

 Navigation

 	
 index

 	
 next |

 	Cupid 1.0 (ESMF v7) documentation

Cupid User’s Guide - 1.0 (ESMF v7)

This version of Cupid is compatible with ESMF version 7.0.

Contents:

	1. Overview
	1.1. What is NUOPC?

	1.2. What is Eclipse?

	1.3. The basic premise behind Cupid

	1.4. Target Audience

	1.5. Key Features

	2. Installation

	3. How To
	3.1. Verify that Cupid is Installed

	3.2. Create a Fortran Project with Your Model Code
	3.2.1. Projects with Local Files

	3.2.2. Synchronized Projects with Remote Files

	3.2.3. Ensure Fortran Analysis is Enabled

	3.3. Reverse Engineer a NUOPC Cap
	3.3.1. Show the NUOPC View

	3.3.2. Elements in the NUOPC View outline

	3.3.3. Validation Errors in the NUOPC View

	3.4. Generate NUOPC-compliant Code
	3.4.1. Generate Code In-Place in an Existing NUOPC component

	3.4.2. Generate a NUOPC Model cap, NUOPC Driver, or NUOPC Mediator from Scratch

	3.5. Generate Skeleton Code for a Complete NUOPC Coupled Application
	3.5.1. Build the Skeleton Application Locally

	3.5.2. Set up a Parallel Application run and Execute Locally

	3.6. Show the NUOPC Reference Manual

Search

	Search Page

 Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cupid 1.0 (ESMF v7) documentation

1. Overview

Cupid [https://www.earthsystemcog.org/projects/cupid/] is a plugin for the
Eclipse Integrated Development Environment (IDE) [https://www.eclipse.org/]
and provides developers with assistance in writing code compliant with the National Unified
Operational Prediction Capability (NUOPC) software Layer [https://earthsystemcog.org/projects/nuopc/].

Note

The name Cupid is not an acronym. It originates from a Ph.D. project aimed
at generating couplers for Earth System Models. Cupid, in classical mythology,
is the god of desire and attraction. Since this software is designed to build
couplers for “bringing models together,” the name Cupid seemed appropriate.

1.1. What is NUOPC?

NUOPC is a consortium of Navy, NOAA, and Air Force modelers and their research partners. It aims to advance the weather prediction modeling systems used by meteorologists, mission planners, and decision makers. NUOPC partners are working toward a common model architecture - a standard way of building models - in order to make it easier to collaboratively build modeling systems. To this end, they have developed a NUOPC Layer that defines conventions and templates for using the Earth System Modeling Framework (ESMF) [https://earthsystemcog.org/projects/esmf/]. Cupid version 1.0 is compatible with ESMF version 7.0.

Note

The following resources are a good starting point for learning about the NUOPC Layer.

	The NUOPC home page: https://www.earthsystemcog.org/projects/nuopc

	The NUOPC reference manual and how to guide: https://www.earthsystemcog.org/projects/nuopc/refmans

1.2. What is Eclipse?

Eclipse is a graphical user interface or integrated development environment (IDE) used in computer programming for writing software. It contains a base workspace and an extensible plugin system for customizing the environment. Eclipse is written mostly in Java and its primary use is for developing Java applications, but it may also be used to develop applications in other programming languages through the use of plugins

1.3. The basic premise behind Cupid

Cupid acts as a framework-aware
code editing environment. This means that the requirements of writing NUOPC-compliant code
are built into the tool so that it can automatically generate code fragments and indicate places
in the code with potential errors before the code is compiled. To accomplish this, Cupid
relies heavily on Fortran static analysis capabilities provided by Photran [http://www.eclipse.org/photran/],
the Eclipse plugin that provides Fortran language tooling.

1.4. Target Audience

Cupid is intended for model developers who have prior experience with model development,
but are new to developing with NUOPC and have a need to work with existing NUOPC-compliant software
or write code to make a Fortran-based model code NUOPC compliant. Specifically, Cupid can
help write a NUOPC “cap” for a model, i.e., the interface layer that translates a model’s
init/run/finalize methods and data types so that they can be understood by NUOPC and used in
a coupled system with other NUOPC components.

Cupid is also aimed at developers interested in exploring the benefits of using the Eclipse IDE
for improving development productivity.

1.5. Key Features

	A reverse engineering engine that reads existing NUOPC cap code and presents relevant initialize,
run, finalize phases and specialization points in an outline view. The outline is synchronized
automatically as the code changes. The tool indicates code-level compliance issues that may
result in runtime errors. (The compliance checking is limited to code errors than can be
determined by static analysis.)

	A code generation engine that outputs NUOPC-compliant code fragments (i.e., initialization phases
and specialization points). The generated code can often be used as is, although further customization
of the generated code is suported. The generated code is inserted into the user’s existing code at the
appropriate places, keeping the existing code structure intact. The code generation feature helps the
developer understand what framework code is required and where it should be located.

 Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cupid 1.0 (ESMF v7) documentation

2. Installation

Information about installing Cupid is maintained on the Cupid website:
https://www.earthsystemcog.org/projects/cupid/

Note

	Prerequisites: https://www.earthsystemcog.org/projects/cupid/installation/prerequisites

	Installation from the Eclipse marketplace: https://www.earthsystemcog.org/projects/cupid/installation/marketplace

	Installation with the Eclipse installer: https://www.earthsystemcog.org/projects/cupid/installation/eclipseinstaller

 Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Cupid 1.0 (ESMF v7) documentation

3. How To

3.1. Verify that Cupid is Installed

To verify that Cupid is installed, view the Eclipse Installation Details by selecting
Help -> Installation Details from the Eclipse menu. You should see Cupid in the list
of installed software.

[image: _images/install_details.png]

3.2. Create a Fortran Project with Your Model Code

There are two options for creating a Fortran project in Eclipse based on whether
the source code you are importing is local or on a remote machine. The simplest
approach is to have the source code available locally. However, that is not always
practical so Eclipse provides a synchronization capability with files on a remote
system accessible via SSH. The sections below describe briefly how to create
these two kinds of projects.

See also

This user guide provides only high level guidance in setting up local and
remote Fortran projects. More details can be found on the Parallel Tools
Platform documentation site [http://www.eclipse.org/ptp/doc.php].

3.2.1. Projects with Local Files

To create a new Fortran project with local files, right-click (CTRL-click on Mac)
on the Project Explorer and select New -> Fortran Project. On the New Project
screen you can un-check Use default location and browse to the location of
the files. If you use the default location, the project folder will be in the
Eclipse workspace folder and you will need to import files manually by selecting
File -> Import... from the menu after creating the project.

Under Project type, it is recommended that you select Empty Project under the
Makefile project folder. (The project will not actually be empty if you selected the
location of your local files.) Click Finish and the new project will be created
and will appear in the Project Explorer.

[image: _images/new_project_local.png]
The New Fortran Project wizard.

3.2.2. Synchronized Projects with Remote Files

A synchronized Fortran project will copy files from a remote file system and
ensure that the remote and local copies stay synchronized. This is convenient
if the code will be built and executed on a remote system. The disadvantage
of this approach is that the initial synchronization can take multiple minutes
if the size of the source tree is large. However, once the initial synchronization
is complete, only changed files need be communicated over the network.

The first step is set up the connection with the remote machine. Open the
Connections view by selecting Window -> Show View -> Other. In the list
of views, filter for “Connections” and click OK to show the view.

[image: _images/connections_view.png]
The Connections view.

Create a new connection by clicking the New Connection button (with a small yellow +)
in the toolbar on the Connections view. Choose SSH connection on the following
screen and click next. On the next screen fill in the details about the connection.
The password can be left blank and you will be prompted at each login. In some
cases you may need to create multiple connections and use one as the proxy for
another, for example, if you must first authenticate through a login node. Click
Finish when you are done and you will see the new connection in Connetions view.

[image: _images/new_remote_conn.png]
The New Connection wizard.

Now create a new synchronized Fortran project right-click in the Project Explorer
and select New -> Synchronized Fortran Project. Fill in the project name, select
the remote connection you created and fill in the file path to the root of the
source code on the remote system.

You can optionally filter which files are synchronized by clicking Modify file
filtering... and choosing certain directories to exclude. In particular, directories
containing large data files and other non-source code should be excluded to speed
up the synchronization.

Under Project Type select Empty Project under Makefile project. Selecting
local and remote toolchains is not required unless you plan to use the Eclipse
build system. Click Finish and the new project will appear in the Project
Explorer.

[image: _images/new_sync_project.png]
The New Synchronized Fortran Project wizard.

The project will initially be empty and you will need to manually kick off the
first synchronization. Do this by clicking the synchronize button in the toolbar
or by right-clicking (CTRL-click on mac) the project folder and selecting
Synchronize -> Sync Active Now. Remote files will be copied to the local
workspace. By default, future synchronizations will happen automatically when changes
are made to local files. If the remote files change, or if you notice that
changes have not been propagated to the remote system, force a sync using the
procedure above.

[image: _images/toolbar_sync.png]
After selecting a project, click the Synchronize button on the toolbar
(circled in blue) to kick off the first synchronization. Remote files
will be copied to the local workspace.

[image: _images/after_sync.png]
After the synchronization process, files will be visible in the
Project Explorer.

3.2.3. Ensure Fortran Analysis is Enabled

Important

Turning on the Fortran analysis/refactoring engine is required for
Cupid to work properly.

Cupid depends on the Fortran analysis engine being activated for
projects containing NUOPC code. By default it is turned off. To turn
it on for a project, right-click (CTRL-click on Mac) on the project folder and
select Properties. Under Fortran General -> Analysis/Refactoring
check the first box, Enable Fortran analysis/refactoring.

[image: _images/enable_analysis.png]
Enable Fortran analysis/refactoring on in the project properties.

3.3. Reverse Engineer a NUOPC Cap

Cupid’s reverse engineering function is capable of analyzing the source
code of a NUOPC component to create a representation at a higher level
of abstraction. The reverse engineering analysis is limited to only the
NUOPC cap of a component, which is typically a single Fortran module.
The analysis does not descend into the model code itself.
Once the higher level representation is obtained, Cupid
is able to provide NUOPC-aware capabilities, such as basic validation
of correct API usage and in-place code generation–i.e., weaving new code
into the correct places of an existing source file. The reverse engineering
analysis phase happens automatically as a background process and an
index of NUOPC components in the workspace is maintained.

3.3.1. Show the NUOPC View

The results of the reverse engineered code can be seen in outline form
in the NUOPC View.

[image: _images/nuopc_view.png]
The NUOPC View (to the right of the source code) shows an outline
of a reverse engineered NUOPC component.

The NUOPC View is set up to show whenever the Fortran perspective is selected.
The current perspective is shown in the upper right-hand corner of Eclipse.
There is also an Open Perspective button which can be used to select the
Fortran perspective if it is not already shown.

[image: _images/perspectives.png]
The NUOPC View is set to appear automatically from the Fortran perspective
(circled in blue). Click the Open Perspective button (circled in green)
to open a new perspective.

There are other ways to show the NUOPC View:

	If the NUOPC View is not visible and you open a file with NUOPC
code, a dialog will ask you if you would like to open the
NUOPC View. This behavior can be turned off in the Cupid
preferences (select Window -> Preferences from the menu and
select Cupid in the list on the left).

	The main toolbar contains a Show NUOPC View button, circled in
green below

[image: _images/nuopc_toolbar.png]

	The NUOPC View can be accessed from the
Window -> Show View -> Other menu

The NUOPC View will automatically refresh itself as files are changed
and saved in the workspace. It is also possible to force a refresh
of the NUOPC View using the refresh button (blue circular arrow) in the
top right corner of the NUOPC View. This will first ensure that the
Fortran analysis database is up to date and then it will rebuild the
index of NUOPC components in the workspace.

3.3.2. Elements in the NUOPC View outline

The top-level element in the NUOPC View tree are files in the workspace
that contain code for a NUOPC component. The first element under each
file indicates that type of component (Model, Driver, or Mediator).
Sub-elements underneath the component type
represent something in the source code, such as a SetServices subroutine,
a NUOPC initialization subroutine, a specialization point subroutine,
imports of NUOPC generic modules, or calls into the NUOPC API. Many
of the elements have small icons: a blue circle with an M maps to a
Fortran module, a green circle maps to subroutine, and a yellow arrow
pointing to the right represents a subroutine or function call. If
a green circle has a small upward triangle in the corner, it indicates
that the subroutine is not in the current module, but is inherited
from a NUOPC generic component. Grayed out items do not map to any
source code element, but represent subroutines or API calls that
can be generated. Red items indicate that there is a validation
problem rooted at that element. Some elements indicate a cardinality
such as [1..n], which indicates that one or more elements of that type
can exist, or [0..1], which indicates the element is optional.

The outline is divided into several major sections:

	module imports (only specific ones are shown)

	SetServices

	initialization phases and specialization points

	run phases and specialization points

	finalize phases and specialization points

[image: _images/nuopc_view_errors.png]
The NUOPC View showing an outline of a NUOPC Model cap.

The NUOPC View is linked to the source code in the active editor.
To navigate to the source code related to the element, double-click
the element. The relevant code segment will be brought into
focus. If the element maps to a subroutine definition, the name of
the subroutine will be highlighted. If the element maps to an API
call, the call will be highlighted. If an element represents an
inherited subroutine (a green circle with small triangle), then
it does not appear in the current file, so no code will be highlighted
when double-clicking the element.

[image: _images/nuopc_view_nav.png]
Double-clicking on an element in the NUOPC View outline brings
the relevant code segment into focus in the editor.

3.3.3. Validation Errors in the NUOPC View

Elements in red in the NUOPC View indicate a validation error.
Currently, the validations performed are to check for
missing subroutines and API calls required by NUOPC, e.g., a missing initialization
phase or a missing specialization point. The NUOPC Reference Manual [http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_7_0_0/NUOPC_refdoc/]
details, for each type of component, which subroutines are required
and which are optional. Red elements do not indicate a Fortran
compilation issue, but indicate that NUOPC expects the
element to be present and a runtime error will occur without it.
The figure below indicates that the Advance specialization point
could not be found during the reverse engineering procedure. Within
NUOPC, specialization points are user-provided subroutines that are
called by NUOPC. Notice also that parent elements are red
all the way to the root of the tree. Therefore, if the root of the
tree is red, it indicates a validation issue somewhere below.

To address the issue of the missing Advance element, a new subroutine
needs to be added to the code and that subroutine registered in the
SetServices subroutine. When this is done, the reverse
engineering engine will pick up this code and the red elements
will disappear. The section Generate NUOPC-compliant Code explains how
to use Cupid to generate skeleton code for missing elements.

[image: _images/nuopc_view_error_zoom.png]
The Advance element is red because it could not be found by
the reverse engineering engine.

Note

Cupid’s reverse engineering and validation engines are based on
static source code analysis. The engine depends on an internal program database
(Virtual Program Graph or VPG) provided by the Photran plugin for Eclipse.

There are limitations to static analysis giving rise to false negatives–i.e.,
reporting a validation issue when in fact the NUOPC component will behave
correctly. For example, in some cases the reverse engineering engine
expects NUOPC API calls to appear
within a given subroutine, say SetServices. In reality, the required API
call may appear in a different subroutine called by SetServices or even
several levels down in the call tree. Cupid does not currently perform a
full control flow analysis to find NUOPC calls because it is an expensive
operation. And, even control flow analysis is limited due to conditional
logic in the code that depends on the state of the program at runtime.

Cupid, therefore, is fundamentally limited by the realities of
static analysis. However, most NUOPC caps have a very similar structure
with a fair amount of boilerplate code, so we expect that most codes
will be correctly reverse engineered.

3.4. Generate NUOPC-compliant Code

Cupid’s code generation facilities make it easier to write the code for
a NUOPC cap. A NUOPC cap acts as a kind of translation layer between your
model code and the coupling infrastructure. A NUOPC cap is implemented as
a Fortran module containing a set of subroutines. Cupid is capable of generating
NUOPC Model caps, NUOPC Drivers, and NUOPC Mediators. The code generator
can create new Fortran modules for each of these components in new files, or
the code generator can insert snippits of code into an existing file after
it has been reverse engineered.

There are several options for generating code:

	If there is an existing NUOPC component cap, it should be reverse
engineered first as described in Reverse Engineer a NUOPC Cap. Then, using
context menus in the NUOPC View, new code can be generated and inserted
in-place. This is the right procedure to use, for example, if you
need to add an additional specialization point subroutine to an existing
cap.

	If there is no existing NUOPC code, a template can be generated for
NUOPC Model caps, NUOPC Drivers, and NUOPC Mediators. This is the best
option if you have an existing model and need to create a cap so that
it can be used in NUOPC-based coupled systems.

	An entire skeleton NUOPC coupled application can be
generated, including a main program and Makefile. This is covered in the
Generate Skeleton Code for a Complete NUOPC Coupled Application section.

The sections below describe the first two generation options above.

See also

This user guide is not a comprehensive guide to what comprises a NUOPC
cap. For a gentle introduction to NUOPC and what is required in a
NUOPC cap, please see the Building a NUOPC Model [http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_7_0_0/NUOPC_howtodoc/] document.

3.4.1. Generate Code In-Place in an Existing NUOPC component

If you need to modify code in an existing NUOPC component (Model cap, Driver, or
Mediator), you should first open up the file so that the reverse engineered
outline is shown in the NUOPC View. In the following scenario, let’s assume
you have an existing NUOPC Model cap for a atmospheric model, but it is
missing the required Advance specialization point. This is the subroutine
that should call into your model’s run phase to take a time step. In the
NUOPC View, right-click (CTRL-click on Mac) on the parent element of the
element you would like to generate. The context menu will show you all code
generation options currently available.

[image: _images/gen_code_contextmenu.png]
Right-clicking on an element shows a context menu with the available
options for code generation.

In the context menu, select the element to generate, in this case
Generate Advance. The requested element will be added to the
outline and the corresponding code generated in the editor. Often, the
addition of one element results in inserting several code fragments.
In the case of the Advance element, a new subroutine is added, a new
import is added to the NUOPC_Model use statement, and a call to
NUOPC_CompSpecialize is added in the SetServices subroutine.
After the code generator runs, yellow markers are added to the vertical bar
to the right of the code editor to indicate where new code was added.
Clicking on one of the markers highlights the generated code.

[image: _images/gen_code_vertical.png]
Yellow markers in the vertical bar next to the code editor indicate
which code was generated during the last code generation action.

The generated code will compile as is, although it almost always
requires additional customization to complete the implementation.
In the case of the Advance subroutine just generated, additional code
is needed to call into the underlying model’s time step routine.
This clearly cannot be generated automatically because it is model-dependent.
Therefore a typical workflow will start with a code generation action
as just described, followed by filling in any model-specific implementation.
This will continue until all required initialization phases are complete
and all specialization points have been implemented.

3.4.2. Generate a NUOPC Model cap, NUOPC Driver, or NUOPC Mediator from Scratch

Templates for NUOPC Model caps, NUOPC Drivers, NUOPC Mediators can
be generated from scratch. This option is available from the context
menu in the Project Explorer. Right-click (CTRL-click on Mac) on a folder
in a Fortran project and select New from the context menu and you will
see the three options as shown below.

[image: _images/new_component_menu.png]
The Project Explorer context menu with options for generating a NUOPC Model
cap, a NUOPC Driver, or a NUOPC Mediator.

You will be prompted to enter the name of the component. Click OK and
a new Fortran file named <COMPONENT>.F90 will appear in the folder (where <COMPONENT>
is the name you provided). The file will also automatically open in the
editor and you will see the outline in the NUOPC View. At this point the
template can be customized by manually adding code and/or generating code
fragments from the NUOPC View outline as described above.

[image: _images/gen_code_template.png]
A NUOPC Model cap template.

To compile the code, you will need to modify your model’s existing build
system to include the new .F90 file.

3.5. Generate Skeleton Code for a Complete NUOPC Coupled Application

A good way to learn about how NUOPC coupling infrastructure works
is to build a skeleton application containing all of the “plumbing”
but with no real science code to keep it small.

Create a new NUOPC project using the NUOPC Project wizard. Select
File -> New -> Project... from the menu. Select the NUOPC Project
option under the NUOPC folder and click Next.

[image: _images/new_project.png]
On the next screen, select a starting configuration for the skeleton
NUOPC application. Ideally, you should find a configuration that
looks something like the actual coupled application you are building.

[image: _images/new_project_p1.png]
On the final screen of the wizard, type in a project name and click
Finish. The new project will be created. Initially, the project will
contain a .nuopc file which is a configuration file describing the coupled system.

[image: _images/new_project_explorer.png]
To generate all the NUOPC code for the system, right-click (CTRL-click on Mac)
on the .nuopc file and select NUOPC -> Generate NUOPC code from the context menu.
The code for the NUOPC skeleton application will be generated.
This includes:

	A NUOPC cap for each Model component

	A NUOPC Mediator, if present in the configuration

	A NUOPC Driver

	A top-level main program

	A makefile

[image: _images/gen_code_explorer.png]

3.5.1. Build the Skeleton Application Locally

The generated code can now be built using make and the generated Makefile.
To build on the same system that Eclipse is running (this is the easiest
way), first ensure that ESMF v7 is installed [http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_7_0_0/ESMF_usrdoc/node9.html].

The environment variable ESMFMKFILE needs to be set to the location of the
esmf.mk file in the ESMF installation directory. It is in the same
directory with the ESMF library file(s). (More info on the esmf.mk file is
available in the ESMF User Guide [http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_7_0_0/ESMF_usrdoc/node7.html].)

To set the ESMFMKFILE environment variable in Eclipse, right click on the
project folder in the Project Explorer and select Properties from the context
menu. Select Fortran Build -> Environment in the list on the left and add
a new environment variable. Set the name to ESMFMKFILE and the value to the
location of the esmf.mk file on your system. Click OK when done.

[image: _images/env_properties.png]
To build from within Eclipse, find the Make Target view on the right side and
double click the “all” target. If the Make Target view is not shown, you can
bring it up by selecting Window -> Show View -> Make Target from the menu.

[image: _images/make_target_view.png]
The output from the build will be shown in the Console view at the bottom. The
last file built will be the executable and it is typically named the same as the
project itself.

[image: _images/console_view.png]

3.5.2. Set up a Parallel Application run and Execute Locally

To execute the application on the same system on which Eclipse is running (again,
this is the easiest way), set up a Parallel Application run configuration by
selecting Run -> Run Configurations... from the menu. The configuration
will be dependent on the MPI distribution on your local machine, but you should
use the same MPI distribution that was used to compile ESMF. On the Application
tab, you need to select the location of the executable that was generated.

[image: _images/parallel_run_config.png]
After configuring the parallel run, click Run and you will see output from the
run in Console. ESMF log files will also be generated, one per process. These
are named PETX.ESMF_LogFile. If you do not see the log files immediately after
the run, right click on the project folder and select Refresh from the
context menu.

[image: _images/console_run.png]

3.6. Show the NUOPC Reference Manual

The NUOPC Reference Manual can be shown directly within Eclipse so that you
do not need to leave the tool to read API documentation. To open the NUOPC
documentation viewer, either click on the Show NUOPC Doc View button in the
toolbar or from the menu select Window -> Show View -> Other and select
the NUOPC Doc view in the list.

If you select a component in the NUOPC View, the documentation viewer will
synchronize with the selected item. For example, if a NUOPC Mediator component
is selected in the NUOPC View outline, the documentation viewer will bring that
part of the Reference Manual into focus.

[image: _images/toolbar_docs.png]
Click the blue book in the toolbar to show the NUOPC Reference Manual.

[image: _images/nuopc_doc_view.png]
The NUOPC Reference Manual is opened in a small browser built into Eclipse.

 Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Cupid 1.0 (ESMF v7) documentation

Index

 Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

 _images/console_view.png
Fortran - NUOPCSingleModelWithDriver/M:
B-HGE ® R -8B ® - Bi0-i&

(5 Project Explorer 2% =
5 -
» [é DRV.F90
» [MODEL.F90
» [@ SingleModelwithDriver.F90
@ drv.mod
DRV.0
[Makefile
@ model.mod
MODEL.0
singleModelwithDriver

singleModelwithDriver.aird
@ singleModelwithriver.nuopc
singleModelwithDriver.o

se

B BrithrOr

B A E WL E D
[Quickaccess |!| & 8@ c/cv+ (@ Fortran

B DRV.FSO BN

Drive [oMakefile 3 = B & Outline © Make Target 53 = o

1# Auto-generated Makefile for NUOPC Application:
2

3# This Makefile was generated by Cupid on 2016-64-19 15:43:32. & NUOPCSingleModelwithDriver

4# https://earthsystemcog.org/projects/cupid/ & settings

5

s Loal |
7 @ clean

8## This Makefile must be able to find the "esmf.mk" Makefile fragment ®dust

9## 'include’ line below. Following the ESMF User's Guide, a complete |

10## installation should ensure that a single envirnnmei} variable "ESMI

11## is made available on the system. This variable should point to the

12## "esnf.mk" file.

1B##

14## This example Makefile uses the "ESMFMKFILE" environment variable.

158

16## If you notice that this Makefile cannot find variable ESMFMKFILE ti

17## please contact the person responsible for the ESMF installation on

B singleModelw

singleModelWithDrive(GO8& D

[22 Problems | & console % [Fortran Declaration [Z Fortran Analysis/Refactoring Problems LIl Bookmarks [Properties =

¢ ¢[@ F@ =B 2.0
CDT Build Console [NUOPCSingleModelwithDriver]
16:18:18 **** Build of configuration Cupid Configuration for project NUOPCSingleModelWithDriver ***+
make -k all
mpif9® -c -0 -fPIC -m64 -mcmodel=small -pthread -ffree-line-length-none -fopenmp -I/home/rocky/ESMF-INSTALLS/ESMF 7_0_6/mod/mod

mpif9e -c -0 -fPIC -m64 -mcmodel=small -pthread -ffree-line-length-none -fopenmp -I/home/rocky/ESMF-INSTALLS/ESMF 76 0/mod/mod
mpif9e -c -0 -fPIC -m64 -mcmodel=small -pthread -ffree-line-length-none -fopenmp -I/home/rocky/ESMF-INSTALLS/ESMF 7_6_0/mod/mod
mpif9e -m64 -mcmodel=small -pthread -Wl,--no-as-needed -fopenmp -L/home/rocky/ESMF-INSTALLS/ESMF_7_6_6/1ib/lib0/Linux.gfortran.6

16:18:23 Build Finished (took 4s.976ms)

_images/make_target_view.png
Fortran - NUOPCSingleModelwithDriver/Make
O-lE ® & B ® B0 &8R- B -i%-0 - @5 @A "5 %o~

(5 Project Explorer 2% =
5 v v
» [é DRV.F90
» [MODEL.F90
» [@ SingleModelwithDriver.F90
[Makefile
singleModelwithDriver.aird
@ singleModelwithriver.nuopc

e - Eclipse

[uickAccess i B B c/cw [Fortran.

B DRV.FS0 [MODEL.FS0 [SingleModelwithDrive [Makefile 2 = B Outline ® Make Target 2

= 0

@D

1# Auto-generated Makefile for NUOPC Application: SingleModelWithDrive(o6
2

3# This Makefile was generated by Cupid on 2016-64-19 15:43:32. & NUOPCSingleModelwithDriver

4# https://earthsystemcog.org/projects/cupid/ & settings

5

s Loal |
7 @ clean

8## This Makefile must be able to find the "esmf.mk" Makefile fragment ®dust

9## 'include’ line below. Following the ESHF User's Guide, a complete |
10## installation should ensure that a single environment variable "ESMI
11## is made available on the system. This variable should point to the
12## "esnf.mk" file.

138

14## This exanple Makefile uses the "ESMFMKFILE" environment variable.
158

16## If you notice that this Makefile cannot find variable ESMFMKFILE tf
17## please contact the person responsible for the ESHF installation on
18## systen.

19## As a work-around you can simply hardcode the path to "esmf.mk” in |
20## include line below. However, doing so will render this Makefile a
21## flexible and non-portable.

2
23
24ifneq ($(origin ESMFMKFILE), environment)

25 $(error Environment variable ESMFMKFILE was not set.)
26 endif

27

28 include $(ESMFMKFILE)

29

30
31 N

£ Problems & console [Fortran Declaration [Fortran Analysis/Refactoring Problems Cl Bookmarks [Properties 5

Property Value

_images/nuopc_view_error_zoom.png
£ Outline & NUOPC View %X | © Make Target =

NUOPC Definition Value
v @ NUOPC Model ATM (atm.F90)
ESMF Import
NUOPCImport
Generic Import NUOPC_Model
v o Setservices SetServices

=] NUOPC_CompDerive
» Phases
v specializations
v
v
v o Advance [1..n]
=] Registration
» Finalize

_images/new_component_menu.png
(-] Fortran - Eclipse

[mi] 52 ®-K- & i@ o6

Golnto
[25 Project Explorer 3 &I
Openin New Window

Copy

Import...
Export.

Clean Project

Refresh

Close Project

Close Unrelated Projects

Make Targets
g Progress i

No operations to display at SRR RUAL

Validate
Profiling Tools
Run As

5 MyNUOPCApP BRI

& @it 0

[

o= £ NUO 2

NUOPC Model cap JOPC Defiition

NUOPC Mediator

File from Template
Folder

Class

Fortran Source File
Fortran Source Folder
Header File
SourceFile

Source Folder
CProject

G+ Project

Fortran Project
synchroni
synchronized Fortran Project
synchronized Project

Example

Other.

B c/c++ [B Fortran

=

_images/toolbar_sync.png
Fortran - Eclipse

_images/gen_code_template.png
Fortran - MyNUOPCApp/ATM.F30 - Eclipse

B-EHGE ®- &6 - BR-&8-H-BIOi& #¥-0"¢-d0 F-iE @
[Project Explorer & = 8 BATMFO R
% < coAl..o2. 4 .3 .. 4 1 .5 .. 6 1 .1 .1
i - nodule ATH
v & MyNUOPCApD
50 use ESMF

» & Includes

1

2

3

@

5 use NUOPC Model, &
» 5> NUOPC 453 [http://svn.codesfne | ©

7

8

9

0

1

|
|
|
| ¢ .
| model_SetServices => Setservices, &
| model label Advance = label Advance
|

| implicit none

|

|

|

public SetServices

2
13| contains
14|
15-| subroutine Setservices(gcomp, rc)
16| type(ESMF_GridComp) :: gcomp
17| integer, intent(out) :: rc
18|
19| rc = ESMF_SUCCESS
20|
21| 1 NUOPC Driver registers the generic methods
2|| call NUOPC_CompDerive(gcomp, model Setservices, rc=rc)
2| if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
2| line= LINE , &
25|| file= FILE)) &
2| return ! bail out
27|
=g Progress &2 % ¥ = O [Problems B cConsole % [Fortran Declaration [£! Fortran Analysis/R \g Problems

No operations to display at this tim | 110 cOnSoles to displayat this time.

Writable

§ v

Insert

xS G

@

[Quick Access |

ESMF Import
UOPC Import
eneric Import
v o Setservices
=[NUOPC_CompDerive

v initialize

v Phases
Initialize Phase Definition (vo0)
Initialize Phase DeFinition (vo1)
Initialize Phase Definition (v02)
Initialize Phase DeFinition (v03)
Initialize Phase DeFinition (v04)
v Specializations

>o

vvvvy

>o

v Run
v Phases
e RunPhase 1

PCO -

B @ c/c++ (B Fortran)

Value
ATM (ATM.F90

NUOPC_Model
SetServices

= -

_images/parallel_run_config.png
Create, manage, and run configurations

Createa configuration to launch a parallel application

& x N Name: | NUOPCSingleModelwithDriver)
(type filter text @ | ||[83 Resources | Bl Application . ®= Arguments | B Environment| Synchronize| I Common|
[E]C/C++ Application e §
[EFortran Local Application | NUoPCcsingleModelwithDriver |
& Launch Group Application program:
i Parallel Application [/home/rocky/eclipse/parallellatest-released/ws/NUOPCSingleModelwithbriver/SingleModelwithbriver | [Browse
IOPCSingleModelwithDriver
¥ SystemTap () copy executable from local filesystem
Path to local executable:
Browse
Display output from all processes in a console view
Re t Apply
Filter matched 6 of 6 items o Re e s 0 Y s

Close Run

_images/new_sync_project.png
New Synchronized Fortran Pr

New Synchronized Fortran Project

Create a synchronized Fortran project of the selected type

Project name: |MysyncProject

Local directory
[Use default location

Local directory:

Remote directory

Connection name: | my.remote.com <) [New...|
Remote directory: |/path/on/remote |Browse...|

Project Type
> @& Executable
> @& Shared Library
> @ Static Library
> @& Others
v & Makefile project
© Empty Project
© Empty Project - Fortran
® Demo - Hello World - Fortran

© Demo - Hello World - Fortran using MPI
@ Demo - Calculate Pi - Fortran using MPI

Remote Toolchain (select 1 or more)
- Other Toolchain ~
GCCFortran
1BM XL Fortran Tool Chain
Intel(R) Fortran Toolchain on 1A-32
Intel(R) Fortran Taolchain on 14-64.

Local Toolchain (optional -select 0 or more)

- Other Toolchain ~

GCC Fortran

1BM XL Fortran Tool Chain

Intel(R) Fortran Toolchain on 1A-32
Intal(D) Enrtran Tanlchain an 1864

) show project types and toolchains only if they are supported on the platform

<Back | Next> || cancel

Finish

_images/gen_code_explorer.png
Fortran - NUOPCSingleModelwithDriver/DRV.FS0 - Eclipse
B-HGE & QR - B - BiO-i& BBR-& - i%-0 "8 ®d0 &
8 -5l e D [Quick Access
(5 Project Explorer 2% = B [FIDRVFO X [? Y =
& < L 1 .0 2 3 .0 4. 5 6. o
8% 1 module DRV
v NUOPCingleModelwithDriver 2
3 use ESMF
> i
{3 DRV.F9O 4 use NUOPC
» [2 MODEL.F90 5 use NUOPC Driver, &
» (@ SingleModelwithDriver.F90 6 driver SetServices = SetServices, &
[Makefile 7 driver label SetModelServices = label SetModelservices
© 8 use MODEL, only: MODEL SetServices => SetServices
singleModelwithDriveraird 9

0 et none
2 public SetServices
13
14 contains
15 |
16 | subroutine Setservices(gcomp, rc)
17 | type(ESMF_GridComp) :: gcomp
18 | integer, intent(out) :: rc
19 |
20 | rc = ESMF_SUCCESS
2 |
2 | 1 NUOPC Driver registers the generic methods
23 | call NUOPC_CompDerive(gcomp, driver SetServices, rc=rc)
2 | if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHR
25 | line= LINE , &
26 | file= FILE)) &
27 | return ! bail out
28 |
29 | call NUOPC_CompSpecialize(gcomp, specLabel=driver label Set

Property

=] B U]

Value

B @ c/c++ (B Fortran)

g emzx % = @O
8 ORI

»E NUOPCSingleModelv
[}Elpmpertiesm = g

_images/new_project_local.png
Fortran Project

Fortran Project
(& Directory with specified name already exists.

Project name: |MyNewProject |

"] Use default location

Location: | /home/rocky/eclipse/cupiddev-vo-2/git/cupid/org.earthsystemr| | Brows:

Choose file system: |default +

Project type: Toolchains:

> @& Executable - Other Toolchain ~

> @& Shared Library GCCFortran

> @ Static Library 1BM XL Fortran Tool Chain

> @& Others Intel(R) Fortran Toolchain on Intel(R) 64

¥ & Makefile project

@ Empty Project - Fortran

® Demo - Hello World - Fortran

@ Demo - Hello World - Fortran using MPI
@ Demo - Calculate Pi - Fortran using MPI

& Show project types and toolchains only if they are supported on the platform

@ T |

_images/new_project.png
Wizards:

[typefilter text

> General
PEC/Chr

»E Fortran
¥ & NUOPC

NUOPC Project

»E&RPM

» & Tracing
» & XLUPC
> ather

<Back

Next >

Cancel

Finish

_images/nuopc_toolbar.png
Bra-F-8:0(&H8@ %-0-

v = B [BatmFo R

_images/new_remote_conn.png
New Connection

‘Specify properties of a new connection

Connection name: |MyRemote

Host information

Host: | my.remote.com

User: |rdunlap

) Public key based authentication

Passphrase:

@ [Password based authentication

Keys are set at Network Connections, SSH2

mer | news |(_cone) (D

_images/connections_view.png
% Connections

_images/new_project_explorer.png
B @ c/c++ B Fortran

[Quick Access

Blr il e e
[Project Explorer 2 = = O Zoutl X/ &NUO @Make = O
Y - -
v & NUOPCSingleModelwithDriver Anoutlineis not available.
singleModelwithDriver.aird
singleModelwithDriver.nuopc
lems B Console [Fortran Declal [Fe =
.|

(£ Pre

Value

Property

_images/console_run.png
Fortran - NUOPCSingleModelWithDriver/Makefile - Eclipse
O-lE ® & B ® B0 &8R- B -i%-0 - @5 @A "5 %o~
[quickaccess |i| B8 @ c/ce+ (B Fortran
[Project Explorer 2 = G ? 7 singleModelwithDrive [Makefile 8 = 0 Outline @ Make Target 23 = 8
e % 1# Auto-generated Makefile for WOPC Application: SinglefodelWithorive GOk Hh o
NUOPCSingleModelWithbri 3# This Makefile was generated by Cupid on 2016-64-19 15:43:32. v & NUOPCingleModelWithbriver
» B DRV.F50 4# https://earthsystencog.org/projects/cupid/ & settings
5
» [9 MoDELFS0 s [oot |
> [& SingleModelwithDriver.F90 7 ®clean
8## This Makefile nust be able to find the "esnf.nk" Makefile fragment
@ drv.mod 9## ‘include’ line below. Following the ESHF User's Guide, a complete § ©dust
@ DRV.0 -7 Mk immealles. b0 urca
[Makefile
[model.mod 22 Pro ems &l Bookmarks (I Properties =
5 MODEL.o e x% BEEE ~2-o-
PETO.ESMF_LogFile <terminated> NUOPCSingleModelwithDriver [Parallel Application] Runtime process 25dd5087-c119-4716-92b5-9c2ebd073d73
PET1.ESMF_LogFile #TP job_id=1824
£ PET2.ESMF LogFile -~~~ “>Advancing MODEL from: 2010 6 1 0 © 0 ©
o to: 2010 6 1 615 8 ©
[E PET3.ESMF_LogFile ------>Advancing MODEL from: 20106 6 1 © © © ©
2 singleModelwithbriver - -S> t0:2010 6 1 015 0 ©
& singleModelwithbriver.aird ------>Advancing MODEL from: 2010 6 1 0 © 0 ©
! o - to: 2000 6 1 615 8 ©
@ singleModelwithDriver.nuopc , 61615 08 6
ingleModelwithDriver.o - to: 2010 6 1 030 6 ©
------>Advancing 6103 8 8
- to: 2000 6 1 045 6 ©
------>Advancing 6 1 045 8 0
t0:2010 6 1 1 6 8 ©
------>Advancing MODEL from: 2010 6 1 015 0 ©
- to: 20010 6 1 030 8 ©
- >Advancing MODEL from: 2016 6 1 630 © © N
to: 2000 6 1 045 6 ©
------>Advancing MODEL from: 2010 6 1 045 0 ©
t0:2010 6 1 1 6 8 ©
------>Advancing MODEL from: 2010 6 1 0 © 0 ©
- to: 2000 6 1 615 8 ©
- 61601508 6
- to: 20010 6 1 030 8 ©
- 6103 8 8
- to: 2000 6 1 045 6 ©
------>Advancing MODEL from: 2010 6 1 045 0 ©
- t0:2010 6 1 1 6 8 ©

& NUOPCingleModelWithbriver

_images/perspectives.png
. - [Quick Access B ¢/c

= B g outline & NUOPC View 3 |© Make Target =0

NUOPC Definition Value

ESMF Import
NUOPC Import

_images/after_sync.png
Fortran - Eclipse

oo BrRvE @ vt

[Project Explorer 33 | = & v =0
¥ &addon
> G ESMPy
» @& MAPL
> > MAPL5_1
» & NUOPC
[o makefile
> &apps
> & doc
> & epilogue
> @include
*» @ Infrastructure

=5 Progress & % v =8

C/C++Indexer
C—
=indexing: 401/1,77...e/Mesh/src/Zoltan)

& MysyncProject

search.html

 Navigation

 		
 index

 		Cupid 1.0 (ESMF v7) documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Rocky Dunlap.
 Created using Sphinx 1.3.5.

_images/nuopc_view_nav.png
[atm.F90 88 1] esmApp.Foc = O g outline & NUOPCView X | © Make Target =

- T NUOPC Definition Value

13| implicit none v ® NUOPC Model ATM (atm.F90)
1 . “= ESMF Import

15 private

1% = NUOPC Import

GenericImport NUOPC_Model

Setservices Setservices

17 public SetServices
18

'
o] [<INUOPC_CompDerive

2| v nitialize

2 v Phases

23> subroutine FFEIFIEH (nodel, rc) o -

24 ‘type(ESMF_GridComp) :: model » Initialize Phase Definition (v00)
2 integer, intent(out) :: rc > Initialize Phase Definition (v01)
] [— > Initialize Phase Definition (v02)
2 - > Initialize Phase Definition (v03)
29 I the NUOPC model component will register the generic methods > Initialize Phase DeFinition (vo4)
30 call NUOPC_CompDerive(model, model routine SS, rc=rc) v specializations

31 if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, & P

32 line= LINE , & >o

33 file= FILE)) & »o

34 return bail out

35

36 ! set entry point for methods that require specific implementation > Run

37 call NUOPC_CompSetEntryPoint(model, ESMF METHOD INITIALIZE, & v Finalize

38 phaseLabellist=(/"IPDve@pl"/), userRoutine=InitializePl, rc=rc)

39 if (ESMF_LogFoundError(rcTocheck=rc, msg=ESMF_LOGERR PASSTHRU, & > Phases

40 line= LINE_, & v specializations

41 file= FILE_)) & o

42 return bail out

43 call NUOPC_CompSetEntryPoint(model, ESMF METHOD INITIALIZE, &

44 phaselLabellist=(/"IPDve6p2"/), userRoutine=InitializeP2, rc=rc)

45 if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &

_images/nuopc_doc_view.png
[22 Problems & console [Fortran Declarati [Z¢ Fortran Analysis/ Cll Bookmarks | B NUOPCDoc % |% Connections =

3.1 Generic Component: NUOPC_Driver

MODULE:
module NUOPC Driver

DESCRIPTION:

Component that drives Model, Mediator, and Connector components. For every Driver time step the same

run sequence, i.e. sequence of Model, Mediator, and Connector run methods is called. The run sequence is

fully customizable. The default run sequence implements explicit time stepping.

SUPER:

ESHF_GridComp

USE DEPENDENCIES:

use ESMF

_images/install_details.png
se Installation Details

Installed Software | Installation History Features Plugins Configuration

(type Filter text @ |
Name Version id

Ccupid 2016041916 org.earthsystemmodeling,
» & Eclipse for Parallel Application Developers 4.5.2.20160218-0€ epp.package.parallel
> Eclipse Platform 4520201602121 org.eclipse.platform.featy
> Eclipse RCP 4520201602121 org.eclipse.rcp.feature.grc
>4 0omph Setup 1404201603240 org.eclipse.oomph.setup.f

The Cupid IDE and Code Generation tool for Earth System Models

Uninstall. Properties |__close |

_images/gen_code_vertical.png
BatnFso | @ esmApp.30

1 Ex— . s B 2 8
eatt WOPC_CompsetEntryPoint(model, ESE METHOD INITIALIZE, &
phaseLsbell 5t={/ Lroveepa-/), vserkoutine-initiatizers, re=rc)
i1 (SN Lograundtrror (FeTachackere, nSg-ESHF LOERA PASSTIRU, &
Unes_tne_ &
e)
Tetorn bt e

seladiance, rier

subroutine TniializeP1 (ol InportState, exportstate, clock, rc)
ypelESHE Gridcomp) 1 asset
pelcane State) Inparestate, emportstate
pelEa Clack) cleek
integer, Intentiout) 55 rc

1 Disabling the fotlowing macro, ©.g. renaning to WITHINPORTFIELDS disable,
ATL resule In 3 nodel companent Shat does ot amvertise any iaporiable
§ Flelds: Use this 17 you sant 10 drive the sodel inaspensently

datine VITHNORTFIELDS

FiTdet NITHINPORTILELDS
inpartable fiela: sea surtace temperature

NuosCostintion

- - @nuorCHadel
= esmrimport
NvoPCmport

R phase1
v speciatiations
> o advace 1.0]
v Filie

Ve
A atm o)

NuoRC Model
setserices

Modeladuance

_images/nuopc_view.png
[B) ATM.F90 52
Co oo 200 3 a5 L 6L T
1= module ATH
2
3 use ESMF
4 use NUOPC
5 use NUOPC Model, model SetServices => SetServices, &
6 model label Advance => label Advance
7
8 implicit none
9
10 public SetServices
1
12| contains
13
14 subroutine Setservices(gcomp, rc)
15 type(ESMF_GridComp) :: gcomp
16 integer, intent(out) :: rc
17
18 rc = ESMF_SUCCESS
19
20 1 NUOPC Driver registers the generic methods
21 call NUOPC_CompDerive(gcomp, model Setservices, rc=rc)
2 if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
23 line= LINE , &
24 file= FILE)) &
25 return ! bail out
2
27 call ESHF_GridCompSetEntryPoint (gcomp, ESMF METHOD INITIALIZE, &
28 userRoutine=InitializePo, phase=8, rc=rc)
29 if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
30 line= LINE , &
31 file= FILE)) &
32 return ! bail out
33
34 call NUOPC_CompSetEntryPoint(gcomp, ESMF METHOD INITIALIZE, &
35 phaselLabelList=(/"IPDve1p1"/), userRoutine=AdvertiseFields, rc=rc)
36 if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
37 line= LINE , &

Jutline & NUOPC View 88 (@ Make Target 9 =0
NUOPC Definition Value
v @ NUOPC Model ATM
= ESMF Import.
NUOPC Import
= Generic Import NUOPC_Model
» @ SetServices SetServices
v nitialize
v Phases

> Initialize Phase Definition (v00)
v Initialize Phase Definition (vo1)
> © IPDVO1pO- Filter Initialization Phases InitializeP0

» o IPDVO1p1 - Advertise Fields AdvertiseFields
@ IPDVO1p2 - (unspecified by NUOPC)
» @ IPDvO1p3 - Realize Fields RealizeFieldsProvidi

@ IPDVO1p4 - Verify All Connected & Set
@ IPDV01p5 - Initialize Fields
> Initialize Phase Definition (v02)
> Initialize Phase Definition (v03)
> Initialize Phase Definition (v04)
> specializations

> Run

> Finalize
» [2 NUOPCCoupledAtmOCn/ESM.F90
» [2 NUOPCCoupledAtmOcn/OCN.F0
» [2 NUOPCCoupledAtmOcnMed/ATM.F90
» [2 NUOPCCoupledAtmOcnMed/ESM.F90

_images/toolbar_docs.png

_images/new_project_p1.png
Create NUOPC Project

Create NUOPC Project

Please select an option

Starting configuration: [\ 0p - Single Model with Driver =
Model Architecture Coupling Behavior
Ay S Sl e ne nen ke ea e by e(D: e I e e n = eonnqurat o

regular intervals.

@ [<Back || Next> || cancel || Finish

_images/env_properties.png
Properties for NUOPCSingleModelWithDriver

(ype Filter text

| Environment G D
> Resource
Builders Configuration: | Cupid Configuration [Active] ~ | [Manage configurations... |
C/C++Build
C/C++ General
v FortranBuild Environment variables to set

[Add.. |

Build Variables Variable Value Origin
CwWD

Settings
Tool Chain Editor
» Fortran General
Linux Tools Path
Project References
Run/Debug Settings
> Task Repository
Task Tags
» Validation
wikiText

/home/rocky/eclipse/parallel-atestreleased/ws/NUOPCsingleModelwithDriver/ BUILD SYSTEM
0/lib/libo/Linux.gfortran.64.openmpi.default/esmf.mk USER: CONFIG | Edit.. |
PWD /home/rocky/eclipse/parallel-atestreleased/ws/NUOPCSingleModelwithDriver/ BUILD SYSTEM

Delete

| Undefine |

© Append variables to native environment

©) Replace native environment with specified one

[Restore Defaults || apply |

@ R [camcet |[ok]

_images/enable_analysis.png
Properties for MysyncProject

avovyw

)

Resource

Builders

¢/c++Build

C/C++ General

Fortran Build

Fortran General
Analysis/Refactoring
Paths and Symbols
Source Form

Linux Tools Path

Project References

Run/Debug Settings

synchronize

Task Repository

Task Tags

Validation

wikiText

Analysis/Refactoring <

To enable Open Declaration, Find All References, the Fortran Declaration
view, content assist, and refactoringin Fortran programs, check the
following box. A program database (index) will be updated every time
aFortran file is created or saved.

& [Enable Fortran analysis/refactoring
& Enable Fortran Declaration view
& Enable Fortran content assist (Ctrl+Space)

[Enable Fortran Hover tips

The Following specify the paths searched for modules
and INCLUDE files during analysis and refactoring.
These MAY BE DIFFERENT from the settings used by
your compiler to build your project.

Folders to be searched for modules, in order of preference:
/MySyncProject

Remove
u
Down
Folders to be searched for INCLUDE files, in order of preference:
/MySyncProject New.
Remove
u

Down

|Restore Defaults || Apply |

| one | S

_images/nuopc_view_errors.png
2= Outline & NUOPC View 33 | @ Make Target

Value

[v B NUOPCCoupledAtmOcn/ATM.F90

v @ NUOPC Model
“= ESMF Import.
NUOPC Import
GenericImport
> o Setservices
v nitialize
v Phases
> Initialize Phase Definition (v00)
v Initialize Phase Definition (vo1)
» © IPDVO1pO- Filter Initialization Phases [0..1]
> © IPDVO1p1 - Advertise Fields
@ IPDVO1p2 - (unspecified by NUOPC)
> © IPDVO1p3 - Realize Fields
@ IPDV01p4 - Verify All Connected & Set Clock
@ IPDV01p5 - Initialize Fields
> Initialize Phase Definition (v02)
> Initialize Phase Definition (v03)
> Initialize Phase Definition (v04)
> specializations

> Run
> Finalize

» [2 NUOPCCoupledAtmOCn/ESM.F90

» [2 NUOPCCoupledAtmOcn/OCN.F0

» [2 NUOPCCoupledAtmOcnMed/ATM.F90

» [2 NUOPCCoupledAtmOcnMed/ESM.F90

ATM

NUOPC_Model
SetServices

InitializeP0
AdvertiseFields

RealizeFieldsProvidingGrid

_images/gen_code_contextmenu.png
£ Outline & NUOPC View %X | © Make Target =

NUOPC Definition Value
v @ NUOPC Model ATM (atm.F90)
SMF Import
NUOPCImport

= GenericImport NUOPC_Model
v o Setservices Setservices

< NUOPC_CompDerive
> Iinitialize
v R

» Phases

v specializations
>o
>o
v o Advance[1..]
=] Registration
> Finalize

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down.png

_static/up.png

