

	vectorstrength(events, period)

	Determine the vector strength of the events corresponding to the given period.

	stft(x[, fs, window, nperseg, noverlap, ...])

	Compute the Short Time Fourier Transform (STFT).

	istft(Zxx[, fs, window, nperseg, noverlap, ...])

	Perform the inverse Short Time Fourier transform (iSTFT).

	check_COLA(window, nperseg, noverlap[, tol])

	Check whether the Constant OverLap Add (COLA) constraint is met.

	check_NOLA(window, nperseg, noverlap[, tol])

	Check whether the Nonzero Overlap Add (NOLA) constraint is met.

Chirp Z-transform and Zoom FFT

	czt(x[, m, w, a, axis])

	Compute the frequency response around a spiral in the Z plane.

	zoom_fft(x, fn[, m, fs, endpoint, axis])

	Compute the DFT of x only for frequencies in range fn.

	CZT(n[, m, w, a])

	Create a callable chirp z-transform function.

	ZoomFFT(n, fn[, m, fs, endpoint])

	Create a callable zoom FFT transform function.

	czt_points(m[, w, a])

	Return the points at which the chirp z-transform is computed.

cupyx.scipy.signal.convolve

	
cupyx.scipy.signal.convolve(in1, in2, mode='full', method='auto')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L18]

	Convolve two N-dimensional arrays.

Convolve in1 and in2, with the output size determined by the
mode argument.

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear convolution (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': - output is the same size as in1, centered with respect to the 'full' output

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates which method to use for the computations:

	'direct': The convolution is determined directly from sums, the definition of convolution

	'fft': The Fourier Transform is used to perform the convolution by calling fftconvolve.

	'auto': Automatically choose direct of FFT based on an estimate of which is faster for the arguments (default).

	Returns:

	the result of convolution.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.signal.choose_conv_method()

See also

cupyx.scipy.signal.correlation()

See also

cupyx.scipy.signal.fftconvolve()

See also

cupyx.scipy.signal.oaconvolve()

See also

cupyx.scipy.ndimage.convolve()

See also

scipy.signal.convolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve]

Note

By default, convolve and correlate use method='auto', which
calls choose_conv_method to choose the fastest method using
pre-computed values. CuPy may not choose the same method to compute
the convolution as SciPy does given the same inputs.

cupyx.scipy.signal.correlate

	
cupyx.scipy.signal.correlate(in1, in2, mode='full', method='auto')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L65]

	Cross-correlate two N-dimensional arrays.

Cross-correlate in1 and in2, with the output size determined by the
mode argument.

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear convolution (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': - output is the same size as in1, centered with respect to the 'full' output

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates which method to use for the computations:

	'direct': The convolution is determined directly from sums, the definition of convolution

	'fft': The Fourier Transform is used to perform the convolution by calling fftconvolve.

	'auto': Automatically choose direct of FFT based on an estimate of which is faster for the arguments (default).

	Returns:

	the result of correlation.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.signal.choose_conv_method()

See also

cupyx.scipy.signal.convolve()

See also

cupyx.scipy.signal.fftconvolve()

See also

cupyx.scipy.signal.oaconvolve()

See also

cupyx.scipy.ndimage.correlation()

See also

scipy.signal.correlation()

Note

By default, convolve and correlate use method='auto', which
calls choose_conv_method to choose the fastest method using
pre-computed values. CuPy may not choose the same method to compute
the convolution as SciPy does given the same inputs.

cupyx.scipy.signal.fftconvolve

	
cupyx.scipy.signal.fftconvolve(in1, in2, mode='full', axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L140]

	Convolve two N-dimensional arrays using FFT.

Convolve in1 and in2 using the fast Fourier transform method, with
the output size determined by the mode argument.

This is generally much faster than the 'direct' method of convolve
for large arrays, but can be slower when only a few output values are
needed, and can only output float arrays (int or object array inputs will
be cast to float).

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear cross-correlation (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': output is the same size as in1, centered with respect to the ‘full’ output

	axes (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar or None) – Axes over which to compute
the convolution. The default is over all axes.

	Returns:

	the result of convolution

	Return type:

	cupy.ndarray

See also

cupyx.scipy.signal.choose_conv_method()

See also

cupyx.scipy.signal.correlation()

See also

cupyx.scipy.signal.convolve()

See also

cupyx.scipy.signal.oaconvolve()

See also

cupyx.scipy.ndimage.convolve()

See also

scipy.signal.correlation()

cupyx.scipy.signal.oaconvolve

	
cupyx.scipy.signal.oaconvolve(in1, in2, mode='full', axes=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L212]

	Convolve two N-dimensional arrays using the overlap-add method.

Convolve in1 and in2 using the overlap-add method, with the output
size determined by the mode argument. This is generally faster than
convolve for large arrays, and generally faster than fftconvolve
when one array is much larger than the other, but can be slower when only a
few output values are needed or when the arrays are very similar in shape,
and can only output float arrays (int or object array inputs will be cast
to float).

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear cross-correlation (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': output is the same size as in1, centered with respect to the 'full' output

	axes (scalar or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of scalar or None) – Axes over which to compute
the convolution. The default is over all axes.

	Returns:

	the result of convolution

	Return type:

	cupy.ndarray

See also

cupyx.scipy.signal.convolve()

See also

cupyx.scipy.signal.fftconvolve()

See also

cupyx.scipy.ndimage.convolve()

See also

scipy.signal.oaconvolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.oaconvolve.html#scipy.signal.oaconvolve]

cupyx.scipy.signal.convolve2d

	
cupyx.scipy.signal.convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L313]

	Convolve two 2-dimensional arrays.

Convolve in1 and in2 with output size determined by mode, and
boundary conditions determined by boundary and fillvalue.

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear convolution (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': - output is the same size as in1, centered with respect to the 'full' output

	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates how to handle boundaries:

	fill: pad input arrays with fillvalue (default)

	wrap: circular boundary conditions

	symm: symmetrical boundary conditions

	fillvalue (scalar) – Value to fill pad input arrays with. Default is 0.

	Returns:

	A 2-dimensional array containing a subset of the discrete
linear convolution of in1 with in2.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.signal.convolve()

See also

cupyx.scipy.signal.fftconvolve()

See also

cupyx.scipy.signal.oaconvolve()

See also

cupyx.scipy.signal.correlate2d()

See also

cupyx.scipy.ndimage.convolve()

See also

scipy.signal.convolve2d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d]

cupyx.scipy.signal.correlate2d

	
cupyx.scipy.signal.correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L355]

	Cross-correlate two 2-dimensional arrays.

Cross correlate in1 and in2 with output size determined by
mode, and boundary conditions determined by boundary and
fillvalue.

	Parameters:

	
	in1 (cupy.ndarray) – First input.

	in2 (cupy.ndarray) – Second input. Should have the same number of
dimensions as in1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates the size of the output:

	'full': output is the full discrete linear convolution (default)

	'valid': output consists only of those elements that do not rely on the zero-padding. Either in1 or in2 must be at least as large as the other in every dimension.

	'same': - output is the same size as in1, centered with respect to the 'full' output

	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates how to handle boundaries:

	fill: pad input arrays with fillvalue (default)

	wrap: circular boundary conditions

	symm: symmetrical boundary conditions

	fillvalue (scalar) – Value to fill pad input arrays with. Default is 0.

	Returns:

	A 2-dimensional array containing a subset of the discrete
linear cross-correlation of in1 with in2.

	Return type:

	cupy.ndarray

Note

When using "same" mode with even-length inputs, the outputs of
correlate and correlate2d differ: There is a 1-index offset
between them.

See also

cupyx.scipy.signal.correlate()

See also

cupyx.scipy.signal.convolve2d()

See also

cupyx.scipy.ndimage.correlate()

See also

scipy.signal.correlate2d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html#scipy.signal.correlate2d]

cupyx.scipy.signal.sepfir2d

	
cupyx.scipy.signal.sepfir2d(input, hrow, hcol)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L39]

	Convolve with a 2-D separable FIR filter.

Convolve the rank-2 input array with the separable filter defined by the
rank-1 arrays hrow, and hcol. Mirror symmetric boundary conditions are
assumed. This function can be used to find an image given its B-spline
representation.

The arguments hrow and hcol must be 1-dimensional and of off length.

	Parameters:

	
	input (cupy.ndarray) – The input signal

	hrow (cupy.ndarray) – Row direction filter

	hcol (cupy.ndarray) – Column direction filter

	Returns:

	The filtered signal

	Return type:

	cupy.ndarray

See also

scipy.signal.sepfir2d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d]

cupyx.scipy.signal.choose_conv_method

	
cupyx.scipy.signal.choose_conv_method(in1, in2, mode='full')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L189]

	Find the fastest convolution/correlation method.

	Parameters:

	
	in1 (cupy.ndarray) – first input.

	in2 (cupy.ndarray) – second input.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – 'valid', 'same', 'full'.

	Returns:

	A string indicating which convolution method is fastest,
either 'direct' or 'fft'.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

Warning

This function currently doesn’t support measure option,
nor multidimensional inputs. It does not guarantee
the compatibility of the return value to SciPy’s one.

See also

scipy.signal.choose_conv_method() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.choose_conv_method.html#scipy.signal.choose_conv_method]

cupyx.scipy.signal.correlation_lags

	
cupyx.scipy.signal.correlation_lags(in1_len, in2_len, mode='full')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L422]

	Calculates the lag / displacement indices array for 1D cross-correlation.

	Parameters:

	
	in1_len (int [https://docs.python.org/3/library/functions.html#int]) – First input size.

	in2_len (int [https://docs.python.org/3/library/functions.html#int]) – Second input size.

	mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the output.
See the documentation correlate for more information.

	Returns:

	lags – Returns an array containing cross-correlation lag/displacement indices.
Indices can be indexed with the np.argmax of the correlation to return
the lag/displacement.

	Return type:

	array

See also

	correlate
	Compute the N-dimensional cross-correlation.

scipy.signal.correlation_lags [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html#scipy.signal.correlation_lags]

cupyx.scipy.signal.gauss_spline

	
cupyx.scipy.signal.gauss_spline(x, n)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L560]

	Gaussian approximation to B-spline basis function of order n.

	Parameters:

	
	x (array_like) – a knot vector

	n (int [https://docs.python.org/3/library/functions.html#int]) – The order of the spline. Must be nonnegative, i.e. n >= 0

	Returns:

	res – B-spline basis function values approximated by a zero-mean Gaussian
function.

	Return type:

	ndarray

Notes

The B-spline basis function can be approximated well by a zero-mean
Gaussian function with standard-deviation equal to \(\sigma=(n+1)/12\)
for large n :

\[\frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma})\]

See [1], [2] for more information.

References

[1]
Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines.
In: Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
Science, vol 4485. Springer, Berlin, Heidelberg

[2]
http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html

cupyx.scipy.signal.cspline1d

	
cupyx.scipy.signal.cspline1d(signal, lamb=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L260]

	Compute cubic spline coefficients for rank-1 array.

Find the cubic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .

	Parameters:

	
	signal (ndarray) – A rank-1 array representing samples of a signal.

	lamb (float [https://docs.python.org/3/library/functions.html#float], optional) – Smoothing coefficient, default is 0.0.

	Returns:

	c – Cubic spline coefficients.

	Return type:

	ndarray

See also

	cspline1d_eval
	Evaluate a cubic spline at the new set of points.

cupyx.scipy.signal.qspline1d

	
cupyx.scipy.signal.qspline1d(signal, lamb=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L292]

	Compute quadratic spline coefficients for rank-1 array.

	Parameters:

	
	signal (ndarray) – A rank-1 array representing samples of a signal.

	lamb (float [https://docs.python.org/3/library/functions.html#float], optional) – Smoothing coefficient (must be zero for now).

	Returns:

	c – Quadratic spline coefficients.

	Return type:

	ndarray

See also

	qspline1d_eval
	Evaluate a quadratic spline at the new set of points.

Notes

Find the quadratic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

cupyx.scipy.signal.cspline2d

	
cupyx.scipy.signal.cspline2d(signal, lamb=0.0, precision=-1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L439]

	Coefficients for 2-D cubic (3rd order) B-spline.

Return the third-order B-spline coefficients over a regularly spaced
input grid for the two-dimensional input image.

	Parameters:

	
	input (ndarray) – The input signal.

	lamb (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the amount of smoothing in the transfer function.

	precision (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.

	Returns:

	output – The filtered signal.

	Return type:

	ndarray

cupyx.scipy.signal.qspline2d

	
cupyx.scipy.signal.qspline2d(signal, lamb=0.0, precision=-1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L476]

	Coefficients for 2-D quadratic (2nd order) B-spline.

Return the second-order B-spline coefficients over a regularly spaced
input grid for the two-dimensional input image.

	Parameters:

	
	input (ndarray) – The input signal.

	lamb (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the amount of smoothing in the transfer function.

	precision (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.

	Returns:

	output – The filtered signal.

	Return type:

	ndarray

cupyx.scipy.signal.cspline1d_eval

	
cupyx.scipy.signal.cspline1d_eval(cj, newx, dx=1.0, x0=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L325]

	Evaluate a cubic spline at the new set of points.

dx is the old sample-spacing while x0 was the old origin. In
other-words the old-sample points (knot-points) for which the cj
represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0…N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

	Parameters:

	
	cj (ndarray) – cublic spline coefficients

	newx (ndarray) – New set of points.

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – Old sample-spacing, the default value is 1.0.

	x0 (int [https://docs.python.org/3/library/functions.html#int], optional) – Old origin, the default value is 0.

	Returns:

	res – Evaluated a cubic spline points.

	Return type:

	ndarray

See also

	cspline1d
	Compute cubic spline coefficients for rank-1 array.

cupyx.scipy.signal.qspline1d_eval

	
cupyx.scipy.signal.qspline1d_eval(cj, newx, dx=1.0, x0=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L381]

	Evaluate a quadratic spline at the new set of points.

	Parameters:

	
	cj (ndarray) – Quadratic spline coefficients

	newx (ndarray) – New set of points.

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – Old sample-spacing, the default value is 1.0.

	x0 (int [https://docs.python.org/3/library/functions.html#int], optional) – Old origin, the default value is 0.

	Returns:

	res – Evaluated a quadratic spline points.

	Return type:

	ndarray

See also

	qspline1d
	Compute quadratic spline coefficients for rank-1 array.

Notes

dx is the old sample-spacing while x0 was the old origin. In
other-words the old-sample points (knot-points) for which the cj
represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0...N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

cupyx.scipy.signal.spline_filter

	
cupyx.scipy.signal.spline_filter(Iin, lmbda=5.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_bsplines.py#L510]

	Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, Iin, using a (cubic) smoothing spline of
fall-off lmbda.

	Parameters:

	
	Iin (array_like) – input data set

	lmbda (float [https://docs.python.org/3/library/functions.html#float], optional) – spline smooghing fall-off value, default is 5.0.

	Returns:

	res – filterd input data

	Return type:

	ndarray

cupyx.scipy.signal.order_filter

	
cupyx.scipy.signal.order_filter(a, domain, rank)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L526]

	Perform an order filter on an N-D array.

Perform an order filter on the array in. The domain argument acts as a mask
centered over each pixel. The non-zero elements of domain are used to
select elements surrounding each input pixel which are placed in a list.
The list is sorted, and the output for that pixel is the element
corresponding to rank in the sorted list.

	Parameters:

	
	a (cupy.ndarray) – The N-dimensional input array.

	domain (cupy.ndarray) – A mask array with the same number of dimensions
as a. Each dimension should have an odd number of elements.

	rank (int [https://docs.python.org/3/library/functions.html#int]) – A non-negative integer which selects the element from the
sorted list (0 corresponds to the smallest element).

	Returns:

	The results of the order filter in an array with the same
shape as a.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.ndimage.rank_filter()

See also

scipy.signal.order_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.order_filter.html#scipy.signal.order_filter]

cupyx.scipy.signal.medfilt

	
cupyx.scipy.signal.medfilt(volume, kernel_size=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L558]

	Perform a median filter on an N-dimensional array.

Apply a median filter to the input array using a local window-size
given by kernel_size. The array will automatically be zero-padded.

	Parameters:

	
	volume (cupy.ndarray) – An N-dimensional input array.

	kernel_size (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] of ints) – Gives the size of the median filter
window in each dimension. Elements of kernel_size should be odd.
If kernel_size is a scalar, then this scalar is used as the size
in each dimension. Default size is 3 for each dimension.

	Returns:

	An array the same size as input containing the median
filtered result.

	Return type:

	cupy.ndarray

See also

cupyx.scipy.ndimage.median_filter()

See also

scipy.signal.medfilt() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html#scipy.signal.medfilt]

cupyx.scipy.signal.medfilt2d

	
cupyx.scipy.signal.medfilt2d(input, kernel_size=3)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L599]

	Median filter a 2-dimensional array.

Apply a median filter to the input array using a local window-size given
by kernel_size (must be odd). The array is zero-padded automatically.

	Parameters:

	
	input (cupy.ndarray) – A 2-dimensional input array.

	kernel_size (int [https://docs.python.org/3/library/functions.html#int] of list [https://docs.python.org/3/library/stdtypes.html#list] of ints of length 2) – Gives the size of the
median filter window in each dimension. Elements of kernel_size
should be odd. If kernel_size is a scalar, then this scalar is
used as the size in each dimension. Default is a kernel of size
(3, 3).

	Returns:

	An array the same size as input containing the median
filtered result.

	Return type:

	cupy.ndarray

See also

, ,

cupyx.scipy.signal.wiener

	
cupyx.scipy.signal.wiener(im, mysize=None, noise=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L483]

	Perform a Wiener filter on an N-dimensional array.

Apply a Wiener filter to the N-dimensional array im.

	Parameters:

	
	im (cupy.ndarray) – An N-dimensional array.

	mysize (int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray, optional) – A scalar or an N-length list
giving the size of the Wiener filter window in each dimension.
Elements of mysize should be odd. If mysize is a scalar, then this
scalar is used as the size in each dimension.

	noise (float [https://docs.python.org/3/library/functions.html#float], optional) – The noise-power to use. If None, then noise is
estimated as the average of the local variance of the input.

	Returns:

	Wiener filtered result with the same shape as im.

	Return type:

	cupy.ndarray

See also

scipy.signal.wiener() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener]

cupyx.scipy.signal.symiirorder1

	
cupyx.scipy.signal.symiirorder1(input, c0, z1, precision=-1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_splines.py#L222]

	Implement a smoothing IIR filter with mirror-symmetric boundary conditions
using a cascade of first-order sections. The second section uses a
reversed sequence. This implements a system with the following
transfer function and mirror-symmetric boundary conditions:

 c0
H(z) = ---------------------
 (1-z1/z) (1 - z1 z)

The resulting signal will have mirror symmetric boundary conditions
as well.

	Parameters:

	
	input (ndarray) – The input signal.

	c0 (scalar) – Parameters in the transfer function.

	z1 (scalar) – Parameters in the transfer function.

	precision – Specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.

	Returns:

	output – The filtered signal.

	Return type:

	ndarray

cupyx.scipy.signal.symiirorder2

	
cupyx.scipy.signal.symiirorder2(input, r, omega, precision=-1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_splines.py#L482]

	Implement a smoothing IIR filter with mirror-symmetric boundary conditions
using a cascade of second-order sections. The second section uses a
reversed sequence. This implements the following transfer function:

 cs^2
H(z) = ---------------------------------------
 (1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2)

where:

a2 = 2 * r * cos(omega)
a3 = - r ** 2
cs = 1 - 2 * r * cos(omega) + r ** 2

	Parameters:

	
	input (ndarray) – The input signal.

	r (float [https://docs.python.org/3/library/functions.html#float]) – Parameters in the transfer function.

	omega (float [https://docs.python.org/3/library/functions.html#float]) – Parameters in the transfer function.

	precision (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.

	Returns:

	output – The filtered signal.

	Return type:

	ndarray

cupyx.scipy.signal.lfilter

	
cupyx.scipy.signal.lfilter(b, a, x, axis=-1, zi=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L642]

	Filter data along one-dimension with an IIR or FIR filter.

Filter a data sequence, x, using a digital filter. This works for many
fundamental data types (including Object type). The filter is a direct
form II transposed implementation of the standard difference equation
(see Notes).

The function sosfilt (and filter design using output='sos') should be
preferred over lfilter for most filtering tasks, as second-order sections
have fewer numerical problems.

	Parameters:

	
	b (array_like) – The numerator coefficient vector in a 1-D sequence.

	a (array_like) – The denominator coefficient vector in a 1-D sequence. If a[0]
is not 1, then both a and b are normalized by a[0].

	x (array_like) – An N-dimensional input array.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.

	zi (array_like, optional) – Initial conditions for the filter delays. It is a vector
(or array of vectors for an N-dimensional input) of length
len(b) + len(a) - 2. The first len(b) numbers correspond to the
last elements of the previous input and the last len(a) to the last
elements of the previous output. If zi is None or is not given then
initial rest is assumed. See lfiltic for more information.

Note: This argument differs from dimensions from the SciPy
implementation! However, as long as they are chained from the same
library, the output result will be the same. Please make sure to use
the zi from CuPy calls and not from SciPy. This due to the parallel
nature of this implementation as opposed to the serial one in SciPy.

	Returns:

	
	y (array) – The output of the digital filter.

	zf (array, optional) – If zi is None, this is not returned, otherwise, zf holds the
final filter delay values.

See also

	lfiltic
	Construct initial conditions for lfilter.

	lfilter_zi
	Compute initial state (steady state of step response) for lfilter.

	filtfilt
	A forward-backward filter, to obtain a filter with zero phase.

	savgol_filter
	A Savitzky-Golay filter.

	sosfilt
	Filter data using cascaded second-order sections.

	sosfiltfilt
	A forward-backward filter using second-order sections.

Notes

The filter function is implemented as a direct II transposed structure.
This means that the filter implements:

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
 - a[1]*y[n-1] - ... - a[N]*y[n-N]

where M is the degree of the numerator, N is the degree of the
denominator, n is the sample number and L denotes the length of the
input. It is implemented by computing first the FIR part and then
computing the IIR part from it:

a[0] * y = r(f(x, b), a)
f(x, b)[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
r(y, a)[n] = - a[1]*y[n-1] - ... - a[N]*y[n-N]

The IIR result is computed in parallel by first dividing the input signal
into chunks (g_i) of size m. For each chunk, the IIR recurrence
equation is applied to each chunk (in parallel). Then the chunks are merged
based on the last N values of the last chunk:

nc = L/m
x = [g_0, g_1, ..., g_nc]

g_i = [x[i * m], ..., x[i * m + m - 1]]
p_i = r(g_i, a)

o_i = r(p_i, c(p_{i - 1})) if i > 1,
 r(p_i, zi) otherwise

y = [o_0, o_1, ..., o_nc]

where c denotes a function that takes a chunk, slices the last N values
and adjust them using a correction factor table computed using the
(1, 2, …, N)-fibonacci sequence. For more information see [1].

The rational transfer function describing this filter in the
z-transform domain is:

 -1 -M
 b[0] + b[1]z + ... + b[M] z
Y(z) = -------------------------------- X(z)
 -1 -N
 a[0] + a[1]z + ... + a[N] z

References

[1]
Sepideh Maleki and Martin Burtscher.
2018. Automatic Hierarchical Parallelization of Linear Recurrences.
SIGPLAN Not. 53, 2 (February 2018), 128-138.
10.1145/3173162.3173168 [https://doi.org/10.1145/3173162.3173168]

cupyx.scipy.signal.lfiltic

	
cupyx.scipy.signal.lfiltic(b, a, y, x=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L816]

	Construct initial conditions for lfilter given input and output vectors.

Given a linear filter (b, a) and initial conditions on the output y
and the input x, return the initial conditions on the state vector zi
which is used by lfilter to generate the output given the input.

	Parameters:

	
	b (array_like) – Linear filter term.

	a (array_like) – Linear filter term.

	y (array_like) – Initial conditions.
If N = len(a) - 1, then y = {y[-1], y[-2], ..., y[-N]}.
If y is too short, it is padded with zeros.

	x (array_like, optional) – Initial conditions.
If M = len(b) - 1, then x = {x[-1], x[-2], ..., x[-M]}.
If x is not given, its initial conditions are assumed zero.
If x is too short, it is padded with zeros.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis to take the initial conditions from, if x and y are
n-dimensional

	Returns:

	zi – The state vector zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]},
where K = M + N.

	Return type:

	ndarray

See also

lfilter, lfilter_zi

cupyx.scipy.signal.lfilter_zi

	
cupyx.scipy.signal.lfilter_zi(b, a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L882]

	Construct initial conditions for lfilter for step response steady-state.

Compute an initial state zi for the lfilter function that corresponds
to the steady state of the step response.

A typical use of this function is to set the initial state so that the
output of the filter starts at the same value as the first element of
the signal to be filtered.

	Parameters:

	
	b (array_like (1-D)) – The IIR filter coefficients. See lfilter for more
information.

	a (array_like (1-D)) – The IIR filter coefficients. See lfilter for more
information.

	Returns:

	zi – The initial state for the filter.

	Return type:

	1-D ndarray

See also

lfilter, lfiltic, filtfilt

cupyx.scipy.signal.filtfilt

	
cupyx.scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1236]

	Apply a digital filter forward and backward to a signal.

This function applies a linear digital filter twice, once forward and
once backwards. The combined filter has zero phase and a filter order
twice that of the original.

The function provides options for handling the edges of the signal.

The function sosfiltfilt (and filter design using output='sos')
should be preferred over filtfilt for most filtering tasks, as
second-order sections have fewer numerical problems.

	Parameters:

	
	b ((N,) array_like) – The numerator coefficient vector of the filter.

	a ((N,) array_like) – The denominator coefficient vector of the filter. If a[0]
is not 1, then both a and b are normalized by a[0].

	x (array_like) – The array of data to be filtered.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of x to which the filter is applied.
Default is -1.

	padtype (str [https://docs.python.org/3/library/stdtypes.html#str] or None, optional) – Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the
type of extension to use for the padded signal to which the filter
is applied. If padtype is None, no padding is used. The default
is ‘odd’.

	padlen (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – The number of elements by which to extend x at both ends of
axis before applying the filter. This value must be less than
x.shape[axis] - 1. padlen=0 implies no padding.
The default value is 3 * max(len(a), len(b)).

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Determines the method for handling the edges of the signal, either
“pad” or “gust”. When method is “pad”, the signal is padded; the
type of padding is determined by padtype and padlen, and irlen
is ignored. When method is “gust”, Gustafsson’s method is used,
and padtype and padlen are ignored.

	irlen (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – When method is “gust”, irlen specifies the length of the
impulse response of the filter. If irlen is None, no part
of the impulse response is ignored. For a long signal, specifying
irlen can significantly improve the performance of the filter.

	Returns:

	y – The filtered output with the same shape as x.

	Return type:

	ndarray

See also

sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt

Notes

When method is “pad”, the function pads the data along the given axis
in one of three ways: odd, even or constant. The odd and even extensions
have the corresponding symmetry about the end point of the data. The
constant extension extends the data with the values at the end points. On
both the forward and backward passes, the initial condition of the
filter is found by using lfilter_zi and scaling it by the end point of
the extended data.

When method is “gust”, Gustafsson’s method [1] is used. Initial
conditions are chosen for the forward and backward passes so that the
forward-backward filter gives the same result as the backward-forward
filter.

References

[1]
F. Gustaffson, “Determining the initial states in forward-backward
filtering”, Transactions on Signal Processing, Vol. 46, pp. 988-992,
1996.

cupyx.scipy.signal.savgol_filter

	
cupyx.scipy.signal.savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1, mode='interp', cval=0.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_savitzky_golay.py#L251]

	Apply a Savitzky-Golay filter to an array.

This is a 1-D filter. If x has dimension greater than 1, axis
determines the axis along which the filter is applied.

	Parameters:

	
	x (array_like) – The data to be filtered. If x is not a single or double precision
floating point array, it will be converted to type numpy.float64
before filtering.

	window_length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the filter window (i.e., the number of coefficients).
If mode is ‘interp’, window_length must be less than or equal
to the size of x.

	polyorder (int [https://docs.python.org/3/library/functions.html#int]) – The order of the polynomial used to fit the samples.
polyorder must be less than window_length.

	deriv (int [https://docs.python.org/3/library/functions.html#int], optional) – The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.

	delta (float [https://docs.python.org/3/library/functions.html#float], optional) – The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0. Default is 1.0.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the array x along which the filter is to be applied.
Default is -1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Must be ‘mirror’, ‘constant’, ‘nearest’, ‘wrap’ or ‘interp’. This
determines the type of extension to use for the padded signal to
which the filter is applied. When mode is ‘constant’, the padding
value is given by cval. See the Notes for more details on ‘mirror’,
‘constant’, ‘wrap’, and ‘nearest’.
When the ‘interp’ mode is selected (the default), no extension
is used. Instead, a degree polyorder polynomial is fit to the
last window_length values of the edges, and this polynomial is
used to evaluate the last window_length // 2 output values.

	cval (scalar, optional) – Value to fill past the edges of the input if mode is ‘constant’.
Default is 0.0.

	Returns:

	y – The filtered data.

	Return type:

	ndarray, same shape as x

See also

savgol_coeffs

Notes

Details on the mode options:

	‘mirror’:
	Repeats the values at the edges in reverse order. The value
closest to the edge is not included.

	‘nearest’:
	The extension contains the nearest input value.

	‘constant’:
	The extension contains the value given by the cval argument.

	‘wrap’:
	The extension contains the values from the other end of the array.

For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
window_length is 7, the following shows the extended data for
the various mode options (assuming cval is 0):

mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3

New in version 0.14.0.

Examples

>>> import numpy as np
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

Filter with a window length of 5 and a degree 2 polynomial. Use
the defaults for all other parameters.

>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9.])

Note that the last five values in x are samples of a parabola, so
when mode=’interp’ (the default) is used with polyorder=2, the last
three values are unchanged. Compare that to, for example,
mode=’nearest’:

>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])

cupyx.scipy.signal.deconvolve

	
cupyx.scipy.signal.deconvolve(signal, divisor)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1364]

	Deconvolves divisor out of signal using inverse filtering.

Returns the quotient and remainder such that
signal = convolve(divisor, quotient) + remainder

	Parameters:

	
	signal ((N,) array_like) – Signal data, typically a recorded signal

	divisor ((N,) array_like) – Divisor data, typically an impulse response or filter that was
applied to the original signal

	Returns:

	
	quotient (ndarray) – Quotient, typically the recovered original signal

	remainder (ndarray) – Remainder

See also

	cupy.polydiv
	performs polynomial division (same operation, but also accepts poly1d objects)

Examples

Deconvolve a signal that’s been filtered:

>>> from cupyx.scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([0., 1., 0., 0., 1., 1., 0., 0.])

cupyx.scipy.signal.sosfilt

	
cupyx.scipy.signal.sosfilt(sos, x, axis=-1, zi=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1454]

	Filter data along one dimension using cascaded second-order sections.

Filter a data sequence, x, using a digital IIR filter defined by
sos.

	Parameters:

	
	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.

	x (array_like) – An N-dimensional input array.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.

	zi (array_like, optional) – Initial conditions for the cascaded filter delays. It is a (at
least 2D) vector of shape (n_sections, ..., 4, ...), where
..., 4, ... denotes the shape of x, but with x.shape[axis]
replaced by 4. If zi is None or is not given then initial rest
(i.e. all zeros) is assumed.
Note that these initial conditions are not the same as the initial
conditions given by lfiltic or lfilter_zi.

	Returns:

	
	y (ndarray) – The output of the digital filter.

	zf (ndarray, optional) – If zi is None, this is not returned, otherwise, zf holds the
final filter delay values.

See also

zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz

cupyx.scipy.signal.sosfilt_zi

	
cupyx.scipy.signal.sosfilt_zi(sos)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1504]

	Construct initial conditions for sosfilt for step response steady-state.

Compute an initial state zi for the sosfilt function that corresponds
to the steady state of the step response.

A typical use of this function is to set the initial state so that the
output of the filter starts at the same value as the first element of
the signal to be filtered.

	Parameters:

	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). See sosfilt for the SOS filter format
specification.

	Returns:

	zi – Initial conditions suitable for use with sosfilt, shape
(n_sections, 4).

	Return type:

	ndarray

See also

sosfilt, zpk2sos

cupyx.scipy.signal.sosfiltfilt

	
cupyx.scipy.signal.sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1574]

	A forward-backward digital filter using cascaded second-order sections.

See filtfilt for more complete information about this method.

	Parameters:

	
	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.

	x (array_like) – The array of data to be filtered.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of x to which the filter is applied.
Default is -1.

	padtype (str [https://docs.python.org/3/library/stdtypes.html#str] or None, optional) – Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the
type of extension to use for the padded signal to which the filter
is applied. If padtype is None, no padding is used. The default
is ‘odd’.

	padlen (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – The number of elements by which to extend x at both ends of
axis before applying the filter. This value must be less than
x.shape[axis] - 1. padlen=0 implies no padding.
The default value is:

3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
 (sos[:, 5] == 0).sum()))

The extra subtraction at the end attempts to compensate for poles
and zeros at the origin (e.g. for odd-order filters) to yield
equivalent estimates of padlen to those of filtfilt for
second-order section filters built with scipy.signal functions.

	Returns:

	y – The filtered output with the same shape as x.

	Return type:

	ndarray

See also

filtfilt, sosfilt, sosfilt_zi, sosfreqz

cupyx.scipy.signal.hilbert

	
cupyx.scipy.signal.hilbert(x, N=None, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1645]

	Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

	Parameters:

	
	x (ndarray) – Signal data. Must be real.

	N (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of Fourier components. Default: x.shape[axis]

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which to do the transformation. Default: -1.

	Returns:

	xa – Analytic signal of x, of each 1-D array along axis

	Return type:

	ndarray

Notes

The analytic signal x_a(t) of signal x(t) is:

\[x_a = F^{-1}(F(x) 2U) = x + i y\]

where F is the Fourier transform, U the unit step function,
and y the Hilbert transform of x. [1]

In other words, the negative half of the frequency spectrum is zeroed
out, turning the real-valued signal into a complex signal. The Hilbert
transformed signal can be obtained from np.imag(hilbert(x)), and the
original signal from np.real(hilbert(x)).

References

[1]
Wikipedia, “Analytic signal”.
https://en.wikipedia.org/wiki/Analytic_signal

See also

scipy.signal.hilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html#scipy.signal.hilbert]

cupyx.scipy.signal.hilbert2

	
cupyx.scipy.signal.hilbert2(x, N=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L1713]

	Compute the ‘2-D’ analytic signal of x

	Parameters:

	
	x (ndarray) – 2-D signal data.

	N (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of two ints, optional) – Number of Fourier components. Default is x.shape

	Returns:

	xa – Analytic signal of x taken along axes (0,1).

	Return type:

	ndarray

See also

scipy.signal.hilbert2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2]

cupyx.scipy.signal.decimate

	
cupyx.scipy.signal.decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_resample.py#L99]

	Downsample the signal after applying an anti-aliasing filter.

By default, an order 8 Chebyshev type I filter is used. A 30 point FIR
filter with Hamming window is used if ftype is ‘fir’.

	Parameters:

	
	x (array_like) – The signal to be downsampled, as an N-dimensional array.

	q (int [https://docs.python.org/3/library/functions.html#int]) – The downsampling factor. When using IIR downsampling, it is recommended
to call decimate multiple times for downsampling factors higher than
13.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – The order of the filter (1 less than the length for ‘fir’). Defaults to
8 for ‘iir’ and 20 times the downsampling factor for ‘fir’.

	ftype (str {‘iir’, ‘fir’} or dlti instance, optional) – If ‘iir’ or ‘fir’, specifies the type of lowpass filter. If an instance
of an dlti object, uses that object to filter before downsampling.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis along which to decimate.

	zero_phase (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Prevent phase shift by filtering with filtfilt instead of lfilter
when using an IIR filter, and shifting the outputs back by the filter’s
group delay when using an FIR filter. The default value of True is
recommended, since a phase shift is generally not desired.

	Returns:

	y – The down-sampled signal.

	Return type:

	ndarray

See also

	resample
	Resample up or down using the FFT method.

	resample_poly
	Resample using polyphase filtering and an FIR filter.

cupyx.scipy.signal.detrend

	
cupyx.scipy.signal.detrend(data, axis=-1, type='linear', bp=0, overwrite_data=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_signaltools.py#L942]

	Remove linear trend along axis from data.

	Parameters:

	
	data (array_like) – The input data.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis along which to detrend the data. By default this is the
last axis (-1).

	type ({'linear', 'constant'}, optional) – The type of detrending. If type == 'linear' (default),
the result of a linear least-squares fit to data is subtracted
from data.
If type == 'constant', only the mean of data is subtracted.

	bp (array_like of ints, optional) – A sequence of break points. If given, an individual linear fit is
performed for each part of data between two break points.
Break points are specified as indices into data. This parameter
only has an effect when type == 'linear'.

	overwrite_data (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, perform in place detrending and avoid a copy. Default is False

	Returns:

	ret – The detrended input data.

	Return type:

	ndarray

See also

scipy.signal.detrend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html#scipy.signal.detrend]

cupyx.scipy.signal.resample

	
cupyx.scipy.signal.resample(x, num, t=None, axis=0, window=None, domain='time')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_resample.py#L215]

	Resample x to num samples using Fourier method along the given axis.

The resampled signal starts at the same value as x but is sampled
with a spacing of len(x) / num * (spacing of x). Because a
Fourier method is used, the signal is assumed to be periodic.

	Parameters:

	
	x (array_like) – The data to be resampled.

	num (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples in the resampled signal.

	t (array_like, optional) – If t is given, it is assumed to be the sample positions
associated with the signal data in x.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of x that is resampled. Default is 0.

	window (array_like, callable, string, float [https://docs.python.org/3/library/functions.html#float], or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Specifies the window applied to the signal in the Fourier
domain. See below for details.

	domain (string, optional) – A string indicating the domain of the input x:

	time
	Consider the input x as time-domain. (Default)

	freq
	Consider the input x as frequency-domain.

	Returns:

	Either the resampled array, or, if t was given, a tuple
containing the resampled array and the corresponding resampled
positions.

	Return type:

	resampled_x or (resampled_x, resampled_t)

See also

	decimate
	Downsample the signal after applying an FIR or IIR filter.

	resample_poly
	Resample using polyphase filtering and an FIR filter.

Notes

The argument window controls a Fourier-domain window that tapers
the Fourier spectrum before zero-padding to alleviate ringing in
the resampled values for sampled signals you didn’t intend to be
interpreted as band-limited.

If window is a function, then it is called with a vector of inputs
indicating the frequency bins (i.e. fftfreq(x.shape[axis])).

If window is an array of the same length as x.shape[axis] it is
assumed to be the window to be applied directly in the Fourier
domain (with dc and low-frequency first).

For any other type of window, the function cusignal.get_window
is called to generate the window.

The first sample of the returned vector is the same as the first
sample of the input vector. The spacing between samples is changed
from dx to dx * len(x) / num.

If t is not None, then it represents the old sample positions,
and the new sample positions will be returned as well as the new
samples.

As noted, resample uses FFT transformations, which can be very
slow if the number of input or output samples is large and prime;
see scipy.fftpack.fft.

Examples

Note that the end of the resampled data rises to meet the first
sample of the next cycle:

>>> import cupy as cp
>>> import cupyx.scipy.signal import resample

>>> x = cupy.linspace(0, 10, 20, endpoint=False)
>>> y = cupy.cos(-x**2/6.0)
>>> f = resample(y, 100)
>>> xnew = cupy.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(cupy.asnumpy(x), cupy.asnumpy(y), 'go-', cupy.asnumpy(xnew), cupy.asnumpy(f), '.-', 10, cupy.asnumpy(y[0]), 'ro')
>>> plt.legend(['data', 'resampled'], loc='best')
>>> plt.show()

cupyx.scipy.signal.resample_poly

	
cupyx.scipy.signal.resample_poly(x, up, down, axis=0, window=('kaiser', 5.0), padtype='constant', cval=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_resample.py#L407]

	Resample x along the given axis using polyphase filtering.

The signal x is upsampled by the factor up, a zero-phase low-pass
FIR filter is applied, and then it is downsampled by the factor down.
The resulting sample rate is up / down times the original sample
rate. Values beyond the boundary of the signal are assumed to be zero
during the filtering step.

	Parameters:

	
	x (array_like) – The data to be resampled.

	up (int [https://docs.python.org/3/library/functions.html#int]) – The upsampling factor.

	down (int [https://docs.python.org/3/library/functions.html#int]) – The downsampling factor.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of x that is resampled. Default is 0.

	window (string, tuple [https://docs.python.org/3/library/stdtypes.html#tuple], or array_like, optional) – Desired window to use to design the low-pass filter, or the FIR filter
coefficients to employ. See below for details.

	padtype (string, optional) – constant, line, mean, median, maximum, minimum or any of
the other signal extension modes supported by
cupyx.scipy.signal.upfirdn. Changes assumptions on values beyond
the boundary. If constant, assumed to be cval (default zero).
If line assumed to continue a linear trend defined by the first and
last points. mean, median, maximum and minimum work as in
cupy.pad and assume that the values beyond the boundary are the mean,
median, maximum or minimum respectively of the array along the axis.

	cval (float [https://docs.python.org/3/library/functions.html#float], optional) – Value to use if padtype=’constant’. Default is zero.

	Returns:

	resampled_x – The resampled array.

	Return type:

	array

See also

	decimate
	Downsample the signal after applying an FIR or IIR filter.

	resample
	Resample up or down using the FFT method.

Notes

This polyphase method will likely be faster than the Fourier method
in cusignal.resample when the number of samples is large and
prime, or when the number of samples is large and up and down
share a large greatest common denominator. The length of the FIR
filter used will depend on max(up, down) // gcd(up, down), and
the number of operations during polyphase filtering will depend on
the filter length and down (see cusignal.upfirdn for details).

The argument window specifies the FIR low-pass filter design.

If window is an array_like it is assumed to be the FIR filter
coefficients. Note that the FIR filter is applied after the upsampling
step, so it should be designed to operate on a signal at a sampling
frequency higher than the original by a factor of up//gcd(up, down).
This function’s output will be centered with respect to this array, so it
is best to pass a symmetric filter with an odd number of samples if, as
is usually the case, a zero-phase filter is desired.

For any other type of window, the functions cusignal.get_window
and cusignal.firwin are called to generate the appropriate filter
coefficients.

The first sample of the returned vector is the same as the first
sample of the input vector. The spacing between samples is changed
from dx to dx * down / float(up).

Examples

Note that the end of the resampled data rises to meet the first
sample of the next cycle for the FFT method, and gets closer to zero
for the polyphase method:

>>> import cupy
>>> import cupyx.scipy.signal import resample, resample_poly

>>> x = cupy.linspace(0, 10, 20, endpoint=False)
>>> y = cupy.cos(-x**2/6.0)
>>> f_fft = resample(y, 100)
>>> f_poly = resample_poly(y, 100, 20)
>>> xnew = cupy.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(cupy.asnumpy(xnew), cupy.asnumpy(f_fft), 'b.-', cupy.asnumpy(xnew), cupy.asnumpy(f_poly), 'r.-')
>>> plt.plot(cupy.asnumpy(x), cupy.asnumpy(y), 'ko-')
>>> plt.plot(10, cupy.asnumpy(y[0]), 'bo', 10, 0., 'ro') # boundaries
>>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
>>> plt.show()

cupyx.scipy.signal.upfirdn

	
cupyx.scipy.signal.upfirdn(h, x, up=1, down=1, axis=-1, mode=None, cval=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_upfirdn.py#L438]

	Upsample, FIR filter, and downsample.

	Parameters:

	
	h (array_like) – 1-dimensional FIR (finite-impulse response) filter coefficients.

	x (array_like) – Input signal array.

	up (int [https://docs.python.org/3/library/functions.html#int], optional) – Upsampling rate. Default is 1.

	down (int [https://docs.python.org/3/library/functions.html#int], optional) – Downsampling rate. Default is 1.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – This parameter is not implemented.

	cval (float [https://docs.python.org/3/library/functions.html#float], optional) – This parameter is not implemented.

	Returns:

	y – The output signal array. Dimensions will be the same as x except
for along axis, which will change size according to the h,
up, and down parameters.

	Return type:

	ndarray

Notes

The algorithm is an implementation of the block diagram shown on page 129
of the Vaidyanathan text [1] (Figure 4.3-8d).

The direct approach of upsampling by factor of P with zero insertion,
FIR filtering of length N, and downsampling by factor of Q is
O(N*Q) per output sample. The polyphase implementation used here is
O(N/P).

See also

scipy.signal.upfirdn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html#scipy.signal.upfirdn]

References

[1]
P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice Hall, 1993.

cupyx.scipy.signal.bilinear

	
cupyx.scipy.signal.bilinear(b, a, fs=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L825]

	Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital
z-plane using Tustin’s method, which substitutes 2*fs*(z-1) / (z+1) for
s, maintaining the shape of the frequency response.

	Parameters:

	
	b (array_like) – Numerator of the analog filter transfer function.

	a (array_like) – Denominator of the analog filter transfer function.

	fs (float [https://docs.python.org/3/library/functions.html#float]) – Sample rate, as ordinary frequency (e.g., hertz). No prewarping is
done in this function.

	Returns:

	
	b (ndarray) – Numerator of the transformed digital filter transfer function.

	a (ndarray) – Denominator of the transformed digital filter transfer function.

See also

lp2lp, lp2hp, lp2bp, lp2bs, bilinear_zpk, scipy.signal.bilinear [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear.html#scipy.signal.bilinear]

cupyx.scipy.signal.bilinear_zpk

	
cupyx.scipy.signal.bilinear_zpk(z, p, k, fs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L494]

	Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital
z-plane using Tustin’s method, which substitutes 2*fs*(z-1) / (z+1) for
s, maintaining the shape of the frequency response.

	Parameters:

	
	z (array_like) – Zeros of the analog filter transfer function.

	p (array_like) – Poles of the analog filter transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain of the analog filter transfer function.

	fs (float [https://docs.python.org/3/library/functions.html#float]) – Sample rate, as ordinary frequency (e.g., hertz). No prewarping is
done in this function.

	Returns:

	
	z (ndarray) – Zeros of the transformed digital filter transfer function.

	p (ndarray) – Poles of the transformed digital filter transfer function.

	k (float) – System gain of the transformed digital filter.

See also

lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear, scipy.signal.bilinear_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear_zpk.html#scipy.signal.bilinear_zpk]

cupyx.scipy.signal.findfreqs

	
cupyx.scipy.signal.findfreqs(num, den, N, kind='ba')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L36]

	Find array of frequencies for computing the response of an analog filter.

	Parameters:

	
	num (array_like, 1-D) – The polynomial coefficients of the numerator and denominator of the
transfer function of the filter or LTI system, where the coefficients
are ordered from highest to lowest degree. Or, the roots of the
transfer function numerator and denominator (i.e., zeroes and poles).

	den (array_like, 1-D) – The polynomial coefficients of the numerator and denominator of the
transfer function of the filter or LTI system, where the coefficients
are ordered from highest to lowest degree. Or, the roots of the
transfer function numerator and denominator (i.e., zeroes and poles).

	N (int [https://docs.python.org/3/library/functions.html#int]) – The length of the array to be computed.

	kind (str {'ba', 'zp'}, optional) – Specifies whether the numerator and denominator are specified by their
polynomial coefficients (‘ba’), or their roots (‘zp’).

	Returns:

	w – A 1-D array of frequencies, logarithmically spaced.

	Return type:

	(N,) ndarray

Warning

This function may synchronize the device.

See also

scipy.signal.find_freqs

Examples

Find a set of nine frequencies that span the “interesting part” of the
frequency response for the filter with the transfer function

H(s) = s / (s^2 + 8s + 25)

>>> from scipy import signal
>>> signal.findfreqs([1, 0], [1, 8, 25], N=9)
array([1.00000000e-02, 3.16227766e-02, 1.00000000e-01,
 3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
 1.00000000e+01, 3.16227766e+01, 1.00000000e+02])

cupyx.scipy.signal.freqs

	
cupyx.scipy.signal.freqs(b, a, worN=200, plot=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L104]

	Compute frequency response of analog filter.

Given the M-order numerator b and N-order denominator a of an analog
filter, compute its frequency response:

 b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M]
H(w) = --
 a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N]

	Parameters:

	
	b (array_like) – Numerator of a linear filter.

	a (array_like) – Denominator of a linear filter.

	worN ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If None, then compute at 200 frequencies around the interesting parts
of the response curve (determined by pole-zero locations). If a single
integer, then compute at that many frequencies. Otherwise, compute the
response at the angular frequencies (e.g., rad/s) given in worN.

	plot (callable, optional) – A callable that takes two arguments. If given, the return parameters
w and h are passed to plot. Useful for plotting the frequency
response inside freqs.

	Returns:

	
	w (ndarray) – The angular frequencies at which h was computed.

	h (ndarray) – The frequency response.

See also

scipy.signal.freqs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html#scipy.signal.freqs]

	freqz
	Compute the frequency response of a digital filter.

cupyx.scipy.signal.freqs_zpk

	
cupyx.scipy.signal.freqs_zpk(z, p, k, worN=200)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L164]

	Compute frequency response of analog filter.

Given the zeros z, poles p, and gain k of a filter, compute its
frequency response:

 (jw-z[0]) * (jw-z[1]) * ... * (jw-z[-1])
H(w) = k * --
 (jw-p[0]) * (jw-p[1]) * ... * (jw-p[-1])

	Parameters:

	
	z (array_like) – Zeroes of a linear filter

	p (array_like) – Poles of a linear filter

	k (scalar) – Gain of a linear filter

	worN ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If None, then compute at 200 frequencies around the interesting parts
of the response curve (determined by pole-zero locations). If a single
integer, then compute at that many frequencies. Otherwise, compute the
response at the angular frequencies (e.g., rad/s) given in worN.

	Returns:

	
	w (ndarray) – The angular frequencies at which h was computed.

	h (ndarray) – The frequency response.

See also

scipy.signal.freqs_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs_zpk.html#scipy.signal.freqs_zpk]

cupyx.scipy.signal.freqz

	
cupyx.scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L326]

	Compute the frequency response of a digital filter.

Given the M-order numerator b and N-order denominator a of a digital
filter, compute its frequency response:

 jw -jw -jwM
 jw B(e) b[0] + b[1]e + ... + b[M]e
H(e) = ------ = -----------------------------------
 jw -jw -jwN
 A(e) a[0] + a[1]e + ... + a[N]e

	Parameters:

	
	b (array_like) – Numerator of a linear filter. If b has dimension greater than 1,
it is assumed that the coefficients are stored in the first dimension,
and b.shape[1:], a.shape[1:], and the shape of the frequencies
array must be compatible for broadcasting.

	a (array_like) – Denominator of a linear filter. If b has dimension greater than 1,
it is assumed that the coefficients are stored in the first dimension,
and b.shape[1:], a.shape[1:], and the shape of the frequencies
array must be compatible for broadcasting.

	worN ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If a single integer, then compute at that many frequencies (default is
N=512). This is a convenient alternative to:

cupy.linspace(0, fs if whole else fs/2, N,
 endpoint=include_nyquist)

Using a number that is fast for FFT computations can result in
faster computations (see Notes).

If an array_like, compute the response at the frequencies given.
These are in the same units as fs.

	whole (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, frequencies are computed from 0 to the Nyquist frequency,
fs/2 (upper-half of unit-circle). If whole is True, compute
frequencies from 0 to fs. Ignored if worN is array_like.

	plot (callable) – A callable that takes two arguments. If given, the return parameters
w and h are passed to plot. Useful for plotting the frequency
response inside freqz.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

	include_nyquist (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If whole is False and worN is an integer, setting include_nyquist
to True will include the last frequency (Nyquist frequency) and is
otherwise ignored.

	Returns:

	
	w (ndarray) – The frequencies at which h was computed, in the same units as fs.
By default, w is normalized to the range [0, pi) (radians/sample).

	h (ndarray) – The frequency response, as complex numbers.

See also

freqz_zpk, sosfreqz, scipy.signal.freqz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz]

Notes

Using Matplotlib’s matplotlib.pyplot.plot() function as the callable
for plot produces unexpected results, as this plots the real part of the
complex transfer function, not the magnitude.
Try lambda w, h: plot(w, cupy.abs(h)).

A direct computation via (R)FFT is used to compute the frequency response
when the following conditions are met:

	An integer value is given for worN.

	worN is fast to compute via FFT (i.e.,
next_fast_len(worN) <scipy.fft.next_fast_len> equals worN).

	The denominator coefficients are a single value (a.shape[0] == 1).

	worN is at least as long as the numerator coefficients
(worN >= b.shape[0]).

	If b.ndim > 1, then b.shape[-1] == 1.

For long FIR filters, the FFT approach can have lower error and be much
faster than the equivalent direct polynomial calculation.

cupyx.scipy.signal.freqz_zpk

	
cupyx.scipy.signal.freqz_zpk(z, p, k, worN=512, whole=False, fs=6.283185307179586)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L480]

	Compute the frequency response of a digital filter in ZPK form.

Given the Zeros, Poles and Gain of a digital filter, compute its frequency
response:

\(H(z)=k \prod_i (z - Z[i]) / \prod_j (z - P[j])\)

where \(k\) is the gain, \(Z\) are the zeros and \(P\) are
the poles.

	Parameters:

	
	z (array_like) – Zeroes of a linear filter

	p (array_like) – Poles of a linear filter

	k (scalar) – Gain of a linear filter

	worN ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If a single integer, then compute at that many frequencies (default is
N=512).

If an array_like, compute the response at the frequencies given.
These are in the same units as fs.

	whole (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, frequencies are computed from 0 to the Nyquist frequency,
fs/2 (upper-half of unit-circle). If whole is True, compute
frequencies from 0 to fs. Ignored if w is array_like.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

	Returns:

	
	w (ndarray) – The frequencies at which h was computed, in the same units as fs.
By default, w is normalized to the range [0, pi) (radians/sample).

	h (ndarray) – The frequency response, as complex numbers.

See also

	freqs
	Compute the frequency response of an analog filter in TF form

	freqs_zpk
	Compute the frequency response of an analog filter in ZPK form

	freqz
	Compute the frequency response of a digital filter in TF form

scipy.signal.freqz_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz_zpk.html#scipy.signal.freqz_zpk]

cupyx.scipy.signal.sosfreqz

	
cupyx.scipy.signal.sosfreqz(sos, worN=512, whole=False, fs=6.283185307179586)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L569]

	Compute the frequency response of a digital filter in SOS format.

Given sos, an array with shape (n, 6) of second order sections of
a digital filter, compute the frequency response of the system function:

 B0(z) B1(z) B{n-1}(z)
H(z) = ----- * ----- * ... * ---------
 A0(z) A1(z) A{n-1}(z)

for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and
denominator of the transfer function of the k-th second order section.

	Parameters:

	
	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.

	worN ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If a single integer, then compute at that many frequencies (default is
N=512). Using a number that is fast for FFT computations can result
in faster computations (see Notes of freqz).

If an array_like, compute the response at the frequencies given (must
be 1-D). These are in the same units as fs.

	whole (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, frequencies are computed from 0 to the Nyquist frequency,
fs/2 (upper-half of unit-circle). If whole is True, compute
frequencies from 0 to fs.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

New in version 1.2.0.

	Returns:

	
	w (ndarray) – The frequencies at which h was computed, in the same units as fs.
By default, w is normalized to the range [0, pi) (radians/sample).

	h (ndarray) – The frequency response, as complex numbers.

See also

freqz, sosfilt, scipy.signal.sosfreqz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfreqz.html#scipy.signal.sosfreqz]

cupyx.scipy.signal.firwin

	
cupyx.scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True, fs=2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L179]

	FIR filter design using the window method.

This function computes the coefficients of a finite impulse response
filter. The filter will have linear phase; it will be Type I if
numtaps is odd and Type II if numtaps is even.

Type II filters always have zero response at the Nyquist frequency, so a
ValueError exception is raised if firwin is called with numtaps even and
having a passband whose right end is at the Nyquist frequency.

	Parameters:

	
	numtaps (int [https://docs.python.org/3/library/functions.html#int]) – Length of the filter (number of coefficients, i.e. the filter
order + 1). numtaps must be odd if a passband includes the
Nyquist frequency.

	cutoff (float [https://docs.python.org/3/library/functions.html#float] or 1D array_like) – Cutoff frequency of filter (expressed in the same units as fs)
OR an array of cutoff frequencies (that is, band edges). In the
latter case, the frequencies in cutoff should be positive and
monotonically increasing between 0 and fs/2. The values 0 and
fs/2 must not be included in cutoff.

	width (float [https://docs.python.org/3/library/functions.html#float] or None, optional) – If width is not None, then assume it is the approximate width
of the transition region (expressed in the same units as fs)
for use in Kaiser FIR filter design. In this case, the window
argument is ignored.

	window (string or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of string and parameter values, optional) – Desired window to use. See cusignal.get_window for a list
of windows and required parameters.

	pass_zero ({True, False, 'bandpass', 'lowpass', 'highpass', 'bandstop'},) – optional
If True, the gain at the frequency 0 (i.e. the “DC gain”) is 1.
If False, the DC gain is 0. Can also be a string argument for the
desired filter type (equivalent to btype in IIR design functions).

	scale (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set to True to scale the coefficients so that the frequency
response is exactly unity at a certain frequency.
That frequency is either:

	0 (DC) if the first passband starts at 0 (i.e. pass_zero
is True)

	fs/2 (the Nyquist frequency) if the first passband ends at
fs/2 (i.e the filter is a single band highpass filter);
center of first passband otherwise

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the signal. Each frequency in cutoff
must be between 0 and fs/2. Default is 2.

	Returns:

	h – Coefficients of length numtaps FIR filter.

	Return type:

	(numtaps,) ndarray

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any value in cutoff is less than or equal to 0 or greater
 than or equal to fs/2, if the values in cutoff are not strictly
 monotonically increasing, or if numtaps is even but a passband
 includes the Nyquist frequency.

See also

firwin2, firls, minimum_phase, remez

Examples

Low-pass from 0 to f:

>>> import cusignal
>>> numtaps = 3
>>> f = 0.1
>>> cusignal.firwin(numtaps, f)
array([0.06799017, 0.86401967, 0.06799017])

Use a specific window function:

>>> cusignal.firwin(numtaps, f, window='nuttall')
array([3.56607041e-04, 9.99286786e-01, 3.56607041e-04])

High-pass (‘stop’ from 0 to f):

>>> cusignal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])

Band-pass:

>>> f1, f2 = 0.1, 0.2
>>> cusignal.firwin(numtaps, [f1, f2], pass_zero=False)
array([0.06301614, 0.88770441, 0.06301614])

Band-stop:

>>> cusignal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

>>> f3, f4 = 0.3, 0.4
>>> cusignal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])

Multi-band (passbands are [f1, f2] and [f3,f4]):

>>> cusignal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([0.04890915, 0.91284326, 0.04890915])

cupyx.scipy.signal.firwin2

	
cupyx.scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None, antisymmetric=False, fs=2.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L413]

	FIR filter design using the window method.

From the given frequencies freq and corresponding gains gain,
this function constructs an FIR filter with linear phase and
(approximately) the given frequency response.

	Parameters:

	
	numtaps (int [https://docs.python.org/3/library/functions.html#int]) – The number of taps in the FIR filter. numtaps must be less than
nfreqs.

	freq (array_like, 1-D) – The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
Nyquist. The Nyquist frequency is half fs.
The values in freq must be nondecreasing. A value can be repeated
once to implement a discontinuity. The first value in freq must
be 0, and the last value must be fs/2. Values 0 and fs/2 must
not be repeated.

	gain (array_like) – The filter gains at the frequency sampling points. Certain
constraints to gain values, depending on the filter type, are applied,
see Notes for details.

	nfreqs (int [https://docs.python.org/3/library/functions.html#int], optional) – The size of the interpolation mesh used to construct the filter.
For most efficient behavior, this should be a power of 2 plus 1
(e.g, 129, 257, etc). The default is one more than the smallest
power of 2 that is not less than numtaps. nfreqs must be greater
than numtaps.

	window (string or (string, float [https://docs.python.org/3/library/functions.html#float]) or float [https://docs.python.org/3/library/functions.html#float], or None, optional) – Window function to use. Default is “hamming”. See
scipy.signal.get_window for the complete list of possible values.
If None, no window function is applied.

	antisymmetric (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether resulting impulse response is symmetric/antisymmetric.
See Notes for more details.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the signal. Each frequency in cutoff
must be between 0 and fs/2. Default is 2.

	Returns:

	taps – The filter coefficients of the FIR filter, as a 1-D array of length
numtaps.

	Return type:

	ndarray

See also

scipy.signal.firwin2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin2.html#scipy.signal.firwin2], firls, firwin, minimum_phase, remez

Notes

From the given set of frequencies and gains, the desired response is
constructed in the frequency domain. The inverse FFT is applied to the
desired response to create the associated convolution kernel, and the
first numtaps coefficients of this kernel, scaled by window, are
returned.
The FIR filter will have linear phase. The type of filter is determined by
the value of ‘numtaps` and antisymmetric flag.
There are four possible combinations:

	odd numtaps, antisymmetric is False, type I filter is produced

	even numtaps, antisymmetric is False, type II filter is produced

	odd numtaps, antisymmetric is True, type III filter is produced

	even numtaps, antisymmetric is True, type IV filter is produced

Magnitude response of all but type I filters are subjects to following
constraints:

	type II – zero at the Nyquist frequency

	type III – zero at zero and Nyquist frequencies

	type IV – zero at zero frequency

cupyx.scipy.signal.firls

	
cupyx.scipy.signal.firls(numtaps, bands, desired, weight=None, fs=2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L604]

	FIR filter design using least-squares error minimization.

Calculate the filter coefficients for the linear-phase finite
impulse response (FIR) filter which has the best approximation
to the desired frequency response described by bands and
desired in the least squares sense (i.e., the integral of the
weighted mean-squared error within the specified bands is
minimized).

	Parameters:

	
	numtaps (int [https://docs.python.org/3/library/functions.html#int]) – The number of taps in the FIR filter. numtaps must be odd.

	bands (array_like) – A monotonic nondecreasing sequence containing the band edges in
Hz. All elements must be non-negative and less than or equal to
the Nyquist frequency given by fs/2. The bands are specified as
frequency pairs, thus, if using a 1D array, its length must be
even, e.g., cupy.array([0, 1, 2, 3, 4, 5]). Alternatively, the
bands can be specified as an nx2 sized 2D array, where n is the
number of bands, e.g, cupy.array([[0, 1], [2, 3], [4, 5]]).
All elements of bands must be monotonically nondecreasing, have
width > 0, and must not overlap. (This is not checked by the routine).

	desired (array_like) – A sequence the same size as bands containing the desired gain
at the start and end point of each band.
All elements must be non-negative (this is not checked by the routine).

	weight (array_like, optional) – A relative weighting to give to each band region when solving
the least squares problem. weight has to be half the size of
bands.
All elements must be non-negative (this is not checked by the routine).

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the signal. Each frequency in bands
must be between 0 and fs/2 (inclusive). Default is 2.

	Returns:

	coeffs – Coefficients of the optimal (in a least squares sense) FIR filter.

	Return type:

	ndarray

See also

firwin, firwin2, minimum_phase, remez, scipy.signal.firls [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firls.html#scipy.signal.firls]

cupyx.scipy.signal.minimum_phase

	
cupyx.scipy.signal.minimum_phase(h, method='homomorphic', n_fft=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L786]

	Convert a linear-phase FIR filter to minimum phase

	Parameters:

	
	h (array) – Linear-phase FIR filter coefficients.

	method ({'hilbert', 'homomorphic'}) – The method to use:

	’homomorphic’ (default)
	This method [4] [5] works best with filters with an
odd number of taps, and the resulting minimum phase filter
will have a magnitude response that approximates the square
root of the original filter’s magnitude response.

	’hilbert’
	This method [1] is designed to be used with equiripple
filters (e.g., from remez) with unity or zero gain
regions.

	n_fft (int [https://docs.python.org/3/library/functions.html#int]) – The number of points to use for the FFT. Should be at least a
few times larger than the signal length (see Notes).

	Returns:

	h_minimum – The minimum-phase version of the filter, with length
(length(h) + 1) // 2.

	Return type:

	array

See also

scipy.signal.minimum_phase [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.minimum_phase.html#scipy.signal.minimum_phase]

Notes

Both the Hilbert [1] or homomorphic [4] [5] methods require selection
of an FFT length to estimate the complex cepstrum of the filter.

In the case of the Hilbert method, the deviation from the ideal
spectrum epsilon is related to the number of stopband zeros
n_stop and FFT length n_fft as:

epsilon = 2. * n_stop / n_fft

For example, with 100 stopband zeros and a FFT length of 2048,
epsilon = 0.0976. If we conservatively assume that the number of
stopband zeros is one less than the filter length, we can take the FFT
length to be the next power of 2 that satisfies epsilon=0.01 as:

n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))

This gives reasonable results for both the Hilbert and homomorphic
methods, and gives the value used when n_fft=None.

Alternative implementations exist for creating minimum-phase filters,
including zero inversion [2] and spectral factorization [3] [4] [5].
For more information, see:

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters

References

[1]
(1,2)
N. Damera-Venkata and B. L. Evans, “Optimal design of real and
complex minimum phase digital FIR filters,” Acoustics, Speech,
and Signal Processing, 1999. Proceedings., 1999 IEEE International
Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3.
DOI:10.1109/ICASSP.1999.756179

[2]
X. Chen and T. W. Parks, “Design of optimal minimum phase FIR
filters by direct factorization,” Signal Processing,
vol. 10, no. 4, pp. 369-383, Jun. 1986.

[3]
T. Saramaki, “Finite Impulse Response Filter Design,” in
Handbook for Digital Signal Processing, chapter 4,
New York: Wiley-Interscience, 1993.

[4]
(1,2,3)
J. S. Lim, Advanced Topics in Signal Processing.
Englewood Cliffs, N.J.: Prentice Hall, 1988.

[5]
(1,2,3)
A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
“Discrete-Time Signal Processing,” 2nd edition.
Upper Saddle River, N.J.: Prentice Hall, 1999.

cupyx.scipy.signal.savgol_coeffs

	
cupyx.scipy.signal.savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None, use='conv')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_savitzky_golay.py#L31]

	Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

	Parameters:

	
	window_length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the filter window (i.e., the number of coefficients).

	polyorder (int [https://docs.python.org/3/library/functions.html#int]) – The order of the polynomial used to fit the samples.
polyorder must be less than window_length.

	deriv (int [https://docs.python.org/3/library/functions.html#int], optional) – The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.

	delta (float [https://docs.python.org/3/library/functions.html#float], optional) – The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0.

	pos (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – If pos is not None, it specifies evaluation position within the
window. The default is the middle of the window.

	use (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Either ‘conv’ or ‘dot’. This argument chooses the order of the
coefficients. The default is ‘conv’, which means that the
coefficients are ordered to be used in a convolution. With
use=’dot’, the order is reversed, so the filter is applied by
dotting the coefficients with the data set.

	Returns:

	coeffs – The filter coefficients.

	Return type:

	1-D ndarray

See also

scipy.signal.savgol_coeffs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs], savgol_filter

References

A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
pp 1627-1639.
Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
differentiation filter for even number data. Signal Process.
85, 7 (July 2005), 1429-1434.

Examples

>>> import numpy as np
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
 -2.00000000e-01])

Note that use=’dot’ simply reverses the coefficients.

>>> savgol_coeffs(5, 2, pos=3)
array([0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
array([0.45, -0.85, -0.65, 1.05])

x contains data from the parabola x = t**2, sampled at
t = -1, 0, 1, 2, 3. c holds the coefficients that will compute the
derivative at the last position. When dotted with x the result should
be 6.

>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0

cupyx.scipy.signal.gammatone

	
cupyx.scipy.signal.gammatone(freq, ftype, order=None, numtaps=None, fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L699]

	Gammatone filter design.

This function computes the coefficients of an FIR or IIR gammatone
digital filter [1].

	Parameters:

	
	freq (float [https://docs.python.org/3/library/functions.html#float]) – Center frequency of the filter (expressed in the same units
as fs).

	ftype ({'fir', 'iir'}) – The type of filter the function generates. If ‘fir’, the function
will generate an Nth order FIR gammatone filter. If ‘iir’, the
function will generate an 8th order digital IIR filter, modeled as
as 4th order gammatone filter.

	order (int [https://docs.python.org/3/library/functions.html#int], optional) – The order of the filter. Only used when ftype='fir'.
Default is 4 to model the human auditory system. Must be between
0 and 24.

	numtaps (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the filter. Only used when ftype='fir'.
Default is fs*0.015 if fs is greater than 1000,
15 if fs is less than or equal to 1000.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the signal. freq must be between
0 and fs/2. Default is 2.

	Returns:

	b, a – Numerator (b) and denominator (a) polynomials of the filter.

	Return type:

	ndarray, ndarray

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If freq is less than or equal to 0 or greater than or equal to
 fs/2, if ftype is not ‘fir’ or ‘iir’, if order is less than
 or equal to 0 or greater than 24 when ftype='fir'

See also

firwin, iirfilter

References

[1]
Slaney, Malcolm, “An Efficient Implementation of the
Patterson-Holdsworth Auditory Filter Bank”, Apple Computer
Technical Report 35, 1993, pp.3-8, 34-39.

cupyx.scipy.signal.group_delay

	
cupyx.scipy.signal.group_delay(system, w=512, whole=False, fs=6.283185307179586)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_filter_design.py#L240]

	Compute the group delay of a digital filter.

The group delay measures by how many samples amplitude envelopes of
various spectral components of a signal are delayed by a filter.
It is formally defined as the derivative of continuous (unwrapped) phase:

 d jw
D(w) = - -- arg H(e)
 dw

	Parameters:

	
	system (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of array_like (b, a)) – Numerator and denominator coefficients of a filter transfer function.

	w ({None, int [https://docs.python.org/3/library/functions.html#int], array_like}, optional) – If a single integer, then compute at that many frequencies (default is
N=512).

If an array_like, compute the delay at the frequencies given. These
are in the same units as fs.

	whole (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, frequencies are computed from 0 to the Nyquist frequency,
fs/2 (upper-half of unit-circle). If whole is True, compute
frequencies from 0 to fs. Ignored if w is array_like.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

	Returns:

	
	w (ndarray) – The frequencies at which group delay was computed, in the same units
as fs. By default, w is normalized to the range [0, pi)
(radians/sample).

	gd (ndarray) – The group delay.

See also

	freqz
	Frequency response of a digital filter

Notes

The similar function in MATLAB is called grpdelay.

If the transfer function \(H(z)\) has zeros or poles on the unit
circle, the group delay at corresponding frequencies is undefined.
When such a case arises the warning is raised and the group delay
is set to 0 at those frequencies.

For the details of numerical computation of the group delay refer to [1].

References

[1]
Richard G. Lyons, “Understanding Digital Signal Processing,
3rd edition”, p. 830.

cupyx.scipy.signal.iirdesign

	
cupyx.scipy.signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L518]

	Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains, construct an analog or
digital IIR filter of minimum order for a given basic type. Return the
output in numerator, denominator (‘ba’), pole-zero (‘zpk’) or second order
sections (‘sos’) form.

	Parameters:

	
	wp (float [https://docs.python.org/3/library/functions.html#float] or array like, shape (2,)) – Passband and stopband edge frequencies. Possible values are scalars
(for lowpass and highpass filters) or ranges (for bandpass and bandstop
filters).
For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s). Note, that for bandpass and bandstop filters passband
must lie strictly inside stopband or vice versa.

	ws (float [https://docs.python.org/3/library/functions.html#float] or array like, shape (2,)) – Passband and stopband edge frequencies. Possible values are scalars
(for lowpass and highpass filters) or ranges (for bandpass and bandstop
filters).
For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s). Note, that for bandpass and bandstop filters passband
must lie strictly inside stopband or vice versa.

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – The maximum loss in the passband (dB).

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation in the stopband (dB).

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	ftype (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The type of IIR filter to design:

	Butterworth : ‘butter’

	Chebyshev I : ‘cheby1’

	Chebyshev II : ‘cheby2’

	Cauer/elliptic: ‘ellip’

	output ({'ba', 'zpk', 'sos'}, optional) – Filter form of the output:

	second-order sections (recommended): ‘sos’

	numerator/denominator (default) : ‘ba’

	pole-zero : ‘zpk’

In general the second-order sections (‘sos’) form is
recommended because inferring the coefficients for the
numerator/denominator form (‘ba’) suffers from numerical
instabilities. For reasons of backward compatibility the default
form is the numerator/denominator form (‘ba’), where the ‘b’
and the ‘a’ in ‘ba’ refer to the commonly used names of the
coefficients used.

Note: Using the second-order sections form (‘sos’) is sometimes
associated with additional computational costs: for
data-intense use cases it is therefore recommended to also
investigate the numerator/denominator form (‘ba’).

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

New in version 1.2.0.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

scipy.signal.iirdesign [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign]

	butter
	Filter design using order and critical points

cheby1, cheby2, ellip, bessel

	buttord
	Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord, ellipord

	iirfilter
	General filter design using order and critical frequencies

cupyx.scipy.signal.iirfilter

	
cupyx.scipy.signal.iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L23]

	IIR digital and analog filter design given order and critical points.

Design an Nth-order digital or analog filter and return the filter
coefficients.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The order of the filter.

	Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies.

For digital filters, Wn are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (Wn is thus in
half-cycles / sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

When Wn is a length-2 sequence, Wn[0] must be less than Wn[1].

	rp (float [https://docs.python.org/3/library/functions.html#float], optional) – For Chebyshev and elliptic filters, provides the maximum ripple
in the passband. (dB)

	rs (float [https://docs.python.org/3/library/functions.html#float], optional) – For Chebyshev and elliptic filters, provides the minimum attenuation
in the stop band. (dB)

	btype ({'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional) – The type of filter. Default is ‘bandpass’.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	ftype (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The type of IIR filter to design:

	Butterworth : ‘butter’

	Chebyshev I : ‘cheby1’

	Chebyshev II : ‘cheby2’

	Cauer/elliptic: ‘ellip’

	Bessel/Thomson: ‘bessel’

	output ({'ba', 'zpk', 'sos'}, optional) – Filter form of the output:

	second-order sections (recommended): ‘sos’

	numerator/denominator (default) : ‘ba’

	pole-zero : ‘zpk’

In general the second-order sections (‘sos’) form is
recommended because inferring the coefficients for the
numerator/denominator form (‘ba’) suffers from numerical
instabilities. For reasons of backward compatibility the default
form is the numerator/denominator form (‘ba’), where the ‘b’
and the ‘a’ in ‘ba’ refer to the commonly used names of the
coefficients used.

Note: Using the second-order sections form (‘sos’) is sometimes
associated with additional computational costs: for
data-intense use cases it is therefore recommended to also
investigate the numerator/denominator form (‘ba’).

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

	butter
	Filter design using order and critical points

cheby1, cheby2, ellip, bessel

	buttord
	Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord, ellipord

	iirdesign
	General filter design using passband and stopband spec

scipy.signal.iirfilter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter]

cupyx.scipy.signal.kaiser_atten

	
cupyx.scipy.signal.kaiser_atten(numtaps, width)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L49]

	Compute the attenuation of a Kaiser FIR filter.

Given the number of taps N and the transition width width, compute the
attenuation a in dB, given by Kaiser’s formula:

a = 2.285 * (N - 1) * pi * width + 7.95

	Parameters:

	
	numtaps (int [https://docs.python.org/3/library/functions.html#int]) – The number of taps in the FIR filter.

	width (float [https://docs.python.org/3/library/functions.html#float]) – The desired width of the transition region between passband and
stopband (or, in general, at any discontinuity) for the filter,
expressed as a fraction of the Nyquist frequency.

	Returns:

	a – The attenuation of the ripple, in dB.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

See also

scipy.signal.kaiser_atten [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten]

cupyx.scipy.signal.kaiser_beta

	
cupyx.scipy.signal.kaiser_beta(a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L17]

	Compute the Kaiser parameter beta, given the attenuation a.

	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – The desired attenuation in the stopband and maximum ripple in
the passband, in dB. This should be a positive number.

	Returns:

	beta – The beta parameter to be used in the formula for a Kaiser window.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

See also

scipy.signal.kaiser_beta [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta]

cupyx.scipy.signal.kaiserord

	
cupyx.scipy.signal.kaiserord(ripple, width)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_fir_filter_design.py#L79]

	Determine the filter window parameters for the Kaiser window method.

The parameters returned by this function are generally used to create
a finite impulse response filter using the window method, with either
firwin or firwin2.

	Parameters:

	
	ripple (float [https://docs.python.org/3/library/functions.html#float]) – Upper bound for the deviation (in dB) of the magnitude of the
filter’s frequency response from that of the desired filter (not
including frequencies in any transition intervals). That is, if w
is the frequency expressed as a fraction of the Nyquist frequency,
A(w) is the actual frequency response of the filter and D(w) is the
desired frequency response, the design requirement is that:

abs(A(w) - D(w))) < 10**(-ripple/20)

for 0 <= w <= 1 and w not in a transition interval.

	width (float [https://docs.python.org/3/library/functions.html#float]) – Width of transition region, normalized so that 1 corresponds to pi
radians / sample. That is, the frequency is expressed as a fraction
of the Nyquist frequency.

	Returns:

	
	numtaps (int) – The length of the Kaiser window.

	beta (float) – The beta parameter for the Kaiser window.

See also

scipy.signal.kaiserord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord]

cupyx.scipy.signal.unique_roots

	
cupyx.scipy.signal.unique_roots(p, tol=0.001, rtype='min')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_polyutils.py#L68]

	Determine unique roots and their multiplicities from a list of roots.

	Parameters:

	
	p (array_like) – The list of roots.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. Refer to Notes about
the details on roots grouping.

	rtype ({'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}, optional) – How to determine the returned root if multiple roots are within
tol of each other.

	’max’, ‘maximum’: pick the maximum of those roots

	’min’, ‘minimum’: pick the minimum of those roots

	’avg’, ‘mean’: take the average of those roots

When finding minimum or maximum among complex roots they are compared
first by the real part and then by the imaginary part.

	Returns:

	
	unique (ndarray) – The list of unique roots.

	multiplicity (ndarray) – The multiplicity of each root.

See also

scipy.signal.unique_roots [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots]

Notes

If we have 3 roots a, b and c, such that a is close to
b and b is close to c (distance is less than tol), then it
doesn’t necessarily mean that a is close to c. It means that roots
grouping is not unique. In this function we use “greedy” grouping going
through the roots in the order they are given in the input p.

This utility function is not specific to roots but can be used for any
sequence of values for which uniqueness and multiplicity has to be
determined. For a more general routine, see numpy.unique.

cupyx.scipy.signal.residue

	
cupyx.scipy.signal.residue(b, a, tol=0.001, rtype='avg')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_polyutils.py#L353]

	Compute partial-fraction expansion of b(s) / a(s).

If M is the degree of numerator b and N the degree of denominator
a:

 b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = --
 a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

then the partial-fraction expansion H(s) is defined as:

 r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
 (s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s)
has terms like:

 r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z,
such as analog filters or digital filters in controls engineering. For
negative powers of z (typical for digital filters in DSP), use residuez.

See Notes for details about the algorithm.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots
for further details.

	rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a group of identical roots.
Default is ‘avg’. See unique_roots for further details.

	Returns:

	
	r (ndarray) – Residues corresponding to the poles. For repeated poles, the residues
are ordered to correspond to ascending by power fractions.

	p (ndarray) – Poles ordered by magnitude in ascending order.

	k (ndarray) – Coefficients of the direct polynomial term.

Warning

This function may synchronize the device.

See also

scipy.signal.residue [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residue.html#scipy.signal.residue], invres, residuez, numpy.poly [https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly], unique_roots

Notes

The “deflation through subtraction” algorithm is used for
computations — method 6 in [1].

The form of partial fraction expansion depends on poles multiplicity in
the exact mathematical sense. However there is no way to exactly
determine multiplicity of roots of a polynomial in numerical computing.
Thus you should think of the result of residue with given tol as
partial fraction expansion computed for the denominator composed of the
computed poles with empirically determined multiplicity. The choice of
tol can drastically change the result if there are close poles.

References

[1]
J. F. Mahoney, B. D. Sivazlian, “Partial fractions expansion: a
review of computational methodology and efficiency”, Journal of
Computational and Applied Mathematics, Vol. 9, 1983.

cupyx.scipy.signal.residuez

	
cupyx.scipy.signal.residuez(b, a, tol=0.001, rtype='avg')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_polyutils.py#L471]

	Compute partial-fraction expansion of b(z) / a(z).

If M is the degree of numerator b and N the degree of denominator
a:

 b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = --
 a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

 r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
 (1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like:

 r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z,
such as digital filters in DSP. For positive powers, use residue.

See Notes of residue for details about the algorithm.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots
for further details.

	rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a group of identical roots.
Default is ‘avg’. See unique_roots for further details.

	Returns:

	
	r (ndarray) – Residues corresponding to the poles. For repeated poles, the residues
are ordered to correspond to ascending by power fractions.

	p (ndarray) – Poles ordered by magnitude in ascending order.

	k (ndarray) – Coefficients of the direct polynomial term.

Warning

This function may synchronize the device.

See also

scipy.signal.residuez [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residuez.html#scipy.signal.residuez], invresz, residue, unique_roots

cupyx.scipy.signal.invres

	
cupyx.scipy.signal.invres(r, p, k, tol=0.001, rtype='avg')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_polyutils.py#L202]

	Compute b(s) and a(s) from partial fraction expansion.

If M is the degree of numerator b and N the degree of denominator
a:

 b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = --
 a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

then the partial-fraction expansion H(s) is defined as:

 r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
 (s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s)
has terms like:

 r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z,
such as analog filters or digital filters in controls engineering. For
negative powers of z (typical for digital filters in DSP), use invresz.

	Parameters:

	
	r (array_like) – Residues corresponding to the poles. For repeated poles, the residues
must be ordered to correspond to ascending by power fractions.

	p (array_like) – Poles. Equal poles must be adjacent.

	k (array_like) – Coefficients of the direct polynomial term.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots
for further details.

	rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a group of identical roots.
Default is ‘avg’. See unique_roots for further details.

	Returns:

	
	b (ndarray) – Numerator polynomial coefficients.

	a (ndarray) – Denominator polynomial coefficients.

See also

scipy.signal.invres [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invres.html#scipy.signal.invres], residue, invresz, unique_roots

cupyx.scipy.signal.invresz

	
cupyx.scipy.signal.invresz(r, p, k, tol=0.001, rtype='avg')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_polyutils.py#L278]

	Compute b(z) and a(z) from partial fraction expansion.

If M is the degree of numerator b and N the degree of denominator
a:

 b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = --
 a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

 r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
 (1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like:

 r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z,
such as digital filters in DSP. For positive powers, use invres.

	Parameters:

	
	r (array_like) – Residues corresponding to the poles. For repeated poles, the residues
must be ordered to correspond to ascending by power fractions.

	p (array_like) – Poles. Equal poles must be adjacent.

	k (array_like) – Coefficients of the direct polynomial term.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots
for further details.

	rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a group of identical roots.
Default is ‘avg’. See unique_roots for further details.

	Returns:

	
	b (ndarray) – Numerator polynomial coefficients.

	a (ndarray) – Denominator polynomial coefficients.

See also

scipy.signal.invresz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invresz.html#scipy.signal.invresz], residuez, unique_roots, invres

cupyx.scipy.signal.BadCoefficients

	
exception cupyx.scipy.signal.BadCoefficients[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L18]

	Warning about badly conditioned filter coefficients

cupyx.scipy.signal.butter

	
cupyx.scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L220]

	Butterworth digital and analog filter design.

Design an Nth-order digital or analog Butterworth filter and return
the filter coefficients.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The order of the filter. For ‘bandpass’ and ‘bandstop’ filters,
the resulting order of the final second-order sections (‘sos’)
matrix is 2*N, with N the number of biquad sections
of the desired system.

	Wn (array_like) – The critical frequency or frequencies. For lowpass and highpass
filters, Wn is a scalar; for bandpass and bandstop filters,
Wn is a length-2 sequence.

For a Butterworth filter, this is the point at which the gain
drops to 1/sqrt(2) that of the passband (the “-3 dB point”).

For digital filters, if fs is not specified, Wn units are
normalized from 0 to 1, where 1 is the Nyquist frequency (Wn is
thus in half cycles / sample and defined as 2*critical frequencies
/ fs). If fs is specified, Wn is in the same units as fs.

For analog filters, Wn is an angular frequency (e.g. rad/s).

	btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of filter. Default is ‘lowpass’.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’ for backwards
compatibility, but ‘sos’ should be used for general-purpose filtering.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

buttord, buttap, iirfilter, scipy.signal.butter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter]

Notes

The Butterworth filter has maximally flat frequency response in the
passband.

If the transfer function form [b, a] is requested, numerical
problems can occur since the conversion between roots and
the polynomial coefficients is a numerically sensitive operation,
even for N >= 4. It is recommended to work with the SOS
representation.

Warning

Designing high-order and narrowband IIR filters in TF form can
result in unstable or incorrect filtering due to floating point
numerical precision issues. Consider inspecting output filter
characteristics freqz or designing the filters with second-order
sections via output='sos'.

cupyx.scipy.signal.buttord

	
cupyx.scipy.signal.buttord(wp, ws, gpass, gstop, analog=False, fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L2033]

	Butterworth filter order selection.

Return the order of the lowest order digital or analog Butterworth filter
that loses no more than gpass dB in the passband and has at least
gstop dB attenuation in the stopband.

	Parameters:

	
	wp (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	ws (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – The maximum loss in the passband (dB).

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation in the stopband (dB).

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

New in version 1.2.0.

	Returns:

	
	ord (int) – The lowest order for a Butterworth filter which meets specs.

	wn (ndarray or float) – The Butterworth natural frequency (i.e. the “3dB frequency”). Should
be used with butter to give filter results. If fs is specified,
this is in the same units, and fs must also be passed to butter.

See also

scipy.signal.buttord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttord.html#scipy.signal.buttord]

	butter
	Filter design using order and critical points

	cheb1ord
	Find order and critical points from passband and stopband spec

cheb2ord, ellipord

	iirfilter
	General filter design using order and critical frequencies

	iirdesign
	General filter design using passband and stopband spec

cupyx.scipy.signal.ellip

	
cupyx.scipy.signal.ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L440]

	Elliptic (Cauer) digital and analog filter design.

Design an Nth-order digital or analog elliptic filter and return
the filter coefficients.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The order of the filter.

	rp (float [https://docs.python.org/3/library/functions.html#float]) – The maximum ripple allowed below unity gain in the passband.
Specified in decibels, as a positive number.

	rs (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation required in the stop band.
Specified in decibels, as a positive number.

	Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies.
For elliptic filters, this is the point in the transition band at
which the gain first drops below -rp.

For digital filters, Wn are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (Wn is thus in
half-cycles / sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

	btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of filter. Default is ‘lowpass’.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’ for backwards
compatibility, but ‘sos’ should be used for general-purpose filtering.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

ellipord, ellipap, iirfilter, scipy.signal.ellip [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html#scipy.signal.ellip]

Notes

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes
the rate of transition between the frequency response’s passband and
stopband, at the expense of ripple in both, and increased ringing in the
step response.

As rp approaches 0, the elliptical filter becomes a Chebyshev
type II filter (cheby2). As rs approaches 0, it becomes a Chebyshev
type I filter (cheby1). As both approach 0, it becomes a Butterworth
filter (butter).

The equiripple passband has N maxima or minima (for example, a
5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is
unity for odd-order filters, or -rp dB for even-order filters.

cupyx.scipy.signal.ellipord

	
cupyx.scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False, fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L2298]

	Elliptic (Cauer) filter order selection.

Return the order of the lowest order digital or analog elliptic filter
that loses no more than gpass dB in the passband and has at least
gstop dB attenuation in the stopband.

	Parameters:

	
	wp (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	ws (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – The maximum loss in the passband (dB).

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation in the stopband (dB).

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	ord (int) – The lowest order for an Elliptic (Cauer) filter that meets specs.

	wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
ellip to give filter results. If fs is specified,
this is in the same units, and fs must also be passed to ellip.

See also

scipy.signal.ellipord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipord.html#scipy.signal.ellipord]

	ellip
	Filter design using order and critical points

	buttord
	Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord

	iirfilter
	General filter design using order and critical frequencies

	iirdesign
	General filter design using passband and stopband spec

cupyx.scipy.signal.cheby1

	
cupyx.scipy.signal.cheby1(N, rp, Wn, btype='low', analog=False, output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L301]

	Chebyshev type I digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type I filter and
return the filter coefficients.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The order of the filter.

	rp (float [https://docs.python.org/3/library/functions.html#float]) – The maximum ripple allowed below unity gain in the passband.
Specified in decibels, as a positive number.

	Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies.
For Type I filters, this is the point in the transition band at which
the gain first drops below -rp.

For digital filters, Wn are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (Wn is thus in
half-cycles / sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

	btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of filter. Default is ‘lowpass’.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’ for backwards
compatibility, but ‘sos’ should be used for general-purpose filtering.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

cheb1ord, cheb1ap, iirfilter, scipy.signal.cheby1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby1.html#scipy.signal.cheby1]

Notes

The Chebyshev type I filter maximizes the rate of cutoff between the
frequency response’s passband and stopband, at the expense of ripple in
the passband and increased ringing in the step response.

Type I filters roll off faster than Type II (cheby2), but Type II
filters do not have any ripple in the passband.

The equiripple passband has N maxima or minima (for example, a
5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is
unity for odd-order filters, or -rp dB for even-order filters.

cupyx.scipy.signal.cheb1ord

	
cupyx.scipy.signal.cheb1ord(wp, ws, gpass, gstop, analog=False, fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L2136]

	Chebyshev type I filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type I
filter that loses no more than gpass dB in the passband and has at
least gstop dB attenuation in the stopband.

	Parameters:

	
	wp (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	ws (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – The maximum loss in the passband (dB).

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation in the stopband (dB).

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	ord (int) – The lowest order for a Chebyshev type I filter that meets specs.

	wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby1 to give filter results. If fs is specified,
this is in the same units, and fs must also be passed to cheby1.

See also

scipy.signal.cheb1ord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord]

	cheby1
	Filter design using order and critical points

	buttord
	Find order and critical points from passband and stopband spec

cheb2ord, ellipord

	iirfilter
	General filter design using order and critical frequencies

	iirdesign
	General filter design using passband and stopband spec

cupyx.scipy.signal.cheby2

	
cupyx.scipy.signal.cheby2(N, rs, Wn, btype='low', analog=False, output='ba', fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L373]

	Chebyshev type II digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type II filter and
return the filter coefficients.

	Parameters:

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – The order of the filter.

	rs (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation required in the stop band.
Specified in decibels, as a positive number.

	Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies.
For Type II filters, this is the point in the transition band at which
the gain first reaches -rs.

For digital filters, Wn are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (Wn is thus in
half-cycles / sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

	btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of filter. Default is ‘lowpass’.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’ for backwards
compatibility, but ‘sos’ should be used for general-purpose filtering.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.
Only returned if output='ba'.

	z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

	sos (ndarray) – Second-order sections representation of the IIR filter.
Only returned if output='sos'.

See also

cheb2ord, cheb2ap, iirfilter, scipy.signal.cheby2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby2.html#scipy.signal.cheby2]

Notes

The Chebyshev type II filter maximizes the rate of cutoff between the
frequency response’s passband and stopband, at the expense of ripple in
the stopband and increased ringing in the step response.

Type II filters do not roll off as fast as Type I (cheby1).

cupyx.scipy.signal.cheb2ord

	
cupyx.scipy.signal.cheb2ord(wp, ws, gpass, gstop, analog=False, fs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L2206]

	Chebyshev type II filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type II
filter that loses no more than gpass dB in the passband and has at least
gstop dB attenuation in the stopband.

	Parameters:

	
	wp (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	ws (float [https://docs.python.org/3/library/functions.html#float]) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default,
fs is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

	Lowpass: wp = 0.2, ws = 0.3

	Highpass: wp = 0.3, ws = 0.2

	Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

	Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies
(e.g., rad/s).

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – The maximum loss in the passband (dB).

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – The minimum attenuation in the stopband (dB).

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True, return an analog filter, otherwise a digital filter is
returned.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	
	ord (int) – The lowest order for a Chebyshev type II filter that meets specs.

	wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby2 to give filter results. If fs is specified,
this is in the same units, and fs must also be passed to cheby2.

See also

scipy.signal.cheb2ord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord]

	cheby2
	Filter design using order and critical points

	buttord
	Find order and critical points from passband and stopband spec

cheb1ord, ellipord

	iirfilter
	General filter design using order and critical frequencies

	iirdesign
	General filter design using passband and stopband spec

cupyx.scipy.signal.iircomb

	
cupyx.scipy.signal.iircomb(w0, Q, ftype='notch', fs=2.0, *, pass_zero=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L654]

	Design IIR notching or peaking digital comb filter.

A notching comb filter consists of regularly-spaced band-stop filters with
a narrow bandwidth (high quality factor). Each rejects a narrow frequency
band and leaves the rest of the spectrum little changed.

A peaking comb filter consists of regularly-spaced band-pass filters with
a narrow bandwidth (high quality factor). Each rejects components outside
a narrow frequency band.

	Parameters:

	
	w0 (float [https://docs.python.org/3/library/functions.html#float]) – The fundamental frequency of the comb filter (the spacing between its
peaks). This must evenly divide the sampling frequency. If fs is
specified, this is in the same units as fs. By default, it is
a normalized scalar that must satisfy 0 < w0 < 1, with
w0 = 1 corresponding to half of the sampling frequency.

	Q (float [https://docs.python.org/3/library/functions.html#float]) – Quality factor. Dimensionless parameter that characterizes
notch filter -3 dB bandwidth bw relative to its center
frequency, Q = w0/bw.

	ftype ({'notch', 'peak'}) – The type of comb filter generated by the function. If ‘notch’, then
the Q factor applies to the notches. If ‘peak’, then the Q factor
applies to the peaks. Default is ‘notch’.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the signal. Default is 2.0.

	pass_zero (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False (default), the notches (nulls) of the filter are centered on
frequencies [0, w0, 2*w0, …], and the peaks are centered on the
midpoints [w0/2, 3*w0/2, 5*w0/2, …]. If True, the peaks are centered
on [0, w0, 2*w0, …] (passing zero frequency) and vice versa.

	Returns:

	b, a – Numerator (b) and denominator (a) polynomials
of the IIR filter.

	Return type:

	ndarray, ndarray

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If w0 is less than or equal to 0 or greater than or equal to
 fs/2, if fs is not divisible by w0, if ftype
 is not ‘notch’ or ‘peak’

See also

scipy.signal.iircomb [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iircomb.html#scipy.signal.iircomb], iirnotch, iirpeak

Notes

The TF implementation of the
comb filter is numerically stable even at higher orders due to the
use of a single repeated pole, which won’t suffer from precision loss.

References

	Sophocles J. Orfanidis, “Introduction To Signal Processing”,
	Prentice-Hall, 1996, ch. 11, “Digital Filter Design”

cupyx.scipy.signal.iirnotch

	
cupyx.scipy.signal.iirnotch(w0, Q, fs=2.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L794]

	Design second-order IIR notch digital filter.

A notch filter is a band-stop filter with a narrow bandwidth
(high quality factor). It rejects a narrow frequency band and
leaves the rest of the spectrum little changed.

	Parameters:

	
	w0 (float [https://docs.python.org/3/library/functions.html#float]) – Frequency to remove from a signal. If fs is specified, this is in
the same units as fs. By default, it is a normalized scalar that must
satisfy 0 < w0 < 1, with w0 = 1 corresponding to half of the
sampling frequency.

	Q (float [https://docs.python.org/3/library/functions.html#float]) – Quality factor. Dimensionless parameter that characterizes
notch filter -3 dB bandwidth bw relative to its center
frequency, Q = w0/bw.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	b, a – Numerator (b) and denominator (a) polynomials
of the IIR filter.

	Return type:

	ndarray, ndarray

See also

scipy.signal.iirnotch [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html#scipy.signal.iirnotch]

References

	Sophocles J. Orfanidis, “Introduction To Signal Processing”,
	Prentice-Hall, 1996

cupyx.scipy.signal.iirpeak

	
cupyx.scipy.signal.iirpeak(w0, Q, fs=2.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_design.py#L835]

	Design second-order IIR peak (resonant) digital filter.

A peak filter is a band-pass filter with a narrow bandwidth
(high quality factor). It rejects components outside a narrow
frequency band.

	Parameters:

	
	w0 (float [https://docs.python.org/3/library/functions.html#float]) – Frequency to be retained in a signal. If fs is specified, this is in
the same units as fs. By default, it is a normalized scalar that must
satisfy 0 < w0 < 1, with w0 = 1 corresponding to half of the
sampling frequency.

	Q (float [https://docs.python.org/3/library/functions.html#float]) – Quality factor. Dimensionless parameter that characterizes
peak filter -3 dB bandwidth bw relative to its center
frequency, Q = w0/bw.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency of the digital system.

	Returns:

	b, a – Numerator (b) and denominator (a) polynomials
of the IIR filter.

	Return type:

	ndarray, ndarray

See also

scpy.signal.iirpeak

References

	Sophocles J. Orfanidis, “Introduction To Signal Processing”,
	Prentice-Hall, 1996

cupyx.scipy.signal.abcd_normalize

	
cupyx.scipy.signal.abcd_normalize(A=None, B=None, C=None, D=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_lti_conversion.py#L38]

	Check state-space matrices and ensure they are 2-D.

If enough information on the system is provided, that is, enough
properly-shaped arrays are passed to the function, the missing ones
are built from this information, ensuring the correct number of
rows and columns. Otherwise a ValueError is raised.

	Parameters:

	
	A (array_like, optional) – State-space matrices. All of them are None (missing) by default.
See ss2tf for format.

	B (array_like, optional) – State-space matrices. All of them are None (missing) by default.
See ss2tf for format.

	C (array_like, optional) – State-space matrices. All of them are None (missing) by default.
See ss2tf for format.

	D (array_like, optional) – State-space matrices. All of them are None (missing) by default.
See ss2tf for format.

	Returns:

	A, B, C, D – Properly shaped state-space matrices.

	Return type:

	array

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If not enough information on the system was provided.

cupyx.scipy.signal.band_stop_obj

	
cupyx.scipy.signal.band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1969]

	Band Stop Objective Function for order minimization.

Returns the non-integer order for an analog band stop filter.

	Parameters:

	
	wp (scalar) – Edge of passband passb.

	ind (int [https://docs.python.org/3/library/functions.html#int], {0, 1}) – Index specifying which passb edge to vary (0 or 1).

	passb (ndarray) – Two element sequence of fixed passband edges.

	stopb (ndarray) – Two element sequence of fixed stopband edges.

	gstop (float [https://docs.python.org/3/library/functions.html#float]) – Amount of attenuation in stopband in dB.

	gpass (float [https://docs.python.org/3/library/functions.html#float]) – Amount of ripple in the passband in dB.

	type ({'butter', 'cheby', 'ellip'}) – Type of filter.

	Returns:

	n – Filter order (possibly non-integer).

	Return type:

	scalar

See also

scipy.signal.band_stop_obj [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj]

cupyx.scipy.signal.buttap

	
cupyx.scipy.signal.buttap(N)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1597]

	Return (z,p,k) for analog prototype of Nth-order Butterworth filter.

The filter will have an angular (e.g., rad/s) cutoff frequency of 1.

See also

	butter
	Filter design function using this prototype

scipy.signal.buttap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttap.html#scipy.signal.buttap]

cupyx.scipy.signal.cheb1ap

	
cupyx.scipy.signal.cheb1ap(N, rp)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1618]

	Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

The returned filter prototype has rp decibels of ripple in the passband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1,
defined as the point at which the gain first drops below -rp.

See also

	cheby1
	Filter design function using this prototype

cupyx.scipy.signal.cheb2ap

	
cupyx.scipy.signal.cheb2ap(N, rs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1656]

	Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

The returned filter prototype has rs decibels of ripple in the stopband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1,
defined as the point at which the gain first reaches -rs.

See also

	cheby2
	Filter design function using this prototype

cupyx.scipy.signal.ellipap

	
cupyx.scipy.signal.ellipap(N, rp, rs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1827]

	Return (z,p,k) of Nth-order elliptic analog lowpass filter.

The filter is a normalized prototype that has rp decibels of ripple
in the passband and a stopband rs decibels down.

The filter’s angular (e.g., rad/s) cutoff frequency is normalized to 1,
defined as the point at which the gain first drops below -rp.

See also

	ellip
	Filter design function using this prototype

scipy.signal.elliap

cupyx.scipy.signal.lp2bp

	
cupyx.scipy.signal.lp2bp(b, a, wo=1.0, bw=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1012]

	Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and
bandwidth bw from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired passband center, as angular frequency (e.g., rad/s).
Defaults to no change.

	bw (float [https://docs.python.org/3/library/functions.html#float]) – Desired passband width, as angular frequency (e.g., rad/s).
Defaults to 1.

	Returns:

	
	b (array_like) – Numerator polynomial coefficients of the transformed band-pass filter.

	a (array_like) – Denominator polynomial coefficients of the transformed band-pass
filter.

See also

lp2lp, lp2hp, lp2bs, bilinear, lp2bp_zpk, scipy.signal.lp2bp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}}\]

This is the “wideband” transformation, producing a passband with
geometric (log frequency) symmetry about wo.

cupyx.scipy.signal.lp2bp_zpk

	
cupyx.scipy.signal.lp2bp_zpk(z, p, k, wo=1.0, bw=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L668]

	Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and
bandwidth bw from an analog low-pass filter prototype with unity
cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

	Parameters:

	
	z (array_like) – Zeros of the analog filter transfer function.

	p (array_like) – Poles of the analog filter transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain of the analog filter transfer function.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired passband center, as angular frequency (e.g., rad/s).
Defaults to no change.

	bw (float [https://docs.python.org/3/library/functions.html#float]) – Desired passband width, as angular frequency (e.g., rad/s).
Defaults to 1.

	Returns:

	
	z (ndarray) – Zeros of the transformed band-pass filter transfer function.

	p (ndarray) – Poles of the transformed band-pass filter transfer function.

	k (float) – System gain of the transformed band-pass filter.

See also

lp2lp_zpk, lp2hp_zpk, lp2bs_zpk, bilinear, lp2bp, scipy.signal.lp2bp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp_zpk.html#scipy.signal.lp2bp_zpk]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}}\]

This is the “wideband” transformation, producing a passband with
geometric (log frequency) symmetry about wo.

cupyx.scipy.signal.lp2bs

	
cupyx.scipy.signal.lp2bs(b, a, wo=1.0, bw=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1086]

	Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency wo and
bandwidth bw from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired stopband center, as angular frequency (e.g., rad/s).
Defaults to no change.

	bw (float [https://docs.python.org/3/library/functions.html#float]) – Desired stopband width, as angular frequency (e.g., rad/s).
Defaults to 1.

	Returns:

	
	b (array_like) – Numerator polynomial coefficients of the transformed band-stop filter.

	a (array_like) – Denominator polynomial coefficients of the transformed band-stop
filter.

See also

lp2lp, lp2hp, lp2bp, bilinear, lp2bs_zpk, scipy.signal.lp2bs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s \cdot \mathrm{BW}}{s^2 + {\omega_0}^2}\]

This is the “wideband” transformation, producing a stopband with
geometric (log frequency) symmetry about wo.

cupyx.scipy.signal.lp2bs_zpk

	
cupyx.scipy.signal.lp2bs_zpk(z, p, k, wo=1.0, bw=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L746]

	Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency wo and
stopband width bw from an analog low-pass filter prototype with unity
cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

	Parameters:

	
	z (array_like) – Zeros of the analog filter transfer function.

	p (array_like) – Poles of the analog filter transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain of the analog filter transfer function.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired stopband center, as angular frequency (e.g., rad/s).
Defaults to no change.

	bw (float [https://docs.python.org/3/library/functions.html#float]) – Desired stopband width, as angular frequency (e.g., rad/s).
Defaults to 1.

	Returns:

	
	z (ndarray) – Zeros of the transformed band-stop filter transfer function.

	p (ndarray) – Poles of the transformed band-stop filter transfer function.

	k (float) – System gain of the transformed band-stop filter.

See also

lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, bilinear, lp2bs, scipy.signal.lp2bs_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs_zpk.html#scipy.signal.lp2bs_zpk]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s \cdot \mathrm{BW}}{s^2 + {\omega_0}^2}\]

This is the “wideband” transformation, producing a stopband with
geometric (log frequency) symmetry about wo.

cupyx.scipy.signal.lp2hp

	
cupyx.scipy.signal.lp2hp(b, a, wo=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L946]

	Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency wo
from an analog low-pass filter prototype with unity cutoff frequency, in
transfer function (‘ba’) representation.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired cutoff, as angular frequency (e.g., rad/s).
Defaults to no change.

	Returns:

	
	b (array_like) – Numerator polynomial coefficients of the transformed high-pass filter.

	a (array_like) – Denominator polynomial coefficients of the transformed high-pass
filter.

See also

lp2lp, lp2bp, lp2bs, bilinear, lp2hp_zpk, scipy.signal.lp2hp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{\omega_0}{s}\]

This maintains symmetry of the lowpass and highpass responses on a
logarithmic scale.

cupyx.scipy.signal.lp2hp_zpk

	
cupyx.scipy.signal.lp2hp_zpk(z, p, k, wo=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L603]

	Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency wo
from an analog low-pass filter prototype with unity cutoff frequency,
using zeros, poles, and gain (‘zpk’) representation.

	Parameters:

	
	z (array_like) – Zeros of the analog filter transfer function.

	p (array_like) – Poles of the analog filter transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain of the analog filter transfer function.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired cutoff, as angular frequency (e.g., rad/s).
Defaults to no change.

	Returns:

	
	z (ndarray) – Zeros of the transformed high-pass filter transfer function.

	p (ndarray) – Poles of the transformed high-pass filter transfer function.

	k (float) – System gain of the transformed high-pass filter.

See also

lp2lp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear, lp2hp, scipy.signal.lp2hp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp_zpk.html#scipy.signal.lp2hp_zpk]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{\omega_0}{s}\]

This maintains symmetry of the lowpass and highpass responses on a
logarithmic scale.

cupyx.scipy.signal.lp2lp

	
cupyx.scipy.signal.lp2lp(b, a, wo=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L892]

	Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency wo
from an analog low-pass filter prototype with unity cutoff frequency, in
transfer function (‘ba’) representation.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired cutoff, as angular frequency (e.g. rad/s).
Defaults to no change.

	Returns:

	
	b (array_like) – Numerator polynomial coefficients of the transformed low-pass filter.

	a (array_like) – Denominator polynomial coefficients of the transformed low-pass filter.

See also

lp2hp, lp2bp, lp2bs, bilinear, lp2lp_zpk, scipy.signal.lp2lp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp]

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s}{\omega_0}\]

cupyx.scipy.signal.lp2lp_zpk

	
cupyx.scipy.signal.lp2lp_zpk(z, p, k, wo=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L550]

	Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency wo
from an analog low-pass filter prototype with unity cutoff frequency,
using zeros, poles, and gain (‘zpk’) representation.

	Parameters:

	
	z (array_like) – Zeros of the analog filter transfer function.

	p (array_like) – Poles of the analog filter transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain of the analog filter transfer function.

	wo (float [https://docs.python.org/3/library/functions.html#float]) – Desired cutoff, as angular frequency (e.g., rad/s).
Defaults to no change.

	Returns:

	
	z (ndarray) – Zeros of the transformed low-pass filter transfer function.

	p (ndarray) – Poles of the transformed low-pass filter transfer function.

	k (float) – System gain of the transformed low-pass filter.

See also

lp2hp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear, lp2lp, scipy.signal.lp2lp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp_zpk.html#scipy.signal.lp2lp_zpk]

cupyx.scipy.signal.normalize

	
cupyx.scipy.signal.normalize(b, a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L406]

	Normalize numerator/denominator of a continuous-time transfer function.

If values of b are too close to 0, they are removed. In that case, a
BadCoefficients warning is emitted.

	Parameters:

	
	b (array_like) – Numerator of the transfer function. Can be a 2-D array to normalize
multiple transfer functions.

	a (array_like) – Denominator of the transfer function. At most 1-D.

	Returns:

	
	num (array) – The numerator of the normalized transfer function. At least a 1-D
array. A 2-D array if the input num is a 2-D array.

	den (1-D array) – The denominator of the normalized transfer function.

Notes

Coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g., s^2 + 3s + 5 would be represented as
[1, 3, 5]).

See also

scipy.signal.normalize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.normalize.html#scipy.signal.normalize]

cupyx.scipy.signal.zpk2tf

	
cupyx.scipy.signal.zpk2tf(z, p, k)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1163]

	Return polynomial transfer function representation from zeros and poles

	Parameters:

	
	z (array_like) – Zeros of the transfer function.

	p (array_like) – Poles of the transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain.

	Returns:

	
	b (ndarray) – Numerator polynomial coefficients.

	a (ndarray) – Denominator polynomial coefficients.

See also

scipy.signal.zpk2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf]

cupyx.scipy.signal.zpk2sos

	
cupyx.scipy.signal.zpk2sos(z, p, k, pairing=None, *, analog=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L138]

	Return second-order sections from zeros, poles, and gain of a system

	Parameters:

	
	z (array_like) – Zeros of the transfer function.

	p (array_like) – Poles of the transfer function.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain.

	pairing ({None, 'nearest', 'keep_odd', 'minimal'}, optional) – The method to use to combine pairs of poles and zeros into sections.
If analog is False and pairing is None, pairing is set to ‘nearest’;
if analog is True, pairing must be ‘minimal’, and is set to that if
it is None.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, system is analog, otherwise discrete.

	Returns:

	sos – Array of second-order filter coefficients, with shape
(n_sections, 6). See sosfilt for the SOS filter format
specification.

	Return type:

	ndarray

See also

sosfilt, scipy.signal.zpk2sos [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2sos.html#scipy.signal.zpk2sos]

cupyx.scipy.signal.zpk2ss

	
cupyx.scipy.signal.zpk2ss(z, p, k)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1535]

	Zero-pole-gain representation to state-space representation

	Parameters:

	
	z (sequence) – Zeros and poles.

	p (sequence) – Zeros and poles.

	k (float [https://docs.python.org/3/library/functions.html#float]) – System gain.

	Returns:

	A, B, C, D – State space representation of the system, in controller canonical
form.

	Return type:

	ndarray

See also

scipy.signal.zpk2ss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss]

cupyx.scipy.signal.tf2zpk

	
cupyx.scipy.signal.tf2zpk(b, a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1194]

	Return zero, pole, gain (z, p, k) representation from a numerator,
denominator representation of a linear filter.

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	Returns:

	
	z (ndarray) – Zeros of the transfer function.

	p (ndarray) – Poles of the transfer function.

	k (float) – System gain.

Warning

This function may synchronize the device.

See also

scipy.signal.tf2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk]

Notes

If some values of b are too close to 0, they are removed. In that case,
a BadCoefficients warning is emitted.

The b and a arrays are interpreted as coefficients for positive,
descending powers of the transfer function variable. So the inputs
\(b = [b_0, b_1, ..., b_M]\) and \(a =[a_0, a_1, ..., a_N]\)
can represent an analog filter of the form:

\[H(s) = \frac
{b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M}
{a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N}\]

or a discrete-time filter of the form:

\[H(z) = \frac
{b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M}
{a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N}\]

This “positive powers” form is found more commonly in controls
engineering. If M and N are equal (which is true for all filters
generated by the bilinear transform), then this happens to be equivalent
to the “negative powers” discrete-time form preferred in DSP:

\[H(z) = \frac
{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}
{a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}}\]

Although this is true for common filters, remember that this is not true
in the general case. If M and N are not equal, the discrete-time
transfer function coefficients must first be converted to the “positive
powers” form before finding the poles and zeros.

cupyx.scipy.signal.tf2sos

	
cupyx.scipy.signal.tf2sos(b, a, pairing=None, *, analog=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1273]

	Return second-order sections from transfer function representation

	Parameters:

	
	b (array_like) – Numerator polynomial coefficients.

	a (array_like) – Denominator polynomial coefficients.

	pairing ({None, 'nearest', 'keep_odd', 'minimal'}, optional) – The method to use to combine pairs of poles and zeros into sections.
See zpk2sos for information and restrictions on pairing and
analog arguments.

	analog (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, system is analog, otherwise discrete.

	Returns:

	sos – Array of second-order filter coefficients, with shape
(n_sections, 6). See sosfilt for the SOS filter format
specification.

	Return type:

	ndarray

See also

scipy.signal.tf2sos [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2sos.html#scipy.signal.tf2sos]

Notes

It is generally discouraged to convert from TF to SOS format, since doing
so usually will not improve numerical precision errors. Instead, consider
designing filters in ZPK format and converting directly to SOS. TF is
converted to SOS by first converting to ZPK format, then converting
ZPK to SOS.

cupyx.scipy.signal.tf2ss

	
cupyx.scipy.signal.tf2ss(num, den)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1393]

	Transfer function to state-space representation.

	Parameters:

	
	num (array_like) – Sequences representing the coefficients of the numerator and
denominator polynomials, in order of descending degree. The
denominator needs to be at least as long as the numerator.

	den (array_like) – Sequences representing the coefficients of the numerator and
denominator polynomials, in order of descending degree. The
denominator needs to be at least as long as the numerator.

	Returns:

	A, B, C, D – State space representation of the system, in controller canonical
form.

	Return type:

	ndarray

See also

scipy.signal.tf2ss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss]

cupyx.scipy.signal.ss2tf

	
cupyx.scipy.signal.ss2tf(A, B, C, D, input=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1463]

	State-space to transfer function.

A, B, C, D defines a linear state-space system with p inputs,
q outputs, and n state variables.

	Parameters:

	
	A (array_like) – State (or system) matrix of shape (n, n)

	B (array_like) – Input matrix of shape (n, p)

	C (array_like) – Output matrix of shape (q, n)

	D (array_like) – Feedthrough (or feedforward) matrix of shape (q, p)

	input (int [https://docs.python.org/3/library/functions.html#int], optional) – For multiple-input systems, the index of the input to use.

	Returns:

	
	num (2-D ndarray) – Numerator(s) of the resulting transfer function(s). num has one row
for each of the system’s outputs. Each row is a sequence representation
of the numerator polynomial.

	den (1-D ndarray) – Denominator of the resulting transfer function(s). den is a sequence
representation of the denominator polynomial.

Warning

This function may synchronize the device.

See also

scipy.signal.ss2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf]

cupyx.scipy.signal.ss2zpk

	
cupyx.scipy.signal.ss2zpk(A, B, C, D, input=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1559]

	State-space representation to zero-pole-gain representation.

A, B, C, D defines a linear state-space system with p inputs,
q outputs, and n state variables.

	Parameters:

	
	A (array_like) – State (or system) matrix of shape (n, n)

	B (array_like) – Input matrix of shape (n, p)

	C (array_like) – Output matrix of shape (q, n)

	D (array_like) – Feedthrough (or feedforward) matrix of shape (q, p)

	input (int [https://docs.python.org/3/library/functions.html#int], optional) – For multiple-input systems, the index of the input to use.

	Returns:

	
	z, p (sequence) – Zeros and poles.

	k (float) – System gain.

See also

scipy.signal.ss2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk]

cupyx.scipy.signal.sos2tf

	
cupyx.scipy.signal.sos2tf(sos)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1313]

	Return a single transfer function from a series of second-order sections

	Parameters:

	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). See sosfilt for the SOS filter format
specification.

	Returns:

	
	b (ndarray) – Numerator polynomial coefficients.

	a (ndarray) – Denominator polynomial coefficients.

See also

scipy.signal.sos2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2tf.html#scipy.signal.sos2tf]

cupyx.scipy.signal.sos2zpk

	
cupyx.scipy.signal.sos2zpk(sos)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_iir_filter_conversions.py#L1350]

	Return zeros, poles, and gain of a series of second-order sections

	Parameters:

	sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). See sosfilt for the SOS filter format
specification.

	Returns:

	
	z (ndarray) – Zeros of the transfer function.

	p (ndarray) – Poles of the transfer function.

	k (float) – System gain.

Notes

The number of zeros and poles returned will be n_sections * 2
even if some of these are (effectively) zero.

See also

scipy.signal.sos2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2zpk.html#scipy.signal.sos2zpk]

cupyx.scipy.signal.cont2discrete

	
cupyx.scipy.signal.cont2discrete(system, dt, method='zoh', alpha=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2963]

	Transform a continuous to a discrete state-space system.

	Parameters:

	
	system (a tuple describing the system or an instance of lti) – The following gives the number of elements in the tuple and
the interpretation:

	1: (instance of lti)

	2: (num, den)

	3: (zeros, poles, gain)

	4: (A, B, C, D)

	dt (float [https://docs.python.org/3/library/functions.html#float]) – The discretization time step.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which method to use:

	gbt: generalized bilinear transformation

	bilinear: Tustin’s approximation (“gbt” with alpha=0.5)

	euler: Euler (or forward differencing) method
(“gbt” with alpha=0)

	backward_diff: Backwards differencing (“gbt” with alpha=1.0)

	zoh: zero-order hold (default)

	foh: first-order hold (versionadded: 1.3.0)

	impulse: equivalent impulse response (versionadded: 1.3.0)

	alpha (float within [0, 1], optional) – The generalized bilinear transformation weighting parameter, which
should only be specified with method=”gbt”, and is ignored otherwise

	Returns:

	sysd – Based on the input type, the output will be of the form

	(num, den, dt) for transfer function input

	(zeros, poles, gain, dt) for zeros-poles-gain input

	(A, B, C, D, dt) for state-space system input

	Return type:

	tuple containing the discrete system

Notes

By default, the routine uses a Zero-Order Hold (zoh) method to perform
the transformation. Alternatively, a generalized bilinear transformation
may be used, which includes the common Tustin’s bilinear approximation,
an Euler’s method technique, or a backwards differencing technique.

See also

scipy.signal.cont2discrete [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete]

cupyx.scipy.signal.place_poles

	
cupyx.scipy.signal.place_poles(A, B, poles, method='YT', rtol=0.001, maxiter=30)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2286]

	Compute K such that eigenvalues (A - dot(B, K))=poles.

K is the gain matrix such as the plant described by the linear system
AX+BU will have its closed-loop poles, i.e the eigenvalues A - B*K,
as close as possible to those asked for in poles.

SISO, MISO and MIMO systems are supported.

	Parameters:

	
	A (ndarray) – State-space representation of linear system AX + BU.

	B (ndarray) – State-space representation of linear system AX + BU.

	poles (array_like) – Desired real poles and/or complex conjugates poles.
Complex poles are only supported with method="YT" (default).

	method ({'YT', 'KNV0'}, optional) – Which method to choose to find the gain matrix K. One of:

	’YT’: Yang Tits

	’KNV0’: Kautsky, Nichols, Van Dooren update method 0

See References and Notes for details on the algorithms.

	rtol (float [https://docs.python.org/3/library/functions.html#float], optional) – After each iteration the determinant of the eigenvectors of
A - B*K is compared to its previous value, when the relative
error between these two values becomes lower than rtol the algorithm
stops. Default is 1e-3.

	maxiter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations to compute the gain matrix.
Default is 30.

	Returns:

	full_state_feedback –

	full_state_feedback is composed of:
	
	gain_matrix1-D ndarray
	The closed loop matrix K such as the eigenvalues of A-BK
are as close as possible to the requested poles.

	computed_poles1-D ndarray
	The poles corresponding to A-BK sorted as first the real
poles in increasing order, then the complex congugates in
lexicographic order.

	requested_poles1-D ndarray
	The poles the algorithm was asked to place sorted as above,
they may differ from what was achieved.

	X2-D ndarray
	The transfer matrix such as X * diag(poles) = (A - B*K)*X
(see Notes)

	rtolfloat
	The relative tolerance achieved on det(X) (see Notes).
rtol will be NaN if it is possible to solve the system
diag(poles) = (A - B*K), or 0 when the optimization
algorithms can’t do anything i.e when B.shape[1] == 1.

	nb_iterint
	The number of iterations performed before converging.
nb_iter will be NaN if it is possible to solve the system
diag(poles) = (A - B*K), or 0 when the optimization
algorithms can’t do anything i.e when B.shape[1] == 1.

	Return type:

	Bunch object

Notes

The Tits and Yang (YT), [2] paper is an update of the original Kautsky et
al. (KNV) paper [1]. KNV relies on rank-1 updates to find the transfer
matrix X such that X * diag(poles) = (A - B*K)*X, whereas YT uses
rank-2 updates. This yields on average more robust solutions (see [2]
pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV
does not in its original version. Only update method 0 proposed by KNV has
been implemented here, hence the name 'KNV0'.

KNV extended to complex poles is used in Matlab’s place function, YT is
distributed under a non-free licence by Slicot under the name robpole.
It is unclear and undocumented how KNV0 has been extended to complex poles
(Tits and Yang claim on page 14 of their paper that their method can not be
used to extend KNV to complex poles), therefore only YT supports them in
this implementation.

As the solution to the problem of pole placement is not unique for MIMO
systems, both methods start with a tentative transfer matrix which is
altered in various way to increase its determinant. Both methods have been
proven to converge to a stable solution, however depending on the way the
initial transfer matrix is chosen they will converge to different
solutions and therefore there is absolutely no guarantee that using
'KNV0' will yield results similar to Matlab’s or any other
implementation of these algorithms.

Using the default method 'YT' should be fine in most cases; 'KNV0'
is only provided because it is needed by 'YT' in some specific cases.
Furthermore 'YT' gives on average more robust results than 'KNV0'
when abs(det(X)) is used as a robustness indicator.

[2] is available as a technical report on the following URL:
https://hdl.handle.net/1903/5598

See also

scipy.signal.place_poles [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html#scipy.signal.place_poles]

References

[1]
J. Kautsky, N.K. Nichols and P. van Dooren, “Robust pole assignment
in linear state feedback”, International Journal of Control, Vol. 41
pp. 1129-1155, 1985.

[2]
(1,2,3)
A.L. Tits and Y. Yang, “Globally convergent algorithms for robust
pole assignment by state feedback”, IEEE Transactions on Automatic
Control, Vol. 41, pp. 1432-1452, 1996.

cupyx.scipy.signal.lti

	
class cupyx.scipy.signal.lti(*system)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L109]

	Continuous-time linear time invariant system base class.

	Parameters:

	*system (arguments) – The lti class can be instantiated with either 2, 3 or 4 arguments.
The following gives the number of arguments and the corresponding
continuous-time subclass that is created:

	2: TransferFunction: (numerator, denominator)

	3: ZerosPolesGain: (zeros, poles, gain)

	4: StateSpace: (A, B, C, D)

Each argument can be an array or a sequence.

See also

scipy.signal.lti [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.html#scipy.signal.lti], ZerosPolesGain, StateSpace, TransferFunction, dlti

Notes

lti instances do not exist directly. Instead, lti creates an instance
of one of its subclasses: StateSpace, TransferFunction or
ZerosPolesGain.

If (numerator, denominator) is passed in for *system, coefficients for
both the numerator and denominator should be specified in descending
exponent order (e.g., s^2 + 3s + 5 would be represented as [1, 3,
5]).

Changing the value of properties that are not directly part of the current
system representation (such as the zeros of a StateSpace system) is
very inefficient and may lead to numerical inaccuracies. It is better to
convert to the specific system representation first. For example, call
sys = sys.to_zpk() before accessing/changing the zeros, poles or gain.

Methods

	
bode(w=None, n=100)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L196]

	Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
[dB] and phase [deg]. See bode for details.

	
freqresp(w=None, n=10000)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L205]

	Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and
complex magnitude.
See freqresp for details.

	
impulse(X0=None, T=None, N=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L175]

	Return the impulse response of a continuous-time system.
See impulse for details.

	
output(U, T, X0=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L189]

	Return the response of a continuous-time system to input U.
See lsim for details.

	
step(X0=None, T=None, N=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L182]

	Return the step response of a continuous-time system.
See step for details.

	
to_discrete(dt, method='zoh', alpha=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L215]

	Return a discretized version of the current system.

Parameters: See cont2discrete for details.

	Returns:

	sys

	Return type:

	instance of dlti

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
dt

	Return the sampling time of the system, None for lti systems.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.StateSpace

	
class cupyx.scipy.signal.StateSpace(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L967]

	Linear Time Invariant system in state-space form.

Represents the system as the continuous-time, first order differential
equation \(\dot{x} = A x + B u\) or the discrete-time difference
equation \(x[k+1] = A x[k] + B u[k]\). StateSpace systems
inherit additional functionality from the lti, respectively the dlti
classes, depending on which system representation is used.

	Parameters:

	
	*system (arguments) – The StateSpace class can be instantiated with 1 or 4 arguments.
The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	4: array_like: (A, B, C, D)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.StateSpace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace], TransferFunction, ZerosPolesGain, lti, dlti, ss2zpk, ss2tf, zpk2sos

Notes

Changing the value of properties that are not part of the
StateSpace system representation (such as zeros or poles) is very
inefficient and may lead to numerical inaccuracies. It is better to
convert to the specific system representation first. For example, call
sys = sys.to_zpk() before accessing/changing the zeros, poles or gain.

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1316]

	Return a copy of the current StateSpace system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of StateSpace

	
to_tf(**kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1280]

	Convert system representation to TransferFunction.

	Parameters:

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keywords passed to ss2zpk

	Returns:

	sys – Transfer function of the current system

	Return type:

	instance of TransferFunction

	
to_zpk(**kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1298]

	Convert system representation to ZerosPolesGain.

	Parameters:

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keywords passed to ss2zpk

	Returns:

	sys – Zeros, poles, gain representation of the current system

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
A

	State matrix of the StateSpace system.

	
B

	Input matrix of the StateSpace system.

	
C

	Output matrix of the StateSpace system.

	
D

	Feedthrough matrix of the StateSpace system.

	
dt

	Return the sampling time of the system, None for lti systems.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.TransferFunction

	
class cupyx.scipy.signal.TransferFunction(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L352]

	Linear Time Invariant system class in transfer function form.

Represents the system as the continuous-time transfer function
\(H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j\) or the
discrete-time transfer function
\(H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j\), where
\(b\) are elements of the numerator num, \(a\) are elements of
the denominator den, and N == len(b) - 1, M == len(a) - 1.
TransferFunction systems inherit additional
functionality from the lti, respectively the dlti classes, depending on
which system representation is used.

	Parameters:

	
	*system (arguments) – The TransferFunction class can be instantiated with 1 or 2
arguments. The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	2: array_like: (numerator, denominator)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.TransferFunction [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction], ZerosPolesGain, StateSpace, lti, dlti, tf2ss, tf2zpk, tf2sos

Notes

Changing the value of properties that are not part of the
TransferFunction system representation (such as the A, B, C, D
state-space matrices) is very inefficient and may lead to numerical
inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_ss() before
accessing/changing the A, B, C, D system matrices.

If (numerator, denominator) is passed in for *system, coefficients
for both the numerator and denominator should be specified in descending
exponent order (e.g. s^2 + 3s + 5 or z^2 + 3z + 5 would be
represented as [1, 3, 5])

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L507]

	Convert system representation to StateSpace.

	Returns:

	sys – State space model of the current system

	Return type:

	instance of StateSpace

	
to_tf()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L482]

	Return a copy of the current TransferFunction system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of TransferFunction

	
to_zpk()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L494]

	Convert system representation to ZerosPolesGain.

	Returns:

	sys – Zeros, poles, gain representation of the current system

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
den

	Denominator of the TransferFunction system.

	
dt

	Return the sampling time of the system, None for lti systems.

	
num

	Numerator of the TransferFunction system.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.ZerosPolesGain

	
class cupyx.scipy.signal.ZerosPolesGain(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L679]

	Linear Time Invariant system class in zeros, poles, gain form.

Represents the system as the continuous- or discrete-time transfer function
\(H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])\), where \(k\) is
the gain, \(z\) are the zeros and \(p\) are the poles.
ZerosPolesGain systems inherit additional functionality from the lti,
respectively the dlti classes, depending on which system representation
is used.

	Parameters:

	
	*system (arguments) – The ZerosPolesGain class can be instantiated with 1 or 3
arguments. The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	3: array_like: (zeros, poles, gain)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.ZerosPolesGain [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain], TransferFunction, StateSpace, lti, dlti, zpk2ss, zpk2tf, zpk2sos

Notes

Changing the value of properties that are not part of the
ZerosPolesGain system representation (such as the A, B, C, D
state-space matrices) is very inefficient and may lead to numerical
inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_ss() before
accessing/changing the A, B, C, D system matrices.

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L840]

	Convert system representation to StateSpace.

	Returns:

	sys – State space model of the current system

	Return type:

	instance of StateSpace

	
to_tf()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L815]

	Convert system representation to TransferFunction.

	Returns:

	sys – Transfer function of the current system

	Return type:

	instance of TransferFunction

	
to_zpk()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L828]

	Return a copy of the current ‘ZerosPolesGain’ system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
dt

	Return the sampling time of the system, None for lti systems.

	
gain

	Gain of the ZerosPolesGain system.

	
poles

	Poles of the ZerosPolesGain system.

	
zeros

	Zeros of the ZerosPolesGain system.

cupyx.scipy.signal.lsim

	
cupyx.scipy.signal.lsim(system, U, T, X0=None, interp=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1424]

	Simulate output of a continuous-time linear system.

	Parameters:

	
	system (an instance of the LTI class or a tuple describing the system.) – The following gives the number of elements in the tuple and
the interpretation:

	1: (instance of lti)

	2: (num, den)

	3: (zeros, poles, gain)

	4: (A, B, C, D)

	U (array_like) – An input array describing the input at each time T
(interpolation is assumed between given times). If there are
multiple inputs, then each column of the rank-2 array
represents an input. If U = 0 or None, a zero input is used.

	T (array_like) – The time steps at which the input is defined and at which the
output is desired. Must be nonnegative, increasing, and equally spaced

	X0 (array_like, optional) – The initial conditions on the state vector (zero by default).

	interp (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use linear (True, the default) or zero-order-hold (False)
interpolation for the input array.

	Returns:

	
	T (1D ndarray) – Time values for the output.

	yout (1D ndarray) – System response.

	xout (ndarray) – Time evolution of the state vector.

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also

scipy.signal.lsim [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim.html#scipy.signal.lsim]

cupyx.scipy.signal.impulse

	
cupyx.scipy.signal.impulse(system, X0=None, T=None, N=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1623]

	Impulse response of continuous-time system.

	Parameters:

	
	system (an instance of the LTI class or a tuple of array_like) – describing the system.
The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of lti)

	2 (num, den)

	3 (zeros, poles, gain)

	4 (A, B, C, D)

	X0 (array_like, optional) – Initial state-vector. Defaults to zero.

	T (array_like, optional) – Time points. Computed if not given.

	N (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of time points to compute (if T is not given).

	Returns:

	
	T (ndarray) – A 1-D array of time points.

	yout (ndarray) – A 1-D array containing the impulse response of the system (except for
singularities at zero).

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also

scipy.signal.impulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html#scipy.signal.impulse]

cupyx.scipy.signal.step

	
cupyx.scipy.signal.step(system, X0=None, T=None, N=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1686]

	Step response of continuous-time system.

	Parameters:

	
	system (an instance of the LTI class or a tuple of array_like) – describing the system.
The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of lti)

	2 (num, den)

	3 (zeros, poles, gain)

	4 (A, B, C, D)

	X0 (array_like, optional) – Initial state-vector (default is zero).

	T (array_like, optional) – Time points (computed if not given).

	N (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of time points to compute if T is not given.

	Returns:

	
	T (1D ndarray) – Output time points.

	yout (1D ndarray) – Step response of system.

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also

scipy.signal.step [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step.html#scipy.signal.step]

cupyx.scipy.signal.freqresp

	
cupyx.scipy.signal.freqresp(system, w=None, n=10000)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1797]

	Calculate the frequency response of a continuous-time system.

	Parameters:

	
	system (an instance of the lti class or a tuple describing the system.) – The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of lti)

	2 (num, den)

	3 (zeros, poles, gain)

	4 (A, B, C, D)

	w (array_like, optional) – Array of frequencies (in rad/s). Magnitude and phase data is
calculated for every value in this array. If not given, a reasonable
set will be calculated.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to
include the influence of the poles and zeros of the system.

	Returns:

	
	w (1D ndarray) – Frequency array [rad/s]

	H (1D ndarray) – Array of complex magnitude values

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also

scipy.signal.freqresp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqresp.html#scipy.signal.freqresp]

cupyx.scipy.signal.bode

	
cupyx.scipy.signal.bode(system, w=None, n=100)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1745]

	Calculate Bode magnitude and phase data of a continuous-time system.

	Parameters:

	
	system (an instance of the LTI class or a tuple describing the system.) – The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of lti)

	2 (num, den)

	3 (zeros, poles, gain)

	4 (A, B, C, D)

	w (array_like, optional) – Array of frequencies (in rad/s). Magnitude and phase data is calculated
for every value in this array. If not given a reasonable set will be
calculated.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to
include the influence of the poles and zeros of the system.

	Returns:

	
	w (1D ndarray) – Frequency array [rad/s]

	mag (1D ndarray) – Magnitude array [dB]

	phase (1D ndarray) – Phase array [deg]

See also

scipy.signal.bode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bode.html#scipy.signal.bode]

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

cupyx.scipy.signal.dlti

	
class cupyx.scipy.signal.dlti(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L228]

	Discrete-time linear time invariant system base class.

	Parameters:

	
	*system (arguments) – The dlti class can be instantiated with either 2, 3 or 4 arguments.
The following gives the number of arguments and the corresponding
discrete-time subclass that is created:

	2: TransferFunction: (numerator, denominator)

	3: ZerosPolesGain: (zeros, poles, gain)

	4: StateSpace: (A, B, C, D)

Each argument can be an array or a sequence.

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to True
(unspecified sampling time). Must be specified as a keyword argument,
for example, dt=0.1.

See also

scipy.signal.dlti [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.html#scipy.signal.dlti], ZerosPolesGain, StateSpace, TransferFunction, lti

Notes

dlti instances do not exist directly. Instead, dlti creates an instance
of one of its subclasses: StateSpace, TransferFunction or
ZerosPolesGain.

Changing the value of properties that are not directly part of the current
system representation (such as the zeros of a StateSpace system) is
very inefficient and may lead to numerical inaccuracies. It is better to
convert to the specific system representation first. For example, call
sys = sys.to_zpk() before accessing/changing the zeros, poles or gain.

If (numerator, denominator) is passed in for *system, coefficients for
both the numerator and denominator should be specified in descending
exponent order (e.g., z^2 + 3z + 5 would be represented as [1, 3,
5]).

Methods

	
bode(w=None, n=100)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L331]

	Calculate Bode magnitude and phase data of a discrete-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
[dB] and phase [deg]. See dbode for details.

	
freqresp(w=None, n=10000, whole=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L340]

	Calculate the frequency response of a discrete-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and
complex magnitude.
See dfreqresp for details.

	
impulse(x0=None, t=None, n=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L310]

	Return the impulse response of the discrete-time dlti system.
See dimpulse for details.

	
output(u, t, x0=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L324]

	Return the response of the discrete-time system to input u.
See dlsim for details.

	
step(x0=None, t=None, n=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L317]

	Return the step response of the discrete-time dlti system.
See dstep for details.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
dt

	Return the sampling time of the system.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.StateSpace

	
class cupyx.scipy.signal.StateSpace(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L967]

	Linear Time Invariant system in state-space form.

Represents the system as the continuous-time, first order differential
equation \(\dot{x} = A x + B u\) or the discrete-time difference
equation \(x[k+1] = A x[k] + B u[k]\). StateSpace systems
inherit additional functionality from the lti, respectively the dlti
classes, depending on which system representation is used.

	Parameters:

	
	*system (arguments) – The StateSpace class can be instantiated with 1 or 4 arguments.
The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	4: array_like: (A, B, C, D)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.StateSpace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace], TransferFunction, ZerosPolesGain, lti, dlti, ss2zpk, ss2tf, zpk2sos

Notes

Changing the value of properties that are not part of the
StateSpace system representation (such as zeros or poles) is very
inefficient and may lead to numerical inaccuracies. It is better to
convert to the specific system representation first. For example, call
sys = sys.to_zpk() before accessing/changing the zeros, poles or gain.

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1316]

	Return a copy of the current StateSpace system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of StateSpace

	
to_tf(**kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1280]

	Convert system representation to TransferFunction.

	Parameters:

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keywords passed to ss2zpk

	Returns:

	sys – Transfer function of the current system

	Return type:

	instance of TransferFunction

	
to_zpk(**kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L1298]

	Convert system representation to ZerosPolesGain.

	Parameters:

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keywords passed to ss2zpk

	Returns:

	sys – Zeros, poles, gain representation of the current system

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
A

	State matrix of the StateSpace system.

	
B

	Input matrix of the StateSpace system.

	
C

	Output matrix of the StateSpace system.

	
D

	Feedthrough matrix of the StateSpace system.

	
dt

	Return the sampling time of the system, None for lti systems.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.TransferFunction

	
class cupyx.scipy.signal.TransferFunction(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L352]

	Linear Time Invariant system class in transfer function form.

Represents the system as the continuous-time transfer function
\(H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j\) or the
discrete-time transfer function
\(H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j\), where
\(b\) are elements of the numerator num, \(a\) are elements of
the denominator den, and N == len(b) - 1, M == len(a) - 1.
TransferFunction systems inherit additional
functionality from the lti, respectively the dlti classes, depending on
which system representation is used.

	Parameters:

	
	*system (arguments) – The TransferFunction class can be instantiated with 1 or 2
arguments. The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	2: array_like: (numerator, denominator)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.TransferFunction [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction], ZerosPolesGain, StateSpace, lti, dlti, tf2ss, tf2zpk, tf2sos

Notes

Changing the value of properties that are not part of the
TransferFunction system representation (such as the A, B, C, D
state-space matrices) is very inefficient and may lead to numerical
inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_ss() before
accessing/changing the A, B, C, D system matrices.

If (numerator, denominator) is passed in for *system, coefficients
for both the numerator and denominator should be specified in descending
exponent order (e.g. s^2 + 3s + 5 or z^2 + 3z + 5 would be
represented as [1, 3, 5])

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L507]

	Convert system representation to StateSpace.

	Returns:

	sys – State space model of the current system

	Return type:

	instance of StateSpace

	
to_tf()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L482]

	Return a copy of the current TransferFunction system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of TransferFunction

	
to_zpk()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L494]

	Convert system representation to ZerosPolesGain.

	Returns:

	sys – Zeros, poles, gain representation of the current system

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
den

	Denominator of the TransferFunction system.

	
dt

	Return the sampling time of the system, None for lti systems.

	
num

	Numerator of the TransferFunction system.

	
poles

	Poles of the system.

	
zeros

	Zeros of the system.

cupyx.scipy.signal.ZerosPolesGain

	
class cupyx.scipy.signal.ZerosPolesGain(*system, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L679]

	Linear Time Invariant system class in zeros, poles, gain form.

Represents the system as the continuous- or discrete-time transfer function
\(H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])\), where \(k\) is
the gain, \(z\) are the zeros and \(p\) are the poles.
ZerosPolesGain systems inherit additional functionality from the lti,
respectively the dlti classes, depending on which system representation
is used.

	Parameters:

	
	*system (arguments) – The ZerosPolesGain class can be instantiated with 1 or 3
arguments. The following gives the number of input arguments and their
interpretation:

	1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

	3: array_like: (zeros, poles, gain)

	dt (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for
example, dt=0.1.

See also

scipy.signal.ZerosPolesGain [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain], TransferFunction, StateSpace, lti, dlti, zpk2ss, zpk2tf, zpk2sos

Notes

Changing the value of properties that are not part of the
ZerosPolesGain system representation (such as the A, B, C, D
state-space matrices) is very inefficient and may lead to numerical
inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_ss() before
accessing/changing the A, B, C, D system matrices.

Methods

	
to_ss()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L840]

	Convert system representation to StateSpace.

	Returns:

	sys – State space model of the current system

	Return type:

	instance of StateSpace

	
to_tf()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L815]

	Convert system representation to TransferFunction.

	Returns:

	sys – Transfer function of the current system

	Return type:

	instance of TransferFunction

	
to_zpk()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L828]

	Return a copy of the current ‘ZerosPolesGain’ system.

	Returns:

	sys – The current system (copy)

	Return type:

	instance of ZerosPolesGain

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
dt

	Return the sampling time of the system, None for lti systems.

	
gain

	Gain of the ZerosPolesGain system.

	
poles

	Poles of the ZerosPolesGain system.

	
zeros

	Zeros of the ZerosPolesGain system.

cupyx.scipy.signal.dlsim

	
cupyx.scipy.signal.dlsim(system, u, t=None, x0=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2576]

	Simulate output of a discrete-time linear system.

	Parameters:

	
	system (tuple of array_like or instance of dlti) – A tuple describing the system.
The following gives the number of elements in the tuple and
the interpretation:

	1: (instance of dlti)

	3: (num, den, dt)

	4: (zeros, poles, gain, dt)

	5: (A, B, C, D, dt)

	u (array_like) – An input array describing the input at each time t (interpolation is
assumed between given times). If there are multiple inputs, then each
column of the rank-2 array represents an input.

	t (array_like, optional) – The time steps at which the input is defined. If t is given, it
must be the same length as u, and the final value in t determines
the number of steps returned in the output.

	x0 (array_like, optional) – The initial conditions on the state vector (zero by default).

	Returns:

	
	tout (ndarray) – Time values for the output, as a 1-D array.

	yout (ndarray) – System response, as a 1-D array.

	xout (ndarray, optional) – Time-evolution of the state-vector. Only generated if the input is a
StateSpace system.

See also

scipy.signal.dlsim [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html#scipy.signal.dlsim], lsim, dstep, dimpulse, cont2discrete

cupyx.scipy.signal.dimpulse

	
cupyx.scipy.signal.dimpulse(system, x0=None, t=None, n=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2676]

	Impulse response of discrete-time system.

	Parameters:

	
	system (tuple of array_like or instance of dlti) – A tuple describing the system.
The following gives the number of elements in the tuple and
the interpretation:

	1: (instance of dlti)

	3: (num, den, dt)

	4: (zeros, poles, gain, dt)

	5: (A, B, C, D, dt)

	x0 (array_like, optional) – Initial state-vector. Defaults to zero.

	t (array_like, optional) – Time points. Computed if not given.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of time points to compute (if t is not given).

	Returns:

	
	tout (ndarray) – Time values for the output, as a 1-D array.

	yout (tuple of ndarray) – Impulse response of system. Each element of the tuple represents
the output of the system based on an impulse in each input.

See also

scipy.signal.dimpulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dimpulse.html#scipy.signal.dimpulse], impulse, dstep, dlsim, cont2discrete

cupyx.scipy.signal.dstep

	
cupyx.scipy.signal.dstep(system, x0=None, t=None, n=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2750]

	Step response of discrete-time system.

	Parameters:

	
	system (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of array_like) – A tuple describing the system.
The following gives the number of elements in the tuple and
the interpretation:

	1: (instance of dlti)

	3: (num, den, dt)

	4: (zeros, poles, gain, dt)

	5: (A, B, C, D, dt)

	x0 (array_like, optional) – Initial state-vector. Defaults to zero.

	t (array_like, optional) – Time points. Computed if not given.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of time points to compute (if t is not given).

	Returns:

	
	tout (ndarray) – Output time points, as a 1-D array.

	yout (tuple of ndarray) – Step response of system. Each element of the tuple represents
the output of the system based on a step response to each input.

See also

scipy.signal.dlstep, step, dimpulse, dlsim, cont2discrete

cupyx.scipy.signal.dfreqresp

	
cupyx.scipy.signal.dfreqresp(system, w=None, n=10000, whole=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2824]

	Calculate the frequency response of a discrete-time system.

	Parameters:

	
	system (an instance of the dlti class or a tuple describing the system.) – The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of dlti)

	2 (numerator, denominator, dt)

	3 (zeros, poles, gain, dt)

	4 (A, B, C, D, dt)

	w (array_like, optional) – Array of frequencies (in radians/sample). Magnitude and phase data is
calculated for every value in this array. If not given a reasonable
set will be calculated.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to
include the influence of the poles and zeros of the system.

	whole (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, if ‘w’ is not given, frequencies are computed from 0 to the
Nyquist frequency, pi radians/sample (upper-half of unit-circle). If
whole is True, compute frequencies from 0 to 2*pi radians/sample.

	Returns:

	
	w (1D ndarray) – Frequency array [radians/sample]

	H (1D ndarray) – Array of complex magnitude values

See also

scipy.signal.dfeqresp

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).

cupyx.scipy.signal.dbode

	
cupyx.scipy.signal.dbode(system, w=None, n=100)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_ltisys.py#L2905]

	Calculate Bode magnitude and phase data of a discrete-time system.

	Parameters:

	
	system (an instance of the LTI class or a tuple describing the system.) – The following gives the number of elements in the tuple and
the interpretation:

	1 (instance of dlti)

	2 (num, den, dt)

	3 (zeros, poles, gain, dt)

	4 (A, B, C, D, dt)

	w (array_like, optional) – Array of frequencies (in radians/sample). Magnitude and phase data is
calculated for every value in this array. If not given a reasonable
set will be calculated.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to
include the influence of the poles and zeros of the system.

	Returns:

	
	w (1D ndarray) – Frequency array [rad/time_unit]

	mag (1D ndarray) – Magnitude array [dB]

	phase (1D ndarray) – Phase array [deg]

See also

scipy.signal.dbode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dbode.html#scipy.signal.dbode]

Notes

If (num, den) is passed in for system, coefficients for both the
numerator and denominator should be specified in descending exponent
order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).

cupyx.scipy.signal.chirp

	
cupyx.scipy.signal.chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_waveforms.py#L457]

	Frequency-swept cosine generator.

In the following, ‘Hz’ should be interpreted as ‘cycles per unit’;
there is no requirement here that the unit is one second. The
important distinction is that the units of rotation are cycles, not
radians. Likewise, t could be a measurement of space instead of time.

	Parameters:

	
	t (array_like) – Times at which to evaluate the waveform.

	f0 (float [https://docs.python.org/3/library/functions.html#float]) – Frequency (e.g. Hz) at time t=0.

	t1 (float [https://docs.python.org/3/library/functions.html#float]) – Time at which f1 is specified.

	f1 (float [https://docs.python.org/3/library/functions.html#float]) – Frequency (e.g. Hz) of the waveform at time t1.

	method ({'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional) – Kind of frequency sweep. If not given, linear is assumed. See
Notes below for more details.

	phi (float [https://docs.python.org/3/library/functions.html#float], optional) – Phase offset, in degrees. Default is 0.

	vertex_zero (bool [https://docs.python.org/3/library/functions.html#bool], optional) – This parameter is only used when method is ‘quadratic’.
It determines whether the vertex of the parabola that is the graph
of the frequency is at t=0 or t=t1.

	Returns:

	y – A numpy array containing the signal evaluated at t with the
requested time-varying frequency. More precisely, the function
returns cos(phase + (pi/180)*phi) where phase is the integral
(from 0 to t) of 2*pi*f(t). f(t) is defined below.

	Return type:

	ndarray

Examples

The following will be used in the examples:

>>> from cupyx.scipy.signal import chirp, spectrogram
>>> import matplotlib.pyplot as plt
>>> import cupy as cp

For the first example, we’ll plot the waveform for a linear chirp
from 6 Hz to 1 Hz over 10 seconds:

>>> t = cupy.linspace(0, 10, 5001)
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(w))
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
>>> plt.xlabel('t (sec)')
>>> plt.show()

For the remaining examples, we’ll use higher frequency ranges,
and demonstrate the result using cupyx.scipy.signal.spectrogram.
We’ll use a 10 second interval sampled at 8000 Hz.

>>> fs = 8000
>>> T = 10
>>> t = cupy.linspace(0, T, T*fs, endpoint=False)

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds
(vertex of the parabolic curve of the frequency is at t=0):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic')
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
... nfft=2048)
>>> plt.pcolormesh(cupy.asnumpy(tt), cupy.asnumpy(ff[:513]),
 cupy.asnumpy(Sxx[:513]), cmap='gray_r')
>>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()

cupyx.scipy.signal.gausspulse

	
cupyx.scipy.signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_waveforms.py#L272]

	Return a Gaussian modulated sinusoid:

exp(-a t^2) exp(1j*2*pi*fc*t).

If retquad is True, then return the real and imaginary parts
(in-phase and quadrature).
If retenv is True, then return the envelope (unmodulated signal).
Otherwise, return the real part of the modulated sinusoid.

	Parameters:

	
	t (ndarray or the string 'cutoff') – Input array.

	fc (int [https://docs.python.org/3/library/functions.html#int], optional) – Center frequency (e.g. Hz). Default is 1000.

	bw (float [https://docs.python.org/3/library/functions.html#float], optional) – Fractional bandwidth in frequency domain of pulse (e.g. Hz).
Default is 0.5.

	bwr (float [https://docs.python.org/3/library/functions.html#float], optional) – Reference level at which fractional bandwidth is calculated (dB).
Default is -6.

	tpr (float [https://docs.python.org/3/library/functions.html#float], optional) – If t is ‘cutoff’, then the function returns the cutoff
time for when the pulse amplitude falls below tpr (in dB).
Default is -60.

	retquad (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return the quadrature (imaginary) as well as the real part
of the signal. Default is False.

	retenv (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return the envelope of the signal. Default is False.

	Returns:

	
	yI (ndarray) – Real part of signal. Always returned.

	yQ (ndarray) – Imaginary part of signal. Only returned if retquad is True.

	yenv (ndarray) – Envelope of signal. Only returned if retenv is True.

See also

cupyx.scipy.signal.morlet

Examples

Plot real component, imaginary component, and envelope for a 5 Hz pulse,
sampled at 100 Hz for 2 seconds:

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = cupyx.scipy.signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(i), cupy.asnumpy(t), cupy.asnumpy(q),
 cupy.asnumpy(t), cupy.asnumpy(e), '--')

cupyx.scipy.signal.max_len_seq

	
cupyx.scipy.signal.max_len_seq(nbits, state=None, length=None, taps=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_max_len_seq.py#L50]

	Maximum length sequence (MLS) generator.

	Parameters:

	
	nbits (int [https://docs.python.org/3/library/functions.html#int]) – Number of bits to use. Length of the resulting sequence will
be (2**nbits) - 1. Note that generating long sequences
(e.g., greater than nbits == 16) can take a long time.

	state (array_like, optional) – If array, must be of length nbits, and will be cast to binary
(bool) representation. If None, a seed of ones will be used,
producing a repeatable representation. If state is all
zeros, an error is raised as this is invalid. Default: None.

	length (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of samples to compute. If None, the entire length
(2**nbits) - 1 is computed.

	taps (array_like, optional) – Polynomial taps to use (e.g., [7, 6, 1] for an 8-bit sequence).
If None, taps will be automatically selected (for up to
nbits == 32).

	Returns:

	
	seq (array) – Resulting MLS sequence of 0’s and 1’s.

	state (array) – The final state of the shift register.

Notes

The algorithm for MLS generation is generically described in:

https://en.wikipedia.org/wiki/Maximum_length_sequence

The default values for taps are specifically taken from the first
option listed for each value of nbits in:

https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

cupyx.scipy.signal.sawtooth

	
cupyx.scipy.signal.sawtooth(t, width=1.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_waveforms.py#L94]

	Return a periodic sawtooth or triangle waveform.

The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the
interval 0 to width*2*pi, then drops from 1 to -1 on the interval
width*2*pi to 2*pi. width must be in the interval [0, 1].

Note that this is not band-limited. It produces an infinite number
of harmonics, which are aliased back and forth across the frequency
spectrum.

	Parameters:

	
	t (array_like) – Time.

	width (array_like, optional) – Width of the rising ramp as a proportion of the total cycle.
Default is 1, producing a rising ramp, while 0 produces a falling
ramp. width = 0.5 produces a triangle wave.
If an array, causes wave shape to change over time, and must be the
same length as t.

	Returns:

	y – Output array containing the sawtooth waveform.

	Return type:

	ndarray

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

cupyx.scipy.signal.square

	
cupyx.scipy.signal.square(t, duty=0.5)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_waveforms.py#L163]

	Return a periodic square-wave waveform.

The square wave has a period 2*pi, has value +1 from 0 to
2*pi*duty and -1 from 2*pi*duty to 2*pi. duty must be in
the interval [0,1].

Note that this is not band-limited. It produces an infinite number
of harmonics, which are aliased back and forth across the frequency
spectrum.

	Parameters:

	
	t (array_like) – The input time array.

	duty (array_like, optional) – Duty cycle. Default is 0.5 (50% duty cycle).
If an array, causes wave shape to change over time, and must be the
same length as t.

	Returns:

	y – Output array containing the square waveform.

	Return type:

	ndarray

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(cupyx.scipy.signal.square(2 * cupy.pi * 5 * t)))
>>> plt.ylim(-2, 2)

A pulse-width modulated sine wave:

>>> plt.figure()
>>> sig = cupy.sin(2 * cupy.pi * t)
>>> pwm = cupyx.scipy.signal.square(2 * cupy.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(sig))
>>> plt.subplot(2, 1, 2)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(pwm))
>>> plt.ylim(-1.5, 1.5)

cupyx.scipy.signal.unit_impulse

	
cupyx.scipy.signal.unit_impulse(shape, idx=None, dtype=<class 'float'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_waveforms.py#L614]

	Unit impulse signal (discrete delta function) or unit basis vector.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Number of samples in the output (1-D), or a tuple that represents the
shape of the output (N-D).

	idx (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] or 'mid', optional) – Index at which the value is 1. If None, defaults to the 0th element.
If idx='mid', the impulse will be centered at shape // 2 in
all dimensions. If an int, the impulse will be at idx in all
dimensions.

	dtype (data-type, optional) – The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

	Returns:

	y – Output array containing an impulse signal.

	Return type:

	ndarray

Notes

The 1D case is also known as the Kronecker delta.

Examples

An impulse at the 0th element (\(\delta[n]\)):

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> cupyx.scipy.signal.unit_impulse(8)
array([1., 0., 0., 0., 0., 0., 0., 0.])

Impulse offset by 2 samples (\(\delta[n-2]\)):

>>> cupyx.scipy.signal.unit_impulse(7, 2)
array([0., 0., 1., 0., 0., 0., 0.])

2-dimensional impulse, centered:

>>> cupyx.scipy.signal.unit_impulse((3, 3), 'mid')
array([[0., 0., 0.],
 [0., 1., 0.],
 [0., 0., 0.]])

Impulse at (2, 2), using broadcasting:

>>> cupyx.scipy.signal.unit_impulse((4, 4), 2)
array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 0.]])

cupyx.scipy.signal.get_window

	
cupyx.scipy.signal.get_window(window, Nx, fftbins=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L2095]

	Return a window of a given length and type.

	Parameters:

	
	window (string, float [https://docs.python.org/3/library/functions.html#float], or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The type of window to create. See below for more details.

	Nx (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples in the window.

	fftbins (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (default), create a “periodic” window, ready to use with
ifftshift and be multiplied by the result of an FFT (see also
fftpack.fftfreq).
If False, create a “symmetric” window, for use in filter design.

	Returns:

	get_window – Returns a window of length Nx and type window

	Return type:

	ndarray

Notes

Window types:

	boxcar()

	triang()

	blackman()

	hamming()

	hann()

	bartlett()

	flattop()

	parzen()

	bohman()

	blackmanharris()

	nuttall()

	barthann()

	kaiser() (needs beta)

	gaussian() (needs standard deviation)

	general_gaussian() (needs power, width)

	chebwin() (needs attenuation)

	exponential() (needs decay scale)

	tukey() (needs taper fraction)

If the window requires no parameters, then window can be a string.

If the window requires parameters, then window must be a tuple
with the first argument the string name of the window, and the next
arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta
parameter of the kaiser() window.

Each of the window types listed above is also the name of
a function that can be called directly to create a window of
that type.

Examples

>>> import cupyx.scipy.signal.windows
>>> cupyx.scipy.signal.windows.get_window('triang', 7)
array([0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> cupyx.scipy.signal.windows.get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,
 0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> cupyx.scipy.signal.windows.get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,
 0.89640418, 0.63343178, 0.32578323, 0.08848053])

cupyx.scipy.signal.morlet

	
cupyx.scipy.signal.morlet(M, w=5.0, s=1.0, complete=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_wavelets.py#L83]

	Complex Morlet wavelet.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Length of the wavelet.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Omega0. Default is 5

	s (float [https://docs.python.org/3/library/functions.html#float], optional) – Scaling factor, windowed from -s*2*pi to +s*2*pi. Default is 1.

	complete (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the complete or the standard version.

	Returns:

	morlet

	Return type:

	(M,) ndarray

See also

cupyx.scipy.signal.gausspulse

Notes

The standard version:

pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

This commonly used wavelet is often referred to simply as the
Morlet wavelet. Note that this simplified version can cause
admissibility problems at low values of w.

The complete version:

pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

This version has a correction
term to improve admissibility. For w greater than 5, the
correction term is negligible.

Note that the energy of the return wavelet is not normalised
according to s.

The fundamental frequency of this wavelet in Hz is given
by f = 2*s*w*r / M where r is the sampling rate.

Note: This function was created before cwt and is not compatible
with it.

cupyx.scipy.signal.qmf

	
cupyx.scipy.signal.qmf(hk)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_wavelets.py#L46]

	Return high-pass qmf filter from low-pass

	Parameters:

	hk (array_like) – Coefficients of high-pass filter.

cupyx.scipy.signal.ricker

	
cupyx.scipy.signal.ricker(points, a)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_wavelets.py#L155]

	Return a Ricker wavelet, also known as the “Mexican hat wavelet”.

It models the function:

A (1 - x^2/a^2) exp(-x^2/2 a^2),

where A = 2/sqrt(3a)pi^1/4.

	Parameters:

	
	points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in vector.
Will be centered around 0.

	a (scalar) – Width parameter of the wavelet.

	Returns:

	vector – Array of length points in shape of ricker curve.

	Return type:

	(N,) ndarray

Examples

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt

>>> points = 100
>>> a = 4.0
>>> vec2 = cupyx.scipy.signal.ricker(points, a)
>>> print(len(vec2))
100
>>> plt.plot(cupy.asnumpy(vec2))
>>> plt.show()

cupyx.scipy.signal.morlet2

	
cupyx.scipy.signal.morlet2(M, s, w=5)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_wavelets.py#L214]

	Complex Morlet wavelet, designed to work with cwt.
Returns the complete version of morlet wavelet, normalised
according to s:

exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s)

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Length of the wavelet.

	s (float [https://docs.python.org/3/library/functions.html#float]) – Width parameter of the wavelet.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Omega0. Default is 5

	Returns:

	morlet

	Return type:

	(M,) ndarray

See also

	morlet
	Implementation of Morlet wavelet, incompatible with cwt

Notes

This function was designed to work with cwt. Because morlet2
returns an array of complex numbers, the dtype argument of cwt
should be set to complex128 for best results.

Note the difference in implementation with morlet.
The fundamental frequency of this wavelet in Hz is given by:

f = w*fs / (2*s*np.pi)

where fs is the sampling rate and s is the wavelet width parameter.
Similarly we can get the wavelet width parameter at f:

s = w*fs / (2*f*np.pi)

Examples

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> M = 100
>>> s = 4.0
>>> w = 2.0
>>> wavelet = signal.morlet2(M, s, w)
>>> plt.plot(abs(wavelet))
>>> plt.show()

This example shows basic use of morlet2 with cwt in time-frequency
analysis:

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> t, dt = np.linspace(0, 1, 200, retstep=True)
>>> fs = 1/dt
>>> w = 6.
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
>>> freq = np.linspace(1, fs/2, 100)
>>> widths = w*fs / (2*freq*np.pi)
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
>>> plt.pcolormesh(t, freq, np.abs(cwtm),
 cmap='viridis', shading='gouraud')
>>> plt.show()

cupyx.scipy.signal.cwt

	
cupyx.scipy.signal.cwt(data, wavelet, widths)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_wavelets.py#L285]

	Continuous wavelet transform.

Performs a continuous wavelet transform on data,
using the wavelet function. A CWT performs a convolution
with data using the wavelet function, which is characterized
by a width parameter and length parameter.

	Parameters:

	
	data ((N,) ndarray) – data on which to perform the transform.

	wavelet (function) – Wavelet function, which should take 2 arguments.
The first argument is the number of points that the returned vector
will have (len(wavelet(length,width)) == length).
The second is a width parameter, defining the size of the wavelet
(e.g. standard deviation of a gaussian). See ricker, which
satisfies these requirements.

	widths ((M,) sequence) – Widths to use for transform.

	Returns:

	cwt – Will have shape of (len(widths), len(data)).

	Return type:

	(M, N) ndarray

Notes

length = min(10 * width[ii], len(data))
cwt[ii,:] = cupyx.scipy.signal.convolve(data, wavelet(length,
 width[ii]), mode='same')

Examples

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(-1, 1, 200, endpoint=False)
>>> sig = cupy.cos(2 * cupy.pi * 7 * t) + cupyx.scipy.signal.gausspulse(t - 0.4, fc=2)
>>> widths = cupy.arange(1, 31)
>>> cwtmatr = cupyx.scipy.signal.cwt(sig, cupyx.scipy.signal.ricker, widths)
>>> plt.imshow(abs(cupy.asnumpy(cwtmatr)), extent=[-1, 1, 31, 1],
 cmap='PRGn', aspect='auto', vmax=abs(cwtmatr).max(),
 vmin=-abs(cwtmatr).max())
>>> plt.show()

cupyx.scipy.signal.argrelmin

	
cupyx.scipy.signal.argrelmin(data, axis=0, order=1, mode='clip')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L1324]

	Calculate the relative minima of data.

	Parameters:

	
	data (ndarray) – Array in which to find the relative minima.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to select from data. Default is 0.

	order (int [https://docs.python.org/3/library/functions.html#int], optional) – How many points on each side to use for the comparison
to consider comparator(n, n+x) to be True.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How the edges of the vector are treated.
Available options are ‘wrap’ (wrap around) or ‘clip’ (treat overflow
as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

	Returns:

	extrema – Indices of the minima in arrays of integers. extrema[k] is
the array of indices of axis k of data. Note that the
return value is a tuple even when data is one-dimensional.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

argrelextrema, argrelmax, find_peaks

Notes

This function uses argrelextrema with cupy.less as comparator. Therefore
it requires a strict inequality on both sides of a value to consider it a
minimum. This means flat minima (more than one sample wide) are not
detected. In case of one-dimensional data find_peaks can be used to
detect all local minima, including flat ones, by calling it with negated
data.

Examples

>>> from cupyx.scipy.signal import argrelmin
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmin(x)
(array([1, 5]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmin(y, axis=1)
(array([0, 2]), array([2, 1]))

cupyx.scipy.signal.argrelmax

	
cupyx.scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L1383]

	Calculate the relative maxima of data.

	Parameters:

	
	data (ndarray) – Array in which to find the relative maxima.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to select from data. Default is 0.

	order (int [https://docs.python.org/3/library/functions.html#int], optional) – How many points on each side to use for the comparison
to consider comparator(n, n+x) to be True.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How the edges of the vector are treated.
Available options are ‘wrap’ (wrap around) or ‘clip’ (treat overflow
as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

	Returns:

	extrema – Indices of the maxima in arrays of integers. extrema[k] is
the array of indices of axis k of data. Note that the
return value is a tuple even when data is one-dimensional.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

argrelextrema, argrelmin, find_peaks

Notes

This function uses argrelextrema with cupy.greater as comparator.
Therefore it requires a strict inequality on both sides of a value to
consider it a maximum. This means flat maxima (more than one sample wide)
are not detected. In case of one-dimensional data find_peaks can be
used to detect all local maxima, including flat ones.

Examples

>>> from cupyx.scipy.signal import argrelmax
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmax(x)
(array([3, 6]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmax(y, axis=1)
(array([0]), array([1]))

cupyx.scipy.signal.argrelextrema

	
cupyx.scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode='clip')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L1439]

	Calculate the relative extrema of data.

	Parameters:

	
	data (ndarray) – Array in which to find the relative extrema.

	comparator (callable) – Function to use to compare two data points.
Should take two arrays as arguments.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to select from data. Default is 0.

	order (int [https://docs.python.org/3/library/functions.html#int], optional) – How many points on each side to use for the comparison
to consider comparator(n, n+x) to be True.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How the edges of the vector are treated.
Available options are ‘wrap’ (wrap around) or ‘clip’ (treat overflow
as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

	Returns:

	extrema – Indices of the maxima in arrays of integers. extrema[k] is
the array of indices of axis k of data. Note that the
return value is a tuple even when data is one-dimensional.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ndarrays

See also

argrelmin, argrelmax

Examples

>>> from cupyx.scipy.signal import argrelextrema
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, cupy.greater)
(array([3, 6]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelextrema(y, cupy.less, axis=1)
(array([0, 2]), array([2, 1]))

cupyx.scipy.signal.find_peaks

	
cupyx.scipy.signal.find_peaks(x, height=None, threshold=None, distance=None, prominence=None, width=None, wlen=None, rel_height=0.5, plateau_size=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L1025]

	Find peaks inside a signal based on peak properties.

This function takes a 1-D array and finds all local maxima by
simple comparison of neighboring values. Optionally, a subset of these
peaks can be selected by specifying conditions for a peak’s properties.

	Parameters:

	
	x (sequence) – A signal with peaks.

	height (number or ndarray or sequence, optional) – Required height of peaks. Either a number, None, an array matching
x or a 2-element sequence of the former. The first element is
always interpreted as the minimal and the second, if supplied, as the
maximal required height.

	threshold (number or ndarray or sequence, optional) – Required threshold of peaks, the vertical distance to its neighboring
samples. Either a number, None, an array matching x or a
2-element sequence of the former. The first element is always
interpreted as the minimal and the second, if supplied, as the maximal
required threshold.

	distance (number, optional) – Required minimal horizontal distance (>= 1) in samples between
neighbouring peaks. Smaller peaks are removed first until the condition
is fulfilled for all remaining peaks.

	prominence (number or ndarray or sequence, optional) – Required prominence of peaks. Either a number, None, an array
matching x or a 2-element sequence of the former. The first
element is always interpreted as the minimal and the second, if
supplied, as the maximal required prominence.

	width (number or ndarray or sequence, optional) – Required width of peaks in samples. Either a number, None, an array
matching x or a 2-element sequence of the former. The first
element is always interpreted as the minimal and the second, if
supplied, as the maximal required width.

	wlen (int [https://docs.python.org/3/library/functions.html#int], optional) – Used for calculation of the peaks prominences, thus it is only used if
one of the arguments prominence or width is given. See argument
wlen in peak_prominences for a full description of its effects.

	rel_height (float [https://docs.python.org/3/library/functions.html#float], optional) – Used for calculation of the peaks width, thus it is only used if
width is given. See argument rel_height in peak_widths for
a full description of its effects.

	plateau_size (number or ndarray or sequence, optional) – Required size of the flat top of peaks in samples. Either a number,
None, an array matching x or a 2-element sequence of the former.
The first element is always interpreted as the minimal and the second,
if supplied as the maximal required plateau size.

New in version 1.2.0.

	Returns:

	
	peaks (ndarray) – Indices of peaks in x that satisfy all given conditions.

	properties (dict) – A dictionary containing properties of the returned peaks which were
calculated as intermediate results during evaluation of the specified
conditions:

	
	’peak_heights’
	If height is given, the height of each peak in x.

	
	’left_thresholds’, ‘right_thresholds’
	If threshold is given, these keys contain a peaks vertical
distance to its neighbouring samples.

	
	’prominences’, ‘right_bases’, ‘left_bases’
	If prominence is given, these keys are accessible. See
peak_prominences for a description of their content.

	
	’width_heights’, ‘left_ips’, ‘right_ips’
	If width is given, these keys are accessible. See peak_widths
for a description of their content.

	
	’plateau_sizes’, left_edges’, ‘right_edges’
	If plateau_size is given, these keys are accessible and contain
the indices of a peak’s edges (edges are still part of the
plateau) and the calculated plateau sizes.

To calculate and return properties without excluding peaks, provide the
open interval (None, None) as a value to the appropriate argument
(excluding distance).

	Warns:

	PeakPropertyWarning – Raised if a peak’s properties have unexpected values (see
peak_prominences and peak_widths).

Warning

This function may return unexpected results for data containing NaNs. To
avoid this, NaNs should either be removed or replaced.

See also

	find_peaks_cwt
	Find peaks using the wavelet transformation.

	peak_prominences
	Directly calculate the prominence of peaks.

	peak_widths
	Directly calculate the width of peaks.

Notes

In the context of this function, a peak or local maximum is defined as any
sample whose two direct neighbours have a smaller amplitude. For flat peaks
(more than one sample of equal amplitude wide) the index of the middle
sample is returned (rounded down in case the number of samples is even).
For noisy signals the peak locations can be off because the noise might
change the position of local maxima. In those cases consider smoothing the
signal before searching for peaks or use other peak finding and fitting
methods (like find_peaks_cwt).

Some additional comments on specifying conditions:

	Almost all conditions (excluding distance) can be given as half-open or
closed intervals, e.g., 1 or (1, None) defines the half-open
interval \([1, \infty]\) while (None, 1) defines the interval
\([-\infty, 1]\). The open interval (None, None) can be specified
as well, which returns the matching properties without exclusion of peaks.

	The border is always included in the interval used to select valid peaks.

	For several conditions the interval borders can be specified with
arrays matching x in shape which enables dynamic constrains based on
the sample position.

	The conditions are evaluated in the following order: plateau_size,
height, threshold, distance, prominence, width. In most cases
this order is the fastest one because faster operations are applied first
to reduce the number of peaks that need to be evaluated later.

	While indices in peaks are guaranteed to be at least distance samples
apart, edges of flat peaks may be closer than the allowed distance.

	Use wlen to reduce the time it takes to evaluate the conditions for
prominence or width if x is large or has many local maxima
(see peak_prominences).

cupyx.scipy.signal.peak_prominences

	
cupyx.scipy.signal.peak_prominences(x, peaks, wlen=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L844]

	Calculate the prominence of each peak in a signal.

The prominence of a peak measures how much a peak stands out from the
surrounding baseline of the signal and is defined as the vertical distance
between the peak and its lowest contour line.

	Parameters:

	
	x (sequence) – A signal with peaks.

	peaks (sequence) – Indices of peaks in x.

	wlen (int [https://docs.python.org/3/library/functions.html#int], optional) – A window length in samples that optionally limits the evaluated area
for each peak to a subset of x. The peak is always placed in the
middle of the window therefore the given length is rounded up to the
next odd integer. This parameter can speed up the calculation
(see Notes).

	Returns:

	
	prominences (ndarray) – The calculated prominences for each peak in peaks.

	left_bases, right_bases (ndarray) – The peaks’ bases as indices in x to the left and right of each peak.
The higher base of each pair is a peak’s lowest contour line.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If a value in peaks is an invalid index for x.

	Warns:

	PeakPropertyWarning – For indices in peaks that don’t point to valid local maxima in x,
the returned prominence will be 0 and this warning is raised. This
also happens if wlen is smaller than the plateau size of a peak.

Warning

This function may return unexpected results for data containing NaNs. To
avoid this, NaNs should either be removed or replaced.

See also

	find_peaks
	Find peaks inside a signal based on peak properties.

	peak_widths
	Calculate the width of peaks.

Notes

Strategy to compute a peak’s prominence:

	Extend a horizontal line from the current peak to the left and right
until the line either reaches the window border (see wlen) or
intersects the signal again at the slope of a higher peak. An
intersection with a peak of the same height is ignored.

	On each side find the minimal signal value within the interval defined
above. These points are the peak’s bases.

	The higher one of the two bases marks the peak’s lowest contour line.
The prominence can then be calculated as the vertical difference between
the peaks height itself and its lowest contour line.

Searching for the peak’s bases can be slow for large x with periodic
behavior because large chunks or even the full signal need to be evaluated
for the first algorithmic step. This evaluation area can be limited with
the parameter wlen which restricts the algorithm to a window around the
current peak and can shorten the calculation time if the window length is
short in relation to x.
However, this may stop the algorithm from finding the true global contour
line if the peak’s true bases are outside this window. Instead, a higher
contour line is found within the restricted window leading to a smaller
calculated prominence. In practice, this is only relevant for the highest
set of peaks in x. This behavior may even be used intentionally to
calculate “local” prominences.

cupyx.scipy.signal.peak_widths

	
cupyx.scipy.signal.peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_peak_finding.py#L931]

	Calculate the width of each peak in a signal.

This function calculates the width of a peak in samples at a relative
distance to the peak’s height and prominence.

	Parameters:

	
	x (sequence) – A signal with peaks.

	peaks (sequence) – Indices of peaks in x.

	rel_height (float [https://docs.python.org/3/library/functions.html#float], optional) – Chooses the relative height at which the peak width is measured as a
percentage of its prominence. 1.0 calculates the width of the peak at
its lowest contour line while 0.5 evaluates at half the prominence
height. Must be at least 0. See notes for further explanation.

	prominence_data (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A tuple of three arrays matching the output of peak_prominences when
called with the same arguments x and peaks. This data are
calculated internally if not provided.

	wlen (int [https://docs.python.org/3/library/functions.html#int], optional) – A window length in samples passed to peak_prominences as an optional
argument for internal calculation of prominence_data. This argument
is ignored if prominence_data is given.

	Returns:

	
	widths (ndarray) – The widths for each peak in samples.

	width_heights (ndarray) – The height of the contour lines at which the widths where evaluated.

	left_ips, right_ips (ndarray) – Interpolated positions of left and right intersection points of a
horizontal line at the respective evaluation height.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If prominence_data is supplied but doesn’t satisfy the condition
 0 <= left_base <= peak <= right_base < x.shape[0] for each peak,
 has the wrong dtype, is not C-contiguous or does not have the same
 shape.

	Warns:

	PeakPropertyWarning – Raised if any calculated width is 0. This may stem from the supplied
prominence_data or if rel_height is set to 0.

Warning

This function may return unexpected results for data containing NaNs. To
avoid this, NaNs should either be removed or replaced.

See also

	find_peaks
	Find peaks inside a signal based on peak properties.

	peak_prominences
	Calculate the prominence of peaks.

Notes

The basic algorithm to calculate a peak’s width is as follows:

	Calculate the evaluation height \(h_{eval}\) with the formula
\(h_{eval} = h_{Peak} - P \cdot R\), where \(h_{Peak}\) is the
height of the peak itself, \(P\) is the peak’s prominence and
\(R\) a positive ratio specified with the argument rel_height.

	Draw a horizontal line at the evaluation height to both sides, starting
at the peak’s current vertical position until the lines either intersect
a slope, the signal border or cross the vertical position of the peak’s
base (see peak_prominences for an definition). For the first case,
intersection with the signal, the true intersection point is estimated
with linear interpolation.

	Calculate the width as the horizontal distance between the chosen
endpoints on both sides. As a consequence of this the maximal possible
width for each peak is the horizontal distance between its bases.

As shown above to calculate a peak’s width its prominence and bases must be
known. You can supply these yourself with the argument prominence_data.
Otherwise, they are internally calculated (see peak_prominences).

cupyx.scipy.signal.periodogram

	
cupyx.scipy.signal.periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L127]

	Estimate power spectral density using a periodogram.

	Parameters:

	
	x (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x time series. Defaults to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to ‘boxcar’.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used. If None the length of x will be
used.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

	return_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return a one-sided spectrum for real data. If
False return a two-sided spectrum. Defaults to True, but for
complex data, a two-sided spectrum is always returned.

	scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the power spectral density (‘density’)
where Pxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Pxx has units of V**2, if x
is measured in V and fs is measured in Hz. Defaults to
‘density’

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the periodogram is computed; the default is
over the last axis (i.e. axis=-1).

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	Pxx (ndarray) – Power spectral density or power spectrum of x.

See also

	welch
	Estimate power spectral density using Welch’s method

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

cupyx.scipy.signal.welch

	
cupyx.scipy.signal.welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L224]

	Estimate power spectral density using Welch’s method.

Welch’s method [1] computes an estimate of the power spectral
density by dividing the data into overlapping segments, computing a
modified periodogram for each segment and averaging the
periodograms.

	Parameters:

	
	x (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x time series. Defaults to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to a Hann window.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of each segment. Defaults to None, but if window is str or
tuple, is set to 256, and if window is array_like, is set to the
length of the window.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used, if a zero padded FFT is desired. If
None, the FFT length is nperseg. Defaults to None.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

	return_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return a one-sided spectrum for real data. If
False return a two-sided spectrum. Defaults to True, but for
complex data, a two-sided spectrum is always returned.

	scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the power spectral density (‘density’)
where Pxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Pxx has units of V**2, if x
is measured in V and fs is measured in Hz. Defaults to
‘density’

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the periodogram is computed; the default is
over the last axis (i.e. axis=-1).

	average ({ 'mean', 'median' }, optional) – Method to use when averaging periodograms. Defaults to ‘mean’.

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	Pxx (ndarray) – Power spectral density or power spectrum of x.

See also

	periodogram
	Simple, optionally modified periodogram

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

Notes

An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default Hann window an overlap of
50% is a reasonable trade off between accurately estimating the
signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.

If noverlap is 0, this method is equivalent to Bartlett’s method
[2].

References

[1]
P. Welch, “The use of the fast Fourier transform for the
estimation of power spectra: A method based on time averaging
over short, modified periodograms”, IEEE Trans. Audio
Electroacoust. vol. 15, pp. 70-73, 1967.

[2]
M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”,
Biometrika, vol. 37, pp. 1-16, 1950.

cupyx.scipy.signal.csd

	
cupyx.scipy.signal.csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L342]

	Estimate the cross power spectral density, Pxy, using Welch’s
method.

	Parameters:

	
	x (array_like) – Time series of measurement values

	y (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x and y time series. Defaults
to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to a Hann window.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of each segment. Defaults to None, but if window is str or
tuple, is set to 256, and if window is array_like, is set to the
length of the window.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used, if a zero padded FFT is desired. If
None, the FFT length is nperseg. Defaults to None.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

	return_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return a one-sided spectrum for real data. If
False return a two-sided spectrum. Defaults to True, but for
complex data, a two-sided spectrum is always returned.

	scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the cross spectral density (‘density’)
where Pxy has units of V**2/Hz and computing the cross spectrum
(‘spectrum’) where Pxy has units of V**2, if x and y are
measured in V and fs is measured in Hz. Defaults to ‘density’

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the CSD is computed for both inputs; the
default is over the last axis (i.e. axis=-1).

	average ({ 'mean', 'median' }, optional) – Method to use when averaging periodograms. Defaults to ‘mean’.

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	Pxy (ndarray) – Cross spectral density or cross power spectrum of x,y.

See also

	periodogram
	Simple, optionally modified periodogram

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

	welch
	Power spectral density by Welch’s method. [Equivalent to csd(x,x)]

	coherence
	Magnitude squared coherence by Welch’s method.

Notes

By convention, Pxy is computed with the conjugate FFT of X
multiplied by the FFT of Y.

If the input series differ in length, the shorter series will be
zero-padded to match.

An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default Hann window an overlap of
50% is a reasonable trade off between accurately estimating the
signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.

cupyx.scipy.signal.coherence

	
cupyx.scipy.signal.coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L1344]

	Estimate the magnitude squared coherence estimate, Cxy, of
discrete-time signals X and Y using Welch’s method.

Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power
spectral density estimates of X and Y, and Pxy is the cross
spectral density estimate of X and Y.

	Parameters:

	
	x (array_like) – Time series of measurement values

	y (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x and y time series. Defaults
to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to a Hann window.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of each segment. Defaults to None, but if window is str or
tuple, is set to 256, and if window is array_like, is set to the
length of the window.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used, if a zero padded FFT is desired. If
None, the FFT length is nperseg. Defaults to None.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the coherence is computed for both inputs; the
default is over the last axis (i.e. axis=-1).

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	Cxy (ndarray) – Magnitude squared coherence of x and y.

See also

	periodogram
	Simple, optionally modified periodogram

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

	welch
	Power spectral density by Welch’s method.

	csd
	Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default Hann window an overlap of
50% is a reasonable trade off between accurately estimating the
signal power, while not over counting any of the data. Narrower
windows may require a larger overlap. See [1] and [2] for more
information.

References

[1]
P. Welch, “The use of the fast Fourier transform for the
estimation of power spectra: A method based on time averaging
over short, modified periodograms”, IEEE Trans. Audio
Electroacoust. vol. 15, pp. 70-73, 1967.

[2]
Stoica, Petre, and Randolph Moses, “Spectral Analysis of
Signals” Prentice Hall, 2005

Examples

>>> import cupy as cp
>>> from cupyx.scipy.signal import butter, lfilter, coherence
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = cupy.arange(N) / fs
>>> b, a = butter(2, 0.25, 'low')
>>> x = cupy.random.normal(
... scale=cupy.sqrt(noise_power), size=time.shape)
>>> y = lfilter(b, a, x)
>>> x += amp * cupy.sin(2*cupy.pi*freq*time)
>>> y += cupy.random.normal(
... scale=0.1*cupy.sqrt(noise_power), size=time.shape)

Compute and plot the coherence.

>>> f, Cxy = coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(cupy.asnumpy(f), cupy.asnumpy(Cxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Coherence')
>>> plt.show()

cupyx.scipy.signal.spectrogram

	
cupyx.scipy.signal.spectrogram(x, fs=1.0, window=('tukey', 0.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L1141]

	Compute a spectrogram with consecutive Fourier transforms.

Spectrograms can be used as a way of visualizing the change of a
nonstationary signal’s frequency content over time.

	Parameters:

	
	x (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x time series. Defaults to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg.
Defaults to a Tukey window with shape parameter of 0.25.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of each segment. Defaults to None, but if window is str or
tuple, is set to 256, and if window is array_like, is set to the
length of the window.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 8. Defaults to None.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used, if a zero padded FFT is desired. If
None, the FFT length is nperseg. Defaults to None.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

	return_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return a one-sided spectrum for real data. If
False return a two-sided spectrum. Defaults to True, but for
complex data, a two-sided spectrum is always returned.

	scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the power spectral density (‘density’)
where Sxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Sxx has units of V**2, if x
is measured in V and fs is measured in Hz. Defaults to
‘density’.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the spectrogram is computed; the default is over
the last axis (i.e. axis=-1).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Defines what kind of return values are expected. Options are
[‘psd’, ‘complex’, ‘magnitude’, ‘angle’, ‘phase’]. ‘complex’ is
equivalent to the output of stft with no padding or boundary
extension. ‘magnitude’ returns the absolute magnitude of the
STFT. ‘angle’ and ‘phase’ return the complex angle of the STFT,
with and without unwrapping, respectively.

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	t (ndarray) – Array of segment times.

	Sxx (ndarray) – Spectrogram of x. By default, the last axis of Sxx corresponds
to the segment times.

See also

	periodogram
	Simple, optionally modified periodogram

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

	welch
	Power spectral density by Welch’s method.

	csd
	Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window
and on your requirements. In contrast to welch’s method, where the
entire data stream is averaged over, one may wish to use a smaller
overlap (or perhaps none at all) when computing a spectrogram, to
maintain some statistical independence between individual segments.
It is for this reason that the default window is a Tukey window with
1/8th of a window’s length overlap at each end. See [1] for more
information.

References

[1]
Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
“Discrete-Time Signal Processing”, Prentice Hall, 1999.

Examples

>>> import cupy
>>> from cupyx.scipy.signal import spectrogram
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
modulated around 3kHz, corrupted by white noise of exponentially
decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * cupy.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> mod = 500*cupy.cos(2*cupy.pi*0.25*time)
>>> carrier = amp * cupy.sin(2*cupy.pi*3e3*time + mod)
>>> noise = cupy.random.normal(
... scale=cupy.sqrt(noise_power), size=time.shape)
>>> noise *= cupy.exp(-time/5)
>>> x = carrier + noise

Compute and plot the spectrogram.

>>> f, t, Sxx = spectrogram(x, fs)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.asnumpy(f), cupy.asnumpy(Sxx))
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

Note, if using output that is not one sided, then use the following:

>>> f, t, Sxx = spectrogram(x, fs, return_onesided=False)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.fft.fftshift(f), cupy.fft.fftshift(Sxx, axes=0))
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

cupyx.scipy.signal.lombscargle

	
cupyx.scipy.signal.lombscargle(x, y, freqs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L29]

	Computes the Lomb-Scargle periodogram.

The Lomb-Scargle periodogram was developed by Lomb [1] and further
extended by Scargle [2] to find, and test the significance of weak
periodic signals with uneven temporal sampling.

When normalize is False (default) the computed periodogram
is unnormalized, it takes the value (A**2) * N/4 for a harmonic
signal with amplitude A for sufficiently large N.

When normalize is True the computed periodogram is normalized by
the residuals of the data around a constant reference model (at zero).

Input arrays should be one-dimensional and will be cast to float64.

	Parameters:

	
	x (array_like) – Sample times.

	y (array_like) – Measurement values.

	freqs (array_like) – Angular frequencies for output periodogram.

	precenter (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Pre-center amplitudes by subtracting the mean.

	normalize (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Compute normalized periodogram.

	Returns:

	pgram – Lomb-Scargle periodogram.

	Return type:

	array_like

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the input arrays x and y do not have the same shape.

Notes

This subroutine calculates the periodogram using a slightly
modified algorithm due to Townsend [3] which allows the
periodogram to be calculated using only a single pass through
the input arrays for each frequency.
The algorithm running time scales roughly as O(x * freqs) or O(N^2)
for a large number of samples and frequencies.

References

[1]
N.R. Lomb “Least-squares frequency analysis of unequally spaced
data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976

[2]
J.D. Scargle “Studies in astronomical time series analysis. II -
Statistical aspects of spectral analysis of unevenly spaced data”,
The Astrophysical Journal, vol 263, pp. 835-853, 1982

[3]
R.H.D. Townsend, “Fast calculation of the Lomb-Scargle
periodogram using graphics processing units.”, The Astrophysical
Journal Supplement Series, vol 191, pp. 247-253, 2010

See also

	istft
	Inverse Short Time Fourier Transform

	check_COLA
	Check whether the Constant OverLap Add (COLA) constraint is met

	welch
	Power spectral density by Welch’s method

	spectrogram
	Spectrogram by Welch’s method

	csd
	Cross spectral density by Welch’s method

cupyx.scipy.signal.vectorstrength

	
cupyx.scipy.signal.vectorstrength(events, period)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L1499]

	Determine the vector strength of the events corresponding to the given
period.

The vector strength is a measure of phase synchrony, how well the
timing of the events is synchronized to a single period of a periodic
signal.

If multiple periods are used, calculate the vector strength of each.
This is called the “resonating vector strength”.

	Parameters:

	
	events (1D array_like) – An array of time points containing the timing of the events.

	period (float [https://docs.python.org/3/library/functions.html#float] or array_like) – The period of the signal that the events should synchronize to.
The period is in the same units as events. It can also be an array
of periods, in which case the outputs are arrays of the same length.

	Returns:

	
	strength (float or 1D array) – The strength of the synchronization. 1.0 is perfect synchronization
and 0.0 is no synchronization. If period is an array, this is also
an array with each element containing the vector strength at the
corresponding period.

	phase (float or array) – The phase that the events are most strongly synchronized to in radians.
If period is an array, this is also an array with each element
containing the phase for the corresponding period.

Notes

See [1], [2] and [3] for more information.

References

[1]
van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating
vector strength: Auditory system, electric fish, and noise.
Chaos 21, 047508 (2011).

[2]
van Hemmen, JL. Vector strength after Goldberg, Brown, and
von Mises: biological and mathematical perspectives. Biol Cybern.
2013 Aug;107(4):385-96.

[3]
van Hemmen, JL and Vollmayr, AN. Resonating vector strength:
what happens when we vary the “probing” frequency while keeping
the spike times fixed. Biol Cybern. 2013 Aug;107(4):491-94.

cupyx.scipy.signal.stft

	
cupyx.scipy.signal.stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1, scaling='spectrum')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L652]

	Compute the Short Time Fourier Transform (STFT).

STFTs can be used as a way of quantifying the change of a
nonstationary signal’s frequency and phase content over time.

	Parameters:

	
	x (array_like) – Time series of measurement values

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the x time series. Defaults to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to a Hann window.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of each segment. Defaults to 256.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None. When
specified, the COLA constraint must be met (see Notes below).

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Length of the FFT used, if a zero padded FFT is desired. If
None, the FFT length is nperseg. Defaults to None.

	detrend (str or function or False, optional) – Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend
function. If it is a function, it takes a segment and returns a
detrended segment. If detrend is False, no detrending is
done. Defaults to False.

	return_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return a one-sided spectrum for real data. If
False return a two-sided spectrum. Defaults to True, but for
complex data, a two-sided spectrum is always returned.

	boundary (str [https://docs.python.org/3/library/stdtypes.html#str] or None, optional) – Specifies whether the input signal is extended at both ends, and
how to generate the new values, in order to center the first
windowed segment on the first input point. This has the benefit
of enabling reconstruction of the first input point when the
employed window function starts at zero. Valid options are
['even', 'odd', 'constant', 'zeros', None]. Defaults to
‘zeros’, for zero padding extension. I.e. [1, 2, 3, 4] is
extended to [0, 1, 2, 3, 4, 0] for nperseg=3.

	padded (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether the input signal is zero-padded at the end to
make the signal fit exactly into an integer number of window
segments, so that all of the signal is included in the output.
Defaults to True. Padding occurs after boundary extension, if
boundary is not None, and padded is True, as is the
default.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis along which the STFT is computed; the default is over the
last axis (i.e. axis=-1).

	scaling ({'spectrum', 'psd'}) – The default ‘spectrum’ scaling allows each frequency line of Zxx to
be interpreted as a magnitude spectrum. The ‘psd’ option scales each
line to a power spectral density - it allows to calculate the signal’s
energy by numerically integrating over abs(Zxx)**2.

	Returns:

	
	f (ndarray) – Array of sample frequencies.

	t (ndarray) – Array of segment times.

	Zxx (ndarray) – STFT of x. By default, the last axis of Zxx corresponds
to the segment times.

See also

	welch
	Power spectral density by Welch’s method.

	spectrogram
	Spectrogram by Welch’s method.

	csd
	Cross spectral density by Welch’s method.

	lombscargle
	Lomb-Scargle periodogram for unevenly sampled data

Notes

In order to enable inversion of an STFT via the inverse STFT in
istft, the signal windowing must obey the constraint of “Nonzero
OverLap Add” (NOLA), and the input signal must have complete
windowing coverage (i.e. (x.shape[axis] - nperseg) %
(nperseg-noverlap) == 0). The padded argument may be used to
accomplish this.

Given a time-domain signal \(x[n]\), a window \(w[n]\), and a hop
size \(H\) = nperseg - noverlap, the windowed frame at time index
\(t\) is given by

\[x_{t}[n]=x[n]w[n-tH]\]

The overlap-add (OLA) reconstruction equation is given by

\[x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}\]

The NOLA constraint ensures that every normalization term that appears
in the denomimator of the OLA reconstruction equation is nonzero. Whether a
choice of window, nperseg, and noverlap satisfy this constraint can
be tested with check_NOLA.

See [1], [2] for more information.

References

[1]
Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
“Discrete-Time Signal Processing”, Prentice Hall, 1999.

[2]
Daniel W. Griffin, Jae S. Lim “Signal Estimation from
Modified Short-Time Fourier Transform”, IEEE 1984,
10.1109/TASSP.1984.1164317

Examples

>>> import cupy
>>> import cupyx.scipy.signal import stft
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
modulated around 3kHz, corrupted by white noise of exponentially
decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * cupy.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> mod = 500*cupy.cos(2*cupy.pi*0.25*time)
>>> carrier = amp * cupy.sin(2*cupy.pi*3e3*time + mod)
>>> noise = cupy.random.normal(scale=cupy.sqrt(noise_power),
... size=time.shape)
>>> noise *= cupy.exp(-time/5)
>>> x = carrier + noise

Compute and plot the STFT’s magnitude.

>>> f, t, Zxx = stft(x, fs, nperseg=1000)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.asnumpy(f),
... cupy.asnumpy(cupy.abs(Zxx)), vmin=0, vmax=amp)
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

cupyx.scipy.signal.istft

	
cupyx.scipy.signal.istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2, scaling='spectrum')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L837]

	Perform the inverse Short Time Fourier transform (iSTFT).

	Parameters:

	
	Zxx (array_like) – STFT of the signal to be reconstructed. If a purely real array
is passed, it will be cast to a complex data type.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – Sampling frequency of the time series. Defaults to 1.0.

	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like, optional) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg. Defaults
to a Hann window. Must match the window used to generate the
STFT for faithful inversion.

	nperseg (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of data points corresponding to each STFT segment. This
parameter must be specified if the number of data points per
segment is odd, or if the STFT was padded via nfft >
nperseg. If None, the value depends on the shape of
Zxx and input_onesided. If input_onesided is True,
nperseg=2*(Zxx.shape[freq_axis] - 1). Otherwise,
nperseg=Zxx.shape[freq_axis]. Defaults to None.

	noverlap (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of points to overlap between segments. If None, half
of the segment length. Defaults to None. When specified, the
COLA constraint must be met (see Notes below), and should match
the parameter used to generate the STFT. Defaults to None.

	nfft (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of FFT points corresponding to each STFT segment. This
parameter must be specified if the STFT was padded via nfft >
nperseg. If None, the default values are the same as for
nperseg, detailed above, with one exception: if
input_onesided is True and
nperseg==2*Zxx.shape[freq_axis] - 1, nfft also takes on
that value. This case allows the proper inversion of an
odd-length unpadded STFT using nfft=None. Defaults to
None.

	input_onesided (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, interpret the input array as one-sided FFTs, such
as is returned by stft with return_onesided=True and
numpy.fft.rfft. If False, interpret the input as a
two-sided FFT. Defaults to True.

	boundary (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether the input signal was extended at its
boundaries by supplying a non-None boundary argument to
stft. Defaults to True.

	time_axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Where the time segments of the STFT is located; the default is
the last axis (i.e. axis=-1).

	freq_axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Where the frequency axis of the STFT is located; the default is
the penultimate axis (i.e. axis=-2).

	scaling ({'spectrum', 'psd'}) – The default ‘spectrum’ scaling allows each frequency line of Zxx to
be interpreted as a magnitude spectrum. The ‘psd’ option scales each
line to a power spectral density - it allows to calculate the signal’s
energy by numerically integrating over abs(Zxx)**2.

	Returns:

	
	t (ndarray) – Array of output data times.

	x (ndarray) – iSTFT of Zxx.

See also

	stft
	Short Time Fourier Transform

	check_COLA
	Check whether the Constant OverLap Add (COLA) constraint is met

	check_NOLA
	Check whether the Nonzero Overlap Add (NOLA) constraint is met

Notes

In order to enable inversion of an STFT via the inverse STFT with
istft, the signal windowing must obey the constraint of “nonzero
overlap add” (NOLA):

\[\sum_{t}w^{2}[n-tH] \ne 0\]

This ensures that the normalization factors that appear in the denominator
of the overlap-add reconstruction equation

\[x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}\]

are not zero. The NOLA constraint can be checked with the check_NOLA
function.

An STFT which has been modified (via masking or otherwise) is not
guaranteed to correspond to a exactly realizible signal. This
function implements the iSTFT via the least-squares estimation
algorithm detailed in [2], which produces a signal that minimizes
the mean squared error between the STFT of the returned signal and
the modified STFT.

See [1], [2] for more information.

References

[1]
Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
“Discrete-Time Signal Processing”, Prentice Hall, 1999.

[2]
(1,2)
Daniel W. Griffin, Jae S. Lim “Signal Estimation from
Modified Short-Time Fourier Transform”, IEEE 1984,
10.1109/TASSP.1984.1164317

Examples

>>> import cupy
>>> from cupyx.scipy.signal import stft, istft
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
0.001 V**2/Hz of white noise sampled at 1024 Hz.

>>> fs = 1024
>>> N = 10*fs
>>> nperseg = 512
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> carrier = amp * cupy.sin(2*cupy.pi*50*time)
>>> noise = cupy.random.normal(scale=cupy.sqrt(noise_power),
... size=time.shape)
>>> x = carrier + noise

Compute the STFT, and plot its magnitude

>>> f, t, Zxx = cusignal.stft(x, fs=fs, nperseg=nperseg)
>>> f = cupy.asnumpy(f)
>>> t = cupy.asnumpy(t)
>>> Zxx = cupy.asnumpy(Zxx)
>>> plt.figure()
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.ylim([f[1], f[-1]])
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.yscale('log')
>>> plt.show()

Zero the components that are 10% or less of the carrier magnitude,
then convert back to a time series via inverse STFT

>>> Zxx = cupy.where(cupy.abs(Zxx) >= amp/10, Zxx, 0)
>>> _, xrec = cusignal.istft(Zxx, fs)
>>> xrec = cupy.asnumpy(xrec)
>>> x = cupy.asnumpy(x)
>>> time = cupy.asnumpy(time)
>>> carrier = cupy.asnumpy(carrier)

Compare the cleaned signal with the original and true carrier signals.

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([2, 2.1])*+
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

Note that the cleaned signal does not start as abruptly as the original,
since some of the coefficients of the transient were also removed:

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([0, 0.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

cupyx.scipy.signal.check_COLA

	
cupyx.scipy.signal.check_COLA(window, nperseg, noverlap, tol=1e-10)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L472]

	Check whether the Constant OverLap Add (COLA) constraint is met.

	Parameters:

	
	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg.

	nperseg (int [https://docs.python.org/3/library/functions.html#int]) – Length of each segment.

	noverlap (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to overlap between segments.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The allowed variance of a bin’s weighted sum from the median bin
sum.

	Returns:

	verdict – True if chosen combination satisfies COLA within tol,
False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

	check_NOLA
	Check whether the Nonzero Overlap Add (NOLA) constraint is met

	stft
	Short Time Fourier Transform

	istft
	Inverse Short Time Fourier Transform

Notes

In order to enable inversion of an STFT via the inverse STFT in
istft, it is sufficient that the signal windowing obeys the constraint of
“Constant OverLap Add” (COLA). This ensures that every point in the input
data is equally weighted, thereby avoiding aliasing and allowing full
reconstruction.

	Some examples of windows that satisfy COLA:
	
	Rectangular window at overlap of 0, 1/2, 2/3, 3/4, …

	Bartlett window at overlap of 1/2, 3/4, 5/6, …

	Hann window at 1/2, 2/3, 3/4, …

	Any Blackman family window at 2/3 overlap

	Any window with noverlap = nperseg-1

A very comprehensive list of other windows may be found in [2],
wherein the COLA condition is satisfied when the “Amplitude
Flatness” is unity. See [1] for more information.

References

[1]
Julius O. Smith III, “Spectral Audio Signal Processing”, W3K
Publishing, 2011,ISBN 978-0-9745607-3-1.

[2]
G. Heinzel, A. Ruediger and R. Schilling, “Spectrum and
spectral density estimation by the Discrete Fourier transform
(DFT), including a comprehensive list of window functions and
some new at-top windows”, 2002,
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

cupyx.scipy.signal.check_NOLA

	
cupyx.scipy.signal.check_NOLA(window, nperseg, noverlap, tol=1e-10)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_spectral.py#L562]

	Check whether the Nonzero Overlap Add (NOLA) constraint is met.

	Parameters:

	
	window (str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or array_like) – Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are
DFT-even by default. See get_window for a list of windows and
required parameters. If window is array_like it will be used
directly as the window and its length must be nperseg.

	nperseg (int [https://docs.python.org/3/library/functions.html#int]) – Length of each segment.

	noverlap (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to overlap between segments.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The allowed variance of a bin’s weighted sum from the median bin
sum.

	Returns:

	verdict – True if chosen combination satisfies the NOLA constraint within
tol, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

	check_COLA
	Check whether the Constant OverLap Add (COLA) constraint is met

	stft
	Short Time Fourier Transform

	istft
	Inverse Short Time Fourier Transform

Notes

In order to enable inversion of an STFT via the inverse STFT in
istft, the signal windowing must obey the constraint of “nonzero
overlap add” (NOLA):

\[\sum_{t}w^{2}[n-tH] \ne 0\]

for all \(n\), where \(w\) is the window function, \(t\) is the
frame index, and \(H\) is the hop size (\(H\) = nperseg -
noverlap).

This ensures that the normalization factors in the denominator of the
overlap-add inversion equation are not zero. Only very pathological windows
will fail the NOLA constraint.

See [1], [2] for more information.

References

[1]
Julius O. Smith III, “Spectral Audio Signal Processing”, W3K
Publishing, 2011,ISBN 978-0-9745607-3-1.

[2]
G. Heinzel, A. Ruediger and R. Schilling, “Spectrum and
spectral density estimation by the Discrete Fourier transform
(DFT), including a comprehensive list of window functions and
some new at-top windows”, 2002,
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

cupyx.scipy.signal.czt

	
cupyx.scipy.signal.czt(x, m=None, w=None, a=1 + 0j, *, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L338]

	Compute the frequency response around a spiral in the Z plane.

	Parameters:

	
	x (array) – The signal to transform.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of output points desired. Default is the length of the
input data.

	w (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.

	a (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The starting point in the complex plane. Default is 1+0j.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:

	out – An array of the same dimensions as x, but with the length of the
transformed axis set to m.

	Return type:

	ndarray

See also

	CZT
	Class that creates a callable chirp z-transform function.

	zoom_fft
	Convenience function for partial FFT calculations.

scipy.signal.czt [https://docs.scipy.org/doc/scipy/reference/generated/czt-function.html#scipy.signal.czt]

Notes

The defaults are chosen such that signal.czt(x) is equivalent to
fft.fft(x) and, if m > len(x), that signal.czt(x, m) is
equivalent to fft.fft(x, m).

If the transform needs to be repeated, use CZT to construct a
specialized transform function which can be reused without
recomputing constants.

An example application is in system identification, repeatedly evaluating
small slices of the z-transform of a system, around where a pole is
expected to exist, to refine the estimate of the pole’s true location. [1]

References

[1]
Steve Alan Shilling, “A study of the chirp z-transform and its
applications”, pg 20 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf

cupyx.scipy.signal.zoom_fft

	
cupyx.scipy.signal.zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L397]

	Compute the DFT of x only for frequencies in range fn.

	Parameters:

	
	x (array) – The signal to transform.

	fn (array_like) – A length-2 sequence [f1, f2] giving the frequency range, or a
scalar, for which the range [0, fn] is assumed.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of points to evaluate. The default is the length of x.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency. If fs=10 represented 10 kHz, for example,
then f1 and f2 would also be given in kHz.
The default sampling frequency is 2, so f1 and f2 should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, f2 is the last sample. Otherwise, it is not included.
Default is False.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:

	out – The transformed signal. The Fourier transform will be calculated
at the points f1, f1+df, f1+2df, …, f2, where df=(f2-f1)/m.

	Return type:

	ndarray

See also

	ZoomFFT
	Class that creates a callable partial FFT function.

scipy.signal.zoom_fft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zoom_fft.html#scipy.signal.zoom_fft]

Notes

The defaults are chosen such that signal.zoom_fft(x, 2) is equivalent
to fft.fft(x) and, if m > len(x), that signal.zoom_fft(x, 2, m)
is equivalent to fft.fft(x, m).

To graph the magnitude of the resulting transform, use:

plot(linspace(f1, f2, m, endpoint=False),
 abs(zoom_fft(x, [f1, f2], m)))

If the transform needs to be repeated, use ZoomFFT to construct
a specialized transform function which can be reused without
recomputing constants.

cupyx.scipy.signal.CZT

	
class cupyx.scipy.signal.CZT(n, m=None, w=None, a=1 + 0j)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L98]

	Create a callable chirp z-transform function.

Transform to compute the frequency response around a spiral.
Objects of this class are callables which can compute the
chirp z-transform on their inputs. This object precalculates the constant
chirps used in the given transform.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The size of the signal.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of output points desired. Default is n.

	w (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.

	a (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The starting point in the complex plane. Default is 1+0j.

	Returns:

	f – Callable object f(x, axis=-1) for computing the chirp z-transform
on x.

	Return type:

	CZT

See also

	czt
	Convenience function for quickly calculating CZT.

	ZoomFFT
	Class that creates a callable partial FFT function.

scipy.signal.CZT [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.CZT.html#scipy.signal.CZT]

Notes

The defaults are chosen such that f(x) is equivalent to
fft.fft(x) and, if m > len(x), that f(x, m) is equivalent to
fft.fft(x, m).

If w does not lie on the unit circle, then the transform will be
around a spiral with exponentially-increasing radius. Regardless,
angle will increase linearly.

For transforms that do lie on the unit circle, accuracy is better when
using ZoomFFT, since any numerical error in w is
accumulated for long data lengths, drifting away from the unit circle.

The chirp z-transform can be faster than an equivalent FFT with
zero padding. Try it with your own array sizes to see.

However, the chirp z-transform is considerably less precise than the
equivalent zero-padded FFT.

As this CZT is implemented using the Bluestein algorithm [1], it can
compute large prime-length Fourier transforms in O(N log N) time, rather
than the O(N**2) time required by the direct DFT calculation.
(scipy.fft also uses Bluestein’s algorithm’.)

(The name “chirp z-transform” comes from the use of a chirp in the
Bluestein algorithm [2]. It does not decompose signals into chirps, like
other transforms with “chirp” in the name.)

References

[1]
Leo I. Bluestein, “A linear filtering approach to the computation
of the discrete Fourier transform,” Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).

[2]
Rabiner, Schafer, and Rader, “The chirp z-transform algorithm and
its application,” Bell Syst. Tech. J. 48, 1249-1292 (1969).

Methods

	
__call__(x, *, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L196]

	Calculate the chirp z-transform of a signal.

	Parameters:

	
	x (array) – The signal to transform.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:

	out – An array of the same dimensions as x, but with the length of the
transformed axis set to m.

	Return type:

	ndarray

	
points()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L226]

	Return the points at which the chirp z-transform is computed.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.signal.ZoomFFT

	
class cupyx.scipy.signal.ZoomFFT(n, fn, m=None, *, fs=2, endpoint=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L233]

	Create a callable zoom FFT transform function.

This is a specialization of the chirp z-transform (CZT) for a set of
equally-spaced frequencies around the unit circle, used to calculate a
section of the FFT more efficiently than calculating the entire FFT and
truncating. [1]

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The size of the signal.

	fn (array_like) – A length-2 sequence [f1, f2] giving the frequency range, or a
scalar, for which the range [0, fn] is assumed.

	m (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of points to evaluate. Default is n.

	fs (float [https://docs.python.org/3/library/functions.html#float], optional) – The sampling frequency. If fs=10 represented 10 kHz, for example,
then f1 and f2 would also be given in kHz.
The default sampling frequency is 2, so f1 and f2 should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, f2 is the last sample. Otherwise, it is not included.
Default is False.

	Returns:

	f – Callable object f(x, axis=-1) for computing the zoom FFT on x.

	Return type:

	ZoomFFT

See also

	zoom_fft
	Convenience function for calculating a zoom FFT.

scipy.signal.ZoomFFT [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZoomFFT.html#scipy.signal.ZoomFFT]

Notes

The defaults are chosen such that f(x, 2) is equivalent to
fft.fft(x) and, if m > len(x), that f(x, 2, m) is equivalent to
fft.fft(x, m).

Sampling frequency is 1/dt, the time step between samples in the
signal x. The unit circle corresponds to frequencies from 0 up
to the sampling frequency. The default sampling frequency of 2
means that f1, f2 values up to the Nyquist frequency are in the
range [0, 1). For f1, f2 values expressed in radians, a sampling
frequency of 2*pi should be used.

Remember that a zoom FFT can only interpolate the points of the existing
FFT. It cannot help to resolve two separate nearby frequencies.
Frequency resolution can only be increased by increasing acquisition
time.

These functions are implemented using Bluestein’s algorithm (as is
scipy.fft). [2]

References

[1]
Steve Alan Shilling, “A study of the chirp z-transform and its
applications”, pg 29 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf

[2]
Leo I. Bluestein, “A linear filtering approach to the computation
of the discrete Fourier transform,” Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).

Methods

	
__call__(x, *, axis=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L196]

	Calculate the chirp z-transform of a signal.

	Parameters:

	
	x (array) – The signal to transform.

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:

	out – An array of the same dimensions as x, but with the length of the
transformed axis set to m.

	Return type:

	ndarray

	
points()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L226]

	Return the points at which the chirp z-transform is computed.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.scipy.signal.czt_points

	
cupyx.scipy.signal.czt_points(m, w=None, a=1 + 0j)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/_czt.py#L56]

	Return the points at which the chirp z-transform is computed.

	Parameters:

	
	m (int [https://docs.python.org/3/library/functions.html#int]) – The number of points desired.

	w (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The ratio between points in each step.
Defaults to equally spaced points around the entire unit circle.

	a (complex [https://docs.python.org/3/library/functions.html#complex], optional) – The starting point in the complex plane. Default is 1+0j.

	Returns:

	out – The points in the Z plane at which CZT samples the z-transform,
when called with arguments m, w, and a, as complex numbers.

	Return type:

	ndarray

See also

	CZT
	Class that creates a callable chirp z-transform function.

	czt
	Convenience function for quickly calculating CZT.

scipy.signal.czt_points [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.czt_points.html#scipy.signal.czt_points]

Signal processing windows (cupyx.scipy.signal.windows)

The suite of window functions for filtering and spectral estimation.

Hint

SciPy API Reference: Signal processing windows (scipy.signal.windows) [https://docs.scipy.org/doc/scipy/reference/signal.windows.html]

	get_window(window, Nx[, fftbins])

	Return a window of a given length and type.

	barthann(M[, sym])

	Return a modified Bartlett-Hann window.

	bartlett(M[, sym])

	Return a Bartlett window.

	blackman(M[, sym])

	Return a Blackman window.

	blackmanharris(M[, sym])

	Return a minimum 4-term Blackman-Harris window.

	bohman(M[, sym])

	Return a Bohman window.

	boxcar(M[, sym])

	Return a boxcar or rectangular window.

	chebwin(M, at[, sym])

	Return a Dolph-Chebyshev window.

	cosine(M[, sym])

	Return a window with a simple cosine shape.

	exponential(M[, center, tau, sym])

	Return an exponential (or Poisson) window.

	flattop(M[, sym])

	Return a flat top window.

	gaussian(M, std[, sym])

	Return a Gaussian window.

	general_cosine(M, a[, sym])

	Generic weighted sum of cosine terms window

	general_gaussian(M, p, sig[, sym])

	Return a window with a generalized Gaussian shape.

	general_hamming(M, alpha[, sym])

	Return a generalized Hamming window.

	hamming(M[, sym])

	Return a Hamming window.

	hann(M[, sym])

	Return a Hann window.

	kaiser(M, beta[, sym])

	Return a Kaiser window.

	nuttall(M[, sym])

	Return a minimum 4-term Blackman-Harris window according to Nuttall.

	parzen(M[, sym])

	Return a Parzen window.

	taylor(M[, nbar, sll, norm, sym])

	Return a Taylor window.

	triang(M[, sym])

	Return a triangular window.

	tukey(M[, alpha, sym])

	Return a Tukey window, also known as a tapered cosine window.

cupyx.scipy.signal.windows.get_window

	
cupyx.scipy.signal.windows.get_window(window, Nx, fftbins=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L2095]

	Return a window of a given length and type.

	Parameters:

	
	window (string, float [https://docs.python.org/3/library/functions.html#float], or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The type of window to create. See below for more details.

	Nx (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples in the window.

	fftbins (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (default), create a “periodic” window, ready to use with
ifftshift and be multiplied by the result of an FFT (see also
fftpack.fftfreq).
If False, create a “symmetric” window, for use in filter design.

	Returns:

	get_window – Returns a window of length Nx and type window

	Return type:

	ndarray

Notes

Window types:

	boxcar()

	triang()

	blackman()

	hamming()

	hann()

	bartlett()

	flattop()

	parzen()

	bohman()

	blackmanharris()

	nuttall()

	barthann()

	kaiser() (needs beta)

	gaussian() (needs standard deviation)

	general_gaussian() (needs power, width)

	chebwin() (needs attenuation)

	exponential() (needs decay scale)

	tukey() (needs taper fraction)

If the window requires no parameters, then window can be a string.

If the window requires parameters, then window must be a tuple
with the first argument the string name of the window, and the next
arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta
parameter of the kaiser() window.

Each of the window types listed above is also the name of
a function that can be called directly to create a window of
that type.

Examples

>>> import cupyx.scipy.signal.windows
>>> cupyx.scipy.signal.windows.get_window('triang', 7)
array([0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> cupyx.scipy.signal.windows.get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,
 0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> cupyx.scipy.signal.windows.get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,
 0.89640418, 0.63343178, 0.32578323, 0.08848053])

cupyx.scipy.signal.windows.barthann

	
cupyx.scipy.signal.windows.barthann(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1054]

	Return a modified Bartlett-Hann window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.barthann(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bartlett-Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett-Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.bartlett

	
cupyx.scipy.signal.windows.bartlett(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L757]

	Return a Bartlett window.

The Bartlett window is very similar to a triangular window, except
that the end points are at zero. It is often used in signal
processing for tapering a signal, without generating too much
ripple in the frequency domain.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The triangular window, with the first and last samples equal to zero
and the maximum value normalized to 1 (though the value 1 does not
appear if M is even and sym is True).

	Return type:

	ndarray

See also

	triang
	A triangular window that does not touch zero at the ends

Notes

The Bartlett window is defined as

\[w(n) = \frac{2}{M-1} \left(
\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
\right)\]

Most references to the Bartlett window come from the signal
processing literature, where it is used as one of many windowing
functions for smoothing values. Note that convolution with this
window produces linear interpolation. It is also known as an
apodization (which means”removing the foot”, i.e. smoothing
discontinuities at the beginning and end of the sampled signal) or
tapering function. The Fourier transform of the Bartlett is the product
of two sinc functions.
Note the excellent discussion in Kanasewich. [2]

For more information, see [1], [2], [3], [4] and [5]

References

[1]
M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”,
Biometrika 37, 1-16, 1950.

[2]
(1,2)
E.R. Kanasewich, “Time Sequence Analysis in Geophysics”,
The University of Alberta Press, 1975, pp. 109-110.

[3]
A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal
Processing”, Prentice-Hall, 1999, pp. 468-471.

[4]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function

[5]
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 429.

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.bartlett(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bartlett window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.blackman

	
cupyx.scipy.signal.windows.blackman(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L475]

	Return a Blackman window.

The Blackman window is a taper formed by using the first three terms of
a summation of cosines. It was designed to have close to the minimal
leakage possible. It is close to optimal, only slightly worse than a
Kaiser window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Blackman window is defined as

\[w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)\]

The “exact Blackman” window was designed to null out the third and fourth
sidelobes, but has discontinuities at the boundaries, resulting in a
6 dB/oct fall-off. This window is an approximation of the “exact” window,
which does not null the sidelobes as well, but is smooth at the edges,
improving the fall-off rate to 18 dB/oct. [3]

Most references to the Blackman window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. It is known as a
“near optimal” tapering function, almost as good (by some measures)
as the Kaiser window.

For more information, see [1], [2], and [3]

References

[1]
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.

[2]
Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

[3]
(1,2)
Harris, Fredric J. (Jan 1978). “On the use of Windows for Harmonic
Analysis with the Discrete Fourier Transform”. Proceedings of the
IEEE 66 (1): 51-83.
10.1109/PROC.1978.10837 [https://doi.org/10.1109/PROC.1978.10837]

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal import blackman
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = blackman(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Blackman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.blackmanharris

	
cupyx.scipy.signal.windows.blackmanharris(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L629]

	Return a minimum 4-term Blackman-Harris window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import blackmanharris
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = blackmanharris(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Blackman-Harris window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman-Harris window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.bohman

	
cupyx.scipy.signal.windows.bohman(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L421]

	Return a Bohman window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import bohman
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = bohman(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bohman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bohman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.boxcar

	
cupyx.scipy.signal.windows.boxcar(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L162]

	Return a boxcar or rectangular window.

Also known as a rectangular window or Dirichlet window, this is equivalent
to no window at all.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the window is symmetric. (Has no effect for boxcar.)

	Returns:

	w – The window, with the maximum value normalized to 1.

	Return type:

	ndarray

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import boxcar
>>> import cupy
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = boxcar(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Boxcar window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the boxcar window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.chebwin

	
cupyx.scipy.signal.windows.chebwin(M, at, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1614]

	Return a Dolph-Chebyshev window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	at (float [https://docs.python.org/3/library/functions.html#float]) – Attenuation (in dB).

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value always normalized to 1

	Return type:

	ndarray

Notes

This window optimizes for the narrowest main lobe width for a given order
M and sidelobe equiripple attenuation at, using Chebyshev
polynomials. It was originally developed by Dolph to optimize the
directionality of radio antenna arrays.

Unlike most windows, the Dolph-Chebyshev is defined in terms of its
frequency response:

\[W(k) = \frac
{\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}}
{\cosh[M \cosh^{-1}(\beta)]}\]

where

\[\beta = \cosh \left [\frac{1}{M}
\cosh^{-1}(10^\frac{A}{20}) \right]\]

and 0 <= abs(k) <= M-1. A is the attenuation in decibels (at).

The time domain window is then generated using the IFFT, so
power-of-two M are the fastest to generate, and prime number M are
the slowest.

The equiripple condition in the frequency domain creates impulses in the
time domain, which appear at the ends of the window.

For more information, see [1], [2] and [3]

References

[1]
C. Dolph, “A current distribution for broadside arrays which
optimizes the relationship between beam width and side-lobe level”,
Proceedings of the IEEE, Vol. 34, Issue 6

[2]
Peter Lynch, “The Dolph-Chebyshev Window: A Simple Optimal Filter”,
American Meteorological Society (April 1997)
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf

[3]
F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transforms”, Proceedings of the IEEE, Vol. 66,
No. 1, January 1978

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.chebwin(51, at=100)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.cosine

	
cupyx.scipy.signal.windows.cosine(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1749]

	Return a window with a simple cosine shape.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

New in version 0.13.0.

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.cosine(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Cosine window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the cosine window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.show()

cupyx.scipy.signal.windows.exponential

	
cupyx.scipy.signal.windows.exponential(M, center=None, tau=1.0, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1820]

	Return an exponential (or Poisson) window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	center (float [https://docs.python.org/3/library/functions.html#float], optional) – Parameter defining the center location of the window function.
The default value if not given is center = (M-1) / 2. This
parameter must take its default value for symmetric windows.

	tau (float [https://docs.python.org/3/library/functions.html#float], optional) – Parameter defining the decay. For center = 0 use
tau = -(M-1) / ln(x) if x is the fraction of the window
remaining at the end.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Exponential window is defined as

\[w(n) = e^{-|n-center| / \tau}\]

References

S. Gade and H. Herlufsen, “Windows to FFT analysis (Part I)”,
Technical Review 3, Bruel & Kjaer, 1987.

Examples

Plot the symmetric window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> M = 51
>>> tau = 3.0
>>> window = cupyx.scipy.signal.windows.exponential(M, tau=tau)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Exponential Window (tau=3.0)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -35, 0])
>>> plt.title("Frequency response of the Exponential window (tau=3.0)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

This function can also generate non-symmetric windows:

>>> tau2 = -(M-1) / np.log(0.01)
>>> window2 = cupyx.scipy.signal.windows.exponential(M, 0, tau2, False)
>>> plt.figure()
>>> plt.plot(cupy.asnumpy(window2))
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

cupyx.scipy.signal.windows.flattop

	
cupyx.scipy.signal.windows.flattop(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L677]

	Return a flat top window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

Flat top windows are used for taking accurate measurements of signal
amplitude in the frequency domain, with minimal scalloping error from the
center of a frequency bin to its edges, compared to others. This is a
5th-order cosine window, with the 5 terms optimized to make the main lobe
maximally flat. [1]

References

[1]
D’Antona, Gabriele, and A. Ferrero, “Digital Signal Processing for
Measurement Systems”, Springer Media, 2006, p. 70
10.1007/0-387-28666-7 [https://doi.org/10.1007/0-387-28666-7]

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import flattop
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = flattop(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Flat top window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the flat top window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.gaussian

	
cupyx.scipy.signal.windows.gaussian(M, std, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1440]

	Return a Gaussian window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	std (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation, sigma.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Gaussian window is defined as

\[w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 }\]

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.gaussian(51, std=7)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Gaussian window (σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Frequency response of the Gaussian window (σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.general_cosine

	
cupyx.scipy.signal.windows.general_cosine(M, a, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L75]

	Generic weighted sum of cosine terms window

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window

	a (array_like) – Sequence of weighting coefficients. This uses the convention of being
centered on the origin, so these will typically all be positive
numbers, not alternating sign.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

Notes

For more information, see [1] and [2]

References

[1]
A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 1, pp. 84-91, Feb 1981.
10.1109/TASSP.1981.1163506 [https://doi.org/10.1109/TASSP.1981.1163506]

[2]
(1,2)
Heinzel G. et al., “Spectrum and spectral density estimation by the
Discrete Fourier transform (DFT), including a comprehensive list of
window functions and some new flat-top windows”, February 15, 2002
https://holometer.fnal.gov/GH_FFT.pdf

Examples

Heinzel describes a flat-top window named “HFT90D” with formula: [2]

\[w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z)
- 0.440811 \cos(3z) + 0.043097 \cos(4z)\]

where

\[z = \frac{2 \pi j}{N}, j = 0...N - 1\]

Since this uses the convention of starting at the origin, to reproduce the
window, we need to convert every other coefficient to a positive number:

>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]

The paper states that the highest sidelobe is at -90.2 dB. Reproduce
Figure 42 by plotting the window and its frequency response, and confirm
the sidelobe level in red:

>>> from cupyx.scipy.signal.windows import general_cosine
>>> from cupy.fft import fft, fftshift
>>> import cupy
>>> import matplotlib.pyplot as plt

>>> window = general_cosine(1000, HFT90D, sym=False)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("HFT90D window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 10000) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-50/1000, 50/1000, -140, 0])
>>> plt.title("Frequency response of the HFT90D window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axhline(-90.2, color='red')
>>> plt.show()

cupyx.scipy.signal.windows.general_gaussian

	
cupyx.scipy.signal.windows.general_gaussian(M, p, sig, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1514]

	Return a window with a generalized Gaussian shape.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Shape parameter. p = 1 is identical to gaussian, p = 0.5 is
the same shape as the Laplace distribution.

	sig (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation, sigma.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The generalized Gaussian window is defined as

\[w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} }\]

the half-power point is at

\[(2 \log(2))^{1/(2 p)} \sigma\]

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.general_gaussian(51, p=1.5, sig=7)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Generalized Gaussian window (p=1.5, σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Freq. resp. of the gen. Gaussian "
... r"window (p=1.5, σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.general_hamming

	
cupyx.scipy.signal.windows.general_hamming(M, alpha, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1108]

	Return a generalized Hamming window.

The generalized Hamming window is constructed by multiplying a rectangular
window by one period of a cosine function [1].

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The window coefficient, \(\alpha\)

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The generalized Hamming window is defined as

\[w(n) = \alpha -
\left(1 - \alpha\right) \cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

Both the common Hamming window and Hann window are special cases of the
generalized Hamming window with \(\alpha\) = 0.54 and \(\alpha\) =
0.5, respectively [2].

See also

hamming, hann

Examples

The Sentinel-1A/B Instrument Processing Facility uses generalized Hamming
windows in the processing of spaceborne Synthetic Aperture Radar (SAR)
data [3]. The facility uses various values for the \(\alpha\)
parameter based on operating mode of the SAR instrument. Some common
\(\alpha\) values include 0.75, 0.7 and 0.52 [4]. As an example, we
plot these different windows.

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> fig1, spatial_plot = plt.subplots()
>>> spatial_plot.set_title("Generalized Hamming Windows")
>>> spatial_plot.set_ylabel("Amplitude")
>>> spatial_plot.set_xlabel("Sample")

>>> fig2, freq_plot = plt.subplots()
>>> freq_plot.set_title("Frequency Responses")
>>> freq_plot.set_ylabel("Normalized magnitude [dB]")
>>> freq_plot.set_xlabel("Normalized frequency [cycles per sample]")

>>> for alpha in [0.75, 0.7, 0.52]:
... window = cupyx.scipy.signal.windows.general_hamming(41, alpha)
... spatial_plot.plot(cupy.asnumpy(window), label="{:.2f}".format(alpha))
... A = fft(window, 2048) / (len(window)/2.0)
... freq = cupy.linspace(-0.5, 0.5, len(A))
... response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
... freq_plot.plot(
... cupy.asnumpy(freq), cupy.asnumpy(response),
... label="{:.2f}".format(alpha)
...)
>>> freq_plot.legend(loc="upper right")
>>> spatial_plot.legend(loc="upper right")

References

[1]
DSPRelated, “Generalized Hamming Window Family”,
https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html

[2]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function

[3]
Riccardo Piantanida ESA, “Sentinel-1 Level 1 Detailed Algorithm
Definition”,
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition

[4]
Matthieu Bourbigot ESA, “Sentinel-1 Product Definition”,
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition

cupyx.scipy.signal.windows.hamming

	
cupyx.scipy.signal.windows.hamming(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1212]

	Return a Hamming window.

The Hamming window is a taper formed by using a raised cosine with
non-zero endpoints, optimized to minimize the nearest side lobe.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Hamming window is defined as

\[w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
is described in Blackman and Tukey. It was recommended for smoothing the
truncated autocovariance function in the time domain.
Most references to the Hamming window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

For more information, see [1], [2], [3] and [4]

References

[1]
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.

[2]
E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The
University of Alberta Press, 1975, pp. 109-110.

[3]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function

[4]
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 425.

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.hamming(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Hamming window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hamming window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.hann

	
cupyx.scipy.signal.windows.hann(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L856]

	Return a Hann window.

The Hann window is a taper formed by using a raised cosine or sine-squared
with ends that touch zero.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Hann window is defined as

\[w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1\]

The window was named for Julius von Hann, an Austrian meteorologist. It is
also known as the Cosine Bell. It is sometimes erroneously referred to as
the “Hanning” window, from the use of “hann” as a verb in the original
paper and confusion with the very similar Hamming window.

Most references to the Hann window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

For more information, see [1], [2], [3], and [4]

References

[1]
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.

[2]
E.R. Kanasewich, “Time Sequence Analysis in Geophysics”,
The University of Alberta Press, 1975, pp. 106-108.

[3]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function

[4]
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 425.

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.hann(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(np.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.kaiser

	
cupyx.scipy.signal.windows.kaiser(M, beta, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1307]

	Return a Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Shape parameter, determines trade-off between main-lobe width and
side lobe level. As beta gets large, the window narrows.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

The Kaiser window is defined as

\[w(n) = I_0\left(\beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
\right)/I_0(\beta)\]

with

\[\quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},\]

where \(I_0\) is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation
to the DPSS window based on Bessel functions.
The Kaiser window is a very good approximation to the Digital Prolate
Spheroidal Sequence, or Slepian window, which is the transform which
maximizes the energy in the main lobe of the window relative to total
energy.

The Kaiser can approximate other windows by varying the beta parameter.
(Some literature uses alpha = beta/pi.) [4]

	beta

	Window shape

	0

	Rectangular

	5

	Similar to a Hamming

	6

	Similar to a Hann

	8.6

	Similar to a Blackman

A beta value of 14 is probably a good starting point. Note that as beta
gets large, the window narrows, and so the number of samples needs to be
large enough to sample the increasingly narrow spike, otherwise NaNs will
be returned.

Most references to the Kaiser window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

For more information, see [1], [2], [3], and [4]

References

[1]
J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by
digital computer”, Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
John Wiley and Sons, New York, (1966).

[2]
E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The
University of Alberta Press, 1975, pp. 177-178.

[3]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function

[4]
(1,2)
F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proceedings of the IEEE, vol. 66,
no. 1, pp. 51-83, Jan. 1978.
10.1109/PROC.1978.10837 [https://doi.org/10.1109/PROC.1978.10837]

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.kaiser(51, beta=14)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Kaiser window (β=14)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Frequency response of the Kaiser window (β=14)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.nuttall

	
cupyx.scipy.signal.windows.nuttall(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L564]

	Return a minimum 4-term Blackman-Harris window according to Nuttall.

This variation is called “Nuttall4c” by Heinzel. [2]

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

For more information, see [1] and [2]

References

[1]
A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 1, pp. 84-91, Feb 1981.
10.1109/TASSP.1981.1163506 [https://doi.org/10.1109/TASSP.1981.1163506]

[2]
(1,2)
Heinzel G. et al., “Spectrum and spectral density estimation by the
Discrete Fourier transform (DFT), including a comprehensive list of
window functions and some new flat-top windows”, February 15, 2002
https://holometer.fnal.gov/GH_FFT.pdf

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import nuttall
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = nuttall(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Nuttall window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Nuttall window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.parzen

	
cupyx.scipy.signal.windows.parzen(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L341]

	Return a Parzen window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero, an empty array
is returned. An exception is thrown when it is negative.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

For more information, see [1].

References

[1]
E. Parzen, “Mathematical Considerations in the Estimation of
Spectra”, Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-190

Examples

Plot the window and its frequency response:

>>> import cupy as cp
>>> from cupyx.scipy import signal
>>> from cupyx.scipy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.windows.parzen(51)
>>> plt.plot(window)
>>> plt.title("Parzen window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cp.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cp.log10(cp.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Parzen window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.taylor

	
cupyx.scipy.signal.windows.taylor(M, nbar=4, sll=30, norm=True, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L1939]

	Return a Taylor window.
The Taylor window taper function approximates the Dolph-Chebyshev window’s
constant sidelobe level for a parameterized number of near-in sidelobes,
but then allows a taper beyond [2].
The SAR (synthetic aperature radar) community commonly uses Taylor
weighting for image formation processing because it provides strong,
selectable sidelobe suppression with minimum broadening of the
mainlobe [1].

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an
empty array is returned.

	nbar (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of nearly constant level sidelobes adjacent to the mainlobe.

	sll (float [https://docs.python.org/3/library/functions.html#float], optional) – Desired suppression of sidelobe level in decibels (dB) relative to the
DC gain of the mainlobe. This should be a positive number.

	norm (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), divides the window by the largest (middle) value
for odd-length windows or the value that would occur between the two
repeated middle values for even-length windows such that all values
are less than or equal to 1. When False the DC gain will remain at 1
(0 dB) and the sidelobes will be sll dB down.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	out – The window. When norm is True (default), the maximum value is
normalized to 1 (though the value 1 does not appear if M is
even and sym is True).

	Return type:

	array

See also

chebwin, kaiser, bartlett, blackman, hamming, hanning

References

[1]
W. Carrara, R. Goodman, and R. Majewski, “Spotlight Synthetic
Aperture Radar: Signal Processing Algorithms” Pages 512-513,
July 1995.

[2]
Armin Doerry, “Catalog of Window Taper Functions for
Sidelobe Control”, 2017.
https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf

Examples

Plot the window and its frequency response:
>>> from scipy import signal
>>> from scipy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt
>>> window = signal.windows.taylor(51, nbar=20, sll=100, norm=False)
>>> plt.plot(window)
>>> plt.title(“Taylor window (100 dB)”)
>>> plt.ylabel(“Amplitude”)
>>> plt.xlabel(“Sample”)
>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(“Frequency response of the Taylor window (100 dB)”)
>>> plt.ylabel(“Normalized magnitude [dB]”)
>>> plt.xlabel(“Normalized frequency [cycles per sample]”)

cupyx.scipy.signal.windows.triang

	
cupyx.scipy.signal.windows.triang(M, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L240]

	Return a triangular window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

See also

	bartlett
	A triangular window that touches zero

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import triang
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = triang(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Triangular window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the triangular window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.tukey

	
cupyx.scipy.signal.windows.tukey(M, alpha=0.5, sym=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/signal/windows/_windows.py#L962]

	Return a Tukey window, also known as a tapered cosine window.

	Parameters:

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of points in the output window. If zero or less, an empty
array is returned.

	alpha (float [https://docs.python.org/3/library/functions.html#float], optional) – Shape parameter of the Tukey window, representing the fraction of the
window inside the cosine tapered region.
If zero, the Tukey window is equivalent to a rectangular window.
If one, the Tukey window is equivalent to a Hann window.

	sym (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When True (default), generates a symmetric window, for use in filter
design.
When False, generates a periodic window, for use in spectral analysis.

	Returns:

	w – The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

	Return type:

	ndarray

Notes

For more information, see [1] and [2].

References

[1]
Harris, Fredric J. (Jan 1978). “On the use of Windows for Harmonic
Analysis with the Discrete Fourier Transform”. Proceedings of the
IEEE 66 (1): 51-83.
10.1109/PROC.1978.10837 [https://doi.org/10.1109/PROC.1978.10837]

[2]
Wikipedia, “Window function”,
https://en.wikipedia.org/wiki/Window_function#Tukey_window

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.tukey(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Tukey window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.ylim([0, 1.1])

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Tukey window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

Sparse matrices (cupyx.scipy.sparse)

Hint

SciPy API Reference: Sparse matrices (scipy.sparse) [https://docs.scipy.org/doc/scipy/reference/sparse.html]

CuPy supports sparse matrices using cuSPARSE [https://developer.nvidia.com/cusparse].
These matrices have the same interfaces of SciPy’s sparse matrices [https://docs.scipy.org/doc/scipy/reference/sparse.html].

Conversion to/from SciPy sparse matrices

cupyx.scipy.sparse.*_matrix and scipy.sparse.*_matrix are not implicitly convertible to each other.
That means, SciPy functions cannot take cupyx.scipy.sparse.*_matrix objects as inputs, and vice versa.

	To convert SciPy sparse matrices to CuPy, pass it to the constructor of each CuPy sparse matrix class.

	To convert CuPy sparse matrices to SciPy, use get method of each CuPy sparse matrix class.

Note that converting between CuPy and SciPy incurs data transfer between
the host (CPU) device and the GPU device, which is costly in terms of performance.

Conversion to/from CuPy ndarrays

	To convert CuPy ndarray to CuPy sparse matrices, pass it to the constructor of each CuPy sparse matrix class.

	To convert CuPy sparse matrices to CuPy ndarray, use toarray of each CuPy sparse matrix instance (e.g., cupyx.scipy.sparse.csr_matrix.toarray()).

Converting between CuPy ndarray and CuPy sparse matrices does not incur data transfer; it is copied inside the GPU device.

Contents

Sparse matrix classes

	coo_matrix(arg1[, shape, dtype, copy])

	COOrdinate format sparse matrix.

	csc_matrix(arg1[, shape, dtype, copy])

	Compressed Sparse Column matrix.

	csr_matrix(arg1[, shape, dtype, copy])

	Compressed Sparse Row matrix.

	dia_matrix(arg1[, shape, dtype, copy])

	Sparse matrix with DIAgonal storage.

	spmatrix([maxprint])

	Base class of all sparse matrixes.

Functions

Building sparse matrices:

	eye(m[, n, k, dtype, format])

	Creates a sparse matrix with ones on diagonal.

	identity(n[, dtype, format])

	Creates an identity matrix in sparse format.

	kron(A, B[, format])

	Kronecker product of sparse matrices A and B.

	kronsum(A, B[, format])

	Kronecker sum of sparse matrices A and B.

	diags(diagonals[, offsets, shape, format, dtype])

	Construct a sparse matrix from diagonals.

	spdiags(data, diags, m, n[, format])

	Creates a sparse matrix from diagonals.

	tril(A[, k, format])

	Returns the lower triangular portion of a matrix in sparse format

	triu(A[, k, format])

	Returns the upper triangular portion of a matrix in sparse format

	bmat(blocks[, format, dtype])

	Builds a sparse matrix from sparse sub-blocks

	hstack(blocks[, format, dtype])

	Stacks sparse matrices horizontally (column wise)

	vstack(blocks[, format, dtype])

	Stacks sparse matrices vertically (row wise)

	rand(m, n[, density, format, dtype, ...])

	Generates a random sparse matrix.

	random(m, n[, density, format, dtype, ...])

	Generates a random sparse matrix.

Sparse matrix tools:

	find(A)

	Returns the indices and values of the nonzero elements of a matrix

Identifying sparse matrices:

	issparse(x)

	Checks if a given matrix is a sparse matrix.

	isspmatrix(x)

	Checks if a given matrix is a sparse matrix.

	isspmatrix_csc(x)

	Checks if a given matrix is of CSC format.

	isspmatrix_csr(x)

	Checks if a given matrix is of CSR format.

	isspmatrix_coo(x)

	Checks if a given matrix is of COO format.

	isspmatrix_dia(x)

	Checks if a given matrix is of DIA format.

Submodules

	csgraph

	

	linalg

	

Exceptions

	scipy.sparse.SparseEfficiencyWarning [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseEfficiencyWarning.html#scipy.sparse.SparseEfficiencyWarning]

	scipy.sparse.SparseWarning [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseWarning.html#scipy.sparse.SparseWarning]

cupyx.scipy.sparse.coo_matrix

	
class cupyx.scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L18]

	COOrdinate format sparse matrix.

This can be instantiated in several ways.

	coo_matrix(D)
	D is a rank-2 cupy.ndarray.

	coo_matrix(S)
	S is another sparse matrix. It is equivalent to S.tocoo().

	coo_matrix((M, N), [dtype])
	It constructs an empty matrix whose shape is (M, N). Default dtype
is float64.

	coo_matrix((data, (row, col)))
	All data, row and col are one-dimenaional
cupy.ndarray.

	Parameters:

	
	arg1 – Arguments for the initializer.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of a matrix. Its length must be two.

	dtype – Data type. It must be an argument of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, copies of given data are always used.

See also

scipy.sparse.coo_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix]

Methods

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L57]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L66]

	

	
arcsin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsin.

	
arcsinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsinh.

	
arctan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctan.

	
arctanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctanh.

	
asformat(format)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L246]

	Return this matrix in a given sparse format.

	Parameters:

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format you need.

	
asfptype()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L257]

	Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself.
Otherwise it makes a copy with floating point type and the same format.

	Returns:

	A matrix with float type.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
astype(t)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L38]

	Casts the array to given data type.

	Parameters:

	dtype – Type specifier.

	Returns:

	A copy of the array with a given type.

	
ceil()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise ceil.

	
conj(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L50]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conjugate(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L307]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L60]

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L65]

	Returns number of non-zero entries.

Note

This method counts the actual number of non-zero entories, which
does not include explicit zero entries.
Instead nnz returns the number of entries including explicit
zeros.

	Returns:

	Number of non-zero entries.

	
deg2rad()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise deg2rad.

	
diagonal(k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L187]

	Returns the k-th diagonal of the matrix.

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements

	a[i – 0 (the main diagonal).

	Default (i+k].) – 0 (the main diagonal).

	Returns:

	The k-th diagonal.

	Return type:

	cupy.ndarray

	
dot(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L336]

	Ordinary dot product

	
eliminate_zeros()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L268]

	Removes zero entories in place.

	
expm1()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise expm1.

	
floor()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise floor.

	
get(stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L290]

	Returns a copy of the array on host memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:

	Copy of the array on host memory.

	Return type:

	scipy.sparse.coo_matrix

	
getH()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L343]

	

	
get_shape()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L275]

	Returns the shape of the matrix.

	Returns:

	Shape of the matrix.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
getformat()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L351]

	

	
getmaxprint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L354]

	

	
getnnz(axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L283]

	Returns the number of stored values, including explicit zeros.

	
log1p()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise log1p.

	
maximum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L363]

	

	
mean(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L80]

	Compute the arithmetic mean along the specified axis.

	Parameters:

	axis (int or None) – Axis along which the sum is computed.
If it is None, it computes the average of all the elements.
Select from {None, 0, 1, -2, -1}.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.mean()

	
minimum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L432]

	

	
multiply(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L435]

	Point-wise multiplication by another matrix

	
power(n, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L108]

	Elementwise power function.

	Parameters:

	
	n – Exponent.

	dtype – Type specifier.

	
rad2deg()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rad2deg.

	
reshape(*shape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L310]

	Gives a new shape to a sparse matrix without changing its data.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The new shape should be compatible with the original shape.

	order – {‘C’, ‘F’} (optional)
Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order. ‘F’ means to read
and write the elements using Fortran-like index order. Default:
C.

	Returns:

	sparse matrix

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
rint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rint.

	
set_shape(shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L467]

	

	
setdiag(values, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L218]

	Set diagonal or off-diagonal elements of the array.

	Parameters:

	
	values (ndarray) – New values of the diagonal elements. Values may
have any length. If the diagonal is longer than values, then
the remaining diagonal entries will not be set. If values are
longer than the diagonal, then the remaining values are
ignored. If a scalar value is given, all of the diagonal is set
to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which off-diagonal to set, corresponding to
elements a[i,i+k]. Default: 0 (the main diagonal).

	
sign()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sign.

	
sin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sin.

	
sinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sinh.

	
sqrt()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sqrt.

	
sum(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L485]

	Sums the matrix elements over a given axis.

	Parameters:

	
	axis (int or None) – Axis along which the sum is comuted.
If it is None, it computes the sum of all the elements.
Select from {None, 0, 1, -2, -1}.

	dtype – The type of returned matrix. If it is not specified, type
of the array is used.

	out (cupy.ndarray) – Output matrix.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.sum()

	
sum_duplicates()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L354]

	Eliminate duplicate matrix entries by adding them together.

Warning

When sorting the indices, CuPy follows the convention of cuSPARSE,
which is different from that of SciPy. Therefore, the order of the
output indices may differ:

>>> # 1 0 0
>>> # A = 1 1 0
>>> # 1 1 1
>>> data = cupy.array([1, 1, 1, 1, 1, 1], 'f')
>>> row = cupy.array([0, 1, 1, 2, 2, 2], 'i')
>>> col = cupy.array([0, 0, 1, 0, 1, 2], 'i')
>>> A = cupyx.scipy.sparse.coo_matrix((data, (row, col)),
... shape=(3, 3))
>>> a = A.get()
>>> A.sum_duplicates()
>>> a.sum_duplicates() # a is scipy.sparse.coo_matrix
>>> A.row
array([0, 1, 1, 2, 2, 2], dtype=int32)
>>> a.row
array([0, 1, 2, 1, 2, 2], dtype=int32)
>>> A.col
array([0, 0, 1, 0, 1, 2], dtype=int32)
>>> a.col
array([0, 0, 0, 1, 1, 2], dtype=int32)

Warning

Calling this function might synchronize the device.

See also

scipy.sparse.coo_matrix.sum_duplicates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sum_duplicates.html#scipy.sparse.coo_matrix.sum_duplicates]

	
tan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tan.

	
tanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tanh.

	
toarray(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L459]

	Returns a dense matrix representing the same value.

	Parameters:

	
	order (str [https://docs.python.org/3/library/stdtypes.html#str]) – Not supported.

	out – Not supported.

	Returns:

	Dense array representing the same value.

	Return type:

	cupy.ndarray

See also

scipy.sparse.coo_matrix.toarray() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.toarray.html#scipy.sparse.coo_matrix.toarray]

	
tobsr(blocksize=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L536]

	Convert this matrix to Block Sparse Row format.

	
tocoo(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L474]

	Converts the matrix to COOdinate format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
tocsc(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L490]

	Converts the matrix to Compressed Sparse Column format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in coo to csc conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
tocsr(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L515]

	Converts the matrix to Compressed Sparse Row format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in coo to csr conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
todense(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L552]

	Return a dense matrix representation of this matrix.

	
todia(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L556]

	Convert this matrix to sparse DIAgonal format.

	
todok(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L560]

	Convert this matrix to Dictionary Of Keys format.

	
tolil(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L564]

	Convert this matrix to LInked List format.

	
transpose(axes=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L540]

	Returns a transpose matrix.

	Parameters:

	
	axes – This option is not supported.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a returned matrix shares no data.
Otherwise, it shared data arrays as much as possible.

	Returns:

	Transpose matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
trunc()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise trunc.

	
__eq__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L79]

	Return self==value.

	
__ne__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L82]

	Return self!=value.

	
__lt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L85]

	Return self<value.

	
__le__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L91]

	Return self<=value.

	
__gt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L88]

	Return self>value.

	
__ge__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L94]

	Return self>=value.

	
__nonzero__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

Attributes

	
A

	Dense ndarray representation of this matrix.

This property is equivalent to
toarray() method.

	
H

	

	
T

	

	
device

	CUDA device on which this array resides.

	
dtype

	Data type of the matrix.

	
format = 'coo'

	

	
ndim

	

	
nnz

	

	
shape

	

	
size

	

cupyx.scipy.sparse.csc_matrix

	
class cupyx.scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L15]

	Compressed Sparse Column matrix.

This can be instantiated in several ways.

	csc_matrix(D)
	D is a rank-2 cupy.ndarray.

	csc_matrix(S)
	S is another sparse matrix. It is equivalent to S.tocsc().

	csc_matrix((M, N), [dtype])
	It constructs an empty matrix whose shape is (M, N). Default dtype
is float64.

	csc_matrix((data, (row, col)))
	All data, row and col are one-dimenaional
cupy.ndarray.

	csc_matrix((data, indices, indptr))
	All data, indices and indptr are one-dimenaional
cupy.ndarray.

	Parameters:

	
	arg1 – Arguments for the initializer.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of a matrix. Its length must be two.

	dtype – Data type. It must be an argument of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, copies of given arrays are always used.

See also

scipy.sparse.csc_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix]

Methods

	
__getitem__(key)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_index.py#L346]

	

	
__setitem__(key, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_index.py#L398]

	

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L57]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L66]

	

	
arcsin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsin.

	
arcsinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsinh.

	
arctan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctan.

	
arctanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctanh.

	
argmax(axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L330]

	Returns indices of maximum elements along an axis.

Implicit zero elements are taken into account. If there are several
maximum values, the index of the first occurrence is returned. If
NaN values occur in the matrix, the output defaults to a zero entry
for the row/column in which the NaN occurs.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the argmax is computed. If None (default),
index of the maximum element in the flatten data is returned.

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns:

	Indices of maximum elements. If array,
its size along axis is 1.

	Return type:

	(cupy.narray or int [https://docs.python.org/3/library/functions.html#int])

	
argmin(axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L354]

	Returns indices of minimum elements along an axis.

Implicit zero elements are taken into account. If there are several
minimum values, the index of the first occurrence is returned. If
NaN values occur in the matrix, the output defaults to a zero entry
for the row/column in which the NaN occurs.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the argmin is computed. If None (default),
index of the minimum element in the flatten data is returned.

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns:

	Indices of minimum elements. If matrix,
its size along axis is 1.

	Return type:

	(cupy.narray or int [https://docs.python.org/3/library/functions.html#int])

	
asformat(format)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L246]

	Return this matrix in a given sparse format.

	Parameters:

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format you need.

	
asfptype()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L257]

	Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself.
Otherwise it makes a copy with floating point type and the same format.

	Returns:

	A matrix with float type.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
astype(t)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L38]

	Casts the array to given data type.

	Parameters:

	dtype – Type specifier.

	Returns:

	A copy of the array with a given type.

	
ceil()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise ceil.

	
conj(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L50]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conjugate(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L307]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L60]

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L65]

	Returns number of non-zero entries.

Note

This method counts the actual number of non-zero entories, which
does not include explicit zero entries.
Instead nnz returns the number of entries including explicit
zeros.

	Returns:

	Number of non-zero entries.

	
deg2rad()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise deg2rad.

	
diagonal(k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L324]

	Returns the k-th diagonal of the matrix.

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements

	a[i – 0 (the main diagonal).

	Default (i+k].) – 0 (the main diagonal).

	Returns:

	The k-th diagonal.

	Return type:

	cupy.ndarray

	
dot(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L336]

	Ordinary dot product

	
eliminate_zeros()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L176]

	Removes zero entories in place.

	
expm1()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise expm1.

	
floor()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise floor.

	
get(stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L48]

	Returns a copy of the array on host memory.

Warning

You need to install SciPy to use this method.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:

	Copy of the array on host memory.

	Return type:

	scipy.sparse.csc_matrix

	
getH()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L343]

	

	
get_shape()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L719]

	Returns the shape of the matrix.

	Returns:

	Shape of the matrix.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
getcol(i)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L370]

	Returns a copy of column i of the matrix, as a (m x 1)
CSC matrix (column vector).

	Parameters:

	i (integer) – Column

	Returns:

	Sparse matrix with single column

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
getformat()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L351]

	

	
getmaxprint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L354]

	

	
getnnz(axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L728]

	Returns the number of stored values, including explicit zeros.

	Parameters:

	axis – Not supported yet.

	Returns:

	The number of stored values.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
getrow(i)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L358]

	Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).

	Parameters:

	i (integer) – Row

	Returns:

	Sparse matrix with single row

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
log1p()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise log1p.

	
max(axis=None, out=None, *, explicit=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L258]

	Returns the maximum of the matrix or maximum along an axis.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e. axis = None).

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.

	explicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the maximum value explicitly specified and
ignore all implicit zero entries. If the dimension has no
explicit values, a zero is then returned to indicate that it is
the only implicit value. This parameter is experimental and may
change in the future.

	Returns:

	Maximum of a. If axis is
None, the result is a scalar value. If axis is given,
the result is an array of dimension a.ndim - 1. This
differs from numpy for computational efficiency.

	Return type:

	(cupy.ndarray or float [https://docs.python.org/3/library/functions.html#float])

See also

min : The minimum value of a sparse matrix along a given
axis.

See also

numpy.matrix.max : NumPy’s implementation of max for
matrices

	
maximum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L363]

	

	
mean(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L80]

	Compute the arithmetic mean along the specified axis.

	Parameters:

	axis (int or None) – Axis along which the sum is computed.
If it is None, it computes the average of all the elements.
Select from {None, 0, 1, -2, -1}.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.mean()

	
min(axis=None, out=None, *, explicit=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L294]

	Returns the minimum of the matrix or maximum along an axis.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e. axis = None).

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	explicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the minimum value explicitly specified and
ignore all implicit zero entries. If the dimension has no
explicit values, a zero is then returned to indicate that it is
the only implicit value. This parameter is experimental and may
change in the future.

	Returns:

	Minimum of a. If axis is
None, the result is a scalar value. If axis is given, the
result is an array of dimension a.ndim - 1. This differs
from numpy for computational efficiency.

	Return type:

	(cupy.ndarray or float [https://docs.python.org/3/library/functions.html#float])

See also

max : The maximum value of a sparse matrix along a given
axis.

See also

numpy.matrix.min : NumPy’s implementation of ‘min’ for
matrices

	
minimum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L432]

	

	
multiply(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L435]

	Point-wise multiplication by another matrix

	
power(n, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L108]

	Elementwise power function.

	Parameters:

	
	n – Exponent.

	dtype – Type specifier.

	
rad2deg()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rad2deg.

	
reshape(*shape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L444]

	Gives a new shape to a sparse matrix without changing its data.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The new shape should be compatible with the original shape.

	order – {‘C’, ‘F’} (optional)
Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order. ‘F’ means to read
and write the elements using Fortran-like index order. Default:
C.

	Returns:

	sparse matrix

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
rint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rint.

	
set_shape(shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L467]

	

	
setdiag(values, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L470]

	Set diagonal or off-diagonal elements of the array.

	Parameters:

	
	values (cupy.ndarray) – New values of the diagonal elements.
Values may have any length. If the diagonal is longer than
values, then the remaining diagonal entries will not be set.
If values is longer than the diagonal, then the remaining
values are ignored. If a scalar value is given, all of the
diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to set, corresponding to elements
a[i, i+k]. Default: 0 (the main diagonal).

	
sign()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sign.

	
sin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sin.

	
sinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sinh.

	
sort_indices()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L190]

	Sorts the indices of this matrix in place.

Warning

Calling this function might synchronize the device.

	
sorted_indices()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L743]

	Return a copy of this matrix with sorted indices

Warning

Calling this function might synchronize the device.

	
sqrt()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sqrt.

	
sum(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L485]

	Sums the matrix elements over a given axis.

	Parameters:

	
	axis (int or None) – Axis along which the sum is comuted.
If it is None, it computes the sum of all the elements.
Select from {None, 0, 1, -2, -1}.

	dtype – The type of returned matrix. If it is not specified, type
of the array is used.

	out (cupy.ndarray) – Output matrix.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.sum()

	
sum_duplicates()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L759]

	Eliminate duplicate matrix entries by adding them together.

Note

This is an in place operation.

Warning

Calling this function might synchronize the device.

See also

scipy.sparse.csr_matrix.sum_duplicates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum_duplicates.html#scipy.sparse.csr_matrix.sum_duplicates],
scipy.sparse.csc_matrix.sum_duplicates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates]

	
tan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tan.

	
tanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tanh.

	
toarray(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L203]

	Returns a dense matrix representing the same value.

	Parameters:

	
	order ({'C', 'F', None}) – Whether to store data in C (row-major)
order or F (column-major) order. Default is C-order.

	out – Not supported.

	Returns:

	Dense array representing the same matrix.

	Return type:

	cupy.ndarray

See also

scipy.sparse.csc_matrix.toarray() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.toarray.html#scipy.sparse.csc_matrix.toarray]

	
tobsr(blocksize=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L536]

	Convert this matrix to Block Sparse Row format.

	
tocoo(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L264]

	Converts the matrix to COOdinate format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
tocsc(copy=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L286]

	Converts the matrix to Compressed Sparse Column format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the method returns itself.
Otherwise it makes a copy of the matrix.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
tocsr(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L302]

	Converts the matrix to Compressed Sparse Row format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in csr to csc conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
todense(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L552]

	Return a dense matrix representation of this matrix.

	
todia(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L556]

	Convert this matrix to sparse DIAgonal format.

	
todok(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L560]

	Convert this matrix to Dictionary Of Keys format.

	
tolil(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L564]

	Convert this matrix to LInked List format.

	
transpose(axes=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L335]

	Returns a transpose matrix.

	Parameters:

	
	axes – This option is not supported.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a returned matrix shares no data.
Otherwise, it shared data arrays as much as possible.

	Returns:

	self with the dimensions reversed.

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
trunc()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise trunc.

	
__eq__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L79]

	Return self==value.

	
__ne__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L82]

	Return self!=value.

	
__lt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L85]

	Return self<value.

	
__le__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L91]

	Return self<=value.

	
__gt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L88]

	Return self>value.

	
__ge__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L94]

	Return self>=value.

	
__nonzero__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

Attributes

	
A

	Dense ndarray representation of this matrix.

This property is equivalent to
toarray() method.

	
H

	

	
T

	

	
device

	CUDA device on which this array resides.

	
dtype

	Data type of the matrix.

	
format = 'csc'

	

	
has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates.

	Returns
	bool: True if the above applies, otherwise False.

Note

has_canonical_format implies has_sorted_indices, so
if the latter flag is False, so will the former be; if the
former is found True, the latter flag is also set.

Warning

Getting this property might synchronize the device.

	
has_sorted_indices

	Determine whether the matrix has sorted indices.

	Returns
	
	bool:
	True if the indices of the matrix are in sorted order,
otherwise False.

Warning

Getting this property might synchronize the device.

	
ndim

	

	
nnz

	

	
shape

	

	
size

	

cupyx.scipy.sparse.csr_matrix

	
class cupyx.scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L23]

	Compressed Sparse Row matrix.

This can be instantiated in several ways.

	csr_matrix(D)
	D is a rank-2 cupy.ndarray.

	csr_matrix(S)
	S is another sparse matrix. It is equivalent to S.tocsr().

	csr_matrix((M, N), [dtype])
	It constructs an empty matrix whose shape is (M, N). Default dtype
is float64.

	csr_matrix((data, (row, col)))
	All data, row and col are one-dimenaional
cupy.ndarray.

	csr_matrix((data, indices, indptr))
	All data, indices and indptr are one-dimenaional
cupy.ndarray.

	Parameters:

	
	arg1 – Arguments for the initializer.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of a matrix. Its length must be two.

	dtype – Data type. It must be an argument of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, copies of given arrays are always used.

See also

scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix]

Methods

	
__getitem__(key)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_index.py#L346]

	

	
__setitem__(key, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_index.py#L398]

	

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L57]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L66]

	

	
arcsin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsin.

	
arcsinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsinh.

	
arctan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctan.

	
arctanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctanh.

	
argmax(axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L330]

	Returns indices of maximum elements along an axis.

Implicit zero elements are taken into account. If there are several
maximum values, the index of the first occurrence is returned. If
NaN values occur in the matrix, the output defaults to a zero entry
for the row/column in which the NaN occurs.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the argmax is computed. If None (default),
index of the maximum element in the flatten data is returned.

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns:

	Indices of maximum elements. If array,
its size along axis is 1.

	Return type:

	(cupy.narray or int [https://docs.python.org/3/library/functions.html#int])

	
argmin(axis=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L354]

	Returns indices of minimum elements along an axis.

Implicit zero elements are taken into account. If there are several
minimum values, the index of the first occurrence is returned. If
NaN values occur in the matrix, the output defaults to a zero entry
for the row/column in which the NaN occurs.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the argmin is computed. If None (default),
index of the minimum element in the flatten data is returned.

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns:

	Indices of minimum elements. If matrix,
its size along axis is 1.

	Return type:

	(cupy.narray or int [https://docs.python.org/3/library/functions.html#int])

	
asformat(format)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L246]

	Return this matrix in a given sparse format.

	Parameters:

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format you need.

	
asfptype()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L257]

	Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself.
Otherwise it makes a copy with floating point type and the same format.

	Returns:

	A matrix with float type.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
astype(t)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L38]

	Casts the array to given data type.

	Parameters:

	dtype – Type specifier.

	Returns:

	A copy of the array with a given type.

	
ceil()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise ceil.

	
conj(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L50]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conjugate(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L307]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L60]

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L65]

	Returns number of non-zero entries.

Note

This method counts the actual number of non-zero entories, which
does not include explicit zero entries.
Instead nnz returns the number of entries including explicit
zeros.

	Returns:

	Number of non-zero entries.

	
deg2rad()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise deg2rad.

	
diagonal(k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L276]

	Returns the k-th diagonal of the matrix.

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements

	a[i – 0 (the main diagonal).

	Default (i+k].) – 0 (the main diagonal).

	Returns:

	The k-th diagonal.

	Return type:

	cupy.ndarray

	
dot(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L336]

	Ordinary dot product

	
eliminate_zeros()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L287]

	Removes zero entories in place.

	
expm1()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise expm1.

	
floor()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise floor.

	
get(stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L56]

	Returns a copy of the array on host memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:

	Copy of the array on host memory.

	Return type:

	scipy.sparse.csr_matrix

	
getH()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L343]

	

	
get_shape()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L719]

	Returns the shape of the matrix.

	Returns:

	Shape of the matrix.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
getcol(i)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L554]

	Returns a copy of column i of the matrix, as a (m x 1)
CSR matrix (column vector).

	Parameters:

	i (integer) – Column

	Returns:

	Sparse matrix with single column

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
getformat()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L351]

	

	
getmaxprint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L354]

	

	
getnnz(axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L728]

	Returns the number of stored values, including explicit zeros.

	Parameters:

	axis – Not supported yet.

	Returns:

	The number of stored values.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
getrow(i)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L542]

	Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).

	Parameters:

	i (integer) – Row

	Returns:

	Sparse matrix with single row

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
log1p()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise log1p.

	
max(axis=None, out=None, *, explicit=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L258]

	Returns the maximum of the matrix or maximum along an axis.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e. axis = None).

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.

	explicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the maximum value explicitly specified and
ignore all implicit zero entries. If the dimension has no
explicit values, a zero is then returned to indicate that it is
the only implicit value. This parameter is experimental and may
change in the future.

	Returns:

	Maximum of a. If axis is
None, the result is a scalar value. If axis is given,
the result is an array of dimension a.ndim - 1. This
differs from numpy for computational efficiency.

	Return type:

	(cupy.ndarray or float [https://docs.python.org/3/library/functions.html#float])

See also

min : The minimum value of a sparse matrix along a given
axis.

See also

numpy.matrix.max : NumPy’s implementation of max for
matrices

	
maximum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L327]

	

	
mean(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L80]

	Compute the arithmetic mean along the specified axis.

	Parameters:

	axis (int or None) – Axis along which the sum is computed.
If it is None, it computes the average of all the elements.
Select from {None, 0, 1, -2, -1}.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.mean()

	
min(axis=None, out=None, *, explicit=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L294]

	Returns the minimum of the matrix or maximum along an axis.

	Parameters:

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – {-2, -1, 0, 1, None} (optional)
Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e. axis = None).

	out (None) – (optional)
This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	explicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the minimum value explicitly specified and
ignore all implicit zero entries. If the dimension has no
explicit values, a zero is then returned to indicate that it is
the only implicit value. This parameter is experimental and may
change in the future.

	Returns:

	Minimum of a. If axis is
None, the result is a scalar value. If axis is given, the
result is an array of dimension a.ndim - 1. This differs
from numpy for computational efficiency.

	Return type:

	(cupy.ndarray or float [https://docs.python.org/3/library/functions.html#float])

See also

max : The maximum value of a sparse matrix along a given
axis.

See also

numpy.matrix.min : NumPy’s implementation of ‘min’ for
matrices

	
minimum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L331]

	

	
multiply(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L335]

	Point-wise multiplication by another matrix, vector or scalar

	
power(n, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L108]

	Elementwise power function.

	Parameters:

	
	n – Exponent.

	dtype – Type specifier.

	
rad2deg()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rad2deg.

	
reshape(*shape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L444]

	Gives a new shape to a sparse matrix without changing its data.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The new shape should be compatible with the original shape.

	order – {‘C’, ‘F’} (optional)
Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order. ‘F’ means to read
and write the elements using Fortran-like index order. Default:
C.

	Returns:

	sparse matrix

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
rint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rint.

	
set_shape(shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L467]

	

	
setdiag(values, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L353]

	Set diagonal or off-diagonal elements of the array.

	
sign()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sign.

	
sin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sin.

	
sinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sinh.

	
sort_indices()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L377]

	Sorts the indices of this matrix in place.

Warning

Calling this function might synchronize the device.

	
sorted_indices()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L743]

	Return a copy of this matrix with sorted indices

Warning

Calling this function might synchronize the device.

	
sqrt()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sqrt.

	
sum(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L485]

	Sums the matrix elements over a given axis.

	Parameters:

	
	axis (int or None) – Axis along which the sum is comuted.
If it is None, it computes the sum of all the elements.
Select from {None, 0, 1, -2, -1}.

	dtype – The type of returned matrix. If it is not specified, type
of the array is used.

	out (cupy.ndarray) – Output matrix.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.sum()

	
sum_duplicates()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_compressed.py#L759]

	Eliminate duplicate matrix entries by adding them together.

Note

This is an in place operation.

Warning

Calling this function might synchronize the device.

See also

scipy.sparse.csr_matrix.sum_duplicates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum_duplicates.html#scipy.sparse.csr_matrix.sum_duplicates],
scipy.sparse.csc_matrix.sum_duplicates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates]

	
tan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tan.

	
tanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tanh.

	
toarray(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L390]

	Returns a dense matrix representing the same value.

	Parameters:

	
	order ({'C', 'F', None}) – Whether to store data in C (row-major)
order or F (column-major) order. Default is C-order.

	out – Not supported.

	Returns:

	Dense array representing the same matrix.

	Return type:

	cupy.ndarray

See also

scipy.sparse.csr_matrix.toarray() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html#scipy.sparse.csr_matrix.toarray]

	
tobsr(blocksize=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L436]

	Convert this matrix to Block Sparse Row format.

	
tocoo(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L440]

	Converts the matrix to COOdinate format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
tocsc(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L462]

	Converts the matrix to Compressed Sparse Column format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in csr to csc conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
tocsr(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L486]

	Converts the matrix to Compressed Sparse Row format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the method returns itself.
Otherwise it makes a copy of the matrix.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csr_matrix

	
todense(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L552]

	Return a dense matrix representation of this matrix.

	
todia(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L507]

	Convert this matrix to sparse DIAgonal format.

	
todok(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L511]

	Convert this matrix to Dictionary Of Keys format.

	
tolil(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L515]

	Convert this matrix to LInked List format.

	
transpose(axes=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L519]

	Returns a transpose matrix.

	Parameters:

	
	axes – This option is not supported.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a returned matrix shares no data.
Otherwise, it shared data arrays as much as possible.

	Returns:

	self with the dimensions reversed.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
trunc()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise trunc.

	
__eq__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L131]

	Return self==value.

	
__ne__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L134]

	Return self!=value.

	
__lt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L137]

	Return self<value.

	
__le__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L143]

	Return self<=value.

	
__gt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L140]

	Return self>value.

	
__ge__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L146]

	Return self>=value.

	
__nonzero__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

Attributes

	
A

	Dense ndarray representation of this matrix.

This property is equivalent to
toarray() method.

	
H

	

	
T

	

	
device

	CUDA device on which this array resides.

	
dtype

	Data type of the matrix.

	
format = 'csr'

	

	
has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates.

	Returns
	bool: True if the above applies, otherwise False.

Note

has_canonical_format implies has_sorted_indices, so
if the latter flag is False, so will the former be; if the
former is found True, the latter flag is also set.

Warning

Getting this property might synchronize the device.

	
has_sorted_indices

	Determine whether the matrix has sorted indices.

	Returns
	
	bool:
	True if the indices of the matrix are in sorted order,
otherwise False.

Warning

Getting this property might synchronize the device.

	
ndim

	

	
nnz

	

	
shape

	

	
size

	

cupyx.scipy.sparse.dia_matrix

	
class cupyx.scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L16]

	Sparse matrix with DIAgonal storage.

Now it has only one initializer format below:

dia_matrix((data, offsets))

	Parameters:

	
	arg1 – Arguments for the initializer.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of a matrix. Its length must be two.

	dtype – Data type. It must be an argument of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype].

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, copies of given arrays are always used.

See also

scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

Methods

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L57]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L66]

	

	
arcsin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsin.

	
arcsinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arcsinh.

	
arctan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctan.

	
arctanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise arctanh.

	
asformat(format)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L246]

	Return this matrix in a given sparse format.

	Parameters:

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format you need.

	
asfptype()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L257]

	Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself.
Otherwise it makes a copy with floating point type and the same format.

	Returns:

	A matrix with float type.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
astype(t)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L38]

	Casts the array to given data type.

	Parameters:

	dtype – Type specifier.

	Returns:

	A copy of the array with a given type.

	
ceil()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise ceil.

	
conj(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L50]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conjugate(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L307]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L60]

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L65]

	Returns number of non-zero entries.

Note

This method counts the actual number of non-zero entories, which
does not include explicit zero entries.
Instead nnz returns the number of entries including explicit
zeros.

	Returns:

	Number of non-zero entries.

	
deg2rad()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise deg2rad.

	
diagonal(k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L192]

	Returns the k-th diagonal of the matrix.

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements

	a[i – 0 (the main diagonal).

	Default (i+k].) – 0 (the main diagonal).

	Returns:

	The k-th diagonal.

	Return type:

	cupy.ndarray

	
dot(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L336]

	Ordinary dot product

	
expm1()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise expm1.

	
floor()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise floor.

	
get(stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L90]

	Returns a copy of the array on host memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:

	Copy of the array on host memory.

	Return type:

	scipy.sparse.dia_matrix

	
getH()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L343]

	

	
get_shape()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L107]

	Returns the shape of the matrix.

	Returns:

	Shape of the matrix.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
getformat()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L351]

	

	
getmaxprint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L354]

	

	
getnnz(axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L115]

	Returns the number of stored values, including explicit zeros.

	Parameters:

	axis – Not supported yet.

	Returns:

	The number of stored values.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
log1p()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise log1p.

	
maximum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L363]

	

	
mean(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L80]

	Compute the arithmetic mean along the specified axis.

	Parameters:

	axis (int or None) – Axis along which the sum is computed.
If it is None, it computes the average of all the elements.
Select from {None, 0, 1, -2, -1}.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.mean()

	
minimum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L432]

	

	
multiply(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L435]

	Point-wise multiplication by another matrix

	
power(n, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L108]

	Elementwise power function.

	Parameters:

	
	n – Exponent.

	dtype – Type specifier.

	
rad2deg()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rad2deg.

	
reshape(*shape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L444]

	Gives a new shape to a sparse matrix without changing its data.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The new shape should be compatible with the original shape.

	order – {‘C’, ‘F’} (optional)
Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order. ‘F’ means to read
and write the elements using Fortran-like index order. Default:
C.

	Returns:

	sparse matrix

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
rint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise rint.

	
set_shape(shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L467]

	

	
setdiag(values, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L470]

	Set diagonal or off-diagonal elements of the array.

	Parameters:

	
	values (cupy.ndarray) – New values of the diagonal elements.
Values may have any length. If the diagonal is longer than
values, then the remaining diagonal entries will not be set.
If values is longer than the diagonal, then the remaining
values are ignored. If a scalar value is given, all of the
diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to set, corresponding to elements
a[i, i+k]. Default: 0 (the main diagonal).

	
sign()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sign.

	
sin()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sin.

	
sinh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sinh.

	
sqrt()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise sqrt.

	
sum(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L485]

	Sums the matrix elements over a given axis.

	Parameters:

	
	axis (int or None) – Axis along which the sum is comuted.
If it is None, it computes the sum of all the elements.
Select from {None, 0, 1, -2, -1}.

	dtype – The type of returned matrix. If it is not specified, type
of the array is used.

	out (cupy.ndarray) – Output matrix.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.sum()

	
tan()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tan.

	
tanh()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise tanh.

	
toarray(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L136]

	Returns a dense matrix representing the same value.

	
tobsr(blocksize=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L536]

	Convert this matrix to Block Sparse Row format.

	
tocoo(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L540]

	Convert this matrix to COOrdinate format.

	
tocsc(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L140]

	Converts the matrix to Compressed Sparse Column format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in dia to csc conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
tocsr(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L178]

	Converts the matrix to Compressed Sparse Row format.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, it shares data arrays as much as
possible. Actually this option is ignored because all
arrays in a matrix cannot be shared in dia to csr conversion.

	Returns:

	Converted matrix.

	Return type:

	cupyx.scipy.sparse.csc_matrix

	
todense(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L552]

	Return a dense matrix representation of this matrix.

	
todia(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L556]

	Convert this matrix to sparse DIAgonal format.

	
todok(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L560]

	Convert this matrix to Dictionary Of Keys format.

	
tolil(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L564]

	Convert this matrix to LInked List format.

	
transpose(axes=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L568]

	Reverses the dimensions of the sparse matrix.

	
trunc()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_data.py#L382]

	Elementwise trunc.

	
__eq__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L79]

	Return self==value.

	
__ne__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L82]

	Return self!=value.

	
__lt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L85]

	Return self<value.

	
__le__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L91]

	Return self<=value.

	
__gt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L88]

	Return self>value.

	
__ge__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L94]

	Return self>=value.

	
__nonzero__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

Attributes

	
A

	Dense ndarray representation of this matrix.

This property is equivalent to
toarray() method.

	
H

	

	
T

	

	
device

	CUDA device on which this array resides.

	
dtype

	Data type of the matrix.

	
format = 'dia'

	

	
ndim

	

	
nnz

	

	
shape

	

	
size

	

cupyx.scipy.sparse.spmatrix

	
class cupyx.scipy.sparse.spmatrix(maxprint=50)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L24]

	Base class of all sparse matrixes.

See scipy.sparse.spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]

Methods

	
__len__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L57]

	

	
__iter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L66]

	

	
asformat(format)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L246]

	Return this matrix in a given sparse format.

	Parameters:

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format you need.

	
asfptype()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L257]

	Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself.
Otherwise it makes a copy with floating point type and the same format.

	Returns:

	A matrix with float type.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
astype(t)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L273]

	Casts the array to given data type.

	Parameters:

	t – Type specifier.

	Returns:

	A copy of the array with the given type and the same format.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conj(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L286]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
conjugate(copy=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L307]

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters:

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the result is guaranteed to not share data with self.

	Returns:

	The element-wise complex conjugate.

	Return type:

	cupyx.scipy.sparse.spmatrix

	
copy()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L312]

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L320]

	Number of non-zero entries, equivalent to

	
diagonal(k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L324]

	Returns the k-th diagonal of the matrix.

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements

	a[i – 0 (the main diagonal).

	Default (i+k].) – 0 (the main diagonal).

	Returns:

	The k-th diagonal.

	Return type:

	cupy.ndarray

	
dot(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L336]

	Ordinary dot product

	
get(stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L44]

	Return a copy of the array on host memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:

	An array on host memory.

	Return type:

	scipy.sparse.spmatrix

	
getH()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L343]

	

	
get_shape()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L346]

	

	
getformat()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L351]

	

	
getmaxprint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L354]

	

	
getnnz(axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L357]

	Number of stored values, including explicit zeros.

	
maximum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L363]

	

	
mean(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L366]

	Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken
over all elements in the matrix by default, otherwise over the
specified axis. float64 intermediate and return values are used
for integer inputs.

	Parameters:

	
	{-2 (axis) – optional
Axis along which the mean is computed. The default is to
compute the mean of all elements in the matrix
(i.e., axis = None).

	-1 – optional
Axis along which the mean is computed. The default is to
compute the mean of all elements in the matrix
(i.e., axis = None).

	0 – optional
Axis along which the mean is computed. The default is to
compute the mean of all elements in the matrix
(i.e., axis = None).

	1 – optional
Axis along which the mean is computed. The default is to
compute the mean of all elements in the matrix
(i.e., axis = None).

	None} – optional
Axis along which the mean is computed. The default is to
compute the mean of all elements in the matrix
(i.e., axis = None).

	dtype (dtype) – optional
Type to use in computing the mean. For integer inputs, the
default is float64; for floating point inputs, it is the same
as the input dtype.

	out (cupy.ndarray) – optional
Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

	Returns:

	Output array of means

	Return type:

	m (cupy.ndarray)

See also

scipy.sparse.spmatrix.mean()

	
minimum(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L432]

	

	
multiply(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L435]

	Point-wise multiplication by another matrix

	
power(n, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L441]

	

	
reshape(*shape, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L444]

	Gives a new shape to a sparse matrix without changing its data.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The new shape should be compatible with the original shape.

	order – {‘C’, ‘F’} (optional)
Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order. ‘F’ means to read
and write the elements using Fortran-like index order. Default:
C.

	Returns:

	sparse matrix

	Return type:

	cupyx.scipy.sparse.coo_matrix

	
set_shape(shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L467]

	

	
setdiag(values, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L470]

	Set diagonal or off-diagonal elements of the array.

	Parameters:

	
	values (cupy.ndarray) – New values of the diagonal elements.
Values may have any length. If the diagonal is longer than
values, then the remaining diagonal entries will not be set.
If values is longer than the diagonal, then the remaining
values are ignored. If a scalar value is given, all of the
diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to set, corresponding to elements
a[i, i+k]. Default: 0 (the main diagonal).

	
sum(axis=None, dtype=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L485]

	Sums the matrix elements over a given axis.

	Parameters:

	
	axis (int or None) – Axis along which the sum is comuted.
If it is None, it computes the sum of all the elements.
Select from {None, 0, 1, -2, -1}.

	dtype – The type of returned matrix. If it is not specified, type
of the array is used.

	out (cupy.ndarray) – Output matrix.

	Returns:

	Summed array.

	Return type:

	cupy.ndarray

See also

scipy.sparse.spmatrix.sum()

	
toarray(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L532]

	Return a dense ndarray representation of this matrix.

	
tobsr(blocksize=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L536]

	Convert this matrix to Block Sparse Row format.

	
tocoo(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L540]

	Convert this matrix to COOrdinate format.

	
tocsc(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L544]

	Convert this matrix to Compressed Sparse Column format.

	
tocsr(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L548]

	Convert this matrix to Compressed Sparse Row format.

	
todense(order=None, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L552]

	Return a dense matrix representation of this matrix.

	
todia(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L556]

	Convert this matrix to sparse DIAgonal format.

	
todok(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L560]

	Convert this matrix to Dictionary Of Keys format.

	
tolil(copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L564]

	Convert this matrix to LInked List format.

	
transpose(axes=None, copy=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L568]

	Reverses the dimensions of the sparse matrix.

	
__eq__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L79]

	Return self==value.

	
__ne__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L82]

	Return self!=value.

	
__lt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L85]

	Return self<value.

	
__le__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L91]

	Return self<=value.

	
__gt__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L88]

	Return self>value.

	
__ge__(other)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L94]

	Return self>=value.

	
__nonzero__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L70]

	

Attributes

	
A

	Dense ndarray representation of this matrix.

This property is equivalent to
toarray() method.

	
H

	

	
T

	

	
device

	CUDA device on which this array resides.

	
ndim

	

	
nnz

	

	
shape

	

	
size

	

cupyx.scipy.sparse.eye

	
cupyx.scipy.sparse.eye(m, n=None, k=0, dtype='d', format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L10]

	Creates a sparse matrix with ones on diagonal.

	Parameters:

	
	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	n (int [https://docs.python.org/3/library/functions.html#int] or None) – Number of columns. If it is None,
it makes a square matrix.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Diagonal to place ones on.

	dtype – Type of a matrix to create.

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format of the result, e.g. format="csr".

	Returns:

	Created sparse matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.eye() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.eye.html#scipy.sparse.eye]

cupyx.scipy.sparse.identity

	
cupyx.scipy.sparse.identity(n, dtype='d', format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L52]

	Creates an identity matrix in sparse format.

Note

Currently it only supports csr, csc and coo formats.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows and columns.

	dtype – Type of a matrix to create.

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Format of the result, e.g. format="csr".

	Returns:

	Created identity matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.identity() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.identity.html#scipy.sparse.identity]

cupyx.scipy.sparse.kron

	
cupyx.scipy.sparse.kron(A, B, format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L496]

	Kronecker product of sparse matrices A and B.

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

	B (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the returned sparse matrix.

	Returns:

	Generated sparse matrix with the specified format.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.kron() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kron.html#scipy.sparse.kron]

cupyx.scipy.sparse.kronsum

	
cupyx.scipy.sparse.kronsum(A, B, format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L549]

	Kronecker sum of sparse matrices A and B.

Kronecker sum is the sum of two Kronecker products
kron(I_n, A) + kron(B, I_m), where I_n and I_m are identity
matrices.

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

	B (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the returned sparse matrix.

	Returns:

	Generated sparse matrix with the specified format.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.kronsum() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kronsum.html#scipy.sparse.kronsum]

cupyx.scipy.sparse.diags

	
cupyx.scipy.sparse.diags(diagonals, offsets=0, shape=None, format=None, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L403]

	Construct a sparse matrix from diagonals.

	Parameters:

	
	diagonals (sequence of array_like) – Sequence of arrays containing the matrix diagonals, corresponding
to offsets.

	offsets (sequence of int [https://docs.python.org/3/library/functions.html#int] or an int) –
	Diagonals to set:
	
	k = 0 the main diagonal (default)

	k > 0 the k-th upper diagonal

	k < 0 the k-th lower diagonal

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Shape of the result. If omitted, a square matrix large enough
to contain the diagonals is returned.

	format ({"dia", "csr", "csc", "lil", ...}) – Matrix format of the result. By default (format=None) an
appropriate sparse matrix format is returned. This choice is
subject to change.

	dtype (dtype) – Data type of the matrix.

	Returns:

	Generated matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

Notes

This function differs from spdiags in the way it handles
off-diagonals.

The result from diags is the sparse equivalent of:

cupy.diag(diagonals[0], offsets[0])
+ ...
+ cupy.diag(diagonals[k], offsets[k])

Repeated diagonal offsets are disallowed.

cupyx.scipy.sparse.spdiags

	
cupyx.scipy.sparse.spdiags(data, diags, m, n, format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L72]

	Creates a sparse matrix from diagonals.

	Parameters:

	
	data (cupy.ndarray) – Matrix diagonals stored row-wise.

	diags (cupy.ndarray) – Diagonals to set.

	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of cols.

	format (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Sparse format, e.g. format="csr".

	Returns:

	Created sparse matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.spdiags() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags]

cupyx.scipy.sparse.tril

	
cupyx.scipy.sparse.tril(A, k=0, format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_extract.py#L29]

	Returns the lower triangular portion of a matrix in sparse format

	Parameters:

	
	A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose lower
triangular portion is desired.

	k (integer) – The top-most diagonal of the lower triangle.

	format (string) – Sparse format of the result, e.g. ‘csr’, ‘csc’, etc.

	Returns:

	Lower triangular portion of A in sparse format.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.tril() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.tril.html#scipy.sparse.tril]

cupyx.scipy.sparse.triu

	
cupyx.scipy.sparse.triu(A, k=0, format=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_extract.py#L50]

	Returns the upper triangular portion of a matrix in sparse format

	Parameters:

	
	A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose upper
triangular portion is desired.

	k (integer) – The bottom-most diagonal of the upper triangle.

	format (string) – Sparse format of the result, e.g. ‘csr’, ‘csc’, etc.

	Returns:

	Upper triangular portion of A in sparse format.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.triu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.triu.html#scipy.sparse.triu]

cupyx.scipy.sparse.bmat

	
cupyx.scipy.sparse.bmat(blocks, format=None, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L190]

	Builds a sparse matrix from sparse sub-blocks

	Parameters:

	
	blocks (array_like) – Grid of sparse matrices with compatible shapes.
An entry of None implies an all-zero matrix.

	format ({'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional) – The sparse format of the result (e.g. “csr”). By default an
appropriate sparse matrix format is returned.
This choice is subject to change.

	dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

	Returns:

	bmat (sparse matrix)

See also

scipy.sparse.bmat() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bmat.html#scipy.sparse.bmat]

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, bmat
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5.], [6.]]))
>>> C = csr_matrix(array([[7.]]))
>>> bmat([[A, B], [None, C]]).toarray()
array([[1., 2., 5.],
 [3., 4., 6.],
 [0., 0., 7.]])
>>> bmat([[A, None], [None, C]]).toarray()
array([[1., 2., 0.],
 [3., 4., 0.],
 [0., 0., 7.]])

cupyx.scipy.sparse.hstack

	
cupyx.scipy.sparse.hstack(blocks, format=None, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L126]

	Stacks sparse matrices horizontally (column wise)

	Parameters:

	
	blocks (sequence of cupyx.scipy.sparse.spmatrix) – sparse matrices to stack

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – sparse format of the result (e.g. “csr”)
by default an appropriate sparse matrix format is returned.
This choice is subject to change.

	dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

	Returns:

	the stacked sparse matrix

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.hstack() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.hstack.html#scipy.sparse.hstack]

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, hstack
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5.], [6.]]))
>>> hstack([A, B]).toarray()
array([[1., 2., 5.],
 [3., 4., 6.]])

cupyx.scipy.sparse.vstack

	
cupyx.scipy.sparse.vstack(blocks, format=None, dtype=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L158]

	Stacks sparse matrices vertically (row wise)

	Parameters:

	
	blocks (sequence of cupyx.scipy.sparse.spmatrix) – sparse matrices to stack

	format (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – sparse format of the result (e.g. “csr”)
by default an appropriate sparse matrix format is returned.
This choice is subject to change.

	dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

	Returns:

	the stacked sparse matrix

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.vstack() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.vstack.html#scipy.sparse.vstack]

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, vstack
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5., 6.]]))
>>> vstack([A, B]).toarray()
array([[1., 2.],
 [3., 4.],
 [5., 6.]])

cupyx.scipy.sparse.rand

	
cupyx.scipy.sparse.rand(m, n, density=0.01, format='coo', dtype=None, random_state=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L375]

	Generates a random sparse matrix.

See cupyx.scipy.sparse.random() for detail.

	Parameters:

	
	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of cols.

	density (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of non-zero entries.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Matrix format.

	dtype (dtype) – Type of the returned matrix values.

	random_state (cupy.random.RandomState or int [https://docs.python.org/3/library/functions.html#int]) – State of random number generator.
If an integer is given, the method makes a new state for random
number generator and uses it.
If it is not given, the default state is used.
This state is used to generate random indexes for nonzero entries.

	Returns:

	Generated matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.rand() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.rand.html#scipy.sparse.rand]

See also

cupyx.scipy.sparse.random()

cupyx.scipy.sparse.random

	
cupyx.scipy.sparse.random(m, n, density=0.01, format='coo', dtype=None, random_state=None, data_rvs=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_construct.py#L319]

	Generates a random sparse matrix.

This function generates a random sparse matrix. First it selects non-zero
elements with given density density from (m, n) elements.
So the number of non-zero elements k is k = m * n * density.
Value of each element is selected with data_rvs function.

	Parameters:

	
	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of cols.

	density (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of non-zero entries.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Matrix format.

	dtype (dtype) – Type of the returned matrix values.

	random_state (cupy.random.RandomState or int [https://docs.python.org/3/library/functions.html#int]) – State of random number generator.
If an integer is given, the method makes a new state for random
number generator and uses it.
If it is not given, the default state is used.
This state is used to generate random indexes for nonzero entries.

	data_rvs (callable) – A function to generate data for a random matrix.
If it is not given, random_state.rand is used.

	Returns:

	Generated matrix.

	Return type:

	cupyx.scipy.sparse.spmatrix

See also

scipy.sparse.random() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.random.html#scipy.sparse.random]

cupyx.scipy.sparse.find

	
cupyx.scipy.sparse.find(A)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_extract.py#L7]

	Returns the indices and values of the nonzero elements of a matrix

	Parameters:

	A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose nonzero
elements are desired.

	Returns:

	It returns (I, J, V). I, J, and V contain
respectively the row indices, column indices, and values of the
nonzero matrix entries.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of cupy.ndarray

See also

scipy.sparse.find() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html#scipy.sparse.find]

cupyx.scipy.sparse.issparse

	
cupyx.scipy.sparse.issparse(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L573]

	Checks if a given matrix is a sparse matrix.

	Returns:

	Returns if x is cupyx.scipy.sparse.spmatrix that is
a base class of all sparse matrix classes.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

cupyx.scipy.sparse.isspmatrix

	
cupyx.scipy.sparse.isspmatrix(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_base.py#L573]

	Checks if a given matrix is a sparse matrix.

	Returns:

	Returns if x is cupyx.scipy.sparse.spmatrix that is
a base class of all sparse matrix classes.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

cupyx.scipy.sparse.isspmatrix_csc

	
cupyx.scipy.sparse.isspmatrix_csc(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csc.py#L406]

	Checks if a given matrix is of CSC format.

	Returns:

	Returns if x is cupyx.scipy.sparse.csc_matrix.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

cupyx.scipy.sparse.isspmatrix_csr

	
cupyx.scipy.sparse.isspmatrix_csr(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_csr.py#L594]

	Checks if a given matrix is of CSR format.

	Returns:

	Returns if x is cupyx.scipy.sparse.csr_matrix.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

cupyx.scipy.sparse.isspmatrix_coo

	
cupyx.scipy.sparse.isspmatrix_coo(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_coo.py#L561]

	Checks if a given matrix is of COO format.

	Returns:

	Returns if x is cupyx.scipy.sparse.coo_matrix.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

cupyx.scipy.sparse.isspmatrix_dia

	
cupyx.scipy.sparse.isspmatrix_dia(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/_dia.py#L212]

	Checks if a given matrix is of DIA format.

	Returns:

	Returns if x is cupyx.scipy.sparse.dia_matrix.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Sparse linear algebra (cupyx.scipy.sparse.linalg)

Hint

SciPy API Reference: Sparse linear algebra (scipy.sparse.linalg) [https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html]

Abstract linear operators

	LinearOperator(shape, matvec[, rmatvec, ...])

	Common interface for performing matrix vector products

	aslinearoperator(A)

	Return A as a LinearOperator.

Matrix norms

	norm(x[, ord, axis])

	Norm of a cupy.scipy.spmatrix

Solving linear problems

Direct methods for linear equation systems:

	spsolve(A, b)

	Solves a sparse linear system A x = b

	spsolve_triangular(A, b[, lower, ...])

	Solves a sparse triangular system A x = b.

	factorized(A)

	Return a function for solving a sparse linear system, with A pre-factorized.

Iterative methods for linear equation systems:

	cg(A, b[, x0, tol, maxiter, M, callback, atol])

	Uses Conjugate Gradient iteration to solve Ax = b.

	gmres(A, b[, x0, tol, restart, maxiter, M, ...])

	Uses Generalized Minimal RESidual iteration to solve Ax = b.

	cgs(A, b[, x0, tol, maxiter, M, callback, atol])

	Use Conjugate Gradient Squared iteration to solve Ax = b.

	minres(A, b[, x0, shift, tol, maxiter, M, ...])

	Uses MINimum RESidual iteration to solve Ax = b.

Iterative methods for least-squares problems:

	lsqr(A, b)

	Solves linear system with QR decomposition.

	lsmr(A, b[, x0, damp, atol, btol, conlim, ...])

	Iterative solver for least-squares problems.

Matrix factorizations

Eigenvalue problems:

	eigsh(a[, k, which, v0, ncv, maxiter, tol, ...])

	Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex Hermitian matrix A.

	lobpcg(A, X[, B, M, Y, tol, maxiter, ...])

	Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

Singular values problems:

	svds(a[, k, ncv, tol, which, maxiter, ...])

	Finds the largest k singular values/vectors for a sparse matrix.

Complete or incomplete LU factorizations:

	splu(A[, permc_spec, diag_pivot_thresh, ...])

	Computes the LU decomposition of a sparse square matrix.

	spilu(A[, drop_tol, fill_factor, drop_rule, ...])

	Computes the incomplete LU decomposition of a sparse square matrix.

	SuperLU(obj)

	

cupyx.scipy.sparse.linalg.LinearOperator

	
class cupyx.scipy.sparse.linalg.LinearOperator(shape, matvec, rmatvec=None, matmat=None, dtype=None, rmatmat=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L9]

	Common interface for performing matrix vector products

To construct a concrete LinearOperator, either pass appropriate callables
to the constructor of this class, or subclass it.

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Matrix dimensions (M, N).

	matvec (callable f(v)) – Returns returns A * v.

	rmatvec (callable f(v)) – Returns A^H * v, where A^H is the
conjugate transpose of A.

	matmat (callable f(V)) – Returns A * V, where V is a dense
matrix with dimensions (N, K).

	dtype (dtype) – Data type of the matrix.

	rmatmat (callable f(V)) – Returns A^H * V, where V is a dense
matrix with dimensions (M, K).

See also

scipy.sparse.linalg.LinearOperator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator]

Methods

	
__call__(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L169]

	Call self as a function.

	
adjoint()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L236]

	Hermitian adjoint.

	
dot(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L175]

	Matrix-matrix or matrix-vector multiplication.

	
matmat(X)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L130]

	Matrix-matrix multiplication.

	
matvec(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L80]

	Matrix-vector multiplication.

	
rmatmat(X)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L146]

	Adjoint matrix-matrix multiplication.

	
rmatvec(x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L100]

	Adjoint matrix-vector multiplication.

	
transpose()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L243]

	Transpose this linear operator.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
H

	Hermitian adjoint.

	
T

	Transpose this linear operator.

	
ndim = 2

	

cupyx.scipy.sparse.linalg.aslinearoperator

	
cupyx.scipy.sparse.linalg.aslinearoperator(A)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_interface.py#L532]

	Return A as a LinearOperator.

	Parameters:

	A (array-like) – The input array to be converted to a LinearOperator object.
It may be any of the following types:

	cupy.ndarray

	sparse matrix (e.g. csr_matrix, coo_matrix, etc.)

	cupyx.scipy.sparse.linalg.LinearOperator

	object with .shape and .matvec attributes

	Returns:

	LinearOperator object

	Return type:

	cupyx.scipy.sparse.linalg.LinearOperator

See also

scipy.sparse.aslinearoperator`()

cupyx.scipy.sparse.linalg.norm

	
cupyx.scipy.sparse.linalg.norm(x, ord=None, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_norm.py#L15]

	Norm of a cupy.scipy.spmatrix

This function is able to return one of seven different sparse matrix norms,
depending on the value of the ord parameter.

	Parameters:

	
	x (sparse matrix) – Input sparse matrix.

	ord (non-zero int, inf, -inf, 'fro', optional) – Order of the norm (see
table under Notes). inf means numpy’s inf object.

	axis – (int, 2-tuple of ints, None, optional): If axis is an
integer, it specifies the axis of x along which to
compute the vector norms. If axis is a 2-tuple, it specifies the
axes that hold 2-D matrices, and the matrix norms of these matrices
are computed. If axis is None then either a vector norm
(when x is 1-D) or a matrix norm (when x is 2-D) is returned.

	Returns:

	0-D or 1-D array or norm(s).

	Return type:

	ndarray

See also

scipy.sparse.linalg.norm() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm]

cupyx.scipy.sparse.linalg.spsolve

	
cupyx.scipy.sparse.linalg.spsolve(A, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L481]

	Solves a sparse linear system A x = b

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – Sparse matrix with dimension (M, M).

	b (cupy.ndarray) – Dense vector or matrix with dimension (M) or (M, N).

	Returns:

	Solution to the system A x = b.

	Return type:

	cupy.ndarray

cupyx.scipy.sparse.linalg.spsolve_triangular

	
cupyx.scipy.sparse.linalg.spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False, unit_diagonal=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L403]

	Solves a sparse triangular system A x = b.

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – Sparse matrix with dimension (M, M).

	b (cupy.ndarray) – Dense vector or matrix with dimension (M) or (M, K).

	lower (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether A is a lower or upper trinagular matrix.
If True, it is lower triangular, otherwise, upper triangular.

	overwrite_A (bool [https://docs.python.org/3/library/functions.html#bool]) – (not supported)

	overwrite_b (bool [https://docs.python.org/3/library/functions.html#bool]) – Allows overwriting data in b.

	unit_diagonal (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, diagonal elements of A are assumed to be 1 and will
not be referenced.

	Returns:

	Solution to the system A x = b. The shape is the same as b.

	Return type:

	cupy.ndarray

cupyx.scipy.sparse.linalg.factorized

	
cupyx.scipy.sparse.linalg.factorized(A)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L647]

	Return a function for solving a sparse linear system, with A pre-factorized.

	Parameters:

	A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

	Returns:

	a function to solve the linear system of equations given in
A.

	Return type:

	callable

Note

This function computes LU decomposition of a sparse matrix on the CPU
using scipy.sparse.linalg.splu. Therefore, LU decomposition is not
accelerated on the GPU. On the other hand, the computation of solving
linear equations using the method returned by this function is
performed on the GPU.

See also

scipy.sparse.linalg.factorized() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.factorized.html#scipy.sparse.linalg.factorized]

cupyx.scipy.sparse.linalg.cg

	
cupyx.scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_iterative.py#L12]

	Uses Conjugate Gradient iteration to solve Ax = b.

	Parameters:

	
	A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of
the linear system with shape (n, n). A must be a hermitian,
positive definitive matrix with type of cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	b (cupy.ndarray) – Right hand side of the linear system with shape
(n,) or (n, 1).

	x0 (cupy.ndarray) – Starting guess for the solution.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations.

	M (ndarray, spmatrix or LinearOperator) – Preconditioner for A.
The preconditioner should approximate the inverse of A.
M must be cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	callback (function) – User-specified function to call after each
iteration. It is called as callback(xk), where xk is the
current solution vector.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	Returns:

	It returns x (cupy.ndarray) and info (int) where x is
the converged solution and info provides convergence
information.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.cg() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.sparse.linalg.cg]

cupyx.scipy.sparse.linalg.gmres

	
cupyx.scipy.sparse.linalg.gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, M=None, callback=None, atol=None, callback_type=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_iterative.py#L92]

	Uses Generalized Minimal RESidual iteration to solve Ax = b.

	Parameters:

	
	A (ndarray, spmatrix or LinearOperator) – The real or complex
matrix of the linear system with shape (n, n). A must be
cupy.ndarray, cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	b (cupy.ndarray) – Right hand side of the linear system with shape
(n,) or (n, 1).

	x0 (cupy.ndarray) – Starting guess for the solution.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	restart (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations between restarts. Larger values
increase iteration cost, but may be necessary for convergence.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations.

	M (ndarray, spmatrix or LinearOperator) – Preconditioner for A.
The preconditioner should approximate the inverse of A.
M must be cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	callback (function) – User-specified function to call on every restart.
It is called as callback(arg), where arg is selected by
callback_type.

	callback_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘x’ or ‘pr_norm’. If ‘x’, the current solution
vector is used as an argument of callback function. if ‘pr_norm’,
relative (preconditioned) residual norm is used as an arugment.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	Returns:

	It returns x (cupy.ndarray) and info (int) where x is
the converged solution and info provides convergence
information.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Reference:
	M. Wang, H. Klie, M. Parashar and H. Sudan, “Solving Sparse Linear
Systems on NVIDIA Tesla GPUs”, ICCS 2009 (2009).

See also

scipy.sparse.linalg.gmres() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres]

cupyx.scipy.sparse.linalg.cgs

	
cupyx.scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_iterative.py#L203]

	Use Conjugate Gradient Squared iteration to solve Ax = b.

	Parameters:

	
	A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of
the linear system with shape (n, n).

	b (cupy.ndarray) – Right hand side of the linear system with shape
(n,) or (n, 1).

	x0 (cupy.ndarray) – Starting guess for the solution.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations.

	M (ndarray, spmatrix or LinearOperator) – Preconditioner for A.
The preconditioner should approximate the inverse of A.
M must be cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	callback (function) – User-specified function to call after each
iteration. It is called as callback(xk), where xk is the
current solution vector.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	Returns:

	It returns x (cupy.ndarray) and info (int) where x is
the converged solution and info provides convergence
information.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.cgs() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs]

cupyx.scipy.sparse.linalg.minres

	
cupyx.scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, M=None, callback=None, check=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L799]

	Uses MINimum RESidual iteration to solve Ax = b.

	Parameters:

	
	A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of
the linear system with shape (n, n).

	b (cupy.ndarray) – Right hand side of the linear system with shape
(n,) or (n, 1).

	x0 (cupy.ndarray) – Starting guess for the solution.

	shift (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – If shift != 0 then the method solves
(A - shift*I)x = b

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for convergence.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations.

	M (ndarray, spmatrix or LinearOperator) – Preconditioner for A.
The preconditioner should approximate the inverse of A.
M must be cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	callback (function) – User-specified function to call after each
iteration. It is called as callback(xk), where xk is the
current solution vector.

	Returns:

	It returns x (cupy.ndarray) and info (int) where x is
the converged solution and info provides convergence
information.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.minres() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.minres.html#scipy.sparse.linalg.minres]

cupyx.scipy.sparse.linalg.lsqr

	
cupyx.scipy.sparse.linalg.lsqr(A, b)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L21]

	Solves linear system with QR decomposition.

Find the solution to a large, sparse, linear system of equations.
The function solves Ax = b. Given two-dimensional matrix A is
decomposed into Q * R.

	Parameters:

	
	A (cupy.ndarray or cupyx.scipy.sparse.csr_matrix) – The input matrix
with dimension (N, N)

	b (cupy.ndarray) – Right-hand side vector.

	Returns:

	Its length must be ten. It has same type elements
as SciPy. Only the first element, the solution vector x, is
available and other elements are expressed as None because
the implementation of cuSOLVER is different from the one of SciPy.
You can easily calculate the fourth element by norm(b - Ax)
and the ninth element by norm(x).

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.lsqr() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr]

cupyx.scipy.sparse.linalg.lsmr

	
cupyx.scipy.sparse.linalg.lsmr(A, b, x0=None, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, maxiter=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L85]

	Iterative solver for least-squares problems.

lsmr solves the system of linear equations Ax = b. If the system
is inconsistent, it solves the least-squares problem min ||b - Ax||_2.
A is a rectangular matrix of dimension m-by-n, where all cases are
allowed: m = n, m > n, or m < n. B is a vector of length m.
The matrix A may be dense or sparse (usually sparse).

	Parameters:

	
	A (ndarray, spmatrix or LinearOperator) – The real or complex
matrix of the linear system. A must be
cupy.ndarray, cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	b (cupy.ndarray) – Right hand side of the linear system with shape
(m,) or (m, 1).

	x0 (cupy.ndarray) – Starting guess for the solution. If None zeros are
used.

	damp (float [https://docs.python.org/3/library/functions.html#float]) – Damping factor for regularized least-squares.
lsmr solves the regularized least-squares problem

min ||(b) - (A)x||
 ||(0) (damp*I) ||_2

where damp is a scalar. If damp is None or 0, the system
is solved without regularization.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Stopping tolerances. lsmr continues iterations until a
certain backward error estimate is smaller than some quantity
depending on atol and btol.

	btol (float [https://docs.python.org/3/library/functions.html#float]) – Stopping tolerances. lsmr continues iterations until a
certain backward error estimate is smaller than some quantity
depending on atol and btol.

	conlim (float [https://docs.python.org/3/library/functions.html#float]) – lsmr terminates if an estimate of cond(A) i.e.
condition number of matrix exceeds conlim. If conlim is None,
the default value is 1e+8.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations.

	Returns:

	
	x (ndarray): Least-square solution returned.

	istop (int): istop gives the reason for stopping:

0 means x=0 is a solution.

1 means x is an approximate solution to A*x = B,
according to atol and btol.

2 means x approximately solves the least-squares problem
according to atol.

3 means COND(A) seems to be greater than CONLIM.

4 is the same as 1 with atol = btol = eps (machine
precision)

5 is the same as 2 with atol = eps.

6 is the same as 3 with CONLIM = 1/eps.

7 means ITN reached maxiter before the other stopping
conditions were satisfied.

	itn (int): Number of iterations used.

	normr (float): norm(b-Ax)

	normar (float): norm(A^T (b - Ax))

	norma (float): norm(A)

	conda (float): Condition number of A.

	normx (float): norm(x)

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.lsmr() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr]

References

D. C.-L. Fong and M. A. Saunders, “LSMR: An iterative algorithm for
sparse least-squares problems”, SIAM J. Sci. Comput.,
vol. 33, pp. 2950-2971, 2011.

cupyx.scipy.sparse.linalg.eigsh

	
cupyx.scipy.sparse.linalg.eigsh(a, k=6, *, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_eigen.py#L12]

	Find k eigenvalues and eigenvectors of the real symmetric square
matrix or complex Hermitian matrix A.

Solves Ax = wx, the standard eigenvalue problem for w eigenvalues
with corresponding eigenvectors x.

	Parameters:

	
	a (ndarray, spmatrix or LinearOperator) – A symmetric square matrix with
dimension (n, n). a must cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The number of eigenvalues and eigenvectors to compute. Must be
1 <= k < n.

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘LM’ or ‘LA’. ‘LM’: finds k largest (in magnitude)
eigenvalues. ‘LA’: finds k largest (algebraic) eigenvalues.
‘SA’: finds k smallest (algebraic) eigenvalues.

	v0 (ndarray) – Starting vector for iteration. If None, a random
unit vector is used.

	ncv (int [https://docs.python.org/3/library/functions.html#int]) – The number of Lanczos vectors generated. Must be
k + 1 < ncv < n. If None, default value is used.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of Lanczos update iterations.
If None, default value is used.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for residuals ||Ax - wx||. If 0, machine
precision is used.

	return_eigenvectors (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns eigenvectors in
addition to eigenvalues.

	Returns:

	If return_eigenvectors is True, it returns w and x
where w is eigenvalues and x is eigenvectors. Otherwise,
it returns only w.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.eigsh() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh]

Note

This function uses the thick-restart Lanczos methods
(https://sdm.lbl.gov/~kewu/ps/trlan.html).

cupyx.scipy.sparse.linalg.lobpcg

	
cupyx.scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=None, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_lobpcg.py#L183]

	Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

LOBPCG is a preconditioned eigensolver for large symmetric positive
definite (SPD) generalized eigenproblems.

	Parameters:

	
	A (array-like) – The symmetric linear operator of the problem,
usually a sparse matrix. Can be of the following types
- cupy.ndarray
- cupyx.scipy.sparse.csr_matrix
- cupy.scipy.sparse.linalg.LinearOperator

	X (cupy.ndarray) – Initial approximation to the k
eigenvectors (non-sparse). If A has shape=(n,n)
then X should have shape shape=(n,k).

	B (array-like) – The right hand side operator in a generalized
eigenproblem. By default, B = Identity.
Can be of following types:
- cupy.ndarray
- cupyx.scipy.sparse.csr_matrix
- cupy.scipy.sparse.linalg.LinearOperator

	M (array-like) – Preconditioner to A; by default M = Identity.
M should approximate the inverse of A.
Can be of the following types:
- cupy.ndarray
- cupyx.scipy.sparse.csr_matrix
- cupy.scipy.sparse.linalg.LinearOperator

	Y (cupy.ndarray) – n-by-sizeY matrix of constraints (non-sparse), sizeY < n
The iterations will be performed in the B-orthogonal complement
of the column-space of Y. Y must be full rank.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Solver tolerance (stopping criterion).
The default is tol=n*sqrt(eps).

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations. The default is maxiter = 20.

	largest (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, solve for the largest eigenvalues,
otherwise the smallest.

	verbosityLevel (int [https://docs.python.org/3/library/functions.html#int]) – Controls solver output. The default is verbosityLevel=0.

	retLambdaHistory (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return eigenvalue history. Default is False.

	retResidualNormsHistory (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return history of residual norms. Default is False.

	Returns:

	
	w (cupy.ndarray): Array of k eigenvalues

	v (cupy.ndarray) An array of k eigenvectors.
v has the same shape as X.

	lambdas (list of cupy.ndarray): The eigenvalue history,
if retLambdaHistory is True.

	rnorms (list of cupy.ndarray): The history of residual norms,
if retResidualNormsHistory is True.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.lobpcg() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html#scipy.sparse.linalg.lobpcg]

Note

If both retLambdaHistory and retResidualNormsHistory are True
the return tuple has the following format
(lambda, V, lambda history, residual norms history).

cupyx.scipy.sparse.linalg.svds

	
cupyx.scipy.sparse.linalg.svds(a, k=6, *, ncv=None, tol=0, which='LM', maxiter=None, return_singular_vectors=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_eigen.py#L334]

	Finds the largest k singular values/vectors for a sparse matrix.

	Parameters:

	
	a (ndarray, spmatrix or LinearOperator) – A real or complex array with
dimension (m, n). a must cupy.ndarray,
cupyx.scipy.sparse.spmatrix or
cupyx.scipy.sparse.linalg.LinearOperator.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The number of singular values/vectors to compute. Must be
1 <= k < min(m, n).

	ncv (int [https://docs.python.org/3/library/functions.html#int]) – The number of Lanczos vectors generated. Must be
k + 1 < ncv < min(m, n). If None, default value is used.

	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for singular values. If 0, machine precision
is used.

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – Only ‘LM’ is supported. ‘LM’: finds k largest singular
values.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of Lanczos update iterations.
If None, default value is used.

	return_singular_vectors (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns singular vectors
in addition to singular values.

	Returns:

	If return_singular_vectors is True, it returns u, s
and vt where u is left singular vectors, s is singular
values and vt is right singular vectors. Otherwise, it returns
only s.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

See also

scipy.sparse.linalg.svds() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds]

Note

This is a naive implementation using cupyx.scipy.sparse.linalg.eigsh as
an eigensolver on a.H @ a or a @ a.H.

cupyx.scipy.sparse.linalg.splu

	
cupyx.scipy.sparse.linalg.splu(A, permc_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options={})[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L669]

	Computes the LU decomposition of a sparse square matrix.

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

	permc_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – (For further augments, see
scipy.sparse.linalg.splu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu])

	diag_pivot_thresh (float [https://docs.python.org/3/library/functions.html#float]) –

	relax (int [https://docs.python.org/3/library/functions.html#int]) –

	panel_size (int [https://docs.python.org/3/library/functions.html#int]) –

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Returns:

	Object which has a solve method.

	Return type:

	cupyx.scipy.sparse.linalg.SuperLU

Note

This function LU-decomposes a sparse matrix on the CPU using
scipy.sparse.linalg.splu. Therefore, LU decomposition is not
accelerated on the GPU. On the other hand, the computation of solving
linear equations using the solve method, which this function
returns, is performed on the GPU.

See also

scipy.sparse.linalg.splu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu]

cupyx.scipy.sparse.linalg.spilu

	
cupyx.scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options={})[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L712]

	Computes the incomplete LU decomposition of a sparse square matrix.

	Parameters:

	
	A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

	drop_tol (float [https://docs.python.org/3/library/functions.html#float]) – (For further augments, see
scipy.sparse.linalg.spilu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu])

	fill_factor (float [https://docs.python.org/3/library/functions.html#float]) –

	drop_rule (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	permc_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	diag_pivot_thresh (float [https://docs.python.org/3/library/functions.html#float]) –

	relax (int [https://docs.python.org/3/library/functions.html#int]) –

	panel_size (int [https://docs.python.org/3/library/functions.html#int]) –

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Returns:

	Object which has a solve method.

	Return type:

	cupyx.scipy.sparse.linalg.SuperLU

Note

This function computes incomplete LU decomposition of a sparse matrix
on the CPU using scipy.sparse.linalg.spilu (unless you set
fill_factor to 1). Therefore, incomplete LU decomposition is
not accelerated on the GPU. On the other hand, the computation of
solving linear equations using the solve method, which this
function returns, is performed on the GPU.

If you set fill_factor to 1, this function computes incomplete
LU decomposition on the GPU, but without fill-in or pivoting.

See also

scipy.sparse.linalg.spilu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu]

cupyx.scipy.sparse.linalg.SuperLU

	
class cupyx.scipy.sparse.linalg.SuperLU(obj)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L528]

	Methods

	
solve(rhs, trans='N')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/linalg/_solve.py#L552]

	Solves linear system of equations with one or several right-hand sides.

	Parameters:

	
	rhs (cupy.ndarray) – Right-hand side(s) of equation with dimension
(M) or (M, K).

	trans (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘N’, ‘T’ or ‘H’.
‘N’: Solves A * x = rhs.
‘T’: Solves A.T * x = rhs.
‘H’: Solves A.conj().T * x = rhs.

	Returns:

	Solution vector(s)

	Return type:

	cupy.ndarray

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)

Note

The csgraph module uses pylibcugraph as a backend.
You need to install pylibcugraph package <https://anaconda.org/rapidsai/pylibcugraph> from rapidsai Conda channel to use features listed on this page.

Note

Currently, the csgraph module is not supported on AMD ROCm platforms.

Hint

SciPy API Reference: Compressed sparse graph routines (scipy.sparse.csgraph) [https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html]

Contents

	connected_components(csgraph[, directed, ...])

	Analyzes the connected components of a sparse graph

cupyx.scipy.sparse.csgraph.connected_components

	
cupyx.scipy.sparse.csgraph.connected_components(csgraph, directed=True, connection='weak', return_labels=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/sparse/csgraph/_traversal.py#L10]

	Analyzes the connected components of a sparse graph

	Parameters:

	
	csgraph (cupy.ndarray of cupyx.scipy.sparse.csr_matrix) – The adjacency
matrix representing connectivity among nodes.

	directed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it operates on a directed graph. If
False, it operates on an undirected graph.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – 'weak' or 'strong'. For directed graphs, the
type of connection to use. Nodes i and j are “strongly” connected
only when a path exists both from i to j and from j to i.
If directed is False, this argument is ignored.

	return_labels (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns the labels for each of
the connected components.

	Returns:

	If return_labels == True, returns a tuple (n, labels),
where n is the number of connected components and labels is
labels of each connected components. Otherwise, returns n.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int and cupy.ndarray, or int [https://docs.python.org/3/library/functions.html#int]

See also

scipy.sparse.csgraph.connected_components() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html#scipy.sparse.csgraph.connected_components]

Spatial algorithms and data structures (cupyx.scipy.spatial)

Hint

SciPy API Reference: Spatial (scipy.spatial) [https://docs.scipy.org/doc/scipy/reference/spatial.html]

Note

The spatial module uses pylibraft as a backend.
You need to install pylibraft package <https://anaconda.org/rapidsai/pylibraft> from rapidsai Conda channel to use features listed on this page.

Note

Currently, the spatial module is not supported on AMD ROCm platforms.

Functions

	distance_matrix(x, y[, p])

	Compute the distance matrix.

cupyx.scipy.spatial.distance_matrix

	
cupyx.scipy.spatial.distance_matrix(x, y, p=2.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L556]

	Compute the distance matrix.

Returns the matrix of all pair-wise distances.

	Parameters:

	
	x (array_like) – Matrix of M vectors in K dimensions.

	y (array_like) – Matrix of N vectors in K dimensions.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Which Minkowski p-norm to use (1 <= p <= infinity).
Default=2.0

	Returns:

	
	Matrix containing the distance from every
	vector in x to every vector in y, (size M, N).

	Return type:

	result (cupy.ndarray)

Distance computations (cupyx.scipy.spatial.distance)

Note

The distance module uses pylibraft as a backend.
You need to install pylibraft package <https://anaconda.org/rapidsai/pylibraft> from rapidsai Conda channel to use features listed on this page.

Note

Currently, the distance module is not supported on AMD ROCm platforms.

Hint

SciPy API Reference: Spatial distance routines (scipy.spatial.distance) [https://docs.scipy.org/doc/scipy/reference/spatial.distance.html]

Distance matrix computations

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

	pdist(X[, metric, out])

	Compute distance between observations in n-dimensional space.

	cdist(XA, XB[, metric, out])

	Compute distance between each pair of the two collections of inputs.

	distance_matrix(x, y[, p])

	Compute the distance matrix.

Distance functions

Distance functions between two numeric vectors u and v. Computing distances over a large collection of vectors is inefficient for these functions. Use cdist for this purpose.

	minkowski(u, v, p)

	Compute the Minkowski distance between two 1-D arrays.

	canberra(u, v)

	Compute the Canberra distance between two 1-D arrays.

	chebyshev(u, v)

	Compute the Chebyshev distance between two 1-D arrays.

	cityblock(u, v)

	Compute the City Block (Manhattan) distance between two 1-D arrays.

	correlation(u, v)

	Compute the correlation distance between two 1-D arrays.

	cosine(u, v)

	Compute the Cosine distance between two 1-D arrays.

	hamming(u, v)

	Compute the Hamming distance between two 1-D arrays.

	euclidean(u, v)

	Compute the Euclidean distance between two 1-D arrays.

	jensenshannon(u, v)

	Compute the Jensen-Shannon distance between two 1-D arrays.

	russellrao(u, v)

	Compute the Russell-Rao distance between two 1-D arrays.

	sqeuclidean(u, v)

	Compute the squared Euclidean distance between two 1-D arrays.

	hellinger(u, v)

	Compute the Hellinger distance between two 1-D arrays.

	kl_divergence(u, v)

	Compute the Kullback-Leibler divergence between two 1-D arrays.

cupyx.scipy.spatial.distance.pdist

	
cupyx.scipy.spatial.distance.pdist(X, metric='euclidean', *, out=None, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L524]

	Compute distance between observations in n-dimensional space.

	Parameters:

	
	X (array_like) – An \(m\) by \(n\) array of \(m\)
original observations in an \(n\)-dimensional space.
Inputs are converted to float type.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The distance metric to use.
The distance function can be ‘canberra’, ‘chebyshev’,
‘cityblock’, ‘correlation’, ‘cosine’, ‘euclidean’, ‘hamming’,
‘hellinger’, ‘jensenshannon’, ‘kl_divergence’, ‘matching’,
‘minkowski’, ‘russellrao’, ‘sqeuclidean’.

	out (cupy.ndarray, optional) – The output array. If not None, the
distance matrix Y is stored in this array.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Extra arguments to metric: refer to each
metric documentation for a list of all possible arguments.
Some possible arguments:
p (float): The p-norm to apply for Minkowski, weighted and
unweighted. Default: 2.0

	Returns:

	A \(m\) by \(m\) distance matrix is
returned. For each \(i\) and \(j\), the metric
dist(u=X[i], v=X[j]) is computed and stored in the
\(ij\) th entry.

	Return type:

	Y (cupy.ndarray)

cupyx.scipy.spatial.distance.cdist

	
cupyx.scipy.spatial.distance.cdist(XA, XB, metric='euclidean', out=None, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L453]

	Compute distance between each pair of the two collections of inputs.

	Parameters:

	
	XA (array_like) – An \(m_A\) by \(n\) array of \(m_A\)
original observations in an \(n\)-dimensional space.
Inputs are converted to float type.

	XB (array_like) – An \(m_B\) by \(n\) array of \(m_B\)
original observations in an \(n\)-dimensional space.
Inputs are converted to float type.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The distance metric to use.
The distance function can be ‘canberra’, ‘chebyshev’,
‘cityblock’, ‘correlation’, ‘cosine’, ‘euclidean’, ‘hamming’,
‘hellinger’, ‘jensenshannon’, ‘kl_divergence’, ‘matching’,
‘minkowski’, ‘russellrao’, ‘sqeuclidean’.

	out (cupy.ndarray, optional) – The output array. If not None, the
distance matrix Y is stored in this array.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Extra arguments to metric: refer to each
metric documentation for a list of all possible arguments.
Some possible arguments:
p (float): The p-norm to apply for Minkowski, weighted and
unweighted. Default: 2.0

	Returns:

	
	A \(m_A\) by \(m_B\) distance matrix is
	returned. For each \(i\) and \(j\), the metric
dist(u=XA[i], v=XB[j]) is computed and stored in the
\(ij\) th entry.

	Return type:

	Y (cupy.ndarray)

cupyx.scipy.spatial.distance.distance_matrix

	
cupyx.scipy.spatial.distance.distance_matrix(x, y, p=2.0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L556]

	Compute the distance matrix.

Returns the matrix of all pair-wise distances.

	Parameters:

	
	x (array_like) – Matrix of M vectors in K dimensions.

	y (array_like) – Matrix of N vectors in K dimensions.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Which Minkowski p-norm to use (1 <= p <= infinity).
Default=2.0

	Returns:

	
	Matrix containing the distance from every
	vector in x to every vector in y, (size M, N).

	Return type:

	result (cupy.ndarray)

cupyx.scipy.spatial.distance.minkowski

	
cupyx.scipy.spatial.distance.minkowski(u, v, p)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L105]

	Compute the Minkowski distance between two 1-D arrays.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	p (float [https://docs.python.org/3/library/functions.html#float]) – The order of the norm of the difference
\({\|u-v\|}_p\). Note that for \(0 < p < 1\),
the triangle inequality only holds with an additional
multiplicative factor, i.e. it is only a quasi-metric.

	Returns:

	The Minkowski distance between vectors u and v.

	Return type:

	minkowski (double)

cupyx.scipy.spatial.distance.canberra

	
cupyx.scipy.spatial.distance.canberra(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L129]

	Compute the Canberra distance between two 1-D arrays.

The Canberra distance is defined as

\[d(u, v) = \sum_{i} \frac{| u_i - v_i |}{|u_i| + |v_i|}\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Canberra distance between vectors u and v.

	Return type:

	canberra (double)

cupyx.scipy.spatial.distance.chebyshev

	
cupyx.scipy.spatial.distance.chebyshev(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L154]

	Compute the Chebyshev distance between two 1-D arrays.

The Chebyshev distance is defined as

\[d(u, v) = \max_{i} |u_i - v_i|\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Chebyshev distance between vectors u and v.

	Return type:

	chebyshev (double)

cupyx.scipy.spatial.distance.cityblock

	
cupyx.scipy.spatial.distance.cityblock(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L179]

	Compute the City Block (Manhattan) distance between two 1-D arrays.

The City Block distance is defined as

\[d(u, v) = \sum_{i} |u_i - v_i|\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The City Block distance between
vectors u and v.

	Return type:

	cityblock (double)

cupyx.scipy.spatial.distance.correlation

	
cupyx.scipy.spatial.distance.correlation(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L205]

	Compute the correlation distance between two 1-D arrays.

The correlation distance is defined as

\[d(u, v) = 1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}{
\|(u - \bar{u})\|_2 \|(v - \bar{v})\|_2}\]

where \(\bar{u}\) is the mean of the elements of \(u\) and
\(x \cdot y\) is the dot product.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The correlation distance between
vectors u and v.

	Return type:

	correlation (double)

cupyx.scipy.spatial.distance.cosine

	
cupyx.scipy.spatial.distance.cosine(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L235]

	Compute the Cosine distance between two 1-D arrays.

The Cosine distance is defined as

\[d(u, v) = 1 - \frac{u \cdot v}{\|u\|_2 \|v\|_2}\]

where \(x \cdot y\) is the dot product.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Cosine distance between vectors u and v.

	Return type:

	cosine (double)

cupyx.scipy.spatial.distance.hamming

	
cupyx.scipy.spatial.distance.hamming(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L262]

	Compute the Hamming distance between two 1-D arrays.

The Hamming distance is defined as the proportion of elements
in both u and v that are not in the exact same position:

\[d(u, v) = \frac{1}{n} \sum_{k=0}^n u_i \neq v_i\]

where \(x \neq y\) is one if \(x\) is different from \(y\)
and zero otherwise.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Hamming distance between vectors u and v.

	Return type:

	hamming (double)

cupyx.scipy.spatial.distance.euclidean

	
cupyx.scipy.spatial.distance.euclidean(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L291]

	Compute the Euclidean distance between two 1-D arrays.

The Euclidean distance is defined as

\[d(u, v) = \left(\sum_{i} (u_i - v_i)^2\right)^{\sfrac{1}{2}}\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Euclidean distance between vectors u and v.

	Return type:

	euclidean (double)

cupyx.scipy.spatial.distance.jensenshannon

	
cupyx.scipy.spatial.distance.jensenshannon(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L316]

	Compute the Jensen-Shannon distance between two 1-D arrays.

The Jensen-Shannon distance is defined as

\[d(u, v) = \sqrt{\frac{KL(u \| m) + KL(v \| m)}{2}}\]

where \(KL\) is the Kullback-Leibler divergence and \(m\) is the
pointwise mean of u and v.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Jensen-Shannon distance between
vectors u and v.

	Return type:

	jensenshannon (double)

cupyx.scipy.spatial.distance.russellrao

	
cupyx.scipy.spatial.distance.russellrao(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L345]

	Compute the Russell-Rao distance between two 1-D arrays.

The Russell-Rao distance is defined as the proportion of elements
in both u and v that are in the exact same position:

\[d(u, v) = \frac{1}{n} \sum_{k=0}^n u_i = v_i\]

where \(x = y\) is one if \(x\) is different from \(y\)
and zero otherwise.

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Hamming distance between vectors u and v.

	Return type:

	hamming (double)

cupyx.scipy.spatial.distance.sqeuclidean

	
cupyx.scipy.spatial.distance.sqeuclidean(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L374]

	Compute the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance is defined as

\[d(u, v) = \sum_{i} (u_i - v_i)^2\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The squared Euclidean distance between
vectors u and v.

	Return type:

	sqeuclidean (double)

cupyx.scipy.spatial.distance.hellinger

	
cupyx.scipy.spatial.distance.hellinger(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L400]

	Compute the Hellinger distance between two 1-D arrays.

The Hellinger distance is defined as

\[d(u, v) = \frac{1}{\sqrt{2}} \sqrt{
 \sum_{i} (\sqrt{u_i} - \sqrt{v_i})^2}\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Hellinger distance between
vectors u and v.

	Return type:

	hellinger (double)

cupyx.scipy.spatial.distance.kl_divergence

	
cupyx.scipy.spatial.distance.kl_divergence(u, v)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/spatial/distance.py#L427]

	Compute the Kullback-Leibler divergence between two 1-D arrays.

The Kullback-Leibler divergence is defined as

\[KL(U \| V) = \sum_{i} U_i \log{\left(\frac{U_i}{V_i}\right)}\]

	Parameters:

	
	u (array_like) – Input array of size (N,)

	v (array_like) – Input array of size (N,)

	Returns:

	The Kullback-Leibler divergence between
vectors u and v.

	Return type:

	kl_divergence (double)

Special functions (cupyx.scipy.special)

Hint

SciPy API Reference: Special functions (scipy.special) [https://docs.scipy.org/doc/scipy/reference/special.html]

Bessel functions

	j0

	Bessel function of the first kind of order 0.

	j1

	Bessel function of the first kind of order 1.

	k0

	Modified Bessel function of the second kind of order 0.

	k0e

	Exponentially scaled modified Bessel function K of order 0

	k1

	Modified Bessel function of the second kind of order 1.

	k1e

	Exponentially scaled modified Bessel function K of order 1

	y0

	Bessel function of the second kind of order 0.

	y1

	Bessel function of the second kind of order 1.

	yn

	Bessel function of the second kind of order n.

	i0

	Modified Bessel function of order 0.

	i0e

	Exponentially scaled modified Bessel function of order 0.

	i1

	Modified Bessel function of order 1.

	i1e

	Exponentially scaled modified Bessel function of order 1.

	spherical_yn(n, z[, derivative])

	Spherical Bessel function of the second kind or its derivative.

Raw statistical functions

See also

cupyx.scipy.stats

	bdtr

	Binomial distribution cumulative distribution function.

	bdtrc

	Binomial distribution survival function.

	bdtri

	Inverse function to bdtr with respect to p.

	btdtr

	Cumulative distribution function of the beta distribution.

	btdtri

	The p-th quantile of the beta distribution.

	fdtr

	F cumulative distribution function.

	fdtrc

	F survival function.

	fdtri

	The p-th quantile of the F-distribution.

	gdtr

	Gamma distribution cumulative distribution function.

	gdtrc

	Gamma distribution survival function.

	nbdtr

	Negative binomial distribution cumulative distribution function.

	nbdtrc

	Negative binomial distribution survival function.

	nbdtri

	Inverse function to nbdtr with respect to p.

	pdtr

	Poisson cumulative distribution function.

	pdtrc

	Binomial distribution survival function.

	pdtri

	Inverse function to pdtr with respect to m.

	chdtr

	Chi-square cumulative distribution function.

	chdtrc

	Chi square survival function.

	chdtri

	Inverse to chdtrc with respect to x.

	ndtr

	Cumulative distribution function of normal distribution.

	log_ndtr

	Logarithm of Gaussian cumulative distribution function.

	ndtri

	Inverse of the cumulative distribution function of the standard

	logit

	Logit function.

	expit

	Logistic sigmoid function (expit).

	log_expit

	Logarithm of the logistic sigmoid function.

	boxcox

	Compute the Box-Cox transformation.

	boxcox1p

	Compute the Box-Cox transformation op 1 + x.

	inv_boxcox

	Compute the Box-Cox transformation.

	inv_boxcox1p

	Compute the Box-Cox transformation op 1 + x.

Information Theory functions

	entr

	Elementwise function for computing entropy.

	rel_entr

	Elementwise function for computing relative entropy.

	kl_div

	Elementwise function for computing Kullback-Leibler divergence.

	huber

	Elementwise function for computing the Huber loss.

	pseudo_huber

	Elementwise function for computing the Pseudo-Huber loss.

Gamma and related functions

	gamma

	Gamma function.

	gammaln

	Logarithm of the absolute value of the Gamma function.

	loggamma

	Principal branch of the logarithm of the gamma function.

	gammainc

	Elementwise function for scipy.special.gammainc

	gammaincinv

	Elementwise function for scipy.special.gammaincinv

	gammaincc

	Elementwise function for scipy.special.gammaincc

	gammainccinv

	Elementwise function for scipy.special.gammainccinv

	beta

	Beta function.

	betaln

	Natural logarithm of absolute value of beta function.

	betainc

	Incomplete beta function.

	betaincinv

	Inverse of the incomplete beta function.

	psi

	The digamma function.

	rgamma

	Reciprocal gamma function.

	polygamma(n, x)

	Polygamma function n.

	multigammaln(a, d)

	Returns the log of multivariate gamma, also sometimes called the generalized gamma.

	digamma

	The digamma function.

	poch

	Elementwise function for scipy.special.poch (Pochhammer symbol)

Elliptic integrals

ellipk
ellipkm1
ellipj

Error function and Fresnel integrals

	erf

	Error function.

	erfc

	Complementary error function.

	erfcx

	Scaled complementary error function.

	erfinv

	Inverse function of error function.

	erfcinv

	Inverse function of complementary error function.

Legendre functions

	lpmv

	Associated Legendre function of integer order and real degree.

	sph_harm

	Spherical Harmonic.

Other special functions

	exp1

	Exponential integral E1.

	expi

	Exponential integral Ei.

	expn

	Generalized exponential integral En.

	exprel

	Computes (exp(x) - 1) / x.

	softmax(x[, axis])

	Softmax function.

	log_softmax(x[, axis])

	Compute logarithm of softmax function

	zeta

	Hurwitz zeta function.

	zetac

	Riemann zeta function minus 1.

Convenience functions

	cbrt

	Cube root.

	exp10

	Computes 10**x.

	exp2

	Computes 2**x.

	radian

	Degrees, minutes, seconds to radians:

	cosdg

	Cosine of x with x in degrees.

	sindg

	Sine of x with x in degrees.

	tandg

	Tangent of x with x in degrees.

	cotdg

	Cotangent of x with x in degrees.

	log1p

	Elementwise function for scipy.special.log1p

	expm1

	Computes exp(x) - 1.

	cosm1

	Computes cos(x) - 1.

	round(a[, decimals, out])

	

	xlogy

	Compute x*log(y) so that the result is 0 if x = 0.

	xlog1py

	Compute x*log1p(y) so that the result is 0 if x = 0.

	logsumexp(a[, axis, b, keepdims, return_sign])

	Compute the log of the sum of exponentials of input elements.

	sinc(x, /[, out, casting, dtype])

	Elementwise sinc function.

cupyx.scipy.special.j0

	
cupyx.scipy.special.j0()

	Bessel function of the first kind of order 0.

See also

scipy.special.j0()

cupyx.scipy.special.j1

	
cupyx.scipy.special.j1()

	Bessel function of the first kind of order 1.

See also

scipy.special.j1()

cupyx.scipy.special.k0

	
cupyx.scipy.special.k0()

	Modified Bessel function of the second kind of order 0.

	Parameters:

	x (cupy.ndarray) – argument (float)

	Returns:

	Value of the modified Bessel function K of order 0 at x.

	Return type:

	cupy.ndarray

See also

scipy.special.k0()

cupyx.scipy.special.k0e

	
cupyx.scipy.special.k0e()

	Exponentially scaled modified Bessel function K of order 0

	Parameters:

	x (cupy.ndarray) – argument (float)

	Returns:

	Value at x.

	Return type:

	cupy.ndarray

See also

scipy.special.k0e()

cupyx.scipy.special.k1

	
cupyx.scipy.special.k1()

	Modified Bessel function of the second kind of order 1.

	Parameters:

	x (cupy.ndarray) – argument (float)

	Returns:

	Value of the modified Bessel function K of order 1 at x.

	Return type:

	cupy.ndarray

See also

scipy.special.k1()

cupyx.scipy.special.k1e

	
cupyx.scipy.special.k1e()

	Exponentially scaled modified Bessel function K of order 1

	Parameters:

	x (cupy.ndarray) – argument (float)

	Returns:

	Value at x.

	Return type:

	cupy.ndarray

See also

scipy.special.k1e()

cupyx.scipy.special.y0

	
cupyx.scipy.special.y0()

	Bessel function of the second kind of order 0.

See also

scipy.special.y0()

cupyx.scipy.special.y1

	
cupyx.scipy.special.y1()

	Bessel function of the second kind of order 1.

See also

scipy.special.y1()

cupyx.scipy.special.yn

	
cupyx.scipy.special.yn()

	Bessel function of the second kind of order n.

	Parameters:

	
	n (cupy.ndarray) – order (integer)

	x (cupy.ndarray) – argument (float)

	Returns:

	The result.

	Return type:

	cupy.ndarray

Notes

Unlike SciPy, no warning will be raised on unsafe casting of order to
32-bit integer.

See also

scipy.special.yn()

cupyx.scipy.special.i0

	
cupyx.scipy.special.i0()

	Modified Bessel function of order 0.

See also

scipy.special.i0()

cupyx.scipy.special.i0e

	
cupyx.scipy.special.i0e()

	Exponentially scaled modified Bessel function of order 0.

See also

scipy.special.i0e()

cupyx.scipy.special.i1

	
cupyx.scipy.special.i1()

	Modified Bessel function of order 1.

See also

scipy.special.i1()

cupyx.scipy.special.i1e

	
cupyx.scipy.special.i1e()

	Exponentially scaled modified Bessel function of order 1.

See also

scipy.special.i1e()

cupyx.scipy.special.spherical_yn

	
cupyx.scipy.special.spherical_yn(n, z, derivative=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_spherical_bessel.py#L89]

	Spherical Bessel function of the second kind or its derivative.

	Parameters:

	
	n (cupy.ndarray) – Order of the Bessel function.

	z (cupy.ndarray) – Argument of the Bessel function.
Real-valued input.

	derivative (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the value of the derivative (rather than the function
itself) is returned.

	Returns:

	yn

	Return type:

	cupy.ndarray

See also

scipy.special.spherical_yn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html#scipy.special.spherical_yn]

cupyx.scipy.special.bdtr

	
cupyx.scipy.special.bdtr()

	Binomial distribution cumulative distribution function.

	Parameters:

	
	k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

	n (cupy.ndarray) – Number of events (int).

	p (cupy.ndarray) – Probability of success in a single event (float).

	Returns:

	y – Probability of floor(k) or fewer successes in n independent events with
success probabilities of p.

	Return type:

	cupy.ndarray

See also

scipy.special.bdtr()

cupyx.scipy.special.bdtrc

	
cupyx.scipy.special.bdtrc()

	Binomial distribution survival function.

Returns the complemented binomial distribution function (the integral of
the density from x to infinity).

	Parameters:

	
	k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

	n (cupy.ndarray) – Number of events (int).

	p (cupy.ndarray) – Probability of success in a single event (float).

	Returns:

	y – Probability of floor(k) + 1 or more successes in n independent events
with success probabilities of p.

	Return type:

	cupy.ndarray

See also

scipy.special.bdtrc()

cupyx.scipy.special.bdtri

	
cupyx.scipy.special.bdtri()

	Inverse function to bdtr with respect to p.

	Parameters:

	
	k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

	n (cupy.ndarray) – Number of events (int).

	y (cupy.ndarray) – Cumulative probability (probability of k or fewer successes in n
events).

	Returns:

	p – The event probability such that bdtr(floor(k), n, p) = y.

	Return type:

	cupy.ndarray

See also

scipy.special.bdtri()

cupyx.scipy.special.btdtr

	
cupyx.scipy.special.btdtr()

	Cumulative distribution function of the beta distribution.

	Parameters:

	
	a (cupy.ndarray) – Shape parameter (a > 0).

	b (cupy.ndarray) – Shape parameter (b > 0).

	x (cupy.ndarray) – Upper limit of integration, in [0, 1].

	Returns:

	I – Cumulative distribution function of the beta distribution with
parameters a and b at x.

	Return type:

	cupy.ndarray

See also

scipy.special.btdtr()

cupyx.scipy.special.btdtri

	
cupyx.scipy.special.btdtri()

	The p-th quantile of the beta distribution.

This function is the inverse of the beta cumulative distribution function,
btdtr, returning the value of x for which btdtr(a, b, x) = p.

	Parameters:

	
	a (cupy.ndarray) – Shape parameter (a > 0).

	b (cupy.ndarray) – Shape parameter (b > 0).

	p (cupy.ndarray) – Cumulative probability, in [0, 1].

	Returns:

	x – The quantile corresponding to p.

	Return type:

	cupy.ndarray

See also

scipy.special.btdtri()

cupyx.scipy.special.fdtr

	
cupyx.scipy.special.fdtr()

	F cumulative distribution function.

	Parameters:

	
	dfn (cupy.ndarray) – First parameter (positive float).

	dfd (cupy.ndarray) – Second parameter (positive float).

	x (cupy.ndarray) – Argument (nonnegative float).

	Returns:

	
	y (cupy.ndarray) – The CDF of the F-distribution with parameters dfn and dfd at x.

	
See also

scipy.special.fdtr()

cupyx.scipy.special.fdtrc

	
cupyx.scipy.special.fdtrc()

	F survival function.

Returns the complemented F-distribution function (the integral of the
density from x to infinity).

	Parameters:

	
	dfn (cupy.ndarray) – First parameter (positive float).

	dfd (cupy.ndarray) – Second parameter (positive float).

	x (cupy.ndarray) – Argument (nonnegative float).

	Returns:

	
	y (cupy.ndarray) – The complemented F-distribution function with parameters dfn and dfd at
x.

	
See also

scipy.special.fdtrc()

cupyx.scipy.special.fdtri

	
cupyx.scipy.special.fdtri()

	The p-th quantile of the F-distribution.

This function is the inverse of the F-distribution CDF, fdtr, returning
the x such that fdtr(dfn, dfd, x) = p.

	Parameters:

	
	dfn (cupy.ndarray) – First parameter (positive float).

	dfd (cupy.ndarray) – Second parameter (positive float).

	p (cupy.ndarray) – Cumulative probability, in [0, 1].

	Returns:

	
	y (cupy.ndarray) – The quantile corresponding to p.

	
See also

scipy.special.fdtri()

cupyx.scipy.special.gdtr

	
cupyx.scipy.special.gdtr()

	Gamma distribution cumulative distribution function.

	Parameters:

	
	a (cupy.ndarray) – The rate parameter of the gamma distribution, sometimes denoted
beta (float). It is also the reciprocal of the scale parameter theta.

	b (cupy.ndarray) – The shape parameter of the gamma distribution, sometimes denoted
alpha (float).

	x (cupy.ndarray) – The quantile (upper limit of integration; float).

	Returns:

	F – The CDF of the gamma distribution with parameters a and b evaluated
at x.

	Return type:

	cupy.ndarray

See also

scipy.special.gdtr()

cupyx.scipy.special.gdtrc

	
cupyx.scipy.special.gdtrc()

	Gamma distribution survival function.

	Parameters:

	
	a (cupy.ndarray) – The rate parameter of the gamma distribution, sometimes denoted
beta (float). It is also the reciprocal of the scale parameter theta.

	b (cupy.ndarray) – The shape parameter of the gamma distribution, sometimes denoted
alpha (float).

	x (cupy.ndarray) – The quantile (lower limit of integration; float).

	Returns:

	I – The survival function of the gamma distribution with parameters a and
b at x.

	Return type:

	cupy.ndarray

See also

scipy.special.gdtrc()

cupyx.scipy.special.nbdtr

	
cupyx.scipy.special.nbdtr()

	Negative binomial distribution cumulative distribution function.

	Parameters:

	
	k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

	n (cupy.ndarray) – The target number of successes (positive int).

	p (cupy.ndarray) – Probability of success in a single event (float).

	Returns:

	F – The probability of k or fewer failures before n successes in a
sequence of events with individual success probability p.

	Return type:

	cupy.ndarray

See also

scipy.special.nbdtr()

cupyx.scipy.special.nbdtrc

	
cupyx.scipy.special.nbdtrc()

	Negative binomial distribution survival function.

	Parameters:

	
	k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

	n (cupy.ndarray) – The target number of successes (positive int).

	p (cupy.ndarray) – Probability of success in a single event (float).

	Returns:

	F – The probability of k + 1 or more failures before n successes in a
sequence of events with individual success probability p.

	Return type:

	cupy.ndarray

See also

scipy.special.nbdtrc()

cupyx.scipy.special.nbdtri

	
cupyx.scipy.special.nbdtri()

	Inverse function to nbdtr with respect to p.

	Parameters:

	
	k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

	n (cupy.ndarray) – The target number of successes (positive int).

	y (cupy.ndarray) – The probability of k or fewer failures before n successes (float).

	Returns:

	p – Probability of success in a single event (float) such that
nbdtr(k, n, p) = y.

	Return type:

	cupy.ndarray

See also

scipy.special.nbdtri()

cupyx.scipy.special.pdtr

	
cupyx.scipy.special.pdtr()

	Poisson cumulative distribution function.

	Parameters:

	
	k (cupy.ndarray) – Nonnegative real argument.

	m (cupy.ndarray) – Nonnegative real shape parameter.

	Returns:

	y – Values of the Poisson cumulative distribution function.

	Return type:

	cupy.ndarray

See also

scipy.special.pdtr()

cupyx.scipy.special.pdtrc

	
cupyx.scipy.special.pdtrc()

	Binomial distribution survival function.

Returns the complemented binomial distribution function (the integral of
the density from x to infinity).

	Parameters:

	
	k (cupy.ndarray) – Nonnegative real argument.

	m (cupy.ndarray) – Nonnegative real shape parameter.

	Returns:

	y – The sum of the terms from k+1 to infinity of the Poisson
distribution.

	Return type:

	cupy.ndarray

See also

scipy.special.pdtrc()

cupyx.scipy.special.pdtri

	
cupyx.scipy.special.pdtri()

	Inverse function to pdtr with respect to m.

	Parameters:

	
	k (cupy.ndarray) – Nonnegative real argument.

	y (cupy.ndarray) – Cumulative probability.

	Returns:

	m – The Poisson variable m such that the sum from 0 to k of the Poisson
density is equal to the given probability y.

	Return type:

	cupy.ndarray

See also

scipy.special.pdtri()

cupyx.scipy.special.chdtr

	
cupyx.scipy.special.chdtr()

	Chi-square cumulative distribution function.

	Parameters:

	
	v (cupy.ndarray) – Degrees of freedom.

	x (cupy.ndarray) – Upper bound of the integral (nonnegative float).

	Returns:

	y – The CDF of the chi-squared distribution with parameter df at x.

	Return type:

	cupy.ndarray

See also

scipy.special.chdtr()

cupyx.scipy.special.chdtrc

	
cupyx.scipy.special.chdtrc()

	Chi square survival function.

Returns the complemented chi-squared distribution function (the integral of
the density from x to infinity).

	Parameters:

	
	v (cupy.ndarray) – Degrees of freedom.

	x (cupy.ndarray) – Upper bound of the integral (nonnegative float).

	Returns:

	y – The complemented chi-squared distribution function with parameter df at
x.

	Return type:

	cupy.ndarray

See also

scipy.special.chdtrc()

cupyx.scipy.special.chdtri

	
cupyx.scipy.special.chdtri()

	Inverse to chdtrc with respect to x.

	Parameters:

	
	v (cupy.ndarray) – Degrees of freedom.

	p (cupy.ndarray, optional) – Probability.

	p – Optional output array for the function results.

	Returns:

	x – Value so that the probability a Chi square random variable with v
degrees of freedom is greater than x equals p.

	Return type:

	cupy.ndarray

See also

scipy.special.chdtri()

cupyx.scipy.special.ndtr

	
cupyx.scipy.special.ndtr()

	Cumulative distribution function of normal distribution.

See also

scipy.special.ndtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtr.html#scipy.special.ndtr]

cupyx.scipy.special.log_ndtr

	
cupyx.scipy.special.log_ndtr()

	Logarithm of Gaussian cumulative distribution function.

Returns the log of the area under the standard Gaussian propability
density function.

	Parameters:

	x (array-like) – The input array

	Returns:

	y – The value of the log of the normal cumulative distribution
function evaluated at x

	Return type:

	cupy.ndarray

See also

scipy.special.log_ndtr()

cupyx.scipy.special.ndtri

	
cupyx.scipy.special.ndtri()

	
	Inverse of the cumulative distribution function of the standard
	normal distribution.

See also

scipy.special.ndtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri.html#scipy.special.ndtri]

cupyx.scipy.special.logit

	
cupyx.scipy.special.logit()

	Logit function.

	Parameters:

	x (cupy.ndarray) – input data

	Returns:

	values of logit(x)

	Return type:

	cupy.ndarray

See also

scipy.special.logit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logit.html#scipy.special.logit]

cupyx.scipy.special.expit

	
cupyx.scipy.special.expit()

	Logistic sigmoid function (expit).

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of expit(x)

	Return type:

	cupy.ndarray

See also

scipy.special.expit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html#scipy.special.expit]

Note

expit is the inverse of logit.

cupyx.scipy.special.log_expit

	
cupyx.scipy.special.log_expit()

	Logarithm of the logistic sigmoid function.

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of log(expit(x))

	Return type:

	cupy.ndarray

See also

scipy.special.log_expit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_expit.html#scipy.special.log_expit]

Note

The function is mathematically equivalent to log(expit(x)), but
is formulated to avoid loss of precision for inputs with large
(positive or negative) magnitude.

cupyx.scipy.special.boxcox

	
cupyx.scipy.special.boxcox()

	Compute the Box-Cox transformation.

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of boxcox(x)

	Return type:

	cupy.ndarray

See also

scipy.special.boxcox [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox.html#scipy.special.boxcox]

cupyx.scipy.special.boxcox1p

	
cupyx.scipy.special.boxcox1p()

	Compute the Box-Cox transformation op 1 + x.

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of boxcox1p(x)

	Return type:

	cupy.ndarray

See also

scipy.special.boxcox1p [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox1p.html#scipy.special.boxcox1p]

cupyx.scipy.special.inv_boxcox

	
cupyx.scipy.special.inv_boxcox()

	Compute the Box-Cox transformation.

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of inv_boxcox(x)

	Return type:

	cupy.ndarray

See also

scipy.special.inv_boxcox [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox.html#scipy.special.inv_boxcox]

cupyx.scipy.special.inv_boxcox1p

	
cupyx.scipy.special.inv_boxcox1p()

	Compute the Box-Cox transformation op 1 + x.

	Parameters:

	x (cupy.ndarray) – input data (must be real)

	Returns:

	values of inv_boxcox1p(x)

	Return type:

	cupy.ndarray

See also

scipy.special.inv_boxcox1p [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox1p.html#scipy.special.inv_boxcox1p]

cupyx.scipy.special.entr

	
cupyx.scipy.special.entr()

	Elementwise function for computing entropy.

See also

scipy.special.entr()

cupyx.scipy.special.rel_entr

	
cupyx.scipy.special.rel_entr()

	Elementwise function for computing relative entropy.

See also

scipy.special.rel_entr()

cupyx.scipy.special.kl_div

	
cupyx.scipy.special.kl_div()

	Elementwise function for computing Kullback-Leibler divergence.

See also

scipy.special.kl_div()

cupyx.scipy.special.huber

	
cupyx.scipy.special.huber()

	Elementwise function for computing the Huber loss.

See also

scipy.special.huber()

cupyx.scipy.special.pseudo_huber

	
cupyx.scipy.special.pseudo_huber()

	Elementwise function for computing the Pseudo-Huber loss.

See also

scipy.special.pseudo_huber()

cupyx.scipy.special.gamma

	
cupyx.scipy.special.gamma()

	Gamma function.

	Parameters:

	z (cupy.ndarray) – The input of gamma function.

	Returns:

	Computed value of gamma function.

	Return type:

	cupy.ndarray

See also

scipy.special.gamma()

cupyx.scipy.special.gammaln

	
cupyx.scipy.special.gammaln()

	Logarithm of the absolute value of the Gamma function.

	Parameters:

	
	x (cupy.ndarray) – Values on the real line at which to compute

	gammaln. –

	Returns:

	Values of gammaln at x.

	Return type:

	cupy.ndarray

See also

scipy.special.gammaln [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaln.html#scipy.special.gammaln]

cupyx.scipy.special.loggamma

	
cupyx.scipy.special.loggamma()

	Principal branch of the logarithm of the gamma function.

	Parameters:

	
	z (cupy.ndarray) – Values in the complex plain at which to compute loggamma

	out (cupy.ndarray, optional) – Output array for computed values of loggamma

	Returns:

	Values of loggamma at z.

	Return type:

	cupy.ndarray

See also

scipy.special.loggamma()

cupyx.scipy.special.gammainc

	
cupyx.scipy.special.gammainc()

	Elementwise function for scipy.special.gammainc

Regularized lower incomplete gamma function.

See also

scipy.special.gammainc()

cupyx.scipy.special.gammaincinv

	
cupyx.scipy.special.gammaincinv()

	Elementwise function for scipy.special.gammaincinv

Inverse to gammainc.

See also

scipy.special.gammaincinv()

cupyx.scipy.special.gammaincc

	
cupyx.scipy.special.gammaincc()

	Elementwise function for scipy.special.gammaincc

Regularized upper incomplete gamma function.

See also

scipy.special.gammaincc()

cupyx.scipy.special.gammainccinv

	
cupyx.scipy.special.gammainccinv()

	Elementwise function for scipy.special.gammainccinv

Inverse to gammaincc.

See also

scipy.special.gammainccinv()

cupyx.scipy.special.beta

	
cupyx.scipy.special.beta()

	Beta function.

	Parameters:

	
	a (cupy.ndarray) – Real-valued arguments

	b (cupy.ndarray) – Real-valued arguments

	out (cupy.ndarray, optional) – Optional output array for the function result

	Returns:

	Value of the beta function

	Return type:

	scalar or ndarray

See also

scipy.special.beta()

cupyx.scipy.special.betaln

	
cupyx.scipy.special.betaln()

	Natural logarithm of absolute value of beta function.

Computes ln(abs(beta(a, b))).

	Parameters:

	
	a (cupy.ndarray) – Real-valued arguments

	b (cupy.ndarray) – Real-valued arguments

	out (cupy.ndarray, optional) – Optional output array for the function result

	Returns:

	Value of the natural log of the magnitude of beta.

	Return type:

	scalar or ndarray

See also

scipy.special.betaln()

cupyx.scipy.special.betainc

	
cupyx.scipy.special.betainc()

	Incomplete beta function.

	Parameters:

	
	a (cupy.ndarray) – Positive, real-valued parameters

	b (cupy.ndarray) – Positive, real-valued parameters

	x (cupy.ndarray) – Real-valued such that 0 <= x <= 1, the upper limit of integration.

	out (ndarray, optional) – Optional output array for the function result

	Returns:

	Value of the incomplete beta function

	Return type:

	scalar or ndarray

See also

scipy.special.betainc()

cupyx.scipy.special.betaincinv

	
cupyx.scipy.special.betaincinv()

	Inverse of the incomplete beta function.

	Parameters:

	
	a (cupy.ndarray) – Positive, real-valued parameters

	b (cupy.ndarray) – Positive, real-valued parameters

	y (cupy.ndarray) – Real-valued input.

	out (ndarray, optional) – Optional output array for the function result

	Returns:

	Value of the inverse of the incomplete beta function

	Return type:

	scalar or ndarray

See also

scipy.special.betaincinv()

cupyx.scipy.special.psi

	
cupyx.scipy.special.psi()

	The digamma function.

	Parameters:

	x (cupy.ndarray) – The input of digamma function.

	Returns:

	Computed value of digamma function.

	Return type:

	cupy.ndarray

See also

scipy.special.digamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma]

cupyx.scipy.special.rgamma

	
cupyx.scipy.special.rgamma()

	Reciprocal gamma function.

	Parameters:

	z (cupy.ndarray) – The input to the rgamma function.

	Returns:

	Computed value of the rgamma function.

	Return type:

	cupy.ndarray

See also

scipy.special.rgamma()

cupyx.scipy.special.polygamma

	
cupyx.scipy.special.polygamma(n, x)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_polygamma.py#L7]

	Polygamma function n.

	Parameters:

	
	n (cupy.ndarray) – The order of the derivative of psi.

	x (cupy.ndarray) – Where to evaluate the polygamma function.

	Returns:

	The result.

	Return type:

	cupy.ndarray

See also

scipy.special.polygamma

cupyx.scipy.special.multigammaln

	
cupyx.scipy.special.multigammaln(a, d)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_gammaln.py#L30]

	Returns the log of multivariate gamma, also sometimes called the
generalized gamma.

	Parameters:

	
	a (cupy.ndarray) – The multivariate gamma is computed for each item of a.

	d (int [https://docs.python.org/3/library/functions.html#int]) – The dimension of the space of integration.

	Returns:

	res – The values of the log multivariate gamma at the given points a.

	Return type:

	ndarray

See also

scipy.special.multigammaln() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.multigammaln.html#scipy.special.multigammaln]

cupyx.scipy.special.digamma

	
cupyx.scipy.special.digamma()

	The digamma function.

	Parameters:

	x (cupy.ndarray) – The input of digamma function.

	Returns:

	Computed value of digamma function.

	Return type:

	cupy.ndarray

See also

scipy.special.digamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma]

cupyx.scipy.special.poch

	
cupyx.scipy.special.poch()

	Elementwise function for scipy.special.poch (Pochhammer symbol)

See also

scipy.special.poch()

cupyx.scipy.special.erf

	
cupyx.scipy.special.erf()

	Error function.

See also

scipy.special.erf()

cupyx.scipy.special.erfc

	
cupyx.scipy.special.erfc()

	Complementary error function.

See also

scipy.special.erfc()

cupyx.scipy.special.erfcx

	
cupyx.scipy.special.erfcx()

	Scaled complementary error function.

See also

scipy.special.erfcx()

cupyx.scipy.special.erfinv

	
cupyx.scipy.special.erfinv()

	Inverse function of error function.

See also

scipy.special.erfinv()

Note

The behavior close to (and outside) the domain follows that of
SciPy v1.4.0+.

cupyx.scipy.special.erfcinv

	
cupyx.scipy.special.erfcinv()

	Inverse function of complementary error function.

See also

scipy.special.erfcinv()

Note

The behavior close to (and outside) the domain follows that of
SciPy v1.4.0+.

cupyx.scipy.special.lpmv

	
cupyx.scipy.special.lpmv()

	Associated Legendre function of integer order and real degree.

See also

scipy.special.lpmv()

cupyx.scipy.special.sph_harm

	
cupyx.scipy.special.sph_harm()

	Spherical Harmonic.

See also

scipy.special.sph_harm()

cupyx.scipy.special.exp1

	
cupyx.scipy.special.exp1()

	Exponential integral E1.

	Parameters:

	x (cupy.ndarray) – Real argument

	Returns:

	y – Values of the exponential integral E1

	Return type:

	scalar or cupy.ndarray

See also

scipy.special.exp1()

cupyx.scipy.special.expi

	
cupyx.scipy.special.expi()

	Exponential integral Ei.

	Parameters:

	x (cupy.ndarray) – Real argument

	Returns:

	y – Values of exponential integral

	Return type:

	scalar or cupy.ndarray

See also

scipy.special.expi()

cupyx.scipy.special.expn

	
cupyx.scipy.special.expn()

	Generalized exponential integral En.

	Parameters:

	
	n (cupy.ndarray) – Non-negative integers

	x (cupy.ndarray) – Real argument

	Returns:

	y – Values of the generalized exponential integral

	Return type:

	scalar or cupy.ndarray

See also

scipy.special.expn()

cupyx.scipy.special.exprel

	
cupyx.scipy.special.exprel()

	Computes (exp(x) - 1) / x.

See also

scipy.special.exprel()

cupyx.scipy.special.softmax

	
cupyx.scipy.special.softmax(x, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_softmax.py#L4]

	Softmax function.

The softmax function transforms each element of a
collection by computing the exponential of each element
divided by the sum of the exponentials of all the elements.

	Parameters:

	
	x (array-like) – The input array

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Axis to compute values along. Default is None

	Returns:

	s – Returns an array with same shape as input. The result
will sum to 1 along the provided axis

	Return type:

	cupy.ndarray

cupyx.scipy.special.log_softmax

	
cupyx.scipy.special.log_softmax(x, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_logsoftmax.py#L15]

	Compute logarithm of softmax function

	Parameters:

	
	x (array-like) – Input array

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Axis to compute values along. Default is None and softmax
will be computed over the entire array x

	Returns:

	s – An array with the same shape as x. Exponential of the
result will sum to 1 along the specified axis. If x is a
scalar, a scalar is returned

	Return type:

	cupy.ndarry

cupyx.scipy.special.zeta

	
cupyx.scipy.special.zeta()

	Hurwitz zeta function.

	Parameters:

	
	x (cupy.ndarray) – Input data, must be real.

	q (cupy.ndarray) – Input data, must be real.

	Returns:

	Values of zeta(x, q).

	Return type:

	cupy.ndarray

See also

scipy.special.zeta

cupyx.scipy.special.zetac

	
cupyx.scipy.special.zetac()

	Riemann zeta function minus 1.

	Parameters:

	x (cupy.ndarray) – Input data, must be real.

	Returns:

	Values of zeta(x)-1.

	Return type:

	cupy.ndarray

See also

scipy.special.zetac [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zetac.html#scipy.special.zetac]

cupyx.scipy.special.cbrt

	
cupyx.scipy.special.cbrt()

	Cube root.

See also

scipy.special.cbrt()

cupyx.scipy.special.exp10

	
cupyx.scipy.special.exp10()

	Computes 10**x.

See also

scipy.special.exp10()

cupyx.scipy.special.exp2

	
cupyx.scipy.special.exp2()

	Computes 2**x.

See also

scipy.special.exp2()

cupyx.scipy.special.radian

	
cupyx.scipy.special.radian()

	Degrees, minutes, seconds to radians:

See also

scipy.special.radian()

cupyx.scipy.special.cosdg

	
cupyx.scipy.special.cosdg()

	Cosine of x with x in degrees.

See also

scipy.special.cosdg()

cupyx.scipy.special.sindg

	
cupyx.scipy.special.sindg()

	Sine of x with x in degrees.

See also

scipy.special.sindg()

cupyx.scipy.special.tandg

	
cupyx.scipy.special.tandg()

	Tangent of x with x in degrees.

See also

scipy.special.tandg()

cupyx.scipy.special.cotdg

	
cupyx.scipy.special.cotdg()

	Cotangent of x with x in degrees.

See also

scipy.special.cotdg()

cupyx.scipy.special.log1p

	
cupyx.scipy.special.log1p()

	Elementwise function for scipy.special.log1p

Calculates log(1 + x) for use when x is near zero.

Notes

This implementation currently does not support complex-valued x.

See also

scipy.special.log1p()

cupyx.scipy.special.expm1

	
cupyx.scipy.special.expm1()

	Computes exp(x) - 1.

See also

scipy.special.expm1()

cupyx.scipy.special.cosm1

	
cupyx.scipy.special.cosm1()

	Computes cos(x) - 1.

See also

scipy.special.cosm1()

cupyx.scipy.special.round

	
cupyx.scipy.special.round(a, decimals=0, out=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_math/rounding.py#L31]

	

cupyx.scipy.special.xlogy

	
cupyx.scipy.special.xlogy()

	Compute x*log(y) so that the result is 0 if x = 0.

	Parameters:

	x (cupy.ndarray) – input data

	Returns:

	values of x * log(y)

	Return type:

	cupy.ndarray

See also

scipy.special.xlogy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlogy.html#scipy.special.xlogy]

cupyx.scipy.special.xlog1py

	
cupyx.scipy.special.xlog1py()

	Compute x*log1p(y) so that the result is 0 if x = 0.

	Parameters:

	x (cupy.ndarray) – input data

	Returns:

	values of x * log1p(y)

	Return type:

	cupy.ndarray

See also

scipy.special.xlog1py [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlog1py.html#scipy.special.xlog1py]

cupyx.scipy.special.logsumexp

	
cupyx.scipy.special.logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/special/_logsumexp.py#L4]

	Compute the log of the sum of exponentials of input elements.

	Parameters:

	
	a (cupy.ndarray) – Input array

	axis (None or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints, optional) – Axis or axes over which the sum is taken. By default
axis is None, and all elements are summed

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If this is set to True, the axes which are reduced
are left in the result as dimensions with size one. With
this option, the result will broadcast correctly
against the original array

	b (cupy.ndarray, optional) – Scaling factor for exp(a) must be of the same shape as a or
broadcastable to a. These values may be negative in order to
implement subtraction

	return_sign (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False

	Returns:

	
	res (cupy.ndarray) – The result, cp.log(cp.sum(cp.exp(a))) calculated
in a numerically more stable way. If b is given then
cp.log(cp.sum(b*cp.exp(a))) is returned

	sgn (cupy.ndarray) – If return_sign is True, this will be an array of floating-point
numbers matching res and +1, 0, or -1 depending on the sign of
the result. If False, only onw result is returned

See also

scipy.special.logsumexp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html#scipy.special.logsumexp]

cupyx.scipy.special.sinc

	
cupyx.scipy.special.sinc(x, /, out=None, *, casting='same_kind', dtype=None)

	Elementwise sinc function.

See also

numpy.sinc() [https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc]

Statistical functions (cupyx.scipy.stats)

Hint

SciPy API Reference: Statistical functions (scipy.stats) [https://docs.scipy.org/doc/scipy/reference/stats.html]

Summary statistics

	trim_mean(a, proportiontocut[, axis])

	Return mean of array after trimming distribution from both tails.

	entropy(pk[, qk, base, axis])

	Calculate the entropy of a distribution for given probability values.

Other statistical functionality

	boxcox_llf(lmb, data)

	The boxcox log-likelihood function.

	zmap(scores, compare[, axis, ddof, nan_policy])

	Calculate the relative z-scores.

	zscore(a[, axis, ddof, nan_policy])

	Compute the z-score.

cupyx.scipy.stats.trim_mean

	
cupyx.scipy.stats.trim_mean(a, proportiontocut, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/stats/_stats.py#L13]

	Return mean of array after trimming distribution from both tails.

If proportiontocut = 0.1, slices off ‘leftmost’ and ‘rightmost’ 10% of
scores. The input is sorted before slicing. Slices off less if proportion
results in a non-integer slice index (i.e., conservatively slices off
proportiontocut).

	Parameters:

	
	a (cupy.ndarray) – Input array.

	proportiontocut (float [https://docs.python.org/3/library/functions.html#float]) – Fraction to cut off of both tails of the distribution.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – Axis along which the trimmed means are computed. Default is 0.
If None, compute over the whole array a.

	Returns:

	trim_mean – Mean of trimmed array.

	Return type:

	ndarray

See also

trimboth

	tmean
	Compute the trimmed mean ignoring values outside given limits.

Examples

>>> import cupy as cp
>>> from cupyx.scipy import stats
>>> x = cp.arange(20)
>>> stats.trim_mean(x, 0.1)
array(9.5)
>>> x2 = x.reshape(5, 4)
>>> x2
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19]])
>>> stats.trim_mean(x2, 0.25)
array([8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([1.5, 5.5, 9.5, 13.5, 17.5])

cupyx.scipy.stats.entropy

	
cupyx.scipy.stats.entropy(pk, qk=None, base=None, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/stats/_distributions.py#L17]

	Calculate the entropy of a distribution for given probability values.

If only probabilities pk are given, the entropy is calculated as
S = -sum(pk * log(pk), axis=axis).

If qk is not None, then compute the Kullback-Leibler divergence
S = sum(pk * log(pk / qk), axis=axis).

This routine will normalize pk and qk if they don’t sum to 1.

	Parameters:

	
	pk (ndarray) – Defines the (discrete) distribution. pk[i] is the
(possibly unnormalized) probability of event i.

	qk (ndarray, optional) – Sequence against which the relative entropy is
computed. Should be in the same format as pk.

	base (float [https://docs.python.org/3/library/functions.html#float], optional) – The logarithmic base to use, defaults to e
(natural logarithm).

	axis (int [https://docs.python.org/3/library/functions.html#int], optional) – The axis along which the entropy is calculated.
Default is 0.

	Returns:

	The calculated entropy.

	Return type:

	S (cupy.ndarray)

cupyx.scipy.stats.boxcox_llf

	
cupyx.scipy.stats.boxcox_llf(lmb, data)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/stats/_morestats.py#L4]

	The boxcox log-likelihood function.

	Parameters:

	
	lmb (scalar) – Parameter for Box-Cox transformation

	data (array-like) – Data to calculate Box-Cox log-likelihood for. If
data is multi-dimensional, the log-likelihood
is calculated along the first axis

	Returns:

	llf – Box-Cox log-likelihood of data given lmb. A float
for 1-D data, an array otherwise

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] or cupy.ndarray

See also

scipy.stats.boxcox_llf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf]

cupyx.scipy.stats.zmap

	
cupyx.scipy.stats.zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/stats/_stats_py.py#L62]

	Calculate the relative z-scores.

Return an array of z-scores, i.e., scores that are standardized
to zero mean and unit variance, where mean and variance are
calculated from the comparison array.

	Parameters:

	
	scores (array-like) – The input for which z-scores are calculated

	compare (array-like) – The input from which the mean and standard deviation of
the normalization are taken; assumed to have the same
dimension as scores

	axis (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – Axis over which mean and variance of compare are calculated.
Default is 0. If None, compute over the whole array scores

	ddof (int [https://docs.python.org/3/library/functions.html#int], optional) – Degrees of freedom correction in the calculation of the
standard deviation. Default is 0

	nan_policy ({'propagate', 'raise', 'omit'}, optional) – Defines how to handle the occurrence of nans in compare.
‘propagate’ returns nan, ‘raise’ raises an exception, ‘omit’
performs the calculations ignoring nan values. Default is
‘propagate’. Note that when the value is ‘omit’, nans in scores
also propagate to the output, but they do not affect the z-scores
computed for the non-nan values

	Returns:

	zscore – Z-scores, in the same shape as scores

	Return type:

	array-like

cupyx.scipy.stats.zscore

	
cupyx.scipy.stats.zscore(a, axis=0, ddof=0, nan_policy='propagate')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/scipy/stats/_stats_py.py#L26]

	Compute the z-score.

Compute the z-score of each value in the sample, relative to
the sample mean and standard deviation.

	Parameters:

	
	a (array-like) – An array like object containing the sample data

	axis (int [https://docs.python.org/3/library/functions.html#int] or None, optional) – Axis along which to operate. Default is 0. If None,
compute over the whole arrsy a

	ddof (int [https://docs.python.org/3/library/functions.html#int], optional) – Degrees of freedom correction in the calculation of the
standard deviation. Default is 0

	nan_policy ({'propagate', 'raise', 'omit'}, optional) – Defines how to handle when input contains nan. ‘propagate’
returns nan, ‘raise’ throws an error, ‘omit’ performs
the calculations ignoring nan values. Default is
‘propagate’. Note that when the value is ‘omit’,
nans in the input also propagate to the output,
but they do not affect the z-scores computed
for the non-nan values

	Returns:

	zscore – The z-scores, standardized by mean and standard deviation of
input array a

	Return type:

	array-like

CuPy-specific functions

CuPy-specific functions are placed under cupyx namespace.

	cupyx.rsqrt

	Returns the reciprocal square root.

	cupyx.scatter_add(a, slices, value)

	Adds given values to specified elements of an array.

	cupyx.scatter_max(a, slices, value)

	Stores a maximum value of elements specified by indices to an array.

	cupyx.scatter_min(a, slices, value)

	Stores a minimum value of elements specified by indices to an array.

	cupyx.empty_pinned(shape[, dtype, order])

	Returns a new, uninitialized NumPy array with the given shape and dtype.

	cupyx.empty_like_pinned(a[, dtype, order, ...])

	Returns a new, uninitialized NumPy array with the same shape and dtype as those of the given array.

	cupyx.zeros_pinned(shape[, dtype, order])

	Returns a new, zero-initialized NumPy array with the given shape and dtype.

	cupyx.zeros_like_pinned(a[, dtype, order, ...])

	Returns a new, zero-initialized NumPy array with the same shape and dtype as those of the given array.

non-SciPy compat Signal API

The functions under cupyx.signal are non-SciPy compat signal API ported from cuSignal
through the courtesy of Nvidia cuSignal team.

	cupyx.signal.convolve1d3o(in1, in2[, mode, ...])

	Convolve a 1-dimensional array with a 3rd order filter.

	cupyx.signal.pulse_compression(x, template)

	Pulse Compression is used to increase the range resolution and SNR by performing matched filtering of the transmitted pulse (template) with the received signal (x)

Profiling utilities

	cupyx.profiler.benchmark(func[, args, ...])

	Timing utility for measuring time spent by both CPU and GPU.

	cupyx.profiler.time_range([message, ...])

	Mark function calls with ranges using NVTX/rocTX.

	cupyx.profiler.profile()

	Enable CUDA profiling during with statement.

DLPack utilities

Below are helper functions for creating a cupy.ndarray from either a DLPack tensor
or any object supporting the DLPack data exchange protocol.
For further detail see DLPack.

	cupy.from_dlpack(array)

	Zero-copy conversion between array objects compliant with the DLPack data exchange protocol.

Automatic Kernel Parameters Optimizations (cupyx.optimizing)

	cupyx.optimizing.optimize(*[, key, path, ...])

	Context manager that optimizes kernel launch parameters.

cupyx.rsqrt

	
cupyx.rsqrt()

	Returns the reciprocal square root.

cupyx.scatter_add

	
cupyx.scatter_add(a, slices, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_scatter.py#L1]

	Adds given values to specified elements of an array.

It adds value to the specified elements of a.
If all of the indices target different locations, the operation of
scatter_add() is equivalent to a[slices] = a[slices] + value.
If there are multiple elements targeting the same location,
scatter_add() uses all of these values for addition. On the other
hand, a[slices] = a[slices] + value only adds the contribution from one
of the indices targeting the same location.

Note that just like an array indexing, negative indices are interpreted as
counting from the end of an array.

Also note that scatter_add() behaves identically
to numpy.add.at().

Example

>>> import cupy
>>> import cupyx
>>> a = cupy.zeros((6,), dtype=cupy.float32)
>>> i = cupy.array([1, 0, 1])
>>> v = cupy.array([1., 1., 1.])
>>> cupyx.scatter_add(a, i, v);
>>> a
array([1., 2., 0., 0., 0., 0.], dtype=float32)

	Parameters:

	
	a (ndarray) – An array that gets added.

	slices – It is integer, slices, ellipsis, numpy.newaxis,
integer array-like, boolean array-like or tuple of them.
It works for slices used for
cupy.ndarray.__getitem__() and
cupy.ndarray.__setitem__().

	v (array-like) – Values to increment a at referenced locations.

Note

It only supports types that are supported by CUDA’s atomicAdd when
an integer array is included in slices.
The supported types are numpy.float32, numpy.int32,
numpy.uint32, numpy.uint64 and numpy.ulonglong.

Note

scatter_add() does not raise an error when indices exceed size of
axes. Instead, it wraps indices.

See also

numpy.ufunc.at() [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.at.html#numpy.ufunc.at].

cupyx.scatter_max

	
cupyx.scatter_max(a, slices, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_scatter.py#L54]

	Stores a maximum value of elements specified by indices to an array.

It stores the maximum value of elements in value array indexed by
slices to a. If all of the indices target different locations,
the operation of scatter_max() is equivalent to
a[slices] = cupy.maximum(a[slices], value).
If there are multiple elements targeting the same location,
scatter_max() stores the maximum of all of these values to the given
index of a, the initial element of a is also taken in account.

Note that just like an array indexing, negative indices are interpreted as
counting from the end of an array.

Also note that scatter_max() behaves identically
to numpy.maximum.at().

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1, 2])
>>> v = cupy.array([1., 2., 3., -1.])
>>> cupyx.scatter_max(a, i, v);
>>> a
array([2., 3., 0., 0., 0., 0.], dtype=float32)

	Parameters:

	
	a (ndarray) – An array to store the results.

	slices – It is integer, slices, ellipsis, numpy.newaxis,
integer array-like, boolean array-like or tuple of them.
It works for slices used for
cupy.ndarray.__getitem__() and
cupy.ndarray.__setitem__().

	v (array-like) – An array used for reference.

cupyx.scatter_min

	
cupyx.scatter_min(a, slices, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_scatter.py#L94]

	Stores a minimum value of elements specified by indices to an array.

It stores the minimum value of elements in value array indexed by
slices to a. If all of the indices target different locations,
the operation of scatter_min() is equivalent to
a[slices] = cupy.minimum(a[slices], value).
If there are multiple elements targeting the same location,
scatter_min() stores the minimum of all of these values to the given
index of a, the initial element of a is also taken in account.

Note that just like an array indexing, negative indices are interpreted as
counting from the end of an array.

Also note that scatter_min() behaves identically
to numpy.minimum.at().

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1, 2])
>>> v = cupy.array([1., 2., 3., -1.])
>>> cupyx.scatter_min(a, i, v);
>>> a
array([0., 0., -1., 0., 0., 0.], dtype=float32)

	Parameters:

	
	a (ndarray) – An array to store the results.

	slices – It is integer, slices, ellipsis, numpy.newaxis,
integer array-like, boolean array-like or tuple of them.
It works for slices used for
cupy.ndarray.__getitem__() and
cupy.ndarray.__setitem__().

	v (array-like) – An array used for reference.

cupyx.empty_pinned

	
cupyx.empty_pinned(shape, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_pinned_array.py#L18]

	Returns a new, uninitialized NumPy array with the given shape
and dtype.

This is a convenience function which is just numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty],
except that the underlying memory is pinned/pagelocked.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	A new array with elements not initialized.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty]

cupyx.empty_like_pinned

	
cupyx.empty_like_pinned(a, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_pinned_array.py#L44]

	Returns a new, uninitialized NumPy array with the same shape and dtype
as those of the given array.

This is a convenience function which is just numpy.empty_like() [https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like],
except that the underlying memory is pinned/pagelocked.

This function currently does not support subok option.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Base array.

	dtype – Data type specifier. The data type of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	A new array with same shape and dtype of a with
elements not initialized.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

numpy.empty_like() [https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like]

cupyx.zeros_pinned

	
cupyx.zeros_pinned(shape, dtype=<class 'float'>, order='C')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_pinned_array.py#L88]

	Returns a new, zero-initialized NumPy array with the given shape
and dtype.

This is a convenience function which is just numpy.zeros() [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros],
except that the underlying memory is pinned/pagelocked.

	Parameters:

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:

	An array filled with zeros.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

numpy.zeros() [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros]

cupyx.zeros_like_pinned

	
cupyx.zeros_like_pinned(a, dtype=None, order='K', subok=None, shape=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/_pinned_array.py#L112]

	Returns a new, zero-initialized NumPy array with the same shape and dtype
as those of the given array.

This is a convenience function which is just numpy.zeros_like() [https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like],
except that the underlying memory is pinned/pagelocked.

This function currently does not support subok option.

	Parameters:

	
	a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Base array.

	dtype – Data type specifier. The dtype of a is used by default.

	order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the
result. 'C' means C-order, 'F' means F-order, 'A' means
'F' if a is Fortran contiguous, 'C' otherwise.
'K' means match the layout of a as closely as possible.

	subok – Not supported yet, must be None.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Overrides the shape of the result. If
order='K' and the number of dimensions is unchanged, will try
to keep order, otherwise, order='C' is implied.

	Returns:

	An array filled with zeros.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

numpy.zeros_like() [https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like]

cupyx.signal.convolve1d3o

	
cupyx.signal.convolve1d3o(in1, in2, mode='valid', method='direct')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/signal/_convolution/_convolve.py#L159]

	Convolve a 1-dimensional array with a 3rd order filter.
This results in a third order convolution.

Convolve in1 and in2, with the output size determined by the
mode argument.

	Parameters:

	
	in1 (array_like) – First input. Should have one dimension.

	in2 (array_like) – Second input. Should have three dimensions.

	mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the output:

	full
	The output is the full discrete linear convolution
of the inputs. (Default)

	valid
	The output consists only of those elements that do not
rely on the zero-padding. In ‘valid’ mode, either in1 or in2
must be at least as large as the other in every dimension.

	same
	The output is the same size as in1, centered
with respect to the ‘full’ output.

	method (str {'auto', 'direct', 'fft'}, optional) – A string indicating which method to use to calculate the convolution.

	direct
	The convolution is determined directly from sums, the definition of
convolution.

	fft
	The Fourier Transform is used to perform the convolution by calling
fftconvolve.

	auto
	Automatically chooses direct or Fourier method based on an estimate
of which is faster (default).

	Returns:

	out – A 1-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.

	Return type:

	ndarray

See also

convolve, convolve1d2o, convolve1d3o

cupyx.signal.pulse_compression

	
cupyx.signal.pulse_compression(x, template, normalize=False, window=None, nfft=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/signal/_radartools/_radartools.py#L49]

	Pulse Compression is used to increase the range resolution and SNR
by performing matched filtering of the transmitted pulse (template)
with the received signal (x)

	Parameters:

	
	x (ndarray) – Received signal, assume 2D array with [num_pulses, sample_per_pulse]

	template (ndarray) – Transmitted signal, assume 1D array

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – Normalize transmitted signal

	window (array_like, callable, string, float [https://docs.python.org/3/library/functions.html#float], or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Specifies the window applied to the signal in the Fourier
domain.

	nfft (int [https://docs.python.org/3/library/functions.html#int], size of FFT for pulse compression. Default is number of) – samples per pulse

	Returns:

	compressedIQ – Pulse compressed output

	Return type:

	ndarray

cupyx.profiler.benchmark

	
cupyx.profiler.benchmark(func, args=(), kwargs={}, n_repeat=10000, *, name=None, n_warmup=10, max_duration=inf, devices=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time.py#L82]

	Timing utility for measuring time spent by both CPU and GPU.

This function is a very convenient helper for setting up a timing test. The
GPU time is properly recorded by synchronizing internal streams. As a
result, to time a multi-GPU function all participating devices must be
passed as the devices argument so that this helper knows which devices
to record. A simple example is given as follows:

import cupy as cp
from cupyx.profiler import benchmark

def f(a, b):
 return 3 * cp.sin(-a) * b

a = 0.5 - cp.random.random((100,))
b = cp.random.random((100,))
print(benchmark(f, (a, b), n_repeat=1000))

	Parameters:

	
	func (callable) – a callable object to be timed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional argumens to be passed to the callable.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to be passed to the callable.

	n_repeat (int [https://docs.python.org/3/library/functions.html#int]) – number of times the callable is called. Increasing
this value would improve the collected statistics at the cost
of longer test time.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the function name to be reported. If not given, the
callable’s __name__ attribute is used.

	n_warmup (int [https://docs.python.org/3/library/functions.html#int]) – number of times the callable is called. The warm-up
runs are not timed.

	max_duration (float [https://docs.python.org/3/library/functions.html#float]) – the maximum time (in seconds) that the entire
test can use. If the taken time is longer than this limit, the test
is stopped and the statistics collected up to the breakpoint is
reported.

	devices (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple of device IDs (int) that will be timed during
the timing test. If not given, the current device is used.

	Returns:

	an object collecting all test results.

	Return type:

	_PerfCaseResult

cupyx.profiler.time_range

	
class cupyx.profiler.time_range(message=None, color_id=None, argb_color=None, sync=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L11]

	Mark function calls with ranges using NVTX/rocTX. This object can be
used either as a decorator or a context manager.

When used as a decorator, the decorated function calls are marked as
ranges:

>>> from cupyx.profiler import time_range
>>> @time_range()
... def function_to_profile():
... pass

When used as a context manager, it describes the enclosed block as a nested
range:

>>> from cupyx.profiler import time_range
>>> with time_range('some range in green', color_id=0):
... # do something you want to measure
... pass

The marked ranges are visible in the profiler (such as nvvp, nsys-ui, etc)
timeline.

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range. When used as a decorator, the default
is func.__name__.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

	sync (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, waits for completion of all outstanding
processing on GPU before calling cupy.cuda.nvtx.RangePush()
or cupy.cuda.nvtx.RangePop()

See also

cupy.cuda.nvtx.RangePush(),
cupy.cuda.nvtx.RangePop()

Methods

	
__call__(func)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L84]

	Call self as a function.

	
__enter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L61]

	

	
__exit__(exc_type, exc_value, traceback)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L74]

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.profiler.profile

	
cupyx.profiler.profile()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/__init__.py#L7]

	Enable CUDA profiling during with statement.

This function enables profiling on entering a with statement, and disables
profiling on leaving the statement.

>>> with cupyx.profiler.profile():
... # do something you want to measure
... pass

Note

When starting nvprof from the command line, manually setting
--profile-from-start off may be required for the desired behavior.
Likewise, when using nsys profile setting -c cudaProfilerApi
may be required.

See also

cupy.cuda.runtime.profilerStart(),
cupy.cuda.runtime.profilerStop()

cupy.from_dlpack

	
cupy.from_dlpack(array)

	Zero-copy conversion between array objects compliant with the DLPack
data exchange protocol.

	Parameters:

	array (object [https://docs.python.org/3/library/functions.html#object]) – an array object that implements two methods:
__dlpack__() and __dlpack_device__().

	Returns:

	a CuPy array that can be safely accessed on CuPy’s
current stream.

	Return type:

	cupy.ndarray

Note

This function is different from CuPy’s legacy fromDlpack()
function. This function takes any object implementing the DLPack data
exchange protocol, as well as a raw PyCapsule object that
contains the DLPack tensor as input (for backward compatibility),
whereas fromDlpack() only accepts PyCapsule
objects. If the input object is not compliant with the protocol, users
are responsible to ensure data safety.

See also

numpy.from_dlpack() [https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack],
Python Specification for DLPack [https://dmlc.github.io/dlpack/latest/python_spec.html],
Data interchange mechanisms [https://data-apis.org/array-api/latest/design_topics/data_interchange.html]

cupyx.optimizing.optimize

	
cupyx.optimizing.optimize(*, key=None, path=None, readonly=False, **config_dict)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/optimizing/_optimize.py#L47]

	Context manager that optimizes kernel launch parameters.

In this context, CuPy’s routines find the best kernel launch parameter
values (e.g., the number of threads and blocks). The found values are
cached and reused with keys as the shapes, strides and dtypes of the
given inputs arrays.

	Parameters:

	
	key (string or None) – The cache key of optimizations.

	path (string or None) – The path to save optimization cache records.
When path is specified and exists, records will be loaded from
the path. When readonly option is set to False, optimization
cache records will be saved to the path after the optimization.

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – See the description of path option.

	max_trials (int [https://docs.python.org/3/library/functions.html#int]) – The number of trials that defaults to 100.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Stops study after the given number of seconds. Default is 1.

	max_total_time_per_trial (float [https://docs.python.org/3/library/functions.html#float]) – Repeats measuring the execution time of the routine for the
given number of seconds. Default is 0.1.

Examples

>>> import cupy
>>> from cupyx import optimizing
>>>
>>> x = cupy.arange(100)
>>> with optimizing.optimize():
... cupy.sum(x)
...
array(4950)

Note

Optuna (https://optuna.org) installation is required.
Currently it works for reduction operations only.

Low-level CUDA support

Device management

	cupy.cuda.Device([device])

	Object that represents a CUDA device.

Memory management

	cupy.get_default_memory_pool()

	Returns CuPy default memory pool for GPU memory.

	cupy.get_default_pinned_memory_pool()

	Returns CuPy default memory pool for pinned memory.

	cupy.cuda.Memory(size_t size)

	Memory allocation on a CUDA device.

	cupy.cuda.MemoryAsync(size_t size, stream)

	Asynchronous memory allocation on a CUDA device.

	cupy.cuda.ManagedMemory(size_t size)

	Managed memory (Unified memory) allocation on a CUDA device.

	cupy.cuda.UnownedMemory(intptr_t ptr, ...)

	CUDA memory that is not owned by CuPy.

	cupy.cuda.PinnedMemory(size[, flags])

	Pinned memory allocation on host.

	cupy.cuda.MemoryPointer(BaseMemory mem, ...)

	Pointer to a point on a device memory.

	cupy.cuda.PinnedMemoryPointer(mem, ...)

	Pointer of a pinned memory.

	cupy.cuda.malloc_managed(size_t size)

	Allocate managed memory (unified memory).

	cupy.cuda.malloc_async(size_t size)

	(Experimental) Allocate memory from Stream Ordered Memory Allocator.

	cupy.cuda.alloc(size)

	Calls the current allocator.

	cupy.cuda.alloc_pinned_memory(size_t size)

	Calls the current allocator.

	cupy.cuda.get_allocator()

	Returns the current allocator for GPU memory.

	cupy.cuda.set_allocator([allocator])

	Sets the current allocator for GPU memory.

	cupy.cuda.using_allocator([allocator])

	Sets a thread-local allocator for GPU memory inside

	cupy.cuda.set_pinned_memory_allocator([...])

	Sets the current allocator for the pinned memory.

	cupy.cuda.MemoryPool([allocator])

	Memory pool for all GPU devices on the host.

	cupy.cuda.MemoryAsyncPool([pool_handles])

	(Experimental) CUDA memory pool for all GPU devices on the host.

	cupy.cuda.PinnedMemoryPool([allocator])

	Memory pool for pinned memory on the host.

	cupy.cuda.PythonFunctionAllocator(...)

	Allocator with python functions to perform memory allocation.

	cupy.cuda.CFunctionAllocator(intptr_t param, ...)

	Allocator with C function pointers to allocation routines.

Memory hook

	cupy.cuda.MemoryHook()

	Base class of hooks for Memory allocations.

	cupy.cuda.memory_hooks.DebugPrintHook([...])

	Memory hook that prints debug information.

	cupy.cuda.memory_hooks.LineProfileHook([...])

	Code line CuPy memory profiler.

Streams and events

	cupy.cuda.Stream([null, non_blocking, ptds])

	CUDA stream.

	cupy.cuda.ExternalStream(ptr[, device_id])

	CUDA stream not managed by CuPy.

	cupy.cuda.get_current_stream(int device_id=-1)

	Gets the current CUDA stream for the specified CUDA device.

	cupy.cuda.Event([block, disable_timing, ...])

	CUDA event, a synchronization point of CUDA streams.

	cupy.cuda.get_elapsed_time(start_event, ...)

	Gets the elapsed time between two events.

Graphs

	cupy.cuda.Graph(*args, **kwargs)

	The CUDA graph object.

Texture and surface memory

	cupy.cuda.texture.ChannelFormatDescriptor(...)

	A class that holds the channel format description.

	cupy.cuda.texture.CUDAarray(...)

	Allocate a CUDA array (cudaArray_t) that can be used as texture memory.

	cupy.cuda.texture.ResourceDescriptor(...)

	A class that holds the resource description.

	cupy.cuda.texture.TextureDescriptor([...])

	A class that holds the texture description.

	cupy.cuda.texture.TextureObject(...)

	A class that holds a texture object.

	cupy.cuda.texture.SurfaceObject(...)

	A class that holds a surface object.

NVTX

	cupy.cuda.nvtx.Mark(message, int id_color=-1)

	Marks an instantaneous event (marker) in the application.

	cupy.cuda.nvtx.MarkC(message, uint32_t color=0)

	Marks an instantaneous event (marker) in the application.

	cupy.cuda.nvtx.RangePush(message, ...)

	Starts a nested range.

	cupy.cuda.nvtx.RangePushC(message, ...)

	Starts a nested range.

	cupy.cuda.nvtx.RangePop()

	Ends a nested range started by a RangePush*() call.

NCCL

	cupy.cuda.nccl.NcclCommunicator(int ndev, ...)

	Initialize an NCCL communicator for one device controlled by one process.

	cupy.cuda.nccl.get_build_version()

	

	cupy.cuda.nccl.get_version()

	Returns the runtime version of NCCL.

	cupy.cuda.nccl.get_unique_id()

	

	cupy.cuda.nccl.groupStart()

	Start a group of NCCL calls.

	cupy.cuda.nccl.groupEnd()

	End a group of NCCL calls.

Version

	cupy.cuda.get_local_runtime_version()

	Returns the version of the CUDA Runtime installed in the environment.

Runtime API

CuPy wraps CUDA Runtime APIs to provide the native CUDA operations.
Please check the CUDA Runtime API documentation [https://docs.nvidia.com/cuda/cuda-runtime-api/index.html]
to use these functions.

	cupy.cuda.runtime.driverGetVersion()

	

	cupy.cuda.runtime.runtimeGetVersion()

	Returns the version of the CUDA Runtime statically linked to CuPy.

	cupy.cuda.runtime.getDevice()

	

	cupy.cuda.runtime.getDeviceProperties(int device)

	

	cupy.cuda.runtime.deviceGetAttribute(...)

	

	cupy.cuda.runtime.deviceGetByPCIBusId(...)

	

	cupy.cuda.runtime.deviceGetPCIBusId(int device)

	

	cupy.cuda.runtime.deviceGetDefaultMemPool(...)

	Get the default mempool on the current device.

	cupy.cuda.runtime.deviceGetMemPool(int device)

	Get the current mempool on the current device.

	cupy.cuda.runtime.deviceSetMemPool(...)

	Set the current mempool on the current device to pool.

	cupy.cuda.runtime.memPoolCreate(...)

	

	cupy.cuda.runtime.memPoolDestroy(intptr_t pool)

	

	cupy.cuda.runtime.memPoolTrimTo(...)

	

	cupy.cuda.runtime.getDeviceCount()

	

	cupy.cuda.runtime.setDevice(int device)

	

	cupy.cuda.runtime.deviceSynchronize()

	

	cupy.cuda.runtime.deviceCanAccessPeer(...)

	

	cupy.cuda.runtime.deviceEnablePeerAccess(...)

	

	cupy.cuda.runtime.deviceGetLimit(int limit)

	

	cupy.cuda.runtime.deviceSetLimit(int limit, ...)

	

	cupy.cuda.runtime.malloc(size_t size)

	

	cupy.cuda.runtime.mallocManaged(size_t size, ...)

	

	cupy.cuda.runtime.malloc3DArray(...)

	

	cupy.cuda.runtime.mallocArray(...)

	

	cupy.cuda.runtime.mallocAsync(size_t size, ...)

	

	cupy.cuda.runtime.mallocFromPoolAsync(...)

	

	cupy.cuda.runtime.hostAlloc(size_t size, ...)

	

	cupy.cuda.runtime.hostRegister(intptr_t ptr, ...)

	

	cupy.cuda.runtime.hostUnregister(intptr_t ptr)

	

	cupy.cuda.runtime.free(intptr_t ptr)

	

	cupy.cuda.runtime.freeHost(intptr_t ptr)

	

	cupy.cuda.runtime.freeArray(intptr_t ptr)

	

	cupy.cuda.runtime.freeAsync(intptr_t ptr, ...)

	

	cupy.cuda.runtime.memGetInfo()

	

	cupy.cuda.runtime.memcpy(intptr_t dst, ...)

	

	cupy.cuda.runtime.memcpyAsync(intptr_t dst, ...)

	

	cupy.cuda.runtime.memcpyPeer(intptr_t dst, ...)

	

	cupy.cuda.runtime.memcpyPeerAsync(...)

	

	cupy.cuda.runtime.memcpy2D(intptr_t dst, ...)

	

	cupy.cuda.runtime.memcpy2DAsync(...)

	

	cupy.cuda.runtime.memcpy2DFromArray(...)

	

	cupy.cuda.runtime.memcpy2DFromArrayAsync(...)

	

	cupy.cuda.runtime.memcpy2DToArray(...)

	

	cupy.cuda.runtime.memcpy2DToArrayAsync(...)

	

	cupy.cuda.runtime.memcpy3D(...)

	

	cupy.cuda.runtime.memcpy3DAsync(...)

	

	cupy.cuda.runtime.memset(intptr_t ptr, ...)

	

	cupy.cuda.runtime.memsetAsync(intptr_t ptr, ...)

	

	cupy.cuda.runtime.memPrefetchAsync(...)

	

	cupy.cuda.runtime.memAdvise(intptr_t devPtr, ...)

	

	cupy.cuda.runtime.pointerGetAttributes(...)

	

	cupy.cuda.runtime.streamCreate()

	

	cupy.cuda.runtime.streamCreateWithFlags(...)

	

	cupy.cuda.runtime.streamDestroy(intptr_t stream)

	

	cupy.cuda.runtime.streamSynchronize(...)

	

	cupy.cuda.runtime.streamAddCallback(...)

	

	cupy.cuda.runtime.streamQuery(intptr_t stream)

	

	cupy.cuda.runtime.streamWaitEvent(...)

	

	cupy.cuda.runtime.launchHostFunc(...)

	

	cupy.cuda.runtime.eventCreate()

	

	cupy.cuda.runtime.eventCreateWithFlags(...)

	

	cupy.cuda.runtime.eventDestroy(intptr_t event)

	

	cupy.cuda.runtime.eventElapsedTime(...)

	

	cupy.cuda.runtime.eventQuery(intptr_t event)

	

	cupy.cuda.runtime.eventRecord(...)

	

	cupy.cuda.runtime.eventSynchronize(...)

	

	cupy.cuda.runtime.ipcGetMemHandle(...)

	

	cupy.cuda.runtime.ipcOpenMemHandle(...)

	

	cupy.cuda.runtime.ipcCloseMemHandle(...)

	

	cupy.cuda.runtime.ipcGetEventHandle(...)

	

	cupy.cuda.runtime.ipcOpenEventHandle(...)

	

	cupy.cuda.runtime.profilerStart()

	Enable profiling.

	cupy.cuda.runtime.profilerStop()

	Disable profiling.

cupy.cuda.Device

	
class cupy.cuda.Device(device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/device.pyx]

	Object that represents a CUDA device.

This class provides some basic manipulations on CUDA devices.

It supports the context protocol. For example, the following code is an
example of temporarily switching the current device:

with Device(0):
 do_something_on_device_0()

After the with statement gets done, the current device is reset to the
original one.

	Parameters:

	device (int [https://docs.python.org/3/library/functions.html#int] or cupy.cuda.Device) – Index of the device to manipulate. Be
careful that the device ID (a.k.a. GPU ID) is zero origin. If it is
a Device object, then its ID is used. The current device is
selected by default.

	Variables:

	id (int [https://docs.python.org/3/library/functions.html#int]) – ID of this device.

Methods

	
__enter__(self)

	

	
__exit__(self, *args)

	

	
from_pci_bus_id(type cls, pci_bus_id)

	Returns a new device instance based on a PCI Bus ID

	Parameters:

	pci_bus_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string for a device in the following format
[domain]:[bus]:[device].[function] where domain, bus, device,
and function are all hexadecimal values.

	Returns:

	An instance of the Device class that has the PCI Bus ID as
given by the argument pci_bus_id.

	Return type:

	device (Device)

	
synchronize(self)

	Synchronizes the current thread to the device.

	
use(self)

	Makes this device current.

If you want to switch a device temporarily, use the with statement.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
attributes

	A dictionary of device attributes.

	Returns:

	Dictionary of attribute values with the names as keys.
The string cudaDevAttr has been trimmed from the names.
For example, the attribute corresponding to the enumerated
value cudaDevAttrMaxThreadsPerBlock will have key
MaxThreadsPerBlock.

	Return type:

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
compute_capability

	Compute capability of this device.

The capability is represented by a string containing the major index
and the minor index. For example, compute capability 3.5 is represented
by the string ‘35’.

	
cublas_handle

	The cuBLAS handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
cusolver_handle

	The cuSOLVER handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
cusolver_sp_handle

	The cuSOLVER Sphandle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
cusparse_handle

	The cuSPARSE handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
id

	‘int’

	Type:

	id

	
mem_info

	The device memory info.

	Returns:

	The amount of free memory, in bytes.
total: The total amount of memory, in bytes.

	Return type:

	free

	
pci_bus_id

	A string of the PCI Bus ID

	Returns:

	Returned identifier string for the device in the following
format [domain]:[bus]:[device].[function] where domain, bus,
device, and function are all hexadecimal values.

	Return type:

	pci_bus_id (str [https://docs.python.org/3/library/stdtypes.html#str])

cupy.get_default_memory_pool

	
cupy.get_default_memory_pool()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L880]

	Returns CuPy default memory pool for GPU memory.

	Returns:

	The memory pool object.

	Return type:

	cupy.cuda.MemoryPool

Note

If you want to disable memory pool, please use the following code.

>>> cupy.cuda.set_allocator(None)

cupy.get_default_pinned_memory_pool

	
cupy.get_default_pinned_memory_pool()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/__init__.py#L895]

	Returns CuPy default memory pool for pinned memory.

	Returns:

	The memory pool object.

	Return type:

	cupy.cuda.PinnedMemoryPool

Note

If you want to disable memory pool, please use the following code.

>>> cupy.cuda.set_pinned_memory_allocator(None)

cupy.cuda.Memory

	
class cupy.cuda.Memory(size_t size)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
device

	

	
device_id

	‘int’

	Type:

	device_id

	
ptr

	‘intptr_t’

	Type:

	ptr

	
size

	‘size_t’

	Type:

	size

cupy.cuda.MemoryAsync

	
class cupy.cuda.MemoryAsync(size_t size, stream)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Asynchronous memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

	stream (Stream) – The stream on which the memory is allocated and freed.

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
device

	

	
device_id

	‘int’

	Type:

	device_id

	
ptr

	‘intptr_t’

	Type:

	ptr

	
size

	‘size_t’

	Type:

	size

	
stream_ref

	

cupy.cuda.ManagedMemory

	
class cupy.cuda.ManagedMemory(size_t size)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Managed memory (Unified memory) allocation on a CUDA device.

This class provides an RAII interface of the CUDA managed memory
allocation.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

Methods

	
advise(self, int advise, Device dev)

	(experimental) Advise about the usage of this memory.

	Parameters:

	
	advics (int [https://docs.python.org/3/library/functions.html#int]) – Advise to be applied for this memory.

	dev (cupy.cuda.Device) – Device to apply the advice for.

	
prefetch(self, stream)

	(experimental) Prefetch memory.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
device

	

	
device_id

	‘int’

	Type:

	device_id

	
ptr

	‘intptr_t’

	Type:

	ptr

	
size

	‘size_t’

	Type:

	size

cupy.cuda.UnownedMemory

	
class cupy.cuda.UnownedMemory(intptr_t ptr, size_t size, owner, int device_id=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	CUDA memory that is not owned by CuPy.

	Parameters:

	
	ptr (int [https://docs.python.org/3/library/functions.html#int]) – Pointer to the buffer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the buffer.

	owner (object [https://docs.python.org/3/library/functions.html#object]) – Reference to the owner object to keep the memory
alive.

	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID of the buffer. If omitted, the device
associated to the pointer is retrieved.

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
device

	

	
device_id

	‘int’

	Type:

	device_id

	
ptr

	‘intptr_t’

	Type:

	ptr

	
size

	‘size_t’

	Type:

	size

cupy.cuda.PinnedMemory

	
class cupy.cuda.PinnedMemory(size, flags=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/pinned_memory.pyx]

	Pinned memory allocation on host.

This class provides a RAII interface of the pinned memory allocation.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.cuda.MemoryPointer

	
class cupy.cuda.MemoryPointer(BaseMemory mem, ptrdiff_t offset)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Pointer to a point on a device memory.

An instance of this class holds a reference to the original memory buffer
and a pointer to a place within this buffer.

	Parameters:

	
	mem (BaseMemory) – The device memory buffer.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – An offset from the head of the buffer to the place this
pointer refers.

	Variables:

	
	~MemoryPointer.device (Device) – Device whose memory the
pointer refers to.

	~MemoryPointer.mem (BaseMemory) – The device memory buffer.

	~MemoryPointer.ptr (int [https://docs.python.org/3/library/functions.html#int]) – Pointer to the place within the buffer.

Methods

	
copy_from(self, mem, size_t size)

	Copies a memory sequence from a (possibly different) device or host.

This function is a useful interface that selects appropriate one from
copy_from_device() and
copy_from_host().

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

Warning

This function always uses the legacy default stream and does not
honor the current stream. Use copy_from_async instead
if you are using streams in your code, or have PTDS enabled.

	
copy_from_async(self, mem, size_t size, stream=None)

	Copies a memory sequence from an arbitrary place asynchronously.

This function is a useful interface that selects appropriate one from
copy_from_device_async() and
copy_from_host_async().

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.
The default uses CUDA stream of the current context.

	
copy_from_device(self, MemoryPointer src, size_t size)

	Copies a memory sequence from a (possibly different) device.

	Parameters:

	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

Warning

This function always uses the legacy default stream and does not
honor the current stream. Use copy_from_device_async instead
if you are using streams in your code, or have PTDS enabled.

	
copy_from_device_async(self, MemoryPointer src, size_t size, stream=None)

	Copies a memory from a (possibly different) device asynchronously.

	Parameters:

	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.
The default uses CUDA stream of the current context.

	
copy_from_host(self, mem, size_t size)

	Copies a memory sequence from the host memory.

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

Warning

This function always uses the legacy default stream and does not
honor the current stream. Use copy_from_host_async instead
if you are using streams in your code, or have PTDS enabled.

	
copy_from_host_async(self, mem, size_t size, stream=None)

	Copies a memory sequence from the host memory asynchronously.

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer. It must point
to pinned memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.
The default uses CUDA stream of the current context.

	
copy_to_host(self, mem, size_t size)

	Copies a memory sequence to the host memory.

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

Warning

This function always uses the legacy default stream and does not
honor the current stream. Use copy_to_host_async instead
if you are using streams in your code, or have PTDS enabled.

	
copy_to_host_async(self, mem, size_t size, stream=None)

	Copies a memory sequence to the host memory asynchronously.

	Parameters:

	
	mem (int [https://docs.python.org/3/library/functions.html#int] or ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer. It must point
to pinned memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.
The default uses CUDA stream of the current context.

	
memset(self, int value, size_t size)

	Fills a memory sequence by constant byte value.

	Parameters:

	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

Warning

This function always uses the legacy default stream and does not
honor the current stream. Use memset_async instead
if you are using streams in your code, or have PTDS enabled.

	
memset_async(self, int value, size_t size, stream=None)

	Fills a memory sequence by constant byte value asynchronously.

	Parameters:

	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.
The default uses CUDA stream of the current context.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
device

	

	
device_id

	

	
mem

	

	
ptr

	

cupy.cuda.PinnedMemoryPointer

	
class cupy.cuda.PinnedMemoryPointer(mem, ptrdiff_t offset)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/pinned_memory.pyx]

	Pointer of a pinned memory.

An instance of this class holds a reference to the original memory buffer
and a pointer to a place within this buffer.

	Parameters:

	
	mem (PinnedMemory) – The device memory buffer.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – An offset from the head of the buffer to the place this
pointer refers.

	Variables:

	
	~PinnedMemoryPointer.mem (PinnedMemory) – The device memory buffer.

	~PinnedMemoryPointer.ptr (int [https://docs.python.org/3/library/functions.html#int]) – Pointer to the place within the buffer.

Methods

	
size(self) → size_t

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
mem

	

	
ptr

	

cupy.cuda.malloc_managed

	
cupy.cuda.malloc_managed(size_t size) → MemoryPointer

	Allocate managed memory (unified memory).

This method can be used as a CuPy memory allocator. The simplest way to
use a managed memory as the default allocator is the following code:

set_allocator(malloc_managed)

The advantage using managed memory in CuPy is that device memory
oversubscription is possible for GPUs that have a non-zero value for the
device attribute cudaDevAttrConcurrentManagedAccess.
CUDA >= 8.0 with GPUs later than or equal to Pascal is preferrable.

Read more at: https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#axzz4qygc1Ry1 # NOQA

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	MemoryPointer

cupy.cuda.malloc_async

	
cupy.cuda.malloc_async(size_t size) → MemoryPointer

	(Experimental) Allocate memory from Stream Ordered Memory Allocator.

This method can be used as a CuPy memory allocator. The simplest way to
use CUDA’s Stream Ordered Memory Allocator as the default allocator is
the following code:

set_allocator(malloc_async)

Using this feature requires CUDA >= 11.2 with a supported GPU and platform.
If it is not supported, an error will be raised.

The current CuPy stream is used to allocate/free the memory.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	MemoryPointer

Warning

This feature is currently experimental and subject to change.

See also

Stream Ordered Memory Allocator [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-memory-allocator]

cupy.cuda.alloc

	
cupy.cuda.alloc(size) → MemoryPointer

	Calls the current allocator.

Use set_allocator() to change the current allocator.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	MemoryPointer

cupy.cuda.alloc_pinned_memory

	
cupy.cuda.alloc_pinned_memory(size_t size) → PinnedMemoryPointer

	Calls the current allocator.

Use set_pinned_memory_allocator() to change the current
allocator.

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	PinnedMemoryPointer

cupy.cuda.get_allocator

	
cupy.cuda.get_allocator()

	Returns the current allocator for GPU memory.

	Returns:

	CuPy memory allocator.

	Return type:

	function

cupy.cuda.set_allocator

	
cupy.cuda.set_allocator(allocator=None)

	Sets the current allocator for GPU memory.

	Parameters:

	allocator (function) – CuPy memory allocator. It must have the same
interface as the cupy.cuda.alloc() function, which takes the
buffer size as an argument and returns the device buffer of that
size. When None is specified, raw memory allocator will be
used (i.e., memory pool is disabled).

cupy.cuda.using_allocator

	
cupy.cuda.using_allocator(allocator=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/__init__.py#L151]

	
	Sets a thread-local allocator for GPU memory inside
	context manager

	Parameters:

	allocator (function) – CuPy memory allocator. It must have the same
interface as the cupy.cuda.alloc() function, which takes the
buffer size as an argument and returns the device buffer of that
size. When None is specified, raw memory allocator will be
used (i.e., memory pool is disabled).

cupy.cuda.set_pinned_memory_allocator

	
cupy.cuda.set_pinned_memory_allocator(allocator=None)

	Sets the current allocator for the pinned memory.

	Parameters:

	allocator (function) – CuPy pinned memory allocator. It must have the
same interface as the cupy.cuda.alloc_pinned_memory()
function, which takes the buffer size as an argument and returns
the device buffer of that size. When None is specified, raw
memory allocator is used (i.e., memory pool is disabled).

cupy.cuda.MemoryPool

	
class cupy.cuda.MemoryPool(allocator=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Memory pool for all GPU devices on the host.

A memory pool preserves any allocations even if they are freed by the user.
Freed memory buffers are held by the memory pool as free blocks, and they
are reused for further memory allocations of the same sizes. The allocated
blocks are managed for each device, so one instance of this class can be
used for multiple devices.

Note

When the allocation is skipped by reusing the pre-allocated block, it
does not call cudaMalloc and therefore CPU-GPU synchronization does
not occur. It makes interleaves of memory allocations and kernel
invocations very fast.

Note

The memory pool holds allocated blocks without freeing as much as
possible. It makes the program hold most of the device memory, which may
make other CUDA programs running in parallel out-of-memory situation.

	Parameters:

	allocator (function) – The base CuPy memory allocator. It is used for
allocating new blocks when the blocks of the required size are all
in use.

Methods

	
free_all_blocks(self, stream=None)

	Releases free blocks.

	Parameters:

	stream (cupy.cuda.Stream) – Release free blocks in the arena
of the given stream. The default releases blocks in all
arenas.

Note

A memory pool may split a free block for space efficiency. A split
block is not released until all its parts are merged back into one
even if free_all_blocks() is called.

	
free_all_free(self)

	(Deprecated) Use free_all_blocks() instead.

	
free_bytes(self) → size_t

	Gets the total number of bytes acquired but not used by the pool.

	Returns:

	The total number of bytes acquired but not used by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_limit(self) → size_t

	Gets the upper limit of memory allocation of the current device.

	Returns:

	The number of bytes

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
malloc(self, size_t size) → MemoryPointer

	Allocates the memory, from the pool if possible.

This method can be used as a CuPy memory allocator. The simplest way to
use a memory pool as the default allocator is the following code:

set_allocator(MemoryPool().malloc)

Also, the way to use a memory pool of Managed memory (Unified memory)
as the default allocator is the following code:

set_allocator(MemoryPool(malloc_managed).malloc)

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory buffer to allocate in bytes.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	MemoryPointer

	
n_free_blocks(self) → size_t

	Counts the total number of free blocks.

	Returns:

	The total number of free blocks.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
set_limit(self, size=None, fraction=None)

	Sets the upper limit of memory allocation of the current device.

When fraction is specified, its value will become a fraction of the
amount of GPU memory that is available for allocation.
For example, if you have a GPU with 2 GiB memory, you can either use
set_limit(fraction=0.5) or set_limit(size=1024**3) to limit
the memory size to 1 GiB.

size and fraction cannot be specified at the same time.
If both of them are not specified or 0 is specified, the
limit will be disabled.

Note

You can also set the limit by using CUPY_GPU_MEMORY_LIMIT
environment variable, see Environment variables for the details.
The limit set by this method supersedes the value specified in
the environment variable.

Also note that this method only changes the limit for the current
device, whereas the environment variable sets the default limit for
all devices.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – Limit size in bytes.

	fraction (float [https://docs.python.org/3/library/functions.html#float]) – Fraction in the range of [0, 1].

	
total_bytes(self) → size_t

	Gets the total number of bytes acquired by the pool.

	Returns:

	The total number of bytes acquired by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
used_bytes(self) → size_t

	Gets the total number of bytes used by the pool.

	Returns:

	The total number of bytes used by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.cuda.MemoryAsyncPool

	
class cupy.cuda.MemoryAsyncPool(pool_handles='current')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	(Experimental) CUDA memory pool for all GPU devices on the host.

A memory pool preserves any allocations even if they are freed by the user.
One instance of this class can be used for multiple devices. This class
uses CUDA’s Stream Ordered Memory Allocator (supported on CUDA 11.2+).
The simplest way to use this pool as CuPy’s default allocator is the
following code:

set_allocator(MemoryAsyncPool().malloc)

Using this feature requires CUDA >= 11.2 with a supported GPU and platform.
If it is not supported, an error will be raised.

The current CuPy stream is used to allocate/free the memory.

	Parameters:

	pool_handles (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – A flag to indicate which mempool to use.
‘default’ is for the device’s default mempool, ‘current’ is for
the current mempool (which could be the default one), and an int
that represents cudaMemPool_t created from elsewhere for an
external mempool. A list consisting of these flags can also be
accepted, in which case the list length must equal to the total
number of visible devices so that the mempools for each device can
be set independently.

Warning

This feature is currently experimental and subject to change.

Note

MemoryAsyncPool currently cannot work with memory hooks.

See also

Stream Ordered Memory Allocator [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-memory-allocator]

Methods

	
free_all_blocks(self, stream=None)

	Releases free memory.

	Parameters:

	stream (cupy.cuda.Stream) – Release memory freed on the given
stream. If stream is None, the current stream is
used.

See also

Physical Page Caching Behavior [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-physical-page-caching-behavior]

	
free_bytes(self) → size_t

	Gets the total number of bytes acquired but not used by the pool.

	Returns:

	The total number of bytes acquired but not used by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_limit(self) → size_t

	Gets the upper limit of memory allocation of the current device.

	Returns:

	The number of bytes

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

Note

Unlike with MemoryPool, MemoryAsyncPool’s
set_limit() method can only impose a soft limit. If other
(non-CuPy) applications are also allocating memory from the same
mempool, this limit may not be respected.

	
malloc(self, size_t size) → MemoryPointer

	Allocate memory from the current device’s pool on the current
stream.

This method can be used as a CuPy memory allocator. The simplest way to
use a memory pool as the default allocator is the following code:

set_allocator(MemoryAsyncPool().malloc)

	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory buffer to allocate in bytes.

	Returns:

	Pointer to the allocated buffer.

	Return type:

	MemoryPointer

	
n_free_blocks(self) → size_t

	

	
set_limit(self, size=None, fraction=None)

	Sets the upper limit of memory allocation of the current device.

When fraction is specified, its value will become a fraction of the
amount of GPU memory that is available for allocation.
For example, if you have a GPU with 2 GiB memory, you can either use
set_limit(fraction=0.5) or set_limit(size=1024**3) to limit
the memory size to 1 GiB.

size and fraction cannot be specified at the same time.
If both of them are not specified or 0 is specified, the
limit will be disabled.

Note

Unlike with MemoryPool, MemoryAsyncPool’s
set_limit() method can only impose a soft limit. If other
(non-CuPy) applications are also allocating memory from the same
mempool, this limit may not be respected. Internally, this limit
is set via the cudaMemPoolAttrReleaseThreshold attribute.

Note

You can also set the limit by using CUPY_GPU_MEMORY_LIMIT
environment variable, see Environment variables for the details.
The limit set by this method supersedes the value specified in
the environment variable.

Also note that this method only changes the limit for the current
device, whereas the environment variable sets the default limit for
all devices.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – Limit size in bytes.

	fraction (float [https://docs.python.org/3/library/functions.html#float]) – Fraction in the range of [0, 1].

	
total_bytes(self) → size_t

	Gets the total number of bytes acquired by the pool.

	Returns:

	The total number of bytes acquired by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
used_bytes(self) → size_t

	Gets the total number of bytes used by the pool.

	Returns:

	The total number of bytes used by the pool.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
memoryAsyncHasStat

	

cupy.cuda.PinnedMemoryPool

	
class cupy.cuda.PinnedMemoryPool(allocator=_malloc)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/pinned_memory.pyx]

	Memory pool for pinned memory on the host.

Note that it preserves all allocated memory buffers even if the user
explicitly release the one. Those released memory buffers are held by the
memory pool as free blocks, and reused for further memory allocations of
the same size.

	Parameters:

	allocator (function) – The base CuPy pinned memory allocator. It is
used for allocating new blocks when the blocks of the required
size are all in use.

Methods

	
free(self, intptr_t ptr, size_t size)

	

	
free_all_blocks(self)

	Release free all blocks.

	
malloc(self, size_t size) → PinnedMemoryPointer

	

	
n_free_blocks(self)

	Count the total number of free blocks.

	Returns:

	The total number of free blocks.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.cuda.PythonFunctionAllocator

	
class cupy.cuda.PythonFunctionAllocator(malloc_func, free_func)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Allocator with python functions to perform memory allocation.

This allocator keeps functions corresponding to malloc and free,
delegating the actual allocation to external sources while only
handling the timing of the resource allocation and deallocation.

malloc should follow the signature malloc(int, int) -> int
returning the pointer to the allocated memory given the param object,
the number of bytes to allocate and the device id on which the
allocation should take place.

Similarly, free should follow the signature
free(int, int) with no return, taking the pointer to the
allocated memory and the device id on which the memory was allocated.

If the external memory management supports asynchronous operations,
the current CuPy stream can be retrieved inside malloc_func and
free_func by calling cupy.cuda.get_current_stream(). To
use external streams, wrap them with cupy.cuda.ExternalStream().

	Parameters:

	
	malloc_func (function) – malloc function to be called.

	free_func (function) – free function to be called.

Methods

	
malloc(self, size_t size) → MemoryPointer

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.cuda.CFunctionAllocator

	
class cupy.cuda.CFunctionAllocator(intptr_t param, intptr_t malloc_func, intptr_t free_func, owner)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory.pyx]

	Allocator with C function pointers to allocation routines.

This allocator keeps raw pointers to a param object along with functions
pointers to malloc and free, delegating the actual allocation to
external sources while only handling the timing of the resource allocation
and deallocation.

malloc should follow the signature void*(*malloc)(void*, size_t, int)
returning the pointer to the allocated memory given the pointer to
param, the number of bytes to allocate and the device id on which the
allocation should take place.

Similarly, free should follow the signature
void(*free)(void*, void*, int) with no return, taking the pointer to
param, the pointer to the allocated memory and the device id on which the
memory was allocated.

	Parameters:

	
	param (int [https://docs.python.org/3/library/functions.html#int]) – Address of param.

	malloc_func (int [https://docs.python.org/3/library/functions.html#int]) – Address of malloc.

	free_func (int [https://docs.python.org/3/library/functions.html#int]) – Address of free.

	owner (object [https://docs.python.org/3/library/functions.html#object]) – Reference to the owner object to keep the param and
the functions alive.

Methods

	
malloc(self, size_t size) → MemoryPointer

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.cuda.MemoryHook

	
class cupy.cuda.MemoryHook[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hook.pyx]

	Base class of hooks for Memory allocations.

MemoryHook is an callback object.
Registered memory hooks are invoked before and after
memory is allocated from GPU device, and
memory is retrieved from memory pool, and
memory is released to memory pool.

Memory hooks that derive MemoryHook are required
to implement six methods:
alloc_preprocess(),
alloc_postprocess(),
malloc_preprocess(),
malloc_postprocess(),
free_preprocess(), and
free_postprocess(),
By default, these methods do nothing.

Specifically, alloc_preprocess()
(resp. alloc_postprocess())
of all memory hooks registered are called before (resp. after)
memory is allocated from GPU device.

Likewise, malloc_preprocess()
(resp. malloc_postprocess())
of all memory hooks registered are called before (resp. after)
memory is retrieved from memory pool.

Below is a pseudo code to descirbe how malloc and hooks work.
Please note that alloc_preprocess() and
alloc_postprocess() are not invoked if a cached
free chunk is found:

def malloc(size):
 Call malloc_preprocess of all memory hooks
 Try to find a cached free chunk from memory pool
 if chunk is not found:
 Call alloc_preprocess for all memory hooks
 Invoke actual memory allocation to get a new chunk
 Call alloc_postprocess for all memory hooks
 Call malloc_postprocess for all memory hooks

Moreover, free_preprocess()
(resp. free_postprocess())
of all memory hooks registered are called before (resp. after)
memory is released to memory pool.

Below is a pseudo code to descirbe how free and hooks work:

def free(ptr):
 Call free_preprocess of all memory hooks
 Push a memory chunk of a given pointer back to memory pool
 Call free_postprocess for all memory hooks

To register a memory hook, use with statement. Memory hooks
are registered to all method calls within with statement
and are unregistered at the end of with statement.

Note

CuPy stores the dictionary of registered function hooks
as a thread local object. So, memory hooks registered
can be different depending on threads.

Methods

	
__enter__(self)

	

	
__exit__(self, *_)

	

	
alloc_postprocess(self, **kwargs)

	Callback function invoked after allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in allocation.

	
alloc_preprocess(self, **kwargs)

	Callback function invoked before allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
free_postprocess(self, **kwargs)

	Callback function invoked after releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
free_preprocess(self, **kwargs)

	Callback function invoked before releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
malloc_postprocess(self, **kwargs)

	Callback function invoked after retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in malloc.

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.
0 if an error occurred in malloc.

	
malloc_preprocess(self, **kwargs)

	Callback function invoked before retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
name = 'MemoryHook'

	

cupy.cuda.memory_hooks.DebugPrintHook

	
class cupy.cuda.memory_hooks.DebugPrintHook(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, flush=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/debug_print.py#L6]

	Memory hook that prints debug information.

This memory hook outputs the debug information of input arguments of
malloc and free methods involved in the hooked functions
at postprocessing time (that is, just after each method is called).

Example

The basic usage is to use it with with statement.

Code example:

>>> import cupy
>>> from cupy.cuda import memory_hooks
>>>
>>> cupy.cuda.set_allocator(cupy.cuda.MemoryPool().malloc)
>>> with memory_hooks.DebugPrintHook():
... x = cupy.array([1, 2, 3])
... del x

Output example:

{"hook":"alloc","device_id":0,"mem_size":512,"mem_ptr":150496608256}
{"hook":"malloc","device_id":0,"size":24,"mem_size":512,"mem_ptr":150496608256,"pmem_id":"0x7f39200c5278"}
{"hook":"free","device_id":0,"mem_size":512,"mem_ptr":150496608256,"pmem_id":"0x7f39200c5278"}

where the output format is JSONL (JSON Lines) and
hook is the name of hook point, and
device_id is the CUDA Device ID, and
size is the requested memory size to allocate, and
mem_size is the rounded memory size to be allocated, and
mem_ptr is the memory pointer, and
pmem_id is the pooled memory object ID.

	Variables:

	
	file – Output file_like object that redirect to.

	flush – If True, this hook forcibly flushes the text stream
at the end of print. The default is True.

Methods

	
__enter__(self)

	

	
__exit__(self, *_)

	

	
alloc_postprocess(self, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/debug_print.py#L59]

	Callback function invoked after allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in allocation.

	
alloc_preprocess(self, **kwargs)

	Callback function invoked before allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
free_postprocess(self, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/debug_print.py#L73]

	Callback function invoked after releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
free_preprocess(self, **kwargs)

	Callback function invoked before releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
malloc_postprocess(self, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/debug_print.py#L66]

	Callback function invoked after retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in malloc.

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.
0 if an error occurred in malloc.

	
malloc_preprocess(self, **kwargs)

	Callback function invoked before retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
name = 'DebugPrintHook'

	

cupy.cuda.memory_hooks.LineProfileHook

	
class cupy.cuda.memory_hooks.LineProfileHook(max_depth=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/line_profile.py#L8]

	Code line CuPy memory profiler.

This profiler shows line-by-line GPU memory consumption using traceback
module. But, note that it can trace only CPython level, no Cython level.
ref. https://github.com/cython/cython/issues/1755

Example

Code example:

from cupy.cuda import memory_hooks
hook = memory_hooks.LineProfileHook()
with hook:
 # some CuPy codes
hook.print_report()

Output example:

_root (4.00KB, 4.00KB)
 lib/python3.6/unittest/__main__.py:18:<module> (4.00KB, 4.00KB)
 lib/python3.6/unittest/main.py:255:runTests (4.00KB, 4.00KB)
 tests/cupy_tests/test.py:37:test (1.00KB, 1.00KB)
 tests/cupy_tests/test.py:38:test (1.00KB, 1.00KB)
 tests/cupy_tests/test.py:39:test (2.00KB, 2.00KB)

Each line shows:

{filename}:{lineno}:{func_name} ({used_bytes}, {acquired_bytes})

where used_bytes is the memory bytes used from CuPy memory pool, and
acquired_bytes is the actual memory bytes the CuPy memory pool
acquired from GPU device.
_root is a root node of the stack trace to show total memory usage.

	Parameters:

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – maximum depth to follow stack traces.
Default is 0 (no limit).

Methods

	
__enter__(self)

	

	
__exit__(self, *_)

	

	
alloc_postprocess(self, **kwargs)

	Callback function invoked after allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in allocation.

	
alloc_preprocess(self, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/line_profile.py#L60]

	Callback function invoked before allocating memory from GPU device.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
free_postprocess(self, **kwargs)

	Callback function invoked after releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
free_preprocess(self, **kwargs)

	Callback function invoked before releasing memory to memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Memory bytesize

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Memory pointer to free

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.

	
malloc_postprocess(self, **kwargs)

	Callback function invoked after retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize allocated

	mem_ptr (int [https://docs.python.org/3/library/functions.html#int]) – Obtained memory pointer.
0 if an error occurred in malloc.

	pmem_id (int [https://docs.python.org/3/library/functions.html#int]) – Pooled memory object ID.
0 if an error occurred in malloc.

	
malloc_preprocess(self, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/line_profile.py#L56]

	Callback function invoked before retrieving memory from memory pool.

	Keyword Arguments:

	
	device_id (int [https://docs.python.org/3/library/functions.html#int]) – CUDA device ID

	size (int [https://docs.python.org/3/library/functions.html#int]) – Requested memory bytesize to allocate

	mem_size (int [https://docs.python.org/3/library/functions.html#int]) – Rounded memory bytesize to be allocated

	
print_report(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/memory_hooks/line_profile.py#L97]

	Prints a report of line memory profiling.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
name = 'LineProfileHook'

	

cupy.cuda.Stream

	
class cupy.cuda.Stream(null=False, non_blocking=False, ptds=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/stream.pyx]

	CUDA stream.

This class handles the CUDA stream handle in RAII way, i.e., when an Stream
instance is destroyed by the GC, its handle is also destroyed.

Note that if both null and ptds are False, a plain new
stream is created.

	Parameters:

	
	null (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stream is a null stream (i.e. the default
stream that synchronizes with all streams). Note that you can also
use the Stream.null singleton object instead of creating a new
null stream object.

	ptds (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and null is False, the per-thread
default stream is used. Note that you can also use the
Stream.ptds singleton object instead of creating a new
per-thread default stream object.

	non_blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and both null and ptds are
False, the stream does not synchronize with the NULL stream.

	Variables:

	
	~Stream.ptr (intptr_t) – Raw stream handle.

	~Stream.device_id (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the device that the stream was
created on. The value -1 is used for the singleton stream
objects.

Methods

	
__enter__(self)

	

	
__exit__(self, *args)

	

	
add_callback(self, callback, arg)

	Adds a callback that is called when all queued work is done.

	Parameters:

	
	callback (function) – Callback function. It must take three
arguments (Stream object, int error status, and user data
object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.

Note

Whenever possible, use the launch_host_func() method
instead of this one, as it may be deprecated and removed from
CUDA at some point.

	
begin_capture(self, mode=None)

	Begin stream capture to construct a CUDA graph.

A call to this function must be paired with a call to
end_capture() to complete the capture.

create a non-blocking stream for the purpose of capturing
s1 = cp.cuda.Stream(non_blocking=True)
with s1:
 s1.begin_capture()
 # ... perform operations to construct a graph ...
 g = s1.end_capture()

the returned graph can be launched on any stream (including s1)
g.launch(stream=s1)
s1.synchronize()

s2 = cp.cuda.Stream()
with s2:
 g.launch()
s2.synchronize()

	Parameters:

	mode (int [https://docs.python.org/3/library/functions.html#int]) – The stream capture mode. Default is
streamCaptureModeRelaxed.

Note

During the stream capture, synchronous device-host transfers
are not allowed. This has a particular implication for CuPy APIs,
as some functions that internally require synchronous transfer
would not work as expected and an exception would be raised. For
further constraints of CUDA stream capture, please refer to the
CUDA Programming Guide.

Note

Currently this capability is not supported on HIP.

See also

cudaStreamBeginCapture() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g793d7d4e474388ddfda531603dc34aa3]

	
end_capture(self)

	End stream capture and retrieve the constructed CUDA graph.

	Returns:

	A CUDA graph object that encapsulates the captured work.

	Return type:

	cupy.cuda.Graph

Note

Currently this capability is not supported on HIP.

See also

cudaStreamEndCapture() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1gf5a0efebc818054ceecd1e3e5e76d93e]

	
is_capturing(self)

	Check if the stream is capturing.

	Returns:

	If the capturing status is successfully queried, the returned
value indicates the capturing status. An exception could be
raised if such a query is illegal, please refer to the CUDA
Programming Guide for detail.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
launch_host_func(self, callback, arg)

	Launch a callback on host when all queued work is done.

	Parameters:

	
	callback (function) – Callback function. It must take only one
argument (user data object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.

Note

Whenever possible, this method is recommended over
add_callback(), which may be deprecated and removed from
CUDA at some point.

See also

cudaLaunchHostFunc() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g05841eaa5f90f27124241baafb3e856f]

	
record(self, event=None)

	Records an event on the stream.

	Parameters:

	event (None or cupy.cuda.Event) – CUDA event. If None, then a
new plain event is created and used.

	Returns:

	The recorded event.

	Return type:

	cupy.cuda.Event

See also

cupy.cuda.Event.record()

	
synchronize(self)

	Waits for the stream completing all queued work.

	
use(self)

	Makes this stream current.

If you want to switch a stream temporarily, use the with statement.

	
wait_event(self, event)

	Makes the stream wait for an event.

The future work on this stream will be done after the event.

	Parameters:

	event (cupy.cuda.Event) – CUDA event.

	
__eq__(self, other)

	

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
done

	True if all work on this stream has been done.

	
null = <Stream 0 (device -1)>

	

	
ptds = <Stream 2 (device -1)>

	

cupy.cuda.ExternalStream

	
class cupy.cuda.ExternalStream(ptr, device_id=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/stream.pyx]

	CUDA stream not managed by CuPy.

This class allows to use external streams in CuPy by providing the
stream pointer obtained from the CUDA runtime call.
The user is in charge of managing the life-cycle of the stream.

	Parameters:

	
	ptr (intptr_t) – Address of the cudaStream_t object.

	device_id (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the device that the stream was created on.
Default is -1, indicating it is unknown.

	Variables:

	
	~Stream.ptr (intptr_t) – Raw stream handle.

	~Stream.device_id (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the device that the stream was
created on. The value -1 is used to indicate it is unknown.

Warning

If device_id is not specified, the user is required to ensure legal
operations of the stream. Specifically, the stream must be used on the
device that it was created on.

Methods

	
__enter__(self)

	

	
__exit__(self, *args)

	

	
add_callback(self, callback, arg)

	Adds a callback that is called when all queued work is done.

	Parameters:

	
	callback (function) – Callback function. It must take three
arguments (Stream object, int error status, and user data
object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.

Note

Whenever possible, use the launch_host_func() method
instead of this one, as it may be deprecated and removed from
CUDA at some point.

	
begin_capture(self, mode=None)

	Begin stream capture to construct a CUDA graph.

A call to this function must be paired with a call to
end_capture() to complete the capture.

create a non-blocking stream for the purpose of capturing
s1 = cp.cuda.Stream(non_blocking=True)
with s1:
 s1.begin_capture()
 # ... perform operations to construct a graph ...
 g = s1.end_capture()

the returned graph can be launched on any stream (including s1)
g.launch(stream=s1)
s1.synchronize()

s2 = cp.cuda.Stream()
with s2:
 g.launch()
s2.synchronize()

	Parameters:

	mode (int [https://docs.python.org/3/library/functions.html#int]) – The stream capture mode. Default is
streamCaptureModeRelaxed.

Note

During the stream capture, synchronous device-host transfers
are not allowed. This has a particular implication for CuPy APIs,
as some functions that internally require synchronous transfer
would not work as expected and an exception would be raised. For
further constraints of CUDA stream capture, please refer to the
CUDA Programming Guide.

Note

Currently this capability is not supported on HIP.

See also

cudaStreamBeginCapture() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g793d7d4e474388ddfda531603dc34aa3]

	
end_capture(self)

	End stream capture and retrieve the constructed CUDA graph.

	Returns:

	A CUDA graph object that encapsulates the captured work.

	Return type:

	cupy.cuda.Graph

Note

Currently this capability is not supported on HIP.

See also

cudaStreamEndCapture() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1gf5a0efebc818054ceecd1e3e5e76d93e]

	
is_capturing(self)

	Check if the stream is capturing.

	Returns:

	If the capturing status is successfully queried, the returned
value indicates the capturing status. An exception could be
raised if such a query is illegal, please refer to the CUDA
Programming Guide for detail.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
launch_host_func(self, callback, arg)

	Launch a callback on host when all queued work is done.

	Parameters:

	
	callback (function) – Callback function. It must take only one
argument (user data object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.

Note

Whenever possible, this method is recommended over
add_callback(), which may be deprecated and removed from
CUDA at some point.

See also

cudaLaunchHostFunc() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g05841eaa5f90f27124241baafb3e856f]

	
record(self, event=None)

	Records an event on the stream.

	Parameters:

	event (None or cupy.cuda.Event) – CUDA event. If None, then a
new plain event is created and used.

	Returns:

	The recorded event.

	Return type:

	cupy.cuda.Event

See also

cupy.cuda.Event.record()

	
synchronize(self)

	Waits for the stream completing all queued work.

	
use(self)

	Makes this stream current.

If you want to switch a stream temporarily, use the with statement.

	
wait_event(self, event)

	Makes the stream wait for an event.

The future work on this stream will be done after the event.

	Parameters:

	event (cupy.cuda.Event) – CUDA event.

	
__eq__(self, other)

	

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
done

	True if all work on this stream has been done.

cupy.cuda.get_current_stream

	
cupy.cuda.get_current_stream(int device_id=-1)

	Gets the current CUDA stream for the specified CUDA device.

	Parameters:

	device_id (int [https://docs.python.org/3/library/functions.html#int], optional) – Index of the device to check for the current
stream. The currently active device is selected by default.

	Returns:

	The current CUDA stream.

	Return type:

	cupy.cuda.Stream

cupy.cuda.Event

	
class cupy.cuda.Event(block=False, disable_timing=False, interprocess=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/stream.pyx]

	CUDA event, a synchronization point of CUDA streams.

This class handles the CUDA event handle in RAII way, i.e., when an Event
instance is destroyed by the GC, its handle is also destroyed.

	Parameters:

	
	block (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event blocks on the
synchronize() method.

	disable_timing (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event does not prepare the
timing data.

	interprocess (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event can be passed to other
processes.

	Variables:

	~Event.ptr (intptr_t) – Raw event handle.

Methods

	
record(self, stream=None)

	Records the event to a stream.

	Parameters:

	stream (cupy.cuda.Stream) – CUDA stream to record event. The null
stream is used by default.

See also

cupy.cuda.Stream.record()

	
synchronize(self)

	Synchronizes all device work to the event.

If the event is created as a blocking event, it also blocks the CPU
thread until the event is done.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
done

	True if the event is done.

cupy.cuda.get_elapsed_time

	
cupy.cuda.get_elapsed_time(start_event, end_event)

	Gets the elapsed time between two events.

	Parameters:

	
	start_event (Event) – Earlier event.

	end_event (Event) – Later event.

	Returns:

	Elapsed time in milliseconds.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

cupy.cuda.Graph

	
class cupy.cuda.Graph(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/graph.pyx]

	The CUDA graph object.

Currently this class cannot be initiated by the user and must be created
via stream capture. See begin_capture() for detail.

Methods

	
launch(self, stream=None)

	Launch the CUDA graph on the given stream.

	Parameters:

	stream (Stream) – A CuPy stream object. If not
specified (using the default value None), the graph is
launched on the current stream.

See also

cudaGraphLaunch() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597]

	
upload(self, stream=None)

	Upload the CUDA graph to the given stream.

	Parameters:

	stream (Stream) – A CuPy stream object. If not
specified (using the default value None), the graph is
uploaded the current stream.

See also

cudaGraphUpload() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ge546432e411b4495b93bdcbf2fc0b2bd]

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
graph

	

	
graphExec

	

cupy.cuda.texture.ChannelFormatDescriptor

	
class cupy.cuda.texture.ChannelFormatDescriptor(int x, int y, int z, int w, int f)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	A class that holds the channel format description. Equivalent to
cudaChannelFormatDesc.

	Parameters:

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – the number of bits for the x channel.

	y (int [https://docs.python.org/3/library/functions.html#int]) – the number of bits for the y channel.

	z (int [https://docs.python.org/3/library/functions.html#int]) – the number of bits for the z channel.

	w (int [https://docs.python.org/3/library/functions.html#int]) – the number of bits for the w channel.

	f (int [https://docs.python.org/3/library/functions.html#int]) – the channel format. Use one of the values in cudaChannelFormat*,
such as cupy.cuda.runtime.cudaChannelFormatKindFloat.

See also

cudaCreateChannelDesc() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g39df9e3b6edc41cd6f189d2109672ca5]

Methods

	
get_channel_format(self)

	Returns a dict containing the input.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
ptr

	

cupy.cuda.texture.CUDAarray

	
class cupy.cuda.texture.CUDAarray(ChannelFormatDescriptor desc, size_t width, size_t height=0, size_t depth=0, unsigned int flags=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	Allocate a CUDA array (cudaArray_t) that can be used as texture memory.
Depending on the input, either 1D, 2D, or 3D CUDA array is returned.

	Parameters:

	
	desc (ChannelFormatDescriptor) – an instance of
ChannelFormatDescriptor.

	width (int [https://docs.python.org/3/library/functions.html#int]) – the width (in elements) of the array.

	height (int [https://docs.python.org/3/library/functions.html#int], optional) – the height (in elements) of the array.

	depth (int [https://docs.python.org/3/library/functions.html#int], optional) – the depth (in elements) of the array.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – the flag for extensions. Use one of the values
in cudaArray*, such as
cupy.cuda.runtime.cudaArrayDefault.

Warning

The memory allocation of CUDAarray is done outside of CuPy’s
memory management (enabled by default) due to CUDA’s limitation. Users
of CUDAarray should be cautious about any out-of-memory
possibilities.

See also

cudaMalloc3DArray() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g948143cf2423a072ac6a31fb635efd88]

Methods

	
copy_from(self, in_arr, stream=None)

	Copy data from device or host array to CUDA array.

	Parameters:

	
	in_arr (cupy.ndarray or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) –

	stream (cupy.cuda.Stream) – if not None, an asynchronous copy is
performed.

Note

For CUDA arrays with different dimensions, the requirements for the
shape of the input array are given as follows:

	1D: (nch * width,)

	2D: (height, nch * width)

	3D: (depth, height, nch * width)

where nch is the number of channels specified in
desc.

	
copy_to(self, out_arr, stream=None)

	Copy data from CUDA array to device or host array.

	Parameters:

	
	out_arr (cupy.ndarray or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – must be C-contiguous

	stream (cupy.cuda.Stream) – if not None, an asynchronous copy is
performed.

Note

For CUDA arrays with different dimensions, the requirements for the
shape of the output array are given as follows:

	1D: (nch * width,)

	2D: (height, nch * width)

	3D: (depth, height, nch * width)

where nch is the number of channels specified in
desc.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
depth

	

	
desc

	

	
flags

	

	
height

	

	
ndim

	

	
ptr

	

	
width

	

cupy.cuda.texture.ResourceDescriptor

	
class cupy.cuda.texture.ResourceDescriptor(int restype, CUDAarray cuArr=None, ndarray arr=None, ChannelFormatDescriptor chDesc=None, size_t sizeInBytes=0, size_t width=0, size_t height=0, size_t pitchInBytes=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	A class that holds the resource description. Equivalent to
cudaResourceDesc.

	Parameters:

	
	restype (int [https://docs.python.org/3/library/functions.html#int]) – the resource type. Use one of the values in
cudaResourceType*, such as
cupy.cuda.runtime.cudaResourceTypeArray.

	cuArr (CUDAarray, optional) – An instance of CUDAarray,
required if restype is set to
cupy.cuda.runtime.cudaResourceTypeArray.

	arr (cupy.ndarray, optional) – An instance of ndarray,
required if restype is set to
cupy.cuda.runtime.cudaResourceTypeLinear or
cupy.cuda.runtime.cudaResourceTypePitch2D.

	chDesc (ChannelFormatDescriptor, optional) – an instance of
ChannelFormatDescriptor, required if restype is set to
cupy.cuda.runtime.cudaResourceTypeLinear or
cupy.cuda.runtime.cudaResourceTypePitch2D.

	sizeInBytes (int [https://docs.python.org/3/library/functions.html#int], optional) – total bytes in the linear memory, required
if restype is set to
cupy.cuda.runtime.cudaResourceTypeLinear.

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – the width (in elements) of the 2D array,
required if restype is set to
cupy.cuda.runtime.cudaResourceTypePitch2D.

	height (int [https://docs.python.org/3/library/functions.html#int], optional) – the height (in elements) of the 2D array,
required if restype is set to
cupy.cuda.runtime.cudaResourceTypePitch2D.

	pitchInBytes (int [https://docs.python.org/3/library/functions.html#int], optional) – the number of bytes per pitch-aligned row,
required if restype is set to
cupy.cuda.runtime.cudaResourceTypePitch2D.

Note

A texture backed by mipmap arrays is currently not supported in CuPy.

See also

cudaCreateTextureObject() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3]

Methods

	
get_resource_desc(self)

	Returns a dict containing the input.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
arr

	

	
chDesc

	

	
cuArr

	

	
ptr

	

cupy.cuda.texture.TextureDescriptor

	
class cupy.cuda.texture.TextureDescriptor(addressModes=None, int filterMode=0, int readMode=0, sRGB=None, borderColors=None, normalizedCoords=None, maxAnisotropy=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	A class that holds the texture description. Equivalent to
cudaTextureDesc.

	Parameters:

	
	addressModes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list]) – an iterable with length up to 3, each
element is one of the values in cudaAddressMode*, such as
cupy.cuda.runtime.cudaAddressModeWrap.

	filterMode (int [https://docs.python.org/3/library/functions.html#int]) – the filter mode. Use one of the values in
cudaFilterMode*, such as
cupy.cuda.runtime.cudaFilterModePoint.

	readMode (int [https://docs.python.org/3/library/functions.html#int]) – the read mode. Use one of the values in
cudaReadMode*, such as
cupy.cuda.runtime.cudaReadModeElementType.

	normalizedCoords (int [https://docs.python.org/3/library/functions.html#int]) – whether coordinates are normalized or not.

	sRGB (int [https://docs.python.org/3/library/functions.html#int], optional) –

	borderColors (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – an iterable with length up to
4.

	maxAnisotropy (int [https://docs.python.org/3/library/functions.html#int], optional) –

Note

A texture backed by mipmap arrays is currently not supported in CuPy.

See also

cudaCreateTextureObject() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3]

Methods

	
get_texture_desc(self)

	Returns a dict containing the input.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
ptr

	

cupy.cuda.texture.TextureObject

	
class cupy.cuda.texture.TextureObject(ResourceDescriptor ResDesc, TextureDescriptor TexDesc)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	A class that holds a texture object. Equivalent to
cudaTextureObject_t. The returned TextureObject instance can
be passed as a argument when launching RawKernel or
ElementwiseKernel.

	Parameters:

	
	ResDesc (ResourceDescriptor) – an intance of the resource descriptor.

	TexDesc (TextureDescriptor) – an instance of the texture descriptor.

See also

cudaCreateTextureObject() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3]

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
ResDesc

	

	
TexDesc

	

	
ptr

	

cupy.cuda.texture.SurfaceObject

	
class cupy.cuda.texture.SurfaceObject(ResourceDescriptor ResDesc)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/texture.pyx]

	A class that holds a surface object. Equivalent to
cudaSurfaceObject_t. The returned SurfaceObject instance can
be passed as a argument when launching RawKernel.

	Parameters:

	ResDesc (ResourceDescriptor) – an intance of the resource descriptor.

See also

cudaCreateSurfaceObject() [https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__SURFACE__OBJECT.html#group__CUDART__SURFACE__OBJECT_1g958899474ab2c5f40d233b524d6c5a01]

Methods

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
ResDesc

	

	
ptr

	

cupy.cuda.nvtx.Mark

	
cupy.cuda.nvtx.Mark(message, int id_color=-1)

	Marks an instantaneous event (marker) in the application.

Markers are used to describe events at a specific time during execution of
the application.

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a marker.

cupy.cuda.nvtx.MarkC

	
cupy.cuda.nvtx.MarkC(message, uint32_t color=0)

	Marks an instantaneous event (marker) in the application.

Markers are used to describe events at a specific time during execution of
the application.

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	color (uint32) – Color code for a marker.

cupy.cuda.nvtx.RangePush

	
cupy.cuda.nvtx.RangePush(message, int id_color=-1)

	Starts a nested range.

Ranges are used to describe events over a time span during execution of the
application. This is particularly useful when profiling with Nsight Systems
to help connect user-specified ranges with CuPy’s internal CUDA-kernels.
The duration of a range is defined by the corresponding pair of
RangePush() to RangePop() calls, which can be nested.

from cupy.cuda.nvtx import RangePush, RangePop

RangePush("Nested Powers of A")
for i in range(N):
 RangePush("Iter {}: Double A".format(i))
 A = 2*A
 RangePop()
RangePop()

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a range.

cupy.cuda.nvtx.RangePushC

	
cupy.cuda.nvtx.RangePushC(message, uint32_t color=0)

	Starts a nested range.

Ranges are used to describe events over a time span during execution of the
application. This is particularly useful when profiling with Nsight Systems
to help connect user-specified ranges with CuPy’s internal CUDA-kernels.
The duration of a range is defined by the corresponding pair of
RangePushC() to RangePop() calls, which can be nested.

from cupy.cuda.nvtx import RangePushC, RangePop

RangePush("Nested Powers of A")
for i in range(N):
 RangePushC("Iter {}: Double A".format(i))
 A = 2*A
 RangePop()
RangePop()

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	color (uint32) – ARGB color for a range.

cupy.cuda.nvtx.RangePop

	
cupy.cuda.nvtx.RangePop()

	Ends a nested range started by a RangePush*() call.

cupy.cuda.nccl.NcclCommunicator

	
class cupy.cuda.nccl.NcclCommunicator(int ndev, tuple commId, int rank)

	Initialize an NCCL communicator for one device controlled by one
process.

	Parameters:

	
	ndev (int [https://docs.python.org/3/library/functions.html#int]) – Total number of GPUs to be used.

	commId (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The unique ID returned by get_unique_id().

	rank (int [https://docs.python.org/3/library/functions.html#int]) – The rank of the GPU managed by the current process.

	Returns:

	An NcclCommunicator instance.

	Return type:

	NcclCommunicator

Note

This method is for creating an NCCL communicator in a multi-process
environment, typically managed by MPI or multiprocessing. For
controlling multiple devices by one process, use initAll()
instead.

See also

ncclCommInitRank [https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/api/comms.html#ncclcomminitrank]

Methods

	
abort(self)

	

	
allGather(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, intptr_t stream)

	

	
allReduce(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, int op, intptr_t stream)

	

	
bcast(self, intptr_t buff, int count, int datatype, int root, intptr_t stream)

	

	
broadcast(self, intptr_t sendbuff, intptr_t recvbuff, int count, int datatype, int root, intptr_t stream)

	

	
check_async_error(self)

	

	
destroy(self)

	

	
device_id(self)

	

	
static initAll(devices)

	Initialize NCCL communicators for multiple devices in a single
process.

	Parameters:

	devices (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – The number of GPUs or a list of GPUs
to be used. For the former case, the first devices GPUs
will be used.

	Returns:

	A list of NcclCommunicator instances.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

This method is for creating a group of NCCL communicators, each
controlling one device, in a single process like this:

from cupy.cuda import nccl
Use 3 GPUs: #0, #2, and #3
comms = nccl.NcclCommunicator.initAll([0, 2, 3])
assert len(comms) == 3

In a multi-process setup, use the default initializer instead.

See also

ncclCommInitAll [https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/api/comms.html#ncclcomminitall]

	
rank_id(self)

	

	
recv(self, intptr_t recvbuf, size_t count, int datatype, int peer, intptr_t stream)

	

	
reduce(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, int op, int root, intptr_t stream)

	

	
reduceScatter(self, intptr_t sendbuf, intptr_t recvbuf, size_t recvcount, int datatype, int op, intptr_t stream)

	

	
send(self, intptr_t sendbuf, size_t count, int datatype, int peer, intptr_t stream)

	

	
size(self)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
comm

	

cupy.cuda.nccl.get_build_version

	
cupy.cuda.nccl.get_build_version()

	

cupy.cuda.nccl.get_version

	
cupy.cuda.nccl.get_version()

	Returns the runtime version of NCCL.

This function will return 0 when built with NCCL version earlier than
2.3.4, which does not support ncclGetVersion API.

cupy.cuda.nccl.get_unique_id

	
cupy.cuda.nccl.get_unique_id()

	

cupy.cuda.nccl.groupStart

	
cupy.cuda.nccl.groupStart()

	Start a group of NCCL calls. Must be paired with groupEnd().

Note

This method is useful when the NcclCommunicator instances are
created via initAll(). A typical usage pattern
is like this:

comms = cupy.cuda.nccl.NcclCommunicator.initAll(n, dev_list)
... do some preparation work
cupy.cuda.nccl.groupStart()
for rank, comm in enumerate(comms):
 # ... make some collective calls ...
cupy.cuda.nccl.groupEnd()

Other use cases include fusing several NCCL calls into one, and
point-to-point communications using send() and
recv() (with NCCL 2.7+).

See also

ncclGroupStart [https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/group.html#ncclgroupstart], Group Calls [https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html]

cupy.cuda.nccl.groupEnd

	
cupy.cuda.nccl.groupEnd()

	End a group of NCCL calls. Must be paired with groupStart().

Note

This method is useful when the NcclCommunicator instances are
created via initAll(). A typical usage pattern
is like this:

comms = cupy.cuda.nccl.NcclCommunicator.initAll(n, dev_list)
... do some preparation work
cupy.cuda.nccl.groupStart()
for rank, comm in enumerate(comms):
 # ... make some collective calls ...
cupy.cuda.nccl.groupEnd()

Other use cases include fusing several NCCL calls into one, and
point-to-point communications using send() and
recv() (with NCCL 2.7+).

See also

ncclGroupEnd [https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/group.html#ncclgroupend], Group Calls [https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html]

cupy.cuda.get_local_runtime_version

	
cupy.cuda.get_local_runtime_version()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/__init__.py#L103]

	Returns the version of the CUDA Runtime installed in the environment.

Unlike cupy.cuda.runtime.runtimeGetVersion(), which returns the
CUDA Runtime version statically linked to CuPy, this function returns the
version retrieved from the shared library installed on the host.
Use this method to probe the CUDA Runtime version installed in the
environment.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

cupy.cuda.runtime.driverGetVersion

	
cupy.cuda.runtime.driverGetVersion() → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.runtimeGetVersion

	
cupy.cuda.runtime.runtimeGetVersion() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the version of the CUDA Runtime statically linked to CuPy.

See also

cupy.cuda.get_local_runtime_version()

cupy.cuda.runtime.getDevice

	
cupy.cuda.runtime.getDevice() → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.getDeviceProperties

	
cupy.cuda.runtime.getDeviceProperties(int device)

	

cupy.cuda.runtime.deviceGetAttribute

	
cupy.cuda.runtime.deviceGetAttribute(int attrib, int device) → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.deviceGetByPCIBusId

	
cupy.cuda.runtime.deviceGetByPCIBusId(unicode pci_bus_id) → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.deviceGetPCIBusId

	
cupy.cuda.runtime.deviceGetPCIBusId(int device) → unicode

	

cupy.cuda.runtime.deviceGetDefaultMemPool

	
cupy.cuda.runtime.deviceGetDefaultMemPool(int device) → intptr_t

	Get the default mempool on the current device.

cupy.cuda.runtime.deviceGetMemPool

	
cupy.cuda.runtime.deviceGetMemPool(int device) → intptr_t

	Get the current mempool on the current device.

cupy.cuda.runtime.deviceSetMemPool

	
cupy.cuda.runtime.deviceSetMemPool(int device, intptr_t pool)

	Set the current mempool on the current device to pool.

cupy.cuda.runtime.memPoolCreate

	
cupy.cuda.runtime.memPoolCreate(MemPoolProps props) → intptr_t

	

cupy.cuda.runtime.memPoolDestroy

	
cupy.cuda.runtime.memPoolDestroy(intptr_t pool)

	

cupy.cuda.runtime.memPoolTrimTo

	
cupy.cuda.runtime.memPoolTrimTo(intptr_t pool, size_t size)

	

cupy.cuda.runtime.getDeviceCount

	
cupy.cuda.runtime.getDeviceCount() → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.setDevice

	
cupy.cuda.runtime.setDevice(int device)

	

cupy.cuda.runtime.deviceSynchronize

	
cupy.cuda.runtime.deviceSynchronize()

	

cupy.cuda.runtime.deviceCanAccessPeer

	
cupy.cuda.runtime.deviceCanAccessPeer(int device, int peerDevice) → int [https://docs.python.org/3/library/functions.html#int]

	

cupy.cuda.runtime.deviceEnablePeerAccess

	
cupy.cuda.runtime.deviceEnablePeerAccess(int peerDevice)

	

cupy.cuda.runtime.deviceGetLimit

	
cupy.cuda.runtime.deviceGetLimit(int limit) → size_t

	

cupy.cuda.runtime.deviceSetLimit

	
cupy.cuda.runtime.deviceSetLimit(int limit, size_t value)

	

cupy.cuda.runtime.malloc

	
cupy.cuda.runtime.malloc(size_t size) → intptr_t

	

cupy.cuda.runtime.mallocManaged

	
cupy.cuda.runtime.mallocManaged(size_t size, unsigned int flags=cudaMemAttachGlobal) → intptr_t

	

cupy.cuda.runtime.malloc3DArray

	
cupy.cuda.runtime.malloc3DArray(intptr_t descPtr, size_t width, size_t height, size_t depth, unsigned int flags=0) → intptr_t

	

cupy.cuda.runtime.mallocArray

	
cupy.cuda.runtime.mallocArray(intptr_t descPtr, size_t width, size_t height, unsigned int flags=0) → intptr_t

	

cupy.cuda.runtime.mallocAsync

	
cupy.cuda.runtime.mallocAsync(size_t size, intptr_t stream) → intptr_t

	

cupy.cuda.runtime.mallocFromPoolAsync

	
cupy.cuda.runtime.mallocFromPoolAsync(size_t size, intptr_t pool, intptr_t stream) → intptr_t

	

cupy.cuda.runtime.hostAlloc

	
cupy.cuda.runtime.hostAlloc(size_t size, unsigned int flags) → intptr_t

	

cupy.cuda.runtime.hostRegister

	
cupy.cuda.runtime.hostRegister(intptr_t ptr, size_t size, unsigned int flags)

	

cupy.cuda.runtime.hostUnregister

	
cupy.cuda.runtime.hostUnregister(intptr_t ptr)

	

cupy.cuda.runtime.free

	
cupy.cuda.runtime.free(intptr_t ptr)

	

cupy.cuda.runtime.freeHost

	
cupy.cuda.runtime.freeHost(intptr_t ptr)

	

cupy.cuda.runtime.freeArray

	
cupy.cuda.runtime.freeArray(intptr_t ptr)

	

cupy.cuda.runtime.freeAsync

	
cupy.cuda.runtime.freeAsync(intptr_t ptr, intptr_t stream)

	

cupy.cuda.runtime.memGetInfo

	
cupy.cuda.runtime.memGetInfo()

	

cupy.cuda.runtime.memcpy

	
cupy.cuda.runtime.memcpy(intptr_t dst, intptr_t src, size_t size, int kind)

	

cupy.cuda.runtime.memcpyAsync

	
cupy.cuda.runtime.memcpyAsync(intptr_t dst, intptr_t src, size_t size, int kind, intptr_t stream)

	

cupy.cuda.runtime.memcpyPeer

	
cupy.cuda.runtime.memcpyPeer(intptr_t dst, int dstDevice, intptr_t src, int srcDevice, size_t size)

	

cupy.cuda.runtime.memcpyPeerAsync

	
cupy.cuda.runtime.memcpyPeerAsync(intptr_t dst, int dstDevice, intptr_t src, int srcDevice, size_t size, intptr_t stream)

	

cupy.cuda.runtime.memcpy2D

	
cupy.cuda.runtime.memcpy2D(intptr_t dst, size_t dpitch, intptr_t src, size_t spitch, size_t width, size_t height, MemoryKind kind)

	

cupy.cuda.runtime.memcpy2DAsync

	
cupy.cuda.runtime.memcpy2DAsync(intptr_t dst, size_t dpitch, intptr_t src, size_t spitch, size_t width, size_t height, MemoryKind kind, intptr_t stream)

	

cupy.cuda.runtime.memcpy2DFromArray

	
cupy.cuda.runtime.memcpy2DFromArray(intptr_t dst, size_t dpitch, intptr_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, int kind)

	

cupy.cuda.runtime.memcpy2DFromArrayAsync

	
cupy.cuda.runtime.memcpy2DFromArrayAsync(intptr_t dst, size_t dpitch, intptr_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, int kind, intptr_t stream)

	

cupy.cuda.runtime.memcpy2DToArray

	
cupy.cuda.runtime.memcpy2DToArray(intptr_t dst, size_t wOffset, size_t hOffset, intptr_t src, size_t spitch, size_t width, size_t height, int kind)

	

cupy.cuda.runtime.memcpy2DToArrayAsync

	
cupy.cuda.runtime.memcpy2DToArrayAsync(intptr_t dst, size_t wOffset, size_t hOffset, intptr_t src, size_t spitch, size_t width, size_t height, int kind, intptr_t stream)

	

cupy.cuda.runtime.memcpy3D

	
cupy.cuda.runtime.memcpy3D(intptr_t Memcpy3DParmsPtr)

	

cupy.cuda.runtime.memcpy3DAsync

	
cupy.cuda.runtime.memcpy3DAsync(intptr_t Memcpy3DParmsPtr, intptr_t stream)

	

cupy.cuda.runtime.memset

	
cupy.cuda.runtime.memset(intptr_t ptr, int value, size_t size)

	

cupy.cuda.runtime.memsetAsync

	
cupy.cuda.runtime.memsetAsync(intptr_t ptr, int value, size_t size, intptr_t stream)

	

cupy.cuda.runtime.memPrefetchAsync

	
cupy.cuda.runtime.memPrefetchAsync(intptr_t devPtr, size_t count, int dstDevice, intptr_t stream)

	

cupy.cuda.runtime.memAdvise

	
cupy.cuda.runtime.memAdvise(intptr_t devPtr, size_t count, int advice, int device)

	

cupy.cuda.runtime.pointerGetAttributes

	
cupy.cuda.runtime.pointerGetAttributes(intptr_t ptr) → PointerAttributes

	

cupy.cuda.runtime.streamCreate

	
cupy.cuda.runtime.streamCreate() → intptr_t

	

cupy.cuda.runtime.streamCreateWithFlags

	
cupy.cuda.runtime.streamCreateWithFlags(unsigned int flags) → intptr_t

	

cupy.cuda.runtime.streamDestroy

	
cupy.cuda.runtime.streamDestroy(intptr_t stream)

	

cupy.cuda.runtime.streamSynchronize

	
cupy.cuda.runtime.streamSynchronize(intptr_t stream)

	

cupy.cuda.runtime.streamAddCallback

	
cupy.cuda.runtime.streamAddCallback(intptr_t stream, callback, intptr_t arg, unsigned int flags=0)

	

cupy.cuda.runtime.streamQuery

	
cupy.cuda.runtime.streamQuery(intptr_t stream)

	

cupy.cuda.runtime.streamWaitEvent

	
cupy.cuda.runtime.streamWaitEvent(intptr_t stream, intptr_t event, unsigned int flags=0)

	

cupy.cuda.runtime.launchHostFunc

	
cupy.cuda.runtime.launchHostFunc(intptr_t stream, callback, intptr_t arg)

	

cupy.cuda.runtime.eventCreate

	
cupy.cuda.runtime.eventCreate() → intptr_t

	

cupy.cuda.runtime.eventCreateWithFlags

	
cupy.cuda.runtime.eventCreateWithFlags(unsigned int flags) → intptr_t

	

cupy.cuda.runtime.eventDestroy

	
cupy.cuda.runtime.eventDestroy(intptr_t event)

	

cupy.cuda.runtime.eventElapsedTime

	
cupy.cuda.runtime.eventElapsedTime(intptr_t start, intptr_t end) → float [https://docs.python.org/3/library/functions.html#float]

	

cupy.cuda.runtime.eventQuery

	
cupy.cuda.runtime.eventQuery(intptr_t event)

	

cupy.cuda.runtime.eventRecord

	
cupy.cuda.runtime.eventRecord(intptr_t event, intptr_t stream)

	

cupy.cuda.runtime.eventSynchronize

	
cupy.cuda.runtime.eventSynchronize(intptr_t event)

	

cupy.cuda.runtime.ipcGetMemHandle

	
cupy.cuda.runtime.ipcGetMemHandle(intptr_t devPtr)

	

cupy.cuda.runtime.ipcOpenMemHandle

	
cupy.cuda.runtime.ipcOpenMemHandle(bytes handle, unsigned int flags=cudaIpcMemLazyEnablePeerAccess)

	

cupy.cuda.runtime.ipcCloseMemHandle

	
cupy.cuda.runtime.ipcCloseMemHandle(intptr_t devPtr)

	

cupy.cuda.runtime.ipcGetEventHandle

	
cupy.cuda.runtime.ipcGetEventHandle(intptr_t event)

	

cupy.cuda.runtime.ipcOpenEventHandle

	
cupy.cuda.runtime.ipcOpenEventHandle(bytes handle)

	

cupy.cuda.runtime.profilerStart

	
cupy.cuda.runtime.profilerStart()

	Enable profiling.

A user can enable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

cupy.cuda.runtime.profilerStop

	
cupy.cuda.runtime.profilerStop()

	Disable profiling.

A user can disable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

Custom kernels

	cupy.ElementwiseKernel(in_params, ...[, ...])

	User-defined elementwise kernel.

	cupy.ReductionKernel(unicode in_params, ...)

	User-defined reduction kernel.

	cupy.RawKernel(unicode code, unicode name, ...)

	User-defined custom kernel.

	cupy.RawModule(unicode code=None, *, ...[, ...])

	User-defined custom module.

	cupy.fuse(*args, **kwargs)

	Decorator that fuses a function.

JIT kernel definition

Supported Python built-in functions include: range [https://docs.python.org/3/library/stdtypes.html#range], len() [https://docs.python.org/3/library/functions.html#len], max() [https://docs.python.org/3/library/functions.html#max], min() [https://docs.python.org/3/library/functions.html#min].

Note

If loop unrolling is needed, use cupyx.jit.range() instead of the built-in range [https://docs.python.org/3/library/stdtypes.html#range].

	cupyx.jit.rawkernel(*[, mode, device])

	A decorator compiles a Python function into CUDA kernel.

	cupyx.jit.threadIdx

	dim3 threadIdx

	cupyx.jit.blockDim

	dim3 blockDim

	cupyx.jit.blockIdx

	dim3 blockIdx

	cupyx.jit.gridDim

	dim3 gridDim

	cupyx.jit.grid(ndim)

	Compute the thread index in the grid.

	cupyx.jit.gridsize(ndim)

	Compute the grid size.

	cupyx.jit.laneid()

	Returns the lane ID of the calling thread, ranging in [0, jit.warpsize).

	cupyx.jit.warpsize

	Returns the number of threads in a warp.

	cupyx.jit.range(*args[, unroll])

	Range with loop unrolling support.

	cupyx.jit.syncthreads()

	Calls __syncthreads().

	cupyx.jit.syncwarp(*[, mask])

	Calls __syncwarp().

	cupyx.jit.shfl_sync(mask, var, val_id, *[, ...])

	Calls the __shfl_sync function.

	cupyx.jit.shfl_up_sync(mask, var, val_id, *)

	Calls the __shfl_up_sync function.

	cupyx.jit.shfl_down_sync(mask, var, val_id, *)

	Calls the __shfl_down_sync function.

	cupyx.jit.shfl_xor_sync(mask, var, val_id, *)

	Calls the __shfl_xor_sync function.

	cupyx.jit.shared_memory(dtype, size[, alignment])

	Allocates shared memory and returns it as a 1-D array.

	cupyx.jit.atomic_add(array, index, value[, ...])

	Calls the atomicAdd function to operate atomically on array[index].

	cupyx.jit.atomic_sub(array, index, value[, ...])

	Calls the atomicSub function to operate atomically on array[index].

	cupyx.jit.atomic_exch(array, index, value[, ...])

	Calls the atomicExch function to operate atomically on array[index].

	cupyx.jit.atomic_min(array, index, value[, ...])

	Calls the atomicMin function to operate atomically on array[index].

	cupyx.jit.atomic_max(array, index, value[, ...])

	Calls the atomicMax function to operate atomically on array[index].

	cupyx.jit.atomic_inc(array, index, value[, ...])

	Calls the atomicInc function to operate atomically on array[index].

	cupyx.jit.atomic_dec(array, index, value[, ...])

	Calls the atomicDec function to operate atomically on array[index].

	cupyx.jit.atomic_cas(array, index, value[, ...])

	Calls the atomicCAS function to operate atomically on array[index].

	cupyx.jit.atomic_and(array, index, value[, ...])

	Calls the atomicAnd function to operate atomically on array[index].

	cupyx.jit.atomic_or(array, index, value[, ...])

	Calls the atomicOr function to operate atomically on array[index].

	cupyx.jit.atomic_xor(array, index, value[, ...])

	Calls the atomicXor function to operate atomically on array[index].

	cupyx.jit.cg.this_grid()

	Returns the current grid group (_GridGroup).

	cupyx.jit.cg.this_thread_block()

	Returns the current thread block group (_ThreadBlockGroup).

	cupyx.jit.cg.sync(group)

	Calls cg::sync().

	cupyx.jit.cg.memcpy_async(group, dst, ...[, ...])

	Calls cg::memcpy_sync().

	cupyx.jit.cg.wait(group)

	Calls cg::wait().

	cupyx.jit.cg.wait_prior(group)

	Calls cg::wait_prior<N>().

	cupyx.jit._interface._JitRawKernel(func, ...)

	JIT CUDA kernel object.

Kernel binary memoization

	cupy.memoize(bool for_each_device=False)

	Makes a function memoizing the result for each argument and device.

	cupy.clear_memo()

	Clears the memoized results for all functions decorated by memoize.

cupy.ElementwiseKernel

	
class cupy.ElementwiseKernel(in_params, out_params, operation, name='kernel', reduce_dims=True, preamble='', no_return=False, return_tuple=False, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/_kernel.pyx]

	User-defined elementwise kernel.

This class can be used to define an elementwise kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method,
which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.

	Parameters:

	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The body in the loop written in CUDA-C/C++.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the shapes of array arguments are
kept within the kernel invocation. The shapes are reduced
(i.e., the arrays are reshaped without copy to the minimum
dimension) by default. It may make the kernel fast by reducing the
index calculations.

	options (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Compile options passed to NVRTC. For details, see
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	no_return (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, __call__ returns None.

	return_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, __call__ always returns tuple of
array even if single value is returned.

	loop_prep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the top of the kernel function definition and above the for
loop.

	after_loop (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the bottom of the kernel function definition.

Methods

	
__call__()

	Compiles and invokes the elementwise kernel.

The compilation runs only if the kernel is not cached. Note that the
kernels with different argument dtypes or dimensions are not
compatible. It means that single ElementwiseKernel object may be
compiled into multiple kernel binaries.

	Parameters:

	
	args – Arguments of the kernel.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Range size of the indices. By default, the range size
is automatically determined from the result of broadcasting.
This parameter must be specified if and only if all ndarrays
are raw and the range size cannot be determined
automatically.

	block_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of threads per block. By default, the
value is set to 128.

	Returns:

	If no_return has not set, arrays are returned according to the
out_params argument of the __init__ method.
If no_return has set, None is returned.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
cached_code

	Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

	
cached_codes

	Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

	
in_params

	

	
kwargs

	

	
name

	

	
nargs

	

	
nin

	

	
no_return

	

	
nout

	

	
operation

	

	
out_params

	

	
params

	

	
preamble

	

	
reduce_dims

	

	
return_tuple

	

cupy.ReductionKernel

	
class cupy.ReductionKernel(unicode in_params, unicode out_params, map_expr, reduce_expr, post_map_expr, identity, name=u'reduce_kernel', reduce_type=None, reduce_dims=True, preamble=u'', options=())[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/_reduction.pyx]

	User-defined reduction kernel.

This class can be used to define a reduction kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method, which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.

	Parameters:

	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for input values.

	reduce_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction expression.

	post_map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for reduced values.

	identity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identity value for starting the reduction.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of values to be used for reduction. This type
is used to store the special variables a.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, input arrays are reshaped without copy
to smaller dimensions for efficiency.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	options (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional compilation options.

Methods

	
__call__()

	Compiles and invokes the reduction kernel.

The compilation runs only if the kernel is not cached. Note that the
kernels with different argument dtypes, ndims, or axis are not
compatible. It means that single ReductionKernel object may be compiled
into multiple kernel binaries.

	Parameters:

	
	args – Arguments of the kernel.

	out (cupy.ndarray) – The output array. This can only be specified if
args does not contain the output array.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Axis or axes along which the
reduction is performed.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as
axes of length one.

	stream (cupy.cuda.Stream, optional) – The CUDA stream to launch the
kernel on. If not given, the current stream will be used.

	Returns:

	Arrays are returned according to the out_params argument of the
__init__ method.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
cached_code

	Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

	
cached_codes

	Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

	
identity

	unicode

	Type:

	identity

	
in_params

	

	
map_expr

	

	
name

	

	
nargs

	

	
nin

	

	
nout

	

	
options

	

	
out_params

	

	
params

	

	
post_map_expr

	

	
preamble

	

	
reduce_dims

	

	
reduce_expr

	

	
reduce_type

	

cupy.RawKernel

	
class cupy.RawKernel(unicode code, unicode name, tuple options=(), unicode backend=u'nvrtc', bool translate_cucomplex=False, *, bool enable_cooperative_groups=False, bool jitify=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/raw.pyx]

	User-defined custom kernel.

This class can be used to define a custom kernel using raw CUDA source.

The kernel is compiled at an invocation of the __call__()
method, which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.

	Parameters:

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – CUDA source code.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function.

	options (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Compiler options passed to the backend (NVRTC
or NVCC). For details, see
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options or
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either nvrtc or nvcc. Defaults to nvrtc

	translate_cucomplex (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the CUDA source includes the header
cuComplex.h or not. If set to True, any code that uses the
functions from cuComplex.h will be translated to its Thrust
counterpart. Defaults to False.

	enable_cooperative_groups (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable cooperative groups
in the CUDA source. If set to True, compile options are
configured properly and the kernel is launched with
cuLaunchCooperativeKernel so that cooperative groups can be
used from the CUDA source.
This feature is only supported in CUDA 9 or later.

	jitify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use Jitify [https://github.com/NVIDIA/jitify] to assist NVRTC to
compile C++ kernels. Defaults to False.

Note

Starting CuPy v13.0.0, RawKernel by default compiles with the C++11
standard (-std=c++11) if it’s not specified in options.

Methods

	
__call__(self, grid, block, args, *, shared_mem=0)

	Compiles and invokes the kernel.

The compilation runs only if the kernel is not cached.

	Parameters:

	
	grid (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of grid in blocks.

	block (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Dimensions of each thread block.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Arguments of the kernel.

	shared_mem (int [https://docs.python.org/3/library/functions.html#int]) – Dynamic shared-memory size per thread block in
bytes.

	
compile(self, log_stream=None)

	Compile the current kernel.

In general, you don’t have to call this method;
kernels are compiled implicitly on the first call.

	Parameters:

	log_stream (object [https://docs.python.org/3/library/functions.html#object]) – Pass either sys.stdout or a file object to
which the compiler output will be written.
Defaults to None.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
attributes

	Returns a dictionary containing runtime kernel attributes. This is
a read-only property; to overwrite the attributes, use

kernel = RawKernel(...) # arguments omitted
kernel.max_dynamic_shared_size_bytes = ...
kernel.preferred_shared_memory_carveout = ...

Note that the two attributes shown in the above example are the only
two currently settable in CUDA.

Any attribute not existing in the present CUDA toolkit version will
have the value -1.

	Returns:

	A dictionary containing the kernel’s attributes.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
backend

	

	
binary_version

	The binary architecture version that was used during compilation,
in the format: 10*major + minor.

	
cache_mode_ca

	Indicates whether option “-Xptxas –dlcm=ca” was set during
compilation.

	
code

	

	
const_size_bytes

	The size in bytes of constant memory used by the function.

	
enable_cooperative_groups

	

	
file_path

	

	
kernel

	

	
local_size_bytes

	The size in bytes of local memory used by the function.

	
max_dynamic_shared_size_bytes

	The maximum dynamically-allocated shared memory size in bytes that
can be used by the function. Can be set.

	
max_threads_per_block

	The maximum number of threads per block that can successfully
launch the function on the device.

	
name

	

	
num_regs

	The number of registers used by the function.

	
options

	

	
preferred_shared_memory_carveout

	On devices that have a unified L1 cache and shared memory,
indicates the fraction to be used for shared memory as a
percentage of the total. If the fraction does not exactly equal a
supported shared memory capacity, then the next larger supported
capacity is used. Can be set.

	
ptx_version

	The PTX virtual architecture version that was used during
compilation, in the format: 10*major + minor.

	
shared_size_bytes

	The size in bytes of the statically-allocated shared memory
used by the function. This is separate from any dynamically-allocated
shared memory, which must be specified when the function is called.

cupy.RawModule

	
class cupy.RawModule(unicode code=None, *, unicode path=None, tuple options=(), unicode backend=u'nvrtc', bool translate_cucomplex=False, bool enable_cooperative_groups=False, name_expressions=None, bool jitify=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/raw.pyx]

	User-defined custom module.

This class can be used to either compile raw CUDA sources or load CUDA
modules (*.cubin, *.ptx). This class is useful when a number of CUDA
kernels in the same source need to be retrieved.

For the former case, the CUDA source code is compiled when any method is
called. For the latter case, an existing CUDA binary (*.cubin) or a PTX
file can be loaded by providing its path.

CUDA kernels in a RawModule can be retrieved by calling
get_function(), which will return an instance of RawKernel.
(Same as in RawKernel, the generated binary is also cached.)

	Parameters:

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – CUDA source code. Mutually exclusive with path.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to cubin/ptx. Mutually exclusive with code.

	options (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Compiler options passed to the backend (NVRTC
or NVCC). For details, see
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options or
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description.

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either nvrtc or nvcc. Defaults to nvrtc

	translate_cucomplex (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the CUDA source includes the header
cuComplex.h or not. If set to True, any code that uses the
functions from cuComplex.h will be translated to its Thrust
counterpart. Defaults to False.

	enable_cooperative_groups (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable cooperative groups
in the CUDA source. If set to True, compile options are
configured properly and the kernel is launched with
cuLaunchCooperativeKernel so that cooperative groups can be
used from the CUDA source.
This feature is only supported in CUDA 9 or later.

	name_expressions (sequence of str [https://docs.python.org/3/library/stdtypes.html#str]) – A sequence (e.g. list) of strings
referring to the names of C++ global/template kernels. For example,
name_expressions=['func1<int>', 'func1<double>', 'func2'] for
the template kernel func1<T> and non-template kernel func2.
Strings in this tuple must then be passed, one at a time, to
get_function() to retrieve the corresponding kernel.

	jitify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use Jitify [https://github.com/NVIDIA/jitify] to assist NVRTC to
compile C++ kernels. Defaults to False.

Note

Starting CuPy v13.0.0, RawModule by default compiles with the C++11
standard (-std=c++11) if it’s not specified in options.

Note

Each kernel in RawModule possesses independent function attributes.

Note

Before CuPy v8.0.0, the compilation happens at initialization. Now, it
happens at the first time retrieving any object (kernels or pointers)
from the module.

Methods

	
compile(self, log_stream=None)

	Compile the current module.

In general, you don’t have to call this method;
kernels are compiled implicitly on the first call.

	Parameters:

	log_stream (object [https://docs.python.org/3/library/functions.html#object]) – Pass either sys.stdout or a file object to
which the compiler output will be written.
Defaults to None.

Note

Calling compile() will reset the internal state of
a RawKernel.

	
get_function(self, unicode name)

	Retrieve a CUDA kernel by its name from the module.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. For C++ global/template
kernels, name refers to one of the name expressions
specified when initializing the present RawModule
instance.

	Returns:

	An RawKernel instance.

	Return type:

	RawKernel

Note

The following example shows how to retrieve one of the specialized
C++ template kernels:

code = r'''
template<typename T>
__global__ void func(T* in_arr) { /* do something */ }
'''

kers = ('func<int>', 'func<float>', 'func<double>')
mod = cupy.RawModule(code=code, options=('--std=c++11',),
 name_expressions=kers)

// retrieve func<int>
ker_int = mod.get_function(kers[0])

See also

nvrtcAddNameExpression and nvrtcGetLoweredName from
Accessing Lowered Names [https://docs.nvidia.com/cuda/nvrtc/index.html#accessing-lowered-names] of the NVRTC documentation.

	
get_global(self, name)

	Retrieve a pointer to a global symbol by its name from the module.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the global symbol.

	Returns:

	A handle to the global symbol.

	Return type:

	MemoryPointer

Note

This method can be used to access, for example, constant memory:

to get a pointer to "arr" declared in the source like this:
__constant__ float arr[10];
memptr = mod.get_global("arr")
...wrap it using cupy.ndarray with a known shape
arr_ndarray = cp.ndarray((10,), cp.float32, memptr)
...perform data transfer to initialize it
arr_ndarray[...] = cp.random.random((10,), dtype=cp.float32)
...and arr is ready to be accessed by RawKernels

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
backend

	

	
code

	

	
enable_cooperative_groups

	

	
file_path

	

	
module

	

	
name_expressions

	

	
options

	

cupy.fuse

	
cupy.fuse(*args, **kwargs)

	Decorator that fuses a function.

This decorator can be used to define an elementwise or reduction kernel
more easily than ElementwiseKernel or
ReductionKernel.

Since the fused kernels are cached and reused, it is recommended to reuse
the same decorated functions instead of e.g. decorating local functions
that are defined multiple times.

	Parameters:

	kernel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the fused kernel function.
If omitted, the name of the decorated function is used.

Example

>>> @cupy.fuse(kernel_name='squared_diff')
... def squared_diff(x, y):
... return (x - y) * (x - y)
...
>>> x = cupy.arange(10)
>>> y = cupy.arange(10)[::-1]
>>> squared_diff(x, y)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])

cupyx.jit.rawkernel

	
cupyx.jit.rawkernel(*, mode='cuda', device=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_interface.py#L170]

	A decorator compiles a Python function into CUDA kernel.

cupyx.jit.threadIdx

	
cupyx.jit.threadIdx = <Data code = "threadIdx", type = dim3>

	dim3 threadIdx

An integer vector type based on uint3 that is used to specify dimensions.

	Variables:

	
	x (uint32) –

	y (uint32) –

	z (uint32) –

cupyx.jit.blockDim

	
cupyx.jit.blockDim = <Data code = "blockDim", type = dim3>

	dim3 blockDim

An integer vector type based on uint3 that is used to specify dimensions.

	Variables:

	
	x (uint32) –

	y (uint32) –

	z (uint32) –

cupyx.jit.blockIdx

	
cupyx.jit.blockIdx = <Data code = "blockIdx", type = dim3>

	dim3 blockIdx

An integer vector type based on uint3 that is used to specify dimensions.

	Variables:

	
	x (uint32) –

	y (uint32) –

	z (uint32) –

cupyx.jit.gridDim

	
cupyx.jit.gridDim = <Data code = "gridDim", type = dim3>

	dim3 gridDim

An integer vector type based on uint3 that is used to specify dimensions.

	Variables:

	
	x (uint32) –

	y (uint32) –

	z (uint32) –

cupyx.jit.grid

	
cupyx.jit.grid(ndim) = <cupyx.jit function>

	Compute the thread index in the grid.

Computation of the first integer is as follows:

jit.threadIdx.x + jit.blockIdx.x * jit.blockDim.x

and for the other two integers the y and z attributes are used.

	Parameters:

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – The dimension of the grid. Only 1, 2, or 3 is allowed.

	Returns:

	If ndim is 1, an integer is returned, otherwise a tuple.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

This function follows the convention of Numba’s
numba.cuda.grid() [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.grid].

cupyx.jit.gridsize

	
cupyx.jit.gridsize(ndim) = <cupyx.jit function>

	Compute the grid size.

Computation of the first integer is as follows:

jit.blockDim.x * jit.gridDim.x

and for the other two integers the y and z attributes are used.

	Parameters:

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – The dimension of the grid. Only 1, 2, or 3 is allowed.

	Returns:

	If ndim is 1, an integer is returned, otherwise a tuple.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

This function follows the convention of Numba’s
numba.cuda.gridsize() [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.gridsize].

cupyx.jit.laneid

	
cupyx.jit.laneid = <cupyx.jit function>

	Returns the lane ID of the calling thread, ranging in
[0, jit.warpsize).

Note

Unlike numba.cuda.laneid [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.laneid], this is a callable function
instead of a property.

cupyx.jit.warpsize

	
cupyx.jit.warpsize = <Data code = "warpSize", type = int>

	Returns the number of threads in a warp.

See also

numba.cuda.warpsize [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.warpsize]

cupyx.jit.range

	
cupyx.jit.range(*args, unroll=None) = <cupyx.jit function>

	Range with loop unrolling support.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Same as that of built-in range.

	stop (int [https://docs.python.org/3/library/functions.html#int]) – Same as that of built-in range.

	step (int [https://docs.python.org/3/library/functions.html#int]) – Same as that of built-in range.

	unroll (int [https://docs.python.org/3/library/functions.html#int] or bool [https://docs.python.org/3/library/functions.html#bool] or None) –
	If True, add #pragma unroll directive before the
loop.

	If False, add #pragma unroll(1) directive before
the loop to disable unrolling.

	If an int, add #pragma unroll(n) directive before
the loop, where the integer n means the number of
iterations to unroll.

	If None (default), leave the control of loop unrolling
to the compiler (no #pragma).

See also

#pragma unroll [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#pragma-unroll]

cupyx.jit.syncthreads

	
cupyx.jit.syncthreads = <cupyx.jit function>

	Calls __syncthreads().

See also

Synchronization functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#synchronization-functions]

cupyx.jit.syncwarp

	
cupyx.jit.syncwarp(*, mask=4294967295) = <cupyx.jit function>

	Calls __syncwarp().

	Parameters:

	mask (int [https://docs.python.org/3/library/functions.html#int]) – Active threads in a warp. Default is 0xffffffff.

See also

Synchronization functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#synchronization-functions]

cupyx.jit.shfl_sync

	
cupyx.jit.shfl_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>

	Calls the __shfl_sync function. Please refer to
Warp Shuffle Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions] for detailed explanation.

cupyx.jit.shfl_up_sync

	
cupyx.jit.shfl_up_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>

	Calls the __shfl_up_sync function. Please refer to
Warp Shuffle Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions] for detailed explanation.

cupyx.jit.shfl_down_sync

	
cupyx.jit.shfl_down_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>

	Calls the __shfl_down_sync function. Please refer to
Warp Shuffle Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions] for detailed explanation.

cupyx.jit.shfl_xor_sync

	
cupyx.jit.shfl_xor_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>

	Calls the __shfl_xor_sync function. Please refer to
Warp Shuffle Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions] for detailed explanation.

cupyx.jit.shared_memory

	
cupyx.jit.shared_memory(dtype, size, alignment=None) = <cupyx.jit function>

	Allocates shared memory and returns it as a 1-D array.

	Parameters:

	
	dtype (dtype) – The dtype of the returned array.

	size (int [https://docs.python.org/3/library/functions.html#int] or None) – If int type, the size of static shared memory.
If None, declares the shared memory with extern specifier.

	alignment (int [https://docs.python.org/3/library/functions.html#int] or None) – Enforce the alignment via __align__(N).

cupyx.jit.atomic_add

	
cupyx.jit.atomic_add(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicAdd function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_sub

	
cupyx.jit.atomic_sub(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicSub function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_exch

	
cupyx.jit.atomic_exch(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicExch function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_min

	
cupyx.jit.atomic_min(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicMin function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_max

	
cupyx.jit.atomic_max(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicMax function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_inc

	
cupyx.jit.atomic_inc(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicInc function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_dec

	
cupyx.jit.atomic_dec(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicDec function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_cas

	
cupyx.jit.atomic_cas(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicCAS function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_and

	
cupyx.jit.atomic_and(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicAnd function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_or

	
cupyx.jit.atomic_or(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicOr function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.atomic_xor

	
cupyx.jit.atomic_xor(array, index, value, alt_value=None) = <cupyx.jit function>

	Calls the atomicXor function to operate atomically on
array[index]. Please refer to Atomic Functions [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions] for detailed
explanation.

	Parameters:

	
	array – A cupy.ndarray to index over.

	index – A valid index such that the address to the corresponding
array element array[index] can be computed.

	value – Represent the value to use for the specified operation. For
the case of atomic_cas, this is the value for
array[index] to compare with.

	alt_value – Only used in atomic_cas to represent the value
to swap to.

See also

Numba’s corresponding atomic functions [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations]

cupyx.jit.cg.this_grid

	
cupyx.jit.cg.this_grid = <cupyx.jit function>

	Returns the current grid group (_GridGroup).

See also

cupyx.jit.cg._GridGroup, numba.cuda.cg.this_grid() [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.cg.this_grid]

cupyx.jit.cg.this_thread_block

	
cupyx.jit.cg.this_thread_block = <cupyx.jit function>

	Returns the current thread block group (_ThreadBlockGroup).

See also

cupyx.jit.cg._ThreadBlockGroup

cupyx.jit.cg.sync

	
cupyx.jit.cg.sync(group) = <cupyx.jit function>

	Calls cg::sync().

	Parameters:

	group – a valid cooperative group

See also

cg::sync [https://docs.nvidia.com/cuda/archive/11.6.0/cuda-c-programming-guide/index.html#collectives-cg-sync]

cupyx.jit.cg.memcpy_async

	
cupyx.jit.cg.memcpy_async(group, dst, dst_idx, src, src_idx, size, *, aligned_size=None) = <cupyx.jit function>

	Calls cg::memcpy_sync().

	Parameters:

	
	group – a valid cooperative group

	dst – the destination array that can be viewed as a 1D
C-contiguous array

	dst_idx – the start index of the destination array element

	src – the source array that can be viewed as a 1D C-contiguous
array

	src_idx – the start index of the source array element

	size (int [https://docs.python.org/3/library/functions.html#int]) – the number of bytes to be copied from
src[src_index] to dst[dst_idx]

	aligned_size (int [https://docs.python.org/3/library/functions.html#int]) – Use cuda::aligned_size_t<N> to guarantee
the compiler that src/dst are at least N-bytes aligned.
The behavior is undefined if the guarantee is not held.

See also

cg::memcpy_sync [https://docs.nvidia.com/cuda/archive/11.6.0/cuda-c-programming-guide/index.html#collectives-cg-memcpy-async]

cupyx.jit.cg.wait

	
cupyx.jit.cg.wait(group) = <cupyx.jit function>

	Calls cg::wait().

	Parameters:

	group – a valid cooperative group

cupyx.jit.cg.wait_prior

	
cupyx.jit.cg.wait_prior(group) = <cupyx.jit function>

	Calls cg::wait_prior<N>().

	Parameters:

	
	group – a valid cooperative group

	step (int [https://docs.python.org/3/library/functions.html#int]) – wait for the first N steps to finish

cupyx.jit._interface._JitRawKernel

	
class cupyx.jit._interface._JitRawKernel(func, mode, device)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_interface.py#L42]

	JIT CUDA kernel object.

The decorator :func:cupyx.jit.rawkernel converts the target function
to an object of this class. This class is not inteded to be instantiated
by users.

Methods

	
__call__(grid, block, args, shared_mem=0, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_interface.py#L57]

	Calls the CUDA kernel.

The compilation will be deferred until the first function call.
CuPy’s JIT compiler infers the types of arguments at the call
time, and will cache the compiled kernels for speeding up any
subsequent calls.

	Parameters:

	
	grid (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Size of grid in blocks.

	block (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Dimensions of each thread block.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Arguments of the kernel. The type of all elements must be
bool, int, float, complex, NumPy scalar or
cupy.ndarray.

	shared_mem (int [https://docs.python.org/3/library/functions.html#int]) – Dynamic shared-memory size per thread block in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

See also

JIT kernel definition

	
__getitem__(grid_and_block)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_interface.py#L130]

	Numba-style kernel call.

See also

JIT kernel definition

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
cached_code

	Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

	
cached_codes

	Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose.
The return value is not guaranteed to keep backward compatibility.

cupy.memoize

	
cupy.memoize(bool for_each_device=False)

	Makes a function memoizing the result for each argument and device.

This decorator provides automatic memoization of the function result.

	Parameters:

	for_each_device (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it memoizes the results for each
device. Otherwise, it memoizes the results only based on the
arguments.

cupy.clear_memo

	
cupy.clear_memo()

	Clears the memoized results for all functions decorated by memoize.

Distributed

Communication between processes

	init_process_group(n_devices, rank, *[, ...])

	Start cupyx.distributed and obtain a communicator.

	NCCLBackend(n_devices, rank[, host, port, ...])

	Interface that uses NVIDIA's NCCL to perform communications.

ndarray distributed across devices

	distributed_array(array, index_map[, mode])

	Creates a distributed array from the given data.

	DistributedArray(self, shape, dtype, chunks_map)

	Multi-dimensional array distributed across multiple CUDA devices.

	make_2d_index_map(i_partitions, ...)

	Create an index_map for a 2D matrix with a specified blocking.

	matmul(a, b[, out])

	Matrix multiplication between distributed arrays.

cupyx.distributed.init_process_group

	
cupyx.distributed.init_process_group(n_devices, rank, *, backend='nccl', host=None, port=None, use_mpi=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_init.py#L12]

	Start cupyx.distributed and obtain a communicator.

This call initializes the distributed environment, it needs to be
called for every process that is involved in the communications.

A single device per returned communication is only allowed. It is the user
responsibility of setting the appropiated gpu to be used before creating
and using the communicator.

Currently the user needs to specify each process rank and the total
number of processes, and start all the processes in different hosts
manually.

The process with rank 0 will spawn a TCP server using a
subprocess that listens in the port indicated by
the env var CUPYX_DISTRIBUTED_PORT, the rank 0 must be executed
in the host determined by the env var CUPYX_DISTRIBUTED_HOST.
In case their values are not specified, ‘127.0.0.1’ and 13333 will be
used by default.

Note that this feature is expected to be used within a trusted cluster
environment.

Example

>>> import cupy
>>> def process_0():
... import cupyx.distributed
... cupy.cuda.Device(0).use()
... comm = cupyx.distributed.init_process_group(2, 0)
... array = cupy.ones(1)
... comm.broadcast(array, 0)
...
>>> def process_1():
... import cupyx.distributed
... cupy.cuda.Device(1).use()
... comm = cupyx.distributed.init_process_group(2, 1)
... array = cupy.zeros(1)
... comm.broadcast(array, 0)
... cupy.equal(array, cupy.ones(1))

	Parameters:

	
	n_devices (int [https://docs.python.org/3/library/functions.html#int]) – Total number of devices that will be used in the
distributed execution.

	rank (int [https://docs.python.org/3/library/functions.html#int]) – Unique id of the GPU that the communicator is associated to
its value needs to be 0 <= rank < n_devices.

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Backend to use for the communications. Optional,
defaults to “nccl”.

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – host address for the process rendezvous on initialization
defaults to None.

	port (int [https://docs.python.org/3/library/functions.html#int]) – port for the process rendezvous on initialization
defaults to None.

	use_mpi (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, it avoids using MPI for synchronization
and uses the provided TCP server for exchanging CPU only
information.
defaults to False.

	Returns:

	
	object used to perform communications, adheres to the
	Backend specification:

	Return type:

	Backend

cupyx.distributed.NCCLBackend

	
class cupyx.distributed.NCCLBackend(n_devices, rank, host='127.0.0.1', port=13333, use_mpi=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L58]

	Interface that uses NVIDIA’s NCCL to perform communications.

	Parameters:

	
	n_devices (int [https://docs.python.org/3/library/functions.html#int]) – Total number of devices that will be used in the
distributed execution.

	rank (int [https://docs.python.org/3/library/functions.html#int]) – Unique id of the GPU that the communicator is associated to
its value needs to be 0 <= rank < n_devices.

	host (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – host address for the process rendezvous on
initialization. Defaults to “127.0.0.1”.

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – port used for the process rendezvous on
initialization. Defaults to 13333.

	use_mpi (bool [https://docs.python.org/3/library/functions.html#bool], optional) – switch between MPI and use the included TCP
server for initialization & synchronization. Defaults to False.

Methods

	
all_gather(in_array, out_array, count, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L207]

	Performs an all gather operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array where the result with be stored.

	count (int [https://docs.python.org/3/library/functions.html#int]) – Number of elements to send to each rank.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
all_reduce(in_array, out_array, op='sum', stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L142]

	Performs an all reduce operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array where the result with be stored.

	op (str [https://docs.python.org/3/library/stdtypes.html#str]) – reduction operation, can be one of
(‘sum’, ‘prod’, ‘min’ ‘max’), arrays of complex type only
support ‘sum’. Defaults to ‘sum’.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
all_to_all(in_array, out_array, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L284]

	Performs an all to all operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent. Its shape must be
(total_ranks, …).

	out_array (cupy.ndarray) – array where the result with be stored.
Its shape must be (total_ranks, …).

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
barrier()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L298]

	Performs a barrier operation.

The barrier is done in the cpu and is a explicit synchronization
mechanism that halts the thread progression.

	
broadcast(in_out_array, root=0, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L175]

	Performs a broadcast operation.

	Parameters:

	
	in_out_array (cupy.ndarray) – array to be sent for root rank.
Other ranks will receive the broadcast data here.

	root (int [https://docs.python.org/3/library/functions.html#int], optional) – rank of the process that will send the
broadcast. Defaults to 0.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
gather(in_array, out_array, root=0, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L270]

	Performs a gather operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array where the result with be stored.
Its shape must be (total_ranks, …).

	root (int [https://docs.python.org/3/library/functions.html#int]) – rank that will receive in_array from other ranks.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
recv(out_array, peer, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L231]

	Performs a receive operation.

	Parameters:

	
	array (cupy.ndarray) – array used to receive data.

	peer (int [https://docs.python.org/3/library/functions.html#int]) – rank of the process array will be received from.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
reduce(in_array, out_array, root=0, op='sum', stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L157]

	Performs a reduce operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array where the result with be stored.
will only be modified by the root process.

	root (int [https://docs.python.org/3/library/functions.html#int], optional) – rank of the process that will perform the
reduction. Defaults to 0.

	op (str [https://docs.python.org/3/library/stdtypes.html#str]) – reduction operation, can be one of
(‘sum’, ‘prod’, ‘min’ ‘max’), arrays of complex type only
support ‘sum’. Defaults to ‘sum’.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
reduce_scatter(in_array, out_array, count, op='sum', stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L190]

	Performs a reduce scatter operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array where the result with be stored.

	count (int [https://docs.python.org/3/library/functions.html#int]) – Number of elements to send to each rank.

	op (str [https://docs.python.org/3/library/stdtypes.html#str]) – reduction operation, can be one of
(‘sum’, ‘prod’, ‘min’ ‘max’), arrays of complex type only
support ‘sum’. Defaults to ‘sum’.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
scatter(in_array, out_array, root=0, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L256]

	Performs a scatter operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent. Its shape must be
(total_ranks, …).

	out_array (cupy.ndarray) – array where the result with be stored.

	root (int [https://docs.python.org/3/library/functions.html#int]) – rank that will send the in_array to other ranks.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
send(array, peer, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L220]

	Performs a send operation.

	Parameters:

	
	array (cupy.ndarray) – array to be sent.

	peer (int [https://docs.python.org/3/library/functions.html#int]) – rank of the process array will be sent to.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
send_recv(in_array, out_array, peer, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_nccl_comm.py#L242]

	Performs a send and receive operation.

	Parameters:

	
	in_array (cupy.ndarray) – array to be sent.

	out_array (cupy.ndarray) – array used to receive data.

	peer (int [https://docs.python.org/3/library/functions.html#int]) – rank of the process to send in_array and receive
out_array.

	stream (cupy.cuda.Stream, optional) – if supported, stream to
perform the communication.

	
stop()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/_comm.py#L65]

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupyx.distributed.array.distributed_array

	
cupyx.distributed.array.distributed_array(array, index_map, mode=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L821]

	Creates a distributed array from the given data.

This function does not check if all elements of the given array are stored
in some of the chunks.

	Parameters:

	
	array (array_like) – DistributedArray object,
cupy.ndarray object or any other object that can be passed
to numpy.array() [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array].

	index_map (dict from int to array indices) – Indices for the chunks
that devices with designated IDs own. One device can have multiple
chunks, which can be specified as a list of array indices.

	mode (mode object, optional) – Mode that determines how overlaps
of the chunks are interpreted. Defaults to
cupyx.distributed.array.REPLICA.

	Return type:

	DistributedArray

See also

DistributedArray.mode for details about modes.

Example

>>> array = cupy.arange(9).reshape(3, 3)
>>> A = distributed_array(
... array,
... {0: [(slice(2), slice(2)), # array[:2, :2]
... slice(None, None, 2)], # array[::2]
... 1: (slice(1, None), 2)}) # array[1:, 2]

cupyx.distributed.array.DistributedArray

	
class cupyx.distributed.array.DistributedArray(self, shape, dtype, chunks_map, mode=REPLICA, comms=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L62]

	Multi-dimensional array distributed across multiple CUDA devices.

This class implements some elementary operations that cupy.ndarray
provides. The array content is split into chunks, contiguous arrays
corresponding to slices of the original array. Note that one device can
hold multiple chunks.

This direct constructor is designed for internal calls. Users should create
distributed arrays using distributed_array().

	Parameters:

	
	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of ints) – Shape of created array.

	dtype (dtype_like) – Any object that can be interpreted as a numpy data
type.

	chunks_map (dict from int to list of chunks) – Lists of chunk objects
associated with each device.

	mode (mode object, optional) – Mode that determines how overlaps
of the chunks are interpreted. Defaults to
cupyx.distributed.array.REPLICA.

	comms (optional) – Communicator objects which a distributed array
hold internally. Sharing them with other distributed arrays can
save time because their initialization is a costly operation.

	Return type:

	DistributedArray

See also

DistributedArray.mode for details about modes.

Methods

	
__getitem__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L415]

	Not supported.

	
__setitem__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L420]

	Not supported.

	
__len__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L425]

	Not supported.

	
__iter__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L430]

	Not supported.

	
__copy__(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L435]

	Not supported.

	
all(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L440]

	Not supported.

	
all_chunks()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L194]

	Return the chunks with all buffered data flushed.

Buffered data are created in situations such as resharding and mode
changing.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list][cupy.ndarray]]

	
any(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L445]

	Not supported.

	
argmax(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L450]

	Not supported.

	
argmin(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L455]

	Not supported.

	
argpartition(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L460]

	Not supported.

	
argsort(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L465]

	Not supported.

	
astype(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L470]

	Not supported.

	
change_mode(mode)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L307]

	Return a view or a copy in the given mode.

	Parameters:

	mode (mode Object) – How overlaps of
the chunks are interpreted.

	Return type:

	DistributedArray

See also

DistributedArray.mode for details about modes.

	
choose(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L475]

	Not supported.

	
clip(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L480]

	Not supported.

	
compress(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L485]

	Not supported.

	
conj(self) → ndarray

	

	
conjugate(self) → ndarray

	

	
copy(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L490]

	Not supported.

	
cumprod(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L495]

	Not supported.

	
cumsum(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L500]

	Not supported.

	
diagonal(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L505]

	Not supported.

	
dot(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L510]

	Not supported.

	
dump(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L515]

	Not supported.

	
dumps(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L520]

	Not supported.

	
fill(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L525]

	Not supported.

	
flatten(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L530]

	Not supported.

	
get(stream=None, order='C', out=None, blocking=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L376]

	Return a copy of the array on the host memory.

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
item(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L535]

	Not supported.

	
max(axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L540]

	Return the maximum along a given axis.

Note

Currently, it only supports non-None values for axis and
the default values for out and keepdims.

See also

cupy.ndarray.max(), numpy.ndarray.max() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max]

	
mean(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L554]

	Not supported.

	
min(axis=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L559]

	Return the minimum along a given axis.

Note

Currently, it only supports non-None values for axis and
the default values for out and keepdims.

See also

cupy.ndarray.min(), numpy.ndarray.min() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min]

	
nonzero(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L573]

	Not supported.

	
partition(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L578]

	Not supported.

	
prod(axis=None, dtype=None, out=None, keepdims=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L583]

	Return the minimum along a given axis.

Note

Currently, it only supports non-None values for axis and
the default values for out and keepdims.

See also

cupy.ndarray.prod(), numpy.ndarray.prod() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod]

	
ptp(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L601]

	Not supported.

	
put(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L606]

	Not supported.

	
ravel(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L611]

	Not supported.

	
reduced_view(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L616]

	Not supported.

	
repeat(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L621]

	Not supported.

	
reshape(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L626]

	Not supported.

	
reshard(index_map)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L319]

	Return a view or a copy having the given index_map.

Data transfers across devices are done on separate streams created
internally. To make them asynchronous, transferred data is buffered and
reflected to the chunks when necessary.

	Parameters:

	index_map (dict from int to array indices) – Indices for the chunks
that devices with designated IDs own. The current index_map of
a distributed array can be obtained from
DistributedArray.index_map.

	Return type:

	DistributedArray

	
round(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L631]

	Not supported.

	
scatter_add(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L636]

	Not supported.

	
scatter_max(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L641]

	Not supported.

	
scatter_min(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L646]

	Not supported.

	
searchsorted(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L651]

	Not supported.

	
set(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L656]

	Not supported.

	
sort(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L661]

	Not supported.

	
squeeze(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L666]

	Not supported.

	
std(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L671]

	Not supported.

	
sum(axis=None, dtype=None, out=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L676]

	Return the minimum along a given axis.

Note

Currently, it only supports non-None values for axis and
the default values for out and keepdims.

See also

cupy.ndarray.sum(), numpy.ndarray.sum() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum]

	
swapaxes(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L694]

	Not supported.

	
take(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L699]

	Not supported.

	
toDlpack(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L704]

	Not supported.

	
tobytes(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L709]

	Not supported.

	
tofile(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L714]

	Not supported.

	
tolist(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L719]

	Not supported.

	
trace(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L724]

	Not supported.

	
transpose(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L729]

	Not supported.

	
var(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L734]

	Not supported.

	
view(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_array.py#L739]

	Not supported.

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

	
__bool__()

	True if self else False

Attributes

	
T

	Not supported.

	
base

	Not supported.

	
cstruct

	Not supported.

	
data

	Not supported.

	
device

	Not supported.

	
devices

	A collection of device IDs holding part of the data.

	
dtype

	

	
flags

	Not supported.

	
flat

	Not supported.

	
imag

	Not supported.

	
index_map

	Indices for the chunks that devices with designated IDs own.

	
itemsize

	Size of each element in bytes.

See also

numpy.ndarray.itemsize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize]

	
mode

	Describe how overlaps of the chunks are interpreted.

In the replica mode, chunks are guaranteed to have identical values on
their overlapping segments. In other modes, they are not necessarily
identical and represent the original data as their max, sum, etc.

DistributedArray currently supports
cupyx.distributed.array.REPLICA, cupyx.distributed.array.MIN,
cupyx.distributed.array.MAX, cupyx.distributed.array.SUM,
cupyx.distributed.array.PROD modes.

Many operations on distributed arrays including cupy.ufunc
and matmul() involve changing their mode
beforehand. These mode conversions are done automatically, so in most
cases users do not have to manage modes manually.

Example

>>> A = distributed_array(
... cupy.arange(6).reshape(2, 3),
... make_2d_index_map([0, 2], [0, 1, 3],
... [[{0}, {1, 2}]]))
>>> B = distributed_array(
... cupy.arange(12).reshape(3, 4),
... make_2d_index_map([0, 1, 3], [0, 2, 4],
... [[{0}, {0}],
... [{1}, {2}]]))
>>> C = A @ B
>>> C
array([[20, 23, 26, 29],
 [56, 68, 80, 92]])
>>> C.mode
'sum'
>>> C.all_chunks()
{0: [array([[0, 0],
 [0, 3]]), # left half
 array([[0, 0],
 [6, 9]])], # right half
 1: [array([[20, 23],
 [56, 65]])], # left half
 2: [array([[26, 29],
 [74, 83]])]} # right half
>>> C_replica = C.change_mode('replica')
>>> C_replica.mode
'replica'
>>> C_replica.all_chunks()
{0: [array([[20, 23],
 [56, 68]]), # left half
 array([[26, 29],
 [80, 92]])], # right half
 1: [array([[20, 23],
 [56, 68]])], # left half
 2: [array([[26, 29],
 [80, 92]])]} # right half

	
nbytes

	Total size of all elements in bytes.

It does not count skips between elements.

See also

numpy.ndarray.nbytes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes]

	
ndim

	Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also

numpy.ndarray.ndim [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim]

	
real

	Not supported.

	
shape

	Tuple of array dimensions.

Assignment to this property is currently not supported.

	
size

	

	
strides

	Not supported.

cupyx.distributed.array.make_2d_index_map

	
cupyx.distributed.array.make_2d_index_map(i_partitions, j_partitions, devices)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_linalg.py#L344]

	Create an index_map for a 2D matrix with a specified blocking.

	Parameters:

	
	i_partitions (list [https://docs.python.org/3/library/stdtypes.html#list] of ints) – boundaries of blocks on the i axis

	j_partitions (list [https://docs.python.org/3/library/stdtypes.html#list] of ints) – boundaries of blocks on the j axis

	devices (2D list of sets of ints) – devices owning each block

	Returns:

	
	index_map
	Indices for the chunks that devices with designated IDs are going
to own.

	Return type:

	dict from int to array indices

Example

>>> index_map = make_2d_index_map(
... [0, 2, 4], [0, 3, 5],
... [[{0}, {1}],
... [{2}, {0, 1}]])
>>> pprint(index_map)
{0: [(slice(0, 2, None), slice(0, 3, None)),
 (slice(2, 4, None), slice(3, 5, None))],
 1: [(slice(0, 2, None), slice(3, 5, None)),
 (slice(2, 4, None), slice(3, 5, None))],
 2: [(slice(2, 4, None), slice(0, 3, None))]}

cupyx.distributed.array.matmul

	
cupyx.distributed.array.matmul(a, b, out=None, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/distributed/array/_linalg.py#L221]

	Matrix multiplication between distributed arrays.

The arguments must have compatible shape and
index_map.

This operation converts its operands into the replica mode, and compute
their product in the sum mode.

	Parameters:

	
	a (DistributedArray) – Input distributed arrays.

	b (DistributedArray) – Input distributed arrays.

	out (optional) – A location into which the result is stored. This option
is currently not supported.

	Returns:

	The matrix product of the inputs.

	Return type:

	DistributedArray

Example

>>> A = distributed_array(
... cupy.arange(6).reshape(2, 3),
... make_2d_index_map([0, 2], [0, 1, 3],
... [[{0}, {1, 2}]]))
>>> B = distributed_array(
... cupy.arange(12).reshape(3, 4),
... make_2d_index_map([0, 1, 3], [0, 2, 4],
... [[{0}, {0}],
... [{1}, {2}]]))
>>> C = A @ B
>>> C.mode
'sum'
>>> C.all_chunks()
{0: [array([[0, 0],
 [0, 3]]),
 array([[0, 0],
 [6, 9]])],
 1: [array([[20, 23],
 [56, 65]])],
 2: [array([[26, 29],
 [74, 83]])]}
>>> C
array([[20, 23, 26, 29],
 [56, 68, 80, 92]])

See also

numpy.matmul [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul]

Environment variables

For runtime

Here are the environment variables that CuPy uses at runtime.

	
CUDA_PATH

	Path to the directory containing CUDA.
The parent of the directory containing nvcc is used as default.
When nvcc is not found, /usr/local/cuda is used.
See Working with Custom CUDA Installation for details.

	
CUPY_CACHE_DIR

	Default: ${HOME}/.cupy/kernel_cache

Path to the directory to store kernel cache.
See Performance Best Practices for details.

	
CUPY_CACHE_SAVE_CUDA_SOURCE

	Default: 0

If set to 1, CUDA source file will be saved along with compiled binary in the cache directory for debug purpose.
Note: the source file will not be saved if the compiled binary is already stored in the cache.

	
CUPY_CACHE_IN_MEMORY

	Default: 0

If set to 1, CUPY_CACHE_DIR and CUPY_CACHE_SAVE_CUDA_SOURCE will be ignored, and the cache is in memory.
This environment variable allows reducing disk I/O, but is ignoed when nvcc is set to be the compiler backend.

	
CUPY_DISABLE_JITIFY_CACHE

	Default: 0

If set to 1, headers loaded by Jitify would not be cached on disk (to CUPY_CACHE_DIR). The default is to
always cache.

	
CUPY_DUMP_CUDA_SOURCE_ON_ERROR

	Default: 0

If set to 1, when CUDA kernel compilation fails,
CuPy dumps CUDA kernel code to standard error.

	
CUPY_CUDA_COMPILE_WITH_DEBUG

	Default: 0

If set to 1, CUDA kernel will be compiled with debug information (--device-debug and --generate-line-info).

	
CUPY_GPU_MEMORY_LIMIT

	Default: 0 (unlimited)

The amount of memory that can be allocated for each device.
The value can be specified in absolute bytes or fraction (e.g., "90%") of the total memory of each GPU.
See Memory Management for details.

	
CUPY_SEED

	Set the seed for random number generators.

	
CUPY_EXPERIMENTAL_SLICE_COPY

	Default: 0

If set to 1, the following syntax is enabled:

cupy_ndarray[:] = numpy_ndarray

	
CUPY_ACCELERATORS

	Default: "cub" (In ROCm HIP environment, the default value is "". i.e., no accelerators are used.)

A comma-separated string of backend names (cub, cutensor, or cutensornet) which indicates the acceleration backends used in CuPy operations and its priority (in descending order).
By default, all accelerators are disabled on HIP and only CUB is enabled on CUDA.

	
CUPY_TF32

	Default: 0

If set to 1, it allows CUDA libraries to use Tensor Cores TF32 compute for 32-bit floating point compute.

	
CUPY_CUDA_ARRAY_INTERFACE_SYNC

	Default: 1

This controls CuPy’s behavior as a Consumer.
If set to 0, a stream synchronization will not be performed when a device array provided by an external library that implements the CUDA Array Interface is being consumed by CuPy.
For more detail, see the Synchronization [https://numba.readthedocs.io/en/latest/cuda/cuda_array_interface.html#synchronization] requirement in the CUDA Array Interface v3 documentation.

	
CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION

	Default: 3

This controls CuPy’s behavior as a Producer.
If set to 2, the CuPy stream on which the data is being operated will not be exported and thus the Consumer (another library) will not perform any stream synchronization.
For more detail, see the Synchronization [https://numba.readthedocs.io/en/latest/cuda/cuda_array_interface.html#synchronization] requirement in the CUDA Array Interface v3 documentation.

	
CUPY_DLPACK_EXPORT_VERSION

	Default: 0.6

This controls CuPy’s DLPack support. Currently, setting a value smaller than 0.6 would disguise managed memory as normal device memory, which enables data exchanges with libraries that have not updated their DLPack support, whereas starting 0.6 CUDA managed memory can be correctly recognized as a valid device type.

	
NVCC

	Default: nvcc

Define the compiler to use when compiling CUDA source.
Note that most CuPy kernels are built with NVRTC; this environment variable is only effective for RawKernel/RawModule with the nvcc backend or when using cub as the accelerator.

	
CUPY_CUDA_PER_THREAD_DEFAULT_STREAM

	Default: 0

If set to 1, CuPy will use the CUDA per-thread default stream, effectively causing each host thread to automatically execute in its own stream, unless the CUDA default (null) stream or a user-created stream is specified.
If set to 0 (default), the CUDA default (null) stream is used, unless the per-thread default stream (ptds) or a user-created stream is specified.

	
CUPY_COMPILE_WITH_PTX

	Default: 0

By default, CuPy directly compiles kernels into SASS (CUBIN) to support CUDA Enhanced Compatibility [https://docs.nvidia.com/deploy/cuda-compatibility/]
If set to 1, CuPy instead compiles kernels into PTX and lets CUDA Driver assemble SASS from PTX.
This option is only effective for CUDA 11.1 or later; CuPy always compiles into PTX on earlier CUDA versions. Also, this option only applies when NVRTC is selected as the compilation backend. NVCC backend always compiles into SASS (CUBIN).

	CUDA Toolkit Environment Variables
	In addition to the environment variables listed above, as in any CUDA programs, all of the CUDA environment variables listed in the CUDA Toolkit Documentation [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars] will also be honored.

Note

When CUPY_ACCELERATORS or NVCC environment variables are set, g++-6 or later is required as the runtime host compiler.
Please refer to Installing CuPy from Source for the details on how to install g++.

For installation

These environment variables are used during installation (building CuPy from source).

	
CUTENSOR_PATH

	Path to the cuTENSOR root directory that contains lib and include directories. (experimental)

	
CUPY_INSTALL_USE_HIP

	Default: 0

If set to 1, CuPy is built for AMD ROCm Platform (experimental).
For building the ROCm support, see Installing Binary Packages for further detail.

	
CUPY_USE_CUDA_PYTHON

	Default: 0

If set to 1, CuPy is built using CUDA Python [https://github.com/NVIDIA/cuda-python].

	
CUPY_NVCC_GENERATE_CODE

	Build CuPy for a particular CUDA architecture. For example:

CUPY_NVCC_GENERATE_CODE="arch=compute_60,code=sm_60"

For specifying multiple archs, concatenate the arch=... strings with semicolons (;).
If current is specified, then it will automatically detect the currently installed GPU architectures in build time.
When this is not set, the default is to support all architectures.

	
CUPY_NUM_BUILD_JOBS

	Default: 4

To enable or disable parallel build, sets the number of processes used to build the extensions in parallel.

	
CUPY_NUM_NVCC_THREADS

	Default: 2

To enable or disable nvcc parallel compilation, sets the number of threads used to compile files using nvcc.

Additionally, the environment variables CUDA_PATH and NVCC are also respected at build time.

Comparison Table

Here is a list of NumPy / SciPy APIs and its corresponding CuPy implementations.

- in CuPy column denotes that CuPy implementation is not provided yet.
We welcome contributions for these functions.

NumPy / CuPy APIs

Module-Level

	NumPy

	CuPy

	numpy.DataSource [https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html#numpy.DataSource]

	cupy.DataSource (alias of numpy.DataSource [https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html#numpy.DataSource])

	numpy.ScalarType

	-

	numpy.abs

	cupy.abs

	numpy.absolute [https://numpy.org/doc/stable/reference/generated/numpy.absolute.html#numpy.absolute]

	cupy.absolute

	numpy.add [https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add]

	cupy.add

	numpy.all [https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all]

	cupy.all

	numpy.allclose [https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose]

	cupy.allclose

	numpy.alltrue

	cupy.alltrue

	numpy.amax [https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax]

	cupy.amax

	numpy.amin [https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin]

	cupy.amin

	numpy.angle [https://numpy.org/doc/stable/reference/generated/numpy.angle.html#numpy.angle]

	cupy.angle

	numpy.any [https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any]

	cupy.any

	numpy.append [https://numpy.org/doc/stable/reference/generated/numpy.append.html#numpy.append]

	cupy.append

	numpy.apply_along_axis [https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis]

	cupy.apply_along_axis

	numpy.apply_over_axes [https://numpy.org/doc/stable/reference/generated/numpy.apply_over_axes.html#numpy.apply_over_axes]

	-

	numpy.arange [https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange]

	cupy.arange

	numpy.arccos [https://numpy.org/doc/stable/reference/generated/numpy.arccos.html#numpy.arccos]

	cupy.arccos

	numpy.arccosh [https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html#numpy.arccosh]

	cupy.arccosh

	numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin]

	cupy.arcsin

	numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh]

	cupy.arcsinh

	numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan]

	cupy.arctan

	numpy.arctan2 [https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html#numpy.arctan2]

	cupy.arctan2

	numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh]

	cupy.arctanh

	numpy.argmax [https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax]

	cupy.argmax

	numpy.argmin [https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin]

	cupy.argmin

	numpy.argpartition [https://numpy.org/doc/stable/reference/generated/numpy.argpartition.html#numpy.argpartition]

	cupy.argpartition

	numpy.argsort [https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort]

	cupy.argsort

	numpy.argwhere [https://numpy.org/doc/stable/reference/generated/numpy.argwhere.html#numpy.argwhere]

	cupy.argwhere

	numpy.around [https://numpy.org/doc/stable/reference/generated/numpy.around.html#numpy.around]

	cupy.around

	numpy.array [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array]

	cupy.array

	numpy.array2string [https://numpy.org/doc/stable/reference/generated/numpy.array2string.html#numpy.array2string]

	cupy.array2string

	numpy.array_equal [https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal]

	cupy.array_equal

	numpy.array_equiv [https://numpy.org/doc/stable/reference/generated/numpy.array_equiv.html#numpy.array_equiv]

	cupy.array_equiv

	numpy.array_repr [https://numpy.org/doc/stable/reference/generated/numpy.array_repr.html#numpy.array_repr]

	cupy.array_repr

	numpy.array_split [https://numpy.org/doc/stable/reference/generated/numpy.array_split.html#numpy.array_split]

	cupy.array_split

	numpy.array_str [https://numpy.org/doc/stable/reference/generated/numpy.array_str.html#numpy.array_str]

	cupy.array_str

	numpy.asanyarray [https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray]

	cupy.asanyarray

	numpy.asarray [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray]

	cupy.asarray

	numpy.asarray_chkfinite [https://numpy.org/doc/stable/reference/generated/numpy.asarray_chkfinite.html#numpy.asarray_chkfinite]

	cupy.asarray_chkfinite

	numpy.ascontiguousarray [https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]

	cupy.ascontiguousarray

	numpy.asfarray [https://numpy.org/doc/stable/reference/generated/numpy.asfarray.html#numpy.asfarray]

	cupy.asfarray

	numpy.asfortranarray [https://numpy.org/doc/stable/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray]

	cupy.asfortranarray

	numpy.asmatrix [https://numpy.org/doc/stable/reference/generated/numpy.asmatrix.html#numpy.asmatrix]

	- [1]

	numpy.atleast_1d [https://numpy.org/doc/stable/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d]

	cupy.atleast_1d

	numpy.atleast_2d [https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d]

	cupy.atleast_2d

	numpy.atleast_3d [https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d]

	cupy.atleast_3d

	numpy.average [https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average]

	cupy.average

	numpy.bartlett [https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett]

	cupy.bartlett

	numpy.base_repr [https://numpy.org/doc/stable/reference/generated/numpy.base_repr.html#numpy.base_repr]

	cupy.base_repr

	numpy.binary_repr [https://numpy.org/doc/stable/reference/generated/numpy.binary_repr.html#numpy.binary_repr]

	cupy.binary_repr

	numpy.bincount [https://numpy.org/doc/stable/reference/generated/numpy.bincount.html#numpy.bincount]

	cupy.bincount

	numpy.bitwise_and [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]

	cupy.bitwise_and

	numpy.bitwise_not

	cupy.bitwise_not

	numpy.bitwise_or [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]

	cupy.bitwise_or

	numpy.bitwise_xor [https://numpy.org/doc/stable/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]

	cupy.bitwise_xor

	numpy.blackman [https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman]

	cupy.blackman

	numpy.block [https://numpy.org/doc/stable/reference/generated/numpy.block.html#numpy.block]

	-

	numpy.bmat [https://numpy.org/doc/stable/reference/generated/numpy.bmat.html#numpy.bmat]

	- [1]

	numpy.bool_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_]

	cupy.bool_ (alias of numpy.bool_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_])

	numpy.broadcast [https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html#numpy.broadcast]

	cupy.broadcast

	numpy.broadcast_arrays [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays]

	cupy.broadcast_arrays

	numpy.broadcast_shapes [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_shapes.html#numpy.broadcast_shapes]

	cupy.broadcast_shapes (alias of numpy.broadcast_shapes [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_shapes.html#numpy.broadcast_shapes])

	numpy.broadcast_to [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to]

	cupy.broadcast_to

	numpy.busday_count [https://numpy.org/doc/stable/reference/generated/numpy.busday_count.html#numpy.busday_count]

	- [2]

	numpy.busday_offset [https://numpy.org/doc/stable/reference/generated/numpy.busday_offset.html#numpy.busday_offset]

	- [2]

	numpy.busdaycalendar [https://numpy.org/doc/stable/reference/generated/numpy.busdaycalendar.html#numpy.busdaycalendar]

	- [2]

	numpy.byte [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.byte]

	cupy.byte (alias of numpy.byte [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.byte])

	numpy.byte_bounds [https://numpy.org/doc/stable/reference/generated/numpy.byte_bounds.html#numpy.byte_bounds]

	cupy.byte_bounds

	numpy.bytes_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bytes_]

	- [3]

	numpy.c_ [https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_]

	cupy.c_

	numpy.can_cast [https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast]

	cupy.can_cast

	numpy.cast

	-

	numpy.cbrt [https://numpy.org/doc/stable/reference/generated/numpy.cbrt.html#numpy.cbrt]

	cupy.cbrt

	numpy.cdouble [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cdouble]

	cupy.cdouble (alias of numpy.cdouble [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cdouble])

	numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil]

	cupy.ceil

	numpy.cfloat [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cfloat]

	cupy.cfloat (alias of numpy.cfloat [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cfloat])

	numpy.character [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.character]

	- [3]

	numpy.chararray [https://numpy.org/doc/stable/reference/generated/numpy.char.chararray.html#numpy.char.chararray]

	- [3]

	numpy.choose [https://numpy.org/doc/stable/reference/generated/numpy.choose.html#numpy.choose]

	cupy.choose

	numpy.clip [https://numpy.org/doc/stable/reference/generated/numpy.clip.html#numpy.clip]

	cupy.clip

	numpy.clongdouble [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.clongdouble]

	-

	numpy.clongfloat [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.clongfloat]

	-

	numpy.column_stack [https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack]

	cupy.column_stack

	numpy.common_type [https://numpy.org/doc/stable/reference/generated/numpy.common_type.html#numpy.common_type]

	cupy.common_type

	numpy.compare_chararrays

	- [3]

	numpy.complex128 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex128]

	cupy.complex128 (alias of numpy.complex128 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex128])

	numpy.complex256 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex256]

	-

	numpy.complex64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex64]

	cupy.complex64 (alias of numpy.complex64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex64])

	numpy.complex_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex_]

	cupy.complex_ (alias of numpy.complex_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex_])

	numpy.complexfloating [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complexfloating]

	cupy.complexfloating (alias of numpy.complexfloating [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complexfloating])

	numpy.compress [https://numpy.org/doc/stable/reference/generated/numpy.compress.html#numpy.compress]

	cupy.compress

	numpy.concatenate [https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate]

	cupy.concatenate

	numpy.conj [https://numpy.org/doc/stable/reference/generated/numpy.conj.html#numpy.conj]

	cupy.conj

	numpy.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate]

	cupy.conjugate

	numpy.convolve [https://numpy.org/doc/stable/reference/generated/numpy.convolve.html#numpy.convolve]

	cupy.convolve

	numpy.copy [https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy]

	cupy.copy

	numpy.copysign [https://numpy.org/doc/stable/reference/generated/numpy.copysign.html#numpy.copysign]

	cupy.copysign

	numpy.copyto [https://numpy.org/doc/stable/reference/generated/numpy.copyto.html#numpy.copyto]

	cupy.copyto

	numpy.corrcoef [https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef]

	cupy.corrcoef

	numpy.correlate [https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate]

	cupy.correlate

	numpy.cos [https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos]

	cupy.cos

	numpy.cosh [https://numpy.org/doc/stable/reference/generated/numpy.cosh.html#numpy.cosh]

	cupy.cosh

	numpy.count_nonzero [https://numpy.org/doc/stable/reference/generated/numpy.count_nonzero.html#numpy.count_nonzero]

	cupy.count_nonzero

	numpy.cov [https://numpy.org/doc/stable/reference/generated/numpy.cov.html#numpy.cov]

	cupy.cov

	numpy.cross [https://numpy.org/doc/stable/reference/generated/numpy.cross.html#numpy.cross]

	cupy.cross

	numpy.csingle [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.csingle]

	cupy.csingle (alias of numpy.csingle [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.csingle])

	numpy.cumprod [https://numpy.org/doc/stable/reference/generated/numpy.cumprod.html#numpy.cumprod]

	cupy.cumprod

	numpy.cumproduct

	cupy.cumproduct

	numpy.cumsum [https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum]

	cupy.cumsum

	numpy.datetime64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64]

	- [2]

	numpy.datetime_as_string [https://numpy.org/doc/stable/reference/generated/numpy.datetime_as_string.html#numpy.datetime_as_string]

	- [2]

	numpy.datetime_data [https://numpy.org/doc/stable/reference/generated/numpy.datetime_data.html#numpy.datetime_data]

	- [2]

	numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad]

	cupy.deg2rad

	numpy.degrees [https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees]

	cupy.degrees

	numpy.delete [https://numpy.org/doc/stable/reference/generated/numpy.delete.html#numpy.delete]

	cupy.delete

	numpy.deprecate [https://numpy.org/doc/stable/reference/generated/numpy.deprecate.html#numpy.deprecate]

	-

	numpy.deprecate_with_doc [https://numpy.org/doc/stable/reference/generated/numpy.deprecate_with_doc.html#numpy.deprecate_with_doc]

	-

	numpy.diag [https://numpy.org/doc/stable/reference/generated/numpy.diag.html#numpy.diag]

	cupy.diag

	numpy.diag_indices [https://numpy.org/doc/stable/reference/generated/numpy.diag_indices.html#numpy.diag_indices]

	cupy.diag_indices

	numpy.diag_indices_from [https://numpy.org/doc/stable/reference/generated/numpy.diag_indices_from.html#numpy.diag_indices_from]

	cupy.diag_indices_from

	numpy.diagflat [https://numpy.org/doc/stable/reference/generated/numpy.diagflat.html#numpy.diagflat]

	cupy.diagflat

	numpy.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]

	cupy.diagonal

	numpy.diff [https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff]

	cupy.diff

	numpy.digitize [https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize]

	cupy.digitize

	numpy.disp [https://numpy.org/doc/stable/reference/generated/numpy.disp.html#numpy.disp]

	cupy.disp (alias of numpy.disp [https://numpy.org/doc/stable/reference/generated/numpy.disp.html#numpy.disp])

	numpy.divide [https://numpy.org/doc/stable/reference/generated/numpy.divide.html#numpy.divide]

	cupy.divide

	numpy.divmod [https://numpy.org/doc/stable/reference/generated/numpy.divmod.html#numpy.divmod]

	cupy.divmod

	numpy.dot [https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot]

	cupy.dot

	numpy.double [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.double]

	cupy.double (alias of numpy.double [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.double])

	numpy.dsplit [https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit]

	cupy.dsplit

	numpy.dstack [https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack]

	cupy.dstack

	numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]

	cupy.dtype (alias of numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype])

	numpy.ediff1d [https://numpy.org/doc/stable/reference/generated/numpy.ediff1d.html#numpy.ediff1d]

	cupy.ediff1d

	numpy.einsum [https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum]

	cupy.einsum

	numpy.einsum_path [https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path]

	-

	numpy.empty [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty]

	cupy.empty

	numpy.empty_like [https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like]

	cupy.empty_like

	numpy.equal [https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal]

	cupy.equal

	numpy.errstate [https://numpy.org/doc/stable/reference/generated/numpy.errstate.html#numpy.errstate]

	- [4]

	numpy.exp [https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp]

	cupy.exp

	numpy.exp2 [https://numpy.org/doc/stable/reference/generated/numpy.exp2.html#numpy.exp2]

	cupy.exp2

	numpy.expand_dims [https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims]

	cupy.expand_dims

	numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1]

	cupy.expm1

	numpy.extract [https://numpy.org/doc/stable/reference/generated/numpy.extract.html#numpy.extract]

	cupy.extract

	numpy.eye [https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye]

	cupy.eye

	numpy.fabs [https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs]

	cupy.fabs

	numpy.fill_diagonal [https://numpy.org/doc/stable/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal]

	cupy.fill_diagonal

	numpy.find_common_type [https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type]

	cupy.find_common_type (alias of numpy.find_common_type [https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type])

	numpy.finfo [https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo]

	cupy.finfo (alias of numpy.finfo [https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo])

	numpy.fix [https://numpy.org/doc/stable/reference/generated/numpy.fix.html#numpy.fix]

	cupy.fix

	numpy.flatiter [https://numpy.org/doc/stable/reference/generated/numpy.flatiter.html#numpy.flatiter]

	cupy.flatiter

	numpy.flatnonzero [https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero]

	cupy.flatnonzero

	numpy.flexible [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.flexible]

	- [3]

	numpy.flip [https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip]

	cupy.flip

	numpy.fliplr [https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr]

	cupy.fliplr

	numpy.flipud [https://numpy.org/doc/stable/reference/generated/numpy.flipud.html#numpy.flipud]

	cupy.flipud

	numpy.float128 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float128]

	-

	numpy.float16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float16]

	cupy.float16 (alias of numpy.float16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float16])

	numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]

	cupy.float32 (alias of numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32])

	numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64]

	cupy.float64 (alias of numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64])

	numpy.float_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float_]

	cupy.float_ (alias of numpy.float_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float_])

	numpy.float_power [https://numpy.org/doc/stable/reference/generated/numpy.float_power.html#numpy.float_power]

	cupy.float_power

	numpy.floating [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.floating]

	cupy.floating (alias of numpy.floating [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.floating])

	numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor]

	cupy.floor

	numpy.floor_divide [https://numpy.org/doc/stable/reference/generated/numpy.floor_divide.html#numpy.floor_divide]

	cupy.floor_divide

	numpy.fmax [https://numpy.org/doc/stable/reference/generated/numpy.fmax.html#numpy.fmax]

	cupy.fmax

	numpy.fmin [https://numpy.org/doc/stable/reference/generated/numpy.fmin.html#numpy.fmin]

	cupy.fmin

	numpy.fmod [https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod]

	cupy.fmod

	numpy.format_float_positional [https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional]

	cupy.format_float_positional

	numpy.format_float_scientific [https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific]

	cupy.format_float_scientific

	numpy.format_parser [https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser]

	cupy.format_parser (alias of numpy.format_parser [https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser])

	numpy.frexp [https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp]

	cupy.frexp

	numpy.from_dlpack [https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack]

	cupy.from_dlpack

	numpy.frombuffer [https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html#numpy.frombuffer]

	cupy.frombuffer

	numpy.fromfile [https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile]

	cupy.fromfile

	numpy.fromfunction [https://numpy.org/doc/stable/reference/generated/numpy.fromfunction.html#numpy.fromfunction]

	cupy.fromfunction

	numpy.fromiter [https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter]

	cupy.fromiter

	numpy.frompyfunc [https://numpy.org/doc/stable/reference/generated/numpy.frompyfunc.html#numpy.frompyfunc]

	-

	numpy.fromregex [https://numpy.org/doc/stable/reference/generated/numpy.fromregex.html#numpy.fromregex]

	- [5]

	numpy.fromstring [https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring]

	cupy.fromstring

	numpy.full [https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full]

	cupy.full

	numpy.full_like [https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like]

	cupy.full_like

	numpy.gcd [https://numpy.org/doc/stable/reference/generated/numpy.gcd.html#numpy.gcd]

	cupy.gcd

	numpy.generic [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic]

	cupy.generic (alias of numpy.generic [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic])

	numpy.genfromtxt [https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]

	cupy.genfromtxt

	numpy.geomspace [https://numpy.org/doc/stable/reference/generated/numpy.geomspace.html#numpy.geomspace]

	-

	numpy.get_array_wrap

	cupy.get_array_wrap (alias of numpy.get_array_wrap)

	numpy.get_include [https://numpy.org/doc/stable/reference/generated/numpy.get_include.html#numpy.get_include]

	-

	numpy.get_printoptions [https://numpy.org/doc/stable/reference/generated/numpy.get_printoptions.html#numpy.get_printoptions]

	cupy.get_printoptions (alias of numpy.get_printoptions [https://numpy.org/doc/stable/reference/generated/numpy.get_printoptions.html#numpy.get_printoptions])

	numpy.getbufsize [https://numpy.org/doc/stable/reference/generated/numpy.getbufsize.html#numpy.getbufsize]

	-

	numpy.geterr [https://numpy.org/doc/stable/reference/generated/numpy.geterr.html#numpy.geterr]

	- [4]

	numpy.geterrcall [https://numpy.org/doc/stable/reference/generated/numpy.geterrcall.html#numpy.geterrcall]

	- [4]

	numpy.geterrobj [https://numpy.org/doc/stable/reference/generated/numpy.geterrobj.html#numpy.geterrobj]

	- [4]

	numpy.gradient [https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient]

	cupy.gradient

	numpy.greater [https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater]

	cupy.greater

	numpy.greater_equal [https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal]

	cupy.greater_equal

	numpy.half [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.half]

	cupy.half (alias of numpy.half [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.half])

	numpy.hamming [https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming]

	cupy.hamming

	numpy.hanning [https://numpy.org/doc/stable/reference/generated/numpy.hanning.html#numpy.hanning]

	cupy.hanning

	numpy.heaviside [https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html#numpy.heaviside]

	cupy.heaviside

	numpy.histogram [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram]

	cupy.histogram

	numpy.histogram2d [https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html#numpy.histogram2d]

	cupy.histogram2d

	numpy.histogram_bin_edges [https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges]

	-

	numpy.histogramdd [https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html#numpy.histogramdd]

	cupy.histogramdd

	numpy.hsplit [https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit]

	cupy.hsplit

	numpy.hstack [https://numpy.org/doc/stable/reference/generated/numpy.hstack.html#numpy.hstack]

	cupy.hstack

	numpy.hypot [https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot]

	cupy.hypot

	numpy.i0 [https://numpy.org/doc/stable/reference/generated/numpy.i0.html#numpy.i0]

	cupy.i0

	numpy.identity [https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity]

	cupy.identity

	numpy.iinfo [https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo]

	cupy.iinfo (alias of numpy.iinfo [https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo])

	numpy.imag [https://numpy.org/doc/stable/reference/generated/numpy.imag.html#numpy.imag]

	cupy.imag

	numpy.in1d [https://numpy.org/doc/stable/reference/generated/numpy.in1d.html#numpy.in1d]

	cupy.in1d

	numpy.index_exp

	cupy.index_exp (alias of numpy.index_exp)

	numpy.indices [https://numpy.org/doc/stable/reference/generated/numpy.indices.html#numpy.indices]

	cupy.indices

	numpy.inexact [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.inexact]

	cupy.inexact (alias of numpy.inexact [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.inexact])

	numpy.info [https://numpy.org/doc/stable/reference/generated/numpy.info.html#numpy.info]

	-

	numpy.inner [https://numpy.org/doc/stable/reference/generated/numpy.inner.html#numpy.inner]

	cupy.inner

	numpy.insert [https://numpy.org/doc/stable/reference/generated/numpy.insert.html#numpy.insert]

	-

	numpy.int16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int16]

	cupy.int16 (alias of numpy.int16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int16])

	numpy.int32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int32]

	cupy.int32 (alias of numpy.int32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int32])

	numpy.int64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int64]

	cupy.int64 (alias of numpy.int64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int64])

	numpy.int8 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int8]

	cupy.int8 (alias of numpy.int8 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int8])

	numpy.int_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int_]

	cupy.int_ (alias of numpy.int_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int_])

	numpy.intc [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc]

	cupy.intc (alias of numpy.intc [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc])

	numpy.integer [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.integer]

	cupy.integer (alias of numpy.integer [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.integer])

	numpy.interp [https://numpy.org/doc/stable/reference/generated/numpy.interp.html#numpy.interp]

	cupy.interp

	numpy.intersect1d [https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html#numpy.intersect1d]

	cupy.intersect1d

	numpy.intp [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intp]

	cupy.intp (alias of numpy.intp [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intp])

	numpy.invert [https://numpy.org/doc/stable/reference/generated/numpy.invert.html#numpy.invert]

	cupy.invert

	numpy.is_busday [https://numpy.org/doc/stable/reference/generated/numpy.is_busday.html#numpy.is_busday]

	- [2]

	numpy.isclose [https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose]

	cupy.isclose

	numpy.iscomplex [https://numpy.org/doc/stable/reference/generated/numpy.iscomplex.html#numpy.iscomplex]

	cupy.iscomplex

	numpy.iscomplexobj [https://numpy.org/doc/stable/reference/generated/numpy.iscomplexobj.html#numpy.iscomplexobj]

	cupy.iscomplexobj

	numpy.isfinite [https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite]

	cupy.isfinite

	numpy.isfortran [https://numpy.org/doc/stable/reference/generated/numpy.isfortran.html#numpy.isfortran]

	cupy.isfortran

	numpy.isin [https://numpy.org/doc/stable/reference/generated/numpy.isin.html#numpy.isin]

	cupy.isin

	numpy.isinf [https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf]

	cupy.isinf

	numpy.isnan [https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan]

	cupy.isnan

	numpy.isnat [https://numpy.org/doc/stable/reference/generated/numpy.isnat.html#numpy.isnat]

	- [2]

	numpy.isneginf [https://numpy.org/doc/stable/reference/generated/numpy.isneginf.html#numpy.isneginf]

	cupy.isneginf

	numpy.isposinf [https://numpy.org/doc/stable/reference/generated/numpy.isposinf.html#numpy.isposinf]

	cupy.isposinf

	numpy.isreal [https://numpy.org/doc/stable/reference/generated/numpy.isreal.html#numpy.isreal]

	cupy.isreal

	numpy.isrealobj [https://numpy.org/doc/stable/reference/generated/numpy.isrealobj.html#numpy.isrealobj]

	cupy.isrealobj

	numpy.isscalar [https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html#numpy.isscalar]

	cupy.isscalar

	numpy.issctype [https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype]

	cupy.issctype (alias of numpy.issctype [https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype])

	numpy.issubclass_ [https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_]

	cupy.issubclass_ (alias of numpy.issubclass_ [https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_])

	numpy.issubdtype [https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype]

	cupy.issubdtype (alias of numpy.issubdtype [https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype])

	numpy.issubsctype [https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype]

	cupy.issubsctype (alias of numpy.issubsctype [https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype])

	numpy.iterable [https://numpy.org/doc/stable/reference/generated/numpy.iterable.html#numpy.iterable]

	cupy.iterable (alias of numpy.iterable [https://numpy.org/doc/stable/reference/generated/numpy.iterable.html#numpy.iterable])

	numpy.ix_ [https://numpy.org/doc/stable/reference/generated/numpy.ix_.html#numpy.ix_]

	cupy.ix_

	numpy.kaiser [https://numpy.org/doc/stable/reference/generated/numpy.kaiser.html#numpy.kaiser]

	cupy.kaiser

	numpy.kron [https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron]

	cupy.kron

	numpy.lcm [https://numpy.org/doc/stable/reference/generated/numpy.lcm.html#numpy.lcm]

	cupy.lcm

	numpy.ldexp [https://numpy.org/doc/stable/reference/generated/numpy.ldexp.html#numpy.ldexp]

	cupy.ldexp

	numpy.left_shift [https://numpy.org/doc/stable/reference/generated/numpy.left_shift.html#numpy.left_shift]

	cupy.left_shift

	numpy.less [https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less]

	cupy.less

	numpy.less_equal [https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal]

	cupy.less_equal

	numpy.lexsort [https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html#numpy.lexsort]

	cupy.lexsort

	numpy.linspace [https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace]

	cupy.linspace

	numpy.load [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load]

	cupy.load

	numpy.loadtxt [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt]

	cupy.loadtxt

	numpy.log [https://numpy.org/doc/stable/reference/generated/numpy.log.html#numpy.log]

	cupy.log

	numpy.log10 [https://numpy.org/doc/stable/reference/generated/numpy.log10.html#numpy.log10]

	cupy.log10

	numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p]

	cupy.log1p

	numpy.log2 [https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2]

	cupy.log2

	numpy.logaddexp [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html#numpy.logaddexp]

	cupy.logaddexp

	numpy.logaddexp2 [https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]

	cupy.logaddexp2

	numpy.logical_and [https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and]

	cupy.logical_and

	numpy.logical_not [https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not]

	cupy.logical_not

	numpy.logical_or [https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or]

	cupy.logical_or

	numpy.logical_xor [https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor]

	cupy.logical_xor

	numpy.logspace [https://numpy.org/doc/stable/reference/generated/numpy.logspace.html#numpy.logspace]

	cupy.logspace

	numpy.longcomplex [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longcomplex]

	-

	numpy.longdouble [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longdouble]

	-

	numpy.longfloat [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longfloat]

	cupy.longfloat (alias of numpy.longfloat [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longfloat])

	numpy.longlong [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longlong]

	cupy.longlong (alias of numpy.longlong [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longlong])

	numpy.lookfor [https://numpy.org/doc/stable/reference/generated/numpy.lookfor.html#numpy.lookfor]

	-

	numpy.mask_indices [https://numpy.org/doc/stable/reference/generated/numpy.mask_indices.html#numpy.mask_indices]

	cupy.mask_indices

	numpy.mat [https://numpy.org/doc/stable/reference/generated/numpy.mat.html#numpy.mat]

	- [1]

	numpy.matmul [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul]

	cupy.matmul

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]

	- [1]

	numpy.max [https://numpy.org/doc/stable/reference/generated/numpy.max.html#numpy.max]

	cupy.max

	numpy.maximum [https://numpy.org/doc/stable/reference/generated/numpy.maximum.html#numpy.maximum]

	cupy.maximum

	numpy.maximum_sctype [https://numpy.org/doc/stable/reference/generated/numpy.maximum_sctype.html#numpy.maximum_sctype]

	-

	numpy.may_share_memory [https://numpy.org/doc/stable/reference/generated/numpy.may_share_memory.html#numpy.may_share_memory]

	cupy.may_share_memory

	numpy.mean [https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean]

	cupy.mean

	numpy.median [https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median]

	cupy.median

	numpy.memmap [https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap]

	-

	numpy.meshgrid [https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid]

	cupy.meshgrid

	numpy.mgrid [https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid]

	cupy.mgrid

	numpy.min [https://numpy.org/doc/stable/reference/generated/numpy.min.html#numpy.min]

	cupy.min

	numpy.min_scalar_type [https://numpy.org/doc/stable/reference/generated/numpy.min_scalar_type.html#numpy.min_scalar_type]

	cupy.min_scalar_type

	numpy.minimum [https://numpy.org/doc/stable/reference/generated/numpy.minimum.html#numpy.minimum]

	cupy.minimum

	numpy.mintypecode [https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode]

	cupy.mintypecode (alias of numpy.mintypecode [https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode])

	numpy.mod [https://numpy.org/doc/stable/reference/generated/numpy.mod.html#numpy.mod]

	cupy.mod

	numpy.modf [https://numpy.org/doc/stable/reference/generated/numpy.modf.html#numpy.modf]

	cupy.modf

	numpy.moveaxis [https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html#numpy.moveaxis]

	cupy.moveaxis

	numpy.msort

	cupy.msort

	numpy.multiply [https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply]

	cupy.multiply

	numpy.nan_to_num [https://numpy.org/doc/stable/reference/generated/numpy.nan_to_num.html#numpy.nan_to_num]

	cupy.nan_to_num

	numpy.nanargmax [https://numpy.org/doc/stable/reference/generated/numpy.nanargmax.html#numpy.nanargmax]

	cupy.nanargmax

	numpy.nanargmin [https://numpy.org/doc/stable/reference/generated/numpy.nanargmin.html#numpy.nanargmin]

	cupy.nanargmin

	numpy.nancumprod [https://numpy.org/doc/stable/reference/generated/numpy.nancumprod.html#numpy.nancumprod]

	cupy.nancumprod

	numpy.nancumsum [https://numpy.org/doc/stable/reference/generated/numpy.nancumsum.html#numpy.nancumsum]

	cupy.nancumsum

	numpy.nanmax [https://numpy.org/doc/stable/reference/generated/numpy.nanmax.html#numpy.nanmax]

	cupy.nanmax

	numpy.nanmean [https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean]

	cupy.nanmean

	numpy.nanmedian [https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian]

	cupy.nanmedian

	numpy.nanmin [https://numpy.org/doc/stable/reference/generated/numpy.nanmin.html#numpy.nanmin]

	cupy.nanmin

	numpy.nanpercentile [https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html#numpy.nanpercentile]

	-

	numpy.nanprod [https://numpy.org/doc/stable/reference/generated/numpy.nanprod.html#numpy.nanprod]

	cupy.nanprod

	numpy.nanquantile [https://numpy.org/doc/stable/reference/generated/numpy.nanquantile.html#numpy.nanquantile]

	-

	numpy.nanstd [https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd]

	cupy.nanstd

	numpy.nansum [https://numpy.org/doc/stable/reference/generated/numpy.nansum.html#numpy.nansum]

	cupy.nansum

	numpy.nanvar [https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar]

	cupy.nanvar

	numpy.nbytes

	-

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	cupy.ndarray

	numpy.ndenumerate [https://numpy.org/doc/stable/reference/generated/numpy.ndenumerate.html#numpy.ndenumerate]

	-

	numpy.ndim

	cupy.ndim

	numpy.ndindex [https://numpy.org/doc/stable/reference/generated/numpy.ndindex.html#numpy.ndindex]

	cupy.ndindex (alias of numpy.ndindex [https://numpy.org/doc/stable/reference/generated/numpy.ndindex.html#numpy.ndindex])

	numpy.nditer [https://numpy.org/doc/stable/reference/generated/numpy.nditer.html#numpy.nditer]

	-

	numpy.negative [https://numpy.org/doc/stable/reference/generated/numpy.negative.html#numpy.negative]

	cupy.negative

	numpy.nested_iters [https://numpy.org/doc/stable/reference/generated/numpy.nested_iters.html#numpy.nested_iters]

	-

	numpy.newaxis [https://numpy.org/doc/stable/reference/constants.html#numpy.newaxis]

	cupy.newaxis (alias of numpy.newaxis [https://numpy.org/doc/stable/reference/constants.html#numpy.newaxis])

	numpy.nextafter [https://numpy.org/doc/stable/reference/generated/numpy.nextafter.html#numpy.nextafter]

	cupy.nextafter

	numpy.nonzero [https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero]

	cupy.nonzero

	numpy.not_equal [https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html#numpy.not_equal]

	cupy.not_equal

	numpy.number [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.number]

	cupy.number (alias of numpy.number [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.number])

	numpy.obj2sctype [https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype]

	cupy.obj2sctype (alias of numpy.obj2sctype [https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype])

	numpy.object_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.object_]

	- [3]

	numpy.ogrid [https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid]

	cupy.ogrid

	numpy.ones [https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones]

	cupy.ones

	numpy.ones_like [https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like]

	cupy.ones_like

	numpy.outer [https://numpy.org/doc/stable/reference/generated/numpy.outer.html#numpy.outer]

	cupy.outer

	numpy.packbits [https://numpy.org/doc/stable/reference/generated/numpy.packbits.html#numpy.packbits]

	cupy.packbits

	numpy.pad [https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad]

	cupy.pad

	numpy.partition [https://numpy.org/doc/stable/reference/generated/numpy.partition.html#numpy.partition]

	cupy.partition

	numpy.percentile [https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile]

	cupy.percentile

	numpy.piecewise [https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html#numpy.piecewise]

	cupy.piecewise

	numpy.place [https://numpy.org/doc/stable/reference/generated/numpy.place.html#numpy.place]

	cupy.place

	numpy.poly [https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly]

	cupy.poly [6]

	numpy.poly1d [https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d]

	cupy.poly1d

	numpy.polyadd [https://numpy.org/doc/stable/reference/generated/numpy.polyadd.html#numpy.polyadd]

	cupy.polyadd

	numpy.polyder [https://numpy.org/doc/stable/reference/generated/numpy.polyder.html#numpy.polyder]

	- [6]

	numpy.polydiv [https://numpy.org/doc/stable/reference/generated/numpy.polydiv.html#numpy.polydiv]

	- [6]

	numpy.polyfit [https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html#numpy.polyfit]

	cupy.polyfit

	numpy.polyint [https://numpy.org/doc/stable/reference/generated/numpy.polyint.html#numpy.polyint]

	- [6]

	numpy.polymul [https://numpy.org/doc/stable/reference/generated/numpy.polymul.html#numpy.polymul]

	cupy.polymul

	numpy.polysub [https://numpy.org/doc/stable/reference/generated/numpy.polysub.html#numpy.polysub]

	cupy.polysub

	numpy.polyval [https://numpy.org/doc/stable/reference/generated/numpy.polyval.html#numpy.polyval]

	cupy.polyval

	numpy.positive [https://numpy.org/doc/stable/reference/generated/numpy.positive.html#numpy.positive]

	cupy.positive

	numpy.power [https://numpy.org/doc/stable/reference/generated/numpy.power.html#numpy.power]

	cupy.power

	numpy.printoptions [https://numpy.org/doc/stable/reference/generated/numpy.printoptions.html#numpy.printoptions]

	cupy.printoptions (alias of numpy.printoptions [https://numpy.org/doc/stable/reference/generated/numpy.printoptions.html#numpy.printoptions])

	numpy.prod [https://numpy.org/doc/stable/reference/generated/numpy.prod.html#numpy.prod]

	cupy.prod

	numpy.product

	cupy.product

	numpy.promote_types [https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types]

	cupy.promote_types (alias of numpy.promote_types [https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types])

	numpy.ptp [https://numpy.org/doc/stable/reference/generated/numpy.ptp.html#numpy.ptp]

	cupy.ptp

	numpy.put [https://numpy.org/doc/stable/reference/generated/numpy.put.html#numpy.put]

	cupy.put

	numpy.put_along_axis [https://numpy.org/doc/stable/reference/generated/numpy.put_along_axis.html#numpy.put_along_axis]

	-

	numpy.putmask [https://numpy.org/doc/stable/reference/generated/numpy.putmask.html#numpy.putmask]

	cupy.putmask

	numpy.quantile [https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile]

	cupy.quantile

	numpy.r_ [https://numpy.org/doc/stable/reference/generated/numpy.r_.html#numpy.r_]

	cupy.r_

	numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg]

	cupy.rad2deg

	numpy.radians [https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians]

	cupy.radians

	numpy.ravel [https://numpy.org/doc/stable/reference/generated/numpy.ravel.html#numpy.ravel]

	cupy.ravel

	numpy.ravel_multi_index [https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index]

	cupy.ravel_multi_index

	numpy.real [https://numpy.org/doc/stable/reference/generated/numpy.real.html#numpy.real]

	cupy.real

	numpy.real_if_close [https://numpy.org/doc/stable/reference/generated/numpy.real_if_close.html#numpy.real_if_close]

	cupy.real_if_close

	numpy.recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	- [5]

	numpy.recfromcsv

	- [5]

	numpy.recfromtxt

	- [5]

	numpy.reciprocal [https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html#numpy.reciprocal]

	cupy.reciprocal

	numpy.record [https://numpy.org/doc/stable/reference/generated/numpy.record.html#numpy.record]

	- [5]

	numpy.remainder [https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder]

	cupy.remainder

	numpy.repeat [https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy.repeat]

	cupy.repeat

	numpy.require [https://numpy.org/doc/stable/reference/generated/numpy.require.html#numpy.require]

	cupy.require

	numpy.reshape [https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape]

	cupy.reshape

	numpy.resize [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]

	cupy.resize

	numpy.result_type [https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type]

	cupy.result_type

	numpy.right_shift [https://numpy.org/doc/stable/reference/generated/numpy.right_shift.html#numpy.right_shift]

	cupy.right_shift

	numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint]

	cupy.rint

	numpy.roll [https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll]

	cupy.roll

	numpy.rollaxis [https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis]

	cupy.rollaxis

	numpy.roots [https://numpy.org/doc/stable/reference/generated/numpy.roots.html#numpy.roots]

	cupy.roots

	numpy.rot90 [https://numpy.org/doc/stable/reference/generated/numpy.rot90.html#numpy.rot90]

	cupy.rot90

	numpy.round [https://numpy.org/doc/stable/reference/generated/numpy.round.html#numpy.round]

	cupy.round

	numpy.round_

	cupy.round_

	numpy.row_stack [https://numpy.org/doc/stable/reference/generated/numpy.row_stack.html#numpy.row_stack]

	cupy.row_stack

	numpy.s_ [https://numpy.org/doc/stable/reference/generated/numpy.s_.html#numpy.s_]

	cupy.s_ (alias of numpy.s_ [https://numpy.org/doc/stable/reference/generated/numpy.s_.html#numpy.s_])

	numpy.safe_eval

	cupy.safe_eval (alias of numpy.safe_eval)

	numpy.save [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save]

	cupy.save

	numpy.savetxt [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt]

	cupy.savetxt

	numpy.savez [https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez]

	cupy.savez

	numpy.savez_compressed [https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed]

	cupy.savez_compressed

	numpy.sctype2char [https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char]

	cupy.sctype2char (alias of numpy.sctype2char [https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char])

	numpy.sctypeDict

	-

	numpy.sctypes

	-

	numpy.searchsorted [https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted]

	cupy.searchsorted

	numpy.select [https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select]

	cupy.select

	numpy.set_numeric_ops

	- [7]

	numpy.set_printoptions [https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html#numpy.set_printoptions]

	cupy.set_printoptions (alias of numpy.set_printoptions [https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html#numpy.set_printoptions])

	numpy.set_string_function [https://numpy.org/doc/stable/reference/generated/numpy.set_string_function.html#numpy.set_string_function]

	cupy.set_string_function (alias of numpy.set_string_function [https://numpy.org/doc/stable/reference/generated/numpy.set_string_function.html#numpy.set_string_function])

	numpy.setbufsize [https://numpy.org/doc/stable/reference/generated/numpy.setbufsize.html#numpy.setbufsize]

	-

	numpy.setdiff1d [https://numpy.org/doc/stable/reference/generated/numpy.setdiff1d.html#numpy.setdiff1d]

	cupy.setdiff1d

	numpy.seterr [https://numpy.org/doc/stable/reference/generated/numpy.seterr.html#numpy.seterr]

	- [4]

	numpy.seterrcall [https://numpy.org/doc/stable/reference/generated/numpy.seterrcall.html#numpy.seterrcall]

	- [4]

	numpy.seterrobj [https://numpy.org/doc/stable/reference/generated/numpy.seterrobj.html#numpy.seterrobj]

	- [4]

	numpy.setxor1d [https://numpy.org/doc/stable/reference/generated/numpy.setxor1d.html#numpy.setxor1d]

	cupy.setxor1d

	numpy.shape [https://numpy.org/doc/stable/reference/generated/numpy.shape.html#numpy.shape]

	cupy.shape

	numpy.shares_memory [https://numpy.org/doc/stable/reference/generated/numpy.shares_memory.html#numpy.shares_memory]

	cupy.shares_memory

	numpy.short [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.short]

	cupy.short (alias of numpy.short [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.short])

	numpy.show_config [https://numpy.org/doc/stable/reference/generated/numpy.show_config.html#numpy.show_config]

	cupy.show_config

	numpy.show_runtime [https://numpy.org/doc/stable/reference/generated/numpy.show_runtime.html#numpy.show_runtime]

	-

	numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign]

	cupy.sign

	numpy.signbit [https://numpy.org/doc/stable/reference/generated/numpy.signbit.html#numpy.signbit]

	cupy.signbit

	numpy.signedinteger [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.signedinteger]

	cupy.signedinteger (alias of numpy.signedinteger [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.signedinteger])

	numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin]

	cupy.sin

	numpy.sinc [https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc]

	cupy.sinc

	numpy.single [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single]

	cupy.single (alias of numpy.single [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single])

	numpy.singlecomplex [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.singlecomplex]

	cupy.singlecomplex (alias of numpy.singlecomplex [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.singlecomplex])

	numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh]

	cupy.sinh

	numpy.size

	cupy.size

	numpy.sometrue

	cupy.sometrue

	numpy.sort [https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort]

	cupy.sort

	numpy.sort_complex [https://numpy.org/doc/stable/reference/generated/numpy.sort_complex.html#numpy.sort_complex]

	cupy.sort_complex

	numpy.source [https://numpy.org/doc/stable/reference/generated/numpy.source.html#numpy.source]

	-

	numpy.spacing [https://numpy.org/doc/stable/reference/generated/numpy.spacing.html#numpy.spacing]

	-

	numpy.split [https://numpy.org/doc/stable/reference/generated/numpy.split.html#numpy.split]

	cupy.split

	numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt]

	cupy.sqrt

	numpy.square [https://numpy.org/doc/stable/reference/generated/numpy.square.html#numpy.square]

	cupy.square

	numpy.squeeze [https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze]

	cupy.squeeze

	numpy.stack [https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack]

	cupy.stack

	numpy.std [https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std]

	cupy.std

	numpy.str_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.str_]

	- [3]

	numpy.string_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.string_]

	- [3]

	numpy.subtract [https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract]

	cupy.subtract

	numpy.sum [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum]

	cupy.sum

	numpy.swapaxes [https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html#numpy.swapaxes]

	cupy.swapaxes

	numpy.take [https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take]

	cupy.take

	numpy.take_along_axis [https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html#numpy.take_along_axis]

	cupy.take_along_axis

	numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan]

	cupy.tan

	numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh]

	cupy.tanh

	numpy.tensordot [https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html#numpy.tensordot]

	cupy.tensordot

	numpy.tile [https://numpy.org/doc/stable/reference/generated/numpy.tile.html#numpy.tile]

	cupy.tile

	numpy.timedelta64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.timedelta64]

	- [2]

	numpy.trace [https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace]

	cupy.trace

	numpy.transpose [https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose]

	cupy.transpose

	numpy.trapz [https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#numpy.trapz]

	cupy.trapz

	numpy.tri [https://numpy.org/doc/stable/reference/generated/numpy.tri.html#numpy.tri]

	cupy.tri

	numpy.tril [https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril]

	cupy.tril

	numpy.tril_indices [https://numpy.org/doc/stable/reference/generated/numpy.tril_indices.html#numpy.tril_indices]

	cupy.tril_indices

	numpy.tril_indices_from [https://numpy.org/doc/stable/reference/generated/numpy.tril_indices_from.html#numpy.tril_indices_from]

	cupy.tril_indices_from

	numpy.trim_zeros [https://numpy.org/doc/stable/reference/generated/numpy.trim_zeros.html#numpy.trim_zeros]

	cupy.trim_zeros

	numpy.triu [https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu]

	cupy.triu

	numpy.triu_indices [https://numpy.org/doc/stable/reference/generated/numpy.triu_indices.html#numpy.triu_indices]

	cupy.triu_indices

	numpy.triu_indices_from [https://numpy.org/doc/stable/reference/generated/numpy.triu_indices_from.html#numpy.triu_indices_from]

	cupy.triu_indices_from

	numpy.true_divide [https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide]

	cupy.true_divide

	numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc]

	cupy.trunc

	numpy.typecodes

	-

	numpy.typename [https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename]

	cupy.typename (alias of numpy.typename [https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename])

	numpy.ubyte [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ubyte]

	cupy.ubyte (alias of numpy.ubyte [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ubyte])

	numpy.ufunc [https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc]

	cupy.ufunc

	numpy.uint [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint]

	cupy.uint (alias of numpy.uint [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint])

	numpy.uint16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint16]

	cupy.uint16 (alias of numpy.uint16 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint16])

	numpy.uint32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint32]

	cupy.uint32 (alias of numpy.uint32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint32])

	numpy.uint64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint64]

	cupy.uint64 (alias of numpy.uint64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint64])

	numpy.uint8 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint8]

	cupy.uint8 (alias of numpy.uint8 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint8])

	numpy.uintc [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc]

	cupy.uintc (alias of numpy.uintc [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc])

	numpy.uintp [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintp]

	cupy.uintp (alias of numpy.uintp [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintp])

	numpy.ulonglong [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ulonglong]

	cupy.ulonglong (alias of numpy.ulonglong [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ulonglong])

	numpy.unicode_ [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unicode_]

	- [3]

	numpy.union1d [https://numpy.org/doc/stable/reference/generated/numpy.union1d.html#numpy.union1d]

	cupy.union1d

	numpy.unique [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique]

	cupy.unique

	numpy.unpackbits [https://numpy.org/doc/stable/reference/generated/numpy.unpackbits.html#numpy.unpackbits]

	cupy.unpackbits

	numpy.unravel_index [https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html#numpy.unravel_index]

	cupy.unravel_index

	numpy.unsignedinteger [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unsignedinteger]

	cupy.unsignedinteger (alias of numpy.unsignedinteger [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unsignedinteger])

	numpy.unwrap [https://numpy.org/doc/stable/reference/generated/numpy.unwrap.html#numpy.unwrap]

	cupy.unwrap

	numpy.ushort [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ushort]

	cupy.ushort (alias of numpy.ushort [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ushort])

	numpy.vander [https://numpy.org/doc/stable/reference/generated/numpy.vander.html#numpy.vander]

	cupy.vander

	numpy.var [https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var]

	cupy.var

	numpy.vdot [https://numpy.org/doc/stable/reference/generated/numpy.vdot.html#numpy.vdot]

	cupy.vdot

	numpy.vectorize [https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize]

	cupy.vectorize

	numpy.void [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.void]

	- [3]

	numpy.vsplit [https://numpy.org/doc/stable/reference/generated/numpy.vsplit.html#numpy.vsplit]

	cupy.vsplit

	numpy.vstack [https://numpy.org/doc/stable/reference/generated/numpy.vstack.html#numpy.vstack]

	cupy.vstack

	numpy.where [https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where]

	cupy.where

	numpy.who [https://numpy.org/doc/stable/reference/generated/numpy.who.html#numpy.who]

	cupy.who

	numpy.zeros [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros]

	cupy.zeros

	numpy.zeros_like [https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like]

	cupy.zeros_like

Multi-Dimensional Array

	NumPy

	CuPy

	numpy.ndarray.T [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html#numpy.ndarray.T]

	cupy.ndarray.T

	numpy.ndarray.all [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.all.html#numpy.ndarray.all]

	cupy.ndarray.all

	numpy.ndarray.any [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.any.html#numpy.ndarray.any]

	cupy.ndarray.any

	numpy.ndarray.argmax [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax]

	cupy.ndarray.argmax

	numpy.ndarray.argmin [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin]

	cupy.ndarray.argmin

	numpy.ndarray.argpartition [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argpartition.html#numpy.ndarray.argpartition]

	cupy.ndarray.argpartition

	numpy.ndarray.argsort [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort]

	cupy.ndarray.argsort

	numpy.ndarray.astype [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype]

	cupy.ndarray.astype

	numpy.ndarray.base [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.base.html#numpy.ndarray.base]

	cupy.ndarray.base

	numpy.ndarray.byteswap [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.byteswap.html#numpy.ndarray.byteswap]

	- [8]

	numpy.ndarray.choose [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.choose.html#numpy.ndarray.choose]

	cupy.ndarray.choose

	numpy.ndarray.clip [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip]

	cupy.ndarray.clip

	numpy.ndarray.compress [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress]

	cupy.ndarray.compress

	numpy.ndarray.conj [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conj.html#numpy.ndarray.conj]

	cupy.ndarray.conj

	numpy.ndarray.conjugate [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conjugate.html#numpy.ndarray.conjugate]

	cupy.ndarray.conjugate

	numpy.ndarray.copy [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy]

	cupy.ndarray.copy

	numpy.ndarray.ctypes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ctypes.html#numpy.ndarray.ctypes]

	-

	numpy.ndarray.cumprod [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod]

	cupy.ndarray.cumprod

	numpy.ndarray.cumsum [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum]

	cupy.ndarray.cumsum

	numpy.ndarray.data [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data]

	cupy.ndarray.data

	numpy.ndarray.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal]

	cupy.ndarray.diagonal

	numpy.ndarray.dot [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot]

	cupy.ndarray.dot

	numpy.ndarray.dtype [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html#numpy.ndarray.dtype]

	cupy.ndarray.dtype

	numpy.ndarray.dump [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dump.html#numpy.ndarray.dump]

	cupy.ndarray.dump

	numpy.ndarray.dumps [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dumps.html#numpy.ndarray.dumps]

	cupy.ndarray.dumps

	numpy.ndarray.fill [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill]

	cupy.ndarray.fill

	numpy.ndarray.flags [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags]

	cupy.ndarray.flags

	numpy.ndarray.flat [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat]

	cupy.ndarray.flat

	numpy.ndarray.flatten [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]

	cupy.ndarray.flatten

	numpy.ndarray.getfield [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.getfield.html#numpy.ndarray.getfield]

	-

	numpy.ndarray.imag [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag]

	cupy.ndarray.imag

	numpy.ndarray.item [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item]

	cupy.ndarray.item

	numpy.ndarray.itemset [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemset.html#numpy.ndarray.itemset]

	-

	numpy.ndarray.itemsize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize]

	cupy.ndarray.itemsize

	numpy.ndarray.max [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max]

	cupy.ndarray.max

	numpy.ndarray.mean [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean]

	cupy.ndarray.mean

	numpy.ndarray.min [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min]

	cupy.ndarray.min

	numpy.ndarray.nbytes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes]

	cupy.ndarray.nbytes

	numpy.ndarray.ndim [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim]

	cupy.ndarray.ndim

	numpy.ndarray.newbyteorder [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.newbyteorder.html#numpy.ndarray.newbyteorder]

	- [8]

	numpy.ndarray.nonzero [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nonzero.html#numpy.ndarray.nonzero]

	cupy.ndarray.nonzero

	numpy.ndarray.partition [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.partition.html#numpy.ndarray.partition]

	cupy.ndarray.partition

	numpy.ndarray.prod [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod]

	cupy.ndarray.prod

	numpy.ndarray.ptp [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html#numpy.ndarray.ptp]

	cupy.ndarray.ptp

	numpy.ndarray.put [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.put.html#numpy.ndarray.put]

	cupy.ndarray.put

	numpy.ndarray.ravel [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel]

	cupy.ndarray.ravel

	numpy.ndarray.real [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real]

	cupy.ndarray.real

	numpy.ndarray.repeat [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat]

	cupy.ndarray.repeat

	numpy.ndarray.reshape [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]

	cupy.ndarray.reshape

	numpy.ndarray.resize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize]

	-

	numpy.ndarray.round [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.round.html#numpy.ndarray.round]

	cupy.ndarray.round

	numpy.ndarray.searchsorted [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.searchsorted.html#numpy.ndarray.searchsorted]

	cupy.ndarray.searchsorted

	numpy.ndarray.setfield [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setfield.html#numpy.ndarray.setfield]

	-

	numpy.ndarray.setflags [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setflags.html#numpy.ndarray.setflags]

	-

	numpy.ndarray.shape [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape]

	cupy.ndarray.shape

	numpy.ndarray.size [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size]

	cupy.ndarray.size

	numpy.ndarray.sort [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort]

	cupy.ndarray.sort

	numpy.ndarray.squeeze [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze]

	cupy.ndarray.squeeze

	numpy.ndarray.std [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std]

	cupy.ndarray.std

	numpy.ndarray.strides [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides]

	cupy.ndarray.strides

	numpy.ndarray.sum [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum]

	cupy.ndarray.sum

	numpy.ndarray.swapaxes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes]

	cupy.ndarray.swapaxes

	numpy.ndarray.take [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take]

	cupy.ndarray.take

	numpy.ndarray.tobytes [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tobytes.html#numpy.ndarray.tobytes]

	cupy.ndarray.tobytes

	numpy.ndarray.tofile [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile]

	cupy.ndarray.tofile

	numpy.ndarray.tolist [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]

	cupy.ndarray.tolist

	numpy.ndarray.tostring [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tostring.html#numpy.ndarray.tostring]

	- [7]

	numpy.ndarray.trace [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace]

	cupy.ndarray.trace

	numpy.ndarray.transpose [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose]

	cupy.ndarray.transpose

	numpy.ndarray.var [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var]

	cupy.ndarray.var

	numpy.ndarray.view [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view]

	cupy.ndarray.view

Linear Algebra

	NumPy

	CuPy

	numpy.linalg.cholesky [https://numpy.org/doc/stable/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky]

	cupy.linalg.cholesky

	numpy.linalg.cond [https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html#numpy.linalg.cond]

	-

	numpy.linalg.det [https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det]

	cupy.linalg.det

	numpy.linalg.eig [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig]

	-

	numpy.linalg.eigh [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh]

	cupy.linalg.eigh

	numpy.linalg.eigvals [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals]

	-

	numpy.linalg.eigvalsh [https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh]

	cupy.linalg.eigvalsh

	numpy.linalg.inv [https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv]

	cupy.linalg.inv

	numpy.linalg.lstsq [https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq]

	cupy.linalg.lstsq

	numpy.linalg.matrix_power [https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power]

	cupy.linalg.matrix_power

	numpy.linalg.matrix_rank [https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank]

	cupy.linalg.matrix_rank

	numpy.linalg.multi_dot [https://numpy.org/doc/stable/reference/generated/numpy.linalg.multi_dot.html#numpy.linalg.multi_dot]

	-

	numpy.linalg.norm [https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm]

	cupy.linalg.norm

	numpy.linalg.pinv [https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv]

	cupy.linalg.pinv

	numpy.linalg.qr [https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr]

	cupy.linalg.qr

	numpy.linalg.slogdet [https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet]

	cupy.linalg.slogdet

	numpy.linalg.solve [https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve]

	cupy.linalg.solve

	numpy.linalg.svd [https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd]

	cupy.linalg.svd

	numpy.linalg.tensorinv [https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv]

	cupy.linalg.tensorinv

	numpy.linalg.tensorsolve [https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve]

	cupy.linalg.tensorsolve

Discrete Fourier Transform

	NumPy

	CuPy

	numpy.fft.fft [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft]

	cupy.fft.fft

	numpy.fft.fft2 [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2]

	cupy.fft.fft2

	numpy.fft.fftfreq [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq]

	cupy.fft.fftfreq

	numpy.fft.fftn [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn]

	cupy.fft.fftn

	numpy.fft.fftshift [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift]

	cupy.fft.fftshift

	numpy.fft.hfft [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft]

	cupy.fft.hfft

	numpy.fft.ifft [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft]

	cupy.fft.ifft

	numpy.fft.ifft2 [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2]

	cupy.fft.ifft2

	numpy.fft.ifftn [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn]

	cupy.fft.ifftn

	numpy.fft.ifftshift [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift]

	cupy.fft.ifftshift

	numpy.fft.ihfft [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft]

	cupy.fft.ihfft

	numpy.fft.irfft [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft]

	cupy.fft.irfft

	numpy.fft.irfft2 [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2]

	cupy.fft.irfft2

	numpy.fft.irfftn [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn]

	cupy.fft.irfftn

	numpy.fft.rfft [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft]

	cupy.fft.rfft

	numpy.fft.rfft2 [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2]

	cupy.fft.rfft2

	numpy.fft.rfftfreq [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq]

	cupy.fft.rfftfreq

	numpy.fft.rfftn [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn]

	cupy.fft.rfftn

Random Sampling

	NumPy

	CuPy

	numpy.random.BitGenerator [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.BitGenerator.html#numpy.random.BitGenerator]

	cupy.random.BitGenerator

	numpy.random.Generator [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator]

	-

	numpy.random.MT19937 [https://numpy.org/doc/stable/reference/random/bit_generators/mt19937.html#numpy.random.MT19937]

	-

	numpy.random.PCG64 [https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html#numpy.random.PCG64]

	-

	numpy.random.PCG64DXSM [https://numpy.org/doc/stable/reference/random/bit_generators/pcg64dxsm.html#numpy.random.PCG64DXSM]

	-

	numpy.random.Philox [https://numpy.org/doc/stable/reference/random/bit_generators/philox.html#numpy.random.Philox]

	-

	numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]

	cupy.random.RandomState

	numpy.random.SFC64 [https://numpy.org/doc/stable/reference/random/bit_generators/sfc64.html#numpy.random.SFC64]

	-

	numpy.random.SeedSequence [https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence]

	-

	numpy.random.beta [https://numpy.org/doc/stable/reference/random/generated/numpy.random.beta.html#numpy.random.beta]

	cupy.random.beta

	numpy.random.binomial [https://numpy.org/doc/stable/reference/random/generated/numpy.random.binomial.html#numpy.random.binomial]

	cupy.random.binomial

	numpy.random.bytes [https://numpy.org/doc/stable/reference/random/generated/numpy.random.bytes.html#numpy.random.bytes]

	cupy.random.bytes

	numpy.random.chisquare [https://numpy.org/doc/stable/reference/random/generated/numpy.random.chisquare.html#numpy.random.chisquare]

	cupy.random.chisquare

	numpy.random.choice [https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html#numpy.random.choice]

	cupy.random.choice

	numpy.random.default_rng [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng]

	cupy.random.default_rng

	numpy.random.dirichlet [https://numpy.org/doc/stable/reference/random/generated/numpy.random.dirichlet.html#numpy.random.dirichlet]

	cupy.random.dirichlet

	numpy.random.exponential [https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html#numpy.random.exponential]

	cupy.random.exponential

	numpy.random.f [https://numpy.org/doc/stable/reference/random/generated/numpy.random.f.html#numpy.random.f]

	cupy.random.f

	numpy.random.gamma [https://numpy.org/doc/stable/reference/random/generated/numpy.random.gamma.html#numpy.random.gamma]

	cupy.random.gamma

	numpy.random.geometric [https://numpy.org/doc/stable/reference/random/generated/numpy.random.geometric.html#numpy.random.geometric]

	cupy.random.geometric

	numpy.random.get_bit_generator

	-

	numpy.random.get_state [https://numpy.org/doc/stable/reference/random/generated/numpy.random.get_state.html#numpy.random.get_state]

	-

	numpy.random.gumbel [https://numpy.org/doc/stable/reference/random/generated/numpy.random.gumbel.html#numpy.random.gumbel]

	cupy.random.gumbel

	numpy.random.hypergeometric [https://numpy.org/doc/stable/reference/random/generated/numpy.random.hypergeometric.html#numpy.random.hypergeometric]

	cupy.random.hypergeometric

	numpy.random.laplace [https://numpy.org/doc/stable/reference/random/generated/numpy.random.laplace.html#numpy.random.laplace]

	cupy.random.laplace

	numpy.random.logistic [https://numpy.org/doc/stable/reference/random/generated/numpy.random.logistic.html#numpy.random.logistic]

	cupy.random.logistic

	numpy.random.lognormal [https://numpy.org/doc/stable/reference/random/generated/numpy.random.lognormal.html#numpy.random.lognormal]

	cupy.random.lognormal

	numpy.random.logseries [https://numpy.org/doc/stable/reference/random/generated/numpy.random.logseries.html#numpy.random.logseries]

	cupy.random.logseries

	numpy.random.multinomial [https://numpy.org/doc/stable/reference/random/generated/numpy.random.multinomial.html#numpy.random.multinomial]

	cupy.random.multinomial

	numpy.random.multivariate_normal [https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html#numpy.random.multivariate_normal]

	cupy.random.multivariate_normal

	numpy.random.negative_binomial [https://numpy.org/doc/stable/reference/random/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial]

	cupy.random.negative_binomial

	numpy.random.noncentral_chisquare [https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare]

	cupy.random.noncentral_chisquare

	numpy.random.noncentral_f [https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_f.html#numpy.random.noncentral_f]

	cupy.random.noncentral_f

	numpy.random.normal [https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html#numpy.random.normal]

	cupy.random.normal

	numpy.random.pareto [https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html#numpy.random.pareto]

	cupy.random.pareto

	numpy.random.permutation [https://numpy.org/doc/stable/reference/random/generated/numpy.random.permutation.html#numpy.random.permutation]

	cupy.random.permutation

	numpy.random.poisson [https://numpy.org/doc/stable/reference/random/generated/numpy.random.poisson.html#numpy.random.poisson]

	cupy.random.poisson

	numpy.random.power [https://numpy.org/doc/stable/reference/random/generated/numpy.random.power.html#numpy.random.power]

	cupy.random.power

	numpy.random.rand [https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html#numpy.random.rand]

	cupy.random.rand

	numpy.random.randint [https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html#numpy.random.randint]

	cupy.random.randint

	numpy.random.randn [https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html#numpy.random.randn]

	cupy.random.randn

	numpy.random.random [https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random]

	cupy.random.random

	numpy.random.random_integers [https://numpy.org/doc/stable/reference/random/generated/numpy.random.random_integers.html#numpy.random.random_integers]

	cupy.random.random_integers

	numpy.random.random_sample [https://numpy.org/doc/stable/reference/random/generated/numpy.random.random_sample.html#numpy.random.random_sample]

	cupy.random.random_sample

	numpy.random.ranf [https://numpy.org/doc/stable/reference/random/generated/numpy.random.ranf.html#numpy.random.ranf]

	cupy.random.ranf

	numpy.random.rayleigh [https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html#numpy.random.rayleigh]

	cupy.random.rayleigh

	numpy.random.sample [https://numpy.org/doc/stable/reference/random/generated/numpy.random.sample.html#numpy.random.sample]

	cupy.random.sample

	numpy.random.seed [https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed]

	cupy.random.seed

	numpy.random.set_bit_generator

	-

	numpy.random.set_state [https://numpy.org/doc/stable/reference/random/generated/numpy.random.set_state.html#numpy.random.set_state]

	-

	numpy.random.shuffle [https://numpy.org/doc/stable/reference/random/generated/numpy.random.shuffle.html#numpy.random.shuffle]

	cupy.random.shuffle

	numpy.random.standard_cauchy [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_cauchy.html#numpy.random.standard_cauchy]

	cupy.random.standard_cauchy

	numpy.random.standard_exponential [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_exponential.html#numpy.random.standard_exponential]

	cupy.random.standard_exponential

	numpy.random.standard_gamma [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_gamma.html#numpy.random.standard_gamma]

	cupy.random.standard_gamma

	numpy.random.standard_normal [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_normal.html#numpy.random.standard_normal]

	cupy.random.standard_normal

	numpy.random.standard_t [https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_t.html#numpy.random.standard_t]

	cupy.random.standard_t

	numpy.random.triangular [https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html#numpy.random.triangular]

	cupy.random.triangular

	numpy.random.uniform [https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy.random.uniform]

	cupy.random.uniform

	numpy.random.vonmises [https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html#numpy.random.vonmises]

	cupy.random.vonmises

	numpy.random.wald [https://numpy.org/doc/stable/reference/random/generated/numpy.random.wald.html#numpy.random.wald]

	cupy.random.wald

	numpy.random.weibull [https://numpy.org/doc/stable/reference/random/generated/numpy.random.weibull.html#numpy.random.weibull]

	cupy.random.weibull

	numpy.random.zipf [https://numpy.org/doc/stable/reference/random/generated/numpy.random.zipf.html#numpy.random.zipf]

	cupy.random.zipf

Polynomials

	NumPy

	CuPy

	numpy.polynomial.Chebyshev

	-

	numpy.polynomial.Hermite

	-

	numpy.polynomial.HermiteE

	-

	numpy.polynomial.Laguerre

	-

	numpy.polynomial.Legendre

	-

	numpy.polynomial.Polynomial

	-

	numpy.polynomial.set_default_printstyle [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.set_default_printstyle.html#numpy.polynomial.set_default_printstyle]

	-

Power Series

	NumPy

	CuPy

	numpy.polynomial.polynomial.ABCPolyBase

	-

	numpy.polynomial.polynomial.Polynomial [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial]

	-

	numpy.polynomial.polynomial.normalize_axis_index

	-

	numpy.polynomial.polynomial.polyadd [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyadd.html#numpy.polynomial.polynomial.polyadd]

	-

	numpy.polynomial.polynomial.polycompanion [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polycompanion.html#numpy.polynomial.polynomial.polycompanion]

	cupy.polynomial.polynomial.polycompanion

	numpy.polynomial.polynomial.polyder [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyder.html#numpy.polynomial.polynomial.polyder]

	-

	numpy.polynomial.polynomial.polydiv [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polydiv.html#numpy.polynomial.polynomial.polydiv]

	-

	numpy.polynomial.polynomial.polydomain [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polydomain.html#numpy.polynomial.polynomial.polydomain]

	-

	numpy.polynomial.polynomial.polyfit [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyfit.html#numpy.polynomial.polynomial.polyfit]

	-

	numpy.polynomial.polynomial.polyfromroots [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyfromroots.html#numpy.polynomial.polynomial.polyfromroots]

	-

	numpy.polynomial.polynomial.polygrid2d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polygrid2d.html#numpy.polynomial.polynomial.polygrid2d]

	-

	numpy.polynomial.polynomial.polygrid3d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polygrid3d.html#numpy.polynomial.polynomial.polygrid3d]

	-

	numpy.polynomial.polynomial.polyint [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyint.html#numpy.polynomial.polynomial.polyint]

	-

	numpy.polynomial.polynomial.polyline [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyline.html#numpy.polynomial.polynomial.polyline]

	-

	numpy.polynomial.polynomial.polymul [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polymul.html#numpy.polynomial.polynomial.polymul]

	-

	numpy.polynomial.polynomial.polymulx [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polymulx.html#numpy.polynomial.polynomial.polymulx]

	-

	numpy.polynomial.polynomial.polyone [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyone.html#numpy.polynomial.polynomial.polyone]

	-

	numpy.polynomial.polynomial.polypow [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polypow.html#numpy.polynomial.polynomial.polypow]

	-

	numpy.polynomial.polynomial.polyroots [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyroots.html#numpy.polynomial.polynomial.polyroots]

	-

	numpy.polynomial.polynomial.polysub [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polysub.html#numpy.polynomial.polynomial.polysub]

	-

	numpy.polynomial.polynomial.polytrim [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polytrim.html#numpy.polynomial.polynomial.polytrim]

	-

	numpy.polynomial.polynomial.polyval [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval.html#numpy.polynomial.polynomial.polyval]

	cupy.polynomial.polynomial.polyval

	numpy.polynomial.polynomial.polyval2d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval2d.html#numpy.polynomial.polynomial.polyval2d]

	-

	numpy.polynomial.polynomial.polyval3d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval3d.html#numpy.polynomial.polynomial.polyval3d]

	-

	numpy.polynomial.polynomial.polyvalfromroots [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvalfromroots.html#numpy.polynomial.polynomial.polyvalfromroots]

	cupy.polynomial.polynomial.polyvalfromroots

	numpy.polynomial.polynomial.polyvander [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander.html#numpy.polynomial.polynomial.polyvander]

	cupy.polynomial.polynomial.polyvander

	numpy.polynomial.polynomial.polyvander2d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander2d.html#numpy.polynomial.polynomial.polyvander2d]

	-

	numpy.polynomial.polynomial.polyvander3d [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander3d.html#numpy.polynomial.polynomial.polyvander3d]

	-

	numpy.polynomial.polynomial.polyx [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyx.html#numpy.polynomial.polynomial.polyx]

	-

	numpy.polynomial.polynomial.polyzero [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyzero.html#numpy.polynomial.polynomial.polyzero]

	-

Polyutils

	NumPy

	CuPy

	numpy.polynomial.polyutils.absolute

	-

	numpy.polynomial.polyutils.as_series [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.as_series.html#numpy.polynomial.polyutils.as_series]

	cupy.polynomial.polyutils.as_series

	numpy.polynomial.polyutils.dragon4_positional

	-

	numpy.polynomial.polyutils.dragon4_scientific

	-

	numpy.polynomial.polyutils.format_float

	-

	numpy.polynomial.polyutils.getdomain [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.getdomain.html#numpy.polynomial.polyutils.getdomain]

	-

	numpy.polynomial.polyutils.mapdomain [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.mapdomain.html#numpy.polynomial.polyutils.mapdomain]

	-

	numpy.polynomial.polyutils.mapparms [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.mapparms.html#numpy.polynomial.polyutils.mapparms]

	-

	numpy.polynomial.polyutils.trimcoef [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimcoef.html#numpy.polynomial.polyutils.trimcoef]

	cupy.polynomial.polyutils.trimcoef

	numpy.polynomial.polyutils.trimseq [https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimseq.html#numpy.polynomial.polyutils.trimseq]

	cupy.polynomial.polyutils.trimseq

SciPy / CuPy APIs

Discrete Fourier Transform

	SciPy

	CuPy

	scipy.fft.dct [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct]

	cupyx.scipy.fft.dct

	scipy.fft.dctn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dctn.html#scipy.fft.dctn]

	cupyx.scipy.fft.dctn

	scipy.fft.dst [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst]

	cupyx.scipy.fft.dst

	scipy.fft.dstn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dstn.html#scipy.fft.dstn]

	cupyx.scipy.fft.dstn

	scipy.fft.fft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft]

	cupyx.scipy.fft.fft

	scipy.fft.fft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2]

	cupyx.scipy.fft.fft2

	scipy.fft.fftfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftfreq.html#scipy.fft.fftfreq]

	cupyx.scipy.fft.fftfreq

	scipy.fft.fftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn]

	cupyx.scipy.fft.fftn

	scipy.fft.fftshift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftshift.html#scipy.fft.fftshift]

	cupyx.scipy.fft.fftshift

	scipy.fft.fht [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fht.html#scipy.fft.fht]

	cupyx.scipy.fft.fht

	scipy.fft.fhtoffset [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fhtoffset.html#scipy.fft.fhtoffset]

	-

	scipy.fft.get_workers [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.get_workers.html#scipy.fft.get_workers]

	-

	scipy.fft.hfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft]

	cupyx.scipy.fft.hfft

	scipy.fft.hfft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft2.html#scipy.fft.hfft2]

	cupyx.scipy.fft.hfft2

	scipy.fft.hfftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfftn.html#scipy.fft.hfftn]

	cupyx.scipy.fft.hfftn

	scipy.fft.idct [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct]

	cupyx.scipy.fft.idct

	scipy.fft.idctn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idctn.html#scipy.fft.idctn]

	cupyx.scipy.fft.idctn

	scipy.fft.idst [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst]

	cupyx.scipy.fft.idst

	scipy.fft.idstn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idstn.html#scipy.fft.idstn]

	cupyx.scipy.fft.idstn

	scipy.fft.ifft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft]

	cupyx.scipy.fft.ifft

	scipy.fft.ifft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2]

	cupyx.scipy.fft.ifft2

	scipy.fft.ifftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn]

	cupyx.scipy.fft.ifftn

	scipy.fft.ifftshift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftshift.html#scipy.fft.ifftshift]

	cupyx.scipy.fft.ifftshift

	scipy.fft.ifht [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifht.html#scipy.fft.ifht]

	cupyx.scipy.fft.ifht

	scipy.fft.ihfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft]

	cupyx.scipy.fft.ihfft

	scipy.fft.ihfft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft2.html#scipy.fft.ihfft2]

	cupyx.scipy.fft.ihfft2

	scipy.fft.ihfftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfftn.html#scipy.fft.ihfftn]

	cupyx.scipy.fft.ihfftn

	scipy.fft.irfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft]

	cupyx.scipy.fft.irfft

	scipy.fft.irfft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2]

	cupyx.scipy.fft.irfft2

	scipy.fft.irfftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn]

	cupyx.scipy.fft.irfftn

	scipy.fft.next_fast_len [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len]

	cupyx.scipy.fft.next_fast_len

	scipy.fft.register_backend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend]

	-

	scipy.fft.rfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft]

	cupyx.scipy.fft.rfft

	scipy.fft.rfft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2]

	cupyx.scipy.fft.rfft2

	scipy.fft.rfftfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftfreq.html#scipy.fft.rfftfreq]

	cupyx.scipy.fft.rfftfreq

	scipy.fft.rfftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn]

	cupyx.scipy.fft.rfftn

	scipy.fft.set_backend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_backend.html#scipy.fft.set_backend]

	-

	scipy.fft.set_global_backend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_global_backend.html#scipy.fft.set_global_backend]

	-

	scipy.fft.set_workers [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_workers.html#scipy.fft.set_workers]

	-

	scipy.fft.skip_backend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.skip_backend.html#scipy.fft.skip_backend]

	-

Legacy Discrete Fourier Transform

	SciPy

	CuPy

	scipy.fftpack.cc_diff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cc_diff.html#scipy.fftpack.cc_diff]

	-

	scipy.fftpack.cs_diff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cs_diff.html#scipy.fftpack.cs_diff]

	-

	scipy.fftpack.dct [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html#scipy.fftpack.dct]

	-

	scipy.fftpack.dctn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html#scipy.fftpack.dctn]

	-

	scipy.fftpack.diff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.diff.html#scipy.fftpack.diff]

	-

	scipy.fftpack.dst [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst]

	-

	scipy.fftpack.dstn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dstn.html#scipy.fftpack.dstn]

	-

	scipy.fftpack.fft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft]

	cupyx.scipy.fftpack.fft

	scipy.fftpack.fft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2]

	cupyx.scipy.fftpack.fft2

	scipy.fftpack.fftfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftfreq.html#scipy.fftpack.fftfreq]

	-

	scipy.fftpack.fftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn]

	cupyx.scipy.fftpack.fftn

	scipy.fftpack.fftshift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftshift.html#scipy.fftpack.fftshift]

	-

	scipy.fftpack.hilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.hilbert.html#scipy.fftpack.hilbert]

	-

	scipy.fftpack.idct [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idct.html#scipy.fftpack.idct]

	-

	scipy.fftpack.idctn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idctn.html#scipy.fftpack.idctn]

	-

	scipy.fftpack.idst [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idst.html#scipy.fftpack.idst]

	-

	scipy.fftpack.idstn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idstn.html#scipy.fftpack.idstn]

	-

	scipy.fftpack.ifft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft]

	cupyx.scipy.fftpack.ifft

	scipy.fftpack.ifft2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2]

	cupyx.scipy.fftpack.ifft2

	scipy.fftpack.ifftn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn]

	cupyx.scipy.fftpack.ifftn

	scipy.fftpack.ifftshift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftshift.html#scipy.fftpack.ifftshift]

	-

	scipy.fftpack.ihilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ihilbert.html#scipy.fftpack.ihilbert]

	-

	scipy.fftpack.irfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft]

	cupyx.scipy.fftpack.irfft

	scipy.fftpack.itilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.itilbert.html#scipy.fftpack.itilbert]

	-

	scipy.fftpack.next_fast_len [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.next_fast_len.html#scipy.fftpack.next_fast_len]

	-

	scipy.fftpack.rfft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft]

	cupyx.scipy.fftpack.rfft

	scipy.fftpack.rfftfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq]

	-

	scipy.fftpack.sc_diff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.sc_diff.html#scipy.fftpack.sc_diff]

	-

	scipy.fftpack.shift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.shift.html#scipy.fftpack.shift]

	-

	scipy.fftpack.ss_diff [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ss_diff.html#scipy.fftpack.ss_diff]

	-

	scipy.fftpack.tilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.tilbert.html#scipy.fftpack.tilbert]

	-

Interpolation

	SciPy

	CuPy

	scipy.interpolate.Akima1DInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.html#scipy.interpolate.Akima1DInterpolator]

	cupyx.scipy.interpolate.Akima1DInterpolator

	scipy.interpolate.BPoly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.html#scipy.interpolate.BPoly]

	cupyx.scipy.interpolate.BPoly

	scipy.interpolate.BSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline]

	cupyx.scipy.interpolate.BSpline

	scipy.interpolate.BarycentricInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.html#scipy.interpolate.BarycentricInterpolator]

	cupyx.scipy.interpolate.BarycentricInterpolator

	scipy.interpolate.BivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.html#scipy.interpolate.BivariateSpline]

	-

	scipy.interpolate.CloughTocher2DInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator]

	-

	scipy.interpolate.CubicHermiteSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.html#scipy.interpolate.CubicHermiteSpline]

	cupyx.scipy.interpolate.CubicHermiteSpline

	scipy.interpolate.CubicSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html#scipy.interpolate.CubicSpline]

	-

	scipy.interpolate.InterpolatedUnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html#scipy.interpolate.InterpolatedUnivariateSpline]

	-

	scipy.interpolate.KroghInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.html#scipy.interpolate.KroghInterpolator]

	cupyx.scipy.interpolate.KroghInterpolator

	scipy.interpolate.LSQBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.html#scipy.interpolate.LSQBivariateSpline]

	-

	scipy.interpolate.LSQSphereBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.html#scipy.interpolate.LSQSphereBivariateSpline]

	-

	scipy.interpolate.LSQUnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.html#scipy.interpolate.LSQUnivariateSpline]

	-

	scipy.interpolate.LinearNDInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html#scipy.interpolate.LinearNDInterpolator]

	-

	scipy.interpolate.NdPPoly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html#scipy.interpolate.NdPPoly]

	cupyx.scipy.interpolate.NdPPoly

	scipy.interpolate.NearestNDInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.html#scipy.interpolate.NearestNDInterpolator]

	-

	scipy.interpolate.PPoly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly]

	cupyx.scipy.interpolate.PPoly

	scipy.interpolate.PchipInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html#scipy.interpolate.PchipInterpolator]

	cupyx.scipy.interpolate.PchipInterpolator

	scipy.interpolate.RBFInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RBFInterpolator.html#scipy.interpolate.RBFInterpolator]

	cupyx.scipy.interpolate.RBFInterpolator

	scipy.interpolate.Rbf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html#scipy.interpolate.Rbf]

	-

	scipy.interpolate.RectBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy.interpolate.RectBivariateSpline]

	-

	scipy.interpolate.RectSphereBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.html#scipy.interpolate.RectSphereBivariateSpline]

	-

	scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator]

	cupyx.scipy.interpolate.RegularGridInterpolator

	scipy.interpolate.SmoothBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.html#scipy.interpolate.SmoothBivariateSpline]

	-

	scipy.interpolate.SmoothSphereBivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.html#scipy.interpolate.SmoothSphereBivariateSpline]

	-

	scipy.interpolate.UnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline]

	-

	scipy.interpolate.approximate_taylor_polynomial [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.approximate_taylor_polynomial.html#scipy.interpolate.approximate_taylor_polynomial]

	-

	scipy.interpolate.barycentric_interpolate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.barycentric_interpolate.html#scipy.interpolate.barycentric_interpolate]

	cupyx.scipy.interpolate.barycentric_interpolate

	scipy.interpolate.bisplev [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplev.html#scipy.interpolate.bisplev]

	-

	scipy.interpolate.bisplrep [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplrep.html#scipy.interpolate.bisplrep]

	-

	scipy.interpolate.griddata [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata]

	-

	scipy.interpolate.insert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.insert.html#scipy.interpolate.insert]

	-

	scipy.interpolate.interp1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d]

	-

	scipy.interpolate.interp2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d]

	-

	scipy.interpolate.interpn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interpn.html#scipy.interpolate.interpn]

	cupyx.scipy.interpolate.interpn

	scipy.interpolate.krogh_interpolate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.krogh_interpolate.html#scipy.interpolate.krogh_interpolate]

	cupyx.scipy.interpolate.krogh_interpolate

	scipy.interpolate.lagrange [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.lagrange.html#scipy.interpolate.lagrange]

	-

	scipy.interpolate.make_interp_spline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_interp_spline.html#scipy.interpolate.make_interp_spline]

	cupyx.scipy.interpolate.make_interp_spline

	scipy.interpolate.make_lsq_spline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_lsq_spline.html#scipy.interpolate.make_lsq_spline]

	-

	scipy.interpolate.make_smoothing_spline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_smoothing_spline.html#scipy.interpolate.make_smoothing_spline]

	-

	scipy.interpolate.pade [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pade.html#scipy.interpolate.pade]

	-

	scipy.interpolate.pchip

	cupyx.scipy.interpolate.pchip

	scipy.interpolate.pchip_interpolate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html#scipy.interpolate.pchip_interpolate]

	cupyx.scipy.interpolate.pchip_interpolate

	scipy.interpolate.spalde [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.spalde.html#scipy.interpolate.spalde]

	-

	scipy.interpolate.splantider [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splantider.html#scipy.interpolate.splantider]

	cupyx.scipy.interpolate.splantider

	scipy.interpolate.splder [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splder.html#scipy.interpolate.splder]

	cupyx.scipy.interpolate.splder

	scipy.interpolate.splev [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html#scipy.interpolate.splev]

	-

	scipy.interpolate.splint [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splint.html#scipy.interpolate.splint]

	-

	scipy.interpolate.splprep [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html#scipy.interpolate.splprep]

	-

	scipy.interpolate.splrep [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep]

	-

	scipy.interpolate.sproot [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.sproot.html#scipy.interpolate.sproot]

	-

Advanced Linear Algebra

	SciPy

	CuPy

	scipy.linalg.bandwidth [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.bandwidth.html#scipy.linalg.bandwidth]

	cupyx.scipy.linalg.bandwidth

	scipy.linalg.block_diag [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag]

	cupyx.scipy.linalg.block_diag

	scipy.linalg.cdf2rdf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cdf2rdf.html#scipy.linalg.cdf2rdf]

	-

	scipy.linalg.cho_factor [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor]

	-

	scipy.linalg.cho_solve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve]

	-

	scipy.linalg.cho_solve_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve_banded.html#scipy.linalg.cho_solve_banded]

	-

	scipy.linalg.cholesky_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded]

	-

	scipy.linalg.circulant [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html#scipy.linalg.circulant]

	cupyx.scipy.linalg.circulant

	scipy.linalg.clarkson_woodruff_transform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.clarkson_woodruff_transform.html#scipy.linalg.clarkson_woodruff_transform]

	-

	scipy.linalg.companion [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.companion.html#scipy.linalg.companion]

	cupyx.scipy.linalg.companion

	scipy.linalg.convolution_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix]

	cupyx.scipy.linalg.convolution_matrix

	scipy.linalg.coshm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.coshm.html#scipy.linalg.coshm]

	-

	scipy.linalg.cosm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cosm.html#scipy.linalg.cosm]

	-

	scipy.linalg.cossin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cossin.html#scipy.linalg.cossin]

	-

	scipy.linalg.dft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.dft.html#scipy.linalg.dft]

	cupyx.scipy.linalg.dft

	scipy.linalg.diagsvd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.diagsvd.html#scipy.linalg.diagsvd]

	-

	scipy.linalg.eig_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig_banded.html#scipy.linalg.eig_banded]

	-

	scipy.linalg.eigh_tridiagonal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh_tridiagonal.html#scipy.linalg.eigh_tridiagonal]

	-

	scipy.linalg.eigvals_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals_banded.html#scipy.linalg.eigvals_banded]

	-

	scipy.linalg.eigvalsh_tridiagonal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh_tridiagonal.html#scipy.linalg.eigvalsh_tridiagonal]

	-

	scipy.linalg.expm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html#scipy.linalg.expm]

	cupyx.scipy.linalg.expm

	scipy.linalg.expm_cond [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_cond.html#scipy.linalg.expm_cond]

	-

	scipy.linalg.expm_frechet [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_frechet.html#scipy.linalg.expm_frechet]

	-

	scipy.linalg.fiedler [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler]

	cupyx.scipy.linalg.fiedler

	scipy.linalg.fiedler_companion [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion]

	cupyx.scipy.linalg.fiedler_companion

	scipy.linalg.find_best_blas_type [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.find_best_blas_type.html#scipy.linalg.find_best_blas_type]

	-

	scipy.linalg.fractional_matrix_power [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fractional_matrix_power.html#scipy.linalg.fractional_matrix_power]

	-

	scipy.linalg.funm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.funm.html#scipy.linalg.funm]

	-

	scipy.linalg.get_blas_funcs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_blas_funcs.html#scipy.linalg.get_blas_funcs]

	-

	scipy.linalg.get_lapack_funcs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_lapack_funcs.html#scipy.linalg.get_lapack_funcs]

	-

	scipy.linalg.hadamard [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard]

	cupyx.scipy.linalg.hadamard

	scipy.linalg.hankel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html#scipy.linalg.hankel]

	cupyx.scipy.linalg.hankel

	scipy.linalg.helmert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.helmert.html#scipy.linalg.helmert]

	cupyx.scipy.linalg.helmert

	scipy.linalg.hessenberg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hessenberg.html#scipy.linalg.hessenberg]

	-

	scipy.linalg.hilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert]

	cupyx.scipy.linalg.hilbert

	scipy.linalg.invhilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invhilbert.html#scipy.linalg.invhilbert]

	-

	scipy.linalg.invpascal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invpascal.html#scipy.linalg.invpascal]

	-

	scipy.linalg.ishermitian [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ishermitian.html#scipy.linalg.ishermitian]

	-

	scipy.linalg.issymmetric [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.issymmetric.html#scipy.linalg.issymmetric]

	-

	scipy.linalg.khatri_rao [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.khatri_rao.html#scipy.linalg.khatri_rao]

	cupyx.scipy.linalg.khatri_rao

	scipy.linalg.kron [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.kron.html#scipy.linalg.kron]

	cupyx.scipy.linalg.kron

	scipy.linalg.ldl [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ldl.html#scipy.linalg.ldl]

	-

	scipy.linalg.leslie [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.leslie.html#scipy.linalg.leslie]

	cupyx.scipy.linalg.leslie

	scipy.linalg.logm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.logm.html#scipy.linalg.logm]

	-

	scipy.linalg.lu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu.html#scipy.linalg.lu]

	cupyx.scipy.linalg.lu

	scipy.linalg.lu_factor [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor]

	cupyx.scipy.linalg.lu_factor

	scipy.linalg.lu_solve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve]

	cupyx.scipy.linalg.lu_solve

	scipy.linalg.matmul_toeplitz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matmul_toeplitz.html#scipy.linalg.matmul_toeplitz]

	-

	scipy.linalg.matrix_balance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matrix_balance.html#scipy.linalg.matrix_balance]

	-

	scipy.linalg.null_space [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.null_space.html#scipy.linalg.null_space]

	-

	scipy.linalg.ordqz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ordqz.html#scipy.linalg.ordqz]

	-

	scipy.linalg.orth [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orth.html#scipy.linalg.orth]

	-

	scipy.linalg.orthogonal_procrustes [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orthogonal_procrustes.html#scipy.linalg.orthogonal_procrustes]

	-

	scipy.linalg.pascal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pascal.html#scipy.linalg.pascal]

	-

	scipy.linalg.pinvh [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh]

	-

	scipy.linalg.polar [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.polar.html#scipy.linalg.polar]

	-

	scipy.linalg.qr_delete [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_delete.html#scipy.linalg.qr_delete]

	-

	scipy.linalg.qr_insert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html#scipy.linalg.qr_insert]

	-

	scipy.linalg.qr_multiply [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_multiply.html#scipy.linalg.qr_multiply]

	-

	scipy.linalg.qr_update [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_update.html#scipy.linalg.qr_update]

	-

	scipy.linalg.qz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qz.html#scipy.linalg.qz]

	-

	scipy.linalg.rq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rq.html#scipy.linalg.rq]

	-

	scipy.linalg.rsf2csf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rsf2csf.html#scipy.linalg.rsf2csf]

	-

	scipy.linalg.schur [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur]

	-

	scipy.linalg.signm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.signm.html#scipy.linalg.signm]

	-

	scipy.linalg.sinhm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinhm.html#scipy.linalg.sinhm]

	-

	scipy.linalg.sinm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinm.html#scipy.linalg.sinm]

	-

	scipy.linalg.solve_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html#scipy.linalg.solve_banded]

	-

	scipy.linalg.solve_circulant [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_circulant.html#scipy.linalg.solve_circulant]

	-

	scipy.linalg.solve_continuous_are [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_are.html#scipy.linalg.solve_continuous_are]

	-

	scipy.linalg.solve_continuous_lyapunov [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_lyapunov.html#scipy.linalg.solve_continuous_lyapunov]

	-

	scipy.linalg.solve_discrete_are [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html#scipy.linalg.solve_discrete_are]

	-

	scipy.linalg.solve_discrete_lyapunov [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_lyapunov.html#scipy.linalg.solve_discrete_lyapunov]

	-

	scipy.linalg.solve_lyapunov

	-

	scipy.linalg.solve_sylvester [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_sylvester.html#scipy.linalg.solve_sylvester]

	-

	scipy.linalg.solve_toeplitz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_toeplitz.html#scipy.linalg.solve_toeplitz]

	-

	scipy.linalg.solve_triangular [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular]

	cupyx.scipy.linalg.solve_triangular

	scipy.linalg.solveh_banded [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solveh_banded.html#scipy.linalg.solveh_banded]

	-

	scipy.linalg.sqrtm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sqrtm.html#scipy.linalg.sqrtm]

	-

	scipy.linalg.subspace_angles [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.subspace_angles.html#scipy.linalg.subspace_angles]

	-

	scipy.linalg.svdvals [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals]

	-

	scipy.linalg.tanhm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanhm.html#scipy.linalg.tanhm]

	-

	scipy.linalg.tanm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanm.html#scipy.linalg.tanm]

	-

	scipy.linalg.toeplitz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz]

	cupyx.scipy.linalg.toeplitz

	scipy.linalg.tri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tri.html#scipy.linalg.tri]

	cupyx.scipy.linalg.tri

	scipy.linalg.tril [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tril.html#scipy.linalg.tril]

	cupyx.scipy.linalg.tril

	scipy.linalg.triu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.triu.html#scipy.linalg.triu]

	cupyx.scipy.linalg.triu

Multidimensional Image Processing

	SciPy

	CuPy

	scipy.ndimage.affine_transform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html#scipy.ndimage.affine_transform]

	cupyx.scipy.ndimage.affine_transform

	scipy.ndimage.binary_closing [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_closing.html#scipy.ndimage.binary_closing]

	cupyx.scipy.ndimage.binary_closing

	scipy.ndimage.binary_dilation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html#scipy.ndimage.binary_dilation]

	cupyx.scipy.ndimage.binary_dilation

	scipy.ndimage.binary_erosion [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html#scipy.ndimage.binary_erosion]

	cupyx.scipy.ndimage.binary_erosion

	scipy.ndimage.binary_fill_holes [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html#scipy.ndimage.binary_fill_holes]

	cupyx.scipy.ndimage.binary_fill_holes

	scipy.ndimage.binary_hit_or_miss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_hit_or_miss.html#scipy.ndimage.binary_hit_or_miss]

	cupyx.scipy.ndimage.binary_hit_or_miss

	scipy.ndimage.binary_opening [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_opening.html#scipy.ndimage.binary_opening]

	cupyx.scipy.ndimage.binary_opening

	scipy.ndimage.binary_propagation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_propagation.html#scipy.ndimage.binary_propagation]

	cupyx.scipy.ndimage.binary_propagation

	scipy.ndimage.black_tophat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.black_tophat.html#scipy.ndimage.black_tophat]

	cupyx.scipy.ndimage.black_tophat

	scipy.ndimage.center_of_mass [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass]

	cupyx.scipy.ndimage.center_of_mass

	scipy.ndimage.convolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve]

	cupyx.scipy.ndimage.convolve

	scipy.ndimage.convolve1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d]

	cupyx.scipy.ndimage.convolve1d

	scipy.ndimage.correlate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate.html#scipy.ndimage.correlate]

	cupyx.scipy.ndimage.correlate

	scipy.ndimage.correlate1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate1d.html#scipy.ndimage.correlate1d]

	cupyx.scipy.ndimage.correlate1d

	scipy.ndimage.distance_transform_bf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_bf.html#scipy.ndimage.distance_transform_bf]

	-

	scipy.ndimage.distance_transform_cdt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_cdt.html#scipy.ndimage.distance_transform_cdt]

	-

	scipy.ndimage.distance_transform_edt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html#scipy.ndimage.distance_transform_edt]

	cupyx.scipy.ndimage.distance_transform_edt

	scipy.ndimage.extrema [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.extrema.html#scipy.ndimage.extrema]

	cupyx.scipy.ndimage.extrema

	scipy.ndimage.find_objects [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.find_objects.html#scipy.ndimage.find_objects]

	-

	scipy.ndimage.fourier_ellipsoid [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_ellipsoid.html#scipy.ndimage.fourier_ellipsoid]

	cupyx.scipy.ndimage.fourier_ellipsoid

	scipy.ndimage.fourier_gaussian [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_gaussian.html#scipy.ndimage.fourier_gaussian]

	cupyx.scipy.ndimage.fourier_gaussian

	scipy.ndimage.fourier_shift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_shift.html#scipy.ndimage.fourier_shift]

	cupyx.scipy.ndimage.fourier_shift

	scipy.ndimage.fourier_uniform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_uniform.html#scipy.ndimage.fourier_uniform]

	cupyx.scipy.ndimage.fourier_uniform

	scipy.ndimage.gaussian_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter]

	cupyx.scipy.ndimage.gaussian_filter

	scipy.ndimage.gaussian_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d]

	cupyx.scipy.ndimage.gaussian_filter1d

	scipy.ndimage.gaussian_gradient_magnitude [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_gradient_magnitude.html#scipy.ndimage.gaussian_gradient_magnitude]

	cupyx.scipy.ndimage.gaussian_gradient_magnitude

	scipy.ndimage.gaussian_laplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_laplace.html#scipy.ndimage.gaussian_laplace]

	cupyx.scipy.ndimage.gaussian_laplace

	scipy.ndimage.generate_binary_structure [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generate_binary_structure.html#scipy.ndimage.generate_binary_structure]

	cupyx.scipy.ndimage.generate_binary_structure

	scipy.ndimage.generic_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html#scipy.ndimage.generic_filter]

	cupyx.scipy.ndimage.generic_filter

	scipy.ndimage.generic_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter1d.html#scipy.ndimage.generic_filter1d]

	cupyx.scipy.ndimage.generic_filter1d

	scipy.ndimage.generic_gradient_magnitude [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_gradient_magnitude.html#scipy.ndimage.generic_gradient_magnitude]

	cupyx.scipy.ndimage.generic_gradient_magnitude

	scipy.ndimage.generic_laplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_laplace.html#scipy.ndimage.generic_laplace]

	cupyx.scipy.ndimage.generic_laplace

	scipy.ndimage.geometric_transform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.geometric_transform.html#scipy.ndimage.geometric_transform]

	-

	scipy.ndimage.grey_closing [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_closing.html#scipy.ndimage.grey_closing]

	cupyx.scipy.ndimage.grey_closing

	scipy.ndimage.grey_dilation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_dilation.html#scipy.ndimage.grey_dilation]

	cupyx.scipy.ndimage.grey_dilation

	scipy.ndimage.grey_erosion [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_erosion.html#scipy.ndimage.grey_erosion]

	cupyx.scipy.ndimage.grey_erosion

	scipy.ndimage.grey_opening [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_opening.html#scipy.ndimage.grey_opening]

	cupyx.scipy.ndimage.grey_opening

	scipy.ndimage.histogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.histogram.html#scipy.ndimage.histogram]

	cupyx.scipy.ndimage.histogram

	scipy.ndimage.iterate_structure [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.iterate_structure.html#scipy.ndimage.iterate_structure]

	cupyx.scipy.ndimage.iterate_structure

	scipy.ndimage.label [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html#scipy.ndimage.label]

	cupyx.scipy.ndimage.label

	scipy.ndimage.labeled_comprehension [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.labeled_comprehension.html#scipy.ndimage.labeled_comprehension]

	cupyx.scipy.ndimage.labeled_comprehension

	scipy.ndimage.laplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.laplace.html#scipy.ndimage.laplace]

	cupyx.scipy.ndimage.laplace

	scipy.ndimage.map_coordinates [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates]

	cupyx.scipy.ndimage.map_coordinates

	scipy.ndimage.maximum [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum.html#scipy.ndimage.maximum]

	cupyx.scipy.ndimage.maximum

	scipy.ndimage.maximum_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html#scipy.ndimage.maximum_filter]

	cupyx.scipy.ndimage.maximum_filter

	scipy.ndimage.maximum_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter1d.html#scipy.ndimage.maximum_filter1d]

	cupyx.scipy.ndimage.maximum_filter1d

	scipy.ndimage.maximum_position [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_position.html#scipy.ndimage.maximum_position]

	cupyx.scipy.ndimage.maximum_position

	scipy.ndimage.mean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.mean.html#scipy.ndimage.mean]

	cupyx.scipy.ndimage.mean

	scipy.ndimage.median [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median.html#scipy.ndimage.median]

	cupyx.scipy.ndimage.median

	scipy.ndimage.median_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter]

	cupyx.scipy.ndimage.median_filter

	scipy.ndimage.minimum [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum.html#scipy.ndimage.minimum]

	cupyx.scipy.ndimage.minimum

	scipy.ndimage.minimum_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter.html#scipy.ndimage.minimum_filter]

	cupyx.scipy.ndimage.minimum_filter

	scipy.ndimage.minimum_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter1d.html#scipy.ndimage.minimum_filter1d]

	cupyx.scipy.ndimage.minimum_filter1d

	scipy.ndimage.minimum_position [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_position.html#scipy.ndimage.minimum_position]

	cupyx.scipy.ndimage.minimum_position

	scipy.ndimage.morphological_gradient [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html#scipy.ndimage.morphological_gradient]

	cupyx.scipy.ndimage.morphological_gradient

	scipy.ndimage.morphological_laplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_laplace.html#scipy.ndimage.morphological_laplace]

	cupyx.scipy.ndimage.morphological_laplace

	scipy.ndimage.percentile_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter]

	cupyx.scipy.ndimage.percentile_filter

	scipy.ndimage.prewitt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.prewitt.html#scipy.ndimage.prewitt]

	cupyx.scipy.ndimage.prewitt

	scipy.ndimage.rank_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rank_filter.html#scipy.ndimage.rank_filter]

	cupyx.scipy.ndimage.rank_filter

	scipy.ndimage.rotate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rotate.html#scipy.ndimage.rotate]

	cupyx.scipy.ndimage.rotate

	scipy.ndimage.shift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift]

	cupyx.scipy.ndimage.shift

	scipy.ndimage.sobel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html#scipy.ndimage.sobel]

	cupyx.scipy.ndimage.sobel

	scipy.ndimage.spline_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter.html#scipy.ndimage.spline_filter]

	cupyx.scipy.ndimage.spline_filter

	scipy.ndimage.spline_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter1d.html#scipy.ndimage.spline_filter1d]

	cupyx.scipy.ndimage.spline_filter1d

	scipy.ndimage.standard_deviation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.standard_deviation.html#scipy.ndimage.standard_deviation]

	cupyx.scipy.ndimage.standard_deviation

	scipy.ndimage.sum

	cupyx.scipy.ndimage.sum

	scipy.ndimage.sum_labels [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sum_labels.html#scipy.ndimage.sum_labels]

	cupyx.scipy.ndimage.sum_labels

	scipy.ndimage.uniform_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html#scipy.ndimage.uniform_filter]

	cupyx.scipy.ndimage.uniform_filter

	scipy.ndimage.uniform_filter1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html#scipy.ndimage.uniform_filter1d]

	cupyx.scipy.ndimage.uniform_filter1d

	scipy.ndimage.value_indices [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.value_indices.html#scipy.ndimage.value_indices]

	cupyx.scipy.ndimage.value_indices

	scipy.ndimage.variance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.variance.html#scipy.ndimage.variance]

	cupyx.scipy.ndimage.variance

	scipy.ndimage.watershed_ift [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html#scipy.ndimage.watershed_ift]

	-

	scipy.ndimage.white_tophat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.white_tophat.html#scipy.ndimage.white_tophat]

	cupyx.scipy.ndimage.white_tophat

	scipy.ndimage.zoom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html#scipy.ndimage.zoom]

	cupyx.scipy.ndimage.zoom

Signal processing

	SciPy

	CuPy

	scipy.signal.CZT [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.CZT.html#scipy.signal.CZT]

	cupyx.scipy.signal.CZT

	scipy.signal.StateSpace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace]

	cupyx.scipy.signal.StateSpace

	scipy.signal.TransferFunction [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction]

	cupyx.scipy.signal.TransferFunction

	scipy.signal.ZerosPolesGain [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain]

	cupyx.scipy.signal.ZerosPolesGain

	scipy.signal.ZoomFFT [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZoomFFT.html#scipy.signal.ZoomFFT]

	cupyx.scipy.signal.ZoomFFT

	scipy.signal.abcd_normalize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.abcd_normalize.html#scipy.signal.abcd_normalize]

	cupyx.scipy.signal.abcd_normalize

	scipy.signal.argrelextrema [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html#scipy.signal.argrelextrema]

	cupyx.scipy.signal.argrelextrema

	scipy.signal.argrelmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax]

	cupyx.scipy.signal.argrelmax

	scipy.signal.argrelmin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin]

	cupyx.scipy.signal.argrelmin

	scipy.signal.band_stop_obj [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj]

	cupyx.scipy.signal.band_stop_obj

	scipy.signal.barthann

	-

	scipy.signal.bartlett

	-

	scipy.signal.bessel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bessel.html#scipy.signal.bessel]

	-

	scipy.signal.besselap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.besselap.html#scipy.signal.besselap]

	-

	scipy.signal.bilinear [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear.html#scipy.signal.bilinear]

	cupyx.scipy.signal.bilinear

	scipy.signal.bilinear_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear_zpk.html#scipy.signal.bilinear_zpk]

	cupyx.scipy.signal.bilinear_zpk

	scipy.signal.blackman

	-

	scipy.signal.blackmanharris

	-

	scipy.signal.bode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bode.html#scipy.signal.bode]

	cupyx.scipy.signal.bode

	scipy.signal.bohman

	-

	scipy.signal.boxcar

	-

	scipy.signal.bspline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bspline.html#scipy.signal.bspline]

	-

	scipy.signal.buttap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttap.html#scipy.signal.buttap]

	cupyx.scipy.signal.buttap

	scipy.signal.butter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter]

	cupyx.scipy.signal.butter

	scipy.signal.buttord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttord.html#scipy.signal.buttord]

	cupyx.scipy.signal.buttord

	scipy.signal.cascade [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cascade.html#scipy.signal.cascade]

	-

	scipy.signal.cheb1ap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ap.html#scipy.signal.cheb1ap]

	cupyx.scipy.signal.cheb1ap

	scipy.signal.cheb1ord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord]

	cupyx.scipy.signal.cheb1ord

	scipy.signal.cheb2ap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ap.html#scipy.signal.cheb2ap]

	cupyx.scipy.signal.cheb2ap

	scipy.signal.cheb2ord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord]

	cupyx.scipy.signal.cheb2ord

	scipy.signal.chebwin

	-

	scipy.signal.cheby1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby1.html#scipy.signal.cheby1]

	cupyx.scipy.signal.cheby1

	scipy.signal.cheby2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby2.html#scipy.signal.cheby2]

	cupyx.scipy.signal.cheby2

	scipy.signal.check_COLA [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_COLA.html#scipy.signal.check_COLA]

	cupyx.scipy.signal.check_COLA

	scipy.signal.check_NOLA [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html#scipy.signal.check_NOLA]

	cupyx.scipy.signal.check_NOLA

	scipy.signal.chirp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.chirp.html#scipy.signal.chirp]

	cupyx.scipy.signal.chirp

	scipy.signal.choose_conv_method [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.choose_conv_method.html#scipy.signal.choose_conv_method]

	cupyx.scipy.signal.choose_conv_method

	scipy.signal.cmplx_sort [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cmplx_sort.html#scipy.signal.cmplx_sort]

	-

	scipy.signal.coherence [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.coherence.html#scipy.signal.coherence]

	cupyx.scipy.signal.coherence

	scipy.signal.cont2discrete [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete]

	cupyx.scipy.signal.cont2discrete

	scipy.signal.convolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve]

	cupyx.scipy.signal.convolve

	scipy.signal.convolve2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d]

	cupyx.scipy.signal.convolve2d

	scipy.signal.correlate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html#scipy.signal.correlate]

	cupyx.scipy.signal.correlate

	scipy.signal.correlate2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html#scipy.signal.correlate2d]

	cupyx.scipy.signal.correlate2d

	scipy.signal.correlation_lags [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html#scipy.signal.correlation_lags]

	cupyx.scipy.signal.correlation_lags

	scipy.signal.cosine

	-

	scipy.signal.csd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html#scipy.signal.csd]

	cupyx.scipy.signal.csd

	scipy.signal.cspline1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d.html#scipy.signal.cspline1d]

	cupyx.scipy.signal.cspline1d

	scipy.signal.cspline1d_eval [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d_eval.html#scipy.signal.cspline1d_eval]

	cupyx.scipy.signal.cspline1d_eval

	scipy.signal.cspline2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline2d.html#scipy.signal.cspline2d]

	cupyx.scipy.signal.cspline2d

	scipy.signal.cubic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cubic.html#scipy.signal.cubic]

	-

	scipy.signal.cwt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cwt.html#scipy.signal.cwt]

	cupyx.scipy.signal.cwt

	scipy.signal.czt [https://docs.scipy.org/doc/scipy/reference/generated/czt-function.html#scipy.signal.czt]

	cupyx.scipy.signal.czt

	scipy.signal.czt_points [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.czt_points.html#scipy.signal.czt_points]

	cupyx.scipy.signal.czt_points

	scipy.signal.daub [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.daub.html#scipy.signal.daub]

	-

	scipy.signal.dbode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dbode.html#scipy.signal.dbode]

	cupyx.scipy.signal.dbode

	scipy.signal.decimate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html#scipy.signal.decimate]

	cupyx.scipy.signal.decimate

	scipy.signal.deconvolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.deconvolve.html#scipy.signal.deconvolve]

	cupyx.scipy.signal.deconvolve

	scipy.signal.detrend [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html#scipy.signal.detrend]

	cupyx.scipy.signal.detrend

	scipy.signal.dfreqresp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dfreqresp.html#scipy.signal.dfreqresp]

	cupyx.scipy.signal.dfreqresp

	scipy.signal.dimpulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dimpulse.html#scipy.signal.dimpulse]

	cupyx.scipy.signal.dimpulse

	scipy.signal.dlsim [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html#scipy.signal.dlsim]

	cupyx.scipy.signal.dlsim

	scipy.signal.dlti [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.html#scipy.signal.dlti]

	cupyx.scipy.signal.dlti

	scipy.signal.dstep [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dstep.html#scipy.signal.dstep]

	cupyx.scipy.signal.dstep

	scipy.signal.ellip [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html#scipy.signal.ellip]

	cupyx.scipy.signal.ellip

	scipy.signal.ellipap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipap.html#scipy.signal.ellipap]

	cupyx.scipy.signal.ellipap

	scipy.signal.ellipord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipord.html#scipy.signal.ellipord]

	cupyx.scipy.signal.ellipord

	scipy.signal.exponential

	-

	scipy.signal.fftconvolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve]

	cupyx.scipy.signal.fftconvolve

	scipy.signal.filtfilt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt]

	cupyx.scipy.signal.filtfilt

	scipy.signal.find_peaks [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks]

	cupyx.scipy.signal.find_peaks

	scipy.signal.find_peaks_cwt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html#scipy.signal.find_peaks_cwt]

	-

	scipy.signal.findfreqs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.findfreqs.html#scipy.signal.findfreqs]

	cupyx.scipy.signal.findfreqs

	scipy.signal.firls [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firls.html#scipy.signal.firls]

	cupyx.scipy.signal.firls

	scipy.signal.firwin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html#scipy.signal.firwin]

	cupyx.scipy.signal.firwin

	scipy.signal.firwin2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin2.html#scipy.signal.firwin2]

	cupyx.scipy.signal.firwin2

	scipy.signal.flattop

	-

	scipy.signal.freqresp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqresp.html#scipy.signal.freqresp]

	cupyx.scipy.signal.freqresp

	scipy.signal.freqs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html#scipy.signal.freqs]

	cupyx.scipy.signal.freqs

	scipy.signal.freqs_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs_zpk.html#scipy.signal.freqs_zpk]

	cupyx.scipy.signal.freqs_zpk

	scipy.signal.freqz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz]

	cupyx.scipy.signal.freqz

	scipy.signal.freqz_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz_zpk.html#scipy.signal.freqz_zpk]

	cupyx.scipy.signal.freqz_zpk

	scipy.signal.gammatone [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gammatone.html#scipy.signal.gammatone]

	cupyx.scipy.signal.gammatone

	scipy.signal.gauss_spline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gauss_spline.html#scipy.signal.gauss_spline]

	cupyx.scipy.signal.gauss_spline

	scipy.signal.gaussian

	-

	scipy.signal.gausspulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gausspulse.html#scipy.signal.gausspulse]

	cupyx.scipy.signal.gausspulse

	scipy.signal.general_gaussian

	-

	scipy.signal.get_window [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window]

	cupyx.scipy.signal.get_window

	scipy.signal.group_delay [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.group_delay.html#scipy.signal.group_delay]

	cupyx.scipy.signal.group_delay

	scipy.signal.hamming

	-

	scipy.signal.hann

	-

	scipy.signal.hilbert [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html#scipy.signal.hilbert]

	cupyx.scipy.signal.hilbert

	scipy.signal.hilbert2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2]

	cupyx.scipy.signal.hilbert2

	scipy.signal.iircomb [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iircomb.html#scipy.signal.iircomb]

	cupyx.scipy.signal.iircomb

	scipy.signal.iirdesign [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign]

	cupyx.scipy.signal.iirdesign

	scipy.signal.iirfilter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter]

	cupyx.scipy.signal.iirfilter

	scipy.signal.iirnotch [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html#scipy.signal.iirnotch]

	cupyx.scipy.signal.iirnotch

	scipy.signal.iirpeak [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirpeak.html#scipy.signal.iirpeak]

	cupyx.scipy.signal.iirpeak

	scipy.signal.impulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html#scipy.signal.impulse]

	cupyx.scipy.signal.impulse

	scipy.signal.impulse2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse2.html#scipy.signal.impulse2]

	-

	scipy.signal.invres [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invres.html#scipy.signal.invres]

	cupyx.scipy.signal.invres

	scipy.signal.invresz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invresz.html#scipy.signal.invresz]

	cupyx.scipy.signal.invresz

	scipy.signal.istft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.istft.html#scipy.signal.istft]

	cupyx.scipy.signal.istft

	scipy.signal.kaiser

	-

	scipy.signal.kaiser_atten [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten]

	cupyx.scipy.signal.kaiser_atten

	scipy.signal.kaiser_beta [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta]

	cupyx.scipy.signal.kaiser_beta

	scipy.signal.kaiserord [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord]

	cupyx.scipy.signal.kaiserord

	scipy.signal.lfilter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter]

	cupyx.scipy.signal.lfilter

	scipy.signal.lfilter_zi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter_zi.html#scipy.signal.lfilter_zi]

	cupyx.scipy.signal.lfilter_zi

	scipy.signal.lfiltic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfiltic.html#scipy.signal.lfiltic]

	cupyx.scipy.signal.lfiltic

	scipy.signal.lombscargle [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html#scipy.signal.lombscargle]

	cupyx.scipy.signal.lombscargle

	scipy.signal.lp2bp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp]

	cupyx.scipy.signal.lp2bp

	scipy.signal.lp2bp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp_zpk.html#scipy.signal.lp2bp_zpk]

	cupyx.scipy.signal.lp2bp_zpk

	scipy.signal.lp2bs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs]

	cupyx.scipy.signal.lp2bs

	scipy.signal.lp2bs_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs_zpk.html#scipy.signal.lp2bs_zpk]

	cupyx.scipy.signal.lp2bs_zpk

	scipy.signal.lp2hp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp]

	cupyx.scipy.signal.lp2hp

	scipy.signal.lp2hp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp_zpk.html#scipy.signal.lp2hp_zpk]

	cupyx.scipy.signal.lp2hp_zpk

	scipy.signal.lp2lp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp]

	cupyx.scipy.signal.lp2lp

	scipy.signal.lp2lp_zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp_zpk.html#scipy.signal.lp2lp_zpk]

	cupyx.scipy.signal.lp2lp_zpk

	scipy.signal.lsim [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim.html#scipy.signal.lsim]

	cupyx.scipy.signal.lsim

	scipy.signal.lsim2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim2.html#scipy.signal.lsim2]

	-

	scipy.signal.lti [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.html#scipy.signal.lti]

	cupyx.scipy.signal.lti

	scipy.signal.max_len_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.max_len_seq.html#scipy.signal.max_len_seq]

	cupyx.scipy.signal.max_len_seq

	scipy.signal.medfilt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html#scipy.signal.medfilt]

	cupyx.scipy.signal.medfilt

	scipy.signal.medfilt2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt2d.html#scipy.signal.medfilt2d]

	cupyx.scipy.signal.medfilt2d

	scipy.signal.minimum_phase [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.minimum_phase.html#scipy.signal.minimum_phase]

	cupyx.scipy.signal.minimum_phase

	scipy.signal.morlet [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet.html#scipy.signal.morlet]

	cupyx.scipy.signal.morlet

	scipy.signal.morlet2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet2.html#scipy.signal.morlet2]

	cupyx.scipy.signal.morlet2

	scipy.signal.normalize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.normalize.html#scipy.signal.normalize]

	cupyx.scipy.signal.normalize

	scipy.signal.nuttall

	-

	scipy.signal.oaconvolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.oaconvolve.html#scipy.signal.oaconvolve]

	cupyx.scipy.signal.oaconvolve

	scipy.signal.order_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.order_filter.html#scipy.signal.order_filter]

	cupyx.scipy.signal.order_filter

	scipy.signal.parzen

	-

	scipy.signal.peak_prominences [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html#scipy.signal.peak_prominences]

	cupyx.scipy.signal.peak_prominences

	scipy.signal.peak_widths [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_widths.html#scipy.signal.peak_widths]

	cupyx.scipy.signal.peak_widths

	scipy.signal.periodogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram]

	cupyx.scipy.signal.periodogram

	scipy.signal.place_poles [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html#scipy.signal.place_poles]

	cupyx.scipy.signal.place_poles

	scipy.signal.qmf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qmf.html#scipy.signal.qmf]

	cupyx.scipy.signal.qmf

	scipy.signal.qspline1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d.html#scipy.signal.qspline1d]

	cupyx.scipy.signal.qspline1d

	scipy.signal.qspline1d_eval [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d_eval.html#scipy.signal.qspline1d_eval]

	cupyx.scipy.signal.qspline1d_eval

	scipy.signal.qspline2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline2d.html#scipy.signal.qspline2d]

	cupyx.scipy.signal.qspline2d

	scipy.signal.quadratic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.quadratic.html#scipy.signal.quadratic]

	-

	scipy.signal.remez [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.remez.html#scipy.signal.remez]

	-

	scipy.signal.resample [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html#scipy.signal.resample]

	cupyx.scipy.signal.resample

	scipy.signal.resample_poly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html#scipy.signal.resample_poly]

	cupyx.scipy.signal.resample_poly

	scipy.signal.residue [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residue.html#scipy.signal.residue]

	cupyx.scipy.signal.residue

	scipy.signal.residuez [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residuez.html#scipy.signal.residuez]

	cupyx.scipy.signal.residuez

	scipy.signal.ricker [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ricker.html#scipy.signal.ricker]

	cupyx.scipy.signal.ricker

	scipy.signal.savgol_coeffs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs]

	cupyx.scipy.signal.savgol_coeffs

	scipy.signal.savgol_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter]

	cupyx.scipy.signal.savgol_filter

	scipy.signal.sawtooth [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sawtooth.html#scipy.signal.sawtooth]

	cupyx.scipy.signal.sawtooth

	scipy.signal.sepfir2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d]

	cupyx.scipy.signal.sepfir2d

	scipy.signal.sos2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2tf.html#scipy.signal.sos2tf]

	cupyx.scipy.signal.sos2tf

	scipy.signal.sos2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2zpk.html#scipy.signal.sos2zpk]

	cupyx.scipy.signal.sos2zpk

	scipy.signal.sosfilt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt]

	cupyx.scipy.signal.sosfilt

	scipy.signal.sosfilt_zi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt_zi.html#scipy.signal.sosfilt_zi]

	cupyx.scipy.signal.sosfilt_zi

	scipy.signal.sosfiltfilt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt]

	cupyx.scipy.signal.sosfiltfilt

	scipy.signal.sosfreqz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfreqz.html#scipy.signal.sosfreqz]

	cupyx.scipy.signal.sosfreqz

	scipy.signal.spectrogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html#scipy.signal.spectrogram]

	cupyx.scipy.signal.spectrogram

	scipy.signal.spline_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spline_filter.html#scipy.signal.spline_filter]

	cupyx.scipy.signal.spline_filter

	scipy.signal.square [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.square.html#scipy.signal.square]

	cupyx.scipy.signal.square

	scipy.signal.ss2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf]

	cupyx.scipy.signal.ss2tf

	scipy.signal.ss2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk]

	cupyx.scipy.signal.ss2zpk

	scipy.signal.step [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step.html#scipy.signal.step]

	cupyx.scipy.signal.step

	scipy.signal.step2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step2.html#scipy.signal.step2]

	-

	scipy.signal.stft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.signal.stft]

	cupyx.scipy.signal.stft

	scipy.signal.sweep_poly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sweep_poly.html#scipy.signal.sweep_poly]

	-

	scipy.signal.symiirorder1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder1.html#scipy.signal.symiirorder1]

	cupyx.scipy.signal.symiirorder1

	scipy.signal.symiirorder2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder2.html#scipy.signal.symiirorder2]

	cupyx.scipy.signal.symiirorder2

	scipy.signal.tf2sos [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2sos.html#scipy.signal.tf2sos]

	cupyx.scipy.signal.tf2sos

	scipy.signal.tf2ss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss]

	cupyx.scipy.signal.tf2ss

	scipy.signal.tf2zpk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk]

	cupyx.scipy.signal.tf2zpk

	scipy.signal.triang

	-

	scipy.signal.tukey

	-

	scipy.signal.unique_roots [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots]

	cupyx.scipy.signal.unique_roots

	scipy.signal.unit_impulse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unit_impulse.html#scipy.signal.unit_impulse]

	cupyx.scipy.signal.unit_impulse

	scipy.signal.upfirdn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html#scipy.signal.upfirdn]

	cupyx.scipy.signal.upfirdn

	scipy.signal.vectorstrength [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.vectorstrength.html#scipy.signal.vectorstrength]

	cupyx.scipy.signal.vectorstrength

	scipy.signal.welch [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch]

	cupyx.scipy.signal.welch

	scipy.signal.wiener [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener]

	cupyx.scipy.signal.wiener

	scipy.signal.zoom_fft [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zoom_fft.html#scipy.signal.zoom_fft]

	cupyx.scipy.signal.zoom_fft

	scipy.signal.zpk2sos [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2sos.html#scipy.signal.zpk2sos]

	cupyx.scipy.signal.zpk2sos

	scipy.signal.zpk2ss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss]

	cupyx.scipy.signal.zpk2ss

	scipy.signal.zpk2tf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf]

	cupyx.scipy.signal.zpk2tf

Sparse Matrices

	SciPy

	CuPy

	scipy.sparse.block_diag [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.block_diag.html#scipy.sparse.block_diag]

	-

	scipy.sparse.bmat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bmat.html#scipy.sparse.bmat]

	cupyx.scipy.sparse.bmat

	scipy.sparse.bsr_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_array.html#scipy.sparse.bsr_array]

	-

	scipy.sparse.bsr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.html#scipy.sparse.bsr_matrix]

	-

	scipy.sparse.coo_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_array.html#scipy.sparse.coo_array]

	-

	scipy.sparse.coo_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix]

	cupyx.scipy.sparse.coo_matrix

	scipy.sparse.csc_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_array.html#scipy.sparse.csc_array]

	-

	scipy.sparse.csc_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix]

	cupyx.scipy.sparse.csc_matrix

	scipy.sparse.csr_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array]

	-

	scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix]

	cupyx.scipy.sparse.csr_matrix

	scipy.sparse.dia_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_array.html#scipy.sparse.dia_array]

	-

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	cupyx.scipy.sparse.dia_matrix

	scipy.sparse.diags [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.diags.html#scipy.sparse.diags]

	cupyx.scipy.sparse.diags

	scipy.sparse.dok_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_array.html#scipy.sparse.dok_array]

	-

	scipy.sparse.dok_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html#scipy.sparse.dok_matrix]

	-

	scipy.sparse.eye [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.eye.html#scipy.sparse.eye]

	cupyx.scipy.sparse.eye

	scipy.sparse.find [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html#scipy.sparse.find]

	cupyx.scipy.sparse.find

	scipy.sparse.hstack [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.hstack.html#scipy.sparse.hstack]

	cupyx.scipy.sparse.hstack

	scipy.sparse.identity [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.identity.html#scipy.sparse.identity]

	cupyx.scipy.sparse.identity

	scipy.sparse.issparse [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html#scipy.sparse.issparse]

	cupyx.scipy.sparse.issparse

	scipy.sparse.isspmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix.html#scipy.sparse.isspmatrix]

	cupyx.scipy.sparse.isspmatrix

	scipy.sparse.isspmatrix_bsr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_bsr.html#scipy.sparse.isspmatrix_bsr]

	-

	scipy.sparse.isspmatrix_coo [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_coo.html#scipy.sparse.isspmatrix_coo]

	cupyx.scipy.sparse.isspmatrix_coo

	scipy.sparse.isspmatrix_csc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csc.html#scipy.sparse.isspmatrix_csc]

	cupyx.scipy.sparse.isspmatrix_csc

	scipy.sparse.isspmatrix_csr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csr.html#scipy.sparse.isspmatrix_csr]

	cupyx.scipy.sparse.isspmatrix_csr

	scipy.sparse.isspmatrix_dia [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dia.html#scipy.sparse.isspmatrix_dia]

	cupyx.scipy.sparse.isspmatrix_dia

	scipy.sparse.isspmatrix_dok [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dok.html#scipy.sparse.isspmatrix_dok]

	-

	scipy.sparse.isspmatrix_lil [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_lil.html#scipy.sparse.isspmatrix_lil]

	-

	scipy.sparse.kron [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kron.html#scipy.sparse.kron]

	cupyx.scipy.sparse.kron

	scipy.sparse.kronsum [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kronsum.html#scipy.sparse.kronsum]

	cupyx.scipy.sparse.kronsum

	scipy.sparse.lil_array [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_array.html#scipy.sparse.lil_array]

	-

	scipy.sparse.lil_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix]

	-

	scipy.sparse.load_npz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.load_npz.html#scipy.sparse.load_npz]

	-

	scipy.sparse.rand [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.rand.html#scipy.sparse.rand]

	cupyx.scipy.sparse.rand

	scipy.sparse.random [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.random.html#scipy.sparse.random]

	cupyx.scipy.sparse.random

	scipy.sparse.save_npz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.save_npz.html#scipy.sparse.save_npz]

	-

	scipy.sparse.sparray [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.sparray.html#scipy.sparse.sparray]

	-

	scipy.sparse.spdiags [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags]

	cupyx.scipy.sparse.spdiags

	scipy.sparse.spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]

	cupyx.scipy.sparse.spmatrix

	scipy.sparse.tril [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.tril.html#scipy.sparse.tril]

	cupyx.scipy.sparse.tril

	scipy.sparse.triu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.triu.html#scipy.sparse.triu]

	cupyx.scipy.sparse.triu

	scipy.sparse.vstack [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.vstack.html#scipy.sparse.vstack]

	cupyx.scipy.sparse.vstack

Sparse Linear Algebra

	SciPy

	CuPy

	scipy.sparse.linalg.LinearOperator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator]

	cupyx.scipy.sparse.linalg.LinearOperator

	scipy.sparse.linalg.SuperLU [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.SuperLU.html#scipy.sparse.linalg.SuperLU]

	cupyx.scipy.sparse.linalg.SuperLU

	scipy.sparse.linalg.aslinearoperator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.aslinearoperator.html#scipy.sparse.linalg.aslinearoperator]

	cupyx.scipy.sparse.linalg.aslinearoperator

	scipy.sparse.linalg.bicg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicg.html#scipy.sparse.linalg.bicg]

	-

	scipy.sparse.linalg.bicgstab [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab]

	-

	scipy.sparse.linalg.cg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.sparse.linalg.cg]

	cupyx.scipy.sparse.linalg.cg

	scipy.sparse.linalg.cgs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs]

	cupyx.scipy.sparse.linalg.cgs

	scipy.sparse.linalg.eigs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs]

	-

	scipy.sparse.linalg.eigsh [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh]

	cupyx.scipy.sparse.linalg.eigsh

	scipy.sparse.linalg.expm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm.html#scipy.sparse.linalg.expm]

	-

	scipy.sparse.linalg.expm_multiply [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm_multiply.html#scipy.sparse.linalg.expm_multiply]

	-

	scipy.sparse.linalg.factorized [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.factorized.html#scipy.sparse.linalg.factorized]

	cupyx.scipy.sparse.linalg.factorized

	scipy.sparse.linalg.gcrotmk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gcrotmk.html#scipy.sparse.linalg.gcrotmk]

	-

	scipy.sparse.linalg.gmres [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres]

	cupyx.scipy.sparse.linalg.gmres

	scipy.sparse.linalg.inv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.inv.html#scipy.sparse.linalg.inv]

	-

	scipy.sparse.linalg.lgmres [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lgmres.html#scipy.sparse.linalg.lgmres]

	-

	scipy.sparse.linalg.lobpcg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html#scipy.sparse.linalg.lobpcg]

	cupyx.scipy.sparse.linalg.lobpcg

	scipy.sparse.linalg.lsmr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr]

	cupyx.scipy.sparse.linalg.lsmr

	scipy.sparse.linalg.lsqr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr]

	cupyx.scipy.sparse.linalg.lsqr

	scipy.sparse.linalg.minres [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.minres.html#scipy.sparse.linalg.minres]

	cupyx.scipy.sparse.linalg.minres

	scipy.sparse.linalg.norm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm]

	cupyx.scipy.sparse.linalg.norm

	scipy.sparse.linalg.onenormest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.onenormest.html#scipy.sparse.linalg.onenormest]

	-

	scipy.sparse.linalg.qmr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.qmr.html#scipy.sparse.linalg.qmr]

	-

	scipy.sparse.linalg.spilu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu]

	cupyx.scipy.sparse.linalg.spilu

	scipy.sparse.linalg.splu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu]

	cupyx.scipy.sparse.linalg.splu

	scipy.sparse.linalg.spsolve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html#scipy.sparse.linalg.spsolve]

	cupyx.scipy.sparse.linalg.spsolve

	scipy.sparse.linalg.spsolve_triangular [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve_triangular.html#scipy.sparse.linalg.spsolve_triangular]

	cupyx.scipy.sparse.linalg.spsolve_triangular

	scipy.sparse.linalg.svds [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds]

	cupyx.scipy.sparse.linalg.svds

	scipy.sparse.linalg.tfqmr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.tfqmr.html#scipy.sparse.linalg.tfqmr]

	-

	scipy.sparse.linalg.use_solver [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.use_solver.html#scipy.sparse.linalg.use_solver]

	-

Compressed sparse graph routines

	SciPy

	CuPy

	scipy.sparse.csgraph.bellman_ford [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.bellman_ford.html#scipy.sparse.csgraph.bellman_ford]

	-

	scipy.sparse.csgraph.breadth_first_order [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_order.html#scipy.sparse.csgraph.breadth_first_order]

	-

	scipy.sparse.csgraph.breadth_first_tree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_tree.html#scipy.sparse.csgraph.breadth_first_tree]

	-

	scipy.sparse.csgraph.connected_components [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html#scipy.sparse.csgraph.connected_components]

	cupyx.scipy.sparse.csgraph.connected_components

	scipy.sparse.csgraph.construct_dist_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.construct_dist_matrix.html#scipy.sparse.csgraph.construct_dist_matrix]

	-

	scipy.sparse.csgraph.csgraph_from_dense [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_dense.html#scipy.sparse.csgraph.csgraph_from_dense]

	-

	scipy.sparse.csgraph.csgraph_from_masked [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_masked.html#scipy.sparse.csgraph.csgraph_from_masked]

	-

	scipy.sparse.csgraph.csgraph_masked_from_dense [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_masked_from_dense.html#scipy.sparse.csgraph.csgraph_masked_from_dense]

	-

	scipy.sparse.csgraph.csgraph_to_dense [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_dense.html#scipy.sparse.csgraph.csgraph_to_dense]

	-

	scipy.sparse.csgraph.csgraph_to_masked [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_masked.html#scipy.sparse.csgraph.csgraph_to_masked]

	-

	scipy.sparse.csgraph.depth_first_order [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_order.html#scipy.sparse.csgraph.depth_first_order]

	-

	scipy.sparse.csgraph.depth_first_tree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_tree.html#scipy.sparse.csgraph.depth_first_tree]

	-

	scipy.sparse.csgraph.dijkstra [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.dijkstra.html#scipy.sparse.csgraph.dijkstra]

	-

	scipy.sparse.csgraph.floyd_warshall [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.floyd_warshall.html#scipy.sparse.csgraph.floyd_warshall]

	-

	scipy.sparse.csgraph.johnson [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.johnson.html#scipy.sparse.csgraph.johnson]

	-

	scipy.sparse.csgraph.laplacian [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.laplacian.html#scipy.sparse.csgraph.laplacian]

	-

	scipy.sparse.csgraph.maximum_bipartite_matching [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html#scipy.sparse.csgraph.maximum_bipartite_matching]

	-

	scipy.sparse.csgraph.maximum_flow [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_flow.html#scipy.sparse.csgraph.maximum_flow]

	-

	scipy.sparse.csgraph.min_weight_full_bipartite_matching [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.min_weight_full_bipartite_matching.html#scipy.sparse.csgraph.min_weight_full_bipartite_matching]

	-

	scipy.sparse.csgraph.minimum_spanning_tree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.minimum_spanning_tree.html#scipy.sparse.csgraph.minimum_spanning_tree]

	-

	scipy.sparse.csgraph.reconstruct_path [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reconstruct_path.html#scipy.sparse.csgraph.reconstruct_path]

	-

	scipy.sparse.csgraph.reverse_cuthill_mckee [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reverse_cuthill_mckee.html#scipy.sparse.csgraph.reverse_cuthill_mckee]

	-

	scipy.sparse.csgraph.shortest_path [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.shortest_path.html#scipy.sparse.csgraph.shortest_path]

	-

	scipy.sparse.csgraph.structural_rank [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.structural_rank.html#scipy.sparse.csgraph.structural_rank]

	-

Special Functions

	SciPy

	CuPy

	scipy.special.agm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.agm.html#scipy.special.agm]

	-

	scipy.special.ai_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ai_zeros.html#scipy.special.ai_zeros]

	-

	scipy.special.airy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.airy.html#scipy.special.airy]

	-

	scipy.special.airye [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.airye.html#scipy.special.airye]

	-

	scipy.special.assoc_laguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.assoc_laguerre.html#scipy.special.assoc_laguerre]

	-

	scipy.special.bdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtr.html#scipy.special.bdtr]

	cupyx.scipy.special.bdtr

	scipy.special.bdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrc.html#scipy.special.bdtrc]

	cupyx.scipy.special.bdtrc

	scipy.special.bdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtri.html#scipy.special.bdtri]

	cupyx.scipy.special.bdtri

	scipy.special.bdtrik [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrik.html#scipy.special.bdtrik]

	-

	scipy.special.bdtrin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrin.html#scipy.special.bdtrin]

	-

	scipy.special.bei [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bei.html#scipy.special.bei]

	-

	scipy.special.bei_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bei_zeros.html#scipy.special.bei_zeros]

	-

	scipy.special.beip [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beip.html#scipy.special.beip]

	-

	scipy.special.beip_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beip_zeros.html#scipy.special.beip_zeros]

	-

	scipy.special.ber [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ber.html#scipy.special.ber]

	-

	scipy.special.ber_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ber_zeros.html#scipy.special.ber_zeros]

	-

	scipy.special.bernoulli [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bernoulli.html#scipy.special.bernoulli]

	-

	scipy.special.berp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.berp.html#scipy.special.berp]

	-

	scipy.special.berp_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.berp_zeros.html#scipy.special.berp_zeros]

	-

	scipy.special.besselpoly [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.besselpoly.html#scipy.special.besselpoly]

	-

	scipy.special.beta [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beta.html#scipy.special.beta]

	cupyx.scipy.special.beta

	scipy.special.betainc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betainc.html#scipy.special.betainc]

	cupyx.scipy.special.betainc

	scipy.special.betaincinv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betaincinv.html#scipy.special.betaincinv]

	cupyx.scipy.special.betaincinv

	scipy.special.betaln [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betaln.html#scipy.special.betaln]

	cupyx.scipy.special.betaln

	scipy.special.bi_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bi_zeros.html#scipy.special.bi_zeros]

	-

	scipy.special.binom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.binom.html#scipy.special.binom]

	cupyx.scipy.special.binom

	scipy.special.boxcox [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox.html#scipy.special.boxcox]

	cupyx.scipy.special.boxcox

	scipy.special.boxcox1p [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox1p.html#scipy.special.boxcox1p]

	cupyx.scipy.special.boxcox1p

	scipy.special.btdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtr.html#scipy.special.btdtr]

	cupyx.scipy.special.btdtr

	scipy.special.btdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtri.html#scipy.special.btdtri]

	cupyx.scipy.special.btdtri

	scipy.special.btdtria [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtria.html#scipy.special.btdtria]

	-

	scipy.special.btdtrib [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtrib.html#scipy.special.btdtrib]

	-

	scipy.special.c_roots

	-

	scipy.special.cbrt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cbrt.html#scipy.special.cbrt]

	cupyx.scipy.special.cbrt

	scipy.special.cg_roots

	-

	scipy.special.chdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtr.html#scipy.special.chdtr]

	cupyx.scipy.special.chdtr

	scipy.special.chdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtrc.html#scipy.special.chdtrc]

	cupyx.scipy.special.chdtrc

	scipy.special.chdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtri.html#scipy.special.chdtri]

	cupyx.scipy.special.chdtri

	scipy.special.chdtriv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtriv.html#scipy.special.chdtriv]

	-

	scipy.special.chebyc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyc.html#scipy.special.chebyc]

	-

	scipy.special.chebys [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebys.html#scipy.special.chebys]

	-

	scipy.special.chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyt.html#scipy.special.chebyt]

	-

	scipy.special.chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyu.html#scipy.special.chebyu]

	-

	scipy.special.chndtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtr.html#scipy.special.chndtr]

	-

	scipy.special.chndtridf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtridf.html#scipy.special.chndtridf]

	-

	scipy.special.chndtrinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtrinc.html#scipy.special.chndtrinc]

	-

	scipy.special.chndtrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtrix.html#scipy.special.chndtrix]

	-

	scipy.special.clpmn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.clpmn.html#scipy.special.clpmn]

	-

	scipy.special.comb [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.comb.html#scipy.special.comb]

	-

	scipy.special.cosdg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cosdg.html#scipy.special.cosdg]

	cupyx.scipy.special.cosdg

	scipy.special.cosm1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cosm1.html#scipy.special.cosm1]

	cupyx.scipy.special.cosm1

	scipy.special.cotdg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cotdg.html#scipy.special.cotdg]

	cupyx.scipy.special.cotdg

	scipy.special.dawsn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.dawsn.html#scipy.special.dawsn]

	-

	scipy.special.digamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma]

	cupyx.scipy.special.digamma

	scipy.special.diric [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.diric.html#scipy.special.diric]

	-

	scipy.special.ellip_harm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm.html#scipy.special.ellip_harm]

	-

	scipy.special.ellip_harm_2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm_2.html#scipy.special.ellip_harm_2]

	-

	scipy.special.ellip_normal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_normal.html#scipy.special.ellip_normal]

	-

	scipy.special.ellipe [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html#scipy.special.ellipe]

	-

	scipy.special.ellipeinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipeinc.html#scipy.special.ellipeinc]

	-

	scipy.special.ellipj [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipj.html#scipy.special.ellipj]

	cupyx.scipy.special.ellipj

	scipy.special.ellipk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipk.html#scipy.special.ellipk]

	cupyx.scipy.special.ellipk

	scipy.special.ellipkinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipkinc.html#scipy.special.ellipkinc]

	-

	scipy.special.ellipkm1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipkm1.html#scipy.special.ellipkm1]

	cupyx.scipy.special.ellipkm1

	scipy.special.elliprc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprc.html#scipy.special.elliprc]

	-

	scipy.special.elliprd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprd.html#scipy.special.elliprd]

	-

	scipy.special.elliprf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprf.html#scipy.special.elliprf]

	-

	scipy.special.elliprg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprg.html#scipy.special.elliprg]

	-

	scipy.special.elliprj [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprj.html#scipy.special.elliprj]

	-

	scipy.special.entr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.entr.html#scipy.special.entr]

	cupyx.scipy.special.entr

	scipy.special.erf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erf.html#scipy.special.erf]

	cupyx.scipy.special.erf

	scipy.special.erf_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erf_zeros.html#scipy.special.erf_zeros]

	-

	scipy.special.erfc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfc.html#scipy.special.erfc]

	cupyx.scipy.special.erfc

	scipy.special.erfcinv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfcinv.html#scipy.special.erfcinv]

	cupyx.scipy.special.erfcinv

	scipy.special.erfcx [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfcx.html#scipy.special.erfcx]

	cupyx.scipy.special.erfcx

	scipy.special.erfi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfi.html#scipy.special.erfi]

	-

	scipy.special.erfinv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfinv.html#scipy.special.erfinv]

	cupyx.scipy.special.erfinv

	scipy.special.errstate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.errstate.html#scipy.special.errstate]

	-

	scipy.special.euler [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.euler.html#scipy.special.euler]

	-

	scipy.special.eval_chebyc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyc.html#scipy.special.eval_chebyc]

	-

	scipy.special.eval_chebys [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebys.html#scipy.special.eval_chebys]

	-

	scipy.special.eval_chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyt.html#scipy.special.eval_chebyt]

	-

	scipy.special.eval_chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyu.html#scipy.special.eval_chebyu]

	-

	scipy.special.eval_gegenbauer [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_gegenbauer.html#scipy.special.eval_gegenbauer]

	-

	scipy.special.eval_genlaguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_genlaguerre.html#scipy.special.eval_genlaguerre]

	-

	scipy.special.eval_hermite [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_hermite.html#scipy.special.eval_hermite]

	-

	scipy.special.eval_hermitenorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_hermitenorm.html#scipy.special.eval_hermitenorm]

	-

	scipy.special.eval_jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html#scipy.special.eval_jacobi]

	-

	scipy.special.eval_laguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_laguerre.html#scipy.special.eval_laguerre]

	-

	scipy.special.eval_legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_legendre.html#scipy.special.eval_legendre]

	-

	scipy.special.eval_sh_chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_chebyt.html#scipy.special.eval_sh_chebyt]

	-

	scipy.special.eval_sh_chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_chebyu.html#scipy.special.eval_sh_chebyu]

	-

	scipy.special.eval_sh_jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_jacobi.html#scipy.special.eval_sh_jacobi]

	-

	scipy.special.eval_sh_legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_legendre.html#scipy.special.eval_sh_legendre]

	-

	scipy.special.exp1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp1.html#scipy.special.exp1]

	cupyx.scipy.special.exp1

	scipy.special.exp10 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp10.html#scipy.special.exp10]

	cupyx.scipy.special.exp10

	scipy.special.exp2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp2.html#scipy.special.exp2]

	cupyx.scipy.special.exp2

	scipy.special.expi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html#scipy.special.expi]

	cupyx.scipy.special.expi

	scipy.special.expit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html#scipy.special.expit]

	cupyx.scipy.special.expit

	scipy.special.expm1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expm1.html#scipy.special.expm1]

	cupyx.scipy.special.expm1

	scipy.special.expn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expn.html#scipy.special.expn]

	cupyx.scipy.special.expn

	scipy.special.exprel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exprel.html#scipy.special.exprel]

	cupyx.scipy.special.exprel

	scipy.special.factorial [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial.html#scipy.special.factorial]

	-

	scipy.special.factorial2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial2.html#scipy.special.factorial2]

	-

	scipy.special.factorialk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorialk.html#scipy.special.factorialk]

	-

	scipy.special.fdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtr.html#scipy.special.fdtr]

	cupyx.scipy.special.fdtr

	scipy.special.fdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtrc.html#scipy.special.fdtrc]

	cupyx.scipy.special.fdtrc

	scipy.special.fdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtri.html#scipy.special.fdtri]

	cupyx.scipy.special.fdtri

	scipy.special.fdtridfd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtridfd.html#scipy.special.fdtridfd]

	-

	scipy.special.fresnel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnel.html#scipy.special.fresnel]

	-

	scipy.special.fresnel_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnel_zeros.html#scipy.special.fresnel_zeros]

	-

	scipy.special.fresnelc_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnelc_zeros.html#scipy.special.fresnelc_zeros]

	-

	scipy.special.fresnels_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnels_zeros.html#scipy.special.fresnels_zeros]

	-

	scipy.special.gamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gamma.html#scipy.special.gamma]

	cupyx.scipy.special.gamma

	scipy.special.gammainc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainc.html#scipy.special.gammainc]

	cupyx.scipy.special.gammainc

	scipy.special.gammaincc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.html#scipy.special.gammaincc]

	cupyx.scipy.special.gammaincc

	scipy.special.gammainccinv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainccinv.html#scipy.special.gammainccinv]

	cupyx.scipy.special.gammainccinv

	scipy.special.gammaincinv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincinv.html#scipy.special.gammaincinv]

	cupyx.scipy.special.gammaincinv

	scipy.special.gammaln [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaln.html#scipy.special.gammaln]

	cupyx.scipy.special.gammaln

	scipy.special.gammasgn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammasgn.html#scipy.special.gammasgn]

	cupyx.scipy.special.gammasgn

	scipy.special.gdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtr.html#scipy.special.gdtr]

	cupyx.scipy.special.gdtr

	scipy.special.gdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrc.html#scipy.special.gdtrc]

	cupyx.scipy.special.gdtrc

	scipy.special.gdtria [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtria.html#scipy.special.gdtria]

	-

	scipy.special.gdtrib [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrib.html#scipy.special.gdtrib]

	-

	scipy.special.gdtrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrix.html#scipy.special.gdtrix]

	-

	scipy.special.gegenbauer [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gegenbauer.html#scipy.special.gegenbauer]

	-

	scipy.special.genlaguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.genlaguerre.html#scipy.special.genlaguerre]

	-

	scipy.special.geterr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.geterr.html#scipy.special.geterr]

	-

	scipy.special.h1vp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h1vp.html#scipy.special.h1vp]

	-

	scipy.special.h2vp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h2vp.html#scipy.special.h2vp]

	-

	scipy.special.h_roots

	-

	scipy.special.hankel1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel1.html#scipy.special.hankel1]

	-

	scipy.special.hankel1e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel1e.html#scipy.special.hankel1e]

	-

	scipy.special.hankel2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel2.html#scipy.special.hankel2]

	-

	scipy.special.hankel2e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel2e.html#scipy.special.hankel2e]

	-

	scipy.special.he_roots

	-

	scipy.special.hermite [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermite.html#scipy.special.hermite]

	-

	scipy.special.hermitenorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermitenorm.html#scipy.special.hermitenorm]

	-

	scipy.special.huber [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.huber.html#scipy.special.huber]

	cupyx.scipy.special.huber

	scipy.special.hyp0f1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp0f1.html#scipy.special.hyp0f1]

	-

	scipy.special.hyp1f1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp1f1.html#scipy.special.hyp1f1]

	-

	scipy.special.hyp2f1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp2f1.html#scipy.special.hyp2f1]

	-

	scipy.special.hyperu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyperu.html#scipy.special.hyperu]

	-

	scipy.special.i0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i0.html#scipy.special.i0]

	cupyx.scipy.special.i0

	scipy.special.i0e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i0e.html#scipy.special.i0e]

	cupyx.scipy.special.i0e

	scipy.special.i1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i1.html#scipy.special.i1]

	cupyx.scipy.special.i1

	scipy.special.i1e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i1e.html#scipy.special.i1e]

	cupyx.scipy.special.i1e

	scipy.special.inv_boxcox [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox.html#scipy.special.inv_boxcox]

	cupyx.scipy.special.inv_boxcox

	scipy.special.inv_boxcox1p [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox1p.html#scipy.special.inv_boxcox1p]

	cupyx.scipy.special.inv_boxcox1p

	scipy.special.it2i0k0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2i0k0.html#scipy.special.it2i0k0]

	-

	scipy.special.it2j0y0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2j0y0.html#scipy.special.it2j0y0]

	-

	scipy.special.it2struve0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2struve0.html#scipy.special.it2struve0]

	-

	scipy.special.itairy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itairy.html#scipy.special.itairy]

	-

	scipy.special.iti0k0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iti0k0.html#scipy.special.iti0k0]

	-

	scipy.special.itj0y0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itj0y0.html#scipy.special.itj0y0]

	-

	scipy.special.itmodstruve0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itmodstruve0.html#scipy.special.itmodstruve0]

	-

	scipy.special.itstruve0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itstruve0.html#scipy.special.itstruve0]

	-

	scipy.special.iv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iv.html#scipy.special.iv]

	-

	scipy.special.ive [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ive.html#scipy.special.ive]

	-

	scipy.special.ivp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ivp.html#scipy.special.ivp]

	-

	scipy.special.j0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.j0.html#scipy.special.j0]

	cupyx.scipy.special.j0

	scipy.special.j1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.j1.html#scipy.special.j1]

	cupyx.scipy.special.j1

	scipy.special.j_roots

	-

	scipy.special.jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jacobi.html#scipy.special.jacobi]

	-

	scipy.special.jn

	-

	scipy.special.jn_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html#scipy.special.jn_zeros]

	-

	scipy.special.jnjnp_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnjnp_zeros.html#scipy.special.jnjnp_zeros]

	-

	scipy.special.jnp_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnp_zeros.html#scipy.special.jnp_zeros]

	-

	scipy.special.jnyn_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnyn_zeros.html#scipy.special.jnyn_zeros]

	-

	scipy.special.js_roots

	-

	scipy.special.jv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jv.html#scipy.special.jv]

	-

	scipy.special.jve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jve.html#scipy.special.jve]

	-

	scipy.special.jvp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jvp.html#scipy.special.jvp]

	-

	scipy.special.k0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k0.html#scipy.special.k0]

	cupyx.scipy.special.k0

	scipy.special.k0e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k0e.html#scipy.special.k0e]

	cupyx.scipy.special.k0e

	scipy.special.k1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k1.html#scipy.special.k1]

	cupyx.scipy.special.k1

	scipy.special.k1e [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k1e.html#scipy.special.k1e]

	cupyx.scipy.special.k1e

	scipy.special.kei [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kei.html#scipy.special.kei]

	-

	scipy.special.kei_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kei_zeros.html#scipy.special.kei_zeros]

	-

	scipy.special.keip [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.keip.html#scipy.special.keip]

	-

	scipy.special.keip_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.keip_zeros.html#scipy.special.keip_zeros]

	-

	scipy.special.kelvin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kelvin.html#scipy.special.kelvin]

	-

	scipy.special.kelvin_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kelvin_zeros.html#scipy.special.kelvin_zeros]

	-

	scipy.special.ker [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ker.html#scipy.special.ker]

	-

	scipy.special.ker_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ker_zeros.html#scipy.special.ker_zeros]

	-

	scipy.special.kerp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kerp.html#scipy.special.kerp]

	-

	scipy.special.kerp_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kerp_zeros.html#scipy.special.kerp_zeros]

	-

	scipy.special.kl_div [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html#scipy.special.kl_div]

	cupyx.scipy.special.kl_div

	scipy.special.kn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kn.html#scipy.special.kn]

	-

	scipy.special.kolmogi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kolmogi.html#scipy.special.kolmogi]

	-

	scipy.special.kolmogorov [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kolmogorov.html#scipy.special.kolmogorov]

	-

	scipy.special.kv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kv.html#scipy.special.kv]

	-

	scipy.special.kve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kve.html#scipy.special.kve]

	-

	scipy.special.kvp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kvp.html#scipy.special.kvp]

	-

	scipy.special.l_roots

	-

	scipy.special.la_roots

	-

	scipy.special.laguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.laguerre.html#scipy.special.laguerre]

	-

	scipy.special.lambertw [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html#scipy.special.lambertw]

	-

	scipy.special.legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.legendre.html#scipy.special.legendre]

	-

	scipy.special.lmbda [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lmbda.html#scipy.special.lmbda]

	-

	scipy.special.log1p [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log1p.html#scipy.special.log1p]

	cupyx.scipy.special.log1p

	scipy.special.log_expit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_expit.html#scipy.special.log_expit]

	cupyx.scipy.special.log_expit

	scipy.special.log_ndtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_ndtr.html#scipy.special.log_ndtr]

	cupyx.scipy.special.log_ndtr

	scipy.special.log_softmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html#scipy.special.log_softmax]

	cupyx.scipy.special.log_softmax

	scipy.special.loggamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.loggamma.html#scipy.special.loggamma]

	cupyx.scipy.special.loggamma

	scipy.special.logit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logit.html#scipy.special.logit]

	cupyx.scipy.special.logit

	scipy.special.logsumexp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html#scipy.special.logsumexp]

	cupyx.scipy.special.logsumexp

	scipy.special.lpmn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmn.html#scipy.special.lpmn]

	-

	scipy.special.lpmv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmv.html#scipy.special.lpmv]

	cupyx.scipy.special.lpmv

	scipy.special.lpn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpn.html#scipy.special.lpn]

	-

	scipy.special.lqmn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqmn.html#scipy.special.lqmn]

	-

	scipy.special.lqn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqn.html#scipy.special.lqn]

	-

	scipy.special.mathieu_a [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_a.html#scipy.special.mathieu_a]

	-

	scipy.special.mathieu_b [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_b.html#scipy.special.mathieu_b]

	-

	scipy.special.mathieu_cem [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_cem.html#scipy.special.mathieu_cem]

	-

	scipy.special.mathieu_even_coef [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_even_coef.html#scipy.special.mathieu_even_coef]

	-

	scipy.special.mathieu_modcem1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modcem1.html#scipy.special.mathieu_modcem1]

	-

	scipy.special.mathieu_modcem2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modcem2.html#scipy.special.mathieu_modcem2]

	-

	scipy.special.mathieu_modsem1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modsem1.html#scipy.special.mathieu_modsem1]

	-

	scipy.special.mathieu_modsem2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modsem2.html#scipy.special.mathieu_modsem2]

	-

	scipy.special.mathieu_odd_coef [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_odd_coef.html#scipy.special.mathieu_odd_coef]

	-

	scipy.special.mathieu_sem [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_sem.html#scipy.special.mathieu_sem]

	-

	scipy.special.modfresnelm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modfresnelm.html#scipy.special.modfresnelm]

	-

	scipy.special.modfresnelp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modfresnelp.html#scipy.special.modfresnelp]

	-

	scipy.special.modstruve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modstruve.html#scipy.special.modstruve]

	-

	scipy.special.multigammaln [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.multigammaln.html#scipy.special.multigammaln]

	cupyx.scipy.special.multigammaln

	scipy.special.nbdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtr.html#scipy.special.nbdtr]

	cupyx.scipy.special.nbdtr

	scipy.special.nbdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrc.html#scipy.special.nbdtrc]

	cupyx.scipy.special.nbdtrc

	scipy.special.nbdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtri.html#scipy.special.nbdtri]

	cupyx.scipy.special.nbdtri

	scipy.special.nbdtrik [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrik.html#scipy.special.nbdtrik]

	-

	scipy.special.nbdtrin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrin.html#scipy.special.nbdtrin]

	-

	scipy.special.ncfdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtr.html#scipy.special.ncfdtr]

	-

	scipy.special.ncfdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtri.html#scipy.special.ncfdtri]

	-

	scipy.special.ncfdtridfd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtridfd.html#scipy.special.ncfdtridfd]

	-

	scipy.special.ncfdtridfn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtridfn.html#scipy.special.ncfdtridfn]

	-

	scipy.special.ncfdtrinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtrinc.html#scipy.special.ncfdtrinc]

	-

	scipy.special.nctdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtr.html#scipy.special.nctdtr]

	-

	scipy.special.nctdtridf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtridf.html#scipy.special.nctdtridf]

	-

	scipy.special.nctdtrinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtrinc.html#scipy.special.nctdtrinc]

	-

	scipy.special.nctdtrit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtrit.html#scipy.special.nctdtrit]

	-

	scipy.special.ndtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtr.html#scipy.special.ndtr]

	cupyx.scipy.special.ndtr

	scipy.special.ndtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri.html#scipy.special.ndtri]

	cupyx.scipy.special.ndtri

	scipy.special.ndtri_exp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri_exp.html#scipy.special.ndtri_exp]

	-

	scipy.special.nrdtrimn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nrdtrimn.html#scipy.special.nrdtrimn]

	-

	scipy.special.nrdtrisd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nrdtrisd.html#scipy.special.nrdtrisd]

	-

	scipy.special.obl_ang1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_ang1.html#scipy.special.obl_ang1]

	-

	scipy.special.obl_ang1_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_ang1_cv.html#scipy.special.obl_ang1_cv]

	-

	scipy.special.obl_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_cv.html#scipy.special.obl_cv]

	-

	scipy.special.obl_cv_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_cv_seq.html#scipy.special.obl_cv_seq]

	-

	scipy.special.obl_rad1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad1.html#scipy.special.obl_rad1]

	-

	scipy.special.obl_rad1_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad1_cv.html#scipy.special.obl_rad1_cv]

	-

	scipy.special.obl_rad2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad2.html#scipy.special.obl_rad2]

	-

	scipy.special.obl_rad2_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad2_cv.html#scipy.special.obl_rad2_cv]

	-

	scipy.special.owens_t [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.owens_t.html#scipy.special.owens_t]

	-

	scipy.special.p_roots

	-

	scipy.special.pbdn_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdn_seq.html#scipy.special.pbdn_seq]

	-

	scipy.special.pbdv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdv.html#scipy.special.pbdv]

	-

	scipy.special.pbdv_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdv_seq.html#scipy.special.pbdv_seq]

	-

	scipy.special.pbvv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbvv.html#scipy.special.pbvv]

	-

	scipy.special.pbvv_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbvv_seq.html#scipy.special.pbvv_seq]

	-

	scipy.special.pbwa [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbwa.html#scipy.special.pbwa]

	-

	scipy.special.pdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtr.html#scipy.special.pdtr]

	cupyx.scipy.special.pdtr

	scipy.special.pdtrc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtrc.html#scipy.special.pdtrc]

	cupyx.scipy.special.pdtrc

	scipy.special.pdtri [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtri.html#scipy.special.pdtri]

	cupyx.scipy.special.pdtri

	scipy.special.pdtrik [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtrik.html#scipy.special.pdtrik]

	-

	scipy.special.perm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.perm.html#scipy.special.perm]

	-

	scipy.special.poch [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.poch.html#scipy.special.poch]

	cupyx.scipy.special.poch

	scipy.special.polygamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.polygamma.html#scipy.special.polygamma]

	cupyx.scipy.special.polygamma

	scipy.special.powm1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.powm1.html#scipy.special.powm1]

	-

	scipy.special.pro_ang1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_ang1.html#scipy.special.pro_ang1]

	-

	scipy.special.pro_ang1_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_ang1_cv.html#scipy.special.pro_ang1_cv]

	-

	scipy.special.pro_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_cv.html#scipy.special.pro_cv]

	-

	scipy.special.pro_cv_seq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_cv_seq.html#scipy.special.pro_cv_seq]

	-

	scipy.special.pro_rad1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad1.html#scipy.special.pro_rad1]

	-

	scipy.special.pro_rad1_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad1_cv.html#scipy.special.pro_rad1_cv]

	-

	scipy.special.pro_rad2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad2.html#scipy.special.pro_rad2]

	-

	scipy.special.pro_rad2_cv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad2_cv.html#scipy.special.pro_rad2_cv]

	-

	scipy.special.ps_roots

	-

	scipy.special.pseudo_huber [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pseudo_huber.html#scipy.special.pseudo_huber]

	cupyx.scipy.special.pseudo_huber

	scipy.special.psi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.psi.html#scipy.special.psi]

	cupyx.scipy.special.psi

	scipy.special.radian [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.radian.html#scipy.special.radian]

	cupyx.scipy.special.radian

	scipy.special.rel_entr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.rel_entr.html#scipy.special.rel_entr]

	cupyx.scipy.special.rel_entr

	scipy.special.rgamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.rgamma.html#scipy.special.rgamma]

	cupyx.scipy.special.rgamma

	scipy.special.riccati_jn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_jn.html#scipy.special.riccati_jn]

	-

	scipy.special.riccati_yn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_yn.html#scipy.special.riccati_yn]

	-

	scipy.special.roots_chebyc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyc.html#scipy.special.roots_chebyc]

	-

	scipy.special.roots_chebys [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebys.html#scipy.special.roots_chebys]

	-

	scipy.special.roots_chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyt.html#scipy.special.roots_chebyt]

	-

	scipy.special.roots_chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyu.html#scipy.special.roots_chebyu]

	-

	scipy.special.roots_gegenbauer [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_gegenbauer.html#scipy.special.roots_gegenbauer]

	-

	scipy.special.roots_genlaguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_genlaguerre.html#scipy.special.roots_genlaguerre]

	-

	scipy.special.roots_hermite [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermite.html#scipy.special.roots_hermite]

	-

	scipy.special.roots_hermitenorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermitenorm.html#scipy.special.roots_hermitenorm]

	-

	scipy.special.roots_jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi]

	-

	scipy.special.roots_laguerre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_laguerre.html#scipy.special.roots_laguerre]

	-

	scipy.special.roots_legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_legendre.html#scipy.special.roots_legendre]

	-

	scipy.special.roots_sh_chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyt.html#scipy.special.roots_sh_chebyt]

	-

	scipy.special.roots_sh_chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyu.html#scipy.special.roots_sh_chebyu]

	-

	scipy.special.roots_sh_jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_jacobi.html#scipy.special.roots_sh_jacobi]

	-

	scipy.special.roots_sh_legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_legendre.html#scipy.special.roots_sh_legendre]

	-

	scipy.special.round [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.round.html#scipy.special.round]

	cupyx.scipy.special.round

	scipy.special.s_roots

	-

	scipy.special.seterr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.seterr.html#scipy.special.seterr]

	-

	scipy.special.sh_chebyt [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyt.html#scipy.special.sh_chebyt]

	-

	scipy.special.sh_chebyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyu.html#scipy.special.sh_chebyu]

	-

	scipy.special.sh_jacobi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_jacobi.html#scipy.special.sh_jacobi]

	-

	scipy.special.sh_legendre [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_legendre.html#scipy.special.sh_legendre]

	-

	scipy.special.shichi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.shichi.html#scipy.special.shichi]

	-

	scipy.special.sici [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sici.html#scipy.special.sici]

	-

	scipy.special.sinc [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sinc.html#scipy.special.sinc]

	cupyx.scipy.special.sinc

	scipy.special.sindg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sindg.html#scipy.special.sindg]

	cupyx.scipy.special.sindg

	scipy.special.smirnov [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.smirnov.html#scipy.special.smirnov]

	-

	scipy.special.smirnovi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.smirnovi.html#scipy.special.smirnovi]

	-

	scipy.special.softmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.softmax.html#scipy.special.softmax]

	cupyx.scipy.special.softmax

	scipy.special.spence [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spence.html#scipy.special.spence]

	-

	scipy.special.sph_harm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html#scipy.special.sph_harm]

	cupyx.scipy.special.sph_harm

	scipy.special.spherical_in [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_in.html#scipy.special.spherical_in]

	-

	scipy.special.spherical_jn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_jn.html#scipy.special.spherical_jn]

	-

	scipy.special.spherical_kn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_kn.html#scipy.special.spherical_kn]

	-

	scipy.special.spherical_yn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html#scipy.special.spherical_yn]

	cupyx.scipy.special.spherical_yn

	scipy.special.stdtr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtr.html#scipy.special.stdtr]

	-

	scipy.special.stdtridf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtridf.html#scipy.special.stdtridf]

	-

	scipy.special.stdtrit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtrit.html#scipy.special.stdtrit]

	-

	scipy.special.struve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.struve.html#scipy.special.struve]

	-

	scipy.special.t_roots

	-

	scipy.special.tandg [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.tandg.html#scipy.special.tandg]

	cupyx.scipy.special.tandg

	scipy.special.tklmbda [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.tklmbda.html#scipy.special.tklmbda]

	-

	scipy.special.ts_roots

	-

	scipy.special.u_roots

	-

	scipy.special.us_roots

	-

	scipy.special.voigt_profile [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.voigt_profile.html#scipy.special.voigt_profile]

	-

	scipy.special.wofz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wofz.html#scipy.special.wofz]

	-

	scipy.special.wright_bessel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wright_bessel.html#scipy.special.wright_bessel]

	-

	scipy.special.wrightomega [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wrightomega.html#scipy.special.wrightomega]

	-

	scipy.special.xlog1py [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlog1py.html#scipy.special.xlog1py]

	cupyx.scipy.special.xlog1py

	scipy.special.xlogy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlogy.html#scipy.special.xlogy]

	cupyx.scipy.special.xlogy

	scipy.special.y0 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y0.html#scipy.special.y0]

	cupyx.scipy.special.y0

	scipy.special.y0_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y0_zeros.html#scipy.special.y0_zeros]

	-

	scipy.special.y1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1.html#scipy.special.y1]

	cupyx.scipy.special.y1

	scipy.special.y1_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1_zeros.html#scipy.special.y1_zeros]

	-

	scipy.special.y1p_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1p_zeros.html#scipy.special.y1p_zeros]

	-

	scipy.special.yn [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yn.html#scipy.special.yn]

	cupyx.scipy.special.yn

	scipy.special.yn_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yn_zeros.html#scipy.special.yn_zeros]

	-

	scipy.special.ynp_zeros [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ynp_zeros.html#scipy.special.ynp_zeros]

	-

	scipy.special.yv [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yv.html#scipy.special.yv]

	-

	scipy.special.yve [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yve.html#scipy.special.yve]

	-

	scipy.special.yvp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yvp.html#scipy.special.yvp]

	-

	scipy.special.zeta [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zeta.html#scipy.special.zeta]

	cupyx.scipy.special.zeta

	scipy.special.zetac [https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zetac.html#scipy.special.zetac]

	cupyx.scipy.special.zetac

Statistical Functions

	SciPy

	CuPy

	scipy.stats.BootstrapMethod [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.BootstrapMethod.html#scipy.stats.BootstrapMethod]

	-

	scipy.stats.CensoredData [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.CensoredData.html#scipy.stats.CensoredData]

	-

	scipy.stats.Covariance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.Covariance.html#scipy.stats.Covariance]

	-

	scipy.stats.MonteCarloMethod [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.MonteCarloMethod.html#scipy.stats.MonteCarloMethod]

	-

	scipy.stats.PermutationMethod [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.PermutationMethod.html#scipy.stats.PermutationMethod]

	-

	scipy.stats.alexandergovern [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html#scipy.stats.alexandergovern]

	-

	scipy.stats.alpha [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alpha.html#scipy.stats.alpha]

	-

	scipy.stats.anderson [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html#scipy.stats.anderson]

	-

	scipy.stats.anderson_ksamp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson_ksamp.html#scipy.stats.anderson_ksamp]

	-

	scipy.stats.anglit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anglit.html#scipy.stats.anglit]

	-

	scipy.stats.ansari [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ansari.html#scipy.stats.ansari]

	-

	scipy.stats.arcsine [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.arcsine.html#scipy.stats.arcsine]

	-

	scipy.stats.argus [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.argus.html#scipy.stats.argus]

	-

	scipy.stats.barnard_exact [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.barnard_exact.html#scipy.stats.barnard_exact]

	-

	scipy.stats.bartlett [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html#scipy.stats.bartlett]

	-

	scipy.stats.bayes_mvs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bayes_mvs.html#scipy.stats.bayes_mvs]

	-

	scipy.stats.bernoulli [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bernoulli.html#scipy.stats.bernoulli]

	-

	scipy.stats.beta [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html#scipy.stats.beta]

	-

	scipy.stats.betabinom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betabinom.html#scipy.stats.betabinom]

	-

	scipy.stats.betaprime [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betaprime.html#scipy.stats.betaprime]

	-

	scipy.stats.binned_statistic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic.html#scipy.stats.binned_statistic]

	-

	scipy.stats.binned_statistic_2d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_2d.html#scipy.stats.binned_statistic_2d]

	-

	scipy.stats.binned_statistic_dd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_dd.html#scipy.stats.binned_statistic_dd]

	-

	scipy.stats.binom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom]

	-

	scipy.stats.binom_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom_test.html#scipy.stats.binom_test]

	-

	scipy.stats.binomtest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html#scipy.stats.binomtest]

	-

	scipy.stats.boltzmann [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boltzmann.html#scipy.stats.boltzmann]

	-

	scipy.stats.bootstrap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html#scipy.stats.bootstrap]

	-

	scipy.stats.boschloo_exact [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boschloo_exact.html#scipy.stats.boschloo_exact]

	-

	scipy.stats.boxcox [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html#scipy.stats.boxcox]

	-

	scipy.stats.boxcox_llf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf]

	cupyx.scipy.stats.boxcox_llf

	scipy.stats.boxcox_normmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normmax.html#scipy.stats.boxcox_normmax]

	-

	scipy.stats.boxcox_normplot [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normplot.html#scipy.stats.boxcox_normplot]

	-

	scipy.stats.bradford [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bradford.html#scipy.stats.bradford]

	-

	scipy.stats.brunnermunzel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.brunnermunzel.html#scipy.stats.brunnermunzel]

	-

	scipy.stats.burr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr.html#scipy.stats.burr]

	-

	scipy.stats.burr12 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr12.html#scipy.stats.burr12]

	-

	scipy.stats.cauchy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cauchy.html#scipy.stats.cauchy]

	-

	scipy.stats.chi [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi.html#scipy.stats.chi]

	-

	scipy.stats.chi2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2]

	-

	scipy.stats.chi2_contingency [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html#scipy.stats.chi2_contingency]

	-

	scipy.stats.chisquare [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html#scipy.stats.chisquare]

	-

	scipy.stats.circmean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circmean.html#scipy.stats.circmean]

	-

	scipy.stats.circstd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circstd.html#scipy.stats.circstd]

	-

	scipy.stats.circvar [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circvar.html#scipy.stats.circvar]

	-

	scipy.stats.combine_pvalues [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.combine_pvalues.html#scipy.stats.combine_pvalues]

	-

	scipy.stats.cosine [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cosine.html#scipy.stats.cosine]

	-

	scipy.stats.cramervonmises [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cramervonmises.html#scipy.stats.cramervonmises]

	-

	scipy.stats.cramervonmises_2samp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cramervonmises_2samp.html#scipy.stats.cramervonmises_2samp]

	-

	scipy.stats.crystalball [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.crystalball.html#scipy.stats.crystalball]

	-

	scipy.stats.cumfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cumfreq.html#scipy.stats.cumfreq]

	-

	scipy.stats.describe [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.describe.html#scipy.stats.describe]

	-

	scipy.stats.dgamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dgamma.html#scipy.stats.dgamma]

	-

	scipy.stats.differential_entropy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.differential_entropy.html#scipy.stats.differential_entropy]

	-

	scipy.stats.directional_stats [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.directional_stats.html#scipy.stats.directional_stats]

	-

	scipy.stats.dirichlet [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet.html#scipy.stats.dirichlet]

	-

	scipy.stats.dirichlet_multinomial [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet_multinomial.html#scipy.stats.dirichlet_multinomial]

	-

	scipy.stats.dlaplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dlaplace.html#scipy.stats.dlaplace]

	-

	scipy.stats.dunnett [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dunnett.html#scipy.stats.dunnett]

	-

	scipy.stats.dweibull [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dweibull.html#scipy.stats.dweibull]

	-

	scipy.stats.ecdf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ecdf.html#scipy.stats.ecdf]

	-

	scipy.stats.energy_distance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.energy_distance.html#scipy.stats.energy_distance]

	-

	scipy.stats.entropy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html#scipy.stats.entropy]

	cupyx.scipy.stats.entropy

	scipy.stats.epps_singleton_2samp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.epps_singleton_2samp.html#scipy.stats.epps_singleton_2samp]

	-

	scipy.stats.erlang [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.erlang.html#scipy.stats.erlang]

	-

	scipy.stats.expectile [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expectile.html#scipy.stats.expectile]

	-

	scipy.stats.expon [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon]

	-

	scipy.stats.exponnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponnorm.html#scipy.stats.exponnorm]

	-

	scipy.stats.exponpow [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponpow.html#scipy.stats.exponpow]

	-

	scipy.stats.exponweib [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponweib.html#scipy.stats.exponweib]

	-

	scipy.stats.f [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f]

	-

	scipy.stats.f_oneway [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway]

	-

	scipy.stats.false_discovery_control [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.false_discovery_control.html#scipy.stats.false_discovery_control]

	-

	scipy.stats.fatiguelife [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fatiguelife.html#scipy.stats.fatiguelife]

	-

	scipy.stats.find_repeats [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.find_repeats.html#scipy.stats.find_repeats]

	-

	scipy.stats.fisher_exact [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact]

	-

	scipy.stats.fisk [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisk.html#scipy.stats.fisk]

	-

	scipy.stats.fit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html#scipy.stats.fit]

	-

	scipy.stats.fligner [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fligner.html#scipy.stats.fligner]

	-

	scipy.stats.foldcauchy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldcauchy.html#scipy.stats.foldcauchy]

	-

	scipy.stats.foldnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldnorm.html#scipy.stats.foldnorm]

	-

	scipy.stats.friedmanchisquare [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare]

	-

	scipy.stats.gamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma]

	-

	scipy.stats.gausshyper [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gausshyper.html#scipy.stats.gausshyper]

	-

	scipy.stats.gaussian_kde [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde]

	-

	scipy.stats.genexpon [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genexpon.html#scipy.stats.genexpon]

	-

	scipy.stats.genextreme [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme]

	-

	scipy.stats.gengamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gengamma.html#scipy.stats.gengamma]

	-

	scipy.stats.genhalflogistic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhalflogistic.html#scipy.stats.genhalflogistic]

	-

	scipy.stats.genhyperbolic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhyperbolic.html#scipy.stats.genhyperbolic]

	-

	scipy.stats.geninvgauss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geninvgauss.html#scipy.stats.geninvgauss]

	-

	scipy.stats.genlogistic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genlogistic.html#scipy.stats.genlogistic]

	-

	scipy.stats.gennorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gennorm.html#scipy.stats.gennorm]

	-

	scipy.stats.genpareto [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto]

	-

	scipy.stats.geom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html#scipy.stats.geom]

	-

	scipy.stats.gibrat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gibrat.html#scipy.stats.gibrat]

	-

	scipy.stats.gmean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gmean.html#scipy.stats.gmean]

	-

	scipy.stats.gompertz [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gompertz.html#scipy.stats.gompertz]

	-

	scipy.stats.goodness_of_fit [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.goodness_of_fit.html#scipy.stats.goodness_of_fit]

	-

	scipy.stats.gstd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gstd.html#scipy.stats.gstd]

	-

	scipy.stats.gumbel_l [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l]

	-

	scipy.stats.gumbel_r [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r]

	-

	scipy.stats.gzscore [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gzscore.html#scipy.stats.gzscore]

	-

	scipy.stats.halfcauchy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfcauchy.html#scipy.stats.halfcauchy]

	-

	scipy.stats.halfgennorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfgennorm.html#scipy.stats.halfgennorm]

	-

	scipy.stats.halflogistic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halflogistic.html#scipy.stats.halflogistic]

	-

	scipy.stats.halfnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfnorm.html#scipy.stats.halfnorm]

	-

	scipy.stats.hmean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hmean.html#scipy.stats.hmean]

	-

	scipy.stats.hypergeom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom]

	-

	scipy.stats.hypsecant [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypsecant.html#scipy.stats.hypsecant]

	-

	scipy.stats.invgamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgamma.html#scipy.stats.invgamma]

	-

	scipy.stats.invgauss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgauss.html#scipy.stats.invgauss]

	-

	scipy.stats.invweibull [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html#scipy.stats.invweibull]

	-

	scipy.stats.invwishart [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invwishart.html#scipy.stats.invwishart]

	-

	scipy.stats.iqr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.iqr.html#scipy.stats.iqr]

	-

	scipy.stats.jarque_bera [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.jarque_bera.html#scipy.stats.jarque_bera]

	-

	scipy.stats.johnsonsb [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsb.html#scipy.stats.johnsonsb]

	-

	scipy.stats.johnsonsu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsu.html#scipy.stats.johnsonsu]

	-

	scipy.stats.kappa3 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa3.html#scipy.stats.kappa3]

	-

	scipy.stats.kappa4 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa4.html#scipy.stats.kappa4]

	-

	scipy.stats.kendalltau [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau]

	-

	scipy.stats.kruskal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html#scipy.stats.kruskal]

	-

	scipy.stats.ks_1samp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_1samp.html#scipy.stats.ks_1samp]

	-

	scipy.stats.ks_2samp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp]

	-

	scipy.stats.ksone [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ksone.html#scipy.stats.ksone]

	-

	scipy.stats.kstat [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstat.html#scipy.stats.kstat]

	-

	scipy.stats.kstatvar [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstatvar.html#scipy.stats.kstatvar]

	-

	scipy.stats.kstest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html#scipy.stats.kstest]

	-

	scipy.stats.kstwo [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwo.html#scipy.stats.kstwo]

	-

	scipy.stats.kstwobign [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwobign.html#scipy.stats.kstwobign]

	-

	scipy.stats.kurtosis [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis]

	-

	scipy.stats.kurtosistest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html#scipy.stats.kurtosistest]

	-

	scipy.stats.laplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace.html#scipy.stats.laplace]

	-

	scipy.stats.laplace_asymmetric [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace_asymmetric.html#scipy.stats.laplace_asymmetric]

	-

	scipy.stats.levene [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html#scipy.stats.levene]

	-

	scipy.stats.levy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy.html#scipy.stats.levy]

	-

	scipy.stats.levy_l [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy_l.html#scipy.stats.levy_l]

	-

	scipy.stats.levy_stable [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy_stable.html#scipy.stats.levy_stable]

	-

	scipy.stats.linregress [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html#scipy.stats.linregress]

	-

	scipy.stats.loggamma [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loggamma.html#scipy.stats.loggamma]

	-

	scipy.stats.logistic [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic]

	-

	scipy.stats.loglaplace [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loglaplace.html#scipy.stats.loglaplace]

	-

	scipy.stats.lognorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm]

	-

	scipy.stats.logrank [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logrank.html#scipy.stats.logrank]

	-

	scipy.stats.logser [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser]

	-

	scipy.stats.loguniform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loguniform.html#scipy.stats.loguniform]

	-

	scipy.stats.lomax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax]

	-

	scipy.stats.mannwhitneyu [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu]

	-

	scipy.stats.matrix_normal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.matrix_normal.html#scipy.stats.matrix_normal]

	-

	scipy.stats.maxwell [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.maxwell.html#scipy.stats.maxwell]

	-

	scipy.stats.median_abs_deviation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_abs_deviation.html#scipy.stats.median_abs_deviation]

	-

	scipy.stats.median_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_test.html#scipy.stats.median_test]

	-

	scipy.stats.mielke [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mielke.html#scipy.stats.mielke]

	-

	scipy.stats.mode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html#scipy.stats.mode]

	-

	scipy.stats.moment [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moment.html#scipy.stats.moment]

	-

	scipy.stats.monte_carlo_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.monte_carlo_test.html#scipy.stats.monte_carlo_test]

	-

	scipy.stats.mood [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mood.html#scipy.stats.mood]

	-

	scipy.stats.moyal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moyal.html#scipy.stats.moyal]

	-

	scipy.stats.multinomial [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multinomial.html#scipy.stats.multinomial]

	-

	scipy.stats.multiscale_graphcorr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multiscale_graphcorr.html#scipy.stats.multiscale_graphcorr]

	-

	scipy.stats.multivariate_hypergeom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_hypergeom.html#scipy.stats.multivariate_hypergeom]

	-

	scipy.stats.multivariate_normal [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html#scipy.stats.multivariate_normal]

	-

	scipy.stats.multivariate_t [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_t.html#scipy.stats.multivariate_t]

	-

	scipy.stats.mvsdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mvsdist.html#scipy.stats.mvsdist]

	-

	scipy.stats.nakagami [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nakagami.html#scipy.stats.nakagami]

	-

	scipy.stats.nbinom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nbinom.html#scipy.stats.nbinom]

	-

	scipy.stats.ncf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncf.html#scipy.stats.ncf]

	-

	scipy.stats.nchypergeom_fisher [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nchypergeom_fisher.html#scipy.stats.nchypergeom_fisher]

	-

	scipy.stats.nchypergeom_wallenius [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nchypergeom_wallenius.html#scipy.stats.nchypergeom_wallenius]

	-

	scipy.stats.nct [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nct.html#scipy.stats.nct]

	-

	scipy.stats.ncx2 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncx2.html#scipy.stats.ncx2]

	-

	scipy.stats.nhypergeom [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nhypergeom.html#scipy.stats.nhypergeom]

	-

	scipy.stats.norm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm]

	-

	scipy.stats.normaltest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html#scipy.stats.normaltest]

	-

	scipy.stats.norminvgauss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norminvgauss.html#scipy.stats.norminvgauss]

	-

	scipy.stats.obrientransform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.obrientransform.html#scipy.stats.obrientransform]

	-

	scipy.stats.ortho_group [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html#scipy.stats.ortho_group]

	-

	scipy.stats.page_trend_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.page_trend_test.html#scipy.stats.page_trend_test]

	-

	scipy.stats.pareto [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto]

	-

	scipy.stats.pearson3 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearson3.html#scipy.stats.pearson3]

	-

	scipy.stats.pearsonr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr]

	-

	scipy.stats.percentileofscore [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.percentileofscore.html#scipy.stats.percentileofscore]

	-

	scipy.stats.permutation_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html#scipy.stats.permutation_test]

	-

	scipy.stats.planck [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.planck.html#scipy.stats.planck]

	-

	scipy.stats.pmean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pmean.html#scipy.stats.pmean]

	-

	scipy.stats.pointbiserialr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr]

	-

	scipy.stats.poisson [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson]

	-

	scipy.stats.poisson_means_test [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson_means_test.html#scipy.stats.poisson_means_test]

	-

	scipy.stats.power_divergence [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.power_divergence.html#scipy.stats.power_divergence]

	-

	scipy.stats.powerlaw [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlaw.html#scipy.stats.powerlaw]

	-

	scipy.stats.powerlognorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlognorm.html#scipy.stats.powerlognorm]

	-

	scipy.stats.powernorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powernorm.html#scipy.stats.powernorm]

	-

	scipy.stats.ppcc_max [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_max.html#scipy.stats.ppcc_max]

	-

	scipy.stats.ppcc_plot [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_plot.html#scipy.stats.ppcc_plot]

	-

	scipy.stats.probplot [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html#scipy.stats.probplot]

	-

	scipy.stats.randint [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.randint.html#scipy.stats.randint]

	-

	scipy.stats.random_correlation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_correlation.html#scipy.stats.random_correlation]

	-

	scipy.stats.random_table [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_table.html#scipy.stats.random_table]

	-

	scipy.stats.rankdata [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rankdata.html#scipy.stats.rankdata]

	-

	scipy.stats.ranksums [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ranksums.html#scipy.stats.ranksums]

	-

	scipy.stats.rayleigh [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rayleigh.html#scipy.stats.rayleigh]

	-

	scipy.stats.rdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rdist.html#scipy.stats.rdist]

	-

	scipy.stats.recipinvgauss [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.recipinvgauss.html#scipy.stats.recipinvgauss]

	-

	scipy.stats.reciprocal

	-

	scipy.stats.rel_breitwigner [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rel_breitwigner.html#scipy.stats.rel_breitwigner]

	-

	scipy.stats.relfreq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.relfreq.html#scipy.stats.relfreq]

	-

	scipy.stats.rice [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rice.html#scipy.stats.rice]

	-

	scipy.stats.rv_continuous [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.html#scipy.stats.rv_continuous]

	-

	scipy.stats.rv_discrete [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html#scipy.stats.rv_discrete]

	-

	scipy.stats.rv_histogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.html#scipy.stats.rv_histogram]

	-

	scipy.stats.rvs_ratio_uniforms [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rvs_ratio_uniforms.html#scipy.stats.rvs_ratio_uniforms]

	-

	scipy.stats.scoreatpercentile [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile]

	-

	scipy.stats.sem [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html#scipy.stats.sem]

	-

	scipy.stats.semicircular [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.semicircular.html#scipy.stats.semicircular]

	-

	scipy.stats.shapiro [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html#scipy.stats.shapiro]

	-

	scipy.stats.siegelslopes [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.siegelslopes.html#scipy.stats.siegelslopes]

	-

	scipy.stats.sigmaclip [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html#scipy.stats.sigmaclip]

	-

	scipy.stats.skellam [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skellam.html#scipy.stats.skellam]

	-

	scipy.stats.skew [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew]

	-

	scipy.stats.skewcauchy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewcauchy.html#scipy.stats.skewcauchy]

	-

	scipy.stats.skewnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html#scipy.stats.skewnorm]

	-

	scipy.stats.skewtest [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html#scipy.stats.skewtest]

	-

	scipy.stats.sobol_indices [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sobol_indices.html#scipy.stats.sobol_indices]

	-

	scipy.stats.somersd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.somersd.html#scipy.stats.somersd]

	-

	scipy.stats.spearmanr [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html#scipy.stats.spearmanr]

	-

	scipy.stats.special_ortho_group [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.special_ortho_group.html#scipy.stats.special_ortho_group]

	-

	scipy.stats.studentized_range [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.studentized_range.html#scipy.stats.studentized_range]

	-

	scipy.stats.t [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html#scipy.stats.t]

	-

	scipy.stats.theilslopes [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.theilslopes.html#scipy.stats.theilslopes]

	-

	scipy.stats.tiecorrect [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tiecorrect.html#scipy.stats.tiecorrect]

	-

	scipy.stats.tmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmax.html#scipy.stats.tmax]

	-

	scipy.stats.tmean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean]

	-

	scipy.stats.tmin [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmin.html#scipy.stats.tmin]

	-

	scipy.stats.trapezoid [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trapezoid.html#scipy.stats.trapezoid]

	-

	scipy.stats.trapz

	-

	scipy.stats.triang [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.triang.html#scipy.stats.triang]

	-

	scipy.stats.trim1 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim1.html#scipy.stats.trim1]

	-

	scipy.stats.trim_mean [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html#scipy.stats.trim_mean]

	cupyx.scipy.stats.trim_mean

	scipy.stats.trimboth [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trimboth.html#scipy.stats.trimboth]

	-

	scipy.stats.truncexpon [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncexpon.html#scipy.stats.truncexpon]

	-

	scipy.stats.truncnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html#scipy.stats.truncnorm]

	-

	scipy.stats.truncpareto [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncpareto.html#scipy.stats.truncpareto]

	-

	scipy.stats.truncweibull_min [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncweibull_min.html#scipy.stats.truncweibull_min]

	-

	scipy.stats.tsem [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tsem.html#scipy.stats.tsem]

	-

	scipy.stats.tstd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tstd.html#scipy.stats.tstd]

	-

	scipy.stats.ttest_1samp [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html#scipy.stats.ttest_1samp]

	-

	scipy.stats.ttest_ind [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html#scipy.stats.ttest_ind]

	-

	scipy.stats.ttest_ind_from_stats [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats]

	-

	scipy.stats.ttest_rel [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html#scipy.stats.ttest_rel]

	-

	scipy.stats.tukey_hsd [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukey_hsd.html#scipy.stats.tukey_hsd]

	-

	scipy.stats.tukeylambda [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukeylambda.html#scipy.stats.tukeylambda]

	-

	scipy.stats.tvar [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tvar.html#scipy.stats.tvar]

	-

	scipy.stats.uniform [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html#scipy.stats.uniform]

	-

	scipy.stats.uniform_direction [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform_direction.html#scipy.stats.uniform_direction]

	-

	scipy.stats.unitary_group [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.unitary_group.html#scipy.stats.unitary_group]

	-

	scipy.stats.variation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.variation.html#scipy.stats.variation]

	-

	scipy.stats.vonmises [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises]

	-

	scipy.stats.vonmises_fisher [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises_fisher.html#scipy.stats.vonmises_fisher]

	-

	scipy.stats.vonmises_line [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises_line.html#scipy.stats.vonmises_line]

	-

	scipy.stats.wald [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wald.html#scipy.stats.wald]

	-

	scipy.stats.wasserstein_distance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html#scipy.stats.wasserstein_distance]

	-

	scipy.stats.weibull_max [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max]

	-

	scipy.stats.weibull_min [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min]

	-

	scipy.stats.weightedtau [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html#scipy.stats.weightedtau]

	-

	scipy.stats.wilcoxon [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon]

	-

	scipy.stats.wishart [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wishart.html#scipy.stats.wishart]

	-

	scipy.stats.wrapcauchy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wrapcauchy.html#scipy.stats.wrapcauchy]

	-

	scipy.stats.yeojohnson [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html#scipy.stats.yeojohnson]

	-

	scipy.stats.yeojohnson_llf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_llf.html#scipy.stats.yeojohnson_llf]

	-

	scipy.stats.yeojohnson_normmax [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normmax.html#scipy.stats.yeojohnson_normmax]

	-

	scipy.stats.yeojohnson_normplot [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normplot.html#scipy.stats.yeojohnson_normplot]

	-

	scipy.stats.yulesimon [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yulesimon.html#scipy.stats.yulesimon]

	-

	scipy.stats.zipf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf]

	-

	scipy.stats.zipfian [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipfian.html#scipy.stats.zipfian]

	-

	scipy.stats.zmap [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zmap.html#scipy.stats.zmap]

	cupyx.scipy.stats.zmap

	scipy.stats.zscore [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html#scipy.stats.zscore]

	cupyx.scipy.stats.zscore

Footnotes

[1]
(1,2,3,4)
Use of numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] is discouraged in NumPy and thus we have no plan to add it to CuPy.

[2]
(1,2,3,4,5,6,7,8,9)
datetime64 and timedelta64 dtypes are currently unsupported.

[3]
(1,2,3,4,5,6,7,8,9,10)
object and string dtypes are not supported in GPU and thus left unimplemented in CuPy.

[4]
(1,2,3,4,5,6,7)
Floating point error handling depends on CPU-specific features which is not available in GPU.

[5]
(1,2,3,4,5)
Structured arrays and record arrays are currently unsupported.

[6]
(1,2,3,4)
Use of numpy.poly1d [https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d] is discouraged in NumPy and thus we have stopped adding functions with the interface.

[7]
(1,2)
Not supported as it has been deprecated in NumPy.

[8]
(1,2)
Not supported as GPUs only support little-endian byte-encoding.

Python Array API Support

The Python array API standard [https://data-apis.org/array-api/2021.12/] aims to provide a coherent set of
APIs for array and tensor libraries developed by the community to build upon. This solves the API fragmentation
issue across the community by offering concrete function signatures, semantics and scopes of coverage, enabling
writing backend-agnostic codes for better portability.

CuPy provides experimental support based on NumPy’s NEP-47 [https://numpy.org/neps/nep-0047-array-api-standard.html],
which is in turn based on the v2021 standard. All of the functionalities can be accessed
through the cupy.array_api namespace.

NumPy’s Array API Standard Compatibility [https://numpy.org/devdocs/reference/array_api.html] is an excellent starting
point to understand better the differences between the APIs under the main namespace and the array_api namespace.
Keep in mind, however, that the key difference between NumPy and CuPy is that we are a GPU-only library, therefore CuPy users should be aware
of potential device management [https://data-apis.org/array-api/latest/design_topics/device_support.html] issues.
Same as in regular CuPy codes, the GPU-to-use can be specified via the Device objects, see
Device management. GPU-related semantics (e.g. streams, asynchronicity, etc) are also respected.
Finally, remember there are already differences between NumPy and CuPy,
although some of which are rectified in the standard.

	Array API Functions
	abs()

	acos()

	acosh()

	add()

	all()

	any()

	arange()

	argmax()

	argmin()

	argsort()

	asarray()

	asin()

	asinh()

	atan()

	atan2()

	atanh()

	bitwise_and()

	bitwise_invert()

	bitwise_left_shift()

	bitwise_or()

	bitwise_right_shift()

	bitwise_xor()

	broadcast_arrays()

	broadcast_to()

	can_cast()

	ceil()

	concat()

	cos()

	cosh()

	divide()

	empty()

	empty_like()

	equal()

	exp()

	expand_dims()

	expm1()

	eye()

	finfo()

	flip()

	floor()

	floor_divide()

	from_dlpack()

	full()

	full_like()

	greater()

	greater_equal()

	iinfo()

	isfinite()

	isinf()

	isnan()

	less()

	less_equal()

	linspace()

	log()

	log10()

	log1p()

	log2()

	logaddexp()

	logical_and()

	logical_not()

	logical_or()

	logical_xor()

	matmul()

	meshgrid()

	multiply()

	negative()

	nonzero()

	not_equal()

	ones()

	ones_like()

	permute_dims()

	positive()

	pow()

	remainder()

	reshape()

	result_type()

	roll()

	round()

	sign()

	sin()

	sinh()

	sort()

	sqrt()

	square()

	squeeze()

	stack()

	subtract()

	take()

	tan()

	tanh()

	tril()

	triu()

	trunc()

	unique_all()

	unique_inverse()

	unique_values()

	where()

	zeros()

	zeros_like()

	Array API Compliant Object
	cupy.array_api._array_object.Array

Array API Functions

This section is a full list of implemented APIs. For the detailed documentation, see the
array API specification [https://data-apis.org/array-api/latest/API_specification/index.html].

	
cupy.array_api.abs(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L16]

	Array API compatible wrapper for np.abs.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.acos(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L28]

	Array API compatible wrapper for np.arccos.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.acosh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L40]

	Array API compatible wrapper for np.arccosh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.add(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L51]

	Array API compatible wrapper for np.add.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.all(x, /, *, axis=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_utility_functions.py#L10]

	Array API compatible wrapper for np.all [https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.any(x, /, *, axis=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_utility_functions.py#L25]

	Array API compatible wrapper for np.any [https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.arange(start, /, stop=None, step=1, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L89]

	Array API compatible wrapper for np.arange [https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.argmax(x, /, *, axis=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_searching_functions.py#L11]

	Array API compatible wrapper for np.argmax [https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.argmin(x, /, *, axis=None, keepdims=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_searching_functions.py#L20]

	Array API compatible wrapper for np.argmin [https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.argsort(x, /, *, axis=-1, descending=False, stable=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_sorting_functions.py#L11]

	Array API compatible wrapper for np.argsort [https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.asarray(obj, /, *, dtype=None, device=None, copy=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L33]

	Array API compatible wrapper for np.asarray [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.asin(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L66]

	Array API compatible wrapper for np.arcsin.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.asinh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L78]

	Array API compatible wrapper for np.arcsinh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.atan(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L90]

	Array API compatible wrapper for np.arctan.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.atan2(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L102]

	Array API compatible wrapper for np.arctan2.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.atanh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L117]

	Array API compatible wrapper for np.arctanh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_and(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L128]

	Array API compatible wrapper for np.bitwise_and.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_invert(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L164]

	Array API compatible wrapper for np.invert.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_left_shift(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L146]

	Array API compatible wrapper for np.left_shift.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_or(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L175]

	Array API compatible wrapper for np.bitwise_or.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_right_shift(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L193]

	Array API compatible wrapper for np.right_shift.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.bitwise_xor(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L210]

	Array API compatible wrapper for np.bitwise_xor.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.broadcast_arrays(*arrays)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L23]

	Array API compatible wrapper for np.broadcast_arrays [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays].

See its docstring for more information.

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Array]

	
cupy.array_api.broadcast_to(x, /, shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L36]

	Array API compatible wrapper for np.broadcast_to [https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.can_cast(from_, to, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L47]

	Array API compatible wrapper for np.can_cast [https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast].

See its docstring for more information.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cupy.array_api.ceil(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L227]

	Array API compatible wrapper for np.ceil.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.concat(arrays, /, *, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L11]

	Array API compatible wrapper for np.concatenate [https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.cos(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L241]

	Array API compatible wrapper for np.cos.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.cosh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L252]

	Array API compatible wrapper for np.cosh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.divide(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L263]

	Array API compatible wrapper for np.divide.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.empty(shape, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L118]

	Array API compatible wrapper for np.empty [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.empty_like(x, /, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L144]

	Array API compatible wrapper for np.empty_like [https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.equal(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L277]

	Array API compatible wrapper for np.equal.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.exp(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L289]

	Array API compatible wrapper for np.exp.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.expand_dims(x, /, *, axis)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L26]

	Array API compatible wrapper for np.expand_dims [https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.expm1(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L300]

	Array API compatible wrapper for np.expm1.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.eye(n_rows, n_cols=None, /, *, k=0, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L167]

	Array API compatible wrapper for np.eye [https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.finfo(type, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L92]

	Array API compatible wrapper for np.finfo.

See its docstring for more information.

	Return type:

	finfo_object

	
cupy.array_api.flip(x, /, *, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L35]

	Array API compatible wrapper for np.flip [https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.floor(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L311]

	Array API compatible wrapper for np.floor.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.floor_divide(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L325]

	Array API compatible wrapper for np.floor_divide.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.from_dlpack(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L196]

	Array API compatible wrapper for np.from_dlpack [https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.full(shape, fill_value, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L206]

	Array API compatible wrapper for np.full [https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.full_like(x, /, fill_value, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L240]

	Array API compatible wrapper for np.full_like [https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.greater(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L339]

	Array API compatible wrapper for np.greater.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.greater_equal(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L353]

	Array API compatible wrapper for np.greater_equal.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.iinfo(type, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L114]

	Array API compatible wrapper for np.iinfo.

See its docstring for more information.

	Return type:

	iinfo_object

	
cupy.array_api.isfinite(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L367]

	Array API compatible wrapper for np.isfinite.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.isinf(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L378]

	Array API compatible wrapper for np.isinf.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.isnan(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L389]

	Array API compatible wrapper for np.isnan.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.less(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L400]

	Array API compatible wrapper for np.less.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.less_equal(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L414]

	Array API compatible wrapper for np.less_equal.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.linspace(start, stop, /, num, *, dtype=None, device=None, endpoint=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L275]

	Array API compatible wrapper for np.linspace [https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.log(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L428]

	Array API compatible wrapper for np.log.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.log10(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L461]

	Array API compatible wrapper for np.log10.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.log1p(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L439]

	Array API compatible wrapper for np.log1p.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.log2(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L450]

	Array API compatible wrapper for np.log2.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.logaddexp(x1, x2)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L472]

	Array API compatible wrapper for np.logaddexp.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.logical_and(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L486]

	Array API compatible wrapper for np.logical_and.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.logical_not(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L500]

	Array API compatible wrapper for np.logical_not.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.logical_or(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L511]

	Array API compatible wrapper for np.logical_or.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.logical_xor(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L525]

	Array API compatible wrapper for np.logical_xor.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.matmul(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/linalg.py#L140]

	Array API compatible wrapper for np.matmul.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.meshgrid(*arrays, indexing='xy')[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L305]

	Array API compatible wrapper for np.meshgrid [https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid].

See its docstring for more information.

	Return type:

	List[Array]

	
cupy.array_api.multiply(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L539]

	Array API compatible wrapper for np.multiply.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.negative(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L553]

	Array API compatible wrapper for np.negative.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.nonzero(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_searching_functions.py#L29]

	Array API compatible wrapper for np.nonzero [https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero].

See its docstring for more information.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Array, …]

	
cupy.array_api.not_equal(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L564]

	Array API compatible wrapper for np.not_equal.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.ones(shape, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L325]

	Array API compatible wrapper for np.ones [https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.ones_like(x, /, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L351]

	Array API compatible wrapper for np.ones_like [https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.permute_dims(x, /, axes)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L46]

	Array API compatible wrapper for np.transpose [https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.positive(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L576]

	Array API compatible wrapper for np.positive.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.pow(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L588]

	Array API compatible wrapper for np.power.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.remainder(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L602]

	Array API compatible wrapper for np.remainder.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.reshape(x, /, shape)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L56]

	Array API compatible wrapper for np.reshape [https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.result_type(*arrays_and_dtypes)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_data_type_functions.py#L124]

	Array API compatible wrapper for np.result_type [https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type].

See its docstring for more information.

	Return type:

	Dtype

	
cupy.array_api.roll(x, /, shift, *, axis=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L65]

	Array API compatible wrapper for np.roll [https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.round(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L616]

	Array API compatible wrapper for np.round [https://numpy.org/doc/stable/reference/generated/numpy.round.html#numpy.round].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.sign(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L627]

	Array API compatible wrapper for np.sign.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.sin(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L638]

	Array API compatible wrapper for np.sin.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.sinh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L649]

	Array API compatible wrapper for np.sinh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.sort(x, /, *, axis=-1, descending=False, stable=True)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_sorting_functions.py#L39]

	Array API compatible wrapper for np.sort [https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.sqrt(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L671]

	Array API compatible wrapper for np.sqrt.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.square(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L660]

	Array API compatible wrapper for np.square.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.squeeze(x, /, axis)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L80]

	Array API compatible wrapper for np.squeeze [https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.stack(arrays, /, *, axis=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_manipulation_functions.py#L89]

	Array API compatible wrapper for np.stack [https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.subtract(x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L682]

	Array API compatible wrapper for np.subtract.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.take(x, indices, /, *, axis)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_indexing_functions.py#L8]

	Array API compatible wrapper for np.take [https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take].
See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.tan(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L696]

	Array API compatible wrapper for np.tan.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.tanh(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L707]

	Array API compatible wrapper for np.tanh.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.tril(x, /, *, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L374]

	Array API compatible wrapper for np.tril [https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.triu(x, /, *, k=0)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L388]

	Array API compatible wrapper for np.triu [https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.trunc(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_elementwise_functions.py#L718]

	Array API compatible wrapper for np.trunc.

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.unique_all(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_set_functions.py#L38]

	Array API compatible wrapper for np.unique [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique].

See its docstring for more information.

	Return type:

	UniqueAllResult

	
cupy.array_api.unique_inverse(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_set_functions.py#L74]

	Array API compatible wrapper for np.unique [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique].

See its docstring for more information.

	Return type:

	UniqueInverseResult

	
cupy.array_api.unique_values(x, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_set_functions.py#L93]

	Array API compatible wrapper for np.unique [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.where(condition, x1, x2, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_searching_functions.py#L38]

	Array API compatible wrapper for np.where [https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.zeros(shape, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L402]

	Array API compatible wrapper for np.zeros [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros].

See its docstring for more information.

	Return type:

	Array

	
cupy.array_api.zeros_like(x, /, *, dtype=None, device=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_creation_functions.py#L428]

	Array API compatible wrapper for np.zeros_like [https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like].

See its docstring for more information.

	Return type:

	Array

Array API Compliant Object

Array is a wrapper class built upon cupy.ndarray
to enforce strict compliance with the array API standard. See the
documentation [https://data-apis.org/array-api/latest/API_specification/array_object.html]
for detail.

This object should not be constructed directly. Rather, use one of the
creation functions [https://data-apis.org/array-api/latest/API_specification/creation_functions.html],
such as cupy.array_api.asarray().

	Array(*args, **kwargs)

	n-d array object for the array API namespace.

cupy.array_api._array_object.Array

	
class cupy.array_api._array_object.Array(*args, **kwargs)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L47]

	n-d array object for the array API namespace.

See the docstring of np.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] for more
information.

This is a wrapper around numpy.ndarray that restricts the usage to only
those things that are required by the array API namespace. Note,
attributes on this object that start with a single underscore are not part
of the API specification and should only be used internally. This object
should not be constructed directly. Rather, use one of the creation
functions, such as asarray().

Methods

	
__getitem__(key, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L516]

	Performs the operation __getitem__.

	Return type:

	Array

	
__setitem__(key, value, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L710]

	Performs the operation __setitem__.

	
to_device(device, /, stream=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L1052]

	
	Return type:

	Array

	
__eq__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L469]

	Performs the operation __eq__.

	Return type:

	Array

	
__ne__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L644]

	Performs the operation __ne__.

	Return type:

	Array

	
__lt__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L599]

	Performs the operation __lt__.

	Return type:

	Array

	
__le__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L577]

	Performs the operation __le__.

	Return type:

	Array

	
__gt__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L535]

	Performs the operation __gt__.

	Return type:

	Array

	
__ge__(other, /)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L505]

	Performs the operation __ge__.

	Return type:

	Array

	
__bool__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/array_api/_array_object.py#L445]

	Performs the operation __bool__.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Attributes

	
T

	Array API compatible wrapper for np.ndarray.T.

See its docstring for more information.

	
device

	

	
dtype

	Array API compatible wrapper for np.ndarray.dtype.

See its docstring for more information.

	
mT

	

	
ndim

	Array API compatible wrapper for np.ndarray.ndim.

See its docstring for more information.

	
shape

	Array API compatible wrapper for np.ndarray.shape.

See its docstring for more information.

	
size

	Array API compatible wrapper for np.ndarray.size.

See its docstring for more information.

Contribution Guide

This is a guide for all contributions to CuPy.
The development of CuPy is running on the official repository at GitHub [https://github.com/cupy/cupy].
Anyone that wants to register an issue or to send a pull request should read through this document.

Classification of Contributions

There are several ways to contribute to CuPy community:

	Registering an issue

	Sending a pull request (PR)

	Sending a question to CuPy’s Gitter channel [https://gitter.im/cupy/community], CuPy User Group [https://groups.google.com/forum/#!forum/cupy], or StackOverflow [https://stackoverflow.com/questions/tagged/cupy]

	Open-sourcing an external example

	Writing a post about CuPy

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

Development Cycle

This section explains the development process of CuPy.
Before contributing to CuPy, it is strongly recommended to understand the development cycle.

Versioning

The versioning of CuPy follows PEP 440 [https://www.python.org/dev/peps/pep-0440/] and a part of Semantic versioning [https://semver.org/].
The version number consists of three or four parts: X.Y.Zw where X denotes the major version, Y denotes the minor version, Z denotes the revision number, and the optional w denotes the prelease suffix.
While the major, minor, and revision numbers follow the rule of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release candidate (RC).
This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.

Release Cycle

The first one is the track of stable versions, which is a series of revision updates for the latest major version.
The second one is the track of development versions, which is a series of pre-releases for the upcoming major version.

Consider that X.0.0 is the latest major version and Y.0.0, Z.0.0 are the succeeding major versions.
Then, the timeline of the updates is depicted by the following table.

	Date

	ver X

	ver Y

	ver Z

	0 weeks

	X.0.0rc1

	–

	–

	4 weeks

	X.0.0

	Y.0.0a1

	–

	8 weeks

	X.1.0*

	Y.0.0b1

	–

	12 weeks

	X.2.0*

	Y.0.0rc1

	–

	16 weeks

	–

	Y.0.0

	Z.0.0a1

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of X.0.0rc1.
In particular, each revision/minor release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major version is made at the same time.
Whether these releases are revision or minor is determined based on the contents of each update.

Note that there are only three stable releases for the versions X.x.x.
During the parallel development of Y.0.0 and Z.0.0a1, the version Y is treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in X.x.x after stopping the development of version X, we may release a hot-fix for this version at any time.

We create a milestone for each upcoming release at GitHub.
The GitHub milestone is basically used for collecting the issues and PRs resolved in the release.

Git Branches

The main branch is used to develop pre-release versions.
It means that alpha, beta, and RC updates are developed at the main branch.
This branch contains the most up-to-date source tree that includes features newly added after the latest major version.

The stable version is developed at the individual branch named as vN where “N” reflects the version number (we call it a versioned branch).
For example, v1.0.0, v1.0.1, and v1.0.2 will be developed at the v1 branch.

Notes for contributors:
When you send a pull request, you basically have to send it to the main branch.
If the change can also be applied to the stable version, a core team member will apply the same change to the stable version so that the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the main branch, please send it to the versioned branch.
We basically only accept changes to the latest versioned branch (where the stable version is developed) unless the fix is critical.

If you want to make a new feature of the main branch available in the current stable version, please send a backport PR to the stable version (the latest vN branch).
See the next section for details.

Note: a change that can be applied to both branches should be sent to the main branch.
Each release of the stable version is also merged to the development version so that the change is also reflected to the next major version.

Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions.
If you desire to include the feature to the current stable version and you can work on the backport work, we welcome such a contribution.
In such a case, you have to send a backport PR to the latest vN branch.
Note that we do not accept any feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for older versions so that we cannot ensure that the PR is correctly ported.

There are some rules on sending a backport PR.

	Start the PR title from the prefix [backport].

	Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).

	(optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually backported by core dev members.
It is also appreciated to make such a backport PR by any contributors, though, so that the overall development proceeds more smoothly!

Issues and Pull Requests

In this section, we explain how to send pull requests (PRs).

How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

	Read through the Coding Guidelines and Unit Testing.

	Check the appropriate branch that you should send the PR following Git Branches.
If you do not have any idea about selecting a branch, please choose the main branch.

In particular, check the branch before writing any code.
The current source tree of the chosen branch is the starting point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub.
You have to write a precise explanation of what and how you fix;
it is the first documentation of your code that developers read, which is a very important part of your PR.

Once you send a PR, it is automatically tested on GitHub Actions.
After the automatic test passes, core developers will start reviewing your code.
Note that this automatic PR test only includes CPU tests.

Note

We are also running continuous integration with GPU tests for the main branch and the versioned branch of the latest major version.
Since this service is currently running on our internal server, we do not use it for automatic PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, it is recommended to open an issue and discuss the design first.
The design discussion needs lower cost for the core developers than code review.
Following the consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix to the PR title.
If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR.
WIP PR is also useful to have discussions based on a concrete code.

Coding Guidelines

Note

Coding guidelines are updated at v5.0.
Those who have contributed to older versions should read the guidelines again.

We use PEP8 [https://www.python.org/dev/peps/pep-0008/] and a part of OpenStack Style Guidelines [https://docs.openstack.org/developer/hacking/] related to general coding style as our basic style guidelines.

You can use autopep8 and flake8 commands to check your code.

In order to avoid confusion from using different tool versions, we pin the versions of those tools.
Install them with the following command (from within the top directory of CuPy repository):

$ pip install -e '.[stylecheck]'

And check your code with:

$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py

To check Cython code, use .flake8.cython configuration file:

$ flake8 --config=.flake8.cython path/to/your/cython/code.pyx

The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines.
Before sending a pull request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect.
It does not check some of the style guidelines.
Here is a (not-complete) list of the rules that flake8 cannot check.

	Relative imports are prohibited. [H304]

	Importing non-module symbols is prohibited.

	Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]

In addition, we restrict the usage of shortcut symbols in our code base.
They are symbols imported by packages and sub-packages of cupy.
For example, cupy.cuda.Device is a shortcut of cupy.cuda.device.Device.
It is not allowed to use such shortcuts in the ``cupy`` library implementation.
Note that you can still use them in tests [https://github.com/cupy/cupy/tree/v13.0.0/tests] and examples [https://github.com/cupy/cupy/tree/v13.0.0/examples] directories.

Once you send a pull request, your coding style is automatically checked by GitHub Actions.
The reviewing process starts after the check passes.

The CuPy is designed based on NumPy’s API design. CuPy’s source code and documents contain the original NumPy ones.
Please note the followings when writing the document.

	In order to identify overlapping parts, it is preferable to add some remarks
that this document is just copied or altered from the original one. It is
also preferable to briefly explain the specification of the function in a
short paragraph, and refer to the corresponding function in NumPy so that
users can read the detailed document. However, it is possible to include a
complete copy of the document with such a remark if users cannot summarize
in such a way.

	If a function in CuPy only implements a limited amount of features in the
original one, users should explicitly describe only what is implemented in
the document.

For changes that modify or add new Cython files, please make sure the pointer types follow these guidelines (#1913 [https://github.com/cupy/cupy/issues/1913]).

	Pointers should be void* if only used within Cython, or intptr_t if exposed to the Python space.

	Memory sizes should be size_t.

	Memory offsets should be ptrdiff_t.

Note

We are incrementally enforcing the above rules, so some existing code may not follow the above guidelines, but please ensure all new contributions do.

Unit Testing

Testing is one of the most important part of your code.
You must write test cases and verify your implementation by following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

$ pip install pytest mock

How to Run Tests

In order to run unit tests at the repository root, you first have to build Cython files in place by running the following command:

$ pip install -e .

Note

When you modify *.pxd files, before running pip install -e ., you must clean *.cpp and *.so files once with the following command, because Cython does not automatically rebuild those files nicely:

$ git clean -fdx

Once Cython modules are built, you can run unit tests by running the following command at the repository root:

$ python -m pytest

CUDA must be installed to run unit tests.

Some GPU tests require cuDNN to run.
In order to skip unit tests that require cuDNN, specify -m='not cudnn' option:

$ python -m pytest path/to/your/test.py -m='not cudnn'

Some GPU tests involve multiple GPUs.
If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs to CUPY_TEST_GPU_LIMIT.
For example, if you have only one GPU, launch pytest by the following command to skip multi-GPU tests:

$ export CUPY_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Following this naming convention, you can run all the tests by running the following command at the repository root:

$ python -m pytest

Or you can also specify a root directory to search test scripts from:

$ python -m pytest tests/cupy_tests # to just run tests of CuPy
$ python -m pytest tests/install_tests # to just run tests of installation modules

If you modify the code related to existing unit tests, you must run appropriate commands.

Test File and Directory Naming Conventions

Tests are put into the tests/cupy_tests [https://github.com/cupy/cupy/tree/v13.0.0/tests/cupy_tests] directory.
In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.

	The name of each subdirectory of tests must end with the _tests suffix.

	The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence to the tested module is clear.
For example, if you want to write a test for a module cupy.x.y.z, the test script must be located at tests/cupy_tests/x_tests/y_tests/test_z.py.

How to Write Tests

There are many examples of unit tests under the tests [https://github.com/cupy/cupy/tree/v13.0.0/tests] directory, so reading some of them is a good and recommended way to learn how to write tests for CuPy.
They simply use the unittest [https://docs.python.org/3/library/unittest.html#module-unittest] package of the standard library, while some tests are using utilities from cupy.testing.

In addition to the Coding Guidelines mentioned above, the following rules are applied to the test code:

	All test classes must inherit from unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].

	Use unittest [https://docs.python.org/3/library/unittest.html#module-unittest] features to write tests, except for the following cases:

	Use assert statement instead of self.assert* methods (e.g., write assert x == 1 instead of self.assertEqual(x, 1)).

	Use with pytest.raises(...): instead of with self.assertRaises(...):.

Note

We are incrementally applying the above style.
Some existing tests may be using the old style (self.assertRaises, etc.), but all newly written tests should follow the above style.

In order to write tests for multiple GPUs, use cupy.testing.multi_gpu() decorators instead:

import unittest
from cupy import testing

class TestMyFunc(unittest.TestCase):
 ...

 @testing.multi_gpu(2) # specify the number of required GPUs here
 def test_my_two_gpu_func(self):
 ...

If your test requires too much time, add cupy.testing.slow decorator.
The test functions decorated by slow are skipped if -m='not slow' is given:

import unittest
from cupy import testing

class TestMyFunc(unittest.TestCase):
 ...

 @testing.slow
 def test_my_slow_func(self):
 ...

Once you send a pull request, GitHub Actions automatically checks if your code meets our coding guidelines described above.
Since GitHub Actions does not support CUDA, we cannot run unit tests automatically.
The reviewing process starts after the automatic check passes.
Note that reviewers will test your code without the option to check CUDA-related code.

Note

Some of numerically unstable tests might cause errors irrelevant to your changes.
In such a case, we ignore the failures and go on to the review process, so do not worry about it!

Documentation

When adding a new feature to the framework, you also need to document it in the reference.

Note

If you are unsure about how to fix the documentation, you can submit a pull request without doing so.
Reviewers will help you fix the documentation appropriately.

The documentation source is stored under docs directory [https://github.com/cupy/cupy/tree/main/docs] and written in reStructuredText [http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html] format.

To build the documentation, you need to install Sphinx [http://www.sphinx-doc.org/]:

$ pip install -r docs/requirements.txt

Then you can build the documentation in HTML format locally:

$ cd docs
$ make html

HTML files are generated under build/html directory.
Open index.html with the browser and see if it is rendered as expected.

Note

Docstrings (documentation comments in the source code) are collected from the installed CuPy module.
If you modified docstrings, make sure to install the module (e.g., using pip install -e .) before building the documentation.

Tips for Developers

Here are some tips for developers hacking CuPy source code.

Install as Editable

During the development we recommend using pip with -e option to install as editable mode:

$ pip install -e .

Please note that even with -e, you will have to rerun pip install -e . to regenerate C++ sources using Cython if you modified Cython source files (e.g., *.pyx files).

Use ccache

NVCC environment variable can be specified at the build time to use the custom command instead of nvcc .
You can speed up the rebuild using ccache [https://ccache.dev/] (v3.4 or later) by:

$ export NVCC='ccache nvcc'

Limit Architecture

Use CUPY_NVCC_GENERATE_CODE environment variable to reduce the build time by limiting the target CUDA architectures.
For example, if you only run your CuPy build with NVIDIA P100 and V100, you can use:

$ export CUPY_NVCC_GENERATE_CODE=arch=compute_60,code=sm_60;arch=compute_70,code=sm_70

See Environment variables for the description.

Upgrade Guide

This page covers changes introduced in each major version that users should know when migrating from older releases.
Please see also the Compatibility Matrix for supported environments of each major version.

CuPy v13

Modernized CCCL support and requirement

NVIDIA’s CUDA C++ Core Libraries (CCCL) is the new home for the inter-dependent C++ libraries Thrust, CUB, and libcu++ that are shipped
with CUDA Toolkit 11.0+. To better serve our users with the latest CCCL features, improvements, and bug fixes, starting CuPy v13
we bundle CCCL in the source and binary (pip/conda) releases of CuPy. The same version of CCCL is used at both build-time (for building
CuPy) and run-time (for JIT-compiling kernels). This ensures uniform behavior, avoids surprises, and allows dual CUDA support as promised
by CCCL (currently CUDA 11 & 12), but this change leads to the following consequences distinct from the past releases:

	after the upgrade, the very first time of executing certain CuPy features may take longer than usual;

	the CCCL from any local CUDA installation is now ignored on purpose, either at build- or run- time;

	adventurous users who want to experiment with local CCCL changes need to update the CCCL submodule and build CuPy from source;

As a result of this movement, CuPy now follows the same compiler requirement as CCCL (and, in turn, CUDA Toolkit) and requires C++11 as
the lowest C++ standard. CCCL expects to move to C++17 in the near future.

Requirement Changes

The following versions are no longer supported in CuPy v13.

	CUDA 11.1 or earlier

	cuDNN 8.7 or earlier

	
	cuTENSOR 1.x
	
	Support for cuTENSOR 2.0 is added starting with CuPy v13, and support for cuTENSOR 1.x will be dropped.
This is because there are significant API changes from cuTENSOR 1.x to 2.0, and from the maintenance perspective, it is not practical to support both cuTENSOR 1.x and 2.0 APIs simultaneously.

	Python 3.8 or earlier

	NumPy 1.21 or earlier

	Ubuntu 18.04

NumPy/SciPy Baseline API Update

Baseline API has been bumped from NumPy 1.24 and SciPy 1.9 to NumPy 1.26 and SciPy 1.11.
CuPy v13 will follow the upstream products’ specifications of these baseline versions.

Change in cupy.asnumpy()/cupy.ndarray.get() Behavior

When transferring a CuPy array from GPU to CPU (as a NumPy array), previously the transfer could be nonblocking and not properly ordered when a non-default stream is in use,
leading to potential data race if the resulting array is modified on host immediately after the copy starts. In CuPy v13, the default
behavior is changed to be always blocking, with a new optional argument blocking added to allow the previous nonblocking behavior
if set to False, in which case users are responsible for ensuring proper stream order.

Change in cupy.array()/cupy.asarray()/cupy.asanyarray() Behavior

When transferring a NumPy array from CPU to GPU, previously the transfer was always blocking even if the source array is backed by pinned memory.
In CuPy v13, the default behavior is changed to be asynchronous if the source array is allocated as pinned to improve the performance.

A new optional argument blocking has been added to allow the previous blocking behavior if set to True.
You might want to set this option in case there is a possibility of overwriting the source array on CPU before the transfer completes.

Removal of cupy-wheel package

The cupy-wheel package, which aimed to serve as a “meta” package that chooses and installs the right CuPy binary packages for the users’ environment, has been removed in CuPy v13.
This is because the recent Pip no longer allows changing requirements dynamically.
See #7628 [https://github.com/cupy/cupy/issues/7628] for the details.

API Changes

	An internal and undocumented API cupy.cuda.compile_with_cache(), which was marked deprecated in CuPy v10, has been removed.
We encourage downstream libraries and users to migrate to use public APIs, such as RawModule (added in CuPy v7) or RawKernel (added in CuPy v5).
See User-Defined Kernels for their tutorials.

CUDA Runtime API is now statically linked

CuPy is now shipped with CUDA Runtime statically linked.
Due to this, cupy.cuda.runtime.runtimeGetVersion() always returns the version of CUDA Runtime that CuPy is built with, regardless of the version of CUDA Runtime installed locally.
If you need to retrieve the version of CUDA Runtime shared library installed locally, use cupy.cuda.get_local_runtime_version() instead.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 12.2.

CuPy v12

Change in cupy.cuda.Device Behavior

The CUDA current device (set via cupy.cuda.Device.use() or cudaSetDevice()) will be reactivated when exiting a device context manager.
This reverts the change introduced in CuPy v10, making the behavior identical to the one in CuPy v9 or earlier.

This decision was made for better interoperability with other libraries that might mutate the current CUDA device.
Suppose the following code:

def do_preprocess_cupy():
 with cupy.cuda.Device(2):
 # ...
 pass

torch.cuda.set_device(1)
do_preprocess_cupy()
print(torch.cuda.get_device()) # -> ???

In CuPy v10 and v11, the code prints 0, which can be surprising for users.
In CuPy v12, the code now prints 1, making it easy for both users and library developers to maintain the current device where multiple devices are involved.

Deprecation of cupy.ndarray.scatter_{add,max,min}

These APIs have been marked as deprecated as cupy.{add,maximum,minimum}.at ufunc methods have been implemented, which behave as equivalent and NumPy-compatible.

Requirement Changes

The following versions are no longer supported in CuPy v12.

	Python 3.7 or earlier

	NumPy 1.20 or earlier

	SciPy 1.6 or earlier

Baseline API Update

Baseline API has been bumped from NumPy 1.23 and SciPy 1.8 to NumPy 1.24 and SciPy 1.9.
CuPy v12 will follow the upstream products’ specifications of these baseline versions.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.8.

CuPy v11

Unified Binary Package for CUDA 11.2+

CuPy v11 provides a unified binary package named cupy-cuda11x that supports all CUDA 11.2+ releases.
This replaces per-CUDA version binary packages (cupy-cuda112 ~ cupy-cuda117).

Note that CUDA 11.1 or earlier still requires per-CUDA version binary packages.
cupy-cuda102, cupy-cuda110, and cupy-cuda111 will be provided for CUDA 10.2, 11.0, and 11.1, respectively.

Requirement Changes

The following versions are no longer supported in CuPy v11.

	ROCm 4.2 or earlier

	NumPy 1.19 or earlier

	SciPy 1.5 or earlier

CUB Enabled by Default

CuPy v11 accelerates the computation with CUB by default.
In case needed, you can turn it off by setting CUPY_ACCELERATORS environment variable to "".

Baseline API Update

Baseline API has been bumped from NumPy 1.21 and SciPy 1.7 to NumPy 1.23 and SciPy 1.8.
CuPy v11 will follow the upstream products’ specifications of these baseline versions.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.7 and ROCm 5.0.

CuPy v10

Dropping CUDA 9.2 / 10.0 / 10.1 Support

CUDA 10.1 or earlier is no longer supported.
Use CUDA 10.2 or later.

Dropping NCCL v2.4 / v2.6 / v2.7 Support

NCCL v2.4, v2.6, and v2.7 are no longer supported.

Dropping Python 3.6 Support

Python 3.6 is no longer supported.

Dropping NumPy 1.17 Support

NumPy 1.17 is no longer supported.

Change in cupy.cuda.Device Behavior

Current device set via use() will not be honored by the with Device block

Note

This change has been reverted in CuPy v12. See CuPy v12 section above for details.

The current device set via cupy.cuda.Device.use() will not be reactivated when exiting a device context manager. An existing code mixing with device: block and device.use() may get different results between CuPy v10 and v9.

cupy.cuda.Device(1).use()
with cupy.cuda.Device(0):
 pass
cupy.cuda.Device() # -> CuPy v10 returns device 0 instead of device 1

This decision was made to serve CuPy users better, but it could lead to surprises to downstream developers depending on CuPy,
as essentially CuPy’s Device context manager no longer respects the CUDA cudaSetDevice() API. Mixing
device management functionalities (especially using context manager) from different libraries is highly discouraged.

For downstream libraries that still wish to respect the cudaGetDevice()/cudaSetDevice() APIs, you should avoid managing
current devices using the with Device context manager, and instead calling these APIs explicitly, see for example
cupy/cupy#5963 [https://github.com/cupy/cupy/pull/5963].

Changes in cupy.cuda.Stream Behavior

Stream is now managed per-device

Previoulys, it was users’ responsibility to keep the current stream consistent with the current CUDA device.
For example, the following code raises an error in CuPy v9 or earlier:

import cupy

with cupy.cuda.Device(0):
 # Create a stream on device 0.
 s0 = cupy.cuda.Stream()

with cupy.cuda.Device(1):
 with s0:
 # Try to use the stream on device 1
 cupy.arange(10) # -> CUDA_ERROR_INVALID_HANDLE: invalid resource handle

CuPy v10 manages the current stream per-device, thus eliminating the need of switching the stream every time the active device is changed.
When using CuPy v10, the above example behaves differently because whenever a stream is created, it is automatically associated with the current device and will be ignored when switching devices.
In early versions, trying to use s0 in device 1 raises an error because s0 is associated with device 0. However, in v10, this s0 is ignored and the default stream for device 1 will be used instead.

Current stream set via use() will not be restored when exiting with block

Samely as the change of cupy.cuda.Device above, the current stream set via cupy.cuda.Stream.use() will not be reactivated when exiting a stream context manager.
An existing code mixing with stream: block and stream.use() may get different results between CuPy v10 and v9.

s1 = cupy.cuda.Stream()
s2 = cupy.cuda.Stream()
s3 = cupy.cuda.Stream()
with s1:
 s2.use()
 with s3:
 pass
 cupy.cuda.get_current_stream() # -> CuPy v10 returns `s1` instead of `s2`.

Streams can now be shared between threads

The same cupy.cuda.Stream instance can now safely be shared between multiple threads.

To achieve this, CuPy v10 will not destroy the stream (cudaStreamDestroy) if the stream is the current stream of any thread.

Big-Endian Arrays Automatically Converted to Little-Endian

cupy.array(), cupy.asarray() and its variants now always transfer the data to GPU in little-endian byte order.

Previously CuPy was copying the given numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] to GPU as-is, regardless of the endianness.
In CuPy v10, big-endian arrays are converted to little-endian before the transfer, which is the native byte order on GPUs.
This change eliminates the need to manually change the array endianness before creating the CuPy array.

Baseline API Update

Baseline API has been bumped from NumPy 1.20 and SciPy 1.6 to NumPy 1.21 and SciPy 1.7.
CuPy v10 will follow the upstream products’ specifications of these baseline versions.

API Changes

	Device synchronize detection APIs (cupyx.allow_synchronize() and cupyx.DeviceSynchronized), introduced as an experimental feature in CuPy v8, have been marked as deprecated because it is impossible to detect synchronizations reliably.

	An internal API cupy.cuda.compile_with_cache() has been marked as deprecated as there are better alternatives (see RawModule added since CuPy v7 and RawKernel since v5). While it has a longstanding history, this API has never been meant to be public. We encourage downstream libraries and users to migrate to the aforementioned public APIs. See User-Defined Kernels for their tutorials.

	The DLPack routine cupy.fromDlpack() is deprecated in favor of cupy.from_dlpack(), which addresses potential data race issues.

	A new module cupyx.profiler is added to host all profiling related APIs in CuPy. Accordingly, the following APIs are relocated to this module as follows. The old routines are deprecated.

	cupy.prof.TimeRangeDecorator() -> cupyx.profiler.time_range()

	cupy.prof.time_range() -> cupyx.profiler.time_range()

	cupy.cuda.profile() -> cupyx.profiler.profile()

	cupyx.time.repeat() -> cupyx.profiler.benchmark()

	cupy.ndarray.__pos__() now returns a copy (samely as cupy.positive()) instead of returning self.

Note that deprecated APIs may be removed in the future CuPy releases.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.4 and ROCm 4.3.

CuPy v9

Dropping Support of CUDA 9.0

CUDA 9.0 is no longer supported.
Use CUDA 9.2 or later.

Dropping Support of cuDNN v7.5 and NCCL v2.3

cuDNN v7.5 (or earlier) and NCCL v2.3 (or earlier) are no longer supported.

Dropping Support of NumPy 1.16 and SciPy 1.3

NumPy 1.16 and SciPy 1.3 are no longer supported.

Dropping Support of Python 3.5

Python 3.5 is no longer supported in CuPy v9.

NCCL and cuDNN No Longer Included in Wheels

NCCL and cuDNN shared libraires are no longer included in wheels (see #4850 [https://github.com/cupy/cupy/issues/4850] for discussions).
You can manually install them after installing wheel if you don’t have a previous installation; see Installation for details.

cuTENSOR Enabled in Wheels

cuTENSOR can now be used when installing CuPy via wheels.

cupy.cuda.{nccl,cudnn} Modules Needs Explicit Import

Previously cupy.cuda.nccl and cupy.cuda.cudnn modules were automatically imported.
Since CuPy v9, these modules need to be explicitly imported (i.e., import cupy.cuda.nccl / import cupy.cuda.cudnn.)

Baseline API Update

Baseline API has been bumped from NumPy 1.19 and SciPy 1.5 to NumPy 1.20 and SciPy 1.6.
CuPy v9 will follow the upstream products’ specifications of these baseline versions.

Following NumPy 1.20, aliases for the Python scalar types (cupy.bool, cupy.int, cupy.float, and cupy.complex) are now deprecated.
cupy.bool_, cupy.int_, cupy.float_ and cupy.complex_ should be used instead when required.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.2 and Python 3.8.

CuPy v8

Dropping Support of CUDA 8.0 and 9.1

CUDA 8.0 and 9.1 are no longer supported.
Use CUDA 9.0, 9.2, 10.0, or later.

Dropping Support of NumPy 1.15 and SciPy 1.2

NumPy 1.15 (or earlier) and SciPy 1.2 (or earlier) are no longer supported.

Update of Docker Images

	CuPy official Docker images (see Installation for details) are now updated to use CUDA 10.2 and Python 3.6.

	SciPy and Optuna are now pre-installed.

CUB Support and Compiler Requirement

CUB module is now built by default.
You can enable the use of CUB by setting CUPY_ACCELERATORS="cub" (see CUPY_ACCELERATORS for details).

Due to this change, g++-6 or later is required when building CuPy from the source.
See Installation for details.

The following environment variables are no longer effective:

	CUB_DISABLED: Use CUPY_ACCELERATORS as aforementioned.

	CUB_PATH: No longer required as CuPy uses either the CUB source bundled with CUDA (only when using CUDA 11.0 or later) or the one in the CuPy distribution.

API Changes

	cupy.scatter_add, which was deprecated in CuPy v4, has been removed. Use cupyx.scatter_add() instead.

	cupy.sparse module has been deprecated and will be removed in future releases. Use cupyx.scipy.sparse instead.

	dtype argument of cupy.ndarray.min() and cupy.ndarray.max() has been removed to align with the NumPy specification.

	cupy.allclose() now returns the result as 0-dim GPU array instead of Python bool to avoid device synchronization.

	cupy.RawModule now delays the compilation to the time of the first call to align the behavior with cupy.RawKernel.

	cupy.cuda.*_enabled flags (nccl_enabled, nvtx_enabled, etc.) has been deprecated. Use cupy.cuda.*.available flag (cupy.cuda.nccl.available, cupy.cuda.nvtx.available, etc.) instead.

	CHAINER_SEED environment variable is no longer effective. Use CUPY_SEED instead.

CuPy v7

Dropping Support of Python 2.7 and 3.4

Starting from CuPy v7, Python 2.7 and 3.4 are no longer supported as it reaches its end-of-life (EOL) in January 2020 (2.7) and March 2019 (3.4).
Python 3.5.1 is the minimum Python version supported by CuPy v7.
Please upgrade the Python version if you are using affected versions of Python to any later versions listed under Installation.

CuPy v6

Binary Packages Ignore LD_LIBRARY_PATH

Prior to CuPy v6, LD_LIBRARY_PATH environment variable can be used to override cuDNN / NCCL libraries bundled in the binary distribution (also known as wheels).
In CuPy v6, LD_LIBRARY_PATH will be ignored during discovery of cuDNN / NCCL; CuPy binary distributions always use libraries that comes with the package to avoid errors caused by unexpected override.

CuPy v5

cupyx.scipy Namespace

cupyx.scipy namespace has been introduced to provide CUDA-enabled SciPy functions.
cupy.sparse module has been renamed to cupyx.scipy.sparse; cupy.sparse will be kept as an alias for backward compatibility.

Dropped Support for CUDA 7.0 / 7.5

CuPy v5 no longer supports CUDA 7.0 / 7.5.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 9.2 and cuDNN 7.

To use these images, you may need to upgrade the NVIDIA driver on your host.
See Requirements of nvidia-docker [https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements] for details.

CuPy v4

Note

The version number has been bumped from v2 to v4 to align with the versioning of Chainer.
Therefore, CuPy v3 does not exist.

Default Memory Pool

Prior to CuPy v4, memory pool was only enabled by default when CuPy is used with Chainer.
In CuPy v4, memory pool is now enabled by default, even when you use CuPy without Chainer.
The memory pool significantly improves the performance by mitigating the overhead of memory allocation and CPU/GPU synchronization.

Attention

When you monitor GPU memory usage (e.g., using nvidia-smi), you may notice that GPU memory not being freed even after the array instance become out of scope.
This is expected behavior, as the default memory pool “caches” the allocated memory blocks.

To access the default memory pool instance, use get_default_memory_pool() and get_default_pinned_memory_pool().
You can access the statistics and free all unused memory blocks “cached” in the memory pool.

import cupy
a = cupy.ndarray(100, dtype=cupy.float32)
mempool = cupy.get_default_memory_pool()

For performance, the size of actual allocation may become larger than the requested array size.
print(mempool.used_bytes()) # 512
print(mempool.total_bytes()) # 512

Even if the array goes out of scope, its memory block is kept in the pool.
a = None
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 512

You can clear the memory block by calling `free_all_blocks`.
mempool.free_all_blocks()
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0

You can even disable the default memory pool by the code below.
Be sure to do this before any other CuPy operations.

import cupy
cupy.cuda.set_allocator(None)
cupy.cuda.set_pinned_memory_allocator(None)

Compute Capability

CuPy v4 now requires NVIDIA GPU with Compute Capability 3.0 or larger.
See the List of CUDA GPUs [https://developer.nvidia.com/cuda-gpus] to check if your GPU supports Compute Capability 3.0.

CUDA Stream

As CUDA Stream is fully supported in CuPy v4, cupy.cuda.RandomState.set_stream, the function to change the stream used by the random number generator, has been removed.
Please use cupy.cuda.Stream.use() instead.

See the discussion in #306 [https://github.com/cupy/cupy/pull/306] for more details.

cupyx Namespace

cupyx namespace has been introduced to provide features specific to CuPy (i.e., features not provided in NumPy) while avoiding collision in future.
See CuPy-specific functions for the list of such functions.

For this rule, cupy.scatter_add() has been moved to cupyx.scatter_add().
cupy.scatter_add() is still available as an alias, but it is encouraged to use cupyx.scatter_add() instead.

Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 8.0 and cuDNN 6.0.
This change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host.
See Requirements of nvidia-docker [https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements] for details.

CuPy v2

Changed Behavior of count_nonzero Function

For performance reasons, cupy.count_nonzero() has been changed to return zero-dimensional ndarray instead of int when axis=None.
See the discussion in #154 [https://github.com/cupy/cupy/pull/154] for more details.

Compatibility Matrix

	CuPy

	CC [1]

	CUDA

	ROCm

	cuTENSOR

	NCCL

	cuDNN

	Python

	NumPy

	SciPy

	Baseline API Spec.

	Docs

	v13

	3.5~

	11.2~

	4.3~

	2.0~

	2.16~

	8.8~

	3.9~

	1.22~

	1.7~

	NumPy 1.26 & SciPy 1.11

	latest [https://docs.cupy.dev/en/latest/install.html]

	v12

	3.0~9.0

	10.2~12.x

	4.3 & 5.0

	1.4~1.7

	2.8~2.17

	7.6~8.8

	3.8~3.12

	1.21~1.26

	1.7~1.11

	NumPy 1.24 & SciPy 1.9

	stable [https://docs.cupy.dev/en/stable/install.html]

	v11

	3.0~9.0

	10.2~12.0

	4.3 & 5.0

	1.4~1.6

	2.8~2.16

	7.6~8.7

	3.7~3.11

	1.20~1.24

	1.6~1.9

	NumPy 1.23 & SciPy 1.8

	v11.6.0 [https://docs.cupy.dev/en/v11.6.0/install.html]

	v10

	3.0~8.x

	10.2~11.7

	4.0 & 4.2 & 4.3 & 5.0

	1.3~1.5

	2.8~2.11

	7.6~8.4

	3.7~3.10

	1.18~1.22

	1.4~1.8

	NumPy 1.21 & SciPy 1.7

	v10.6.0 [https://docs.cupy.dev/en/v10.6.0/install.html]

	v9

	3.0~8.x

	9.2~11.5

	3.5~4.3

	1.2~1.3

	2.4 & 2.6~2.11

	7.6~8.2

	3.6~3.9

	1.17~1.21

	1.4~1.7

	NumPy 1.20 & SciPy 1.6

	v9.6.0 [https://docs.cupy.dev/en/v9.6.0/install.html]

	v8

	3.0~8.x

	9.0 & 9.2~11.2

	3.x [2]

	1.2

	2.0~2.8

	7.0~8.1

	3.5~3.9

	1.16~1.20

	1.3~1.6

	NumPy 1.19 & SciPy 1.5

	v8.6.0 [https://docs.cupy.dev/en/v8.6.0/install.html]

	v7

	3.0~8.x

	8.0~11.0

	2.x [2]

	1.0

	1.3~2.7

	5.0~8.0

	3.5~3.8

	1.9~1.19

	(not specified)

	(not specified)

	v7.8.0 [https://docs.cupy.dev/en/v7.8.0/install.html]

	v6

	3.0~7.x

	8.0~10.1

	n/a

	n/a

	1.3~2.4

	5.0~7.5

	2.7 & 3.4~3.8

	1.9~1.17

	(not specified)

	(not specified)

	v6.7.0 [https://docs.cupy.dev/en/v6.7.0/install.html]

	v5

	3.0~7.x

	8.0~10.1

	n/a

	n/a

	1.3~2.4

	5.0~7.5

	2.7 & 3.4~3.7

	1.9~1.16

	(not specified)

	(not specified)

	v5.4.0 [https://docs.cupy.dev/en/v5.4.0/install.html]

	v4

	3.0~7.x

	7.0~9.2

	n/a

	n/a

	1.3~2.2

	4.0~7.1

	2.7 & 3.4~3.6

	1.9~1.14

	(not specified)

	(not specified)

	v4.5.0 [https://docs.cupy.dev/en/v4.5.0/install.html]

[1]
CUDA Compute Capability

[2]
(1,2)
Highly experimental support with limited features.

License

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NumPy

The CuPy is designed based on NumPy’s API.
CuPy’s source code and documents contain the original NumPy ones.

Copyright (c) 2005-2016, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SciPy

The CuPy is designed based on SciPy’s API.
CuPy’s source code and documents contain the original SciPy ones.

Copyright (c) 2001, 2002 Enthought, Inc.

All rights reserved.

Copyright (c) 2003-2016 SciPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Enthought nor the names of the SciPy Developers
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

cuSignal

Part of CuPy’s signal processing routines and their documentation are ported from RAPIDS cuSignal [https://github.com/rapidsai/cusignal].

Copyright (c) 2019-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cupy	

 	
 	
 cupy.array_api	

 	
 	
 cupy.fft	

 	
 	
 cupy.linalg	

 	
 	
 cupy.polynomial.polynomial	

 	
 	
 cupy.polynomial.polyutils	

 	
 	
 cupy.random	

 	
 	
 cupy.testing	

 	[image: -]
 	
 cupyx	

 	
 	
 cupyx.distributed	

 	
 	
 cupyx.distributed.array	

 	
 	
 cupyx.optimizing	

 	
 	
 cupyx.scipy	

 	
 	
 cupyx.scipy.fft	

 	
 	
 cupyx.scipy.fftpack	

 	
 	
 cupyx.scipy.interpolate	

 	
 	
 cupyx.scipy.linalg	

 	
 	
 cupyx.scipy.ndimage	

 	
 	
 cupyx.scipy.signal	

 	
 	
 cupyx.scipy.signal.windows	

 	
 	
 cupyx.scipy.sparse	

 	
 	
 cupyx.scipy.sparse.csgraph	

 	
 	
 cupyx.scipy.sparse.linalg	

 	
 	
 cupyx.scipy.spatial	

 	
 	
 cupyx.scipy.spatial.distance	

 	
 	
 cupyx.scipy.special	

 	
 	
 cupyx.scipy.stats	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__bool__() (cupy.array_api._array_object.Array method)

 	(cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__call__() (cupy.ElementwiseKernel method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.RawKernel method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	__copy__() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	__enter__() (cupy.cuda.Device method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.Stream method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupyx.profiler.time_range method)

 	__eq__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__exit__() (cupy.cuda.Device method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.Stream method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupyx.profiler.time_range method)

 	__ge__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__getitem__() (cupy.array_api._array_object.Array method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	__gt__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	
 	__iter__() (cupy.fft._cache.PlanCache method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__le__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__len__() (cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__lt__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__ne__() (cupy.array_api._array_object.Array method)

 	(cupy.broadcast method)

 	(cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Graph method)

 	(cupy.cuda.ManagedMemory method)

 	(cupy.cuda.Memory method)

 	(cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryAsync method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryHook method)

 	(cupy.cuda.MemoryPointer method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemory method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(cupy.cuda.Stream method)

 	(cupy.cuda.texture.ChannelFormatDescriptor method)

 	(cupy.cuda.texture.CUDAarray method)

 	(cupy.cuda.texture.ResourceDescriptor method)

 	(cupy.cuda.texture.SurfaceObject method)

 	(cupy.cuda.texture.TextureDescriptor method)

 	(cupy.cuda.texture.TextureObject method)

 	(cupy.cuda.UnownedMemory method)

 	(cupy.ElementwiseKernel method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.fft.config.set_cufft_callbacks method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupy.prof.TimeRangeDecorator method)

 	(cupy.random.BitGenerator method)

 	(cupy.random.Generator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.RandomState method)

 	(cupy.random.XORWOW method)

 	(cupy.RawKernel method)

 	(cupy.RawModule method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	(cupy.vectorize method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.distributed.NCCLBackend method)

 	(cupyx.GeneralizedUFunc method)

 	(cupyx.jit._interface._JitRawKernel method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	(cupyx.profiler._time._PerfCaseResult method)

 	(cupyx.profiler.time_range method)

 	(cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BarycentricInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.interpolate.RBFInterpolator method)

 	(cupyx.scipy.interpolate.RegularGridInterpolator method)

 	(cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__next__() (cupy.flatiter method)

 	__nonzero__() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	__setitem__() (cupy.array_api._array_object.Array method)

 	(cupy.fft._cache.PlanCache method)

 	(cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	_GridGroup (class in cupyx.jit.cg)

 	_JitRawKernel (class in cupyx.jit._interface)

 	_PerfCaseResult (class in cupyx.profiler._time)

 	_ThreadBlockGroup (class in cupyx.jit.cg)

A

 	
 	A (cupyx.scipy.signal.StateSpace attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	abcd_normalize() (in module cupyx.scipy.signal)

 	abort() (cupy.cuda.nccl.NcclCommunicator method)

 	abs() (in module cupy.array_api)

 	absolute() (in module cupy)

 	accumulate() (cupy.ufunc method)

 	acos() (in module cupy.array_api)

 	acosh() (in module cupy.array_api)

 	add() (in module cupy)

 	(in module cupy.array_api)

 	add_callback() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	add_xi() (cupyx.scipy.interpolate.BarycentricInterpolator method)

 	adjoint() (cupyx.scipy.sparse.linalg.LinearOperator method)

 	advise() (cupy.cuda.ManagedMemory method)

 	affine_transform() (in module cupyx.scipy.ndimage)

 	Akima1DInterpolator (class in cupyx.scipy.interpolate)

 	all() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	all_chunks() (cupyx.distributed.array.DistributedArray method)

 	all_gather() (cupyx.distributed.NCCLBackend method)

 	all_reduce() (cupyx.distributed.NCCLBackend method)

 	all_to_all() (cupyx.distributed.NCCLBackend method)

 	allclose() (in module cupy)

 	allGather() (cupy.cuda.nccl.NcclCommunicator method)

 	alloc() (in module cupy.cuda)

 	alloc_pinned_memory() (in module cupy.cuda)

 	alloc_postprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	alloc_preprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	allow_synchronize() (in module cupyx)

 	allReduce() (cupy.cuda.nccl.NcclCommunicator method)

 	amax() (in module cupy)

 	amin() (in module cupy)

 	angle() (in module cupy)

 	antiderivative() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	any() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	append() (in module cupy)

 	apply_along_axis() (in module cupy)

 	arange() (in module cupy)

 	(in module cupy.array_api)

 	arccos() (in module cupy)

 	arccosh() (in module cupy)

 	arcsin() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	arcsinh() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	arctan() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	arctan2() (in module cupy)

 	arctanh() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	argmax() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	argmin() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	
 	argpartition() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	argrelextrema() (in module cupyx.scipy.signal)

 	argrelmax() (in module cupyx.scipy.signal)

 	argrelmin() (in module cupyx.scipy.signal)

 	argsort() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	argwhere() (in module cupy)

 	around() (in module cupy)

 	arr (cupy.cuda.texture.ResourceDescriptor attribute)

 	Array (class in cupy.array_api._array_object)

 	array() (in module cupy)

 	array2string() (in module cupy)

 	array_equal() (in module cupy)

 	array_equiv() (in module cupy)

 	array_repr() (in module cupy)

 	array_split() (in module cupy)

 	array_str() (in module cupy)

 	as_series() (in module cupy.polynomial.polyutils)

 	as_strided() (in module cupy.lib.stride_tricks)

 	asanyarray() (in module cupy)

 	asarray() (in module cupy)

 	(in module cupy.array_api)

 	asarray_chkfinite() (in module cupy)

 	ascontiguousarray() (in module cupy)

 	asfarray() (in module cupy)

 	asformat() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	asfortranarray() (in module cupy)

 	asfptype() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	asin() (in module cupy.array_api)

 	asinh() (in module cupy.array_api)

 	aslinearoperator() (in module cupyx.scipy.sparse.linalg)

 	asnumpy() (in module cupy)

 	assert_allclose() (in module cupy.testing)

 	assert_array_almost_equal() (in module cupy.testing)

 	assert_array_almost_equal_nulp() (in module cupy.testing)

 	assert_array_equal() (in module cupy.testing)

 	assert_array_less() (in module cupy.testing)

 	assert_array_list_equal() (in module cupy.testing)

 	assert_array_max_ulp() (in module cupy.testing)

 	assign() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	astype() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	at() (cupy.ufunc method)

 	atan() (in module cupy.array_api)

 	atan2() (in module cupy.array_api)

 	atanh() (in module cupy.array_api)

 	atleast_1d() (in module cupy)

 	atleast_2d() (in module cupy)

 	atleast_3d() (in module cupy)

 	atomic_add (in module cupyx.jit)

 	atomic_and (in module cupyx.jit)

 	atomic_cas (in module cupyx.jit)

 	atomic_dec (in module cupyx.jit)

 	atomic_exch (in module cupyx.jit)

 	atomic_inc (in module cupyx.jit)

 	atomic_max (in module cupyx.jit)

 	atomic_min (in module cupyx.jit)

 	atomic_or (in module cupyx.jit)

 	atomic_sub (in module cupyx.jit)

 	atomic_xor (in module cupyx.jit)

 	attributes (cupy.cuda.Device attribute)

 	(cupy.RawKernel attribute)

 	average() (in module cupy)

 	axis (cupyx.scipy.interpolate.Akima1DInterpolator attribute)

 	(cupyx.scipy.interpolate.BPoly attribute)

 	(cupyx.scipy.interpolate.CubicHermiteSpline attribute)

 	(cupyx.scipy.interpolate.PchipInterpolator attribute)

 	(cupyx.scipy.interpolate.PPoly attribute)

B

 	
 	B (cupyx.scipy.signal.StateSpace attribute)

 	backend (cupy.RawKernel attribute)

 	(cupy.RawModule attribute)

 	BadCoefficients

 	band_stop_obj() (in module cupyx.scipy.signal)

 	barrier() (cupyx.distributed.NCCLBackend method)

 	barthann() (in module cupyx.scipy.signal.windows)

 	bartlett() (in module cupy)

 	(in module cupyx.scipy.signal.windows)

 	barycentric_interpolate() (in module cupyx.scipy.interpolate)

 	BarycentricInterpolator (class in cupyx.scipy.interpolate)

 	base (cupy.flatiter attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	base_repr() (in module cupy)

 	basis_element() (cupyx.scipy.interpolate.BSpline class method)

 	bcast() (cupy.cuda.nccl.NcclCommunicator method)

 	bdtr() (in module cupyx.scipy.special)

 	bdtrc() (in module cupyx.scipy.special)

 	bdtri() (in module cupyx.scipy.special)

 	begin_capture() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	benchmark() (in module cupyx.profiler)

 	beta() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	(in module cupyx.scipy.special)

 	betainc() (in module cupyx.scipy.special)

 	betaincinv() (in module cupyx.scipy.special)

 	betaln() (in module cupyx.scipy.special)

 	bilinear() (in module cupyx.scipy.signal)

 	bilinear_zpk() (in module cupyx.scipy.signal)

 	binary_closing() (in module cupyx.scipy.ndimage)

 	binary_dilation() (in module cupyx.scipy.ndimage)

 	binary_erosion() (in module cupyx.scipy.ndimage)

 	binary_fill_holes() (in module cupyx.scipy.ndimage)

 	binary_hit_or_miss() (in module cupyx.scipy.ndimage)

 	binary_opening() (in module cupyx.scipy.ndimage)

 	binary_propagation() (in module cupyx.scipy.ndimage)

 	binary_repr() (in module cupy)

 	binary_version (cupy.RawKernel attribute)

 	bincount() (in module cupy)

 	binomial() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	
 	BitGenerator (class in cupy.random)

 	bitwise_and() (in module cupy)

 	(in module cupy.array_api)

 	bitwise_invert() (in module cupy.array_api)

 	bitwise_left_shift() (in module cupy.array_api)

 	bitwise_or() (in module cupy)

 	(in module cupy.array_api)

 	bitwise_right_shift() (in module cupy.array_api)

 	bitwise_xor() (in module cupy)

 	(in module cupy.array_api)

 	black_tophat() (in module cupyx.scipy.ndimage)

 	blackman() (in module cupy)

 	(in module cupyx.scipy.signal.windows)

 	blackmanharris() (in module cupyx.scipy.signal.windows)

 	block_diag() (in module cupyx.scipy.linalg)

 	block_index() (cupyx.jit.cg._GridGroup method)

 	block_rank() (cupyx.jit.cg._GridGroup method)

 	blockDim (in module cupyx.jit)

 	blockIdx (in module cupyx.jit)

 	bmat() (in module cupyx.scipy.sparse)

 	bode() (cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(in module cupyx.scipy.signal)

 	bohman() (in module cupyx.scipy.signal.windows)

 	boxcar() (in module cupyx.scipy.signal.windows)

 	boxcox() (in module cupyx.scipy.special)

 	boxcox1p() (in module cupyx.scipy.special)

 	boxcox_llf() (in module cupyx.scipy.stats)

 	BPoly (class in cupyx.scipy.interpolate)

 	broadcast (class in cupy)

 	broadcast() (cupy.cuda.nccl.NcclCommunicator method)

 	(cupyx.distributed.NCCLBackend method)

 	broadcast_arrays() (in module cupy)

 	(in module cupy.array_api)

 	broadcast_to() (in module cupy)

 	(in module cupy.array_api)

 	BSpline (class in cupyx.scipy.interpolate)

 	btdtr() (in module cupyx.scipy.special)

 	btdtri() (in module cupyx.scipy.special)

 	buttap() (in module cupyx.scipy.signal)

 	butter() (in module cupyx.scipy.signal)

 	buttord() (in module cupyx.scipy.signal)

 	byte_bounds() (in module cupy)

 	bytes() (in module cupy.random)

C

 	
 	c (cupy.poly1d attribute)

 	(cupyx.scipy.interpolate.Akima1DInterpolator attribute)

 	(cupyx.scipy.interpolate.BPoly attribute)

 	(cupyx.scipy.interpolate.CubicHermiteSpline attribute)

 	(cupyx.scipy.interpolate.PchipInterpolator attribute)

 	(cupyx.scipy.interpolate.PPoly attribute)

 	C (cupyx.scipy.signal.StateSpace attribute)

 	c_ (in module cupy)

 	cache_mode_ca (cupy.RawKernel attribute)

 	cached_code (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupyx.jit._interface._JitRawKernel attribute)

 	cached_codes (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupyx.jit._interface._JitRawKernel attribute)

 	can_cast() (in module cupy)

 	(in module cupy.array_api)

 	canberra() (in module cupyx.scipy.spatial.distance)

 	cbrt() (in module cupy)

 	(in module cupyx.scipy.special)

 	cdist() (in module cupyx.scipy.spatial.distance)

 	ceil() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	center_of_mass() (in module cupyx.scipy.ndimage)

 	CFunctionAllocator (class in cupy.cuda)

 	cg() (in module cupyx.scipy.sparse.linalg)

 	cgs() (in module cupyx.scipy.sparse.linalg)

 	change_mode() (cupyx.distributed.array.DistributedArray method)

 	ChannelFormatDescriptor (class in cupy.cuda.texture)

 	chDesc (cupy.cuda.texture.ResourceDescriptor attribute)

 	chdtr() (in module cupyx.scipy.special)

 	chdtrc() (in module cupyx.scipy.special)

 	chdtri() (in module cupyx.scipy.special)

 	cheb1ap() (in module cupyx.scipy.signal)

 	cheb1ord() (in module cupyx.scipy.signal)

 	cheb2ap() (in module cupyx.scipy.signal)

 	cheb2ord() (in module cupyx.scipy.signal)

 	chebwin() (in module cupyx.scipy.signal.windows)

 	cheby1() (in module cupyx.scipy.signal)

 	cheby2() (in module cupyx.scipy.signal)

 	chebyshev() (in module cupyx.scipy.spatial.distance)

 	check_async_error() (cupy.cuda.nccl.NcclCommunicator method)

 	check_COLA() (in module cupyx.scipy.signal)

 	check_NOLA() (in module cupyx.scipy.signal)

 	child_type (cupyx.jit.cg._GridGroup attribute)

 	(cupyx.jit.cg._ThreadBlockGroup attribute)

 	chirp() (in module cupyx.scipy.signal)

 	chisquare() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	choice() (cupy.random.RandomState method)

 	(in module cupy.random)

 	cholesky() (in module cupy.linalg)

 	choose() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	choose_conv_method() (in module cupyx.scipy.signal)

 	circulant() (in module cupyx.scipy.linalg)

 	cityblock() (in module cupyx.scipy.spatial.distance)

 	clear() (cupy.fft._cache.PlanCache method)

 	clear_memo() (in module cupy)

 	clip() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	code (cupy.RawKernel attribute)

 	(cupy.RawModule attribute)

 	coef (cupy.poly1d attribute)

 	coefficients (cupy.poly1d attribute)

 	coeffs (cupy.poly1d attribute)

 	coherence() (in module cupyx.scipy.signal)

 	column_stack() (in module cupy)

 	comm (cupy.cuda.nccl.NcclCommunicator attribute)

 	common_type() (in module cupy)

 	companion() (in module cupyx.scipy.linalg)

 	compile() (cupy.RawKernel method)

 	(cupy.RawModule method)

 	compress() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	compute_capability (cupy.cuda.Device attribute)

 	concat() (in module cupy.array_api)

 	concatenate() (in module cupy)

 	conj() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	conjugate() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	connected_components() (in module cupyx.scipy.sparse.csgraph)

 	const_size_bytes (cupy.RawKernel attribute)

 	construct_fast() (cupyx.scipy.interpolate.Akima1DInterpolator class method)

 	(cupyx.scipy.interpolate.BPoly class method)

 	(cupyx.scipy.interpolate.BSpline class method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline class method)

 	(cupyx.scipy.interpolate.NdPPoly class method)

 	(cupyx.scipy.interpolate.PchipInterpolator class method)

 	(cupyx.scipy.interpolate.PPoly class method)

 	cont2discrete() (in module cupyx.scipy.signal)

 	convolution_matrix() (in module cupyx.scipy.linalg)

 	convolve() (in module cupy)

 	(in module cupyx.scipy.ndimage)

 	(in module cupyx.scipy.signal)

 	convolve1d() (in module cupyx.scipy.ndimage)

 	convolve1d3o() (in module cupyx.signal)

 	convolve2d() (in module cupyx.scipy.signal)

 	coo_matrix (class in cupyx.scipy.sparse)

 	copy() (cupy.flatiter method)

 	(cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	
 	copy_from() (cupy.cuda.MemoryPointer method)

 	(cupy.cuda.texture.CUDAarray method)

 	copy_from_async() (cupy.cuda.MemoryPointer method)

 	copy_from_device() (cupy.cuda.MemoryPointer method)

 	copy_from_device_async() (cupy.cuda.MemoryPointer method)

 	copy_from_host() (cupy.cuda.MemoryPointer method)

 	copy_from_host_async() (cupy.cuda.MemoryPointer method)

 	copy_to() (cupy.cuda.texture.CUDAarray method)

 	copy_to_host() (cupy.cuda.MemoryPointer method)

 	copy_to_host_async() (cupy.cuda.MemoryPointer method)

 	copysign() (in module cupy)

 	copyto() (in module cupy)

 	corrcoef() (in module cupy)

 	correlate() (in module cupy)

 	(in module cupyx.scipy.ndimage)

 	(in module cupyx.scipy.signal)

 	correlate1d() (in module cupyx.scipy.ndimage)

 	correlate2d() (in module cupyx.scipy.signal)

 	correlation() (in module cupyx.scipy.spatial.distance)

 	correlation_lags() (in module cupyx.scipy.signal)

 	cos() (in module cupy)

 	(in module cupy.array_api)

 	cosdg() (in module cupyx.scipy.special)

 	cosh() (in module cupy)

 	(in module cupy.array_api)

 	cosine() (in module cupyx.scipy.signal.windows)

 	(in module cupyx.scipy.spatial.distance)

 	cosm1() (in module cupyx.scipy.special)

 	cotdg() (in module cupyx.scipy.special)

 	count_nonzero() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	cov() (in module cupy)

 	cpu_times (cupyx.profiler._time._PerfCaseResult attribute)

 	cross() (in module cupy)

 	csc_matrix (class in cupyx.scipy.sparse)

 	csd() (in module cupyx.scipy.signal)

 	cspline1d() (in module cupyx.scipy.signal)

 	cspline1d_eval() (in module cupyx.scipy.signal)

 	cspline2d() (in module cupyx.scipy.signal)

 	csr_matrix (class in cupyx.scipy.sparse)

 	cstruct (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	cuArr (cupy.cuda.texture.ResourceDescriptor attribute)

 	CubicHermiteSpline (class in cupyx.scipy.interpolate)

 	cublas_handle (cupy.cuda.Device attribute)

 	CUDA_PATH

 	CUDAarray (class in cupy.cuda.texture)

 	cumprod() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	cumsum() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	
 cupy

 	module

 	
 cupy.array_api

 	module

 	
 cupy.fft

 	module

 	
 cupy.linalg

 	module

 	
 cupy.polynomial.polynomial

 	module

 	
 cupy.polynomial.polyutils

 	module

 	
 cupy.random

 	module

 	
 cupy.testing

 	module

 	CUPY_ACCELERATORS, [1], [2], [3], [4], [5], [6]

 	CUPY_CACHE_DIR, [1], [2]

 	CUPY_CACHE_SAVE_CUDA_SOURCE

 	CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION

 	CUPY_CUDA_ARRAY_INTERFACE_SYNC

 	CUPY_DLPACK_EXPORT_VERSION

 	
 cupyx.distributed

 	module

 	
 cupyx.distributed.array

 	module

 	
 cupyx.optimizing

 	module

 	
 cupyx.scipy

 	module

 	
 cupyx.scipy.fft

 	module

 	
 cupyx.scipy.fftpack

 	module

 	
 cupyx.scipy.interpolate

 	module

 	
 cupyx.scipy.linalg

 	module

 	
 cupyx.scipy.ndimage

 	module

 	
 cupyx.scipy.signal

 	module

 	
 cupyx.scipy.signal.windows

 	module

 	
 cupyx.scipy.sparse

 	module

 	
 cupyx.scipy.sparse.csgraph

 	module

 	
 cupyx.scipy.sparse.linalg

 	module

 	
 cupyx.scipy.spatial

 	module

 	
 cupyx.scipy.spatial.distance

 	module

 	
 cupyx.scipy.special

 	module

 	
 cupyx.scipy.stats

 	module

 	cusolver_handle (cupy.cuda.Device attribute)

 	cusolver_sp_handle (cupy.cuda.Device attribute)

 	cusparse_handle (cupy.cuda.Device attribute)

 	cwt() (in module cupyx.scipy.signal)

 	CZT (class in cupyx.scipy.signal)

 	czt() (in module cupyx.scipy.signal)

 	czt_points() (in module cupyx.scipy.signal)

D

 	
 	D (cupyx.scipy.signal.StateSpace attribute)

 	data (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	dbode() (in module cupyx.scipy.signal)

 	dct() (in module cupyx.scipy.fft)

 	dctn() (in module cupyx.scipy.fft)

 	DebugPrintHook (class in cupy.cuda.memory_hooks)

 	decimate() (in module cupyx.scipy.signal)

 	declvar() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	deconvolve() (in module cupyx.scipy.signal)

 	default_rng() (in module cupy.random)

 	deg2rad() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	degrees() (in module cupy)

 	delete() (in module cupy)

 	den (cupyx.scipy.signal.TransferFunction attribute)

 	depth (cupy.cuda.texture.CUDAarray attribute)

 	deriv() (cupy.poly1d method)

 	derivative() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.KroghInterpolator method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	derivatives() (cupyx.scipy.interpolate.KroghInterpolator method)

 	desc (cupy.cuda.texture.CUDAarray attribute)

 	design_matrix() (cupyx.scipy.interpolate.BSpline class method)

 	destroy() (cupy.cuda.nccl.NcclCommunicator method)

 	det() (in module cupy.linalg)

 	detrend() (in module cupyx.scipy.signal)

 	Device (class in cupy.cuda)

 	device (cupy.array_api._array_object.Array attribute)

 	(cupy.cuda.ManagedMemory attribute)

 	(cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryAsync attribute)

 	(cupy.cuda.MemoryPointer attribute)

 	(cupy.cuda.UnownedMemory attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	device_id (cupy.cuda.ManagedMemory attribute)

 	(cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryAsync attribute)

 	(cupy.cuda.MemoryPointer attribute)

 	(cupy.cuda.UnownedMemory attribute)

 	device_id() (cupy.cuda.nccl.NcclCommunicator method)

 	deviceCanAccessPeer() (in module cupy.cuda.runtime)

 	deviceEnablePeerAccess() (in module cupy.cuda.runtime)

 	deviceGetAttribute() (in module cupy.cuda.runtime)

 	deviceGetByPCIBusId() (in module cupy.cuda.runtime)

 	deviceGetDefaultMemPool() (in module cupy.cuda.runtime)

 	deviceGetLimit() (in module cupy.cuda.runtime)

 	deviceGetMemPool() (in module cupy.cuda.runtime)

 	deviceGetPCIBusId() (in module cupy.cuda.runtime)

 	devices (cupyx.distributed.array.DistributedArray attribute)

 	deviceSetLimit() (in module cupy.cuda.runtime)

 	deviceSetMemPool() (in module cupy.cuda.runtime)

 	deviceSynchronize() (in module cupy.cuda.runtime)

 	DeviceSynchronized

 	
 	dfreqresp() (in module cupyx.scipy.signal)

 	dft() (in module cupyx.scipy.linalg)

 	dia_matrix (class in cupyx.scipy.sparse)

 	diag() (in module cupy)

 	diag_indices() (in module cupy)

 	diag_indices_from() (in module cupy)

 	diagflat() (in module cupy)

 	diagonal() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	diags() (in module cupyx.scipy.sparse)

 	diff() (in module cupy)

 	digamma() (in module cupyx.scipy.special)

 	digitize() (in module cupy)

 	dim_blocks() (cupyx.jit.cg._GridGroup method)

 	dim_threads() (cupyx.jit.cg._ThreadBlockGroup method)

 	dimpulse() (in module cupyx.scipy.signal)

 	dirichlet() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	distance_matrix() (in module cupyx.scipy.spatial)

 	(in module cupyx.scipy.spatial.distance)

 	distance_transform_edt() (in module cupyx.scipy.ndimage)

 	distributed_array() (in module cupyx.distributed.array)

 	DistributedArray (class in cupyx.distributed.array)

 	divide() (in module cupy)

 	(in module cupy.array_api)

 	divmod() (in module cupy)

 	dlsim() (in module cupyx.scipy.signal)

 	dlti (class in cupyx.scipy.signal)

 	done (cupy.cuda.Event attribute)

 	(cupy.cuda.ExternalStream attribute)

 	(cupy.cuda.Stream attribute)

 	dot() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	driverGetVersion() (in module cupy.cuda.runtime)

 	dsplit() (in module cupy)

 	dst() (in module cupyx.scipy.fft)

 	dstack() (in module cupy)

 	dstep() (in module cupyx.scipy.signal)

 	dstn() (in module cupyx.scipy.fft)

 	dt (cupyx.scipy.signal.dlti attribute)

 	(cupyx.scipy.signal.lti attribute)

 	(cupyx.scipy.signal.StateSpace attribute)

 	(cupyx.scipy.signal.TransferFunction attribute)

 	(cupyx.scipy.signal.ZerosPolesGain attribute)

 	dtype (cupy.array_api._array_object.Array attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	dump() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	dumps() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

E

 	
 	ediff1d() (in module cupy)

 	eigh() (in module cupy.linalg)

 	eigsh() (in module cupyx.scipy.sparse.linalg)

 	eigvalsh() (in module cupy.linalg)

 	einsum() (in module cupy)

 	ElementwiseKernel (class in cupy)

 	eliminate_zeros() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	ellip() (in module cupyx.scipy.signal)

 	ellipap() (in module cupyx.scipy.signal)

 	ellipord() (in module cupyx.scipy.signal)

 	empty() (in module cupy)

 	(in module cupy.array_api)

 	empty_like() (in module cupy)

 	(in module cupy.array_api)

 	empty_like_pinned() (in module cupyx)

 	empty_pinned() (in module cupyx)

 	enable_cooperative_groups (cupy.RawKernel attribute)

 	(cupy.RawModule attribute)

 	end_capture() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	entr() (in module cupyx.scipy.special)

 	entropy() (in module cupyx.scipy.stats)

 	
 environment variable

 	CUDA_PATH, [1]

 	CUPY_ACCELERATORS, [1], [2], [3], [4], [5], [6], [7]

 	CUPY_CACHE_DIR, [1], [2], [3]

 	CUPY_CACHE_IN_MEMORY

 	CUPY_CACHE_SAVE_CUDA_SOURCE, [1]

 	CUPY_COMPILE_WITH_PTX

 	CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION, [1]

 	CUPY_CUDA_ARRAY_INTERFACE_SYNC, [1]

 	CUPY_CUDA_COMPILE_WITH_DEBUG

 	CUPY_CUDA_PER_THREAD_DEFAULT_STREAM

 	CUPY_DISABLE_JITIFY_CACHE

 	CUPY_DLPACK_EXPORT_VERSION, [1]

 	CUPY_DUMP_CUDA_SOURCE_ON_ERROR

 	CUPY_EXPERIMENTAL_SLICE_COPY

 	CUPY_GPU_MEMORY_LIMIT

 	CUPY_INSTALL_USE_HIP

 	CUPY_NUM_BUILD_JOBS

 	CUPY_NUM_NVCC_THREADS

 	CUPY_NVCC_GENERATE_CODE

 	CUPY_SEED

 	CUPY_TF32

 	CUPY_USE_CUDA_PYTHON

 	CUTENSOR_PATH

 	NVCC, [1], [2]

 	equal() (in module cupy)

 	(in module cupy.array_api)

 	erf() (in module cupyx.scipy.special)

 	
 	erfc() (in module cupyx.scipy.special)

 	erfcinv() (in module cupyx.scipy.special)

 	erfcx() (in module cupyx.scipy.special)

 	erfinv() (in module cupyx.scipy.special)

 	euclidean() (in module cupyx.scipy.spatial.distance)

 	Event (class in cupy.cuda)

 	eventCreate() (in module cupy.cuda.runtime)

 	eventCreateWithFlags() (in module cupy.cuda.runtime)

 	eventDestroy() (in module cupy.cuda.runtime)

 	eventElapsedTime() (in module cupy.cuda.runtime)

 	eventQuery() (in module cupy.cuda.runtime)

 	eventRecord() (in module cupy.cuda.runtime)

 	eventSynchronize() (in module cupy.cuda.runtime)

 	exp() (in module cupy)

 	(in module cupy.array_api)

 	exp1() (in module cupyx.scipy.special)

 	exp10() (in module cupyx.scipy.special)

 	exp2() (in module cupy)

 	(in module cupyx.scipy.special)

 	expand_dims() (in module cupy)

 	(in module cupy.array_api)

 	expi() (in module cupyx.scipy.special)

 	expit() (in module cupyx.scipy.special)

 	expm() (in module cupyx.scipy.linalg)

 	expm1() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.special)

 	expn() (in module cupyx.scipy.special)

 	exponential() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	(in module cupyx.scipy.signal.windows)

 	exprel() (in module cupyx.scipy.special)

 	extend() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	ExternalStream (class in cupy.cuda)

 	extract() (in module cupy)

 	extrapolate (cupyx.scipy.interpolate.Akima1DInterpolator attribute)

 	(cupyx.scipy.interpolate.BPoly attribute)

 	(cupyx.scipy.interpolate.CubicHermiteSpline attribute)

 	(cupyx.scipy.interpolate.PchipInterpolator attribute)

 	(cupyx.scipy.interpolate.PPoly attribute)

 	extrema() (in module cupyx.scipy.ndimage)

 	eye() (in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.sparse)

F

 	
 	f() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	fabs() (in module cupy)

 	factorized() (in module cupyx.scipy.sparse.linalg)

 	fdtr() (in module cupyx.scipy.special)

 	fdtrc() (in module cupyx.scipy.special)

 	fdtri() (in module cupyx.scipy.special)

 	fft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	fft2() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	fftconvolve() (in module cupyx.scipy.signal)

 	fftfreq() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	fftn() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	fftshift() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	fht() (in module cupyx.scipy.fft)

 	fiedler() (in module cupyx.scipy.linalg)

 	fiedler_companion() (in module cupyx.scipy.linalg)

 	file_path (cupy.RawKernel attribute)

 	(cupy.RawModule attribute)

 	fill() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	fill_diagonal() (in module cupy)

 	filtfilt() (in module cupyx.scipy.signal)

 	find() (in module cupyx.scipy.sparse)

 	find_peaks() (in module cupyx.scipy.signal)

 	findfreqs() (in module cupyx.scipy.signal)

 	finfo() (in module cupy.array_api)

 	firls() (in module cupyx.scipy.signal)

 	firwin() (in module cupyx.scipy.signal)

 	firwin2() (in module cupyx.scipy.signal)

 	fix() (in module cupy)

 	flags (cupy.cuda.texture.CUDAarray attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	flat (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	flatiter (class in cupy)

 	flatnonzero() (in module cupy)

 	flatten() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	flattop() (in module cupyx.scipy.signal.windows)

 	flip() (in module cupy)

 	(in module cupy.array_api)

 	fliplr() (in module cupy)

 	flipud() (in module cupy)

 	float_power() (in module cupy)

 	floor() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	floor_divide() (in module cupy)

 	(in module cupy.array_api)

 	fmax() (in module cupy)

 	fmin() (in module cupy)

 	fmod() (in module cupy)

 	for_all_dtypes() (in module cupy.testing)

 	for_all_dtypes_combination() (in module cupy.testing)

 	for_CF_orders() (in module cupy.testing)

 	for_complex_dtypes() (in module cupy.testing)

 	
 	for_dtypes() (in module cupy.testing)

 	for_dtypes_combination() (in module cupy.testing)

 	for_float_dtypes() (in module cupy.testing)

 	for_int_dtypes() (in module cupy.testing)

 	for_int_dtypes_combination() (in module cupy.testing)

 	for_orders() (in module cupy.testing)

 	for_signed_dtypes() (in module cupy.testing)

 	for_signed_dtypes_combination() (in module cupy.testing)

 	for_unsigned_dtypes() (in module cupy.testing)

 	for_unsigned_dtypes_combination() (in module cupy.testing)

 	format (cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	format_float_positional() (in module cupy)

 	format_float_scientific() (in module cupy)

 	fourier_ellipsoid() (in module cupyx.scipy.ndimage)

 	fourier_gaussian() (in module cupyx.scipy.ndimage)

 	fourier_shift() (in module cupyx.scipy.ndimage)

 	fourier_uniform() (in module cupyx.scipy.ndimage)

 	free() (cupy.cuda.PinnedMemoryPool method)

 	(in module cupy.cuda.runtime)

 	free_all_blocks() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.PinnedMemoryPool method)

 	free_all_free() (cupy.cuda.MemoryPool method)

 	free_bytes() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	free_postprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	free_preprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	freeArray() (in module cupy.cuda.runtime)

 	freeAsync() (in module cupy.cuda.runtime)

 	freeHost() (in module cupy.cuda.runtime)

 	freqresp() (cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(in module cupyx.scipy.signal)

 	freqs() (in module cupyx.scipy.signal)

 	freqs_zpk() (in module cupyx.scipy.signal)

 	freqz() (in module cupyx.scipy.signal)

 	freqz_zpk() (in module cupyx.scipy.signal)

 	frexp() (in module cupy)

 	from_bernstein_basis() (cupyx.scipy.interpolate.Akima1DInterpolator class method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline class method)

 	(cupyx.scipy.interpolate.PchipInterpolator class method)

 	(cupyx.scipy.interpolate.PPoly class method)

 	from_derivatives() (cupyx.scipy.interpolate.BPoly class method)

 	from_dlpack() (in module cupy)

 	(in module cupy.array_api)

 	from_pci_bus_id() (cupy.cuda.Device method)

 	from_power_basis() (cupyx.scipy.interpolate.BPoly class method)

 	from_spline() (cupyx.scipy.interpolate.Akima1DInterpolator class method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline class method)

 	(cupyx.scipy.interpolate.PchipInterpolator class method)

 	(cupyx.scipy.interpolate.PPoly class method)

 	frombuffer() (in module cupy)

 	fromDlpack() (in module cupy)

 	fromfile() (in module cupy)

 	fromfunction() (in module cupy)

 	fromiter() (in module cupy)

 	fromstring() (in module cupy)

 	full() (in module cupy)

 	(in module cupy.array_api)

 	full_like() (in module cupy)

 	(in module cupy.array_api)

 	fuse() (in module cupy)

G

 	
 	gain (cupyx.scipy.signal.ZerosPolesGain attribute)

 	gamma() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	(in module cupyx.scipy.special)

 	gammainc() (in module cupyx.scipy.special)

 	gammaincc() (in module cupyx.scipy.special)

 	gammainccinv() (in module cupyx.scipy.special)

 	gammaincinv() (in module cupyx.scipy.special)

 	gammaln() (in module cupyx.scipy.special)

 	gammatone() (in module cupyx.scipy.signal)

 	gather() (cupyx.distributed.NCCLBackend method)

 	gauss_spline() (in module cupyx.scipy.signal)

 	gaussian() (in module cupyx.scipy.signal.windows)

 	gaussian_filter() (in module cupyx.scipy.ndimage)

 	gaussian_filter1d() (in module cupyx.scipy.ndimage)

 	gaussian_gradient_magnitude() (in module cupyx.scipy.ndimage)

 	gaussian_laplace() (in module cupyx.scipy.ndimage)

 	gausspulse() (in module cupyx.scipy.signal)

 	gcd() (in module cupy)

 	gdtr() (in module cupyx.scipy.special)

 	gdtrc() (in module cupyx.scipy.special)

 	general_cosine() (in module cupyx.scipy.signal.windows)

 	general_gaussian() (in module cupyx.scipy.signal.windows)

 	general_hamming() (in module cupyx.scipy.signal.windows)

 	GeneralizedUFunc (class in cupyx)

 	generate_binary_structure() (in module cupyx.scipy.ndimage)

 	Generator (class in cupy.random)

 	generator (cupy.random.MRG32k3a attribute)

 	(cupy.random.Philox4x3210 attribute)

 	(cupy.random.XORWOW attribute)

 	generic_filter() (in module cupyx.scipy.ndimage)

 	generic_filter1d() (in module cupyx.scipy.ndimage)

 	generic_gradient_magnitude() (in module cupyx.scipy.ndimage)

 	generic_laplace() (in module cupyx.scipy.ndimage)

 	genfromtxt() (in module cupy)

 	geometric() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	get() (cupy.fft._cache.PlanCache method)

 	(cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	get_allocator() (in module cupy.cuda)

 	get_array_module() (in module cupy)

 	(in module cupyx.scipy)

 	get_build_version() (in module cupy.cuda.nccl)

 	get_channel_format() (cupy.cuda.texture.ChannelFormatDescriptor method)

 	get_curr_memsize() (cupy.fft._cache.PlanCache method)

 	get_curr_size() (cupy.fft._cache.PlanCache method)

 	get_current_stream() (in module cupy.cuda)

 	get_default_memory_pool() (in module cupy)

 	get_default_pinned_memory_pool() (in module cupy)

 	get_elapsed_time() (in module cupy.cuda)

 	get_fft_plan() (in module cupyx.scipy.fftpack)

 	get_function() (cupy.RawModule method)

 	get_global() (cupy.RawModule method)

 	get_limit() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	get_local_runtime_version() (in module cupy.cuda)

 	get_memsize() (cupy.fft._cache.PlanCache method)

 	
 	get_plan_cache() (in module cupy.fft.config)

 	get_random_state() (in module cupy.random)

 	get_resource_desc() (cupy.cuda.texture.ResourceDescriptor method)

 	get_shape() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	get_size() (cupy.fft._cache.PlanCache method)

 	get_texture_desc() (cupy.cuda.texture.TextureDescriptor method)

 	get_unique_id() (in module cupy.cuda.nccl)

 	get_version() (in module cupy.cuda.nccl)

 	get_window() (in module cupyx.scipy.signal)

 	(in module cupyx.scipy.signal.windows)

 	getcol() (cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	getDevice() (in module cupy.cuda.runtime)

 	getDeviceCount() (in module cupy.cuda.runtime)

 	getDeviceProperties() (in module cupy.cuda.runtime)

 	getformat() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	getH() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	getmaxprint() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	getnnz() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	getrow() (cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	gmres() (in module cupyx.scipy.sparse.linalg)

 	gpu_times (cupyx.profiler._time._PerfCaseResult attribute)

 	gradient() (in module cupy)

 	Graph (class in cupy.cuda)

 	graph (cupy.cuda.Graph attribute)

 	graphExec (cupy.cuda.Graph attribute)

 	greater() (in module cupy)

 	(in module cupy.array_api)

 	greater_equal() (in module cupy)

 	(in module cupy.array_api)

 	grey_closing() (in module cupyx.scipy.ndimage)

 	grey_dilation() (in module cupyx.scipy.ndimage)

 	grey_erosion() (in module cupyx.scipy.ndimage)

 	grey_opening() (in module cupyx.scipy.ndimage)

 	grid (in module cupyx.jit)

 	gridDim (in module cupyx.jit)

 	gridsize (in module cupyx.jit)

 	group_delay() (in module cupyx.scipy.signal)

 	group_dim() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	group_index() (cupyx.jit.cg._ThreadBlockGroup method)

 	groupEnd() (in module cupy.cuda.nccl)

 	groupStart() (in module cupy.cuda.nccl)

 	gumbel() (cupy.random.RandomState method)

 	(in module cupy.random)

H

 	
 	H (cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.linalg.LinearOperator attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	hadamard() (in module cupyx.scipy.linalg)

 	hamming() (in module cupy)

 	(in module cupyx.scipy.signal.windows)

 	(in module cupyx.scipy.spatial.distance)

 	hankel() (in module cupyx.scipy.linalg)

 	hann() (in module cupyx.scipy.signal.windows)

 	hanning() (in module cupy)

 	has_canonical_format (cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	has_sorted_indices (cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	heaviside() (in module cupy)

 	height (cupy.cuda.texture.CUDAarray attribute)

 	hellinger() (in module cupyx.scipy.spatial.distance)

 	helmert() (in module cupyx.scipy.linalg)

 	
 	hfft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	hfft2() (in module cupyx.scipy.fft)

 	hfftn() (in module cupyx.scipy.fft)

 	hilbert() (in module cupyx.scipy.linalg)

 	(in module cupyx.scipy.signal)

 	hilbert2() (in module cupyx.scipy.signal)

 	histogram() (in module cupy)

 	(in module cupyx.scipy.ndimage)

 	histogram2d() (in module cupy)

 	histogramdd() (in module cupy)

 	hostAlloc() (in module cupy.cuda.runtime)

 	hostRegister() (in module cupy.cuda.runtime)

 	hostUnregister() (in module cupy.cuda.runtime)

 	hsplit() (in module cupy)

 	hstack() (in module cupy)

 	(in module cupyx.scipy.sparse)

 	huber() (in module cupyx.scipy.special)

 	hypergeometric() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	hypot() (in module cupy)

I

 	
 	i0() (in module cupy)

 	(in module cupyx.scipy.special)

 	i0e() (in module cupyx.scipy.special)

 	i1() (in module cupyx.scipy.special)

 	i1e() (in module cupyx.scipy.special)

 	id (cupy.cuda.Device attribute)

 	idct() (in module cupyx.scipy.fft)

 	idctn() (in module cupyx.scipy.fft)

 	identity (cupy.ReductionKernel attribute)

 	identity() (in module cupy)

 	(in module cupyx.scipy.sparse)

 	idst() (in module cupyx.scipy.fft)

 	idstn() (in module cupyx.scipy.fft)

 	ifft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	ifft2() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	ifftn() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	ifftshift() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	ifht() (in module cupyx.scipy.fft)

 	ihfft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	ihfft2() (in module cupyx.scipy.fft)

 	ihfftn() (in module cupyx.scipy.fft)

 	iinfo() (in module cupy.array_api)

 	iircomb() (in module cupyx.scipy.signal)

 	iirdesign() (in module cupyx.scipy.signal)

 	iirfilter() (in module cupyx.scipy.signal)

 	iirnotch() (in module cupyx.scipy.signal)

 	iirpeak() (in module cupyx.scipy.signal)

 	imag (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	imag() (in module cupy)

 	impulse() (cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(in module cupyx.scipy.signal)

 	in1d() (in module cupy)

 	in_params (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	index_map (cupyx.distributed.array.DistributedArray attribute)

 	indices() (in module cupy)

 	init_process_group() (in module cupyx.distributed)

 	initAll() (cupy.cuda.nccl.NcclCommunicator static method)

 	inner() (in module cupy)

 	integ() (cupy.poly1d method)

 	integers() (cupy.random.Generator method)

 	integrate() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.BPoly method)

 	(cupyx.scipy.interpolate.BSpline method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.NdPPoly method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	
 	integrate_1d() (cupyx.scipy.interpolate.NdPPoly method)

 	interp() (in module cupy)

 	interpn() (in module cupyx.scipy.interpolate)

 	intersect1d() (in module cupy)

 	inv() (in module cupy.linalg)

 	inv_boxcox() (in module cupyx.scipy.special)

 	inv_boxcox1p() (in module cupyx.scipy.special)

 	invert() (in module cupy)

 	invres() (in module cupyx.scipy.signal)

 	invresz() (in module cupyx.scipy.signal)

 	ipcCloseMemHandle() (in module cupy.cuda.runtime)

 	ipcGetEventHandle() (in module cupy.cuda.runtime)

 	ipcGetMemHandle() (in module cupy.cuda.runtime)

 	ipcOpenEventHandle() (in module cupy.cuda.runtime)

 	ipcOpenMemHandle() (in module cupy.cuda.runtime)

 	irfft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	irfft2() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	irfftn() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	is_capturing() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	is_valid() (cupyx.jit.cg._GridGroup method)

 	isclose() (in module cupy)

 	iscomplex() (in module cupy)

 	iscomplexobj() (in module cupy)

 	isfinite() (in module cupy)

 	(in module cupy.array_api)

 	isfortran() (in module cupy)

 	isin() (in module cupy)

 	isinf() (in module cupy)

 	(in module cupy.array_api)

 	isnan() (in module cupy)

 	(in module cupy.array_api)

 	isneginf() (in module cupy)

 	isposinf() (in module cupy)

 	isreal() (in module cupy)

 	isrealobj() (in module cupy)

 	isscalar() (in module cupy)

 	issparse() (in module cupyx.scipy.sparse)

 	isspmatrix() (in module cupyx.scipy.sparse)

 	isspmatrix_coo() (in module cupyx.scipy.sparse)

 	isspmatrix_csc() (in module cupyx.scipy.sparse)

 	isspmatrix_csr() (in module cupyx.scipy.sparse)

 	isspmatrix_dia() (in module cupyx.scipy.sparse)

 	istft() (in module cupyx.scipy.signal)

 	item() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	itemsize (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	iterate_structure() (in module cupyx.scipy.ndimage)

 	ix_() (in module cupy)

J

 	
 	j0() (in module cupyx.scipy.special)

 	
 	j1() (in module cupyx.scipy.special)

 	jensenshannon() (in module cupyx.scipy.spatial.distance)

K

 	
 	k0() (in module cupyx.scipy.special)

 	k0e() (in module cupyx.scipy.special)

 	k1() (in module cupyx.scipy.special)

 	k1e() (in module cupyx.scipy.special)

 	kaiser() (in module cupy)

 	(in module cupyx.scipy.signal.windows)

 	kaiser_atten() (in module cupyx.scipy.signal)

 	kaiser_beta() (in module cupyx.scipy.signal)

 	kaiserord() (in module cupyx.scipy.signal)

 	
 	kernel (cupy.RawKernel attribute)

 	kl_div() (in module cupyx.scipy.special)

 	kl_divergence() (in module cupyx.scipy.spatial.distance)

 	krogh_interpolate() (in module cupyx.scipy.interpolate)

 	KroghInterpolator (class in cupyx.scipy.interpolate)

 	kron() (in module cupy)

 	(in module cupyx.scipy.linalg)

 	(in module cupyx.scipy.sparse)

 	kronsum() (in module cupyx.scipy.sparse)

 	kwargs (cupy.ElementwiseKernel attribute)

L

 	
 	label() (in module cupyx.scipy.ndimage)

 	labeled_comprehension() (in module cupyx.scipy.ndimage)

 	laneid (in module cupyx.jit)

 	laplace() (cupy.random.RandomState method)

 	(in module cupy.random)

 	(in module cupyx.scipy.ndimage)

 	launch() (cupy.cuda.Graph method)

 	launch_host_func() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	launchHostFunc() (in module cupy.cuda.runtime)

 	lcm() (in module cupy)

 	ldexp() (in module cupy)

 	left_shift() (in module cupy)

 	leslie() (in module cupyx.scipy.linalg)

 	less() (in module cupy)

 	(in module cupy.array_api)

 	less_equal() (in module cupy)

 	(in module cupy.array_api)

 	lexsort() (in module cupy)

 	lfilter() (in module cupyx.scipy.signal)

 	lfilter_zi() (in module cupyx.scipy.signal)

 	lfiltic() (in module cupyx.scipy.signal)

 	LinearOperator (class in cupyx.scipy.sparse.linalg)

 	LineProfileHook (class in cupy.cuda.memory_hooks)

 	linspace() (in module cupy)

 	(in module cupy.array_api)

 	load() (in module cupy)

 	loadtxt() (in module cupy)

 	lobpcg() (in module cupyx.scipy.sparse.linalg)

 	local_size_bytes (cupy.RawKernel attribute)

 	log() (in module cupy)

 	(in module cupy.array_api)

 	log10() (in module cupy)

 	(in module cupy.array_api)

 	log1p() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.special)

 	log2() (in module cupy)

 	(in module cupy.array_api)

 	
 	log_expit() (in module cupyx.scipy.special)

 	log_ndtr() (in module cupyx.scipy.special)

 	log_softmax() (in module cupyx.scipy.special)

 	logaddexp() (in module cupy)

 	(in module cupy.array_api)

 	logaddexp2() (in module cupy)

 	loggamma() (in module cupyx.scipy.special)

 	logical_and() (in module cupy)

 	(in module cupy.array_api)

 	logical_not() (in module cupy)

 	(in module cupy.array_api)

 	logical_or() (in module cupy)

 	(in module cupy.array_api)

 	logical_xor() (in module cupy)

 	(in module cupy.array_api)

 	logistic() (cupy.random.RandomState method)

 	(in module cupy.random)

 	logit() (in module cupyx.scipy.special)

 	lognormal() (cupy.random.RandomState method)

 	(in module cupy.random)

 	logseries() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	logspace() (in module cupy)

 	logsumexp() (in module cupyx.scipy.special)

 	lombscargle() (in module cupyx.scipy.signal)

 	lp2bp() (in module cupyx.scipy.signal)

 	lp2bp_zpk() (in module cupyx.scipy.signal)

 	lp2bs() (in module cupyx.scipy.signal)

 	lp2bs_zpk() (in module cupyx.scipy.signal)

 	lp2hp() (in module cupyx.scipy.signal)

 	lp2hp_zpk() (in module cupyx.scipy.signal)

 	lp2lp() (in module cupyx.scipy.signal)

 	lp2lp_zpk() (in module cupyx.scipy.signal)

 	lpmv() (in module cupyx.scipy.special)

 	lsim() (in module cupyx.scipy.signal)

 	lsmr() (in module cupyx.scipy.sparse.linalg)

 	lsqr() (in module cupyx.scipy.sparse.linalg)

 	lstsq() (in module cupy.linalg)

 	lti (class in cupyx.scipy.signal)

 	lu() (in module cupyx.scipy.linalg)

 	lu_factor() (in module cupyx.scipy.linalg)

 	lu_solve() (in module cupyx.scipy.linalg)

M

 	
 	make_2d_index_map() (in module cupyx.distributed.array)

 	make_interp_spline() (in module cupyx.scipy.interpolate)

 	malloc() (cupy.cuda.CFunctionAllocator method)

 	(cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.PinnedMemoryPool method)

 	(cupy.cuda.PythonFunctionAllocator method)

 	(in module cupy.cuda.runtime)

 	malloc3DArray() (in module cupy.cuda.runtime)

 	malloc_async() (in module cupy.cuda)

 	malloc_managed() (in module cupy.cuda)

 	malloc_postprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	malloc_preprocess() (cupy.cuda.memory_hooks.DebugPrintHook method)

 	(cupy.cuda.memory_hooks.LineProfileHook method)

 	(cupy.cuda.MemoryHook method)

 	mallocArray() (in module cupy.cuda.runtime)

 	mallocAsync() (in module cupy.cuda.runtime)

 	mallocFromPoolAsync() (in module cupy.cuda.runtime)

 	mallocManaged() (in module cupy.cuda.runtime)

 	ManagedMemory (class in cupy.cuda)

 	map_coordinates() (in module cupyx.scipy.ndimage)

 	map_expr (cupy.ReductionKernel attribute)

 	Mark() (in module cupy.cuda.nvtx)

 	MarkC() (in module cupy.cuda.nvtx)

 	mask_indices() (in module cupy)

 	matmat() (cupyx.scipy.sparse.linalg.LinearOperator method)

 	matmul (in module cupy)

 	matmul() (in module cupy.array_api)

 	(in module cupyx.distributed.array)

 	matrix_power() (in module cupy.linalg)

 	matrix_rank() (in module cupy.linalg)

 	matvec() (cupyx.scipy.sparse.linalg.LinearOperator method)

 	max() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	max_dynamic_shared_size_bytes (cupy.RawKernel attribute)

 	max_len_seq() (in module cupyx.scipy.signal)

 	max_threads_per_block (cupy.RawKernel attribute)

 	maximum() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupyx.scipy.ndimage)

 	maximum_filter() (in module cupyx.scipy.ndimage)

 	maximum_filter1d() (in module cupyx.scipy.ndimage)

 	maximum_position() (in module cupyx.scipy.ndimage)

 	may_share_memory() (in module cupy)

 	mean() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupyx.scipy.ndimage)

 	medfilt() (in module cupyx.scipy.signal)

 	medfilt2d() (in module cupyx.scipy.signal)

 	median() (in module cupy)

 	(in module cupyx.scipy.ndimage)

 	median_filter() (in module cupyx.scipy.ndimage)

 	mem (cupy.cuda.MemoryPointer attribute)

 	(cupy.cuda.PinnedMemoryPointer attribute)

 	mem_info (cupy.cuda.Device attribute)

 	memAdvise() (in module cupy.cuda.runtime)

 	memcpy() (in module cupy.cuda.runtime)

 	memcpy2D() (in module cupy.cuda.runtime)

 	memcpy2DAsync() (in module cupy.cuda.runtime)

 	memcpy2DFromArray() (in module cupy.cuda.runtime)

 	memcpy2DFromArrayAsync() (in module cupy.cuda.runtime)

 	memcpy2DToArray() (in module cupy.cuda.runtime)

 	memcpy2DToArrayAsync() (in module cupy.cuda.runtime)

 	memcpy3D() (in module cupy.cuda.runtime)

 	memcpy3DAsync() (in module cupy.cuda.runtime)

 	memcpy_async (in module cupyx.jit.cg)

 	memcpyAsync() (in module cupy.cuda.runtime)

 	memcpyPeer() (in module cupy.cuda.runtime)

 	memcpyPeerAsync() (in module cupy.cuda.runtime)

 	memGetInfo() (in module cupy.cuda.runtime)

 	memoize() (in module cupy)

 	
 	Memory (class in cupy.cuda)

 	MemoryAsync (class in cupy.cuda)

 	memoryAsyncHasStat (cupy.cuda.MemoryAsyncPool attribute)

 	MemoryAsyncPool (class in cupy.cuda)

 	MemoryHook (class in cupy.cuda)

 	MemoryPointer (class in cupy.cuda)

 	MemoryPool (class in cupy.cuda)

 	memPoolCreate() (in module cupy.cuda.runtime)

 	memPoolDestroy() (in module cupy.cuda.runtime)

 	memPoolTrimTo() (in module cupy.cuda.runtime)

 	memPrefetchAsync() (in module cupy.cuda.runtime)

 	memset() (cupy.cuda.MemoryPointer method)

 	(in module cupy.cuda.runtime)

 	memset_async() (cupy.cuda.MemoryPointer method)

 	memsetAsync() (in module cupy.cuda.runtime)

 	meshgrid() (in module cupy)

 	(in module cupy.array_api)

 	mgrid (in module cupy)

 	min() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	min_scalar_type() (in module cupy)

 	minimum() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupyx.scipy.ndimage)

 	minimum_filter() (in module cupyx.scipy.ndimage)

 	minimum_filter1d() (in module cupyx.scipy.ndimage)

 	minimum_phase() (in module cupyx.scipy.signal)

 	minimum_position() (in module cupyx.scipy.ndimage)

 	minkowski() (in module cupyx.scipy.spatial.distance)

 	minres() (in module cupyx.scipy.sparse.linalg)

 	mod() (in module cupy)

 	mode (cupyx.distributed.array.DistributedArray attribute)

 	modf() (in module cupy)

 	
 module

 	cupy

 	cupy.array_api

 	cupy.fft

 	cupy.linalg

 	cupy.polynomial.polynomial

 	cupy.polynomial.polyutils

 	cupy.random

 	cupy.testing

 	cupyx.distributed

 	cupyx.distributed.array

 	cupyx.optimizing

 	cupyx.scipy

 	cupyx.scipy.fft

 	cupyx.scipy.fftpack

 	cupyx.scipy.interpolate

 	cupyx.scipy.linalg

 	cupyx.scipy.ndimage

 	cupyx.scipy.signal

 	cupyx.scipy.signal.windows

 	cupyx.scipy.sparse

 	cupyx.scipy.sparse.csgraph

 	cupyx.scipy.sparse.linalg

 	cupyx.scipy.spatial

 	cupyx.scipy.spatial.distance

 	cupyx.scipy.special

 	cupyx.scipy.stats

 	module (cupy.RawModule attribute)

 	morlet() (in module cupyx.scipy.signal)

 	morlet2() (in module cupyx.scipy.signal)

 	morphological_gradient() (in module cupyx.scipy.ndimage)

 	morphological_laplace() (in module cupyx.scipy.ndimage)

 	moveaxis() (in module cupy)

 	MRG32k3a (class in cupy.random)

 	msort() (in module cupy)

 	mT (cupy.array_api._array_object.Array attribute)

 	multigammaln() (in module cupyx.scipy.special)

 	multinomial() (in module cupy.random)

 	multiply() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	multivariate_normal() (cupy.random.RandomState method)

 	(in module cupy.random)

N

 	
 	n_free_blocks() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	(cupy.cuda.PinnedMemoryPool method)

 	name (cupy.cuda.memory_hooks.DebugPrintHook attribute)

 	(cupy.cuda.memory_hooks.LineProfileHook attribute)

 	(cupy.cuda.MemoryHook attribute)

 	(cupy.ElementwiseKernel attribute)

 	(cupy.RawKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupy.ufunc attribute)

 	name_expressions (cupy.RawModule attribute)

 	nan_to_num() (in module cupy)

 	nanargmax() (in module cupy)

 	nanargmin() (in module cupy)

 	nancumprod() (in module cupy)

 	nancumsum() (in module cupy)

 	nanmax() (in module cupy)

 	nanmean() (in module cupy)

 	nanmedian() (in module cupy)

 	nanmin() (in module cupy)

 	nanprod() (in module cupy)

 	nanstd() (in module cupy)

 	nansum() (in module cupy)

 	nanvar() (in module cupy)

 	nargs (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupy.ufunc attribute)

 	nbdtr() (in module cupyx.scipy.special)

 	nbdtrc() (in module cupyx.scipy.special)

 	nbdtri() (in module cupyx.scipy.special)

 	nbytes (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	NCCLBackend (class in cupyx.distributed)

 	NcclCommunicator (class in cupy.cuda.nccl)

 	nd (cupy.broadcast attribute)

 	ndarray (class in cupy)

 	ndim (cupy.array_api._array_object.Array attribute)

 	(cupy.cuda.texture.CUDAarray attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.linalg.LinearOperator attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	NdPPoly (class in cupyx.scipy.interpolate)

 	ndtr() (in module cupyx.scipy.special)

 	
 	ndtri() (in module cupyx.scipy.special)

 	negative() (in module cupy)

 	(in module cupy.array_api)

 	negative_binomial() (cupy.random.RandomState method)

 	(in module cupy.random)

 	next_fast_len() (in module cupyx.scipy.fft)

 	nextafter() (in module cupy)

 	nin (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupy.ufunc attribute)

 	nnz (cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	no_return (cupy.ElementwiseKernel attribute)

 	noncentral_chisquare() (cupy.random.RandomState method)

 	(in module cupy.random)

 	noncentral_f() (cupy.random.RandomState method)

 	(in module cupy.random)

 	nonzero() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	norm() (in module cupy.linalg)

 	(in module cupyx.scipy.sparse.linalg)

 	normal() (cupy.random.RandomState method)

 	(in module cupy.random)

 	normalize() (in module cupyx.scipy.signal)

 	not_equal() (in module cupy)

 	(in module cupy.array_api)

 	nout (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	(cupy.ufunc attribute)

 	null (cupy.cuda.Stream attribute)

 	num (cupyx.scipy.signal.TransferFunction attribute)

 	num_blocks() (cupyx.jit.cg._GridGroup method)

 	num_regs (cupy.RawKernel attribute)

 	num_threads() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	numpy_cupy_allclose() (in module cupy.testing)

 	numpy_cupy_array_almost_equal() (in module cupy.testing)

 	numpy_cupy_array_almost_equal_nulp() (in module cupy.testing)

 	numpy_cupy_array_equal() (in module cupy.testing)

 	numpy_cupy_array_less() (in module cupy.testing)

 	numpy_cupy_array_list_equal() (in module cupy.testing)

 	numpy_cupy_array_max_ulp() (in module cupy.testing)

 	nuttall() (in module cupyx.scipy.signal.windows)

 	NVCC, [1]

O

 	
 	o (cupy.poly1d attribute)

 	oaconvolve() (in module cupyx.scipy.signal)

 	ogrid (in module cupy)

 	ones() (in module cupy)

 	(in module cupy.array_api)

 	ones_like() (in module cupy)

 	(in module cupy.array_api)

 	operation (cupy.ElementwiseKernel attribute)

 	optimize() (in module cupyx.optimizing)

 	options (cupy.RawKernel attribute)

 	(cupy.RawModule attribute)

 	(cupy.ReductionKernel attribute)

 	
 	order (cupy.poly1d attribute)

 	order_filter() (in module cupyx.scipy.signal)

 	out_params (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	outer() (cupy.ufunc method)

 	(in module cupy)

 	output() (cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

P

 	
 	packbits() (in module cupy)

 	pad() (in module cupy)

 	params (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	pareto() (cupy.random.RandomState method)

 	(in module cupy.random)

 	partition() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	parzen() (in module cupyx.scipy.signal.windows)

 	pchip_interpolate() (in module cupyx.scipy.interpolate)

 	PchipInterpolator (class in cupyx.scipy.interpolate)

 	pci_bus_id (cupy.cuda.Device attribute)

 	pdist() (in module cupyx.scipy.spatial.distance)

 	pdtr() (in module cupyx.scipy.special)

 	pdtrc() (in module cupyx.scipy.special)

 	pdtri() (in module cupyx.scipy.special)

 	peak_prominences() (in module cupyx.scipy.signal)

 	peak_widths() (in module cupyx.scipy.signal)

 	percentile() (in module cupy)

 	percentile_filter() (in module cupyx.scipy.ndimage)

 	periodogram() (in module cupyx.scipy.signal)

 	permutation() (cupy.random.RandomState method)

 	(in module cupy.random)

 	permute_dims() (in module cupy.array_api)

 	Philox4x3210 (class in cupy.random)

 	piecewise() (in module cupy)

 	PinnedMemory (class in cupy.cuda)

 	PinnedMemoryPointer (class in cupy.cuda)

 	PinnedMemoryPool (class in cupy.cuda)

 	pinv() (in module cupy.linalg)

 	place() (in module cupy)

 	place_poles() (in module cupyx.scipy.signal)

 	PlanCache (class in cupy.fft._cache)

 	poch() (in module cupyx.scipy.special)

 	pointerGetAttributes() (in module cupy.cuda.runtime)

 	points() (cupyx.scipy.signal.CZT method)

 	(cupyx.scipy.signal.ZoomFFT method)

 	poisson() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	poles (cupyx.scipy.signal.dlti attribute)

 	(cupyx.scipy.signal.lti attribute)

 	(cupyx.scipy.signal.StateSpace attribute)

 	(cupyx.scipy.signal.TransferFunction attribute)

 	(cupyx.scipy.signal.ZerosPolesGain attribute)

 	poly() (in module cupy)

 	poly1d (class in cupy)

 	polyadd() (in module cupy)

 	polycompanion() (in module cupy.polynomial.polynomial)

 	polyfit() (in module cupy)

 	polygamma() (in module cupyx.scipy.special)

 	polymul() (in module cupy)

 	polysub() (in module cupy)

 	polyval() (in module cupy)

 	(in module cupy.polynomial.polynomial)

 	
 	polyvalfromroots() (in module cupy.polynomial.polynomial)

 	polyvander() (in module cupy.polynomial.polynomial)

 	positive() (in module cupy)

 	(in module cupy.array_api)

 	post_map_expr (cupy.ReductionKernel attribute)

 	pow() (in module cupy.array_api)

 	power() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupy.random)

 	PPoly (class in cupyx.scipy.interpolate)

 	preamble (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	preferred_shared_memory_carveout (cupy.RawKernel attribute)

 	prefetch() (cupy.cuda.ManagedMemory method)

 	prewitt() (in module cupyx.scipy.ndimage)

 	print_report() (cupy.cuda.memory_hooks.LineProfileHook method)

 	prod() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	profile() (in module cupy.cuda)

 	(in module cupyx.profiler)

 	profilerStart() (in module cupy.cuda.runtime)

 	profilerStop() (in module cupy.cuda.runtime)

 	pseudo_huber() (in module cupyx.scipy.special)

 	psi() (in module cupyx.scipy.special)

 	ptds (cupy.cuda.Stream attribute)

 	ptp() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	ptr (cupy.cuda.ManagedMemory attribute)

 	(cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryAsync attribute)

 	(cupy.cuda.MemoryPointer attribute)

 	(cupy.cuda.PinnedMemoryPointer attribute)

 	(cupy.cuda.texture.ChannelFormatDescriptor attribute)

 	(cupy.cuda.texture.CUDAarray attribute)

 	(cupy.cuda.texture.ResourceDescriptor attribute)

 	(cupy.cuda.texture.SurfaceObject attribute)

 	(cupy.cuda.texture.TextureDescriptor attribute)

 	(cupy.cuda.texture.TextureObject attribute)

 	(cupy.cuda.UnownedMemory attribute)

 	ptx_version (cupy.RawKernel attribute)

 	pulse_compression() (in module cupyx.signal)

 	put() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	putmask() (in module cupy)

 	PythonFunctionAllocator (class in cupy.cuda)

Q

 	
 	qmf() (in module cupyx.scipy.signal)

 	qr() (in module cupy.linalg)

 	qspline1d() (in module cupyx.scipy.signal)

 	
 	qspline1d_eval() (in module cupyx.scipy.signal)

 	qspline2d() (in module cupyx.scipy.signal)

 	quantile() (in module cupy)

R

 	
 	r (cupy.poly1d attribute)

 	r_ (in module cupy)

 	rad2deg() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	radian() (in module cupyx.scipy.special)

 	radians() (in module cupy)

 	rand() (cupy.random.RandomState method)

 	(in module cupy.random)

 	(in module cupyx.scipy.sparse)

 	randint() (cupy.random.RandomState method)

 	(in module cupy.random)

 	randn() (cupy.random.RandomState method)

 	(in module cupy.random)

 	random() (cupy.random.Generator method)

 	(in module cupy.random)

 	(in module cupyx.scipy.sparse)

 	random_integers() (in module cupy.random)

 	random_raw() (cupy.random.BitGenerator method)

 	(cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.XORWOW method)

 	random_sample() (cupy.random.RandomState method)

 	(in module cupy.random)

 	RandomState (class in cupy.random)

 	ranf() (in module cupy.random)

 	range (in module cupyx.jit)

 	RangePop() (in module cupy.cuda.nvtx)

 	RangePush() (in module cupy.cuda.nvtx)

 	RangePushC() (in module cupy.cuda.nvtx)

 	rank_filter() (in module cupyx.scipy.ndimage)

 	rank_id() (cupy.cuda.nccl.NcclCommunicator method)

 	ravel() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	ravel_multi_index() (in module cupy)

 	RawKernel (class in cupy)

 	rawkernel() (in module cupyx.jit)

 	RawModule (class in cupy)

 	rayleigh() (cupy.random.RandomState method)

 	(in module cupy.random)

 	RBFInterpolator (class in cupyx.scipy.interpolate)

 	real (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	real() (in module cupy)

 	real_if_close() (in module cupy)

 	reciprocal() (in module cupy)

 	record() (cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	recv() (cupy.cuda.nccl.NcclCommunicator method)

 	(cupyx.distributed.NCCLBackend method)

 	reduce() (cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.ufunc method)

 	(cupyx.distributed.NCCLBackend method)

 	reduce_dims (cupy.ElementwiseKernel attribute)

 	(cupy.ReductionKernel attribute)

 	reduce_expr (cupy.ReductionKernel attribute)

 	reduce_scatter() (cupyx.distributed.NCCLBackend method)

 	reduce_type (cupy.ReductionKernel attribute)

 	reduceat() (cupy.ufunc method)

 	reduced_view() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	reduceScatter() (cupy.cuda.nccl.NcclCommunicator method)

 	ReductionKernel (class in cupy)

 	RegularGridInterpolator (class in cupyx.scipy.interpolate)

 	
 	rel_entr() (in module cupyx.scipy.special)

 	remainder() (in module cupy)

 	(in module cupy.array_api)

 	repeat() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupyx.time)

 	require() (in module cupy)

 	resample() (in module cupyx.scipy.signal)

 	resample_poly() (in module cupyx.scipy.signal)

 	ResDesc (cupy.cuda.texture.SurfaceObject attribute)

 	(cupy.cuda.texture.TextureObject attribute)

 	reshape() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	reshard() (cupyx.distributed.array.DistributedArray method)

 	residue() (in module cupyx.scipy.signal)

 	residuez() (in module cupyx.scipy.signal)

 	resize() (in module cupy)

 	ResourceDescriptor (class in cupy.cuda.texture)

 	result_type() (in module cupy)

 	(in module cupy.array_api)

 	return_tuple (cupy.ElementwiseKernel attribute)

 	rfft() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	(in module cupyx.scipy.fftpack)

 	rfft2() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	rfftfreq() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	rfftn() (in module cupy.fft)

 	(in module cupyx.scipy.fft)

 	rgamma() (in module cupyx.scipy.special)

 	ricker() (in module cupyx.scipy.signal)

 	right_shift() (in module cupy)

 	rint() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	rmatmat() (cupyx.scipy.sparse.linalg.LinearOperator method)

 	rmatvec() (cupyx.scipy.sparse.linalg.LinearOperator method)

 	roll() (in module cupy)

 	(in module cupy.array_api)

 	rollaxis() (in module cupy)

 	roots (cupy.poly1d attribute)

 	roots() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(in module cupy)

 	rot90() (in module cupy)

 	rotate() (in module cupyx.scipy.ndimage)

 	round() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.special)

 	round_() (in module cupy)

 	row_stack() (in module cupy)

 	rsqrt() (in module cupyx)

 	runtimeGetVersion() (in module cupy.cuda.runtime)

 	russellrao() (in module cupyx.scipy.spatial.distance)

S

 	
 	sample() (in module cupy.random)

 	save() (in module cupy)

 	savetxt() (in module cupy)

 	savez() (in module cupy)

 	savez_compressed() (in module cupy)

 	savgol_coeffs() (in module cupyx.scipy.signal)

 	savgol_filter() (in module cupyx.scipy.signal)

 	sawtooth() (in module cupyx.scipy.signal)

 	scatter() (cupyx.distributed.NCCLBackend method)

 	scatter_add() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupyx)

 	scatter_max() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupyx)

 	scatter_min() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupyx)

 	searchsorted() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	seed() (cupy.random.RandomState method)

 	(in module cupy.random)

 	select() (in module cupy)

 	send() (cupy.cuda.nccl.NcclCommunicator method)

 	(cupyx.distributed.NCCLBackend method)

 	send_recv() (cupyx.distributed.NCCLBackend method)

 	sepfir2d() (in module cupyx.scipy.signal)

 	set() (cupy.ndarray method)

 	(cupy.poly1d method)

 	(cupyx.distributed.array.DistributedArray method)

 	set_allocator() (in module cupy.cuda)

 	set_cufft_callbacks (class in cupy.fft.config)

 	set_cufft_gpus() (in module cupy.fft.config)

 	set_limit() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	set_memsize() (cupy.fft._cache.PlanCache method)

 	set_pinned_memory_allocator() (in module cupy.cuda)

 	set_random_state() (in module cupy.random)

 	set_shape() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	set_size() (cupy.fft._cache.PlanCache method)

 	set_yi() (cupyx.scipy.interpolate.BarycentricInterpolator method)

 	setDevice() (in module cupy.cuda.runtime)

 	setdiag() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	setdiff1d() (in module cupy)

 	setxor1d() (in module cupy)

 	shape (cupy.array_api._array_object.Array attribute)

 	(cupy.broadcast attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	shape() (in module cupy)

 	shared_memory (in module cupyx.jit)

 	shared_size_bytes (cupy.RawKernel attribute)

 	shares_memory() (in module cupy)

 	shfl_down_sync (in module cupyx.jit)

 	shfl_sync (in module cupyx.jit)

 	shfl_up_sync (in module cupyx.jit)

 	shfl_xor_sync (in module cupyx.jit)

 	shift() (in module cupyx.scipy.ndimage)

 	show_config() (in module cupy)

 	show_info() (cupy.fft._cache.PlanCache method)

 	show_plan_cache_info() (in module cupy.fft.config)

 	shuffle() (cupy.random.RandomState method)

 	(in module cupy.random)

 	sign() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	signbit() (in module cupy)

 	sin() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	sinc() (in module cupy)

 	(in module cupyx.scipy.special)

 	sindg() (in module cupyx.scipy.special)

 	sinh() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	size (cupy.array_api._array_object.Array attribute)

 	(cupy.broadcast attribute)

 	(cupy.cuda.ManagedMemory attribute)

 	(cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryAsync attribute)

 	(cupy.cuda.UnownedMemory attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	size() (cupy.cuda.nccl.NcclCommunicator method)

 	(cupy.cuda.PinnedMemoryPointer method)

 	(cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	slogdet() (in module cupy.linalg)

 	sobel() (in module cupyx.scipy.ndimage)

 	softmax() (in module cupyx.scipy.special)

 	solve() (cupyx.scipy.interpolate.Akima1DInterpolator method)

 	(cupyx.scipy.interpolate.CubicHermiteSpline method)

 	(cupyx.scipy.interpolate.PchipInterpolator method)

 	(cupyx.scipy.interpolate.PPoly method)

 	(cupyx.scipy.sparse.linalg.SuperLU method)

 	(in module cupy.linalg)

 	
 	solve_triangular() (in module cupyx.scipy.linalg)

 	sort() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	sort_complex() (in module cupy)

 	sort_indices() (cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	sorted_indices() (cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	sos2tf() (in module cupyx.scipy.signal)

 	sos2zpk() (in module cupyx.scipy.signal)

 	sosfilt() (in module cupyx.scipy.signal)

 	sosfilt_zi() (in module cupyx.scipy.signal)

 	sosfiltfilt() (in module cupyx.scipy.signal)

 	sosfreqz() (in module cupyx.scipy.signal)

 	spdiags() (in module cupyx.scipy.sparse)

 	spectrogram() (in module cupyx.scipy.signal)

 	sph_harm() (in module cupyx.scipy.special)

 	spherical_yn() (in module cupyx.scipy.special)

 	spilu() (in module cupyx.scipy.sparse.linalg)

 	splantider() (in module cupyx.scipy.interpolate)

 	splder() (in module cupyx.scipy.interpolate)

 	spline_filter() (in module cupyx.scipy.ndimage)

 	(in module cupyx.scipy.signal)

 	spline_filter1d() (in module cupyx.scipy.ndimage)

 	split() (in module cupy)

 	splu() (in module cupyx.scipy.sparse.linalg)

 	spmatrix (class in cupyx.scipy.sparse)

 	spsolve() (in module cupyx.scipy.sparse.linalg)

 	spsolve_triangular() (in module cupyx.scipy.sparse.linalg)

 	sqeuclidean() (in module cupyx.scipy.spatial.distance)

 	sqrt() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	square() (in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.signal)

 	squeeze() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	ss2tf() (in module cupyx.scipy.signal)

 	ss2zpk() (in module cupyx.scipy.signal)

 	stack() (in module cupy)

 	(in module cupy.array_api)

 	standard_cauchy() (cupy.random.RandomState method)

 	(in module cupy.random)

 	standard_deviation() (in module cupyx.scipy.ndimage)

 	standard_exponential() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	standard_gamma() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	standard_normal() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	standard_t() (cupy.random.RandomState method)

 	(in module cupy.random)

 	start() (in module cupy.cuda.profiler)

 	state() (cupy.random.MRG32k3a method)

 	(cupy.random.Philox4x3210 method)

 	(cupy.random.XORWOW method)

 	StateSpace (class in cupyx.scipy.signal)

 	std() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	step() (cupyx.scipy.signal.dlti method)

 	(cupyx.scipy.signal.lti method)

 	(in module cupyx.scipy.signal)

 	stft() (in module cupyx.scipy.signal)

 	stop() (cupyx.distributed.NCCLBackend method)

 	(in module cupy.cuda.profiler)

 	Stream (class in cupy.cuda)

 	stream_ref (cupy.cuda.MemoryAsync attribute)

 	streamAddCallback() (in module cupy.cuda.runtime)

 	streamCreate() (in module cupy.cuda.runtime)

 	streamCreateWithFlags() (in module cupy.cuda.runtime)

 	streamDestroy() (in module cupy.cuda.runtime)

 	streamQuery() (in module cupy.cuda.runtime)

 	streamSynchronize() (in module cupy.cuda.runtime)

 	streamWaitEvent() (in module cupy.cuda.runtime)

 	strides (cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	subtract() (in module cupy)

 	(in module cupy.array_api)

 	sum() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	sum_duplicates() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	sum_labels() (in module cupyx.scipy.ndimage)

 	SuperLU (class in cupyx.scipy.sparse.linalg)

 	SurfaceObject (class in cupy.cuda.texture)

 	svd() (in module cupy.linalg)

 	svds() (in module cupyx.scipy.sparse.linalg)

 	swapaxes() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	symiirorder1() (in module cupyx.scipy.signal)

 	symiirorder2() (in module cupyx.scipy.signal)

 	sync (in module cupyx.jit.cg)

 	sync() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	synchronize() (cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	syncthreads (in module cupyx.jit)

 	syncwarp (in module cupyx.jit)

T

 	
 	T (cupy.array_api._array_object.Array attribute)

 	(cupy.ndarray attribute)

 	(cupyx.distributed.array.DistributedArray attribute)

 	(cupyx.scipy.sparse.coo_matrix attribute)

 	(cupyx.scipy.sparse.csc_matrix attribute)

 	(cupyx.scipy.sparse.csr_matrix attribute)

 	(cupyx.scipy.sparse.dia_matrix attribute)

 	(cupyx.scipy.sparse.linalg.LinearOperator attribute)

 	(cupyx.scipy.sparse.spmatrix attribute)

 	take() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	(in module cupy.array_api)

 	take_along_axis() (in module cupy)

 	tan() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	tandg() (in module cupyx.scipy.special)

 	tanh() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	taylor() (in module cupyx.scipy.signal.windows)

 	tck (cupyx.scipy.interpolate.BSpline attribute)

 	tensordot() (in module cupy)

 	tensorinv() (in module cupy.linalg)

 	tensorsolve() (in module cupy.linalg)

 	TexDesc (cupy.cuda.texture.TextureObject attribute)

 	TextureDescriptor (class in cupy.cuda.texture)

 	TextureObject (class in cupy.cuda.texture)

 	tf2sos() (in module cupyx.scipy.signal)

 	tf2ss() (in module cupyx.scipy.signal)

 	tf2zpk() (in module cupyx.scipy.signal)

 	this_grid (in module cupyx.jit.cg)

 	this_thread_block (in module cupyx.jit.cg)

 	thread_index() (cupyx.jit.cg._ThreadBlockGroup method)

 	thread_rank() (cupyx.jit.cg._GridGroup method)

 	(cupyx.jit.cg._ThreadBlockGroup method)

 	threadIdx (in module cupyx.jit)

 	tile() (in module cupy)

 	time_range (class in cupyx.profiler)

 	time_range() (in module cupy.prof)

 	TimeRangeDecorator (class in cupy.prof)

 	to_device() (cupy.array_api._array_object.Array method)

 	to_discrete() (cupyx.scipy.signal.lti method)

 	to_ss() (cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	to_str() (cupyx.profiler._time._PerfCaseResult method)

 	to_tf() (cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	to_zpk() (cupyx.scipy.signal.StateSpace method)

 	(cupyx.scipy.signal.TransferFunction method)

 	(cupyx.scipy.signal.ZerosPolesGain method)

 	toarray() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	tobsr() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	tobytes() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	tocoo() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	tocsc() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	
 	tocsr() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	todense() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	todia() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	toDlpack() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	todok() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	toeplitz() (in module cupyx.scipy.linalg)

 	tofile() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	tolil() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.spmatrix method)

 	tolist() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	tomaxint() (cupy.random.RandomState method)

 	total_bytes() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	trace() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	TransferFunction (class in cupyx.scipy.signal)

 	transpose() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(cupyx.scipy.sparse.linalg.LinearOperator method)

 	(cupyx.scipy.sparse.spmatrix method)

 	(in module cupy)

 	trapz() (in module cupy)

 	tri() (in module cupy)

 	(in module cupyx.scipy.linalg)

 	triang() (in module cupyx.scipy.signal.windows)

 	triangular() (cupy.random.RandomState method)

 	(in module cupy.random)

 	tril() (in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.linalg)

 	(in module cupyx.scipy.sparse)

 	tril_indices() (in module cupy)

 	tril_indices_from() (in module cupy)

 	trim_mean() (in module cupyx.scipy.stats)

 	trim_zeros() (in module cupy)

 	trimcoef() (in module cupy.polynomial.polyutils)

 	trimseq() (in module cupy.polynomial.polyutils)

 	triu() (in module cupy)

 	(in module cupy.array_api)

 	(in module cupyx.scipy.linalg)

 	(in module cupyx.scipy.sparse)

 	triu_indices() (in module cupy)

 	triu_indices_from() (in module cupy)

 	true_divide() (in module cupy)

 	trunc() (cupyx.scipy.sparse.coo_matrix method)

 	(cupyx.scipy.sparse.csc_matrix method)

 	(cupyx.scipy.sparse.csr_matrix method)

 	(cupyx.scipy.sparse.dia_matrix method)

 	(in module cupy)

 	(in module cupy.array_api)

 	tukey() (in module cupyx.scipy.signal.windows)

 	types (cupy.ufunc attribute)

U

 	
 	ufunc (class in cupy)

 	uniform() (cupy.random.Generator method)

 	(cupy.random.RandomState method)

 	(in module cupy.random)

 	uniform_filter() (in module cupyx.scipy.ndimage)

 	uniform_filter1d() (in module cupyx.scipy.ndimage)

 	union1d() (in module cupy)

 	unique() (in module cupy)

 	unique_all() (in module cupy.array_api)

 	unique_inverse() (in module cupy.array_api)

 	unique_roots() (in module cupyx.scipy.signal)

 	unique_values() (in module cupy.array_api)

 	
 	unit_impulse() (in module cupyx.scipy.signal)

 	UnownedMemory (class in cupy.cuda)

 	unpackbits() (in module cupy)

 	unravel_index() (in module cupy)

 	unwrap() (in module cupy)

 	upfirdn() (in module cupyx.scipy.signal)

 	upload() (cupy.cuda.Graph method)

 	use() (cupy.cuda.Device method)

 	(cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	used_bytes() (cupy.cuda.MemoryAsyncPool method)

 	(cupy.cuda.MemoryPool method)

 	using_allocator() (in module cupy.cuda)

V

 	
 	value_indices() (in module cupyx.scipy.ndimage)

 	values (cupy.broadcast attribute)

 	vander() (in module cupy)

 	var() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	(in module cupy)

 	variable (cupy.poly1d attribute)

 	variance() (in module cupyx.scipy.ndimage)

 	vdot() (in module cupy)

 	
 	vectorize (class in cupy)

 	vectorstrength() (in module cupyx.scipy.signal)

 	view() (cupy.ndarray method)

 	(cupyx.distributed.array.DistributedArray method)

 	vonmises() (cupy.random.RandomState method)

 	(in module cupy.random)

 	vsplit() (in module cupy)

 	vstack() (in module cupy)

 	(in module cupyx.scipy.sparse)

W

 	
 	wait (in module cupyx.jit.cg)

 	wait_event() (cupy.cuda.ExternalStream method)

 	(cupy.cuda.Stream method)

 	wait_prior (in module cupyx.jit.cg)

 	wald() (cupy.random.RandomState method)

 	(in module cupy.random)

 	warpsize (in module cupyx.jit)

 	weibull() (cupy.random.RandomState method)

 	(in module cupy.random)

 	
 	welch() (in module cupyx.scipy.signal)

 	where() (in module cupy)

 	(in module cupy.array_api)

 	white_tophat() (in module cupyx.scipy.ndimage)

 	who() (in module cupy)

 	width (cupy.cuda.texture.CUDAarray attribute)

 	wiener() (in module cupyx.scipy.signal)

X

 	
 	x (cupyx.scipy.interpolate.Akima1DInterpolator attribute)

 	(cupyx.scipy.interpolate.BPoly attribute)

 	(cupyx.scipy.interpolate.CubicHermiteSpline attribute)

 	(cupyx.scipy.interpolate.PchipInterpolator attribute)

 	(cupyx.scipy.interpolate.PPoly attribute)

 	
 	xlog1py() (in module cupyx.scipy.special)

 	xlogy() (in module cupyx.scipy.special)

 	XORWOW (class in cupy.random)

Y

 	
 	y0() (in module cupyx.scipy.special)

 	
 	y1() (in module cupyx.scipy.special)

 	yn() (in module cupyx.scipy.special)

Z

 	
 	zeros (cupyx.scipy.signal.dlti attribute)

 	(cupyx.scipy.signal.lti attribute)

 	(cupyx.scipy.signal.StateSpace attribute)

 	(cupyx.scipy.signal.TransferFunction attribute)

 	(cupyx.scipy.signal.ZerosPolesGain attribute)

 	zeros() (in module cupy)

 	(in module cupy.array_api)

 	zeros_like() (in module cupy)

 	(in module cupy.array_api)

 	zeros_like_pinned() (in module cupyx)

 	zeros_pinned() (in module cupyx)

 	ZerosPolesGain (class in cupyx.scipy.signal)

 	
 	zeta() (in module cupyx.scipy.special)

 	zetac() (in module cupyx.scipy.special)

 	zipf() (cupy.random.RandomState method)

 	(in module cupy.random)

 	zmap() (in module cupyx.scipy.stats)

 	zoom() (in module cupyx.scipy.ndimage)

 	zoom_fft() (in module cupyx.scipy.signal)

 	ZoomFFT (class in cupyx.scipy.signal)

 	zpk2sos() (in module cupyx.scipy.signal)

 	zpk2ss() (in module cupyx.scipy.signal)

 	zpk2tf() (in module cupyx.scipy.signal)

 	zscore() (in module cupyx.scipy.stats)

DLPack helper

	cupy.fromDlpack(dltensor)

	Zero-copy conversion from a DLPack tensor to a ndarray.

Time range

	cupy.prof.TimeRangeDecorator([message, ...])

	Decorator to mark function calls with range in NVIDIA profiler

	cupy.prof.time_range(message[, color_id, ...])

	A context manager to describe the enclosed block as a nested range

Timing helper

	cupyx.time.repeat(func[, args, kwargs, ...])

	Timing utility for measuring time spent by both CPU and GPU.

Profiler

	cupy.cuda.profile()

	Enable CUDA profiling during with statement.

	cupy.cuda.profiler.start

	profilerStart() Enable profiling.

	cupy.cuda.profiler.stop

	profilerStop() Disable profiling.

Device synchronization detection

Warning

These APIs are deprecated in CuPy v10 and will be removed in future releases.

	cupyx.allow_synchronize(allow)

	Allows or disallows device synchronization temporarily in the current thread.

	cupyx.DeviceSynchronized([message])

	Raised when device synchronization is detected while disallowed.

Benchmark Data

	cupyx.profiler._time._PerfCaseResult(name, ...)

	An obscure object encompassing timing results recorded by benchmark().

cuFFT Plan Cache

	cupy.fft._cache.PlanCache(...)

	A per-thread, per-device, least recently used (LRU) cache for cuFFT plans.

JIT Cooperative Groups

	cupyx.jit.cg._ThreadBlockGroup()

	A handle to the current thread block group.

	cupyx.jit.cg._GridGroup()

	A handle to the current grid group.

 This document has been moved to Legacy discrete fourier transforms (cupyx.scipy.fftpack).

 This document has been moved to Multidimensional image processing (cupyx.scipy.ndimage).

 This document has been moved to Signal processing (cupyx.scipy.signal).

 This document has been moved to Sparse matrices (cupyx.scipy.sparse).

 This document has been moved to Special functions (cupyx.scipy.special).

 This document has been moved to Statistical functions (cupyx.scipy.stats).

cupy.cuda.profile

	
cupy.cuda.profile()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/cuda/__init__.py#L175]

	Enable CUDA profiling during with statement.

This function enables profiling on entering a with statement, and disables
profiling on leaving the statement.

>>> with cupy.cuda.profile():
... # do something you want to measure
... pass

Note

When starting nvprof from the command line, manually setting
--profile-from-start off may be required for the desired behavior.

Warning

This context manager is deprecated. Please use
cupyx.profiler.profile instead.

cupy.cuda.profiler.start

	
cupy.cuda.profiler.start()

	profilerStart()
Enable profiling.

A user can enable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

cupy.cuda.profiler.stop

	
cupy.cuda.profiler.stop()

	profilerStop()
Disable profiling.

A user can disable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

cupy.fft._cache.PlanCache

	
class cupy.fft._cache.PlanCache(Py_ssize_t size=16, Py_ssize_t memsize=-1, int dev=-1)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/fft/_cache.pyx]

	A per-thread, per-device, least recently used (LRU) cache for cuFFT
plans.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – The number of plans that the cache can accommodate. The
default is 16. Setting this to -1 will make this limit ignored.

	memsize (int [https://docs.python.org/3/library/functions.html#int]) – The amount of GPU memory, in bytes, that the plans in
the cache will use for their work areas. Default is -1, meaning
it is unlimited.

	dev (int [https://docs.python.org/3/library/functions.html#int]) – The ID of the device that the cache targets.

Note

	By setting either size to 0 (by calling set_size()) or
memsize to 0 (by calling set_memsize()), the cache is
disabled, and any operation is no-op. To re-enable it, simply set
a nonzero size and/or memsize.

	This class can be instantiated by users, but it is discouraged.
Instead, we expect the following canonical usage pattern to
retrieve a handle to the cache through
get_plan_cache():

from cupy.cuda import Device
from cupy.fft.config import get_plan_cache

get the cache for device n
with Device(n):
 cache = get_plan_cache()
 cache.set_size(0) # disable the cache

In particular, the cache for device n should be manipulated
under device n’s context.

	This class is thread-safe since by default it is created on a
per-thread basis. When starting a new thread, a new cache is not
initialized until get_plan_cache() is
called or when the constructor is manually invoked.

	For multi-GPU plans, the plan will be added to each participating
GPU’s cache. Upon removal (by any of the caches), the plan will
be removed from each participating GPU’s cache.

	This cache supports the iterator protocol, and returns a 2-tuple:
(key, node) starting from the most recently used plan.

Methods

	
__getitem__(key, /)

	Return self[key].

	
__setitem__(key, value, /)

	Set self[key] to value.

	
__iter__()

	Implement iter(self).

	
clear(self)

	

	
get(self, tuple key, default=None)

	

	
get_curr_memsize(self) → Py_ssize_t

	

	
get_curr_size(self) → Py_ssize_t

	

	
get_memsize(self) → Py_ssize_t

	

	
get_size(self) → Py_ssize_t

	

	
set_memsize(self, Py_ssize_t memsize)

	

	
set_size(self, Py_ssize_t size)

	

	
show_info(self)

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.fromDlpack

	
cupy.fromDlpack(dltensor) → ndarray

	Zero-copy conversion from a DLPack tensor to a ndarray.

DLPack is a open in memory tensor structure proposed in this repository:
dmlc/dlpack [https://github.com/dmlc/dlpack].

This function takes a PyCapsule object which contains a pointer to
a DLPack tensor as input, and returns a ndarray. This
function does not copy the data in the DLPack tensor but both
DLPack tensor and ndarray have pointers which are pointing
to the same memory region for the data.

	Parameters:

	dltensor (PyCapsule) – Input DLPack tensor which is
encapsulated in a PyCapsule object.

	Returns:

	A CuPy ndarray.

	Return type:

	array (ndarray)

Warning

This function is deprecated in favor of from_dlpack() and
will be removed in a future version of CuPy.

Warning

As of the DLPack v0.5 specification, it is implicitly assumed that
the user is responsible to ensure the Producer and the Consumer are
operating on the same stream.

See also

cupy.ndarray.toDlpack() is a method for zero-copy conversion
from a ndarray to a DLPack tensor (which is encapsulated
in a PyCapsule object).

Example

>>> import cupy
>>> array1 = cupy.array([0, 1, 2], dtype=cupy.float32)
>>> dltensor = array1.toDlpack()
>>> array2 = cupy.fromDlpack(dltensor)
>>> cupy.testing.assert_array_equal(array1, array2)

cupy.prof.TimeRangeDecorator

	
class cupy.prof.TimeRangeDecorator(message=None, color_id=None, argb_color=None, sync=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/prof/_time_range.py#L39]

	Decorator to mark function calls with range in NVIDIA profiler

Decorated function calls are marked as ranges in NVIDIA profiler timeline.

>>> from cupy import prof
>>> @cupy.prof.TimeRangeDecorator()
... def function_to_profile():
... pass

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range, default use func.__name__.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

	sync (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, waits for completion of all outstanding
processing on GPU before calling cupy.cuda.nvtx.RangePush()
or cupy.cuda.nvtx.RangePop()

See also

cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()

Warning

This decorator is deprecated. Please use
cupyx.profiler.time_range instead.

Methods

	
__call__(func)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L84]

	Call self as a function.

	
__enter__()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L61]

	

	
__exit__(exc_type, exc_value, traceback)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time_range.py#L74]

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

cupy.prof.time_range

	
cupy.prof.time_range(message, color_id=None, argb_color=None, sync=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/prof/_time_range.py#L7]

	A context manager to describe the enclosed block as a nested range

>>> from cupy import prof
>>> with cupy.prof.time_range('some range in green', color_id=0):
... # do something you want to measure
... pass

	Parameters:

	
	message – Name of a range.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

	sync (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, waits for completion of all outstanding
processing on GPU before calling cupy.cuda.nvtx.RangePush()
or cupy.cuda.nvtx.RangePop()

See also

cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()

Warning

This context manager is deprecated. Please use
cupyx.profiler.time_range instead.

cupyx.DeviceSynchronized

	
exception cupyx.DeviceSynchronized(message=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/syncdetect.py#L9]

	Raised when device synchronization is detected while disallowed.

Warning

This API has been deprecated in CuPy v10 and will be removed in future
releases.

See also

cupyx.allow_synchronize()

cupyx.allow_synchronize

	
cupyx.allow_synchronize(allow)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupy/_core/syncdetect.py#L43]

	Allows or disallows device synchronization temporarily in the current thread.

Warning

This API has been deprecated in CuPy v10 and will be removed in future
releases.

If device synchronization is detected, cupyx.DeviceSynchronized
will be raised.

Note that there can be false negatives and positives.
Device synchronization outside CuPy will not be detected.

cupyx.jit.cg._GridGroup

	
class cupyx.jit.cg._GridGroup[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L49]

	A handle to the current grid group. Must be created via this_grid().

See also

CUDA Grid Group API [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#grid-group-cg], numba.cuda.cg.GridGroup [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.cg.GridGroup]

Methods

	
assign(var, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_cuda_types.py#L24]

	
	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
block_index()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L143]

	3-Dimensional index of the block within the launched grid.

	
block_rank()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L95]

	Rank of the calling block within [0, num_blocks).

	
declvar(x, init)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_cuda_types.py#L19]

	
	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
dim_blocks()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L131]

	Dimensions of the launched grid in units of blocks.

	
group_dim()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L166]

	Dimensions of the launched grid in units of blocks.

	
is_valid()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L61]

	Returns whether the grid_group can synchronize.

	
num_blocks()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L119]

	Total number of blocks in the group.

	
num_threads()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L107]

	Total number of threads in the group.

	
size()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L155]

	Total number of threads in the group.

	
sync()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L71]

	Synchronize the threads named in the group.

See also

numba.cuda.cg.GridGroup.sync() [https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.cg.GridGroup.sync]

	
thread_rank()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L85]

	Rank of the calling thread within [0, num_threads).

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
child_type = None

	

cupyx.jit.cg._ThreadBlockGroup

	
class cupyx.jit.cg._ThreadBlockGroup[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L178]

	A handle to the current thread block group. Must be
created via this_thread_block().

See also

CUDA Thread Block Group API [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-block-group-cg]

Methods

	
assign(var, value)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_cuda_types.py#L24]

	
	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
declvar(x, init)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/_cuda_types.py#L19]

	
	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
dim_threads()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L230]

	Dimensions of the launched block in units of threads.

	
group_dim()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L265]

	Dimensions of the launched block in units of threads.

	
group_index()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L210]

	3-Dimensional index of the block within the launched grid.

	
num_threads()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L242]

	Total number of threads in the group.

	
size()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L254]

	Total number of threads in the group.

	
sync()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L191]

	Synchronize the threads named in the group.

	
thread_index()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L220]

	3-Dimensional index of the thread within the launched block.

	
thread_rank()[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/jit/cg.py#L200]

	Rank of the calling thread within [0, num_threads).

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
child_type = None

	

cupyx.profiler._time._PerfCaseResult

	
class cupyx.profiler._time._PerfCaseResult(name, ts, devices)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time.py#L10]

	An obscure object encompassing timing results recorded by
benchmark(). Simple statistics can be obtained by
converting an instance of this class to a string.

Warning

This API is currently experimental and subject to change in future
releases.

Methods

	
to_str(show_gpu=False)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/profiler/_time.py#L69]

	

	
__eq__(value, /)

	Return self==value.

	
__ne__(value, /)

	Return self!=value.

	
__lt__(value, /)

	Return self<value.

	
__le__(value, /)

	Return self<=value.

	
__gt__(value, /)

	Return self>value.

	
__ge__(value, /)

	Return self>=value.

Attributes

	
cpu_times

	A numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_repeat,), holding times spent
on CPU in seconds.

These values are delta of the host-side performance counter
(time.perf_counter() [https://docs.python.org/3/library/time.html#time.perf_counter]) between each repeat step.

	
gpu_times

	A numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (len(devices), n_repeat),
holding times spent on GPU in seconds.

These values are measured using cudaEventElapsedTime with events
recoreded before/after each repeat step.

cupyx.time.repeat

	
cupyx.time.repeat(func, args=(), kwargs={}, n_repeat=10000, *, name=None, n_warmup=10, max_duration=inf, devices=None)[source] [https://github.com/cupy/cupy/blob/v13.0.0/cupyx/time.py#L11]

	Timing utility for measuring time spent by both CPU and GPU.

This function is a very convenient helper for setting up a timing test. The
GPU time is properly recorded by synchronizing internal streams. As a
result, to time a multi-GPU function all participating devices must be
passed as the devices argument so that this helper knows which devices
to record. A simple example is given as follows:

import cupy as cp
from cupyx.time import repeat

def f(a, b):
 return 3 * cp.sin(-a) * b

a = 0.5 - cp.random.random((100,))
b = cp.random.random((100,))
print(repeat(f, (a, b), n_repeat=1000))

	Parameters:

	
	func (callable) – a callable object to be timed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional argumens to be passed to the callable.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to be passed to the callable.

	n_repeat (int [https://docs.python.org/3/library/functions.html#int]) – number of times the callable is called. Increasing
this value would improve the collected statistics at the cost
of longer test time.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the function name to be reported. If not given, the
callable’s __name__ attribute is used.

	n_warmup (int [https://docs.python.org/3/library/functions.html#int]) – number of times the callable is called. The warm-up
runs are not timed.

	max_duration (float [https://docs.python.org/3/library/functions.html#float]) – the maximum time (in seconds) that the entire
test can use. If the taken time is longer than this limit, the test
is stopped and the statistics collected up to the breakpoint is
reported.

	devices (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple of device IDs (int) that will be timed during
the timing test. If not given, the current device is used.

	Returns:

	an object collecting all test results.

	Return type:

	_PerfCaseResult

Warning

This API is moved to cupyx.profiler.benchmark() since CuPy v10.
Access through cupyx.time is deprecated.

 nav.xhtml

 Table of Contents

 		
 CuPy – NumPy & SciPy for GPU

 		
 Overview

 		
 Project Goal

 		
 Installation

 		
 Requirements

 		
 Python Dependencies

 		
 Additional CUDA Libraries

 		
 Installing CuPy

 		
 Installing CuPy from PyPI

 		
 Installing CuPy from Conda-Forge

 		
 Installing CuPy from Source

 		
 Uninstalling CuPy

 		
 Upgrading CuPy

 		
 Reinstalling CuPy

 		
 Using CuPy inside Docker

 		
 FAQ

 		
 pip fails to install CuPy

 		
 Installing cuDNN and NCCL

 		
 Working with Custom CUDA Installation

 		
 CuPy always raises cupy.cuda.compiler.CompileException

 		
 Build fails on Ubuntu 16.04, CentOS 6 or 7

 		
 Using CuPy on AMD GPU (experimental)

 		
 Requirements

 		
 Environment Variables

 		
 Docker

 		
 Installing Binary Packages

 		
 Building CuPy for ROCm From Source

 		
 Limitations

 		
 User Guide

 		
 Basics of CuPy

 		
 Basics of cupy.ndarray

 		
 Current Device

 		
 Current Stream

 		
 Data Transfer

 		
 Memory management

 		
 How to write CPU/GPU agnostic code

 		
 User-Defined Kernels

 		
 Basics of elementwise kernels

 		
 Type-generic kernels

 		
 Raw argument specifiers

 		
 Texture memory

 		
 Reduction kernels

 		
 Raw kernels

 		
 Kernel arguments

 		
 Custom user types

 		
 Raw modules

 		
 Kernel fusion

 		
 JIT kernel definition

 		
 Accessing CUDA Functionalities

 		
 Streams and Events

 		
 CUDA Driver and Runtime API

 		
 Fast Fourier Transform with CuPy

 		
 SciPy FFT backend

 		
 User-managed FFT plans

 		
 FFT plan cache

 		
 FFT callbacks

 		
 Multi-GPU FFT

 		
 Half-precision FFT

 		
 Memory Management

 		
 Memory Pool Operations

 		
 Limiting GPU Memory Usage

 		
 Changing Memory Pool

 		
 Performance Best Practices

 		
 Benchmarking

 		
 In-depth profiling

 		
 Use CUB/cuTENSOR backends for reduction and other routines

 		
 Overlapping work using streams

 		
 Use JIT compiler

 		
 Prefer float32 over float64

 		
 Interoperability

 		
 NumPy

 		
 Numba

 		
 mpi4py

 		
 PyTorch

 		
 RMM

 		
 DLPack

 		
 Device Memory Pointers

 		
 CUDA Stream Pointers

 		
 Differences between CuPy and NumPy

 		
 Cast behavior from float to integer

 		
 Random methods support dtype argument

 		
 Out-of-bounds indices

 		
 Duplicate values in indices

 		
 Zero-dimensional array

 		
 Matrix type (numpy.matrix)

 		
 Data types

 		
 Universal Functions only work with CuPy array or scalar

 		
 Random seed arrays are hashed to scalars

 		
 NaN (not-a-number) handling

 		
 Contiguity / Strides

 		
 API Compatibility Policy

 		
 Versioning and Backward Compatibilities

 		
 Processes to Break Backward Compatibilities

 		
 Supported Backward Compatibility

 		
 Installation Compatibility

 		
 API Reference

 		
 The N-dimensional array (ndarray)

 		
 cupy.ndarray

 		
 Conversion to/from NumPy arrays

 		
 Code compatibility features

 		
 Universal functions (cupy.ufunc)

 		
 ufunc

 		
 Available ufuncs

 		
 Generalized Universal Functions

 		
 Routines (NumPy)

 		
 Array creation routines

 		
 Array manipulation routines

 		
 Binary operations

 		
 Data type routines

 		
 Discrete Fourier Transform (cupy.fft)

 		
 Functional programming

 		
 Indexing routines

 		
 Input and output

 		
 Linear algebra (cupy.linalg)

 		
 Logic functions

 		
 Mathematical functions

 		
 Miscellaneous routines

 		
 Padding arrays

 		
 Polynomials

 		
 Random sampling (cupy.random)

 		
 Set routines

 		
 Sorting, searching, and counting

 		
 Statistics

 		
 Test support (cupy.testing)

 		
 Window functions

 		
 Routines (SciPy)

 		
 Discrete Fourier transforms (cupyx.scipy.fft)

 		
 Legacy discrete fourier transforms (cupyx.scipy.fftpack)

 		
 Interpolation (cupyx.scipy.interpolate)

 		
 Linear algebra (cupyx.scipy.linalg)

 		
 Multidimensional image processing (cupyx.scipy.ndimage)

 		
 Signal processing (cupyx.scipy.signal)

 		
 Signal processing windows (cupyx.scipy.signal.windows)

 		
 Sparse matrices (cupyx.scipy.sparse)

 		
 Sparse linear algebra (cupyx.scipy.sparse.linalg)

 		
 Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)

 		
 Spatial algorithms and data structures (cupyx.scipy.spatial)

 		
 Distance computations (cupyx.scipy.spatial.distance)

 		
 Special functions (cupyx.scipy.special)

 		
 Statistical functions (cupyx.scipy.stats)

 		
 CuPy-specific functions

 		
 cupyx.rsqrt

 		
 cupyx.scatter_add

 		
 cupyx.scatter_max

 		
 cupyx.scatter_min

 		
 cupyx.empty_pinned

 		
 cupyx.empty_like_pinned

 		
 cupyx.zeros_pinned

 		
 cupyx.zeros_like_pinned

 		
 non-SciPy compat Signal API

 		
 Profiling utilities

 		
 DLPack utilities

 		
 Automatic Kernel Parameters Optimizations (cupyx.optimizing)

 		
 Low-level CUDA support

 		
 Device management

 		
 Memory management

 		
 Memory hook

 		
 Streams and events

 		
 Graphs

 		
 Texture and surface memory

 		
 NVTX

 		
 NCCL

 		
 Version

 		
 Runtime API

 		
 Custom kernels

 		
 cupy.ElementwiseKernel

 		
 cupy.ReductionKernel

 		
 cupy.RawKernel

 		
 cupy.RawModule

 		
 cupy.fuse

 		
 JIT kernel definition

 		
 Kernel binary memoization

 		
 Distributed

 		
 Communication between processes

 		
 ndarray distributed across devices

 		
 Environment variables

 		
 For runtime

 		
 For installation

 		
 Comparison Table

 		
 NumPy / CuPy APIs

 		
 SciPy / CuPy APIs

 		
 Python Array API Support

 		
 Array API Functions

 		
 Array API Compliant Object

 		
 Contribution Guide

 		
 Classification of Contributions

 		
 Development Cycle

 		
 Versioning

 		
 Release Cycle

 		
 Git Branches

 		
 Feature Backport PRs

 		
 Issues and Pull Requests

 		
 How to Send a Pull Request

 		
 Coding Guidelines

 		
 Unit Testing

 		
 How to Run Tests

 		
 Test File and Directory Naming Conventions

 		
 How to Write Tests

 		
 Documentation

 		
 Tips for Developers

 		
 Install as Editable

 		
 Use ccache

 		
 Limit Architecture

 		
 Upgrade Guide

 		
 CuPy v13

 		
 Modernized CCCL support and requirement

 		
 Requirement Changes

 		
 NumPy/SciPy Baseline API Update

 		
 Change in cupy.asnumpy()/cupy.ndarray.get() Behavior

 		
 Change in cupy.array()/cupy.asarray()/cupy.asanyarray() Behavior

 		
 Removal of cupy-wheel package

 		
 API Changes

 		
 CUDA Runtime API is now statically linked

 		
 Update of Docker Images

 		
 CuPy v12

 		
 Change in cupy.cuda.Device Behavior

 		
 Deprecation of cupy.ndarray.scatter_{add,max,min}

 		
 Requirement Changes

 		
 Baseline API Update

 		
 Update of Docker Images

 		
 CuPy v11

 		
 Unified Binary Package for CUDA 11.2+

 		
 Requirement Changes

 		
 CUB Enabled by Default

 		
 Baseline API Update

 		
 Update of Docker Images

 		
 CuPy v10

 		
 Dropping CUDA 9.2 / 10.0 / 10.1 Support

 		
 Dropping NCCL v2.4 / v2.6 / v2.7 Support

 		
 Dropping Python 3.6 Support

 		
 Dropping NumPy 1.17 Support

 		
 Change in cupy.cuda.Device Behavior

 		
 Changes in cupy.cuda.Stream Behavior

 		
 Big-Endian Arrays Automatically Converted to Little-Endian

 		
 Baseline API Update

 		
 API Changes

 		
 Update of Docker Images

 		
 CuPy v9

 		
 Dropping Support of CUDA 9.0

 		
 Dropping Support of cuDNN v7.5 and NCCL v2.3

 		
 Dropping Support of NumPy 1.16 and SciPy 1.3

 		
 Dropping Support of Python 3.5

 		
 NCCL and cuDNN No Longer Included in Wheels

 		
 cuTENSOR Enabled in Wheels

 		
 cupy.cuda.{nccl,cudnn} Modules Needs Explicit Import

 		
 Baseline API Update

 		
 Update of Docker Images

 		
 CuPy v8

 		
 Dropping Support of CUDA 8.0 and 9.1

 		
 Dropping Support of NumPy 1.15 and SciPy 1.2

 		
 Update of Docker Images

 		
 CUB Support and Compiler Requirement

 		
 API Changes

 		
 CuPy v7

 		
 Dropping Support of Python 2.7 and 3.4

 		
 CuPy v6

 		
 Binary Packages Ignore LD_LIBRARY_PATH

 		
 CuPy v5

 		
 cupyx.scipy Namespace

 		
 Dropped Support for CUDA 7.0 / 7.5

 		
 Update of Docker Images

 		
 CuPy v4

 		
 Default Memory Pool

 		
 Compute Capability

 		
 CUDA Stream

 		
 cupyx Namespace

 		
 Update of Docker Images

 		
 CuPy v2

 		
 Changed Behavior of count_nonzero Function

 		
 Compatibility Matrix

 		
 License

 		
 NumPy

 		
 SciPy

 		
 cuSignal

_static/cupy_logo_1000px.png

_static/plus.png

_static/file.png

_static/minus.png

