

 Navigation

 	
 index

 	
 next |

 	Culture-Hub API 0.16.1 documentation

Welcome to Culture-Hub online documentation!

The initial release of this documentation is focused on making the API documentation available to third-party developers.

Contents:

	Introduction Delving Culture-Hub API documentation

	Search API
	Search Result Mode (summary view)

	Full View Mode

	Explain Mode

	Statistics API

	Proxies API
	List all proxies

	Search a specific proxy

	Request full-view item from proxy

	Planned functionality for the API
	access statistics API

	Grouping / Clustering API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Culture-Hub API 0.16.1 documentation

Introduction Delving Culture-Hub API documentation

This document describes the delving Culture-Hub APIs that are available
on the default deployments. The APIs are always constrained to the
information of a single organization.

The URL structure that we use is:

`http://{baseUrl}:{portNumber}/api/{apiType}`

	baseUrl = is the basic ip or domain where the hub is hosted.

	portNumber = is the port at which the hub is listening for
requests. (default: 80)

	apiType = is the main type of the API. Currently, there are the
following main API types:
	search

	statistics

	proxies

	OAI-PMH harvesting

An example of a full URL is the Norvegiana Culture-Hub:

`http://kulturnett2.delving.org:80/api/search?query=norge`

The Culture-Hub API has as its core design principle that all the state
the application has must be available to the API consumer. This means
that computations made on the server should not have to re-computed by
the client that is consuming the API. This is also why the response are
so elaborate. To reduce the verboseness it is possible to specify which main elements should be returned via the verbose and strict parameters.

This documentation refers to API version 0.16 and above. The version number of the API can be found as an @version attribute in the main element of the API response.

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Culture-Hub API 0.16.1 documentation

Search API

The API base URL for all search actions is:

`http://{baseUrl}:{portNumber}/api/search`

The following sections describe the parameters and usage of the three
main search modes:

	summary view

	full view

	explain view

Search Result Mode (summary view)

The summary view is the basic search response provided by the hub. In
the following sections we will describe the output and the parameters
that are available to the API developer.

General parameters

There are some general parameters that apply to all modes and they are
described below.

	wskey = the APIs can be configured to only be available with an
API key. This can be configured in the production.conf. By
default all APIs are open. When they are protected the wskey
parameter needs to be specified in the URL as a request parameter.

	lang = here the language can be specified. It takes valid ISO two
letter codes. When the language is not supported the default lang
en is returned. All the i18n elements of the API response are
rendered depending on the lang that is specified

Basic query parameters

	query = is the search term you want to search on. It accepts
simple searches and fielded searches with fields that are available
in the ‘explain response’ you must use the fields as they are
represented in the @search attribute. It accepts all the valid
Solr/Lucene query syntax, see
https://wiki.apache.org/solr/SolrQuerySyntax and http://lucene.apache.org/core/3_6_0/queryparsersyntax.html

	start = is the integer for start page of the results. Mostly you
just take the value from the /results/pagination/ block.

	rows = is the integer for number of records that you want to have
returned. Default is 20.

	format = is the response format you want the API response to be
returned it. The summary view mode supports the following
enumerated options:
	xml = return the results as XML response. (default)

	json = return the results as JSON response.

	jsonp = return the results as padded JSON. The default callback
is delvingCallback, but you can specify your own with the
callback parameter.

	kml = return the results in the KML format. This format can be
loaded directly in Google Maps or Google Earth for rendering. It
filters out all the results that don’t have a valid geospatial
reference in the record.

	custom formats: there are also a number of custom output
formats that have been created for specific projects but don’t
have a great general re-use. Th e following is a non-exhaustive
list of them:
	simile = return the results in the JSON format that can be
loaded into SIMILE widgets directly

	similep = same as simile, but now padded with a callback,
see also jsonp.

	kml-abc = is a KML flavour that can be used to load the result
onto ‘erfgoed op de kaart’ projects

	callback = to be used with the padded formats of json and
simile. Here you can specify your own callback string for
integration into your system.

	fl = a comma separated list with the metadata fields you want to
have returned in the response. You can find the valid fields in the
explain response.

	cache = accepts boolean values to use the Culture-Hub cache for
thumbnails. Currently, the following fields are supported: , , . It
works by prepending the Culture-Hub cache url to the thumbnails url
and url-encodes it. The default value is false and it renders the
thumbnail URLs without any modifications.

	sortBy = the valid sort field you want to sort the records on.
For valid sort field see the ‘explain response’. The default sort
order is by relevance as returned by the search engine.

	sortOrder = It has the following enumerated options:
	asc = sort records ascending

	desc = sort records descending

	group.field = (planned for API version 0.17)

examples

	basic query =
http://kulturnett2.delving.org:80/api/search?query=Gruppe,%20Vik%201920-1925

	fielded query =
http://kulturnett2.delving.org:80/api/search?query=dc_title_text:Gruppe,%20Vik%201920-1925

Facets parameters

Depending on the configuration in the production.conf a number of
facets is returned with each summary view. With the following
parameters this behavior can be be changed.

	qf = the basic query filter. It expects a valid facet field -
see explain response - with its value separated with a ‘:’, for
example
europeana_dataProvider_facet:Fylkesarkivet%20i%20Sogn%20og%20Fjordane.
This field can be repeated to add more query filters

	hqf = the same functionality as the qf but now it is treated as
a hidden constraint. So the filter is applied to treat the output as
if no records outside the filtered results exist in the index. This
is useful for dynamically creating custom APIs.

	facet.field = for adding additional facets to the output that are
not specified in the production.conf.

	facet.limit = the number of facet links returned per facet. The
default is 100

	facet.boolType = is the boolean type that specifies if multiple
facet links are selected are treated as ‘OR’ or ‘AND’. The enumerated
options are:
	OR = is the default. Matched records that have either of the
filter queries specified.

	AND matches only records that match all the filter queries.

Examples

	facet.field =
http://kulturnett2.delving.org:80/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet

	fq =
http://kulturnett2.delving.org:80/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&qf[]=europeana_dataProvider_facet:Fylkesarkivet%20i%20Sogn%20og%20Fjordane

	breadcrumbs =
http://kulturnett2.delving.org:80/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&qf[]=europeana_dataProvider_facet:Fylkesarkivet+i+Sogn+og+Fjordane&qf[]=abm_aboutPerson_facet:Gunnhild%20I.%20Vangsnes

	hidden query filters =
http://kulturnett2.delving.org:80/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&hqf[]=europeana_dataProvider_facet:Fylkesarkivet+i+Sogn+og+Fjordane&qf[]=abm_aboutPerson_facet:Gunnhild%20I.%20Vangsnes

GeoSpatial search parameters

GeoSpatial search is implemented using the Solr SOLR2155 extension, see
also https://wiki.apache.org/solr/SpatialSearch.

	pt = the center point of the query. It expects a lat,long pair
separated by a comma

	d = an integer specifying the distance in kilometers from the
centre point.

	sfield = the field you want to perform the geospatial search on.
It can be on any field that has the _geohash field
extension/type. The default field that is being used is field

	geoType = is the type of geoSpatial search that you want to
perform. The enumerated options are:
	geofilt = (is the default type when nothing is specified).
Is the distance filter function from the center point.

	bbox = creates a bounding box query of the size specified in
d from the center point specified in pt

Description API response components

The output of the summary view request is structured as follows:

<?xml version='1.0' encoding='utf-8' ?>
<results
xmlns:abm="http://to_be_decided/abm/" xmlns:itin="http://www.itin.nl/namespace" xmlns:drup="http://www.itin.nl/drupal" xmlns:ese="http://www.europeana.eu/schemas/ese/" xmlns:europeana="http://www.europeana.eu/schemas/ese/" xmlns:raw="http://delving.eu/namespaces/raw" xmlns:musip="http://www.musip.nl/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:aff="http://schemas.delving.eu/aff/" xmlns:custom="http://www.delving.eu/namespaces/custom" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:icn="http://www.icn.nl/" xmlns:tib="http://www.thuisinbrabant.nl/namespace" xmlns:abc="http://www.ab-c.nl/" xmlns:delving="http://www.delving.eu/schemas/">
 <query numFound="13154">
 <terms>{queryTerm}</terms>
 <breadCrumbs>
 <breadcrumb value="{breadcrump value}" field="{medataField used}" href="{the query parameters for this breadcrumb}" i18n="{i18n key}">{queryterm}</breadcrumb>
 </breadCrumbs>
 </query>
 <pagination>
 <start>{start record}</start>
 <rows>{number of records returned}</rows>
 <numFound>{total number of records found}</numFound>
 <nextPage>{next page if it has a next page}</nextPage>
 <lastPage>{last page nr}</lastPage>
 <currentPage>{current page nr}</currentPage>
 <links>
 <link isLinked="{}" start="{page nr}"> {page nr} </link>
 {… up to 10 links …}
 </links>
 </pagination>
 <layout>
 <fields>
 <field>
 <name>{metadata field name}</name>
 <i18n>{translated field name based on the lang specfied}</i18n>
 </field>
 </fields>
 </layout>
 <items>
 <item>
 <fields>
 {… metadata fields … }
 </fields>
 <highlights>
 {… highlighted fields ...}
 </highlights>
 </item>
 {… more items ..}
 </items>
 <facets>
 <facet isSelected="{boolean if the facet is selected with a qf}" name="{name of the facet}" missingDocs="{nr of documents without a value for this facet field}" i18n="{translated value}">
 <link isSelected="{boolean if link is selected}" url="{query parameters to be appended to url to select this facet}" value="value of this facet item" count="{frequency}">{formatted value}</link>
 {… more facet links}
 </facet>

 {… more facets ...}
 </facets>
</results>

	result = The surrounding wrapper of the whole API response, i.e.
the root of the response
	@numFound = is the total number of records found

	query = the query block. It return the query terms and
breadcrumbs. This information is used to render the user query and to
provide a bread-crumb trail with the facets clicked.
	terms = returns the raw query string as entered by the user.

	breadcrumbs = contains a list of all the breadcrumbs based on
the user query and facets in the order they were selected
	breadcrumb = is the entry with the user readable query. In
the attributes in contains elements that can be used for a
variety of display purposes
	@value = the value that was search for

	@field = the field that was searched in. This is empty
for the user query.

	@href = the URL parameters that need to be appended to
the base URL to get back to this point in the breadcrumb
trail

	@i18n = the translation of the @field as defined by
the language specified in lang parameter

	pagination = is the wrapper of all elements that are needed to
build pagination for the search results
	start = the number of the first record on the current page.

	rows = the number of records returned per page. The default
number is 20, but this can be overridden by using the rows
parameter in the request

	numFound = is the total number of records found

	currentPage = the page number of the current page

	nextPage = the page number of the next page, if the current
page is not the last page. In that case this element is not
displayed.

	previousPage = the pageNumber of the previous page if the
current page is not the first page. In that case this element is
not displayed.

	links = the links can be used to build the link navigation for
a result pager. When the selected page is more than 4 links
removed from the start page, the selected page link will be
centered among the linked pages.
	link = each link represents a page.
	@islinked = is a boolean to determine which page your
are on. true for this page, false for other page.

	@start = contains an int for the start parameter if
you want to jump to this page.

	layout = the layout block that can be used to localize the
metadata fields based on the language specified in the lang
parameter
	fields = list of fields with i18n translations
	field = the wrapper for the field values * name = the
name of the metadata field as it is used in the API response,
but then with the ‘:’ separator replaced with an ‘_’. *
i18n = the translated value of the metadata field specified
in name

	items = list of metadata records returned
	item = wrapper of the actual metadata record
	fields = wrapper of the metadata fields as they are stored
in the Search Engine

	highlights = contains a list of highlighted fields that
contain a match for the query. This is useful when the records
also contain large blocks of text, such as from text-extraction
of PDFs. The highlighted fields can be configured in the
production.conf

	facets = wrapper of all facets that are returned in the response
	facet = contains a list of all facets until the face.limit for
this facet field. By default this list is reverse sorted by
frequency.
	@isSelected = contains a boolean that describes if any of
facet links are selected by the user. This can be used to
expand or collapse the facet display.

	@name = the metadata field for this facet that is used

	@missingDocs = the number of records that don’t have this
metadata field with a value

	@i18n = the translation of the @name into the language
specified by @lang

	link = has all the information
	@isSelected = contains a boolean that describes if this
facet link is selected by the user

	@url = contains the parameters that need to be attached
to the URL in order to select this facet

	@count = the frequency of the number of records this
value found in as string in field facet/@name

	@value = the string value the @count refers to.

Full View Mode

The Full View mode is activated by passing a valid identifier to the
id parameter on the search API base-URL, see

`http://{baseUrl}:{portNumber}/api/search?id={id}`

The API responses from summary view are retrieved directly from the
search engine. The full view however retrieves the mapped version from
the metadata storage. By default you will get the same schema that is
used for indexing. In the output of the summary view, you have the
delving:allSchemas and delving:currentSchema fields. The
allSchemas field contains all the mapped and publicly available
fields. Via the schema parameter in the api call you can specify
which of the publicly available schemas you want to have returned.

The full view mode accepts the following parameters:

	id = the identifier of the record you wish to retrieve.

	idType = the type of identifier you wish to retrieve. It has the
following enumerated options:
	hubId = is the default and is retrieved from field

	legacy = is the record identifier used by the legacy portal
system and is retrieved from the field

	pmhId = is identifier used in the OAI-PMH output to identify
records and is retrieved from the field

	format = the response format you want to have your API request
returned in. The enumerated options are:
	json = JSON output

	xml = XML output (default)

	lang = the language into which the layout field blocks will be
translated. It accepts two letter ISO language codes, like for
example ‘en’, ‘no, ‘nl’

	schema = the metadata schema you want to have your record
returned in. The default schema is the same that was used for
indexing.

	mlt = is a boolean operator that triggers the ‘more-like-this’
functionality that is configured in the production.conf file. The
enumerated options are:
	true

	false (default) You can configure the following options in
the configuration file for the mlt functionality. For more
information on them, see
https://wiki.apache.org/solr/MoreLikeThis.

	fieldList = list of fields to be returned. Can be taken from the
search attributes in the explain response. Default:
delving_creator, delving_title, delving_description

	minimumTermFrequency = integer, default: 1

	minimumDocumentFrequency = integer, default: 2

	minWordLength = integer, default: 0

	maxWordLength = integer, default: 0

	maxQueryTerms = integer, default: 25

	maxNumToken = integer, default: 5000

	boost = boolean, default: false

	queryFields = list of query fields, see also fieldList.

The output of the full view request is structured as follows:

<result xmlns:abc="http://www.ab-c.nl/" xmlns:delving="http://www.delving.eu/schemas/" xmlns:tib="http://www.thuisinbrabant.nl/namespace" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:icn="http://www.icn.nl/" xmlns:custom="http://www.delving.eu/schemas/" xmlns:dcterms="http://purl.org/dc/termes/" xmlns:raw="http://delving.eu/namespaces/raw" xmlns:itin="http://www.itin.nl/namespace" xmlns:ese="http://www.europeana.eu/schemas/ese/" xmlns:europeana="http://www.europeana.eu/schemas/ese/" xmlns:drup="http://www.itin.nl/drupal" xmlns:abm="http://to_be_decided/abm/">
 <layout>
 <fields>
 <field>
 <name>abm_municipality</name>
 <i18n>Municipality</i18n>
 </field>
 {.. more fields ...}
 </fields>
 </layout>
 <item>
 <fields>
 <dc:creator>Fosse, Ole Pedersen</dc:creator>
 <dc:title>Gruppe, Hang 1920-1925</dc:title>
 {.. more fields ...}
 </fields>
 </item>
 <relatedItems>
 <item>
 <fields>
 <dc:title>Gruppe, Hang 1920-1925</dc:title>
 {.. more fields ...}
 </fields>
 </item>
 {.. more items ...}
 </relatedItems>
</result>

	result = the surrounding wrapper
	layout = the layout block that can be used to translate the
metadata fields based on the @lang specified. The default
lang is en.
	fields = the list of fields
	field = the wrapper for the field values
	name = the name of the metadata field as it is used
in the API response, but then with the ‘:’ separator
replaced with an ‘_’.

	i18n = the translated value of the metadata field
specified in name

	item = The actual full view item that was requested via the
id parameter
	fields =
	metadata fields as returned by the schema defined in the
schema parameter

	relatedItems = this is an optional block that is only
displayed when the parameter mlt=true is specified. It returns
a list of items
	item = contains the metadata fields of the related item
	fields =
	metadata fields as returned by the schema defined in the
schema parameter. They are basically the same as
/result/item/fields/.

examples

	basic =
http://kulturnett2.delving.org:80/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027

	related items =
http://kulturnett2.delving.org:80/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027&mlt=true

	format
http://kulturnett2.delving.org:80/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027&mlt=true&format=json

Explain Mode

The explain API’s main function is to give an overview of the API
options, the search fields, the facet fields, and the sort fields. The
data is directly generated from the search index.

The explain mode has two main functions:

	Explain the search API
	light

	all

	Provide facet field based autocompletion for fields. This is mostly
used to provide basic autocomplete functionality for advanced search
fields.
	fieldExplain

Since the output of both modes is very different, they will be explained
in separate sub-sections.

Basic Explain

The functionality is requested by adding the explain={light|all} to
the base search API url, see

`http://{baseUrl}:{portNumber}/api/search?explain={light|all}`

It supports the following additional parameter:

format = the response format you want to have your API request
returned in. The enumerated options are: * json = JSON output *
xml = XML output (default)

The output of the fieldValue request is structured as follows:

<results>
 <api>
 <parameters>
 <element>
 <label> query </label>
 <options>
 <option> any string </option>
 </options>
 <description> Will output a summary result set. Any valid Lucene or Solr Query syntax will work. </description>
 </element>
 <element>
 <label> format </label>
 <options>
 <option> xml </option>
 <option> json </option>
 <option> jsonp </option>
 <option> simile </option>
 <option> similep </option>
 <option> kml </option>
 <option> kml-abc </option>
 </options>
 </element>
 </parameters>
 <solr-dynamic>
 <fields>
 <field fieldType="text_general" docs="0" xml="dc:title" distinct="537693" search="dc_title_text"> </field>
 {… more fields ...}
 </fields>
 <facets>
 <facet fieldType="string" docs="0" xml="dc:date" distinct="131856" search="dc_date_facet"/>
 {… more facets …}
 </facets>
 <sort-fields>
 <sort-field fieldType="string" docs="0" xml="all:delving_hasDigitalObject" distinct="2" search="sort_all_delving_hasDigitalObject"/>
 {… more sort fields …}
 </sort-fields>
 </solr-dynamic>
 </api>
</results>

	parameters = contains a list of all the parameters (as
<element>) the search API accepts. Each API parameter listed here
in the API response is also listed above in the Search API
section
	element = the block describing API parameter
	label = the actual label that should be used in the API

	options = contains either a list or a description of the
values the api parameter accepts

	description = the optional description of the usage of the
API parameter

	solr-dynamic = contains a list of all valid search/metadata
fields that are present in the index. They are split up into three
different types: fields, facets, sort-fields
	fields =
	field = contains a number of indicators describing the
field in the xml attributes.
	@search = contains the full field name as it in indexed
with the field type suffix and how it should be used in
search (for fielded searches) and how it should be used in
the fl parameter to specify which fields must be
returned in the summary view response. Currently, the
following field types that are used as suffixes are
supported: string, facet,
location,int,single,text,date,link,s,lowercase,geohash. When
a field does not contain any of these suffixes, it means
that it is a system field that already configured with the
correct type in the search engine schema.xml
configuration file.

	@fieldtype = the index field type. This type is appended
as a suffix to the metadata field-name at indexing time and
stripped during rendering. The types that are rendered here
are the field types as they are know to the search engine.
This type is determined by the suffix you can see in the
@search attribute.

	@xml = contains the raw format of the field name as it
was seen in mapping and how it will be rendered in the API
output.

	@docs = the number of documents/records in the index
that contain this field.

	@distinct = the number of distinct values that are
indexed in this field

	facets = contains a number of indicators describing the field
in the xml attributes. Same attributes as fields. The facet field
@search value can be used in query for fielded search,
qf and hqf for filtering, facet.field for listing
additional facets outside the production.conf configuration,
and as fields in the Statistics API.

	sort-fields = contains a number of indicators describing the
field in the xml attributes. Same attributes as fields. The sort
field can be used in the sortBy parameter.

examples =
http://kulturnett2.delving.org:80/api/search?explain=light

Field Explain

The field explain functionality was developed to drive the advanced
search autocompletion for the Delving Drupal module. This module
consumed the Culture-Hub search APIs represent slices of the total index
for regional and institutional portals.

The functionality is requested by adding the explain=fieldValue to
the base search API url, see

`http://{baseUrl}:{portNumber}/api/search?explain=fieldValue`

It supports the following parameters:

	field = the facetable field that you want to have autocompletion
for

	value = the optional prefix that you want to constrain your
results to. For example, when you give M will give back all values
starting with M. When you give mo it will give the values starting
with mo, etc. The default is nothing and then it uses reverse sort
by frequency of occurrence.

	format = the response format you want to have your API request
returned in. The enumerated options are:
	json = JSON output

	xml = XML output (default)

	rows = integer of the number of values you want to have returned
in the response. Default is 10

The output of the fieldValue request is structured as follows:

JSON

{
 results:
 [
 {
 value: "Midtbyen",
 count: 15036
 }
]
}

XML

<results>
 <item count="15036">Midtbyen</item>
</results>

	results = is the list of response returned
	item = is the actual fieldValue response pair with
	value = is the facet value returned

	count = the number of occurrences in the full index

examples =
http://kulturnett2.delving.org:80/api/search?explain=fieldValue&field=abm_namedPlace_facet&value=M&format=json&rows=20

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Culture-Hub API 0.16.1 documentation

Statistics API

The statistics API is a JSON API that provides statistics on any
facetable field. See the explain response for a list of facetable
fields.

The API base URL for all statistics actions is:

`http://{baseUrl}:{portNumber}/api/statistics`

The statistics API accepts the following parameters:

	facet.field = a repeatable field with facetable metadata fields
you want to have returned. Note that you must use the full search
field as specified in the explain response.

	facet.limit = must contain an integer for the number of
statistics entries for each field specified in facet.field
parameter. The default value is 100

	filter = provide any valid query to constrain the set for which
statistis are being returned. For example, constrain the statistics
per region or material type.

	lang = the language in which you want the i18n tags to be
returned. The default value is en

The output of the statistics API is a list of statistics objects
structured as follows:

{
 statistics: {
 totalRecords: 3304080,
 totalRecordsWithDigitalObjects: 2561466,
 totalRecordsWithLandingPages: 3262741,
 facetCounts: {
 icn_technique_facet: 100,
 icn_material_facet: 100
 },
 facets: [{
 name: "icn_technique_facet",
 i18n: "icn_technique_facet",
 entries: [{
 name: "zwart-wit foto",
 total: 18699,
 digitalObjects: 18258,
 digitalObjectsPercentage: 1,
 noDigitalObjects: 3285822,
 noDigitalObjectsPercentage: 99,
 landingPages: 18699,
 landingPagesPercentage: 1,
 nolandingPages: 3285381,
 nolandingPagesPercentage: 99
 },
 {… more entries ...}]
 }, {
 name: "icn_material_facet",
 i18n: "icn_material_facet",
 entries: [{
 name: "aardewerk",
 total: 27187,
 digitalObjects: 23093,
 digitalObjectsPercentage: 1,
 noDigitalObjects: 3280987,
 noDigitalObjectsPercentage: 99,
 landingPages: 27186,
 landingPagesPercentage: 1,
 nolandingPages: 3276894,
 nolandingPagesPercentage: 99
 },
 {… more entries ...}
 }]
 }
 }

	statistics
	totalRecords = is the total number of records in the index

	totalRecordsWithDigitalObjects = is the total number of
records in the index with Digital objects. The definition of
digital object is that it either has a link to the source object
or a link to a thumbnail representing the object described in the
metadata.

	totalRecordsWithLandingPages = is the total number of records
in the index with Digital objects. The definition of landingPage
is the page at the dataProviders website where this object is
described.

	facetCounts = returns a map with the names of the statistics
fields returned and how many entries are returned in the response

	facets
	name = is the name of the metadata field whose entries are
listed. This field is specified in the facet.field parameter

	i18n = if a translation of the metadata field is found this
is returned based on the value of the lang parameter. If no
translation is found the name of the field is returned

	entries = is a map of statistics per unique value in the
facet. This reverse sorted by the frequency in which it occurs
in the index. The names of the keys should be self-explanatory.

examples =
http://www.dimcon.nl:80/api/statistics?facet.field=icn_technique_facet&facet.field=icn_material_facet&facet.limit=1&lang=nl

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Culture-Hub API 0.16.1 documentation

Proxies API

The proxy API is an XML API that has been implemented as convenience to
group together various remote resources with the same output wrapping as
all the other Culture-Hub search APIs. The configuration of these
proxies is done in the organization production.conf.

The API base URL for all proxy actions is:

`http://{baseUrl}:{portNumber}/api/proxy`

note: The proxy API is an XML only API.

List all proxies

This commands list all the proxies thats have been configured for this
organization.

The list command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/api/proxy/list`

The output of the list command is a list of all available proxies
structured as follows:

<explain>
 <item>
 <id>europeana</id>
 <url>http://api.europeana.eu/api/opensearch.rss</url>
 </item>
</explain>

	<id> = is the identifier that can be used for the proxy search

	<url> = is the url that is used by the proxy

In the proxy configuration some hidden parameters like api-keys are
already included.

examples =
http://kulturnett2.delving.org:80/proxy/list

Search a specific proxy

The search command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/api/proxy/{proxyId}/search`

The proxyId is the <id> from the output of the proxy list
command.

The search command accepts the following url query parameters:

	query = any search query supported by the service that is
proxied.

	start = any integer that is less than the total records return
and starts at 1. Services which are zero based will be remapped to 1
based paging.

The output of the search command is a list of records structured as
follows:

<results xmlns:europeana="http://www.europeana.eu" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:enrichment="http://www.europeana.eu/schemas/ese/enrichment/" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <pagination>
 <numFound>1</numFound>
 <start>1</start>
 <rows>1</rows>
 </pagination>
 <items>
 <item>
 <id>{itemId}</id>
 <fields>
 {all metadata fields as returned by the proxied service}
 </fields>
 </item>
 </items>
</results>

	<pagination> = if the proxied service supports returning paging
information the pagination block will be returned in the response
	<numFound> = the total numbers of records found (int)

	<start> = the start number of the first record of the returned
page (int)

	<rows> = to number records - i.e. items - returned on the page
(int)

	<item> = This wraps each record returned by the proxied service
	<id> = is the identifier that can be used to return the
full-view in the item service, i.e. itemId. The id
field is only shown if the proxied service supports the request of
a single record with all metadata fields.

	<fields> = has as its children each metadata field returned by
the proxied service

examples =
http://kulturnett2.delving.org:80/proxy/wikipedia.en/search?query=bard

Request full-view item from proxy

The item command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/api/proxy/item/{itemId}`

The itemId can be any of the ids specified in the
/items/item/id/ path of the search response.

The item command has no query parameters.

The output of the item command is a verbose rendering of the return
of the proxy service.

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Culture-Hub API 0.16.1 documentation

Contents

	Planned functionality for the API
	access statistics API

	Grouping / Clustering API

Planned functionality for the API

access statistics API

Overview envisioned functionality:

	statistics
	index fields and usages
	which fields are indexed

	which types
	these are the dynamic type suffixes
	based on the record definition

	which can be used as facets

	access to individual histograms
	gathered in the Sip-Creator

	access statistics
	origin
	unique users
	return visitors

	unique areas
	reverse ip lookups

	information accessed
	per
	municipality

	county

	country

	language

	provider

	dataprovider

	record type

	in
	search result page view

	used as facet

	objects viewed

	nr of outgoing ` <>`__links clicked

	From
	API consumer
	instant website

	Drupal module

	other

	which named-slice or API is used

	Hub-Website

	quantitative indicators

Grouping / Clustering API

The grouping API is designed to group together the search results, based
on the value of a field. You could, for example, group the search
results of your query by country or language and then show under each
header the first 5 results. This functionality is nice for home pages
where you want to show the variety of the collection you have gathered
by provider, dataProvider, etc.

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Culture-Hub API 0.16.1 documentation

Index

 Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		Culture-Hub API 0.16.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

api_docs.html

 Navigation

 		
 index

 		Culture-Hub API 0.16.1 documentation »

Contents

		Delving Culture-Hub API documentation
		Detailed API documentation
		Search API

		Proxies API
		List all proxies

		Search a specific proxy

		Request full-view item from proxy

		Statistics API
		access statistics API (coming soon)

		Grouping API (coming soon)

Delving Culture-Hub API documentation

This document describes the delving Culture-Hub APIs that are available
on the default deployments. The APIs are always constrained to the
information of a single organization.

The URL structure that we use is:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/{apiType}`

		baseUrl = is the basic ip or domain where the hub is hosted.

		portNumber = is the port at which the hub is listening for
requests. (default: 80)

		orgId = is the short identifier for an organization that is
managing all the metadata. It is used in the URLs and in the metadata
to refer to this the organization

		apiType = is the main type of the API. Currently, there are the
following main API types:
		search

		statistics

		proxies

		grouping (coming later)

An example of a full URL is the Norvegiana Culture-Hub:

`http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=norge`

The Culture-Hub API has as its core design principle that all the state
the application has must be available to the API consumer. This means
that computations made on the server should not have to re-computed by
the client that is consuming the API. This is also why the response are
so

Detailed API documentation

In the following sections we describe the API functionality for:

		Search
		Search result overview (summary view)

		Full-item retrieval (full view)

		Explain response

		Statistics

		Proxies

		Grouping (coming later)

Search API

The API base URL for all search actions is:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/search`

The following sections describe the parameters and usage of the three
main search modes:

		summary view

		full view

		explain view

Search Result Mode (summary view)

The summary view is the basic search response provided by the hub. In
the following sections we will describe the output and the parameters
that are available to the API developer.

General parameters

There are some general parameters that apply to all modes and they are
described below.

		wskey = the APIs can be configured to only be available with an
API key. This can be configured in the production.conf. By
default all APIs are open. When they are protected the wskey
parameter needs to be specified in the URL as a request parameter.

		lang = here the language can be specified. It takes valid ISO two
letter codes. When the language is not supported the default lang
en is returned. All the i18n elements of the API response are
rendered depending on the lang that is specified

Basic query parameters

		query = is the search term you want to search on. It accepts
simple searches and fielded searches with fields that are available
in the ‘explain response’ you must use the fields as they are
represented in the @search attribute. It accepts all the valid
Solr/Lucene query syntax, see
https://wiki.apache.org/solr/SolrQuerySyntax and http://lucene.apache.org/core/3_6_0/queryparsersyntax.html

		start = is the integer for start page of the results. Mostly you
just take the value from the /results/pagination/ block.

		rows = is the integer for number of records that you want to have
returned. Default is 20.

		format = is the response format you want the API response to be
returned it. The summary view mode supports the following
enumerated options:
		xml = return the results as XML response. (default)

		json = return the results as JSON response.

		jsonp = return the results as padded JSON. The default callback
is delvingCallback, but you can specify your own with the
callback parameter.

		kml = return the results in the KML format. This format can be
loaded directly in Google Maps or Google Earth for rendering. It
filters out all the results that don’t have a valid geospatial
reference in the record.

		custom formats: there are also a number of custom output
formats that have been created for specific projects but don’t
have a great general re-use. Th e following is a non-exhaustive
list of them:
		simile = return the results in the JSON format that can be
loaded into SIMILE widgets directly

		similep = same as simile, but now padded with a callback,
see also jsonp.

		kml-abc = is a KML flavour that can be used to load the result
onto ‘erfgoed op de kaart’ projects

		callback = to be used with the padded formats of json and
simile. Here you can specify your own callback string for
integration into your system.

		fl = a comma separated list with the metadata fields you want to
have returned in the response. You can find the valid fields in the
explain response.

		cache = accepts boolean values to use the Culture-Hub cache for
thumbnails. Currently, the following fields are supported: , , . It
works by prepending the Culture-Hub cache url to the thumbnails url
and url-encodes it. The default value is false and it renders the
thumbnail URLs without any modifications.

		sortBy = the valid sort field you want to sort the records on.
For valid sort field see the ‘explain response’. The default sort
order is by relevance as returned by the search engine.

		sortOrder = It has the following enumerated options:
		asc = sort records ascending

		desc = sort records descending

		group.field = (coming soon)

examples

		basic query =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=Gruppe,%20Vik%201920-1925

		fielded query =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=dc_title_text:Gruppe,%20Vik%201920-1925

Facets parameters

Depending on the configuration in the production.conf a number of
facets is returned with each summary view. With the following
parameters this behavior can be be changed.

		qf = the basic query filter. It expects a valid facet field -
see explain response - with its value separated with a ‘:’, for
example
europeana_dataProvider_facet:Fylkesarkivet%20i%20Sogn%20og%20Fjordane.
This field can be repeated to add more query filters

		hqf = the same functionality as the qf but now it is treated as
a hidden constraint. So the filter is applied to treat the output as
if no records outside the filtered results exist in the index. This
is useful for dynamically creating custom APIs.

		facet.field = for adding additional facets to the output that are
not specified in the production.conf.

		facet.limit = the number of facet links returned per facet. The
default is 100

		facet.boolType = is the boolean type that specifies if multiple
facet links are selected are treated as ‘OR’ or ‘AND’. The enumerated
options are:
		OR = is the default. Matched records that have either of the
filter queries specified.

		AND matches only records that match all the filter queries.

Examples

		facet.field =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet

		fq =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&qf[]=europeana_dataProvider_facet:Fylkesarkivet%20i%20Sogn%20og%20Fjordane

		breadcrumbs =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&qf[]=europeana_dataProvider_facet:Fylkesarkivet+i+Sogn+og+Fjordane&qf[]=abm_aboutPerson_facet:Gunnhild%20I.%20Vangsnes

		hidden query filters =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?query=Gruppe,%20Vik%201920-1925&facet.field=europeana_dataProvider_facet&hqf[]=europeana_dataProvider_facet:Fylkesarkivet+i+Sogn+og+Fjordane&qf[]=abm_aboutPerson_facet:Gunnhild%20I.%20Vangsnes

GeoSpatial search parameters

GeoSpatial search is implemented using the Solr SOLR2155 extension, see
also https://wiki.apache.org/solr/SpatialSearch.

		pt = the center point of the query. It expects a lat,long pair
separated by a comma

		d = an integer specifying the distance in kilometers from the
centre point.

		sfield = the field you want to perform the geospatial search on.
It can be on any field that has the _geohash field
extension/type. The default field that is being used is field

		geoType = is the type of geoSpatial search that you want to
perform. The enumerated options are:
		geofilt = (is the default type when nothing is specified).
Is the distance filter function from the center point.

		bbox = creates a bounding box query of the size specified in
d from the center point specified in pt

Description API response components

The output of the summary view request is structured as follows:

<?xml version='1.0' encoding='utf-8' ?>
<results
xmlns:abm="http://to_be_decided/abm/" xmlns:itin="http://www.itin.nl/namespace" xmlns:drup="http://www.itin.nl/drupal" xmlns:ese="http://www.europeana.eu/schemas/ese/" xmlns:europeana="http://www.europeana.eu/schemas/ese/" xmlns:raw="http://delving.eu/namespaces/raw" xmlns:musip="http://www.musip.nl/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:aff="http://schemas.delving.eu/aff/" xmlns:custom="http://www.delving.eu/namespaces/custom" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:icn="http://www.icn.nl/" xmlns:tib="http://www.thuisinbrabant.nl/namespace" xmlns:abc="http://www.ab-c.nl/" xmlns:delving="http://www.delving.eu/schemas/">
 <query numFound="13154">
 <terms>{queryTerm}</terms>
 <breadCrumbs>
 <breadcrumb value="{breadcrump value}" field="{medataField used}" href="{the query parameters for this breadcrumb}" i18n="{i18n key}">{queryterm}</breadcrumb>
 </breadCrumbs>
 </query>
 <pagination>
 <start>{start record}</start>
 <rows>{number of records returned}</rows>
 <numFound>{total number of records found}</numFound>
 <nextPage>{next page if it has a next page}</nextPage>
 <lastPage>{last page nr}</lastPage>
 <currentPage>{current page nr}</currentPage>
 <links>
 <link isLinked="{}" start="{page nr}"> {page nr} </link>
 {… up to 10 links …}
 </links>
 </pagination>
 <layout>
 <fields>
 <field>
 <name>{metadata field name}</name>
 <i18n>{translated field name based on the lang specfied}</i18n>
 </field>
 </fields>
 </layout>
 <items>
 <item>
 <fields>
 {… metadata fields … }
 </fields>
 <highlights>
 {… highlighted fields ...}
 </highlights>
 </item>
 {… more items ..}
 </items>
 <facets>
 <facet isSelected="{boolean if the facet is selected with a qf}" name="{name of the facet}" missingDocs="{nr of documents without a value for this facet field}" i18n="{translated value}">
 <link isSelected="{boolean if link is selected}" url="{query parameters to be appended to url to select this facet}" value="value of this facet item" count="{frequency}">{formatted value}</link>
 {… more facet links}
 </facet>

 {… more facets ...}
 </facets>
</results>

		result = The surrounding wrapper of the whole API response, i.e.
the root of the response
		@numFound = is the total number of records found

		query = the query block. It return the query terms and
breadcrumbs. This information is used to render the user query and to
provide a bread-crumb trail with the facets clicked.
		terms = returns the raw query string as entered by the user.

		breadcrumbs = contains a list of all the breadcrumbs based on
the user query and facets in the order they were selected
		breadcrumb = is the entry with the user readable query. In
the attributes in contains elements that can be used for a
variety of display purposes
		@value = the value that was search for

		@field = the field that was searched in. This is empty
for the user query.

		@href = the URL parameters that need to be appended to
the base URL to get back to this point in the breadcrumb
trail

		@i18n = the translation of the @field as defined by
the language specified in lang parameter

		pagination = is the wrapper of all elements that are needed to
build pagination for the search results
		start = the number of the first record on the current page.

		rows = the number of records returned per page. The default
number is 20, but this can be overridden by using the rows
parameter in the request

		numFound = is the total number of records found

		currentPage = the page number of the current page

		nextPage = the page number of the next page, if the current
page is not the last page. In that case this element is not
displayed.

		previousPage = the pageNumber of the previous page if the
current page is not the first page. In that case this element is
not displayed.

		links = the links can be used to build the link navigation for
a result pager. When the selected page is more than 4 links
removed from the start page, the selected page link will be
centered among the linked pages.
		link = each link represents a page.
		@islinked = is a boolean to determine which page your
are on. true for this page, false for other page.

		@start = contains an int for the start parameter if
you want to jump to this page.

		layout = the layout block that can be used to localize the
metadata fields based on the language specified in the lang
parameter
		fields = list of fields with i18n translations
		field = the wrapper for the field values * name = the
name of the metadata field as it is used in the API response,
but then with the ‘:’ separator replaced with an ‘_’. *
i18n = the translated value of the metadata field specified
in name

		items = list of metadata records returned
		item = wrapper of the actual metadata record
		fields = wrapper of the metadata fields as they are stored
in the Search Engine

		highlights = contains a list of highlighted fields that
contain a match for the query. This is useful when the records
also contain large blocks of text, such as from text-extraction
of PDFs. The highlighted fields can be configured in the
production.conf

		facets = wrapper of all facets that are returned in the response
		facet = contains a list of all facets until the face.limit for
this facet field. By default this list is reverse sorted by
frequency.
		@isSelected = contains a boolean that describes if any of
facet links are selected by the user. This can be used to
expand or collapse the facet display.

		@name = the metadata field for this facet that is used

		@missingDocs = the number of records that don’t have this
metadata field with a value

		@i18n = the translation of the @name into the language
specified by @lang

		link = has all the information
		@isSelected = contains a boolean that describes if this
facet link is selected by the user

		@url = contains the parameters that need to be attached
to the URL in order to select this facet

		@count = the frequency of the number of records this
value found in as string in field facet/@name

		@value = the string value the @count refers to.

Full View Mode

The Full View mode is activated by passing a valid identifier to the
id parameter on the search API base-URL, see

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/search?id={id}`

The API responses from summary view are retrieved directly from the
search engine. The full view however retrieves the mapped version from
the metadata storage. By default you will get the same schema that is
used for indexing. In the output of the summary view, you have the
delving:allSchemas and delving:currentSchema fields. The
allSchemas field contains all the mapped and publicly available
fields. Via the schema parameter in the api call you can specify
which of the publicly available schemas you want to have returned.

The full view mode accepts the following parameters:

		id = the identifier of the record you wish to retrieve.

		idType = the type of identifier you wish to retrieve. It has the
following enumerated options:
		hubId = is the default and is retrieved from field

		legacy = is the record identifier used by the legacy portal
system and is retrieved from the field

		pmhId = is identifier used in the OAI-PMH output to identify
records and is retrieved from the field

		format = the response format you want to have your API request
returned in. The enumerated options are:
		json = JSON output

		xml = XML output (default)

		lang = the language into which the layout field blocks will be
translated. It accepts two letter ISO language codes, like for
example ‘en’, ‘no, ‘nl’

		schema = the metadata schema you want to have your record
returned in. The default schema is the same that was used for
indexing.

		mlt = is a boolean operator that triggers the ‘more-like-this’
functionality that is configured in the production.conf file. The
enumerated options are:
		true

		false (default) You can configure the following options in
the configuration file for the mlt functionality. For more
information on them, see
https://wiki.apache.org/solr/MoreLikeThis.

		fieldList = list of fields to be returned. Can be taken from the
search attributes in the explain response. Default:
delving_creator, delving_title, delving_description

		minimumTermFrequency = integer, default: 1

		minimumDocumentFrequency = integer, default: 2

		minWordLength = integer, default: 0

		maxWordLength = integer, default: 0

		maxQueryTerms = integer, default: 25

		maxNumToken = integer, default: 5000

		boost = boolean, default: false

		queryFields = list of query fields, see also fieldList.

The output of the full view request is structured as follows:

<result xmlns:abc="http://www.ab-c.nl/" xmlns:delving="http://www.delving.eu/schemas/" xmlns:tib="http://www.thuisinbrabant.nl/namespace" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:icn="http://www.icn.nl/" xmlns:custom="http://www.delving.eu/schemas/" xmlns:dcterms="http://purl.org/dc/termes/" xmlns:raw="http://delving.eu/namespaces/raw" xmlns:itin="http://www.itin.nl/namespace" xmlns:ese="http://www.europeana.eu/schemas/ese/" xmlns:europeana="http://www.europeana.eu/schemas/ese/" xmlns:drup="http://www.itin.nl/drupal" xmlns:abm="http://to_be_decided/abm/">
 <layout>
 <fields>
 <field>
 <name>abm_municipality</name>
 <i18n>Municipality</i18n>
 </field>
 {.. more fields ...}
 </fields>
 </layout>
 <item>
 <fields>
 <dc:creator>Fosse, Ole Pedersen</dc:creator>
 <dc:title>Gruppe, Hang 1920-1925</dc:title>
 {.. more fields ...}
 </fields>
 </item>
 <relatedItems>
 <item>
 <fields>
 <dc:title>Gruppe, Hang 1920-1925</dc:title>
 {.. more fields ...}
 </fields>
 </item>
 {.. more items ...}
 </relatedItems>
</result>

		result = the surrounding wrapper
		layout = the layout block that can be used to translate the
metadata fields based on the @lang specified. The default
lang is en.
		fields = the list of fields
		field = the wrapper for the field values
		name = the name of the metadata field as it is used
in the API response, but then with the ‘:’ separator
replaced with an ‘_’.

		i18n = the translated value of the metadata field
specified in name

		item = The actual full view item that was requested via the
id parameter
		fields =
		metadata fields as returned by the schema defined in the
schema parameter

		relatedItems = this is an optional block that is only
displayed when the parameter mlt=true is specified. It returns
a list of items
		item = contains the metadata fields of the related item
		fields =
		metadata fields as returned by the schema defined in the
schema parameter. They are basically the same as
/result/item/fields/.

examples

		basic =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027

		related items =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027&mlt=true

		format
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?id=kulturnett_Foto-SF_SFFf-1987001.0027&mlt=true&format=json

Explain Mode

The explain API’s main function is to give an overview of the API
options, the search fields, the facet fields, and the sort fields. The
data is directly generated from the search index.

The explain mode has two main functions:

		Explain the search API
		light

		all

		Provide facet field based autocompletion for fields. This is mostly
used to provide basic autocomplete functionality for advanced search
fields.
		fieldExplain

Since the output of both modes is very different, they will be explained
in separate sub-sections.

Basic Explain

The functionality is requested by adding the explain={light|all} to
the base search API url, see

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/search?explain={light|all}`

It supports the following additional parameter:

format = the response format you want to have your API request
returned in. The enumerated options are: * json = JSON output *
xml = XML output (default)

The output of the fieldValue request is structured as follows:

<results>
 <api>
 <parameters>
 <element>
 <label> query </label>
 <options>
 <option> any string </option>
 </options>
 <description> Will output a summary result set. Any valid Lucene or Solr Query syntax will work. </description>
 </element>
 <element>
 <label> format </label>
 <options>
 <option> xml </option>
 <option> json </option>
 <option> jsonp </option>
 <option> simile </option>
 <option> similep </option>
 <option> kml </option>
 <option> kml-abc </option>
 </options>
 </element>
 </parameters>
 <solr-dynamic>
 <fields>
 <field fieldType="text_general" docs="0" xml="dc:title" distinct="537693" search="dc_title_text"> </field>
 {… more fields ...}
 </fields>
 <facets>
 <facet fieldType="string" docs="0" xml="dc:date" distinct="131856" search="dc_date_facet"/>
 {… more facets …}
 </facets>
 <sort-fields>
 <sort-field fieldType="string" docs="0" xml="all:delving_hasDigitalObject" distinct="2" search="sort_all_delving_hasDigitalObject"/>
 {… more sort fields …}
 </sort-fields>
 </solr-dynamic>
 </api>
</results>

		parameters = contains a list of all the parameters (as
<element>) the search API accepts. Each API parameter listed here
in the API response is also listed above in the Search API
section
		element = the block describing API parameter
		label = the actual label that should be used in the API

		options = contains either a list or a description of the
values the api parameter accepts

		description = the optional description of the usage of the
API parameter

		solr-dynamic = contains a list of all valid search/metadata
fields that are present in the index. They are split up into three
different types: fields, facets, sort-fields
		fields =
		field = contains a number of indicators describing the
field in the xml attributes.
		@search = contains the full field name as it in indexed
with the field type suffix and how it should be used in
search (for fielded searches) and how it should be used in
the fl parameter to specify which fields must be
returned in the summary view response. Currently, the
following field types that are used as suffixes are
supported: string, facet,
location,int,single,text,date,link,s,lowercase,geohash. When
a field does not contain any of these suffixes, it means
that it is a system field that already configured with the
correct type in the search engine schema.xml
configuration file.

		@fieldtype = the index field type. This type is appended
as a suffix to the metadata field-name at indexing time and
stripped during rendering. The types that are rendered here
are the field types as they are know to the search engine.
This type is determined by the suffix you can see in the
@search attribute.

		@xml = contains the raw format of the field name as it
was seen in mapping and how it will be rendered in the API
output.

		@docs = the number of documents/records in the index
that contain this field.

		@distinct = the number of distinct values that are
indexed in this field

		facets = contains a number of indicators describing the field
in the xml attributes. Same attributes as fields. The facet field
@search value can be used in query for fielded search,
qf and hqf for filtering, facet.field for listing
additional facets outside the production.conf configuration,
and as fields in the Statistics API.

		sort-fields = contains a number of indicators describing the
field in the xml attributes. Same attributes as fields. The sort
field can be used in the sortBy parameter.

examples =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?explain=light

Field Explain

The field explain functionality was developed to drive the advanced
search autocompletion for the Delving Drupal module. This module
consumed the Culture-Hub search APIs represent slices of the total index
for regional and institutional portals.

The functionality is requested by adding the explain=fieldValue to
the base search API url, see

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/search?explain=fieldValue`

It supports the following parameters:

		field = the facetable field that you want to have autocompletion
for

		value = the optional prefix that you want to constrain your
results to. For example, when you give M will give back all values
starting with M. When you give mo it will give the values starting
with mo, etc. The default is nothing and then it uses reverse sort
by frequency of occurrence.

		format = the response format you want to have your API request
returned in. The enumerated options are:
		json = JSON output

		xml = XML output (default)

		rows = integer of the number of values you want to have returned
in the response. Default is 10

The output of the fieldValue request is structured as follows:

JSON

{
 results:
 [
 {
 value: "Midtbyen",
 count: 15036
 }
]
}

XML

<results>
 <item count="15036">Midtbyen</item>
</results>

		results = is the list of response returned
		item = is the actual fieldValue response pair with
		value = is the facet value returned

		count = the number of occurrences in the full index

examples =
http://kulturnett2.delving.org:80/organizations/kulturnett/api/search?explain=fieldValue&field=abm_namedPlace_facet&value=M&format=json&rows=20

Proxies API

The proxy API is an XML API that has been implemented as convenience to
group together various remote resources with the same output wrapping as
all the other Culture-Hub search APIs. The configuration of these
proxies is done in the organization production.conf.

The API base URL for all proxy actions is:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/proxy`

note: The proxy API is an XML only API.

List all proxies

This commands list all the proxies thats have been configured for this
organization.

The list command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/proxy/list`

The output of the list command is a list of all available proxies
structured as follows:

<explain>
 <item>
 <id>europeana</id>
 <url>http://api.europeana.eu/api/opensearch.rss</url>
 </item>
</explain>

		<id> = is the identifier that can be used for the proxy search

		<url> = is the url that is used by the proxy

In the proxy configuration some hidden parameters like api-keys are
already included.

examples =
http://kulturnett2.delving.org:80/organizations/kulturnett/proxy/list

Search a specific proxy

The search command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/proxy/{proxyId}/search`

The proxyId is the <id> from the output of the proxy list
command.

The search command accepts the following url query parameters:

		query = any search query supported by the service that is
proxied.

		start = any integer that is less than the total records return
and starts at 1. Services which are zero based will be remapped to 1
based paging.

The output of the search command is a list of records structured as
follows:

<results xmlns:europeana="http://www.europeana.eu" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:enrichment="http://www.europeana.eu/schemas/ese/enrichment/" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <pagination>
 <numFound>1</numFound>
 <start>1</start>
 <rows>1</rows>
 </pagination>
 <items>
 <item>
 <id>{itemId}</id>
 <fields>
 {all metadata fields as returned by the proxied service}
 </fields>
 </item>
 </items>
</results>

		<pagination> = if the proxied service supports returning paging
information the pagination block will be returned in the response
		<numFound> = the total numbers of records found (int)

		<start> = the start number of the first record of the returned
page (int)

		<rows> = to number records - i.e. items - returned on the page
(int)

		<item> = This wraps each record returned by the proxied service
		<id> = is the identifier that can be used to return the
full-view in the item service, i.e. itemId. The id
field is only shown if the proxied service supports the request of
a single record with all metadata fields.

		<fields> = has as its children each metadata field returned by
the proxied service

examples =
http://kulturnett2.delving.org:80/organizations/kulturnett/proxy/wikipedia.en/search?query=bard

Request full-view item from proxy

The item command is given via a REST command appended to the proxy
base URL:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/proxy/item/{itemId}`

The itemId can be any of the ids specified in the
/items/item/id/ path of the search response.

The item command has no query parameters.

The output of the item command is a verbose rendering of the return
of the proxy service.

Statistics API

The statistics API is a JSON API that provides statistics on any
facetable field. See the explain response for a list of facetable
fields.

The API base URL for all statistics actions is:

`http://{baseUrl}:{portNumber}/organization/{orgId}/api/statistics`

The statistics API accepts the following parameters:

		facet.field = a repeatable field with facetable metadata fields
you want to have returned. Note that you must use the full search
field as specified in the explain response.

		facet.limit = must contain an integer for the number of
statistics entries for each field specified in facet.field
parameter. The default value is 100

		filter = provide any valid query to constrain the set for which
statistis are being returned. For example, constrain the statistics
per region or material type.

		lang = the language in which you want the i18n tags to be
returned. The default value is en

The output of the statistics API is a list of statistics objects
structured as follows:

{
 statistics: {
 totalRecords: 3304080,
 totalRecordsWithDigitalObjects: 2561466,
 totalRecordsWithLandingPages: 3262741,
 facetCounts: {
 icn_technique_facet: 100,
 icn_material_facet: 100
 },
 facets: [{
 name: "icn_technique_facet",
 i18n: "icn_technique_facet",
 entries: [{
 name: "zwart-wit foto",
 total: 18699,
 digitalObjects: 18258,
 digitalObjectsPercentage: 1,
 noDigitalObjects: 3285822,
 noDigitalObjectsPercentage: 99,
 landingPages: 18699,
 landingPagesPercentage: 1,
 nolandingPages: 3285381,
 nolandingPagesPercentage: 99
 },
 {… more entries ...}]
 }, {
 name: "icn_material_facet",
 i18n: "icn_material_facet",
 entries: [{
 name: "aardewerk",
 total: 27187,
 digitalObjects: 23093,
 digitalObjectsPercentage: 1,
 noDigitalObjects: 3280987,
 noDigitalObjectsPercentage: 99,
 landingPages: 27186,
 landingPagesPercentage: 1,
 nolandingPages: 3276894,
 nolandingPagesPercentage: 99
 },
 {… more entries ...}
 }]
 }
 }

		statistics
		totalRecords = is the total number of records in the index

		totalRecordsWithDigitalObjects = is the total number of
records in the index with Digital objects. The definition of
digital object is that it either has a link to the source object
or a link to a thumbnail representing the object described in the
metadata.

		totalRecordsWithLandingPages = is the total number of records
in the index with Digital objects. The definition of landingPage
is the page at the dataProviders website where this object is
described.

		facetCounts = returns a map with the names of the statistics
fields returned and how many entries are returned in the response

		facets
		name = is the name of the metadata field whose entries are
listed. This field is specified in the facet.field parameter

		i18n = if a translation of the metadata field is found this
is returned based on the value of the lang parameter. If no
translation is found the name of the field is returned

		entries = is a map of statistics per unique value in the
facet. This reverse sorted by the frequency in which it occurs
in the index. The names of the keys should be self-explanatory.

examples =
http://www.dimcon.nl:80/organizations/dimcon/api/statistics?facet.field=icn_technique_facet&facet.field=icn_material_facet&facet.limit=1&lang=nl

access statistics API (coming soon)

Overview envisioned functionality:

		statistics
		index fields and usages
		which fields are indexed

		which types
		these are the dynamic type suffixes
		based on the record definition

		which can be used as facets

		access to individual histograms
		gathered in the Sip-Creator

		access statistics
		origin
		unique users
		return visitors

		unique areas
		reverse ip lookups

		information accessed
		per
		municipality

		county

		country

		language

		provider

		dataprovider

		record type

		in
		search result page view

		used as facet

		objects viewed

		nr of outgoing ` <>`__links clicked

		From
		API consumer
		instant website

		Drupal module

		other

		which named-slice or API is used

		Hub-Website

		quantitative indicators

Grouping API (coming soon)

The grouping API is designed to group together the search results, based
on the value of a field. You could, for example, group the search
results of your query by country or language and then show under each
header the first 5 results. This functionality is nice for home pages
where you want to show the variety of the collection you have gathered
by provider, dataProvider, etc.

 © Copyright 2014, Sjoerd Siebinga.
 Created using Sphinx 1.3.1.

_static/file.png

_static/plus.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

