

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cultivar/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cultivar/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Version Control and Provenance

Overview

Cultivar offers state-of-the-art version control and provenance that are optimized for dataset management.

Duplication is the single most significant problem in versioning and version control (Mashtizadeh et al. 2013; Zhang et al. 2013; Ramasubramanian et al. 2009; Santry et al. 1999). For example, if minor changes are made to Version 1 of a file, and the updated Version 2 is then also saved to the data store, most of the information stored in Versions 1 and 2 is identical. That duplication corresponds directly to wasted storage space, which is directly correlated to monetary cost. On the other hand, partitioning files in such a way as to reduce duplication also makes the reconstitution of those files expensive in terms of memory processing power. These reasons are precisely why Cloud-based storage services prefer duplication and to pass the costs onto their customers.

Architecture

As such, Cultivar provides a way for users not only to store datasets in stable Cloud-based repositories, but also to modify those datasets, share them with others, branch off new versions for testing and experimentation, and explore the data using the auto-analysis and visual analytics features. To support and sustain this kind of exploration, Cultivar’s dataset versioning solution implements theories initially explored in Chervenak et al. (2000), Palankar et al. (2008), and Ramasubramanian et al. (2009). It aims to balance the tradeoff between the availability of the data (to which users want ready access), and the storage of that data (which becomes less accessible but much cheaper as it is increasingly compressed and archived).

References

Chervenak, A, Foster, I., Kesselman, C., Salisbury, C., & Tuecke, S. (2000). The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets. Journal of network and computer applications 23.3, 187-200.

Mashtizadeh, A., Bittau, A., Huang, Y., & Mazieres, D. (2013). Replication, history, and grafting in the Ori file system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 151–166.

Palankar, M.R., Iamnitchi, A., Ripeanu, M., et al. (2008). Amazon S3 for science grids: a viable solution?. Proceedings of the 2008 international workshop on Data-aware distributed computing. ACM.

Ramasubramanian, V., Rodeheffer, T., Terry, D., Walraed-Sullivan, M., Wobber, T., Marshall, C. & Vahdat, A. (2009). Cimbiosys: a platform for content-based partial replication. In Proceedings of the 6th USENIX symposium on Networked systems design and implementation, NSDI’09, 261–276.

Santry, D., Feeley, M., Hutchinson, N., Veitch, A., Carton, R., & Ofir, J. (1999). Deciding when to forget in the Elephant file system. In ACM SIGOPS Operating Systems Review 33,110–123.

Zhang, Y., Dragga, C., Arpaci-Dusseau, A. & Arpaci-Dusseau, R. (2013). -box: Towards reliability and consistency in dropbox-like file synchronization services. In Proceedings of the The Fifth Workshop on Hot Topics in Storage and File Systems, HotStorage ’13, Berkeley, CA, USA. USENIX Association.

Visual Analysis

Overview

Separability analysis is critical to the machine learning phase in the data science pipeline, but it becomes increasingly difficult as dimensionality increases. High dimensional data is particularly difficult to explore because most people cannot visualize beyond two- or three-dimensions. Even lower dimensional data can be tedious to visualize because it still requires writing a substantial amount of code, regardless of the programming language one uses.

Cultivar’s visual analysis tools are designed to enable the user to interact with visualizations to help them understand the data. In particular, Cultivar aims to deliver visual analytics features that enable separability analysis for multidimensional and unstructured data.

Architecture

Scatter matrices, parallel coordinates, and radviz are three promising visual approaches to separability analysis on high-dimensional data.

[image: Scatter matrix]

[image: Parallel coordinates]

[image: Radviz]

The underlying architecture of the visualization tools is an implementation of hierarchical (agglomerative) clustering and brushing as described in Elmqvist and Fekete (2010) and Fua, Ward and Rundensteiner (1999) using scikit-learn. This clustering approach results in distance metrics necessary to do instance identification, and provides “cuts” that can be viewed at multiple different levels using brushing. Cultivar also provides a two-dimensional rank-by-feature framework as described by Seo and Schneiderman (2004, 2005, 2006), including color-coded scatterplot matrices to identify linear, quadratic, Pearson, and Spearman relationships between pairs of variables, and tools to facilitate separability analysis, such as radial visualization, dendrograms, and parallel coordinates as described in Wegman (1990), Fua, Ward, and Rundensteiner (1999), and Inselberg (2004).

References

Elmqvist, N., & Fekete, J.-D. (2010). Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. Visualization and Computer Graphics, IEEE Transactions on, 16(3), 439–454.

Fua, Y., Ward, M., & Rundensteiner, E. (1999). Hierarchical parallel coordinates for exploration of large datasets. Proceedings of the conference on Visualization ‘99: Celebrating ten years. IEEE Computer Society Press.

Seo, J., & Shneiderman, B. (2004). A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In Information Visualization, INFOVIS 2004. IEEE Symposium on (pp. 65–72).

Seo, J., & Shneiderman, B. (2005). A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4(2), 96–113.

Seo, J., & Shneiderman, B. (2006). Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. Visualization and Computer Graphics, IEEE Transactions on,12(3), 311–322.

Wegman, E. (1990). Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, Vol. 85, No. 411, pp. 664-675

Automated Analysis

Overview

Cultivar is designed to mirror what experienced data scientists do when they take their first few passes through a new dataset by intelligently automating large portions of the wrangling and analysis/exploration phases of the data science pipeline, integrating them into the initial ingestion or uploading phase.

Architecture

The auto-analysis and text parsing features of Cultivar are written in Python. They work by scanning columns of uploaded data and using numpy, unicodecsv, one-dimensional kernel density estimates, standard analyses of variance mechanisms and hypothesis testing (KDEs, ANOVAs).

[image: Seed dataset]

This enables Cultivar to do type identification, e.g. to identify and differentiate: discrete integers, floats, text data, normal distributions, classes, outliers, and errors. To perform this analysis quickly and accurately during the data ingestion process, Cultivar includes a rules-based system trained from previously annotated data sets and coupled with heuristic rules determined in discussions with a range of experienced data scientists.

Mechanics

Auto-analysis works by assigning each column/feature a data type (dtype in the parlance of NumPy and Pandas), e.g. categorical, numeric, real, integer, etc. These types must be automatically inferred from the dataset.

The auto-analysis method takes as input a file-like object and generic keyword arguments and returns as output a tuple/list whose length is the (maximum) number of columns in the dataset, and whose values contain the datatype of each column, ordered by column index.

Questions to answer:

	How do other libraries like pandas and messytables do this?Pandas computes histograms [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L250], looks for the min [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L537] and max [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L556] values of a column, samples quantiles [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L410], and counts unique values [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L55].

	Do you have to go through the whole dataset to make a decision?Yes and no - decide based on how big the dataset is. The below strategy builds a sample from 50 non-empty rows for each column, as well as the rows with the longest and shortest lengths. For larger datasets, maybe sample 10%. For extremely large datasets, 1% might be enough.

	Can we use a sampling approach to reading the data?
Naive method (assumes straightforward densities):

for each col in fileTypeObject:
 find mx # row with the longest value
 find mn # row with the shortest value
 find nonNaN # first 50 non-empty rows using ndarray.nonzero()
 sampleArray = nd.array(mn, mx, nonNaN)

	Is there a certain density of data required to make a decision?This is a good question - some libraries build histograms for each column to examine densities. See the pandas method for histograms [https://github.com/pydata/pandas/blob/master/pandas/core/algorithms.py#L250].
TODO: look into thresholds

	What types are we looking for?
string, datetime, float, integer, boolean
See also messytables types [https://github.com/okfn/messytables/blob/master/messytables/types.py].

Attempt parsing from broadest type to narrowest:

for val in colSample:
 if val.dtype.type is np.string_:
 colType = colType.astype('Sn') # where n is the max length value in col
 elif val.dtype.type is np.datetime64:
 colType = colType.astype('datetime64') # this is new & experimental in NumPy 1.7.0
 elif val.dtype.type is np.float_:
 colType = colType.astype('float64')
 elif val.dtype.type is np.int_:
 colType = colType.astype('int64')
 elif val.dtype.type is np.bool_:
 colType = colType.astype('bool')
 else:
 # do something else
 # what about unicode and complex types?

	What does column-major mean for Cultivar?Use transpose [http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.ndarray.T.html] and/or reshape [http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.reshape.html] from numpy.

	Can we automatically detect delimiters and quote characters? (e.g. ; vs ,)See messytables method for delimiter detection [https://github.com/okfn/messytables/blob/master/messytables/commas.py].

	How do we detect if there is a header row or not?See messytables method for header detection [https://github.com/okfn/messytables/blob/7e4f12abef257a4d70a8020e0d024df6fbb02976/messytables/headers.py].

	How lightweight/heavyweight must this be?Look into making more lightweight using regular expressions & hard-coded rules (see Brill tagging [https://en.wikipedia.org/wiki/Brill_tagger]).

Sources

Datatypes in Python - 2.7 [https://docs.python.org/2/library/datatypes.html]

Datatypes in Python - 3.5 [https://docs.python.org/3.5/library/datatypes.html]

Numpy - dtypes [http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html]

UnicodeCSV [https://github.com/jdunck/python-unicodecsv/blob/master/README.rst]

Pandas [http://pandas.pydata.org/]

MessyTables [https://messytables.readthedocs.org/en/latest/]

Dataproxy [https://github.com/okfn/dataproxy]

Algorithms for Type Guessing - Stackoverflow [http://stackoverflow.com/questions/6824862/data-type-recognition-guessing-of-csv-data-in-python]

Python Libraries for Type Guessing - Stackoverflow [http://stackoverflow.com/questions/3098337/method-for-guessing-type-of-data-represented-currently-represented-as-strings-in]

About Cultivar

Cultivar is a dataset management, analysis and visualization tool that is being built as part of the DDL Multidimensional Visualization Research Lab. See: Parallel Coordinates [http://homes.cs.washington.edu/~jheer//files/zoo/ex/stats/parallel.html] for more on the types of visualizations we’re experimenting with.

Contributing

Cultivar is open source, but because this is an District Data Labs project, we would appreciate it if you would let us know how you intend to use the software (other than simply copying and pasting code so that you can use it in your own projects). If you would like to contribute (especially if you are a student or research labs member at District Data Labs), you can do so in the following ways:

	Add issues or bugs to the bug tracker: https://github.com/DistrictDataLabs/Cultivar/issues

	Work on a card on the dev board: https://waffle.io/DistrictDataLabs/Cultivar

	Create a pull request in Github: https://github.com/DistrictDataLabs/Cultivar/pulls

Note that labels in the Github issues are defined in the blog post: How we use labels on GitHub Issues at Mediocre Laboratories [https://mediocre.com/forum/topics/how-we-use-labels-on-github-issues-at-mediocre-laboratories].

If you are a member of the District Data Labs Faculty group, you have direct access to the repository, which is set up in a typical production/release/development cycle as described in A Successful Git Branching Model [http://nvie.com/posts/a-successful-git-branching-model/]. A typical workflow is as follows:

	Select a card from the dev board [https://waffle.io/DistrictDataLabs/Cultivar] - preferably one that is “ready” then move it to “in-progress”.

	Create a branch off of develop called “feature-[feature name]”, work and commit into that branch.

 ~$ git checkout -b feature-myfeature develop

	Once you are done working (and everything is tested) merge your feature into develop.

 ~$ git checkout develop
 ~$ git merge --no-ff feature-myfeature
 ~$ git branch -d feature-myfeature
 ~$ git push origin develop

	Repeat. Releases will be routinely pushed into master via release branches, then deployed to the server.

Contributors

Thank you for all your help contributing to make Cultivar a great project!

Maintainers

	Benjamin Bengfort: @bbengfort [https://github.com/bbengfort/]

	Rebecca Bilbro: @rebeccabilbro [https://github.com/rebeccabilbro]

Contributors

	Tony Ojeda: @ojedatony1616 [https://github.com/ojedatony1616]

Changelog

The release versions that are sent to the Python package index (PyPI) are also tagged in Github. You can see the tags through the Github web application and download the tarball of the version you’d like. Additionally PyPI will host the various releases of Cultivar (eventually).

The versioning uses a three part version system, “a.b.c” - “a” represents a major release that may not be backwards compatible. “b” is incremented on minor releases that may contain extra features, but are backwards compatible. “c” releases are bug fixes or other micro changes that developers should feel free to immediately update to.

Version 0.2

	tag: v0.2 [https://github.com/DistrictDataLabs/Cultivar/releases/tag/v0.2]

	deployment: Wednesday, January 27, 2016

	commit: (see tag)

This minor update gave a bit more functionality to the MVP prototype, even though the version was intended to have a much more impactful feature set. However after some study, the workflow is changing, and so this development branch is being pruned and deployed in preparation for the next batch. The major achievement of this version is the documentation that discusses our approach, as well as the dataset search and listing page that is now available.

Version 0.1

	tag: v0.1 [https://github.com/DistrictDataLabs/Cultivar/releases/tag/v0.1]

	deployment: Tuesday, October 13, 2015

	commit: c863e42 [https://github.com/DistrictDataLabs/Cultivar/commit/c863e421292be4eaeab36a9233f6ed7e0068679b]

MVP prototype type of a dataset uploader and management application. This application framework will become the basis for the research project in the DDL Multidimensional Visualization Research Labs. For now users can upload datasets, and manage their description, as well as preview the first 20 rows.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_images/scatter_matrix.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/radviz.png
15

10

05

00

kngth

width

asymmetry

ompactness,

Kama
Rosa
«*« Canadian

perimeter

-15
-15

00 05 10

15

_images/parallel_coords.png
~— Kama
~—— Rosa
~— Canadian

area perimeter compactness length vidth asymmetry groove

_images/data_set.png
Dataset Preview head -n 20 dataset

area

15.26

14.88

14.29

13.84

16.14

14.38

14.69

14.11

16.63

16.44

15.26

14.03

perimeter
14.84
14.57
14.09
13.94
14.99
14.21
14.49
14.1
15.46
15.25
14.85

14.16

compactness

0.871

0.8811

0.905

0.8955

0.9034

0.8951

0.8799

0.8911

0.8747

0.888

0.8696

0.8796

length
5.763
5.554
5.291
5.324
5.658
5.386
5.563
5.42
6.053
5.884
5.714

5.438

width

3.312

3.333

3.337

3.379

3.562

3.312

3.259

3.302

3.465

3.505

3.242

3.201

asymmetry
2221
1.018
2.699
2.259
1.355
2.462
3.586
2.7
2.04
1.969
4.543

1.717

groove

522

4.956

4.825

4.805

5.175

4.956

5.219

5.877

5.533

5314

5.001

label

