

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Cubes 1.0.1 documentation

Cubes - OLAP Framework

Cubes is a light-weight Python framework and set of tools for development of
reporting and analytical applications, Online Analytical Processing (OLAP),
multidimensional analysis and browsing of aggregated data. It is part of
Data Brewery [http://databrewery.org/].

Getting Started

	Introduction
	Why cubes?

	Cube, Dimensions, Facts and Measures

	Feature Overview

	Installation
	Basic Installation

	Quick Start or Hello World!

	Customized Installation

	Tutorial
	Data Preparation

	Analytical Workspace

	Credits

Data Modeling

	Logical Model and Metadata
	Introduction

	Model

	Cubes

	Dimensions

	Schemas and Models
	Basic Schemas

	Mappings

	Hierarchies

	User-oriented Metadata

	Localization

	Localization
	Metadata Localization

	Data Localization

	Localized Reporting

Aggregation, Slicing and Dicing

	Slicing and Dicing
	Browser

	Cell and Cuts

	Aggregate

	Facts

	Fact

	Members

	Cell Details

	Supported Methods

	Data Formatters

Analytical Workspace

	Analytical Workspace
	Stores

	Model Providers

	Authorization and Authentication
	Authorization

	Authentication

	Configuration
	Quick Start

	Workspace

	Models

	Server

	Model

	Data stores

	Example

	Authentication and Authorization

	Server Query Logging

	Examples

Slicer Server and Tool

	OLAP Server
	Server Requests

	Model

	Aggregation and Browsing

	Reports

	Server Deployment
	Apache mod_wsgi deployment

	UWSGI

	Heroku and UWSGI

	slicer - Command Line Tool
	serve

	model convert

	model validate

	test

	ddl

	denormalize

Backends

	SQL Backend
	Store Configuration

	Model Requirements

	Mappings

	Joins

	MongoDB Backend
	Store Configuration

	Mappings

	Collection Filter

	Google Analytics Backend
	Package Requirements

	Requirements

	Configuration

	Model

	Mixpanel Backend
	Store Configuration and Model

	Example

	Notes

	Slicer Server
	Store Configuration and Model

	Example

Recipes

	Recipes
	Integration With Flask Application

	Publishing Open Data with Cubes

	Drill-down Tree

	Hierarchies, levels and drilling-down

	Multiple Hierarchies

Extension Development

	Backends
	Store

	Aggregation Browser

	Model Providers
	Cube

	Store

	Authenticators and Authorizers
	Authorizer

	Authenticator

Developer’s Reference

	Workspace Reference

	Model Reference
	Creating model objects from metadata

	Model components

	Model Providers Reference
	Model Providers

	Model Metadata

	Aggregation Browser Reference
	Aggregate browsing

	Slicing and Dicing

	Formatters Reference
	Formatters

	Aggregation Browsing Backends
	SQL

	Slicer

	Mixpanel

	Mongo DB

	HTTP WSGI OLAP Server Reference

	Authentication and Authorization
	Authentication

	Authorization

	Utility functions

Release Notes

	Cubes Release Notes
	Cubes 1.0 release notes

	Cubes 0.6 to 0.10.2 Release Notes

Contact and Getting Help

If you have questions, problems or suggestions, you can send a message to
Google group [http://groups.google.com/group/cubes-discuss] or write to the author (Stefan Urbanek).

Report bugs in github issues [https://github.com/DataBrewery/cubes/issues] tracking

There is an IRC channel #databrewery on server irc.freenode.net.

License

Cubes is licensed under MIT license with small addition:

Copyright (c) 2011-2014 Stefan Urbanek, see AUTHORS for more details

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Simply said, that if you use it as part of software as a service (SaaS) you
have to provide the copyright notice in an about, legal info, credits or some
similar kind of page or info box.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Introduction

Why cubes?

Purpose is to provide a framework for giving analyst or any application
end-user understandable and natural way of reporting using concept of data
Cubes – multidimensional data objects.

It is meant to be used by application builders that want to provide analytical
functionality.

Features:

	logical view of analysed data - how analysts look at data, how they think of
data, not not how the data are physically implemented in the data stores

	OLAP and aggregated browsing (default backend is for relational databse -
ROLAP)

	hierarchical dimensions (attributes that have hierarchical dependencies,
such as category-subcategory or country-region)

	multiple hierarchies in a dimension

	localizable metadata and data (see Localization)

	authentication and authorization of cubes and their data

	pluggable data warehouse – plug-in other cube-like (multidimensional) data
sources

The framework is very extensible.

Cube, Dimensions, Facts and Measures

The framework models the data as a cube with multiple dimensions:

[image: _images/cube-dims_and_cell.png]
a data cube

The most detailed unit of the data is a fact. Fact can be a contract,
invoice, spending, task, etc. Each fact might have a measure – an attribute
that can be measured, such as: price, amount, revenue, duration, tax,
discount, etc.

The dimension provides context for facts. Is used to:

	filter queries or reporst

	controls scope of aggregation of facts

	used for ordering or sorting

	defines master-detail relationship

Dimension can have multiple hierarchies, for example the date dimension
might have year, month and day levels in a hierarchy.

Feature Overview

Core cube features:

	Workspace – Cubes analytical workspace
(see docs, reference)

	Model - Description of data (metadata): cubes, dimensions, concept
hierarchies, attributes, labels, localizations.
(see docs, reference)

	Browser - Aggregation browsing, slicing-and-dicing, drill-down.
(see docs, reference)

	Backend - Actual aggregation implementation and utility functions.
(see docs, reference)

	Server - WSGI HTTP server for Cubes
(see docs, reference)

	Formatters - Data formatters
(see docs, reference)

	slicer - Command Line Tool - command-line tool

Model

Logical model describes the data from user’s or analyst’s perspective: data
how they are being measured, aggregated and reported. Model is independent of
physical implementation of data. This physical independence makes it easier to
focus on data instead on ways of how to get the data in understandable form.

More information about logical model can be found in the chapter Logical Model and Metadata.

See also developer’s reference.

Browser

Core of the Cubes analytics functionality is the aggregation browser. The
browser module contains utility classes and functions for the
browser to work.

More information about browser can be found in the chapter
Slicing and Dicing. See also programming
reference.

Backends

Backends provide the actual data aggregation and browsing functionality. Cubes
comes with built-in ROLAP [http://en.wikipedia.org/wiki/ROLAP] backend which uses SQL database using
SQLAlchemy [http://www.sqlalchemy.org/download.html].

Framework has modular nature and supports multiple database backends,
therefore different ways of cube computation and ways of browsing aggregated
data.

Multiple backends can be used at once, even multiple sources from the same
backend might be used in the analytical workspace.

More about existing backends can be found in the backends documentation. See also the backends programming reference
reference.

Server

Cubes comes with built-in WSGI HTTP OLAP server called slicer - Command Line Tool and
provides json API for most of the cubes framework functionality. The server is
based on the Werkzeug WSGI framework.

More information about the Slicer server requests can be found in the chapter
OLAP Server. See also programming reference of the server module.

See also

	Schemas and Models

	Example database schemas and use patterns with their respective
models.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Installation

There are two options how to install cubes: basic common installation -
recommended mostly for users starting with Cubes. Then there is customized
installation with requirements explained.

Basic Installation

The cubes has optional requirements:

	SQLAlchemy [http://www.sqlalchemy.org/download.html] for SQL database aggregation browsing backend (version >=
0.7.4)

	Flask [http://flask.pocoo.org/] for Slicer OLAP HTTP server

Note

If you never used Python before, you might have to get the pip installer [http://www.pip-installer.org/en/latest/installing.html#install-or-upgrade-pip]
first, if you do not have it already.

Note

The command-line tool Slicer does not require knowledge of
Python. You do not need to know the language if you just want to
serve OLAP data.

You may install Cubes with the minimal dependencies,

pip install cubes

with certain extras (html, sql, mongo, or slicer),

pip install cubes[slicer]

or with all of the extras.

pip install cubes[all]

If you are developing cubes, you should install cubes[all].

Quick Start or Hello World!

Download the sources from the Cubes Github repository [https://github.com/DataBrewery/cubes]. Go to the
examples/hello_world folder:

git clone git://github.com/DataBrewery/cubes.git
cd cubes
cd examples/hello_world

Prepare data and run the OLAP server:

python prepare_data.py
slicer serve slicer.ini

And try to do some queries:

curl "http://localhost:5000/cube/irbd_balance/aggregate"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=year"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=item"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=item&cut=item:e"

Customized Installation

The project sources are stored in the Github repository [https://github.com/DataBrewery/cubes].

Download from Github:

git clone git://github.com/DataBrewery/cubes.git

Install:

cd cubes
pip install -r requirements.txt
pip install -r requirements-optional.txt
python setup.py install

Note

The requirements for SQLAlchemy [http://www.sqlalchemy.org/download.html] and Flask [http://flask.pocoo.org/] are optional and you do not
need them if you are going to use another kind of backend or don’t going
to use the Slicer server.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Tutorial

This chapter describes step-by-step how to use the Cubes. You will learn:

	model preparation

	measure aggregation

	drill-down through dimensions

	how to slice&dice the dube

The tutorial contains examples for both: standard tool use and Python use. You
don’t need to know Python to follow this tutorial.

Data Preparation

The example data used are IBRD Balance Sheet taken from The World Bank [https://finances.worldbank.org/Accounting-and-Control/IBRD-Balance-Sheet-FY2010/e8yz-96c6].
Backend used for the examples is sql.browser.

Create a tutorial directory and download IBRD_Balance_Sheet__FY2010.csv.

Start with imports:

>>> from sqlalchemy import create_engine
>>> from cubes.tutorial.sql import create_table_from_csv

Note

Cubes comes with tutorial helper methods in cubes.tutorial. It is
advised not to use them in production; they are provided just to
simplify the tutorial.

Prepare the data using the tutorial helpers. This will create a table and
populate it with contents of the CSV file:

>>> engine = create_engine('sqlite:///data.sqlite')
... create_table_from_csv(engine,
... "IBRD_Balance_Sheet__FY2010.csv",
... table_name="ibrd_balance",
... fields=[
... ("category", "string"),
... ("category_label", "string"),
... ("subcategory", "string"),
... ("subcategory_label", "string"),
... ("line_item", "string"),
... ("year", "integer"),
... ("amount", "integer")],
... create_id=True
...)

Analytical Workspace

Everything in Cubes happens in an analytical workspace. It contains cubes,
maintains connections to the data stores (with cube data), provides connection
to external cubes and more.

[image: _images/cubes-workspace_simplified.png]
Analytical workspace and it’s content

The workspace properties are specified in a configuration file slicer.ini
(default name). First thing we have to do is to specify a data store –
the database containing the cube’s data:

[store]
type: sql
url: sqlite:///data.sqlite

In Python, a workspace can be configured using the ini configuration:

from cubes import Workspace

workspace = Workspace(config="slicer.ini")

or programatically:

workspace = Workspace()
workspace.register_default_store("sql", url="sqlite:///data.sqlite")

Model

Download the tutorial model and save it as
tutorial_model.json.

In the slicer.ini file specify the model:

[workspace]
model: tutorial_model.json

For more information about how to add more models to the workspace see
the configuration documentation.

Equivalent in Python is:

>>> workspace.import_model("tutorial_model.json")

You might call import_model() with as many
models as you need. Only limitation is that the public cubes and public
dimensions should have unique names.

Aggregations

Browser is an object that does the actual aggregations and other data queries
for a cube. To obtain one:

>>> browser = workspace.browser("ibrd_balance")

Compute the aggregate. Measure fields of AggregationResult have aggregation suffix. Also a total record
count within the cell is included as record_count.

>>> result = browser.aggregate()
>>> result.summary["record_count"]
62
>>> result.summary["amount_sum"]
1116860

Now try some drill-down by year dimension:

>>> result = browser.aggregate(drilldown=["year"])
>>> for record in result:
... print record
{u'record_count': 31, u'amount_sum': 550840, u'year': 2009}
{u'record_count': 31, u'amount_sum': 566020, u'year': 2010}

Drill-down by item category:

>>> result = browser.aggregate(drilldown=["item"])
>>> for record in result:
... print record
{u'item.category': u'a', u'item.category_label': u'Assets', u'record_count': 32, u'amount_sum': 558430}
{u'item.category': u'e', u'item.category_label': u'Equity', u'record_count': 8, u'amount_sum': 77592}
{u'item.category': u'l', u'item.category_label': u'Liabilities', u'record_count': 22, u'amount_sum': 480838}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Credits

Cubes was created and is maintained by Stefan Urbanek.

Major contributing authors:

	Stefan Urbanek, stefan.urbanek@gmail.com, Twitter [https://twitter.com/stiivi], Github [https://github.com/Stiivi]

	Robin Thomas, rthomas@squarespace.com, Github [https://github.com/robin900]

Thanks to Squarespace for sponsoring the development time.

People who have submitted patches, reported bugs, consulted features or
generally made Cubes better:

	Jose Juan Montes (jjmontesl)

	Jonathan Camile (deytao)

	Cristian Salamea

	Travis Truman

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Logical Model and Metadata

Logical model describes the data from user’s or analyst’s perspective: data
how they are being measured, aggregated and reported. Model is independent of
physical implementation of data. This physical independence makes it easier to
focus on data instead on ways of how to get the data in understandable form.

See also

	Schemas and Models

	Example database schemas and their respective models.

	Model Reference

	Reference of model classes and fucntions.

	Cubes Models [https://github.com/DataBrewery/cubes-models]

	Repository of basic cubes models.

Introduction

The logical model enables users to:

	see the data from the business perspective

	hide physical structure of the data (“how application’s use it”)

	
	specify concept hierarchies of attributes, such as:

	
	product category > product > subcategory > product

	country > region > county > town.

	provide more descriptive attribute labels for display in the applications or
reports

	transparent localization of metadata and data

Analysts or report writers do not have to know where name of an organisation
or category is stored, nor he does not have to care whether customer data is
stored in single table or spread across multiple tables (customer, customer
types, ...). They just ask for customer.name or category.code.

In addition to abstraction over physical model, localization abstraction is
included. When working in multi-lingual environment, only one version of
report/query has to be written, locales can be switched as desired. If
requesting “contract type name”, analyst just writes constract_type.name and
Cubes framework takes care about appropriate localisation of the value.

Example: Analysts wants to report contract amounts by geography which has two
levels: country level and region level. In original physical database, the
geography information is normalised and stored in two separate tables, one for
countries and another for regions. Analyst does not have to know where the
data are stored, he just queries for geography.country and/or
geography.region and will get the proper data. How it is done is depicted on
the following image:

[image: _images/logical-to-physical.png]
Mapping from logical model to physical data.

The logical model describes dimensions geography in which default hierarchy
has two levels: country and region. Each level can have more attributes,
such as code, name, population... In our example report we are interested only
in geographical names, that is: country.name and region.name.

Model

The logical model is described using model metadata dictionary. The content
is description of logical objects, physical storage and other additional
information.

[image: _images/cubes-model_metadata.png]
Logical model metadata

Logical part of the model description:

	name – model name

	label – human readable model label (optional)

	description – human readable description of the model (optional)

	locale – locale the model metadata are written in (optional, used for
localizable models)

	cubes – list of cubes metadata (see below)

	dimensions – list of dimension metadata (see below)

	public_dimensions – list of dimension names that will be exported from
the model as public and might be shared by cubes from other models. By
default, all model’s dimensions are considered public.

Physical part of the model description:

	store – name of the datastore where model’s cubes are stored. Default is
default. See Analytical Workspace for more information.

	mappings - backend-specific logical to physical mapping
dictionary. This dictionary is inherited by every cube in the model.

	joins - backend-specific join specification (used for example in
the SQL backend). It should be a list of dictionaries. This list is
inherited by the cubes in the model.

	browser_options – options passed to the browser. The options are merged
with options in the cubes.

Example model snippet:

{
 "name": "public_procurements",
 "label": "Public Procurements of Slovakia",
 "description": "Contracts of public procurement winners in Slovakia"
 "cubes": [...]
 "dimensions": [...]
}

Mappings and Joins

One can specify shared mappings and joins on the model-level. Those mappings
and joins are inherited by all the cubes in the model.

The mappigns dictionary of a cube is merged with model’s global mapping
dictionary. Cube’s values overwrite the model’s values.

The joins can be considered as named templates. They should contain
name property that will be referenced by a cube.

Visibility: The joins and mappings are local to a single model. They are not
shared within
the workspace.

Inheritance

Cubes in a model will inherint mappings and joins from the model. The mappings
are merged in a way that cube’s mappings replace existing model’s
mappings with the same name. Joins are concatenated or merged by their name.

Example from the SQL backend: Say you would like to join a date dimension
table in dim_date to every cube. Then you specify the join at the model
level as:

"joins": [
 {
 "name": "date",
 "detail": "dim_date.date_id",
 "method": "match"
 }
]

The join has a name specified, which is used to match joins in the cube. Note
that the join contains incomplete information: it contains only the detail
part, that is the dimension key. To use the join in a cube which has two date
dimensions start date and end date:

"joins": [
 {
 "name": "date",
 "master": "fact_contract.contract_start_date_id",
 },
 {
 "name": "date",
 "master": "fact_sales.contract_sign_date_id",
 }
]

The model’s joins are searched for a template with given name and then cube
completes (or even replaces) the join information.

For more information about mappings and joins refer to the backend
documentation for your data store, such as
SQL

File Representation

The model can be represented either as a JSON file or as a directory with JSON
files. The single-file model specification is just a dictionary with model
properties. The model directory bundle should have the following content:

	model.json – model’s master metadata – same as single-file model

	dim_*.json – dimension metadata file – single dimension dictionary

	cube_*.json – cube metadata – single cube dictionary

The list of dimensions and cubes in the model.json are merged with the
dimensions and cubes in the separate files. Avoid duplicate definitions.

Example directory bundle model:

model.cubesmodel/
 model.json
 dim_date.json
 dim_organization.json
 dim_category.json
 cube_contracts.json
 cube_events.json

Model Provider and External Models

If the model is provided from an external source, such as an API or a
database, then name of the provider should be specified in provider.

The provider receives the model’s metadata and the model’s data store (if the
provider so desires). Then the provider generates all the cubes and the
dimensions.

Example of a model that is provided from an external source
(Mixpanel):

{
 "name": "Events",
 "provider": "mixpanel"
}

Note

The cubes and dimensions in the generated model are just informative
for the model provider. The provider can yield different set of cubes and
dimensions as specified in the metadata.

See also

	cubes.ModelProvider()

	Load a model from a file or a URL.

	cubes.StaticModelProvider()

	Create model from a dictionary.

Dimension Visibility

All dimensions from a static (file) model are shared in the workspace by
default. That means that the dimensions can be reused freely among cubes from
different models.

One can define a master model with dimensions only and no cubes. Then define
one model per cube category, datamart or any other categorization. The models
can share the master model dimensions.

To expose only certain dimensions from a model specify a list of dimension
names in the public_dimensions model property. Only dimensions from the
list can be shared by other cubes in the workspace.

Note

Some backends, such as Mixpanel, don’t share dimensions at all.

Cubes

Cube descriptions are stored as a dictionary for key cubes in the model
description dictionary or in json files with prefix cube_ like
cube_contracts.

	Key
	Description

	Basic
	

	name *
	Cube name, unique identifier. Required.

	label
	Human readable name - can be used in an application

	description
	Longer human-readable description of the cube (optional)

	info
	Custom info, such as formatting. Not used by cubes framework.

	dimensions *
	List of dimension names or dimension links (recommended, but might be
empty for dimension-less cubes). Recommended.

	measures
	List of cube measures (recommended, but might be empty for
measure-less, record count only cubes). Recommended.

	aggregates
	List of aggregated measures. Required, if no measures are specified.

	details
	List of fact details (as Attributes) - attributes that are not
relevant to aggregation, but are nice-to-have when displaying facts
(might be separately stored)

	Physical
	

	joins
	Specification of physical table joins (required for star/snowflake
schema)

	mappings
	Mapping of logical attributes to physical attributes

	key
	Fact key field or column name. If not specified, backends might either
refuse to generate facts or might use some default column name such as
id.

	fact
	Fact table, collection or source name – interpreted by the backend.
The fact table does not have to be specified, as most of the backends
will derive the name from the cube’s name.

	Advanced
	

	browser_options
	Browser specific options, consult the backend for more information

	store
	Name of a datastore where the cube is stored. Use this only when
default store assignment is different from your requirements.

Fields marked with * are required.

Example:

{
 "name": "sales",
 "label": "Sales",
 "dimensions": ["date", ...]

 "measures": [...],
 "aggregates": [...],
 "details": [...],

 "fact": "fact_table_name",
 "mappings": { ... },
 "joins": [...]
}

Note

The key might be required by some backends, such as SQL, to be able to
generate detailed facts or to get a single fact. Please refer to the
backend’s documentation for more information.

Measures and Aggregates

[image: _images/cubes-measure_vs_aggregate.png]
Measure and measure aggregate

Measures are numerical properties of a fact. They might be represented, for
example, as a table column. Measures are aggregated into measure aggregates.
The measure is described as:

	name – measure identifier (required)

	label – human readable name to be displayed (localized)

	info – additional custom information (unspecified)

	aggregates – list of aggregate functions that are provided for this
measure. This property is for generating default aggregates automatically.
It is highly recommended to list the aggregates explicitly and avoid using
this property.

	window_size – number of elements within a window for window functions
such as moving average. If not provided and function requires it then 1 (one
element) is assumed.

	nonadditive – can be all (non-additive for any dimension), time
(non-additive for time dimension, for example account balance) or none
(default, fully additive)

Example:

"measures": [
 {
 "name": "amount",
 "label": "Sales Amount"
 },
 {
 "name": "vat",
 "label": "VAT"
 }
]

Measure aggregate is a value computed by aggregating measures over facts.
It’s properties are:

	name – aggregate identifier, such as: amount_sum, price_avg,
total, record_count

	label – human readable label to be displayed (localized)

	measure – measure the aggregate is derived from, if it exists or it is
known. Might be empty.

	function - name of an aggregate function applied to the measure, if
known. For example: sum, min, max.

	window_size – number of elements within a window for window functions
such as moving average. If not provided and function requires it then 1 (one
element) is assumed.

	info – additional custom information (unspecified)

Example:

"aggregates": [
 {
 "name": "amount_sum",
 "label": "Total Sales Amount",
 "measure": "amount",
 "function": "sum"
 },
 {
 "name": "vat_sum",
 "label": "Total VAT",
 "measure": "vat",
 "function": "sum"
 },
 {
 "name": "item_count",
 "label": "Item Count",
 "function": "count"
 }
]

Note the last aggregate item_count – it counts number of the facts within
a cell. No measure required as a source for the aggregate.

If no aggregates are specified, Cubes generates default aggregates from the
measures. For a measure:

"measures": [
 {
 "name": "amount",
 "aggregates": ["sum", "min", "max"]
 }
]

The following aggregates are created:

"aggregates" = [
 {
 "name": "amount_sum",
 "measure": "amount",
 "function": "sum"
 },
 {
 "name": "amount_min",
 "measure": "amount",
 "function": "min"
 },
 {
 "name": "amount_max",
 "measure": "amount",
 "function": "max"
 }
]

If there is a list of aggregates already specified in the cube explicitly,
both lists are merged together.

Note

To prevent automated creation of default aggregates from measures, there
is an advanced cube option implicit_aggergates. Set this property to
False if you want to keep only explicit list of aggregates.

In previous version of Cubes there was omnipresent measure aggregate
called record_count. It is no longer provided by default and has to be
explicitly defined in the model. The name can be of any choice, it is not
a built-in aggregate anymore. To keep the original behavior, the following
aggregate should be added:

"aggregates": [
 {
 "name": "record_count",
 "function": "count"
 }
]

Note

Some aggregates do not have to be computed from measures. They might be
already provided by the data store as computed aggregate values (for
example Mixpanel’s total). In this case the measure and function
serves only for the backend or for informational purposes. Consult the
backend documentation for more information about the aggregates and
measures.

See also

	cubes.Cube

	Cube class reference.

	cubes.Measure

	Measure class reference.

	cubes.MeasureAggregate

	Measure Aggregate class reference.

Customized Dimension Linking

It is possible to specify how dimensions are linked to the cube. The
dimensions list might contain, besides dimension names, also a
specification how the dimension is going to be used in the cube’s context. The
specification might contain:

	hierarchies – list of hierarchies that are relevant for the cube. For
example the date dimension might be defined as having day granularity,
but some cubes might be only at the month level. To specify only relevant
hierarchies use hierarchies metadata property:

	exclude_hierarchies – hierarchies to be excluded when cloning the
original dimension. Use this instead of hierarchies if you would like to
preserve most of the hierarchies and remove just a few.

	default_hierarchy_name – name of default hierarchy for a dimension in
the context of the cube

	cardinality – cardinality of the dimension with regards to the cube. For
example one cube might contain housands product types, another might have
only a few, but they both share the same products dimension

	nonadditive – nonadditive behavior of the dimension in the cube

	alias – how the dimension is going to be called in the cube. For
example, you might have two date dimensions and name them start_date and
end_date using the alias

Example:

{
 "name": "churn",

 "dimensions": [
 {"name": "date", "hierarchies": ["ym", "yqm"]},
 "customer",
 {"name": "date", "alias": "contract_date"}
],

 ...
}

The above cube will have three dimensions: date, customer and
contract_date. The date dimension will have only two hierarchies with
lowest granularity of month, the customer dimension will be assigned as-is
and the contract_date dimension will be the same as the original date
dimension.

Dimensions

Dimension descriptions are stored in model dictionary under the key
dimensions.

[image: _images/dimension_desc.png]
Dimension description - attributes.

The dimension description contains keys:

	Key
	Description

	Basic
	

	name *
	dimension name, used as identifier

	label
	human readable name - can be used in an application

	description
	longer human-readable description of the dimension (optional)

	info
	custom info, such as formatting. Passed to the front-end.

	levels
	list of level descriptions

	hierarchies
	list of dimension hierarchies

	default_hierarchy_name
	name of a hierarchy that will be used as default

	Advanced
	

	cardinality
	dimension cardinality (see Level for more info)

	nonadditive
	used when the dimension is nonadditive or semiadditive

	role
	dimension role

	category
	logical category (user oriented metadata)

	template
	name of a dimension that will be used as template

Fields marked with * are required.

If no levels are specified, then one default level will be created.

If no hierarchy is specified, then the default hierarchy will contain all
levels of the dimension.

Example:

{
 "name": "date",
 "label": "Dátum",
 "levels": [...]
 "hierarchies": [...]
}

Use either hierarchies or hierarchy, using both results in an error.

Dimension Templates

If you are creating more dimensions with the same or similar structure, such
as multiple dates or different types of organisational relationships, you
might create a template dimension and then use it as base for the other
dimensions:

"dimensions" = [
 {
 "name": "date",
 "levels": [...]
 },
 {
 "name": "creation_date",
 "template": "date"
 },
 {
 "name": "closing_date",
 "template": "date"
 }
]

All properties from the template dimension will be copied to the new
dimension. Properties can be redefined in the new dimension. In that case, the
old value is discarded. You might change levels, hierarchies or default
hierarchy. There is no way how to add or drop a level from the template, all
new levels have to be specified again if they are different than in the
original template dimension. However, you might want to just redefine
hierarchies to omit unnecessary levels.

Note

In mappings name of the new dimension should be used. The template
dimension was used only to create the new dimension and the connection
between the new dimension and the template is lost. In our example above,
if cube uses the creation_date and closing_date dimensions and any
mappings would be necessary, then they should be for those two dimensions,
not for the date dimension.

Nonadditive

There are cases where it is not meaningful to add values over certain
dimension. For example it has no sense to add account balance over time. For
such dimension the nonadditive value can be specified:

	all – dimension is nonadditive

	time – dimension can not be added over dimensions with role time

	none – dimension is fully additive (same as if no value was specified)

Level

Dimension hierarchy levels are described as:

	Key
	Description

	name *
	level name, used as identifier

	label
	human readable name - can be used in an application

	attributes
	list of other additional attributes that are related to the level. The
attributes are not being used for aggregations, they provide
additional useful information.

	key
	key field of the level (customer number for customer level, region
code for region level, year-month for month level). key will be used
as a grouping field for aggregations. Key should be unique within
level.

	label_attribute
	name of attribute containing label to be displayed (customer name for
customer level, region name for region level, month name for month
level)

	order_attribute
	name of attribute that is used for sorting, default is the first
attribute (key)

	cardinality
	symbolic approximation of the number of level’s members

	role
	Level role (see below)

	info
	custom info, such as formatting. Not used by cubes framework.

Fields marked with * are required.

If no attributes are specified then only one attribute is assumed with the
same name as the level.

If no key is specified, then first attribute is assumed.

If no label_attribute is specified, then second attribute is assumed if
level has more than one attribute, otherwise the first attribute is used.

Example of month level of date dimension:

{
 "month",
 "label": "Mesiac",
 "key": "month",
 "label_attribute": "month_name",
 "attributes": ["month", "month_name", "month_sname"]
},

Example of supplier level of supplier dimension:

{
 "name": "supplier",
 "label": "Dodávateľ",
 "key": "ico",
 "label_attribute": "name",
 "attributes": ["ico", "name", "address", "date_start", "date_end",
 "legal_form", "ownership"]
}

See also

	cubes.Dimension

	Dimension class reference

	cubes.create_dimension()

	Create a dimension object from a description dictionary.

	cubes.Level

	Level class reference

	cubes.create_level()

	Create level object from a description dictionary.

Note

Level attribute names have to be unique within a dimension that owns the
level.

Cardinality

The cardinality property is used optionally by backends and front-ends for
various purposes. The possible values are:

	tiny – few values, each value can have it’s representation on the
screen, recommended: up to 5.

	low – can be used in a list UI element, recommended 5 to 50 (if sorted)

	medium – UI element is a search/text field, recommended for more than 50
elements

	high – backends might refuse to yield results without explicit
pagination or cut through this level.

Hierarchy

Hierarchies are described as:

	Key
	Description

	name
	hierarchy name, used as identifier

	label
	human readable name - can be used in an application

	levels
	ordered list of level names from top to bottom - from least
detailed to most detailed (for example: from year to day, from
country to city)

Required is only name.

Example:

"hierarchies": [
 {
 "name": "default",
 "levels": ["year", "month"]
 },
 {
 "name": "ymd",
 "levels": ["year", "month", "day"]
 },
 {
 "name": "yqmd",
 "levels": ["year", "quarter", "month", "day"]
 }
]

Attributes

Dimension level attributes can be specified either as rich metadata or just
simply as strings. If only string is specified, then all attribute metadata
will have default values, label will be equal to the attribute name.

	Key
	Description

	name
	attribute name (should be unique within a dimension)

	label
	human readable name - can be used in an application, localizable

	order
	natural order of the attribute (optional), can be asc or desc

	format
	application specific display format information

	missing_value
	Value to be substituted when there is no value (NULL) in the source
(backend has to support this feature)

	locales
	list of locales in which the attribute values are available in
(optional)

	info
	custom info, such as formatting. Not used by cubes framework.

The optional order is used in aggregation browsing and reporting. If
specified, then all queries will have results sorted by this field in
specified direction. Level hierarchy is used to order ordered attributes. Only
one ordered attribute should be specified per dimension level, otherwise the
behavior is unpredictable. This natural (or default) order can be later
overridden in reports by explicitly specified another ordering direction or
attribute. Explicit order takes precedence before natural order.

For example, you might want to specify that all dates should be ordered by
default:

"attributes" = [
 {"name" = "year", "order": "asc"}
]

Locales is a list of locale names. Say we have a CPV dimension (common
procurement vocabulary - EU procurement subject hierarchy) and we are
reporting in Slovak, English and Hungarian. The attributes will be therefore
specified as:

"attributes" = [
 {
 "name" = "group_code"
 },
 {
 "name" = "group_name",
 "order": "asc",
 "locales" = ["sk", "en", "hu"]
 }
]

group name is localized, but group code is not. Also you can see that the
result will always be sorted by group name alphabetical in ascending order.

In reports you do not specify locale for each localized attribute, you specify
locale for whole report or browsing session. Report queries remain the same
for all languages.

Roles

Some dimensions and levels might have special, but well known, roles. One
example of a role is time. There might be more recognized roles in the future,
for example geography.

Front-ends that respect roles might provide different user interface elements,
such as date and time pickers for selecting values of a date/time dimension.
For the date picker to work, the front-end has to know, which dimension
represents date and which levels of the dimension represent calendar units
such as year, month or day.

The role of a dimension has to be explicitly stated. Front-ends are not
required to assume a dimension named date is really a full date dimension.

The level roles do not have to be mentioned explicitly, if the level name
can be recognized to match a particuliar role. For example, in a dimension
with role time level with name year will have automatically role year.

Level roles have to be specified when level names are in different language or
for any reason don’t match english calendar unit names.

Currently there is only one recognized dimension role: time. Recognized
level roles with their default assignment by level name are: year,
quarter, month, day, hour, minute, second, week,
weeknum, dow, isoyear, isoweek, isoweekday.

The key value of level with role week is expected to have format
YYYY-MM-DD.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Schemas and Models

This section contains example database schemas and their respective models
with description. The examples are for the SQL backend. Please refer to the
backend documentation of your choice for more information about non-SQL
setups.

See also

	Logical Model and Metadata

	Logical model description.

	Backends

	Backend references.

	Model Reference

	Developer’s reference of model classes and fucntions.

Basic Schemas

Simple Star Schema

Synopsis: Fact table has the same name as the cube, dimension tables have
same names as dimensions.

Fact table is called sales, has one measure amount and two dimensions:
store and product. Each dimension has two attributes.

[image: _images/schema-default.png]
"cubes": [
 {
 "name": "sales",
 "dimensions": ["product", "store"],
 "joins": [
 {"master":"product_id", "detail":"product.id"},
 {"master":"store_id", "detail":"store.id"}
]
 }
],
"dimensions": [
 { "name": "product", "attributes": ["code", "name"] },
 { "name": "store", "attributes": ["code", "address"] }
]

Simple Dimension

Synopsis: Dimension is represented only by one attribute, has no details,
neither hierarchy.

Similar schema as Simple Star Schema Note the dimension year which is
represented just by one numeroc attribute.

It is important that no attributes are specified for the dimension. There
dimension will be referenced just by its name and dimension label is going to
be used as attribute label as well.

[image: _images/schema-flat_dimension.png]
"cubes": [
 {
 "name": "sales",
 "dimensions": ["product", "store", "year"],
 "joins": [
 {"master":"product_id", "detail":"product.id"},
 {"master":"store_id", "detail":"store.id"}
]
 }
],
"dimensions": [
 { "name": "product", "attributes": ["code", "name"] },
 { "name": "store", "attributes": ["code", "address"] }
 { "name": "year" }
]

Table Prefix

Synopsis: dimension tables share a common prefix, fact tables share common
prefix.

[image: _images/schema-prefix.png]
In our example the dimension tables have prefix dim_ as in dim_product
or dim_store and facts have prefix fact_ as in fact_sales.

There is no need to change the model, only the data store configuration. In
Python code we specify the prefix during the data store registration in
cubes.Workspace.register_store():

workspace = Workspace()
workspace.register_store("default", "sql",
 url=DATABASE_URL,
 dimension_prefix="dim_",
 dimension_suffix="_dim",
 fact_suffix="_fact",
 fact_prefix="fact_")

When using the OLAP Server we specify the prefixes in the [store]
section of the slicer.ini configuration file:

[store]
...
dimension_prefix="dim_"
fact_prefix="fact_"

Not Default Database Schema

Synopsis: all tables are stored in one common schema that is other than
default database schema.

[image: _images/schema-common_db_schema.png]
To specify database schema (in our example sales_datamart) in Python pass
it in the schema argument of cubes.Workspace.register_store():

workspace = Workspace()
workspace.register_store("default", "sql",
 url=DATABASE_URL,
 schema="sales_datamart")

For the OLAP Server the schema is specifiedn in the [store] section
of the slicer.ini configuration file:

[store]
...
schema="sales_datamart"

Separate Dimension Schema

Synopsis: dimension tables share one database schema and fact tables share
another database schema

[image: _images/schema-different_db_schemas.png]
Dimensions can be stored in a different database schema than the fact table
schema.

To specify database schema of dimensions (in our example dimensions) in
Python pass it in the dimension_schema argument of
cubes.Workspace.register_store():

workspace = Workspace()
workspace.register_store("default", "sql",
 url=DATABASE_URL,
 schema="facts",
 dimension_schema="dimensions")

For the OLAP Server the dimension schema is specifiedn in the
[store] section of the slicer.ini configuration file:

[store]
...
schema="facts"
dimension_schema="dimensions"

Many-to-Many Relationship

Synopsis: One fact might have multiple dimension members assigned

There are several options how the case of multiple dimension members per fact
can be solved. Each has it advantages and disadvantages. Here is one of them:
using a bridge table.

This is our logical intention: there might be multiple representatives
involved in an interaction cases:

[image: _images/schema-many_to_many-intention.png]
We can solve the problem with adding a bridge table and by creating artificial
level representative_group. This group is unique combination of
representatives that were involved in an interaction.

[image: _images/schema-many_to_many.png]
The model looks like:

"cubes": [
 {
 "dimensions": ["representative", ...],
 "joins": [
 {
 "master":"representative_group_id",
 "detail":"bridge_representative.group_id"
 },
 {
 "master":"bridge_representative.representative_id",
 "detail":"representative.id"
 }
]
 }
],
"dimensions": [
 {
 "name": "representative",
 "levels": [
 { "name":"team" },
 { "name":"name", "nonadditive": "any"}
]
 }
]

You might have noticed that the bridge table is hidden – you can’t see it’s
contents anywhere in the cube.

There is one problem with aggregations when such dimension is involved: by
aggregating over any level that is not the most detailed (deepest) we might
get double (multiple) counting of the dimension members. For this reason it is
important to specify all higher levels as nonadditive for any other
dimension. It his case, backends that are aware of the issue, might handle it
appropriately.

Some front-ends might not even allow to aggregate by levels that are marked as
nonadditivy.

Mappings

Following patterns use the Explicit Mapping.

Basic Attribute Mapping

Synopsis: table column has different name than a dimension attribute or a
measure.

[image: _images/schema-mapping.png]
In our example we have a flat dimension called year, but the physical table
column is “sales_year”. In addition we have a measure amount however
respective physical column is named total_amount.

We define the mappings within a cube:

"cubes": [
 {
 "dimensions": [..., "year"],
 "measures": ["amount"],
 "mappings": {
 "year":"sales_year",
 "amount":"total_amount"]
 }
 }
],
"dimensions": [
 ...
 { "name": "year" }
]

Shared Dimension Table

Synopsis: multiple dimensions share the same dimension table

[image: _images/schema-alias.png]
Clients and suppliers might share one table with all organisations and
companies. We have to specify a table alias in the joins part of the cube
definition. The table aliases should follow the same naming pattern as the
other tables – that is, if we are using dimension prefix, then the alias
should include the prefix as well:

If the alias follows dimension naming convention, as in the example, then no
mapping is required.

"cubes": [
 {
 "name": "sales"
 "dimensions": ["supplier", "client"],
 "measures": ["amount"],
 "joins": [
 {
 "master":"supplier_id",
 "detail":"dim_organisation.id",
 "alias":"dim_supplier"
 },
 {
 "master":"client_id",
 "detail":"dim_organisation.id",
 "alias":"dim_client"
 }
]
 }
],
"dimensions": [
 {
 "name": "supplier",
 "attributes": ["id", "name", "address"]
 },
 {
 "name": "client",
 "attributes": ["id", "name", "address"
 }
]

Hierarchies

Following patterns show how to specify one or multiple dimension hierarchies.

Simple Hierarchy

Synopsis: Dimension has more than one level.

[image: _images/schema-hierarchy1.png]
Product dimension has two levels: product category and product. The
product category level is represented by two attributes category_code
(as key) and category. The product has also two attributes:
product_code and name.

"cubes": [
 {
 "dimensions": ["product", ...],
 "measures": ["amount"],
 "joins": [
 {"master":"product_id", "detail":"product.id"}
]
 }
],
"dimensions": [
 {
 "name": "product",
 "levels": [
 {
 "name":"category",
 "attributes": ["category_code", "category"]
 },
 {
 "name":"product",
 "attributes": ["code", "name"]
 }
]
 }
]

Multiple Hierarchies

Synopsis: Dimension has multiple ways how to organise levels into hierarchies.

[image: _images/schema-hierarchy2.png]
Dimensions such as date (depicted below) or geography might have multiple
ways of organizing their attributes into a hierarchy. The date can be composed
of year-month-day or year-quarter-month-day.

To define multiple hierarchies, first define all possible levels. Then create
list of hierarchies where you specify order of levels for that particular
hierarchy.

The code example below is in the “dimensions” section of the model:

{
 "name":"date",
 "levels": [
 { "name": "year", "attributes": ["year"] },
 { "name": "quarter", "attributes": ["quarter"] },
 { "name": "month", "attributes": ["month", "month_name"] },
 { "name": "week", "attributes": ["week"] },
 { "name": "weekday", "attributes": ["weekday"] },
 { "name": "day", "attributes": ["day"] }
],
 "hierarchies": [
 {"name": "ymd", "levels":["year", "month", "day"]},
 {"name": "ym", "levels":["year", "month"]},
 {"name": "yqmd", "levels":["year", "quarter", "month", "day"]},
 {"name": "ywd", "levels":["year", "week", "weekday"]}
],
 "default_hierarchy_name": "ymd"
}

The default_hierarchy_name specifies which hierarchy will be used if not
mentioned explicitly.

Multiple Tables for Dimension Levels

Synopsis: Each dimension level has a separate table

[image: _images/schema-two_joins.png]
We have to join additional tables and map the attributes that are not in the
“main” dimension table (table with the same name as the dimension):

"cubes": [
 {
 "dimensions": ["product", ...],
 "measures": ["amount"],
 "joins": [
 {"master":"product_id", "detail":"product.id"},
 {"master":"product.category_id", "detail":"category.id"}
],
 "mappings": {
 "product.category_code": "category.code",
 "product.category": "category.name"
 }
 }
],
"dimensions": [
 {
 "name": "product",
 "levels": [
 {
 "name":"category",
 "attributes": ["category_code", "category"]
 },
 {
 "name":"product",
 "attributes": ["code", "name"]
 }
]
 }
]

Note

Joins should be ordered “from the master towards the details”. That means
that always join tables closer to the fact table before the other tables.

User-oriented Metadata

Model Labels

Synopsis: Labels for parts of model that are to be displayed to the user

[image: _images/schema-labels.png]
Labels are used in report tables as column headings or as filter descriptions.
Attribute (and column) names should be used only for report creation and
despite being readable and understandable, they should not be presented to the
user in the raw form.

Labels can be specified for any model object (cube, dimension, level,
attribute) with the label attribute:

"cubes": [
 {
 "name": "sales",
 "label": "Product Sales",
 "dimensions": ["product", ...]
 }
],
"dimensions": [
 {
 "name": "product",
 "label": "Product",
 "attributes": [
 {"name": "code", "label": "Code"},
 {"name": "name", "label": "Product"},
 {"name": "price", "label": "Unit Price"},
]
 }
]

Key and Label Attribute

Synopsis: specify which attributes are going to be used for flitering (keys)
and which are going to be displayed in the user interface (labels)

[image: _images/schema-label_attributes.png]
"dimensions": [
 {
 "name": "product",
 "levels": [
 {
 "name": "product",
 "attributes": ["code", "name", "price"]
 "key": "code",
 "label_attribute": "name"
 }
]
 }
]

Example use:

result = browser.aggregate(drilldown=["product"])

for row in result.table_rows("product"):
 print "%s: %s" % (row.label, row.record["amount_sum"])

Localization

Localized Data

Synopsis: attributes might have values in multiple languages

[image: _images/schema-localized_data.png]
Dimension attributes might have language-specific content. In cubes it can be
achieved by providing one column per language (denormalized localization). The
default column name should be the same as the localized attribute name with
locale suffix, for example if the reported attribute is called name then the
columns should be name_en for English localization and name_hu for
Hungarian localization.

"dimensions": [
 {
 "name": "product",
 "label": "Product",
 "attributes": [
 {"name": "code", "label": "Code"},
 {
 "name": "name",
 "label": "Product",
 "locales": ["en", "fr", "es"]
 }
]
 }
]

Use in Python:

browser = workspace.browser(cube, locale="fr")

The browser instance will now use only the French localization of attributes
if available.

In slicer server requests language can be specified by the lang= parameter
in the URL.

The dimension attributes are referred in the same way, regardless of
localization. No change to reports is necessary when a new language is added.

Notes:

	only one locale per browser instance – either switch the locale or create
another browser

	when non-existing locale is requested, then the default (first in the list
of the localized attribute) locale is used

Localized Model Labels

Synopsis: Labels of model objects, such as dimensions, levels or attributes
are localized.

[image: _images/schema-localized_labels.png]

Note

Way how model is localized is not yet decided, the current implementation
might be changed.

We have a reporting site that uses two languages: English and Slovak. We want
all labels to be available in both of the languages. Also we have a product
name that has to be localized.

First we define the model and specify that the default locale of the model is
English (for this case). Note the locale property of the model, the label
attributes and the locales of product.name attribute:

{
 "locale": "en",
 "cubes": [
 {
 "name": "sales",
 "label": "Product Sales",
 "dimensions": ["product"],
 "measures": [
 {"name": "amount", "label": "Amount"}
]
 }
],
 "dimensions": [
 {
 "name": "product",
 "label": "Product",
 "attributes": [
 {
 "name": "code",
 "label": "Code"
 },
 {
 "name": "name",
 "label": "Product",
 "locales": ["en", "sk"]
 },
 {
 "name": "price",
 "label": "Unit Price"
 }
]
 }
]
}

Next we create a separate translation dictionary for the other locale, in our
case it is Slovak or sk. If we are translating only labels, no
descriptions or any other information, we can use the simplified form:

{
 "locale": "sk",
 "dimensions":
 {
 "product”:
 {
 "levels":
 {
 "product" : "Produkt"
 },
 "attributes" :
 {
 "code": "Kód produktu",
 "name": "Produkt",
 "price": "Jednotková cena"
 }
 }
 },
 "cubes":
 {
 "sales":
 {
 "measures":
 {
 "amount": "Suma"
 }
 }
 }
}

Full localization with detailed dictionaries looks like this:

{
 "locale": "sk",
 "dimensions":
 {
 "product”:
 {
 "levels":
 {
 "product" : { "label" : "Produkt"}
 },
 "attributes" :
 {
 "code": {"label": "Kód produktu"},
 "name": {"label": "Produkt"},
 "price": {"label": "Jednotková cena"}
 }
 }
 },
 "cubes":
 {
 "sales":
 {
 "measures":
 {
 "amount": {"label": "Suma"}
 }
 }
 }
}

To create a model with translations:

translations = {"sk": "model-sk.json"}
model = create_model("model.json", translations)

The model created this way will be in the default locale. To get localized
version of the master model:

localized_model = model.localize("sk")

Note

The cubes.Workspace.browser() method creates a browser with
appropriate model localization, no explicit request for localization is
needed.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Localization

Having origin in multi-lingual Europe one of the main features of the Cubes
framework is ability to provide localizable results. There are three levels of
localization in each analytical application:

	Application level - such as buttons or menus

	Metadata level - such as table header labels

	Data level - table contents, such as names of categories or procurement types

[image: _images/localization_levels.png]
Localization levels.

The application level is out of scope of this framework and is covered in
internationalization (i18n) libraries, such as gettext. What is covered in
Cubes is metadata and data level.

Localization in cubes is very simple:

	Create master model definition and specify locale the model is in

	Specify attributes that are localized (see Explicit Mapping)

	Create model translations for each required language

	Make cubes function or a tool create translated versions the master model

To create localized report, just specify locale to the browser and create
reports as if the model was not localized. See Localized Reporting.

Metadata Localization

The metadata are used to display report labels or provide attribute
descriptions. Localizable metadata are mostly label and description
metadata attributes, such as dimension label or attribute description.

Say we have three locales: Slovak, English, Hungarian with Slovak being the
main language. The master model is described using Slovak language and we have
to provide two model translation specifications: one for English and another
for Hungarian.

The model translation file has the same structure as model definition file,
but everything except localizable metadata attributes is ignored. That is,
only label and description keys are considered in most cases. You can
not change structure of mode in translation file. If structure does not match
you will get warning or error, depending on structure change severity.

There is one major difference between master model file and model
translations: all attribute lists, such as cube measures, cube details or
dimension level attributes are dictionaries, not arrays. Keys are attribute
names, values are metadata translations. Therefore in master model file you
will have:

attributes = [
 { "name": "name", "label": "Name" },
 { "name": "cat", "label": "Category" }
]

in translation file you will have:

attributes = {
 "name": {"label": "Meno"},
 "cat": {"label": "Kategoria"}
 }

If a translation of a metadata attribute is missing, then the one in master
model description is used.

In our case we have following files:

procurements.json
procurements_en.json
procurements_hu.json

[image: _images/localization_model_files.png]
Localization master model and translation files.

To add a model tranlsation:

workspace.add_translation("en", "procurements_en.json")

In the slicer.ini

[locale en]
default = procurements_en.json

[locale hu]
default = procurements_hu.json

To get translated version of a cube:

cube = workspace.cube("contracts", locale="en")

Localization is assigned to a model namespace.

Data Localization

If you have attributes that needs to be localized, specify the locales (languages) in the attribute
definition in Explicit Mapping.

Note

Data localization is implemented only for Relational/SQL backend.

Localized Reporting

Main point of localized reporting is: Create query once, reuse for any
language. Provide translated model and desired locale to the aggregation
browser and you are set. The browser takes care of appropriate value
selection.

Aggregating, drilling, getting list of facts - all methods return localized
data based on locale provided to the browser. If you want to get multiple
languages at the same time, you have to create one browser for each language
you are reporting.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Slicing and Dicing

Note

Examples are in Python and in Slicer HTTP requests.

Browser

The aggregation, slicing, dicing, browsing of the multi-dimensional data is
being done by an AggregationBrowser.

from cubes import Workspace

workspace = Workspace("slicer.ini")
browser = workspace.browser()

Cell and Cuts

Cell defines a point of interest – portion of the cube to be aggergated or
browsed.

[image: _images/cubes-slice_and_dice-cell.png]

There are three types of cells: point – defines a single point in a dimension
at a particular level; range – defines all points of an ordered dimension
(such as date) within the range and set – collection of points:

[image: _images/cubes-point-range-set-cut.png]

Points are defined as dimension paths – list of dimension level keys. For
example a date path for 24th of December 2010 would be: [2010, 12, 24].
For December 2010, regardless of day: [2010, 12] and for the whole year:
it would be a single item list [2010]. Similar for other dimensions:
["sk", "Bratislava"] for city Bratislava in Slovakia (code sk).

In Python the cuts for “sales in Slovakia between June 2010 and June 2012” are
defined as:

cuts = [
 PointCut("geography", ["sk"]),
 PointCut("date", [2010, 6], [2012, 6])
]

Same cuts for Slicer: cut=geography:sk|date:2010,6-2012,6.

If a different hierarchy than default is desired – “from the second quartal of
2010 to the second quartal of 2012”:

cuts = [
 PointCut("date", [2010, 2], [2012, 2], hierarchy="yqmd")
]

Slicer: cut=date@yqmd:2010,2-2012,2.

Ranges and sets might have unequal depths: from [2010] to [2012,12,24]
means “from the beginning of the year 2010 to December 24th 2012”.

cuts = [
 PointCut("date", [2010], [2012, 12, 24])
]

Slicer: cut=date:2010-2012,12,24.

Ranges might be open, such as “everything until Dec 24 2012”:

cuts = [
 PointCut("date", None, [2012, 12, 24])
]

Slicer: cut=date:-2012,12,24.

Aggregate

browser = workspace.browser("sales")
result = browser.aggregate()

print result.summary

Slicer: /cube/sales/aggregate

Aggregate of a cell:

cuts = [
 PointCut("geography", ["sk"])
 PointCut("date", [2010, 6], [2012, 6]),
]
cell = Cell(cube, cuts)
result = browser.aggregate(cell)

Slicer: /cube/sales/aggregate?cut=geography:sk|date:2010,6-2012,6

It is possible to select only specific aggregates to be aggregated:

result = browser.aggregate(cell, aggregates=["amount"])

Slicer: /cube/sales/aggregate?aggregates=amount

Drilldown

Drill-down – get more details, group the aggregation by dimension members.

For example “sales by month in 2010”:

cut = PointCut("date", [2010])
cell = Cell(cube, [cut])
result = browser.aggregate(cell, drilldown=["date"])

for row in result:
 print "%s: %s" % (row["date.year"], row["amount_sum"])

Slicer: /cube/sales/aggregate?cut=date:2010&drilldown=date

Implicit

If not stated otherwise, the cubes drills-down to the next level of the
drilled dimension. For example, if there is no cell constraint and the
drilldown is [“date”], that means to use the first level of dimension date,
usually year. If there is already a cut by year: PointCut(“date”, [2010])
then the next level is by month.

The “next level” is determined as the next level after the deepest level used
in a cut. Consider hierarchies for date: year, month and day, for
geography: region, country, city. The implicit drilldown will be as
follows:

	Drilldown
	Cut
	Result levels

	date
	–
	date:year

	date
	date point [2010]
	date:month

	date
	date point [2010, 4, 1]
	error

	country, date
	date range [2010, 1] - [2010, 4]
	date:day, geo:region

If the cut is at its deepest level, then it is not possible to drill-down
deeper which results in an error.

Explicit

If the implicit behavior is not satisfying, then the drill-down levels might
be specified explicitly. In this case, the cut is not considered for the
drilldown level.

You might want to specify drill-down levels explicitly for example if a cut
range spans between multiple months and you don’t want to have the next level
to be day, but month. Another use is whe you want to use another hierarchy
for drill-don than the default hierarchy.

	Drilldown
	Python
	Server

	by year
	("date", None, "year")
	drilldown=date:year

	by month and city
	("date", None, "month"), ("geo", None, "city")
	drilldown=date:month,geo:city

	by month but with quarter included
	("date", "yqmd", "month")
	drilldown=date@yqmd:month

Pagination

Results can be paginated by specifying page and page_size arguments:

result = browser.aggregate(cell, drilldown, page=0, page_size=10)

Server: /cube/sales/aggregate?cell=...&drilldown=...&page=0&pagesize=10

Split

Provisional:

	aggregate(cell, drilldown, split)

Facts

To get list of facts within a cell use cubes.AggregationBrowser.facts():

facts = browser.facts(cell)

Server: /cube/sales/facts?cell=...

You can also paginate the result as in the aggregation.

Note that not all backends might support fact listing. Please refer to the
backend’s documentation for more information.

Fact

A single fact can be fetched using cubes.AggregationBrowser.fact() as
in fact(123) or with the server as /cube/sales/fact/123.

Note that not all backends might support fact listing. Please refer to the
backend’s documentation for more information.

Members

Getting dimension members might be useful for example for populating
drill-downs or for providing an information to the user what he can use for
slicing and dicing. In python tehre is cubes.AggregationBrowser.members().

For example to get all countries present in a cell:

members = browser.members(cell, "country")

Same query with the server would be: /cube/sales/dimension/country?cut=...

It is also possible to specify hierarchy and level depth for the dimension
members.

Cell Details

When we are browsing a cube, the cell provides current browsing context. For
aggregations and selections to happen, only keys and some other internal
attributes are necessary. Those can not be presented to the user though. For
example we have geography path (country, region) as ['sk', 'ba'],
however we want to display to the user Slovakia for the country and
Bratislava for the region. We need to fetch those values from the data
store. Cell details is basically a human readable description of the current
cell.

For applications where it is possible to store state between aggregation
calls, we can use values from previous aggregations or value listings. Problem
is with web applications - sometimes it is not desirable or possible to store
whole browsing context with all details. This is exact the situation where
fetching cell details explicitly might come handy.

The cell details are provided by method
cubes.AggregationBrowser.cell_details() which has Slicer HTTP
equivalent /cell or {"query":"detail", ...} in /report request
(see the server documentation for more information).

For point cuts, the detail is a list of dictionaries for each level. For
example our previously mentioned path ['sk', 'ba'] would have details
described as:

[
 {
 "geography.country_code": "sk",
 "geography.country_name": "Slovakia",
 "geography.something_more": "..."
 "_key": "sk",
 "_label": "Slovakia"
 },
 {
 "geography.region_code": "ba",
 "geography.region_name": "Bratislava",
 "geography.something_even_more": "...",
 "_key": "ba",
 "_label": "Bratislava"
 }
]

You might have noticed the two redundant keys: _key and _label - those
contain values of a level key attribute and level label attribute
respectively. It is there to simplify the use of the details in presentation
layer, such as templates. Take for example doing only one-dimensional
browsing and compare presentation of “breadcrumbs”:

labels = [detail["_label"] for detail in cut_details]

Which is equivalent to:

levels = dimension.hierarchy().levels()
labels = []
for i, detail in enumerate(cut_details):
 labels.append(detail[levels[i].label_attribute.ref()])

Note that this might change a bit: either full detail will be returned or just
key and label, depending on an option argument (not yet decided).

Supported Methods

Not all browsers might provide full functionality. For example a browser, such
as Google Analytics, might provide aggregations, but might not provide fact
details.

To learn what features are provided by the browser for particular cube use the
cubes.AggregationBrowser.features() method which returns a dictionary with
more detailed description of what can be done with the cube.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Data Formatters

Data and metadata from aggregation result can be transformed to one of
multiple forms using formatters:

formatter = cubes.create_formatter("text_table")

result = browser.aggregate(cell, drilldown="date")

print formatter.format(result, "date")

Available formmaters:

	text_table – text output for result of drilling down through one
dimension

	simple_data_table – returns a dictionary with header and rows

	simple_html_table – returns a HTML table representation of result table
cells

	cross_table – cross table structure with attributes rows – row headings,
columns – column headings and data with rows of cells

	html_cross_table – HTML version of the cross_table formatter

See also

	Formatters Reference

	Formatter reference

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Analytical Workspace

Analytical workspace is ... TODO: describe.

The analyital workspace manages cubes, shared (public) dimensions, data
stores, model providers and model metadata. Provides aggregation browsers and
maintains database connections.

[image: _images/cubes-analytical-workspace-overview1.png]
Analytical Workspace

Typical cubes session takes place in a workspace. Workspace is configured
either through a slicer.ini file or programatically. Using the file:

from cubes import Workspace

workspace = Workspace(config="slicer.ini")

For more information about the configuration file options see
Configuration

The manual workspace creation:

from cubes import Workspace

workspace = Workspace()
workspace.register_default_store("sql", url="postgresql://localhost/data")
workspace.import_model("model.json")

Stores

Cube data are stored somewhere or might be provided by a service. We call this
data source a data store. A workspace might use multiple stores to get
content of the cubes.

Built-in stores are:

	sql – relational database store (ROLAP [http://en.wikipedia.org/wiki/ROLAP]) using star or snowflake
schema

	slicer – connection to another Cubes server

	mixpanel – retrieves data from Mixpanel [https://mixpanel.com/docs/] and makes it look like
multidimensional cubes

Supported SQL dialects (by SQLAlchemy) are: Drizzle, Firebird, Informix,
Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SQLite, Sybase

See Configuration for more information how to configure the stores.

Model Providers

Model provider creates models of cubes, dimensions and other analytical
objects. The models can be created from a metadata, database or an external
source, such as API.

Built-in model providers are:

	static (also aliased as default) – creates model objects from JSON
data (files)

	mixpanel – describes cubes as Mixpanel events and dimensions as Mixpanel
properties

To specify that the model is provided from other source than the metadata use
the provider keyword in the model description:

{
 "provider": "mixpanel",
 "store": "mixpanel"
}

The store:

[store]
type: mixpanel
api_key: MY_MIXPANEL_API_KEY
api_secret: MY_MIXPANEL_API_SECRET

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Authorization and Authentication

Cubes provides simple but extensible mechanism for authorization through an
Authorizer and for authentication through an Authenticator.

Authentication in cubes: determining and confirirming the user’s identity, for
example using a user name and password, some secret key or using an external
service.

Authorization: providing (or denying) access to cubes based on user’s
identity.

[image: _images/cubes-slicer_authorization_and_authentication_overview.png]
Overview of authorization and authentication process in Slicer

Authorization

The authorization principle in cubes is based on user’s rights to a cube and
restriction within a cube. If user has a “right to a cube” he can access the
cube, the cube will be visible to him.

Restriction within a cube is cell based: users might have access only to a
certain cell within a cube. For example a shop manager might have access only
to sales cube and dimension point equal to his own shop.

Authorization is configured at the workspace level. In slicer.ini it is
specified as:

[workspace]
authorization: simple

[authorization]
rights_file: access_rights.json

There is only one build-in authorizer called simple.

Simple Authorization

Simple authorization based on JSON files: rights and roles. The rights
file contains a dictionary with keys as user identities (user names, API keys,
...) and values as right descriptions.

The user right is described as:

	roles – list of of user’s role – user inherits the restrictions from the
role

	allowed_cubes – list of cubes that the user can access (and no other
cubes)

	denied_cubes – list of cubes that the user can not access (he can access
the rest of cubes)

	cube_restrictions – a dictionary where keys are cube names and values
are lists of cuts

The roles file has the same structure as the rights file, instead of users it
defines inheritable roles. The roles can inherit properties from other roles.

Example of roles file:

{
 "retail": {
 "allowed_cubes": ["sales"]
 }
}

Rights file:

{
 "martin": {
 "roles": ["retail"],
 }
}

The rights file of the simple authorization method might contain a special
guest role which will be used when no other identity is found. See the
configuration documentation for more information.

Authentication

Authentication is handled at the server level.

Built-in authentication methods:

	none – no authentication

	pass_parameter – permissive authentication that just passes an URL parameter
to the authorizer. Default parameter name is api_key

	http_basic_proxy – permissive authentication using HTTP Basic method.
Assumes that the slicer is behind a proxy and that the password was already
verified. Passes the user name to the authorizer.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Configuration

Cubes workspace configuration is stored in a .ini file with sections:

	[workspace] – Cubes workspace configuration

	[server] - server related configuration, such as host, port

	[models] - list of models to be loaded

	[store] – default datastore configuration

	[store NAME] – configuration for store with name NAME

	[locale NAME] - model translations. See Localization for more
information.

	[model] (depreciated) - model and cube configuration

Note

The configuration has changed. Since Cubes supports multiple data stores,
their type (backend) is specifien in the store configuration as
type property, for example type=sql.

Quick Start

Simple configuration might look like this:

[workspace]
model: model.json

[store]
type: sql
url: postgresql://localhost/database

Workspace

	timezone - name of default time zone. Used in date and time operations,
such as named relative time.

	first_weekday – name of first day of the week. It can also be a number
where 0 is Monday, 6 is Sunday

	authorization – authorization method to be used

File Locations

	root_directory – Workspace root path: all paths, such as
models_directory or info_file are considered relative to the
root_directory it they are not specified as absolute.

	models_directory – path to a directory containing models. If this is set
to non-empty value, then all model paths specified in [models] are
prefixed with this path

	stores_file – path to a file (with .ini config syntax) containing
store descriptions – every section is a store with same name as the section

	info_file – path to a file containing user info metadata

Logging

	log - path to a log file

	
	log_level - level of log details, from least to most: error,

	warn, info, debug

Namespaces

If not specified otherwise, all cubes share the same default namespace. There
names within namespace should be unique. For simplicity and for backward
compatibility reasons there are two cube lookup methods: recursive and
exact. recursive method looks for cube name in the global namespace first
then traverses all namespaces and returns the first cube found. exact
requires exact cube name with namespace included as well. The option that
affects this behavior is: lookup_method which can be exact or
recursive.

Info

The info JSON file might contain:

	label – server’s name or label

	description – description of the served data

	copyright – copyright of the data, if any

	license – data license

	maintainer – name of the data maintainer, might be in format Name
Surname <namesurname@domain.org>

	contributors - list of contributors

	keywords – list of keywords that describe the data

	related – list of related or “friendly” Slicer servers with other open
data – a dictionary with keys label and url.

	visualizers – list of links to prepared visualisations of the
server’s data – a dictionary with keys label and url.

Models

Section [models] contains list of models. The property names are model
identifiers within the configuration (see [translations] for example) and
the values are paths to model files.

Example:

[models]
main: model.json
mixpanel: mixpanel.json

If root models_directory is specified in [workspace] then the relative
model paths are combined with the root. Example:

[workspace]
models_directory: /dwh/cubes/models

[models]
main: model.json
events: events.json

The models are loaded from /dwh/cubes/models/model.json and
/dwh/cubes/models/events.json.

Note

If the root_directory is set, then the models_directory is
relative to the root_directory. For example if the workspace root is
/var/lib/cubes and models_directory is models then the search
path for models will be /var/lib/cubes/models. If the
models_directory is absolute, for example /cubes/models then the
absolute path will be used regardless of the workspace root directory
settings.

Localization

Model localizations are specified in the configuration with [locale XX]
where XX is the locale name. Option names are namespace names and option
keys are paths to translation files. For example:

[locale sk]
default: translation_sk.json

[locale hu]
default: translation_hu.json

Server

	
	json_record_limit - number of rows to limit when generating JSON

	output with iterable objects, such as facts. Default is 1000. It is
recommended to use alternate response format, such as CSV, to get more
records.

	
	modules - space separated list of modules to be loaded (only used if

	run by the slicer command)

	
	prettyprint - default value of prettyprint parameter. Set to

	true for demonstration purposes.

	host - host where the server runs, defaults to localhost

	port - port on which the server listens, defaults to 5000

	allow_cors_origin – Cross-origin resource sharing header. Other related
headers are added as well, if this option is present.

	authentication – authentication method (see below for more information)

	pid_file – path to a file where PID of the running server will be
written. If not provided, no PID file is created.

Model

	path - path to model .json file

Data stores

There might be one or more store configured. The section [store]
of the cubes.ini file describes the default store. Multiple stores are
configured in a separate stores.ini file. The path to the stores
configuration file might be specified in a variable stores of the
[workspace] section

Properties of the datastore:

	type (required) – data store type, such as sql

	model – model related to the datastore

	namespace – namespace where the store’s cubes will be registered

	model_provider – model provider type for the datastore

Example SQL store:

[store]
type: sql
url: postgresql://localhost/data
schema: cubes

For more information and configuration options see SQL Backend.

Example mixpanel store:

[store]
type: mixpanel
model: mixpanel.json
api_key: 123456abcd
api_secret: 12345abcd

Multiple Slicer stores:

[store slicer1]
type: slicer
url: http://some.host:5000

[store slicer2]
type: slicer
url: http://other.host:5000

The cubes will be named slicer1.* and slicer2.*. To use specific
namespace, different from the store name:

[store slicer3]
type: slicer
namespace: external
url: http://some.host:5000

Cubes will be named external.*

To specify default namespace:

[store slicer4]
type: slicer
namespace: default.
url: http://some.host:5000

Cubes will be named without namespace prefix.

Example

Example configuration file:

[workspace]
model: ~/models/contracts_model.json

[server]
reload: yes
log: /var/log/cubes.log
log_level: info

[store]
type: sql
url: postgresql://localhost/data
schema: cubes

Authentication and Authorization

Cubes provides mechanisms for authentication at the server side and
authorization at the workspace side.

Configure authorization:

[workspace]
authorization: simple

[authorization]
rights_file: /path/to/access_rights.json

Built-in authorization methods:

	none – no authorization

	simple – uses a JSON file with per-user access rights

The simple authorization has following options:

	rights_file – path to the file with access rights

	roles_file – path to the file with roles

	identity_dimension – name of a flat dimension that will be used for cell
restriction. Key of that dimension should match the identity.

	order – allow_deny or deny_allow (default)

	guest – name of a guest role. If specified, then this role will be used
for all unknown (not specified in the file) roles.

Configure authentication:

[server]
authentication: parameter

[authentication]
additional authentication parameters

Built-in server authentication methods:

	none – no authentication

	http_basic_proxy – HTTP basic authentication. Will pass the username
to the authorizer

	pass_parameter – authentication withot verification, just a way of
passing an URL parameter to the authorizer. Default parameter name is
api_key

Note

When you have authorization method specified and is based on an users’s
indentity, then you have to specify the authentication method in the
server. Otherwise the authorizer will not receive any identity and might
refuse any access.

Server Query Logging

Logging handlers for server requests have sections with name prefix
query_log. All sections with this prefix (including section named as the
prefix) are collected and chained into a list of logging handlers. Required
option is type. You might have multiple handlers of the same time.

Logging types:

	default – log using Cubes logger

	csv_file – log into a CSV file

	sql – log into a SQL table

CSV request logger options:

	path – path to a CSV file that will be appended (and created if necessary)

SQL request logger options:

	url – database URL

	table – database table

	dimensions_table – table with dimension use (optional)

Tables are created automatically.

Examples

Simple configuration:

[workspace]
model = model.json

[store]
type = sql
url = postgresql://localhost/cubes

Multiple models, one store:

[models]
finance = finance.cubesmodel
customer = customer.cubesmodel

[store]
type = sql
url = postgresql://localhost/cubes

Multiple stores:

[store finance]
type = sql
url = postgresql://localhost/finance
model = finance.cubesmodel

[store customer]
type = sql
url = postgresql://otherhost/customer
model = customer.cubesmodel

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

OLAP Server

Cubes framework provides easy to install web service WSGI server with API that
covers most of the Cubes logical model metadata and aggregation browsing
functionality.

See also

Configuration, Server Deployment

Server Requests

Version

Request: GET /version

Return a server version.

{
 "version": "1.0"
}

Info

Request: GET /info

Return an information about the server and server’s data.

Content related keys:

	label – server’s name or label

	description – description of the served data

	copyright – copyright of the data, if any

	license – data license

	maintainer – name of the data maintainer, might be in format Name
Surname <namesurname@domain.org>

	contributors - list of contributors

	keywords – list of keywords that describe the data

	related – list of related or “friendly” Slicer servers with other open
data – a dictionary with keys label and url.

	visualizers – list of links to prepared visualisations of the
server’s data – a dictionary with keys label and url.

Server related keys:

	authentication – authentication method, might be none,
pass_parameter, http_basic_proxy or other. See Authorization and Authentication for more
information

	json_record_limit - maximum number of records yielded for JSON responses

	cubes_version – Cubes framework version

Example:

{
 "description": "Some Open Data",
 "license": "Public Domain",
 "keywords": ["budget", "financial"],
 "authentication": "none",
 "json_record_limit": 1000,
 "cubes_version": "0.11.2"
}

Model

List of Cubes

Request: GET /cubes

Get list of basic informatiob about served cubes. The cube description
dictionaries contain keys: name, label, description and category.

[
 {
 "name": "contracts",
 "label": "Contracts",
 "description": "...",
 "category": "..."
 }
]

Cube Model

Request: GET /cube/<name>/model

Get model of a cube name. Returned structure is a dictionary with keys:

	name – cube name – used as server-wide cube identifier

	label – human readable name of the cube – to be displayed to the users
(localized)

	description – optional textual cube description (localized)

	dimensions – list of dimension description dictionaries (see below)

	
	aggregates – list of measures aggregates (mostly computed values) that

	can be computed. Each item is a dictionary.

	
	measures – list of measure attributes (properties of facts). Each

	item is a dictionary. Example of a measure is: amount, price.

	details – list of attributes that contain fact details. Those attributes
are provided only when getting a fact or a list of facts.

	
	info – a dictionary with additional metadata that can be used in the

	front-end. The contents of this dictionary is defined by the model
creator and interpretation of values is left to the consumer.

	features (advanced) – a dictionary with features of the browser, such as
available actions for the cube (“is fact listing possible?”)

Aggregate is the key numerical property of the cube from reporting
perspective. It is described as a dictionary with keys:

	name – aggregate identifier, such as: amount_sum, price_avg,
total, record_count

	label – human readable label to be displayed (localized)

	measure – measure the aggregate is derived from, if it exists or it is
known. Might be empty.

	function - name of an aggregate function applied to the measure, if
known. For example: sum, min, max.

	window_size – number of elements within a window for window functions
such as moving average

	info – additional custom information (unspecified)

Aggregate names are used in the aggregates parameter of the /aggregate
request.

Measure dictionary contains:

	name – measure identifier

	label – human readable name to be displayed (localized)

	aggregates – list of aggregate functions that are provided for this
measure

	window_size – number of elements within a window for window functions
such as moving average

	info – additional custom information (unspecified)

Note

Compared to previous versions of Cubes, the clients do not have to
construct aggregate names (as it used to be amount``+``_sum). Clients
just get the aggrergate name property and use it right away.

See more information about measures and aggregates in the /aggregate
request description.

Example cube:

{
 "name": "contracts",
 "info": {},
 "label": "Contracts",
 "aggregates": [
 {
 "name": "amount_sum",
 "label": "Amount sum",
 "info": {},
 "function": "sum"
 },
 {
 "name": "record_count",
 "label": "Record count",
 "info": {},
 "function": "count"
 }
],

 "measures": [
 {
 "name": "amount",
 "label": "Amount",
 "info": {},
 "aggregates": ["sum"]
 }
],

 "details": [...],

 "dimensions": [...]
}

The dimension description dictionary:

	name – dimension identifier

	label – human readable dimension name (localized)

	is_flat – True if the dimension has only one level, otherwise False

	has_details – True if the dimension has more than one attribute

	default_hierarchy_name - name of default dimension hierarchy

	levels – list of level descriptions

	hierarchies – list of dimension hierarchies

	info – additional custom information (unspecified)

	cardinality – dimension cardinality

	role – dimension role (special treatment, for example time)

	category – dimension category

The level description:

	name – level identifier (within dimension context)

	label – human readable level name (localized)

	attributes – list of level’s attributes

	key – name of level’s key attribute (mostly the first attribute)

	label_attribute – name of an attribute that contains label for the
level’s members (mostly the second attribute, if present)

	order_attribute – name of an attribute that the level should be ordered
by (optional)

	order – order direction asc, desc or none.

	cardinality – symbolic approximation of the number of level’s members

	role – level role (special treatment)

	info – additional custom information (unspecified)

Cardinality values and their meaning:

	tiny – few values, each value can have it’s representation on the
screen, recommended: up to 5.

	low – can be used in a list UI element, recommended 5 to 50 (if sorted)

	medium – UI element is a search/text field, recommended for more than 50
elements

	high – backends might refuse to yield results without explicit
pagination or cut through this level.

Note

Use attribute["ref"] to access aggreegation result records. Each
level (dimension) attribute description contains two properties: name
and ref. name is identifier within the dimension context. The key
reference ref is used for retrieving aggregation or browing results.

It is not recommended to create any dependency by parsing or constructing
the ref property at the client’s side.

Aggregation and Browsing

The core data and analytical functionality is accessed through the following
requests:

	/cube/<name>/aggregate – aggregate measures, provide summary, generate
drill-down, slice&dice, ...

	/cube/<name>/members/<dim> – list dimension members

	/cube/<name>/facts – list facts within a cell

	/cube/<name>/fact – return a single fact

	/cube/<name>/cell – describe the cell

If the model contains only one cube or default cube name is specified in the
configuration, then the /cube/<name> part might be omitted and you can
write only requests like /aggregate.

Cells and Cuts

The cell - part of the cube we are aggregating or we are interested in - is
specified by cuts. The cut in URL are given as single parameter cut which
has following format:

Examples:

date:2004
date:2004,1
date:2004,1|class:5
date:2004,1,1|category:5,10,12|class:5

To specify a range where keys are sortable:

date:2004-2005
date:2004,1-2005,5

Open range:

date:2004,1,1-
date:-2005,5,10

Set cuts:

date:2005;2007

Dimension name is followed by colon :, each dimension cut is separated by
|, and path for dimension levels is separated by a comma ,. Set cuts are
separated by semicolons ;.

To specify other than default hierarchy use format dimension@hierarchy, the
path then should contain values for specified hierarchy levels:

date@ywd:2004,25

Following image contains examples of cuts in URLs and how they change by
browsing cube aggregates:

[image: _images/url_cutting.png]
Example of how cuts in URL work and how they should be used in application
view templates.

Special Characters

To pass reserved characters as a dimension member path value escape it with
the backslash \ character:

	category:10\-24 is a point cut for category with value 10-24, not
a range cut

	city:Nové\ Mesto\ nad\ Váhom is a city Nové Mesto nad Váhom

Calendar and Relative Time

If a dimension is a date or time dimension (the dimension role is time)
the members can be specified by a name referring to a relative time. For
example:

	date:yesterday

	date:90daysago-today – get cell for last 90 days

	expliration_date:lastmonth-next2months – all facts with expiration
date within last month (whole) and next 2 months (whole)

	date:yearago – all facts since the same day of the year last year

The keywords and patterns are:

	today, yesterday and tomorrow

	...ago and ...forward as in 3weeksago (current day minus 3
weeks) and 2monthsforward (current day plus 2 months) – relative offset with fine granularity

	last... and next... as in last3months (beginning of the third
month before current month) and nextyear (end of next year) –
relative offset of specific (more coarse) granularity.

Aggregate

Request: GET /cube/<cube>/aggregate

Return aggregation result as JSON. The result will contain keys: summary
and drilldown. The summary contains one row and represents aggregation
of whole cell specified in the cut. The drilldown contains rows for each
value of drilled-down dimension.

If no arguments are given, then whole cube is aggregated.

Parameters:

	cut - specification of cell, for example:
cut=date:2004,1|category:2|entity:12345

	drilldown - dimension to be drilled down. For example drilldown=date
will give rows for each value of next level of dimension date. You can
explicitly specify level to drill down in form: dimension:level, such
as: drilldown=date:month. To specify a hierarchy use
dimension@hierarchy as in drilldown=date@ywd for implicit level or
drilldown=date@ywd:week to explicitly specify level.

	aggregates – list of aggregates to be computed, separated by |, for
example: aggergates=amount_sum|discount_avg|count

	measures – list of measures for which their respecive aggregates will be
computed (see below). Separated by |, for
example: aggergates=proce|discount

	page - page number for paginated results

	pagesize - size of a page for paginated results

	order - list of attributes to be ordered by

	split – split cell, same syntax as the cut, defines virtual binary
(flag) dimension that inticates whether a cell belongs to the split cut
(true) or not (false). The dimension attribute is called
__within_split__. Consult the backend you are using for more information,
whether this feature is supported or not.

Note

You can specify either aggregates or measures. aggregates is a
concrete list of computed values. measures yields their respective
aggregates. For example: measures=amount might yield amount_sum
and amount_avg if defined in the model.

Use of aggregates is preferred, as it is more explicit and the result
is well defined.

Response:

A dictionary with keys:

	summary - dictionary of fields/values for summary aggregation

	cells - list of drilled-down cells with aggregated results

	total_cell_count - number of total cells in drilldown (after limit,
before pagination). This value might not be present if it is disabled for
computation on the server side.

	aggregates – list of aggregate names that were considered in the
aggragation query

	cell - list of dictionaries describing the cell cuts

	levels – a dictionary where keys are dimension names and values is a
list of levels the dimension was drilled-down to

Example for request /aggregate?drilldown=date&cut=item:a:

{
 "summary": {
 "count": 32,
 "amount_sum": 558430
 }
 "cells": [
 {
 "count": 16,
 "amount_sum": 275420,
 "date.year": 2009
 },
 {
 "count": 16,
 "amount_sum": 283010,
 "date.year": 2010
 }
],
 "aggregates": [
 "amount_sum",
 "count"
],
 "total_cell_count": 2,
 "cell": [
 {
 "path": ["a"],
 "type": "point",
 "dimension": "item",
 "invert": false,
 "level_depth": 1
 }
],
 "levels": { "date": ["year"] }
}

If pagination is used, then drilldown will not contain more than
pagesize cells.

Note that not all backengs might implement total_cell_count or
providing this information can be configurable therefore might be disabled
(for example for performance reasons).

Facts

Request: GET /cube/<cube>/facts

Return all facts within a cell.

Parameters:

	cut - see /aggregate

	page, pagesize - paginate results

	order - order results

	format - result format: json (default; see note below), csv or
json_lines.

	fields - comma separated list of fact fields, by default all fields are
returned

	header – specify what kind of headers should be present in the csv
output: names – raw field names (default), labels – human readable labels or
none

The JSON response is a list of dictionaries where keys are attribute
references (ref property of an attribute).

To use JSON formatted repsonse but don’t have the record limit json_lines
format can be used. The result is one fact record in JSON format per line
– JSON dictionaries separated by newline n character.

Note

Number of facts in JSON is limited to configuration value of
json_record_limit, which is 1000 by default. To get more records,
either use pages with size less than record limit or use alternate
result format, such as csv.

Single Fact

Request: GET /cube/<cube>/fact/<id>

Get single fact with specified id. For example: /fact/1024.

The response is a dictionary where keys are attribute references (ref
property of an attribute).

Dimension members

Request: GET /cube/<cube>/members/<dimension>

Get dimension members used in cube.

Parameters:

	cut - see /aggregate

	
	depth - specify depth (number of levels) to retrieve. If not

	specified, then all levels are returned. Use this or level.

	level - deepest level to be retrieved – use this or depth.

	
	hierarchy – name of hierarchy to be considered, if not specified, then

	dimension’s default hierarchy is used

	page, pagesize - paginate results

	order - order results

Response: dictionary with keys dimension – dimension name,
depth – level depth and data – list of records.

Example for /cube/facts/members/item?depth=1:

{
 "dimension": "item"
 "depth": 1,
 "hierarchy": "default",
 "data": [
 {
 "item.category": "a",
 "item.category_label": "Assets"
 },
 {
 "item.category": "e",
 "item.category_label": "Equity"
 },
 {
 "item.category": "l",
 "item.category_label": "Liabilities"
 }
],
}

Cell

Get details for a cell.

Request: GET /cube/<cube>/cell

Parameters:

	cut - see /aggregate

Response: a dictionary representation of a cell (see
cubes.Cell.as_dict()) with keys cube and cuts. cube is
cube name and cuts is a list of dictionary representations of cuts.

Each cut is represented as:

{
 // Cut type is one of: "point", "range" or "set"
 "type": cut_type,

 "dimension": cut_dimension_name,
 "level_depth": maximal_depth_of_the_cut,

 // Cut type specific keys.

 // Point cut:
 "path": [...],
 "details": [...]

 // Range cut:
 "from": [...],
 "to": [...],
 "details": { "from": [...], "to": [...] }

 // Set cut:
 "paths": [[...], [...], ...],
 "details": [[...], [...], ...]
}

Each element of the details path contains dimension attributes for the
corresponding level. In addition in contains two more keys: _key and
_label which (redundantly) contain values of key attribute and label
attribute respectively.

Example for /cell?cut=item:a in the hello_world example:

{
 "cube": "irbd_balance",
 "cuts": [
 {
 "type": "point",
 "dimension": "item",
 "level_depth": 1
 "path": ["a"],
 "details": [
 {
 "item.category": "a",
 "item.category_label": "Assets",
 "_key": "a",
 "_label": "Assets"
 }
],
 }
]
}

Report

Request: GET /cube/<cube>/report

Process multiple request within one API call. The data should be a JSON
containing report specification where keys are names of queries and values
are dictionaries describing the queries.

report expects Content-type header to be set to
application/json.

See Report for more information.

Search

Warning

Experimental feature.

Note

Requires a search backend to be installed.

Request: GET /cube/<cube>/search/dimension/<dimension>/<query>

Search values of dimensions for query. If dimension is _all then
all dimensions are searched. Returns search results as list of
dictionaries with attributes:

	Search result:	
	dimension - dimension name

	level - level name

	depth - level depth

	level_key - value of key attribute for level

	attribute - dimension attribute name where searched value was found

	value - value of dimension attribute that matches search query

	path - dimension hierarchy path to the found value

	
	level_label - label for dimension level (value of label_attribute

	for level)

Parameters that can be used in any request:

	prettyprint - if set to true, space indentation is added to the
JSON output

Reports

Report queries are done either by specifying a report name in the request URL
or using HTTP GET request where posted data are JSON with report
specification.

Keys:

	queries - dictionary of named queries

Query specification should contain at least one key: query - which is query
type: aggregate, cell_details, values (for dimension
values), facts or fact (for multiple or single fact respectively). The
rest of keys are query dependent. For more information see AggregationBrowser
documentation.

Note

Note that you have to set the content type to application/json.

Result is a dictionary where keys are the query names specified in report
specification and values are result values from each query call.

Example report JSON file with two queries:

{
 "queries": {
 "summary": {
 "query": "aggregate"
 },
 "by_year": {
 "query": "aggregate",
 "drilldown": ["date"],
 "rollup": "date"
 }
 }
}

Request:

curl -H "Content-Type: application/json" --data-binary "@report.json" \
 "http://localhost:5000/cube/contracts/report?prettyprint=true&cut=date:2004"

Reply:

{
 "by_year": {
 "total_cell_count": 6,
 "drilldown": [
 {
 "record_count": 4390,
 "requested_amount_sum": 2394804837.56,
 "received_amount_sum": 399136450.0,
 "date.year": "2004"
 },
 ...
 {
 "record_count": 265,
 "requested_amount_sum": 17963333.75,
 "received_amount_sum": 6901530.0,
 "date.year": "2010"
 }
],
 "summary": {
 "record_count": 33038,
 "requested_amount_sum": 2412768171.31,
 "received_amount_sum": 2166280591.0
 }
 },
 "summary": {
 "total_cell_count": null,
 "drilldown": {},
 "summary": {
 "date.year": "2004",
 "requested_amount_sum": 2394804837.56,
 "received_amount_sum": 399136450.0,
 "record_count": 4390
 }
 }
}

Explicit specification of a cell (the cuts in the URL parameters are going to
be ignored):

{
 "cell": [
 {
 "dimension": "date",
 "type": "range",
 "from": [2010,9],
 "to": [2011,9]
 }
],
 "queries": {
 "report": {
 "query": "aggregate",
 "drilldown": {"date":"year"}
 }
 }
}

Roll-up

Report queries might contain rollup specification which will result in
“rolling-up” one or more dimensions to desired level. This functionality is
provided for cases when you would like to report at higher level of
aggregation than the cell you provided is in. It works in similar way as drill
down in /aggregate but in the opposite direction (it is like cd .. in
a UNIX shell).

Example: You are reporting for year 2010, but you want to have a bar chart
with all years. You specify rollup:

...
"rollup": "date",
...

Roll-up can be:

	a string - single dimension to be rolled up one level

	an array - list of dimension names to be rolled-up one level

	a dictionary where keys are dimension names and values are levels to be
rolled up-to

Local Server

To run your local server, prepare server Configuration and run the
server using the Slicer tool (see slicer - Command Line Tool):

slicer serve slicer.ini

Server requests

Example server request to get aggregate for whole cube:

$ curl http://localhost:5000/cube/procurements/aggregate?cut=date:2004

Reply:

{
 "drilldown": {},
 "summary": {
 "received_amount_sum": 399136450.0,
 "requested_amount_sum": 2394804837.56,
 "record_count": 4390
 }
}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Server Deployment

Apache mod_wsgi deployment

Deploying Cubes OLAP Web service server (for analytical API) can be done in
four very simple steps:

	Create slicer server Configuration file

	Create WSGI script

	Prepare apache site configuration

	Reload apache configuration

Note

The model paths have to be full paths to the model, not relative paths to
the configuration file.

Place the file in the same directory as the following WSGI script (for
convenience).

Create a WSGI script /var/www/wsgi/olap/procurements.wsgi:

import os.path
from cubes.server import create_server

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))

Set the configuration file name (and possibly whole path) here
CONFIG_PATH = os.path.join(CURRENT_DIR, "slicer.ini")

application = create_server(CONFIG_PATH)

Apache site configuration (for example in /etc/apache2/sites-enabled/):

<VirtualHost *:80>
 ServerName olap.democracyfarm.org

 WSGIScriptAlias /vvo /var/www/wsgi/olap/procurements.wsgi

 <Directory /var/www/wsgi/olap>
 WSGIProcessGroup olap
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>

 ErrorLog /var/log/apache2/olap.democracyfarm.org.error.log
 CustomLog /var/log/apache2/olap.democracyfarm.org.log combined

</VirtualHost>

Reload apache configuration:

sudo /etc/init.d/apache2 reload

UWSGI

Configuration file uwsgi.ini:

[uwsgi]
http = 127.0.0.1:5000
module = cubes.server.app
callable = application

Run uwsgi uwsgi.ini.

You can set environment variables:

	SLICER_CONFIG – full path to the slicer configuration file

	SLICER_DEBUG – set to true boolean value if you want to enable Flask
server debugging

Heroku and UWSGI

To deploy the slicer in Heroku, prepare a directory with following files:

	slicer.ini – main slicer configuration file

	uwsgi.ini – UWSGI configuration

	Procfile

The Procfile:

web: uwsgi uwsgi.ini

The uwsgi.ini:

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
die-on-term = true
memory-report = true
module = cubes.server.app

The requirements.txt:

Flask
SQLAlchemy
-e git+git://github.com/DataBrewery/cubes.git@master#egg=cubes
jsonschema
python-dateutil
pytz
uwsgi

Add any packages that you might need for your Slicer server installation.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

slicer - Command Line Tool

Cubes comes with a command line tool that can:

	run OLAP server

	build and compute cubes

	validate and translate models

Usage:

slicer command [command_options]

or:

slicer command sub_command [sub_command_options]

Commands are:

	Command
	Description

	serve
	Start OLAP server

	model validate
	Validates logical model for OLAP cubes

	model json
	Create JSON representation of a model (can be used)
when model is a directory.

	test
	Test the configuration and model against backends

	ddl
	Generate DDL for SQL backend (experimental)

	edit
	Launches the cubes modeller (if installed) (experimental)

serve

Run Cubes OLAP HTTP server.

Example server configuration file slicer.ini:

[server]
host: localhost
port: 5000
reload: yes
log_level: info

[workspace]
url: sqlite:///tutorial.sqlite
view_prefix: vft_

[model]
path: models/model_04.json

To run local server:

slicer serve slicer.ini

In the [server] section, space separated list of modules to be imported can
be specified under option modules:

[server]
modules=cutom_backend
...

Note

Use –debug option if you would like to see more detailed error messages
in the browser (generated by Flask).

For more information about OLAP HTTP server see OLAP Server

model convert

Usage:

slicer model convert --format bundle model.json model.cubesmodel
slicer model convert model.cubesmodel > model.json

Optional arguments:

--format model format: json or bundle
--force replace the target if exists

model validate

Usage:

slicer model validate /path/to/model/directory
slicer model validate model.json
slicer model validate http://somesite.com/model.json

Optional arguments:

-d, --defaults show defaults
-w, --no-warnings disable warnings
-t TRANSLATION, --translation TRANSLATION
 model translation file

For more information see Model Validation in Logical Model and Metadata

Example output:

loading model wdmmg_model.json

cubes: 1
 wdmmg
dimensions: 5
 date
 pog
 region
 cofog
 from

found 3 issues
validation results:
warning: No hierarchies in dimension 'date', flat level 'year' will be used
warning: Level 'year' in dimension 'date' has no key attribute specified
warning: Level 'from' in dimension 'from' has no key attribute specified
0 errors, 3 warnings

The tool output contains recommendation whether the model can be used:

	model can be used - if there are no errors, no warnings and no defaults used,
mostly when the model is explicitly described in every detail

	model can be used, make sure that defaults reflect reality - there are no
errors, no warnings, but the model might be not complete and default
assumptions are applied

	not recommended to use the model, some issues might emerge - there are just
warnings, no validation errors. Some queries or any other operations might
produce invalid or unexpected output

	model can not be used - model contain errors and it is unusable

test

Every cube in the model is tested through the backend whether it can be
accessed and whether the mappings reflect reality.

Usage:

slicer test [-h] [-E EXCLUDE_STORES] config

Positional arguments:

config server confuguration .ini file

Optional arguments:

-E EXCLUDE_STORES, --exclude-store EXCLUDE_STORES

ddl

Note

This is experimental command.

Generates DDL schema of a model for SQL backend

Usage:

slicer ddl [-h] [--dimension-prefix DIMENSION_PREFIX]
 [--dimension-suffix DIMENSION_SUFFIX]
 [--fact-prefix FACT_PREFIX]
 [--fact-suffix FACT_SUFFIX]
 [--backend BACKEND]
 url model

positional arguments:

url SQL database connection URL
model model reference - can be a local file path or URL

optional arguments:

--dimension-prefix DIMENSION_PREFIX
 prefix for dimension tables
--fact-prefix FACT_PREFIX
 prefix for fact tables
--backend BACKEND backend name (currently limited only to SQL backends)

denormalize

Usage:

slicer denormalize [-h] [-p PREFIX] [-f] [-m] [-i] [-s SCHEMA]
 [-c CUBE] config

positional arguments:

config slicer confuguration .ini file

optional arguments:

-h, --help show this help message and exit
-p PREFIX, --prefix PREFIX
 prefix for denormalized views (overrides config value)
-f, --force replace existing views
-m, --materialize create materialized view (table)
-i, --index create index for key attributes
-s SCHEMA, --schema SCHEMA
 target view schema (overrides config value)
-c CUBE, --cube CUBE cube(s) to be denormalized, if not specified then all
 in the model

Examples

If you plan to use denormalized views, you have to specify it in the
configuration in the [workspace] section:

[workspace]
denormalized_view_prefix = mft_
denormalized_view_schema = denorm_views

This switch is used by the browser:
use_denormalization = yes

The denormalization will create tables like denorm_views.mft_contracts for
a cube named contracts. The browser will use the view if option
use_denormalization is set to a true value.

Denormalize all cubes in the model:

slicer denormalize slicer.ini

Denormalize only one cube:

slicer denormalize -c contracts slicer.ini

Create materialized denormalized view with indexes:

slicer denormalize --materialize --index slicer.ini

Replace existing denormalized view of a cube:

slicer denormalize --force -c contracts slicer.ini

Schema

Schema where denormalized view is created is schema specified in the
configuration file. Schema is shared with fact tables and views. If you want
to have views in separate schema, specify denormalized_view_schema option
in the configuration.

If for any specific reason you would like to denormalize into a completely
different schema than specified in the configuration, you can specify it with
the --schema option.

View name

By default, a view name is the same as corresponding cube name. If there is
denormalized_view_prefix option in the configuration, then the prefix is
prepended to the cube name. Or it is possible to override the option with
command line argument --prefix.

Note

The tool will not allow to create view if it’s name is the same as fact
table name and is in the same schema. It is not even possible to
--force it. A view prefix or different schema has to be specified.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

SQL Backend

The SQL backend is using the SQLAlchemy [http://www.sqlalchemy.org/download.html] which supports following SQL database
dialects:

	Drizzle

	Firebird

	Informix

	Microsoft SQL Server

	MySQL

	Oracle

	PostgreSQL

	SQLite

	Sybase

Supported aggregate functions:

	sum

	count – equivalend to COUNT(1)

	count_nonempty – equivalent to COUNT(measure)

	count_distinct – equivalent to COUNT(DISTINCT measure)

	min

	max

	avg

	stddev

	variance

Store Configuration

Data store:

	url (required) – database URL in form:
adapter://user:password@host:port/database

	schema (optional) – schema containing denormalized views for
relational DB cubes

	dimension_prefix (optional) – used by snowflake mapper to find
dimension tables when no explicit mapping is specified

	dimension_suffix (optional) – used by snowflake mapper to find
dimension tables when no explicit mapping is specified

	dimension_schema – use this option when dimension tables are stored in
different schema than the fact tables

	fact_prefix (optional) – used by the snowflake mapper to find fact
table for a cube, when no explicit fact table name is specified

	fact_suffix (optional) – used by the snowflake mapper to find fact
table for a cube, when no explicit fact table name is specified

	use_denormalization (optional) – browser will use dernormalized view
instead of snowflake

	denormalized_view_prefix (optional, advanced) – if denormalization is
used, then this prefix is added for cube name to find corresponding cube
view

	denormalized_view_schema (optional, advanced) – schema wehere
denormalized views are located (use this if the views are in different
schema than fact tables, otherwise default schema is going to be used)

Database Connection

(advanced topic)

To fine-tune the SQLAlchemy database connection some of the create_engine()
parameters can be specified as sqlalchemy_PARAMETER:

	sqlalchemy_case_sensitive

	sqlalchemy_convert_unicode

	sqlalchemy_pool_size

	sqlalchemy_pool_recycle

	sqlalchemy_pool_timeout

	sqlalchemy_... ...

Please refer to the create_engine [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html?highlight=engine#sqlalchemy.create_engine] documentation for more information.

Model Requirements

Cube has to have key property set to the fact table key column to be able
to provide list of facts. Default key is id.

Mappings

One of the important parts of proper OLAP on top of the relational database is
the mapping of logical attributes to their physical counterparts. In SQL
database the physical attribute is stored in a column, which belongs to a
table, which might be part of a database schema.

[image: ../_images/mapping_logical_to_physical.png]

For example, take a reference to an attribute name in a dimension product.
What is the column of what table in which schema that contains the value of
this dimension attribute?

[image: ../_images/mapping-example1.png]

For data browsing, the Cubes framework has to know where those logical
(reported) attributes are physically stored. It needs to know which tables are
related to the cube and how they are joined together so we get whole view of a
fact.

The process is done in two steps:

	joining relevant star/snowflake tables

	mapping logical attribute to table + column

There are two ways how the mapping is being done: implicit and explicit.
The simplest, straightforward and most customizable is the explicit way, where
the actual column reference is provided in a mapping dictionary of the cube
description.

Implicit Mapping

With implicit mapping one can match a database schema with logical model and
does not have to specify additional mapping metadata. Expected structure is
star schema with one table per (denormalized) dimension.

Facts

Cubes looks for fact table with the same name as cube name. You might specify
prefix for every fact table with fact_table_prefix. Example:

	Cube is named contracts, framework looks for a table named contracts.

	Cubes are named contracts, invoices and fact table prefix is fact_
then framework looks for tables named fact_contracts and
fact_invoices respectively.

Dimensions

By default, dimension tables are expected to have same name as dimensions and
dimension table columns are expected to have same name as dimension
attributes:

[image: ../_images/dimension_attribute_implicit_map.png]

It is quite common practice that dimension tables have a prefix such as
dim_ or dm_. Such prefix can be specified with dimension_prefix
option.

[image: ../_images/dimension_attribute_prefix_map.png]

The rules are:

	fact table should have same name as represented cube: fact table name =
fact table prefix + fact table name

	dimension table should have same name as the represented dimension, for
example: product (singular):
dimension table name = dimension prefix + dimension name

	column name should have same name as dimension attribute: name, code,
description

	references without dimension name in them are expected to be in the fact
table, for example: amount, discount (see note below for simple flat
dimensions)

	if attribute is localized, then there should be one column per localization
and should have locale suffix: description_en, description_sk,
description_fr (see below for more information)

Flat dimension without details

What about dimensions that have only one attribute, like one would not have a
full date but just a year? In this case it is kept in the fact table without
need of separate dimension table. The attribute is treated in by the same rule
as measure and is referenced by simple year. This is applied to all
dimensions that have only one attribute (representing key as well). This
dimension is referred to as flat and without details.

Note

The simplification of the flat references can be disabled by setting
simplify_dimension_references to False in the mapper. In that case
you will have to have separate table for the dimension attribute and you
will have to reference the attribute by full name. This might be useful
when you know that your dimension will be more detailed.

Database Schemas

For databases that support schemas, such as PostgreSQL, option schema can
be used to specify default database schema where all tables are going to be
looked for.

In case you have dimensions stored in separate schema than fact table, you can
specify that in dimension_schema. All dimension tables are going to be
searched in that schema.

Explicit Mapping

If the schema does not match expectations of cubes, it is possible to
explicitly specify how logical attributes are going to be mapped to their
physical tables and columns. Mapping dictionary is a dictionary of logical
attributes as keys and physical attributes (columns, fields) as values. The
logical attributes references look like:

	dimensions_name.attribute_name, for example: geography.country_name or
category.code

	fact_attribute_name, for example: amount or discount

Following mapping maps attribute name of dimension product to the column
product_name of table dm_products.

"mappings": {
 "product.name": "dm_products.product_name"
}

Note

Note that in the mappings the table names should be spelled as they are in
the database even the table prefix is specified.

If it is in different schema or any part of the reference contains a dot:

"mappings": {
 "product.name": {
 "schema": "sales",
 "table": "dm_products",
 "column": "product_name"
 }
}

Both, explicit and implicit mappings have ability to specify default database
schema (if you are using Oracle, PostgreSQL or any other DB which supports
schemas).

The mapping process process is like this:

[image: ../_images/mapping-overview.png]

Date Data Type

Date datatype column can be turned into a date dimension by extracting date
parts in the mapping. To do so, for each date attribute specify a column
name and part to be extracted with value for extract key.

"mappings": {
 "date.year": {"column":"date", "extract":"year"},
 "date.month": {"column":"date", "extract":"month"},
 "date.day": {"column":"date", "extract":"day"}
}

According to SQLAlchemy, you can extract in most of the databases: month,
day, year, second, hour, doy (day of the year),
minute, quarter, dow (day of the week), week, epoch,
milliseconds, microseconds, timezone_hour, timezone_minute.
Please refer to your database engine documentation for more information.

Note

It is still recommended to have a date dimension table.

Localization

From physical point of view, the data localization is very trivial and
requires language denormalization - that means that each language has to have
its own column for each attribute.

Localizable attributes are those attributes that have locales specified in
their definition. To map logical attributes which are localizable, use locale
suffix for each locale. For example attribute name in dimension category
has two locales: Slovak (sk) and English (en). Or for example product
category can be in English, Slovak or German. It is specified in the model
like this:

attributes = [
 {
 "name" = "category",
 "locales" = ["en", "sk", "de"]
 }
]

During the mapping process, localized logical reference is created first:

[image: ../_images/mapping-to_localized.png]

In short: if attribute is localizable and locale is requested, then locale
suffix is added. If no such localization exists then default locale is used.
Nothing happens to non-localizable attributes.

For such attribute, three columns should exist in the physical model. There
are two ways how the columns should be named. They should have attribute name
with locale suffix such as category_sk and category_en (_underscore_
because it is more common in table column names), if implicit mapping is used.
You can name the columns as you like, but you have to provide explicit mapping
in the mapping dictionary. The key for the localized logical attribute should
have .locale suffix, such as product.category.sk for Slovak version of
category attribute of dimension product. Here the _dot_ is used because dots
separate logical reference parts.

Note

Current implementation of Cubes framework requires a star or snowflake
schema that can be joined into fully denormalized normalized form just by
simple one-key based joins. Therefore all localized attributes have to be
stored in their own columns. In other words, you have to denormalize the
localized data before using them in Cubes.

Read more about Localization.

Mapping Process Summary

Following diagram describes how the mapping of logical to physical attributes
is done in the star SQL browser (see cubes.backends.sql.StarBrowser):

[image: ../_images/mapping-logical_to_physical.png]
logical to physical attribute mapping

The “red path” shows the most common scenario where defaults are used.

Joins

The SQL backend supports a star:

[image: ../_images/schema_star.png]

and a snowflake database schema:

[image: ../_images/schema_snowflake.png]

If you are using either of the two schemas (star or snowflake) in relational
database, Cubes requires information on how to join the tables. Tables are
joined by matching single-column – surrogate keys. The framework needs the
join information to be able to transform following snowflake:

[image: ../_images/snowflake_schema.png]

to appear as a denormalized table with all cube attributes:

[image: ../_images/denormalized_schema.png]

Note

The SQL backend performs only joins that are relevant to the given query.
If no attributes from a table are used, then the table is not joined.

Join Description

Joins are defined as an ordered list (order is important) for every cube
separately. The join description consists of reference to the master table
and a table with details. Fact table is example of master table, dimension
is example of a detail table (in a star schema).

Note

Only single column – surrogate keys are supported for joins.

The join specification is very simple, you define column reference for both:
master and detail. The table reference is in the form table.`column`:

"joins" = [
 {
 "master": "fact_sales.product_key",
 "detail": "dim_product.key"
 }
]

As in mappings, if you have specific needs for explicitly mentioning database
schema or any other reason where table.column reference is not enough, you
might write:

"joins" = [
 {
 "master": "fact_sales.product_id",
 "detail": {
 "schema": "sales",
 "table": "dim_products",
 "column": "id"
 }
]

Join Order

Order of joins has to be from the master tables towards the details.

Aliases

What if you need to join same table twice or more times? For example, you have
list of organizations and you want to use it as both: supplier and service
consumer.

[image: ../_images/joins-in_physical.png]

It can be done by specifying alias in the joins:

"joins" = [
 {
 "master": "contracts.supplier_id",
 "detail": "organisations.id",
 "alias": "suppliers"
 },
 {
 "master": "contracts.consumer_id",
 "detail": "organisations.id",
 "alias": "consumers"
 }
]

Note that with aliases, in the mappings you refer to the table by alias
specified in the joins, not by real table name. So after aliasing tables with
previous join specification, the mapping should look like:

"mappings": {
 "supplier.name": "suppliers.org_name",
 "consumer.name": "consumers.org_name"
}

For example, we have a fact table named fact_contracts and dimension table
with categories named dm_categories. To join them we define following join
specification:

"joins" = [
 {
 "master": "fact_contracts.category_id",
 "detail": "dm_categories.id"
 }
]

Join Methods and Outer Joins

(advanced topic)

Cubes supports three join methods match, detail and master.

match (default) – the keys from both master and detail tables have to match
– INNER JOIN

[image: ../_images/cubes-sql_joins-match.png]

master – the master might contain more keys than the detail, for example the
fact table (as a master) might contain unknown or new dimension entries not in
the dimension table yet. This is also known as LEFT OUTER JOIN.

[image: ../_images/cubes-sql_joins-master.png]

detail – every member of the detail table will be always present. For
example every date from a date dimension table. Alskoknown as RIGHT OUTER
JOIN.

[image: ../_images/cubes-sql_joins-detail.png]

To join a date dimension table so that every date will be present in the
output reports, regardless whether there are any facts or not for given
date dimension member:

"joins" = [
 {
 "master": "fact_contracts.contract_date_id",
 "detail": "dim_date.id",
 "method": "detail"
 }
]

The detail Method and its Limitations

(advanced topic)

When at least one table is joined using the outer detail method during
aggregation, the statement is composed from two nested statements or two join
zones: master fact and outer detail.

[image: ../_images/cubes-outer_join_aggregate_statement.png]
Aggregate statement composition

The query builder analyses the schema and assigns a relationship of a table
towards the fact. If a table is joined as detail or is behind a detail
join it is considered to have a detail relationship towards the fact.
Otherwise it has master/match relationship.

When this composed setting is used, then:

	aggregate functions are wrapped using COALESCE() to always return
non-NULL values

	count aggregates are changed to count non-empty facts instead of all
rows

Note

There should be no cut (path) that has some attributes in tables joined as
master and others in a table joined as detail. Every cut (all the
cut’s attributes) should fall into one of the two table zones: either the
master or the outer detail. There might be cuts from different join zones,
though.

Take this into account when designing the dimension hierarchies.

Named Join Templates

If multiple cubes share the same kinds of joins, for example with a dimension
table, it is possible to define such joins at the model level. They will be
considered as templates:

"joins": [
 { "name": "date", "detail": "dim_date.id" },
 { "name": "company", "detail": "dim_company.id" }
]

Then use the join in a cube:

"cubes": [
 {
 "name": "events",
 "joins": [
 { "name": "date", "master": "event_date_id" },
 { "name": "company", "master": "company_id" }
]
 }
]

Any property defined in the cube join will replace the model join template.
You can also use the same named join multiple times in a cube, just give it
different alias:

"cubes": [
 {
 "name": "contracts",
 "joins": [
 {
 "name": "date",
 "master": "contract_start_date_id",
 "alias": "dim_contract_start"
 },
 {
 "name": "date",
 "master": "contract_end_date_id",
 "alias": "dim_contract_end"
 }
]
 }
]

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

MongoDB Backend

Requirements: pymongo:

pip install pymongo

Store Configuration

Type is mongo

	url – Mongo database URL, for example mongodb://localhost:37017/

	database – name of the Mongo database

	collection – name of mongo collection where documents are facts

Example:

[store]
type: mongo
url: mongodb://localhost:37017/
database: MongoBI
collection: activations

Mappings

Custom aggregate with function provided in the mapping:

"aggregates": [
 {
 "name": "subtotal",
 }
],
"mappings": {
 "subtotas": {
 "field": "cart_subtotal",
 "group": { "$sum": "$subtotal" }
 }
}

Collection Filter

To apply a filter for the whole collection:

"browser_options": {
 "filter": {
 "type": "only_this_type",
 "category": 1
 }
}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Google Analytics Backend

Package Requirements

Required packages:

	google-api-python-client

	openssl

	httplib2

store configuration and model

Requirements

Google Analytics bakend uses Service Account [https://developers.google.com/console/help/new/#serviceaccounts] access
type to the Google API. Required is Email address and the public key file.

To get the required credentials go to the Google Developers Console [https://cloud.google.com/console], then APIs & auth and then select
Credentials. If you don’t have a key already press the Create New Client
ID button and select Service Account option. Don’t forget to download the
private key file.

Note

The email address you need is the email address generated for the Service
Account, not your account email address.

Add the generated service account email address to the list of permissions in
the Account User Management in the Google Analytics Admin page.

Configuration

type is ga

	email (required) – email address of the service account

	key_file (required) – path to a private key file of the service account

	account_id – ID of the account to be used

	account_name – name of the account to be used

	web_property – web property ID (first will be used by default)

	view_id – Reporting view (profile) ID (first will be used by default)

	category – category of cubes (property and view name will be used as
default)

	default_start_date – start date to be used if no bottom date range is
specified. Format: yyyy-mm-dd

	default_end_date – end date to be used if no end date is specified.
Format: yyyy-mm-dd.

Specify either account_id or account_name, not both. If none is
specified then the first account in the account list is used.

Example:

[store]
type: ga
email: 123456789012-abcdefghijklmnopqrstuvwxyzabcdef@developer.gserviceaccount.com
key_file: key.p12
web_property: UA-123456-7

Model

Google Analytics backend generates the model on-the-fly using the Analytics
API. You have to specify that the provider is ga not the static model
file itself:

{
 "provider": "ga"
}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Mixpanel Backend

The Mixpanel backends provides mixpanel events as cubes and event properties
as dimensions.

Features:

	two measure aggregates: total and unique

	two derived measure aggregates: total_sma and unique_sma (simple moving
average)

	
	time dimension with two hierarchies:

	
	ymdh (default): year, month, day and hour

	wdh: week, day and hour

	aggregation at year or top level

	drill-down without the time dimension (approximation)

	list of facts

Store Configuration and Model

Type is mixpanel

	api_key – your Mixpanel API key

	api_secret – Mixpanel API secret

To obtain your API key log-in to the Mixpanel, go to Account, then Projects –
you will see a list of key/secret pairs for your projects.

Example:

[store]
type: mixpanel
api_key: 0123456789abcdef0123456789abcdef
api_secret: 0123456789abcdef0123456789abcdef

Model

Mixpanel backend generates the model on-the-fly. You have to specify that the
provider is mixpanel not the static model file itself:

{
 "name": "mixpanel",
 "provider": "mixpanel"
}

Model Customization

It is possible to customize various properties of a cube or a dimension. The
customizable properties are: name, label, description, category and
info.

For example to customize search engine dimension:

"dimensions": [
 {
 "name": "search_engine",
 "label": "Search Engine",
 "description": "The search engine a user came from"
 }
]

Limit the Dimensions

The list of dimensions can be limited by using a browser option
allowed_dimensions or denied_dimensions:

Following will allow only one dimension:

"browser_options": {
 "allowed_dimensions": "search_engine"
}

The browser_options can be specified at the model level – applies to all
cubes, or just at a cube level – applies only to that cube.

Dimension names

By default dimension names are the same as property names. If a property name
contains a special character such as space or $ it is replaced by a
underscore. To use a different, custom dimension name add the
dimension-to-property mapping:

"mappings": {
 "city": "$city",
 "initial_referrer": "$initial_referrer"
}

And define the dimension in the model as above.

Built-in dimension models with simplifiend name and with labels:

	initial_referrer

	initial_referring_domain

	search_engine

	keyword

	os

	browser

	referrer

	referring_domain

	country_code

	city

Source: Mixpanel Special or reserved properties [https://mixpanel.com/docs/properties-or-segments/special-or-reserved-properties].

Cube Names

By default, cube names are the same as event names. To use a custom cube name
add a mapping for cube:CUBENAME:

"mappings": {
 "cube:campaign_delivery": "$campaign_delivery"
}

Example

Create a slicer.ini:

[workspace]
model: model.json

[store]
type: mixpanel
api_key: YOUR_API_KEY
api_secret: YOUR_API_SECRET

[server]
prettyprint: true

Create a model.json:

{
 "provider": "mixpanel"
}

Run the server:

slicer serve slicer.ini

Get a list of cubes:

curl "http://localhost:5000/cubes"

Notes

Important

It is not possible to specify a cut for the time dimension at the hour
level. This is the Mixpanel’s limitation – it expects the from-to range to
be at day granularity.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Slicer Server

It is possible to plug-in cubes from other slicer servers using the Slicer
Server backend.

[image: ../_images/cubes-slicer_backend.png]
Slicer backend

Note

If the server has a JSON record limit set, then the backend will receive
only limited number of facts.

Store Configuration and Model

Type is slicer

	url – Slicer URL

	authentication – authentication method of the source server (supported
only none and pass_parameter)

	auth_identity – authentication identity (or API key) for
pass_parameter authentication.

Example:

[store]
type: slicer
url: http://slicer.databrewery.org/webshop-example

For more than one slicer define one datastore per source Slicer server.

Model

Slicer backend generates the model on-the-fly from the source server. You have
to specify that the provider is slicer:

{
 "provider": "slicer"
}

For more than one slicer, create one file per source Slicer server and specify
the data store:

{
 "provider": "slicer",
 "store": "slicer_2"
}

Example

Create a model.json:

{
 "provider": "slicer"
}

Create a slicer.ini:

[workspace]
model: slicer_model.json

[store]
type: slicer
url: http://slicer.databrewery.org/webshop-example

[server]
prettyprint: true

Run the server:

slicer serve slicer.ini

Get a list of cubes:

curl "http://localhost:5000/cubes"

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Recipes

How-to guides with code snippets for various use-cases.

	Integration With Flask Application

	Publishing Open Data with Cubes
	Serving Open Data

	Drill-down Tree
	Drill-down

	Level Labels and Details

	Hierarchies, levels and drilling-down
	Hierarchy

	Preparation

	Implicit hierarchy

	Summary

	Multiple Hierarchies

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Recipes

Integration With Flask Application

Objective: Add Cubes Slicer to your application to provide raw analytical
data.

Cubes Slicer Server can be integrated with your application very easily. The
Slicer is provided as a flask Blueprint – a module that can be plugged-in.

The following code will add all Slicer’s end-points to your application:

from flask import Flask
from cubes.server import slicer

app = Flask(__name__)
app.register_blueprint(slicer, config="slicer.ini")

To have a separate sub-path for Slicer add url_prefix:

app.register_blueprint(slicer, url_prefix="/slicer", config="slicer.ini")

See also

Flask – Modular Applications with Blueprints [http://flask.pocoo.org/docs/blueprints/]

HTTP WSGI OLAP Server Reference

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Recipes

Publishing Open Data with Cubes

Cubes and Slicer were built with Open Data or rather Open Analytical Data in
mind.

Read more about Open Data:

	Open Data [http://en.wikipedia.org/wiki/Open_data] (Wikipedia)

	Defining Open Data [http://blog.okfn.org/2013/10/03/defining-open-data/]
(OKFN)

	What is Open Data [http://opendatahandbook.org/en/what-is-open-data/]
(Open Data Handbook)

With Cubes you can have a server that provides raw detailed data (denormalized
facts) and grouped and aggregated data (aggregates). It is possible to serve
multiple datasets which might share properties (dimensions).

Serving Open Data

Just create a public Slicer server. To provide more metadata
add a info.json file with the following contents:

	label – server’s name or label

	description – description of the served data

	copyright – copyright of the data, if any

	license – data license, such as Creative
Commons [http://creativecommons.org], Public Domain or
other [http://opendatacommons.org/licenses/]

	maintainer – name of the data maintainer, might be in format Name
Surname <namesurname@domain.org>

	contributors - list of contributors (if any)

	keywords – list of keywords that describe the data

	related – list of related or “friendly” Slicer servers with other open
data

	visualizations – list of links to prepared visualisations of the
server’s data

Create a info.json file:

{
 "description": "Some Open Data",
 "license": "Public Domain",
 "keywords": ["budget", "financial"],
}

Include info option in the slicer configuration:

[workspace]
info: info.json

Related Servers

For better open data discoverability you might add links to other servers:

[image: ../_images/cubes-open_data_related_servers.png]
Related slicers.

{
 "related": [
 {
 "label": "Slicer – Germany",
 "url": "http://slicer.somewhere.de",
 },
 {
 "label": "Slicer – Slovakia",
 "url": "http://slicer.somewhere.sk",
 }
]
}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Recipes

Drill-down Tree

Goal: Create a tree by aggregating every level of a dimension.

Level: Advanced.

Drill-down

Drill-down is an action that will provide more details about data. Drilling
down through a dimension hierarchy will expand next level of the dimension. It
can be compared to browsing through your directory structure.

We create a function that will recursively traverse a dimension hierarchy and
will print-out aggregations (count of records in this example) at the actual
browsed location.

Attributes

	cell - cube cell to drill-down

	dimension - dimension to be traversed through all levels

	path - current path of the dimension

Path is list of dimension points (keys) at each level. It is like file-system
path.

def drill_down(cell, dimension, path=[]):

Get dimension’s default hierarchy. Cubes supports multiple hierarchies, for
example for date you might have year-month-day or year-quarter-month-day. Most
dimensions will have one hierarchy, thought.

hierarchy = dimension.hierarchy()

Base path is path to the most detailed element, to the leaf of a tree, to
the fact. Can we go deeper in the hierarchy?

if hierarchy.path_is_base(path):
 return

Get the next level in the hierarchy. levels_for_path returns list of levels
according to provided path. When drilldown is set to True then one more
level is returned.

levels = hierarchy.levels_for_path(path,drilldown=True)
current_level = levels[-1]

We need to know name of the level key attribute which contains a path
component. If the model does not explicitly specify key attribute for the
level, then first attribute will be used:

level_key = dimension.attribute_reference(current_level.key)

For prettier display, we get name of attribute which contains label to be
displayed for the current level. If there is no label attribute, then key
attribute is used.

level_label = dimension.attribute_reference(current_level.label_attribute)

We do the aggregation of the cell...

Note

Shell analogy: Think of ls $CELL command in commandline, where
$CELL is a directory name. In this function we can think of $CELL
to be same as current working directory (pwd)

result = browser.aggregate(cell, drilldown=[dimension])

for record in result.drilldown:
 print "%s%s: %d" % (indent, record[level_label], record["record_count"])
 ...

And now the drill-down magic. First, construct new path by key attribute value
appended to the current path:

drill_path = path[:] + [record[level_key]]

Then get a new cell slice for current path:

drill_down_cell = cell.slice(dimension, drill_path)

And do recursive drill-down:

drill_down(drill_down_cell, dimension, drill_path)

The whole recursive drill down function looks like this:

[image: ../_images/cubes-tutorial03-drilldown_explained.png]
Recursive drill-down explained

Whole working example can be found in the tutorial sources.

Get the full cube (or any part of the cube you like):

cell = browser.full_cube()

And do the drill-down through the item dimension:

drill_down(cell, cube.dimension("item"))

The output should look like this:

a: 32
 da: 8
 Borrowings: 2
 Client operations: 2
 Investments: 2
 Other: 2
 dfb: 4
 Currencies subject to restriction: 2
 Unrestricted currencies: 2
 i: 2
 Trading: 2
 lo: 2
 Net loans outstanding: 2
 nn: 2
 Nonnegotiable, nonintrest-bearing demand obligations on account of subscribed capital: 2
 oa: 6
 Assets under retirement benefit plans: 2
 Miscellaneous: 2
 Premises and equipment (net): 2

Note that because we have changed our source data, we see level codes instead
of level names. We will fix that later. Now focus on the drill-down.

See that nice hierarchy tree?

Now if you slice the cell through year 2010 and do the exact same drill-down:

cell = cell.slice("year", [2010])
drill_down(cell, cube.dimension("item"))

you will get similar tree, but only for year 2010 (obviously).

Level Labels and Details

Codes and ids are good for machines and programmers, they are short, might
follow some scheme, easy to handle in scripts. Report users have no much use
of them, as they look cryptic and have no meaning for the first sight.

Our source data contains two columns for category and for subcategory: column
with code and column with label for user interfaces. Both columns belong to
the same dimension and to the same level. The key column is used by the
analytical system to refer to the dimension point and the label is just
decoration.

Levels can have any number of detail attributes. The detail attributes have no
analytical meaning and are just ignored during aggregations. If you want to do
analysis based on an attribute, make it a separate dimension instead.

So now we fix our model by specifying detail attributes for the levels:

[image: ../_images/cubes-tutorial03-hierarchy-detail.png]
Attribute details.

The model description is:

"levels": [
 {
 "name":"category",
 "label":"Category",
 "label_attribute": "category_label",
 "attributes": ["category", "category_label"]
 },
 {
 "name":"subcategory",
 "label":"Sub-category",
 "label_attribute": "subcategory_label",
 "attributes": ["subcategory", "subcategory_label"]
 },
 {
 "name":"line_item",
 "label":"Line Item",
 "attributes": ["line_item"]
 }
]
}

Note the label_attribute keys. They specify which attribute contains label
to be displayed. Key attribute is by-default the first attribute in the list.
If one wants to use some other attribute it can be specified in
key_attribute.

Because we added two new attributes, we have to add mappings for them:

"mappings": { "item.line_item": "line_item",
 "item.subcategory": "subcategory",
 "item.subcategory_label": "subcategory_label",
 "item.category": "category",
 "item.category_label": "category_label"
 }

Now the result will be with labels instead of codes:

Assets: 32
 Derivative Assets: 8
 Borrowings: 2
 Client operations: 2
 Investments: 2
 Other: 2
 Due from Banks: 4
 Currencies subject to restriction: 2
 Unrestricted currencies: 2
 Investments: 2
 Trading: 2
 Loans Outstanding: 2
 Net loans outstanding: 2
 Nonnegotiable: 2
 Nonnegotiable, nonintrest-bearing demand obligations on account of subscribed capital: 2
 Other Assets: 6
 Assets under retirement benefit plans: 2
 Miscellaneous: 2
 Premises and equipment (net): 2

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Recipes

Hierarchies, levels and drilling-down

Goals:

	how to create a hierarchical dimension

	how to do drill-down through a hierarchy

	detailed level description

Level: basic.

We are going to use very similar data as in the previous examples. Difference
is in two added columns: category code and sub-category code. They are simple
letter codes for the categories and subcategories. Download this
example file.

Hierarchy

Some dimensions can have multiple
levels forming a
hierarchy. For example dates have year, month,
day; geography has country, region, city; product might have category,
subcategory and the product.

In our example we have the item dimension with three levels of hierarchy:
category, subcategory and line item:

[image: ../_images/cubes-tutorial03-hierarchy.png]
Item dimension hierarchy.

The levels are defined in the model:

"levels": [
 {
 "name":"category",
 "label":"Category",
 "attributes": ["category"]
 },
 {
 "name":"subcategory",
 "label":"Sub-category",
 "attributes": ["subcategory"]
 },
 {
 "name":"line_item",
 "label":"Line Item",
 "attributes": ["line_item"]
 }
]

You can see a slight difference between this model description and the
previous one: we didn’t just specify level names and didn’t let cubes to
fill-in the defaults. Here we used explicit description of each level. name
is level identifier, label is human-readable label of the level that can be
used in end-user applications and attributes is list of attributes that
belong to the level. The first attribute, if not specified otherwise, is the
key attribute of the level.

Other level description attributes are key and label_attribute`. The key
specifies attribute name which contains key for the level. Key is an id
number, code or anything that uniquely identifies the dimension level.
label_attribute is name of an attribute that contains human-readable value
that can be displayed in user-interface elements such as tables or charts.

Preparation

Again, in short we need:

	data in a database

	logical model (see model file) prepared
with appropriate mappings

	denormalized view for aggregated browsing (optional)

Implicit hierarchy

Try to remove the last level line_item from the model file and see what
happens. Code still works, but displays only two levels. What does that mean?
If metadata - logical model - is used properly in an application, then
application can handle most of the model changes without any application
modifications. That is, if you add new level or remove a level, there is no
need to change your reporting application.

Summary

	hierarchies can have multiple levels

	a hierarchy level is identifier by a key attribute

	a hierarchy level can have multiple detail attributes and there is one
special detail attribute: label attribute used for display in user
interfaces

Multiple Hierarchies

Dimension can have multiple hierarchies defined. To use specific hierarchy for
drilling down:

result = browser.aggregate(cell, drilldown = [("date", "dmy", None)])

The drilldown argument takes list of three element tuples in form:
(dimension, hierarchy, level). The hierarchy and level are optional.
If level is None, as in our example, then next level is used. If
hierarchy is None then default hierarchy is used.

To sepcify hierarchy in cell cuts just pass hierarchy argument during cut
construction. For example to specify cut through week 15 in year 2010:

cut = cubes.PointCut("date", [2010, 15], hierarchy="ywd")

Note

If drilling down a hierarchy and asking cubes for next implicit level the
cuts should be using same hierarchy as drilldown. Otherwise exception is
raised. For example: if cutting through year-month-day and asking for next
level after year in year-week-day hierarchy, exception is raised.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Backends

Two objects play major role in Cubes backends:

	aggregation browser – responsible for aggregations, fact listing,
dimension member listing

	store – represents a database connection, shared by multiple browsers

Store

Data for cubes are provided by a data store – every cube has one. Stores
have to be subclasses of Store for cubes to be able to find them.

[image: ../_images/cubes-backend_store.png]
Backend data store.

Required methods:

	__init__(**options) – initialize the store with options. Even if you use
named arguments, you have to include the **options.

	close() – release all resources associated with the store, close database
connections

	default_browser_name – a class variable with browser name that will be
created for a cube, if not specified otherwise

A Store class:

from cubes import Store

class MyStore(Store):
 default_browser_name = "my"

 def __init__(self, **options):
 super(MyStore, self).__init__(**options)
 # configure the store here ...

Note

The custom store has to be a subclass of Store so Cubes can find it. The
name will be derived from the class name: MyStore will become my,
AnotherSQLStore will become another_sql. To explicitly specify a store
name, set the __extension_name__ class variable.

Configuration

The store is configured from a slicer.ini file. The store instance receives
all options from it’s configuration file section as arguments to the
__init__() method.

It is highly recommended that the store provides a class variable named
__options__ which is a list of parameter description dictionaries. The list
is used for properly configuring the store from end-user tools, such as
Slicer. It also provides information about how to convert options into
appropriate data types. Example:

class MyStore(Store):
 default_browser_name = "my"

 __options__ = [
 {
 "name": "collection",
 "type": "string",
 "description": "Name of data collection"
 },
 {
 "name": "unfold",
 "type": "bool",
 "description": "Unfold nested structures"
 }
 }

 def __init__(self, collection=None, unfold=Flase, **options):
 super(MyStore, self).__init__(**options)

 self.collection = collection
 self.unfold = unfold

An example configuration for this store would look like:

[store]
type: my
collection: data
unfold: true

Aggregation Browser

Browser retrieves data from a store and works in a context of a cube and
locale.

[image: ../_images/cubes-backend_browser.png]
Backend data store.

Methods to be implemented:

	__init__(cube, store, locale) – initialize the browser for cube stored
in a store and use model and data locale.

	features() – return a dictionary with browser’s features

	aggregate(), facts(), fact(), members() – all basic browser actions
that take a cell as first argument. See AggregationBrowser for more
information.

For example:

class SnowflakeBrowser(AggregationBrowser):

 def __init__(self, cube, store, locale=None, **options):
 super(SnowflakeBrowser, self).__init__(cube, store, locale)
 # browser initialization...

Name of the example store will be snowflake. To explicitly set the browser
name set the __extension_name__ class property:

class SnowflakeBrowser(AggregationBrowser):
 __extension_name__ = "sql"

In this case, the browser will be known by the name sql.

Note

The current AggregationBrowser API towards the extension development is
provisional and will verylikely change. The change will mostly involve
removal of requirements for preparation of arguments and return value.

Aggregate

Implement the provide_aggregate() method with the following arguments:

	cell – cube cell to be aggregated, alwas a cubes.Cell instance

	aggregates – list of aggregates to be considered

	drilldown – cubes.Drilldown instance (already prepared)

	split (optional browser feature) – virtual cell-based dimension to split
the aggregation cell into two: within the split cell or outside of the split
cell. Can be either None or a cubes.Cell instance

	page, page_size – page number and size of the page for paginated results

	order – order specification: list of two-item tuples (attribute,
order)

def provide_aggregate(self, cell, aggregates, drilldown, split, order,
 page, page_size, **options):

 #
 # ... do the aggregation here ...
 #

 result = AggregationResult(cell=cell, aggregates=aggregates)

 # Set the result cells iterator (required)
 result.cells = ...
 result.labels = ...

 # Optional:
 result.total_cell_count = ...
 result.summary = ...

 return result

Note

Don’t override the aggregate() method – it takes care of proper argument
conversions and set-up.

See also

cubes.AggregationResult, cubes.Drilldown,
cubes.Cell

Facts

def facts(self, cell=None, fields=None, order=None, page=None,
 page_size=None):

 cell = cell or Cell(self.cube)
 attributes = self.cube.get_attributes(fields)
 order = self.prepare_order(order, is_aggregate=False)

 #
 # ... fetch the facts here ...
 #
 # facts = ... an iterable ...
 #

 result = Facts(facts, attributes)

 return result

Browser and Cube Features

The browser features for all or a particuliar cube (if there are differences)
are returned by the cubes.AggregationBrowser.features() method. The
method is expected to return at least one key in the dictionary: actions
with list of browser actions that the browser supports.

Browser actions are: aggregate, fact, facts, members and
cell.

Optional but recommended is setting the list of aggregate_functions –
functions for measures computed in the browser’s engine. The other is
post_aggregate_functions – list of fucntions used as post-aggregation
outside of the browser.

Configuration

The browser is configured by merging:

	model’s options property

	cube’s options property

	store’s configuration options (from slicer.ini)

The browser instance receives the options as parameters to the __init__()
method.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Model Providers

Model providers create cubes.Cube and cubes.Dimension
objects from a metadata or an external description.

[image: ../_images/cubes-model_providers.png]
Context of Model Providers.

To implement a custom model provider subclass the cubes.ModelProvider
class. It is required that the __init__ method calls the super’s __init__
with the metadata argument.

Required methods to be implemented:

	list_cubes() – return a list of cubes that the provider provides. Return
value should be a dictionary with keys: name, label, description
and info.

	cube(name) – return a cubes.Cube object

	dimension(name, dimensions) – return a cubes.Dimension object.
dimensions is a dictionary of public dimensions that can be used as
templates. If a template is missing the method should raise
TemplateRequired(template) error.

Optional:

	public_dimensions() – list of provided dimension names that can be shared
by cubes in other models or by other providers

	requires_store() – return True in this method if the provider requires a
data store (database connection, API credentials, ...).

See also

Model Reference,
Model Providers Reference,
cubes.ModelProvider,
cubes.StaticModelProvider,
cubes.create_cube(),
cubes.create_dimension()

Cube

To provide a cube implement cube(name) method. The method should raise
NoSuchCubeError when a cube is not provided by the provider.

To set cube’s dimension you can either set dimension’s name in
linked_dimensions or directly a Dimension object in dimensions. The rule
is:

	linked_dimensions – shared dimensions, might be defined in external model,
might be even own dimension that is considered public

	dimensions – private dimensions, dimensions with public name conflicts

Note

It is recommended to use the linked_dimensions name list. The
dimensions is considered an advanced feature.

Example of a provider which provides just a simple cube with date dimension
and a measure amount and two aggregates amount_sum and record_count.
Knows three cubes: activations, churn and sales:

from cubes import ModelProvider, create_cube

class SimpleModelProvider(ModelProvider):
 def __init__(self, metadata=None):
 super(DatabaseModelProvider, self).__init__(metadata)

 self.known_cubes = ["activations", "churn", "sales"]

 def list_cubes(self):

 cubes = []
 for name in self.known_cubes:
 info = {"name": name}
 cubes.append(info)

 return cubes

 def cube(self, name):
 if not name in self.known_cubes:
 raise NoSuchCubeError("Unknown cube '%s'" % name, name)

 metadata = {
 "name": name,
 "linked_dimensions": ["date"],
 "measures": ["amount"],
 "aggregats": [
 {"name": "amount_sum", "measure": "amount", "function": "sum"},
 {"name": "record_count", "function": "count"}
]
 }

 return create_cube(metadata)

The above provider assumes that some other object providers the date
dimension.

Store

Some providers might require a database connection or an API credentials that
might be shared by the data store containing the actual cube data. In this
case the model provider should implement method requires_store() and return
True. The provider’s initialize_from_store() will be called back at some
point before first cube is retrieved. The provider will have store instance
variable available with cubes.Store object instance.

Example:

from cubes import ModelProvider, create_cube
from sqlalchemy import sql
import json

class DatabaseModelProvider(ModelProvider):
 def requires_store(self):
 return True

 def initialize_from_store(self):
 self.table = self.store.table("cubes_metadata")
 self.engine = self.store.engine

 def cube(self, name):
 self.engine.execute(select)

 # Let's assume that we have a SQLalchemy table with a JSON string
 # with cube metadata and columns: name, metadata

 condition = self.table.c.name == name

 statement = sql.expression.select(self.table.c.metadata,
 from_obj=self.table,
 where=condition)

 result = list(self.engine.execute(statement))

 if not result:
 raise NoSuchCubeError("Unknown cube '%s'" % name, name)

 cube = json.loads(result[0])

 return create_cube(cube)

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Authenticators and Authorizers

Authorizer

Authorizers gives or denies access to cubes and restricts access to a portion
of a cube.

Custom authorizers should be subclasses of cubes.Authorizer (to be
findable) and should have the following methods:

	authorize(identity, cubes) – return list of cube names (from the cubes)
that the identity is allowed to acces. Might return an empty list if no
cubes are allowed.

	restricted_cell(identity, cube, cell) – return a cell derived from cell
with restrictions for identity

Custom authorizer example: an authorizer that uses some HTTP service that
accepts list of cubes in the cubes= paramter and returns a comma separated
list of authorized cubes.

class CustomAuthorizer(Authorizer):
 def __init__(self, url=None, user_dimension=None, **options):
 super(DatabaseAuthorizer, self).__init__(self, **options)

 self.url = url
 self.user_dimension = user_dimension or "user"

 def authorize(self, cubes):
 params = {
 "cubes": ",".join(cubes)
 }

 response = Request(url, params=params)

 return response.data.split(",")

Note

The custom authorizer has to be a subclass of Authorizer so Cubes can
find it. The name will be derived from the class name: CustomAuthorizer
will become custom, DatabaseACLAuthorizer will become database_acl.
To explicitly specify an authorizer name, set the __extension_name__ class
variable.

The cell restrictions are handled by restricted_cell() method which receives
the identity, cube object (not just a name) and optionaly the cell to be
restricted.

class CustomAuthorizer(Authorizer):
 def __init__(self, url=None, table=None, **options):
 # ... initialization goes here ...

 def authorize(self, cubes):
 # ... authorization goes here
 return cubes

 def restricted_cell(self, identity, cube, cell):

 # If the cube has no dimension "user", we can't restrict
 # and we assume that the cube can be seen by anyone

 try:
 cube.dimension(self.user_dimension)
 except NoSuchDimensionError:
 return cell

 # Find the user ID based on identity
 user_id = self.find_user(identity)

 # Assume a flat "user" dimension for every cube
 cut = PointCut(self.user_dimension, [user_id])
 restriction = Cell(cube, [cut])

 if cell:
 return cell & restriction
 else:
 return restriction

Configuration

The authorizer is configured from the [authorization] section in the
slicer.ini file. The authorizer instance receives all options from the
section as arguments to the __init__() method.

To use the above authorizer, add the following to the slicer.ini:

[workspace]
authorization: custom

[authorization]
url: http://localhost/authorization_service
user_dimension: user

Authenticator

Authentication takes place at the server level right before a request is
processed.

Custom authenticator has to be a subclass of
slicer.server.Authenticator and has to have at least
authenticate(request) method defined. Another optional method is
logout(request, identity).

Example authenticator which authenticates against a database table with two
columns: user and password with a clear-text password (don’t do that).

from cubes.server import Authenticator, NotAuthenticated
from sqlalchemy import create_engine, MetaData, Table

class DatabaseAuthenticator(Authenticator):
 def __init__(self, url=None, table=None, **options):

 self.engine = create_engine(url)
 metadata = MetaData(bind=engine)
 self.users = Table(table, metadata, autoload=True)

 def authenticate(self, request):
 user = request.values.get("user")
 password = request.values.get("password")

 select = self.users.select(self.users.c.password)
 select = select.where(self.users.c.user == user)

 row = self.engine.execute(select).fetchone()

 if row["password"] == password:
 return user
 else:
 raise NotAuthenticated

The authenticate(request) method should return the identity that will be
later passed to the authorizer (it does not have to be the same value as a
user name). The identity might even be None which might be interpreted by
some authorizers guest or not-logged-in visitor. The method should raise
NotAuthenticated when the credetials don’t match.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Workspace Reference

Workspace manages all cubes, their data stores and model providers.

	
class cubes.Workspace(config=None, stores=None, load_base_model=True, **_options)

	Creates a workspace. config should be a ConfigParser or a
path to a config file. stores should be a dictionary of store
configurations, a ConfigParser or a path to a stores.ini file.

Properties:

	stores – dictionary of stores

	store_infos – dictionary of store configurations

	namespace – default namespace

	logger – workspace logegr

	rot_dir – root directory where all relative paths are looked for

	models_dir – directory with models (if relative, then relative to
the root directory)

	info – info dictionary from the info file or info section

	calendar – calendar object providing date and time functions

	ns_languages – dictionary where keys are namespaces and values
are language to translation path mappings.

	
add_slicer(name, url, **options)

	Register a slicer as a model and data provider.

	
add_translation(locale, trans, ns='default')

	Add translation trans for locale. ns is a namespace. If no
namespace is specified, then default (global) is used.

	
browser(cube, locale=None, identity=None)

	Returns a browser for cube.

	
close()

	Closes the workspace with all open stores and other associated
resources.

	
cube(ref, identity=None, locale=None)

	Returns a cube with full cube namespace reference ref for user
identity and translated to locale.

	
cube_features(cube, identity=None)

	Returns browser features for cube

	
dimension(name, locale=None, namespace=None, provider=None)

	Returns a dimension with name. Raises NoSuchDimensionError when
no model published the dimension. Raises RequiresTemplate error when
model provider requires a template to be able to provide the
dimension, but such template is not a public dimension.

The standard lookup when linking a cube is:

	look in the cube’s provider

	look in the cube’s namespace – all providers within that namespace

	look in the default (global) namespace

	
flush_lookup_cache()

	Flushes the cube lookup cache.

	
get_store(name=None)

	Opens a store name. If the store is already open, returns the
existing store.

	
import_model(model=None, provider=None, store=None, translations=None, namespace=None)

	Registers the model in the workspace. model can be a
metadata dictionary, filename, path to a model bundle directory or a
URL.

If namespace is specified, then the model’s objects are stored in
the namespace of that name.

store is an optional name of data store associated with the model.
If not specified, then the one from the metadata dictionary will be
used.

Model’s provider is registered together with loaded metadata. By
default the objects are registered in default global namespace.

Note: No actual cubes or dimensions are created at the time of calling
this method. The creation is deferred until
cubes.Workspace.cube() or cubes.Workspace.dimension() is
called.

	
link_cube(cube)

	Links dimensions to the cube in the context of model with help of
provider.

	
list_cubes(identity=None)

	Get a list of metadata for cubes in the workspace. Result is a list
of dictionaries with keys: name, label, category, info.

The list is fetched from the model providers on the call of this
method.

If the workspace has an authorizer, then it is used to authorize the
cubes for identity and only authorized list of cubes is returned.

	
register_default_store(type_, **config)

	Convenience function for registering the default store. For more
information see register_store()

	
register_store(name, type_, include_model=True, **config)

	Adds a store configuration.

	
class cubes.Namespace(name=None)

	Creates a cubes namespace – an object that provides model objects
from the providers.

	
add_translation(lang, translation)

	Registers and merges translation for language lang

	
create_namespace(name)

	Create a namespace name in the receiver.

	
cube(name, locale=None, recursive=False)

	Return cube named name.

If recursive is True then look for cube in child namespaces.

	
find_cube(cube)

	Returns a tuple (namespace, nsname, basename) where
namespace is a namespace conaining cube and basename is a name
of the cube within the namespace. For example: if cube is
slicer.nested.cube and there is namespace slicer then that
namespace is returned and the basename will be nested.cube

	
list_cubes(recursive=False)

	Retursn a list of cube info dictionaries with keys: name,
label, description, category and info.

	
namespace(path, create=False)

	Returns a tuple (namespace, remainder) where namespace is
the deepest namespace in the namespace hierarchy and remainder is
the remaining part of the path that has no namespace (is an object
name or contains part of external namespace).

If path is empty or not provided then returns self.

If create is True then the deepest namespace is created if it does
not exist.

	
translation_lookup(lang)

	Returns translation in language lang for model object obj
within context (cubes, dimensions, attributes, ...). Looks in
parent if current namespace does not have the translation.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Model Reference

Model - Cubes meta-data objects and functionality for working with them.
Logical Model and Metadata

Note

All model objects: Cube, Dimension, Hierarchy, Level and attribute
objects should be considered immutable once created. Any changes to the
object attributes might result in unexpected behavior.

See also

	Model Providers Reference

	Model providers – objects for constructing model objects from other
kinds of sources, even during run-time.

Creating model objects from metadata

Following methods are used to create model objects from a metadata dicitonary.

	
cubes.create_cube(metadata)

	Create a cube object from metadata dictionary. The cube has no
dimensions attached after creation. You should link the dimensions to the
cube according to the Cube.dimension_links property using
Cube.add_dimension()

	
cubes.create_dimension(metadata, templates=None)

	Create a dimension from a metadata dictionary.
Some rules:

	levels might contain level names as strings – names of levels to
inherit from the template

	hierarchies might contain hierarchies as strings – names of
hierarchies to inherit from the template

	all levels that are not covered by hierarchies are not included in the
final dimension

	
cubes.create_level(metadata, name=None, dimension=None)

	Create a level object from metadata. name can override level name in
the metadata.

	
cubes.create_attribute(obj, class_=None)

	Makes sure that the obj is an Attribute instance. If obj is a
string, then new instance is returned. If it is a dictionary, then the
dictionary values are used for Attribute instance initialization.

	
cubes.create_measure(md)

	Create a measure object from metadata.

	
cubes.create_measure_aggregate(md)

	

	
cubes.attribute_list(attributes, class_=None)

	Create a list of attributes from a list of strings or dictionaries.
see cubes.coalesce_attribute() for more information.

Model components

Note

The Model class is no longer publicly available and should not be used.
For more information, please see cubes.Workspace.

Cube

	
class cubes.Cube(name, dimensions=None, measures=None, aggregates=None, label=None, details=None, mappings=None, joins=None, fact=None, key=None, description=None, browser_options=None, info=None, dimension_links=None, locale=None, category=None, store=None, namespace=None, **options)

	Create a new Cube model object.

Properties:

	name: cube name, used as identifier

	measures: list of measures – numerical attributes
aggregation functions or natively aggregated values

	label: human readable cube label

	details: list of detail attributes

	description - human readable description of the cube

	key: fact key field (if not specified, then backend default key
will be used, mostly id for SLQ or _id for document based
databases)

	info - custom information dictionary, might be used to store
application/front-end specific information

	locale: cube’s locale

	dimension_links – dimensions to be linked after the cube is
created

There are two ways how to assign dimensions to the cube: specify them
during cube initialization in dimensions by providing a list of
Dimension objects. Alternatively you can set dimension_links
list with dimension names and the link the dimension using
cubes.Cube.add_dimension().

Physical properties of the cube are described in the following
attributes. They are used by the backends:

	mappings - backend-specific logical to physical mapping
dictionary. Keys and values of this dictionary are interpreted by
the backend.

	joins - backend-specific join specification (used for example in
the SQL backend). It should be a list of dictionaries.

	fact - fact table (collection, dataset, ...) name

	store - name of data store where the cube belongs

	browser_options - dictionary of other options used by the backend
- refer to the backend documentation to see what options are used
(for example SQL browser might look here for denormalized_view
in case of denormalized browsing)

The dimension links are either dimension names or dictionaries
specifying how the dimension will be linked to the cube. The keys of
the link dictionary are:

	name – name of the dimension to be linked

	hierarchies – list of hierarchy names to be kept from the
dimension

	nonadditive – additivity of the linked dimension (overrides the
dimension’s value)

	cardinality – cardinality of the linked dimension in the cube’s
context (overrides the dimension’s value)

	default_hierarchy_name – which hierarchy will be used as default
in the linked dimension

	
add_dimension(dimension)

	Add dimension to cube. Replace dimension with same name. Raises
ModelInconsistencyError when dimension with same name already exists
in the receiver.

	
aggregate(name)

	Get aggregate object. If obj is a string, then aggregate with
given name is returned, otherwise aggregate object is returned if it
belongs to the cube. Returned object is of MeasureAggregate type.

Raises NoSuchAttributeError when there is no such aggregate or when
there are multiple aggregates with the same name (which also means
that the model is not valid).

	
aggregates_for_measure(name)

	Returns aggregtates for measure with name. Only direct function
aggregates are returned. If the measure is specified in an expression,
the aggregate is not included in the returned list

	
all_aggregate_attributes

	All cube’s attributes for aggregation: attributes of dimensions and
aggregates.

	
all_attributes

	All cube’s attributes from the fact: attributes of dimensions,
details and measures.

	
attribute(attribute)

	Returns an attribute object (dimension attribute, measure or
detail).

	
dimension(obj)

	Get dimension object. If obj is a string, then dimension with
given name is returned, otherwise dimension object is returned if it
belongs to the cube.

Raises NoSuchDimensionError when there is no such dimension.

	
get_aggregates(names=None)

	Get a list of aggregates with names

	
get_attributes(attributes=None, simplify=True, aggregated=False)

	Returns a list of cube’s attributes. If aggregated is True then
attributes after aggregation are returned, otherwise attributes for a
fact are considered.

Aggregated attributes contain: dimension attributes and aggregates.
Fact attributes contain: dimension attributes, fact details and fact
measures.

If the list attributes is empty, all attributes are returned.

If simplified_references is True then dimension attribute
references in attrubutes are considered simplified, otherwise they
are considered as full (dim.attribute).

	
get_measures(measures)

	Get a list of measures as Attribute objects. If measures is
None then all cube’s measures are returned.

	
link_dimensions(dimensions)

	Links dimensions according to cube’s dimension_links. The
dimensions should be a dictionary with keys as dimension names and
values as Dimension instances.

	
measure(name)

	Get measure object. If obj is a string, then measure with given
name is returned, otherwise measure object is returned if it belongs
to the cube. Returned object is of Measure type.

Raises NoSuchAttributeError when there is no such measure or when
there are multiple measures with the same name (which also means that
the model is not valid).

	
measure_aggregate(name)

	Returns a measure aggregate by name.

	
nonadditive_type(aggregate)

	Returns non-additive type of aggregate‘s measure. If aggregate
has no measure specified or is unknown (backend-specific) then None
is returned.

	
remove_dimension(dimension)

	Remove a dimension from receiver. dimension can be either
dimension name or dimension object.

	
to_dict(**options)

	Convert to a dictionary. If with_mappings is True (which is
default) then joins, mappings, fact and options are included.
Should be set to False when returning a dictionary that will be
provided in an user interface or through server API.

	
validate()

	Validate cube. See Model.validate() for more information.

Dimension, Hierarchy and Level

	
class cubes.Dimension(name, levels, hierarchies=None, default_hierarchy_name=None, label=None, description=None, info=None, role=None, cardinality=None, category=None, master=None, nonadditive=None, **desc)

	Create a new dimension

Attributes:

	name: dimension name

	levels: list of dimension levels (see: cubes.Level)

	hierarchies: list of dimension hierarchies. If no hierarchies are
specified, then default one is created from ordered list of levels.

	default_hierarchy_name: name of a hierarchy that will be used when
no hierarchy is explicitly specified

	label: dimension name that will be displayed (human readable)

	description: human readable dimension description

	info - custom information dictionary, might be used to store
application/front-end specific information (icon, color, ...)

	role – one of recognized special dimension types. Currently
supported is only time.

	cardinality – cardinality of the dimension members. Used
optionally by the backends for load protection and frontends for
better auto-generated front-ends. See Level for more
information, as this attribute is inherited by the levels, if not
specified explicitly in the level.

	category – logical dimension group (user-oriented metadata)

	nonadditive – kind of non-additivity of the dimension. Possible
values: None (fully additive, default), time (non-additive for
time dimensions) or all (non-additive for any other dimension)

Dimension class is not meant to be mutable. All level attributes will
have new dimension assigned.

Note that the dimension will claim ownership of levels and their
attributes. You should make sure that you pass a copy of levels if you
are cloning another dimension.

Note: The hierarchy will be owned by the dimension.

	
attribute(reference, by_ref=False)

	Get dimension attribute from reference.

	
attributes

	Return all dimension attributes regardless of hierarchy. Order is
not guaranteed, use cubes.Hierarchy.all_attributes() to get
known order. Order of attributes within level is preserved.

	
clone(hierarchies=None, exclude_hierarchies=None, nonadditive=None, default_hierarchy_name=None, cardinality=None, alias=None, **extra)

	Returns a clone of the receiver with some modifications. master
of the clone is set to the receiver.

	hierarchies – limit hierarchies only to those specified in
hierarchies. If default hierarchy name is not in the new hierarchy
list, then the first hierarchy from the list is used.

	exclude_hierarchies – all hierarchies are preserved except the
hierarchies in this list

	nonadditive – non-additive value for the dimension

	alias – name of the cloned dimension

	
has_details

	Returns True when each level has only one attribute, usually
key.

	
hierarchies

	Get list of dimension hierarchies.

	
hierarchy(obj=None)

	Get hierarchy object either by name or as Hierarchy. If obj is
None then default hierarchy is returned.

	
is_flat

	Is true if dimension has only one level

	
key_attributes()

	Return all dimension key attributes, regardless of hierarchy. Order
is not guaranteed, use a hierarchy to have known order.

	
level(obj)

	Get level by name or as Level object. This method is used for
coalescing value

	
level_names

	Get list of level names. Order is not guaranteed, use a hierarchy
to have known order.

	
levels

	Get list of all dimension levels. Order is not guaranteed, use a
hierarchy to have known order.

	
to_dict(**options)

	Return dictionary representation of the dimension

	
validate()

	Validate dimension. See Model.validate() for more information.

	
class cubes.Hierarchy(name, levels, label=None, info=None, description=None)

	Dimension hierarchy - specifies order of dimension levels.

Attributes:

	name: hierarchy name

	levels: ordered list of levels or level names from dimension

	label: human readable name

	description: user description of the hierarchy

	info - custom information dictionary, might be used to store
application/front-end specific information

Some collection operations might be used, such as level in hierarchy
or hierarchy[index]. String value str(hierarchy) gives the
hierarchy name.

Note: The levels should have attributes already owned by a
dimension.

	
all_attributes

	Return all dimension attributes as a single list.

	
is_last(level)

	Returns True if level is last level of the hierarchy.

	
key_attributes()

	Return all dimension key attributes as a single list.

	
level_index(level)

	Get order index of level. Can be used for ordering and comparing
levels within hierarchy.

	
levels_for_depth(depth, drilldown=False)

	Returns levels for given depth. If path is longer than
hierarchy levels, cubes.ArgumentError exception is raised

	
levels_for_path(path, drilldown=False)

	Returns levels for given path. If path is longer than hierarchy
levels, cubes.ArgumentError exception is raised

	
next_level(level)

	Returns next level in hierarchy after level. If level is last
level, returns None. If level is None, then the first level
is returned.

	
path_is_base(path)

	Returns True if path is base path for the hierarchy. Base path is a
path where there are no more levels to be added - no drill down
possible.

	
previous_level(level)

	Returns previous level in hierarchy after level. If level is
first level or None, returns None

	
rollup(path, level=None)

	Rolls-up the path to the level. If level is None then path
is rolled-up only one level.

If level is deeper than last level of path the
cubes.HierarchyError exception is raised. If level is the same as
path level, nothing happens.

	
to_dict(depth=None, **options)

	Convert to dictionary. Keys:

	name: hierarchy name

	label: human readable label (localizable)

	levels: level names

	
class cubes.Level(name, attributes, key=None, order_attribute=None, order=None, label_attribute=None, label=None, info=None, cardinality=None, role=None, nonadditive=None, description=None)

	Object representing a hierarchy level. Holds all level attributes.

This object is immutable, except localization. You have to set up all
attributes in the initialisation process.

Attributes:

	name: level name

	attributes: list of all level attributes. Raises ModelError when
attribute list is empty.

	key: name of level key attribute (for example: customer_number for
customer level, region_code for region level, month for month
level). key will be used as a grouping field for aggregations. Key
should be unique within level. If not specified, then the first
attribute is used as key.

	order: ordering of the level. asc for ascending, desc for
descending or might be unspecified.

	order_attribute: name of attribute that is going to be used for
sorting, default is first attribute (usually key)

	label_attribute: name of attribute containing label to be displayed
(for example: customer_name for customer level, region_name for
region level, month_name for month level)

	label: human readable label of the level

	role: role of the level within a special dimension

	info: custom information dictionary, might be used to store
application/front-end specific information

	cardinality – approximation of the number of level’s members. Used
optionally by backends and front ends.

	nonadditive – kind of non-additivity of the level. Possible
values: None (fully additive, default), time (non-additive for
time dimensions) or all (non-additive for any other dimension)

Cardinality values:

	tiny – few values, each value can have it’s representation on the
screen, recommended: up to 5.

	low – can be used in a list UI element, recommended 5 to 50 (if sorted)

	medium – UI element is a search/text field, recommended for more than 50
elements

	high – backends might refuse to yield results without explicit
pagination or cut through this level.

Note: the attributes are going to be owned by the dimension.

	
attribute(name)

	Get attribute by name

	
has_details

	Is True when level has more than one attribute, for all levels
with only one attribute it is False.

	
to_dict(full_attribute_names=False, **options)

	Convert to dictionary

Attributes, Measures and Aggregates

	
class cubes.AttributeBase(name, label=None, description=None, order=None, info=None, format=None, missing_value=None, **kwargs)

	Base class for dimension attributes, measures and measure
aggregates.

Attributes:

	name - attribute name, used as identifier

	label - attribute label displayed to a user

	order - default order of this attribute. If not specified, then
order is unexpected. Possible values are: 'asc' or 'desc'.
It is recommended and safe to use Attribute.ASC and
Attribute.DESC

	info - custom information dictionary, might be used to store
application/front-end specific information

	format - application-specific display format information, useful
for formatting numeric values of measure attributes

	missing_value – value to be used when there is no value (NULL)
in the data source. Support of this attribute property depends on the
backend. Please consult the backend documentation for more
information.

String representation of the AttributeBase returns its name.

cubes.ArgumentError is raised when unknown ordering type is
specified.

	
localize(trans)

	Localize the attribute, allow localization of the format.

	
class cubes.Attribute(name, label=None, description=None, order=None, info=None, format=None, dimension=None, locales=None, missing_value=None, **kwargs)

	Dimension attribute object. Also used as fact detail.

Attributes:

	name - attribute name, used as identifier

	label - attribute label displayed to a user

	locales = list of locales that the attribute is localized to

	order - default order of this attribute. If not specified, then
order is unexpected. Possible values are: 'asc' or 'desc'.
It is recommended and safe to use Attribute.ASC and
Attribute.DESC

	info - custom information dictionary, might be used to store
application/front-end specific information

	format - application-specific display format information, useful
for formatting numeric values of measure attributes

String representation of the Attribute returns its name (without
dimension prefix).

cubes.ArgumentError is raised when unknown ordering type is
specified.

	
ref(simplify=True, locale=None)

	Return full attribute reference. Append locale if it is one of
attribute’s locales, otherwise raise cubes.ArgumentError. If
simplify is True, then reference to an attribute of flat
dimension without details will be just the dimension name.

	
class cubes.Measure(name, label=None, description=None, order=None, info=None, format=None, missing_value=None, aggregates=None, formula=None, expression=None, nonadditive=None, window_size=None, **kwargs)

	Fact measure attribute.

Properties in addition to the attribute base properties:

	formula – name of a formula for the measure

	aggregates – list of default (relevant) aggregate functions that
can be applied to this measure attribute.

	nonadditive – kind of non-additivity of the dimension. Possible
values: none (fully additive, default), time (non-additive for
time dimensions) or all (non-additive for any other dimension)

Note that if the formula is specified, it should not refer to any
other measure that refers to this one (no circular reference).

The aggregates is an optional property and is used for:
* measure aggergate object preparation
* optional validation

String representation of a Measure returns its name.

	
default_aggregates()

	Creates default measure aggregates from a list of receiver’s
measures. This is just a convenience function, correct models should
contain explicit list of aggregates. If no aggregates are specified,
then the only aggregate sum is assumed.

	
class cubes.MeasureAggregate(name, label=None, description=None, order=None, info=None, format=None, missing_value=None, measure=None, function=None, formula=None, expression=None, nonadditive=None, window_size=None, **kwargs)

	Masure aggregate

Attributes:

	function – aggregation function for the measure

	formula – name of a formula that contains the arithemtic
expression (optional)

	measure – measure name for this aggregate (optional)

	expression – arithmetic expression (only if backend supported)

	nonadditive – additive behavior for the aggregate (inherited from
the measure in most of the times)

	
exception ModelError

	Exception raised when there is an error with model and its structure, mostly
during model construction.

	
exception ModelIncosistencyError

	Raised when there is incosistency in model structure, mostly when model
was created programatically in a wrong way by mismatching classes or
misonfiguration.

	
exception NoSuchDimensionError

	Raised when a dimension is requested that does not exist in the model.

	
exception NoSuchAttributeError

	Raised when an unknown attribute, measure or detail requested.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Model Providers Reference

See also

Model Reference

Model Providers

	
class cubes.ModelProvider(metadata=None)

	Base class for model providers. Initializes a model provider and
sets metadata – a model metadata dictionary.

Subclasses should call this method at the beginning of the custom
__init__().

If a model provider subclass has a metadata that should be pre-pended
to the user-provided metadta, it should return it in
default_metadata().

Subclasses should implement at least: cubes.ModelProvider.cube(),
cubes.ModelProvider.dimension() and
cubes.ModelProvider.list_cubes() methods.

	
bind(store)

	Set’s the provider’s store.

	
cube(name, locale=None)

	Returns a cube with name provided by the receiver. If receiver
does not have the cube NoSuchCube exception is raised.

Note: The returned cube will not have the dimensions assigned.
It is up to the caller’s responsibility to assign appropriate
dimensions based on the cube’s dimension_links.

Subclasses of ModelProvider might override this method if they would
like to create the Cube object directly.

	
cube_metadata(name, locale=None)

	Returns a cube metadata by combining model’s global metadata and
cube’s metadata. Merged metadata dictionaries: browser_options,
mappings, joins.

Subclasses should override this method and call the super if they
would like to merge metadata provided in a model file.

	
cube_options(cube_name)

	Returns an options dictionary for cube name. The options
dictoinary is merged model options metadata with cube’s options
metadata if exists. Cube overrides model’s global (default)
options.

	
default_metadata(metadata=None)

	Returns metadata that are prepended to the provided model metadata.
metadata is user-provided metadata and might be used to decide what
kind of default metadata are returned.

The metadata are merged as follows:

	cube lists are concatenated (no duplicity checking)

	dimension lists are concatenated (no duplicity checking)

	joins are concatenated

	default mappings are updated with the model’s mappings

Default implementation returns empty metadata.

	
dimension(name, templates=, []locale=None)

	Returns a dimension with name provided by the receiver.
dimensions is a dictionary of dimension objects where the receiver
can look for templates. If the dimension requires a template and the
template is missing, the subclasses should raise
TemplateRequired(template) error with a template name as an
argument.

If the receiver does not provide the dimension NoSuchDimension
exception is raised.

	
dimension_metadata(name, locale=None)

	Returns a metadata dictionary for dimension name and optional
locale.

Subclasses should override this method and call the super if they
would like to merge metadata provided in a model file.

	
initialize_from_store()

	This method is called after the provider’s store was set.
Override this method if you would like to perform post-initialization
from the store.

	
list_cubes()

	Get a list of metadata for cubes in the workspace. Result is a list
of dictionaries with keys: name, label, category, info.

The list is fetched from the model providers on the call of this
method.

Subclassees should implement this method.

	
public_dimensions()

	Returns a list of public dimension names. Default implementation
returs all dimensions defined in the model metadata. If
public_dimensions model property is set, then this list is used.

Subclasses might override this method for alternative behavior. For
example, if the backend uses dimension metadata from the model, but
does not publish any dimension it can return an empty list.

	
requires_store()

	Return True if the provider requires a store. Subclasses might
override this method. Default implementation returns False

	
class cubes.StaticModelProvider(*args, **kwargs)

	
	
list_cubes()

	Returns a list of cubes from the metadata.

Model Metadata

	
cubes.read_model_metadata(source)

	Reads a model description from source which can be a filename, URL,
file-like object or a path to a directory. Returns a model description
dictionary.

	
cubes.read_model_metadata_bundle(path)

	Load logical model a directory specified by path. Returns a model
description dictionary. Model directory bundle has structure:

	
	model.cubesmodel/

	
	model.json

	dim_*.json

	cube_*.json

The dimensions and cubes lists in the model.json are concatenated with
dimensions and cubes from the separate files.

	
cubes.write_model_metadata_bundle(path, metadata, replace=False)

	Writes a model metadata bundle into new directory target from
metadata. Directory should not exist.

	
cubes.expand_cube_metadata(metadata)

	Expands metadata to be as complete as possible cube metadata.
metadata should be a dictionary.

	
cubes.expand_dimension_links(metadata)

	Expands links to dimensions. metadata should be a list of strings or
dictionaries (might be mixed). Returns a list of dictionaries with at
least one key name. Other keys are: hierarchies,
default_hierarchy_name, nonadditive, cardinality, template

	
cubes.expand_dimension_metadata(metadata, expand_levels=False)

	Expands metadata to be as complete as possible dimension metadata. If
expand_levels is True then levels metadata are expanded as well.

	
cubes.expand_level_metadata(metadata)

	Returns a level description as a dictionary. If provided as string,
then it is going to be used as level name and as its only attribute. If a
dictionary is provided and has no attributes, then level will contain only
attribute with the same name as the level name.

	
cubes.expand_attribute_metadata(metadata)

	Fixes metadata of an attribute. If metadata is a string it will be
converted into a dictionary with key “name” set to the string value.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Aggregation Browser Reference

Abstraction for aggregated browsing (concrete implementation is provided by
one of the backends in package backend or a custom backend).

[image: ../_images/browser-package.png]
Browser package classes.

Aggregate browsing

	
class cubes.AggregationBrowser(cube, store=None, locale=None, **options)

	Creates and initializes the aggregation browser. Subclasses should
override this method.

	
aggregate(cell=None, aggregates=None, drilldown=None, split=None, order=None, page=None, page_size=None, **options)

	Return aggregate of a cell.

Arguments:

	cell – cell to aggregate. Can be either a cubes.Cell
object or a string with same syntax as for the Slicer server

	aggregates - list of aggregate measures. By default all
cube’s aggregates are included in the result.

	drilldown - dimensions and levels through which to drill-down

	split – cell for alternate ‘split’ dimension. Same type of
argument as cell.

	order – attribute order specification (see below)

	page – page index when requesting paginated results

	page_size – number of result items per page

Drill down can be specified in two ways: as a list of dimensions or as
a dictionary. If it is specified as list of dimensions, then cell is
going to be drilled down on the next level of specified dimension. Say
you have a cell for year 2010 and you want to drill down by months,
then you specify drilldown = ["date"].

If drilldown is a dictionary, then key is dimension or dimension
name and value is last level to be drilled-down by. If the cell is at
year level and drill down is: { "date": "day" } then both
month and day levels are added.

If there are no more levels to be drilled down, an exception is
raised. Say your model has three levels of the date dimension:
year, month, day and you try to drill down by date at the next
level then ValueError will be raised.

Retruns a AggregationResult object.

If split is specified, then virtual dimension named
__within_split__ will be created and will contain true value if
the cell is within the split cell and false if the cell is outside
of the split.

Note: subclasses should implement provide_aggregate() method.

	
assert_low_cardinality(cell, drilldown)

	Raises ArgumentError when there is drilldown through high
cardinality dimension or level and there is no condition in the cell
for the level.

	
cell_details(cell=None, dimension=None)

	Returns details for the cell. Returned object is a list with one
element for each cell cut. If dimension is specified, then details
only for cuts that use the dimension are returned.

Default implemenatation calls AggregationBrowser.cut_details() for
each cut. Backends might customize this method to make it more
efficient.

	
cut_details(cut)

	Gets details for a cut which should be a Cut instance.

	PointCut - all attributes for each level in the path

	SetCut - list of PointCut results, one per path in the set

	RangeCut - PointCut-like results for lower range (from) and
upper range (to)

	
fact(key)

	Returns a single fact from cube specified by fact key key

	
facts(cell=None, fields=None, **options)

	Return an iterable object with of all facts within cell.
fields is list of fields to be considered in the output.

Subclasses overriding this method sould return a Facts object
and set it’s attributes to the list of selected attributes.

	
features()

	Returns a dictionary of available features for the browsed cube.
Default implementation returns an empty dictionary.

Standard keys that might be present:

	actions – list of actions that can be done with the cube, such as
facts, aggregate, members, ...

	post_processed_aggregates – list of aggregates that are computed
after the result is fetched from the source (not natively).

Subclasses are advised to override this method.

	
is_builtin_function(function_name, aggregate)

	Returns True if function function_name for aggregate is
bult-in. Returns False if the browser can not compute the function
and post-aggregation calculation should be used.

Subclasses should override this method.

	
members(cell, dimension, depth=None, level=None, hierarchy=None, attributes=None, page=None, page_size=None, order=None, **options)

	Return members of dimension with level depth depth. If depth
is None, all levels are returned. If no hierarchy is specified,
then default dimension hierarchy is used.

	
path_details(dimension, path, hierarchy)

	Returns empty path details. Default fall-back for backends that do
not support the path details. The level key and label are the same
derived from the key.

	
prepare_aggregates(aggregates=None, measures=None)

	Prepares the aggregate list for aggregatios. aggregates might be a
list of aggregate names or MeasureAggregate objects.

Aggregates that are used in post-aggregation calculations are included
in the result. This method is using is_builtin_function() to check
whether the aggregate is native to the backend or not.

If measures are specified, then aggregates that refer tho the
measures in the list are returned.

If no aggregates are specified then all cube’s aggregates are returned.

Note

Either specify aggregates or measures, not both.

	
prepare_order(order, is_aggregate=False)

	Prepares an order list. Returns list of tuples (attribute,
order_direction). attribute is cube’s attribute object.

	
provide_aggregate(cell=None, measures=None, aggregates=None, drilldown=None, split=None, order=None, page=None, page_size=None, **options)

	Method to be implemented by subclasses. The arguments are prepared
by the superclass. Arguments:

	cell – cell to be drilled down. Guaranteed to be a Cell object
even for an empty cell

	aggregates – list of aggregates to aggregate. Contains list of cube
aggregate attribute objects.

	drilldown – Drilldown instance

	split – Cell instance

	order – list of tuples: (attribute, order)

	
report(cell, queries)

	Bundle multiple requests from queries into a single one.

Keys of queries are custom names of queries which caller can later
use to retrieve respective query result. Values are dictionaries
specifying arguments of the particular query. Each query should
contain at least one required value query which contains name of
the query function: aggregate, facts, fact, values and
cell cell (for cell details). Rest of values are function
specific, please refer to the respective function documentation for
more information.

Example:

queries = {
 "product_summary" = { "query": "aggregate",
 "drilldown": "product" }
 "year_list" = { "query": "values",
 "dimension": "date",
 "depth": 1 }
}

Result is a dictionary where keys wil lbe the query names specified in
report specification and values will be result values from each query
call.:

result = browser.report(cell, queries)
product_summary = result["product_summary"]
year_list = result["year_list"]

This method provides convenient way to perform multiple common queries
at once, for example you might want to have always on a page: total
transaction count, total transaction amount, drill-down by year and
drill-down by transaction type.

Raises cubes.ArgumentError when there are no queries specified
or if a query is of unknown type.

Roll-up

Report queries might contain rollup specification which will
result in “rolling-up” one or more dimensions to desired level. This
functionality is provided for cases when you would like to report at
higher level of aggregation than the cell you provided is in. It works
in similar way as drill down in AggregationBrowser.aggregate()
but in the opposite direction (it is like cd .. in a UNIX shell).

Example: You are reporting for year 2010, but you want to have a bar
chart with all years. You specify rollup:

...
"rollup": "date",
...

Roll-up can be:

	a string - single dimension to be rolled up one level

	an array - list of dimension names to be rolled-up one level

	a dictionary where keys are dimension names and values are
levels to be rolled up-to

Future

In the future there might be optimisations added to this method,
therefore it will become faster than subsequent separate requests.
Also when used with Slicer OLAP service server number of HTTP call
overhead is reduced.

	
test(**options)

	Tests whether the cube can be used. Refer to the backend’s
documentation for more information about what is being tested.

Result

The result of aggregated browsing is returned as object:

	
class cubes.AggregationResult(cell=None, aggregates=None, drilldown=None)

	Result of aggregation or drill down.

Attributes:

	cell – cell that this result is aggregate of

	summary - dictionary of summary row fields

	cells - list of cells that were drilled-down

	total_cell_count - number of total cells in drill-down (after limit,
before pagination)

	aggregates – aggregate measures that were selected in aggregation

	remainder - summary of remaining cells (not yet implemented)

	levels – aggregation levels for dimensions that were used to drill-
down

Note

Implementors of aggregation browsers should populate cell,
measures and levels from the aggregate query.

	
cached()

	Return shallow copy of the receiver with cached cells. If cells are
an iterator, they are all fetched in a list.

Warning

This might be expensive for large results.

	
has_dimension(dimension)

	Returns True if the result was drilled down by dimension (at
any level)

	
table_rows(dimension, depth=None, hierarchy=None)

	Returns iterator of drilled-down rows which yields a named tuple with
named attributes: (key, label, path, record). depth is last level of
interest. If not specified (set to None) then deepest level for
dimension is used.

	key: value of key dimension attribute at level of interest

	label: value of label dimension attribute at level of interest

	path: full path for the drilled-down cell

	is_base: True when dimension element is base (can not drill
down more)

	record: all drill-down attributes of the cell

Example use:

for row in result.table_rows(dimension):
 print "%s: %s" % (row.label, row.record["fact_count"])

dimension has to be cubes.Dimension object. Raises
TypeError when cut for dimension is not PointCut.

	
to_dict()

	Return dictionary representation of the aggregation result. Can be
used for JSON serialisation.

	
class cubes.CalculatedResultIterator(calculators, iterator)

	Iterator that decorates data items

Facts

	
class cubes.Facts(facts, attributes)

	A facts iterator object returned by the browser’s facts()
method.

Slicing and Dicing

	
class cubes.Cell(cube=None, cuts=None)

	Part of a cube determined by slicing dimensions. Immutable object.

	
contains_level(dim, level, hierarchy=None)

	Returns True if one of the cuts contains level of dimension
dim. If hierarchy is not specified, then dimension’s default
hierarchy is used.

	
cut_for_dimension(dimension)

	Return first found cut for given dimension

	
deepest_levels(include_empty=False)

	Returns a list of tuples: (dimension, hierarchy, level) where
level is the deepest level specified in the respective cut. If no
level is specified (empty path) and include_empty is True, then the
level will be None. If include_empty is True then empty levels
are not included in the result.

This method is currently used for preparing the periods-to-date
conditions.

See also: cubes.Drilldown.deepest_levels()

	
dimension_cuts(dimension, exclude=False)

	Returns cuts for dimension. If exclude is True then the
effect is reversed: return all cuts except those with dimension.

	
drilldown(dimension, value, hierarchy=None)

	Create another cell by drilling down dimension next level on
current level’s key value.

Example:

cell = cubes.Cell(cube)
cell = cell.drilldown("date", 2010)
cell = cell.drilldown("date", 1)

is equivalent to:

cut = cubes.PointCut(“date”, [2010, 1])
cell = cubes.Cell(cube, [cut])

Reverse operation is cubes.rollup("date")

Works only if the cut for dimension is PointCut. Otherwise the
behaviour is undefined.

If hierarchy is not specified (by default) then default dimension
hierarchy is used.

Returns new derived cell object.

	
is_base(dimension, hierarchy=None)

	Returns True when cell is base cell for dimension. Cell
is base if there is a point cut with path referring to the
most detailed level of the dimension hierarchy.

	
level_depths()

	Returns a dictionary of dimension names as keys and level depths
(index of deepest level).

	
multi_slice(cuts)

	Create another cell by slicing through multiple slices. cuts is a
list of Cut object instances. See also Cell.slice().

	
point_cut_for_dimension(dimension)

	Return first point cut for given dimension

	
point_slice(dimension, path)

	Create another cell by slicing receiving cell through dimension
at path. Receiving object is not modified. If cut with dimension
exists it is replaced with new one. If path is empty list or is none,
then cut for given dimension is removed.

Example:

full_cube = Cell(cube)
contracts_2010 = full_cube.point_slice("date", [2010])

Returns: new derived cell object.

Warning

Depreiated. Use cell.slice() instead with argument
PointCut(dimension, path)

	
public_cell()

	Returns a cell that contains only non-hidden cuts. Hidden cuts are
mostly generated cuts by a backend or an extension. Public cell is a
cell to be presented to the front-end.

	
rollup(rollup)

	Rolls-up cell - goes one or more levels up through dimension
hierarchy. It works in similar way as drill down in
AggregationBrowser.aggregate() but in the opposite direction (it
is like cd .. in a UNIX shell).

Roll-up can be:

	a string - single dimension to be rolled up one level

	an array - list of dimension names to be rolled-up one level

	a dictionary where keys are dimension names and values are
levels to be rolled up-to

Note

Only default hierarchy is currently supported.

	
rollup_dim(dimension, level=None, hierarchy=None)

	Rolls-up cell - goes one or more levels up through dimension
hierarchy. If there is no level to go up (we are at the top level),
then the cut is removed.

If no hierarchy is specified, then the default dimension’s hierarchy
is used.

Returns new cell object.

	
slice(cut)

	Returns new cell by slicing receiving cell with cut. Cut with
same dimension as cut will be replaced, if there is no cut with the
same dimension, then the cut will be appended.

	
to_dict()

	Returns a dictionary representation of the cell

	
to_str()

	Return string representation of the cell by using standard
cuts-to-string conversion.

Cuts

	
class cubes.Cut(dimension, hierarchy=None, invert=False, hidden=False)

	Abstract class for a cell cut.

	
level_depth()

	Returns deepest level number. Subclasses should implement this
method

	
to_dict()

	Returns dictionary representation fo the receiver. The keys are:
dimension.

	
class cubes.PointCut(dimension, path, hierarchy=None, invert=False, hidden=False)

	Object describing way of slicing a cube (cell) through point in a
dimension

	
level_depth()

	Returns index of deepest level.

	
to_dict()

	Returns dictionary representation of the receiver. The keys are:
dimension, type`=``point` and path.

	
class cubes.RangeCut(dimension, from_path, to_path, hierarchy=None, invert=False, hidden=False)

	Object describing way of slicing a cube (cell) between two points of a
dimension that has ordered points. For dimensions with unordered points
behaviour is unknown.

	
level_depth()

	Returns index of deepest level which is equivalent to the longest
path.

	
to_dict()

	Returns dictionary representation of the receiver. The keys are:
dimension, type`=``range`, from and to paths.

	
class cubes.SetCut(dimension, paths, hierarchy=None, invert=False, hidden=False)

	Object describing way of slicing a cube (cell) between two points of a
dimension that has ordered points. For dimensions with unordered points
behaviour is unknown.

	
level_depth()

	Returns index of deepest level which is equivalent to the longest
path.

	
to_dict()

	Returns dictionary representation of the receiver. The keys are:
dimension, type`=``range` and set as a list of paths.

Drilldown

	
class cubes.Drilldown(drilldown=None, cell=None)

	Creates a drilldown object for drilldown specifictation of cell.
The drilldown object can be used by browsers for convenient access to
various drilldown properties.

Attributes:

	
	drilldown – list of drilldown items (named tuples) with attributes:

	dimension, hierarchy, levels and keys

	dimensions – list of dimensions used in this drilldown

The Drilldown object can be accessed by item index drilldown[0]
or dimension name drilldown["date"]. Iterating the object yields
all drilldown items.

	
all_attributes()

	Returns attributes of all levels in the drilldown. Order is by the
drilldown item, then by the levels and finally by the attribute in the
level.

	
deepest_levels()

	Returns a list of tuples: (dimension, hierarchy, level) where
level is the deepest level drilled down to.

This method is currently used for preparing the periods-to-date
conditions.

See also: cubes.Cell.deepest_levels()

	
drilldown_for_dimension(dim)

	Returns drilldown items for dimension dim.

	
high_cardinality_levels(cell)

	Returns list of levels in the drilldown that are of high
cardinality and there is no cut for that level in the cell.

	
items_as_strings()

	Returns drilldown items as strings: dimension@hierarchy:level.
If hierarchy is dimension’s default hierarchy, then it is not included
in the string: dimension:level

	
result_levels(include_split=False)

	Returns a dictionary where keys are dimension names and values are
list of level names for the drilldown. Use this method to populate the
result levels attribute.

If include_split is True then split dimension is included.

	
cubes.levels_from_drilldown(cell, drilldown, simplify=True)

	Converts drilldown into a list of levels to be used to drill down.
drilldown can be:

	list of dimensions

	list of dimension level specifier strings

	(dimension@hierarchy:level) list of tuples in form (dimension,
hierarchy, levels, keys).

If drilldown is a list of dimensions or if the level is not specified,
then next level in the cell is considered. The implicit next level is
determined from a `PointCut for dimension in the cell.

For other types of cuts, such as range or set, “next” level is the first
level of hierarachy.

If simplify is True then dimension references are simplified for flat
dimensions without details. Otherwise full dimension attribute reference
will be used as level_key.

Returns a list of drilldown items with attributes: dimension,
hierarchy and levels where levels is a list of levels to be drilled
down.

String conversions

In applications where slicing and dicing can be specified in form of a string, such as arguments of HTTP requests of an web application, there are couple helper methods that do the string-to-object conversion:

	
cubes.cuts_from_string(cube, string, member_converters=None, role_member_converters=None)

	Return list of cuts specified in string. You can use this function to
parse cuts encoded in a URL.

Arguments:

	string – string containing the cut descritption (see below)

	cube – cube for which the cuts are being created

	member_converters – callables converting single-item values into paths.
Keys are dimension names.

	role_member_converters – callables converting single-item values into
paths. Keys are dimension role names (Dimension.role).

Examples:

date:2004
date:2004,1
date:2004,1|class=5
date:2004,1,1|category:5,10,12|class:5

Ranges are in form from-to with possibility of open range:

date:2004-2010
date:2004,5-2010,3
date:2004,5-2010
date:2004,5-
date:-2010

Sets are in form path1;path2;path3 (none of the paths should be
empty):

date:2004;2010
date:2004;2005,1;2010,10

Grammar:

<list> ::= <cut> | <cut> '|' <list>
<cut> ::= <dimension> ':' <path>
<dimension> ::= <identifier>
<path> ::= <value> | <value> ',' <path>

The characters ‘|’, ‘:’ and ‘,’ are configured in CUT_STRING_SEPARATOR,
DIMENSION_STRING_SEPARATOR, PATH_STRING_SEPARATOR respectively.

	
cubes.string_from_cuts(cuts)

	Returns a string represeting cuts. String can be used in URLs

	
cubes.string_from_path(path)

	Returns a string representing dimension path. If path is None
or empty, then returns empty string. The ptah elements are comma ,
spearated.

Raises ValueError when path elements contain characters that are not
allowed in path element (alphanumeric and underscore _).

	
cubes.path_from_string(string)

	Returns a dimension point path from string. The path elements are
separated by comma , character.

Returns an empty list when string is empty or None.

	
cubes.string_to_drilldown(astring)

	Converts astring into a drilldown tuple (dimension, hierarchy,
level). The string should have a format:
dimension@hierarchy:level. Hierarchy and level are optional.

Raises ArgumentError when astring does not match expected pattern.

Mapper

	
class cubes.Mapper(cube, locale=None, schema=None, fact_name=None, **options)

	Abstract class for mappers which maps logical references to
physical references (tables and columns).

Attributes:

	cube - mapped cube

	simplify_dimension_references – references for flat dimensions
(with one level and no details) will be just dimension names, no
attribute name. Might be useful when using single-table schema, for
example, with couple of one-column dimensions.

	fact_name – fact name, if not specified then cube.name is used

	schema – default database schema

	
all_attributes(expand_locales=False)

	Return a list of all attributes of a cube. If expand_locales is
True, then localized logical reference is returned for each
attribute’s locale.

	
attribute(name)

	Returns an attribute with logical reference name.

	
logical(attribute, locale=None)

	Returns logical reference as string for attribute in dimension.
If dimension is Null then fact table is assumed. The logical
reference might have following forms:

	dimension.attribute - dimension attribute

	attribute - fact measure or detail

If simplify_dimension_references is True then references for
flat dimensios without details is dimension.

If locale is specified, then locale is added to the reference. This
is used by backends and other mappers, it has no real use in end-user
browsing.

	
physical(attribute, locale=None)

	Returns physical reference for attribute. Returned value is backend
specific. Default implementation returns a value from the mapping
dictionary.

This method should be implemented by Mapper subclasses.

	
set_locale(locale)

	Change the mapper’s locale

	
split_logical(reference)

	Returns tuple (dimension, attribute) from logical_reference string. Syntax
of the string is: dimensions.attribute.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Formatters Reference

Formatters

	
class cubes.TextTableFormatter(aggregate_format=None)

	

	
class cubes.SimpleDataTableFormatter(levels=None)

	Creates a formatter that formats result into a tabular structure.

	
class cubes.SimpleHTMLTableFormatter(create_links=True, table_style=None)

	Create a simple HTML table formatter

	
class cubes.CrossTableFormatter(aggregates_on=None)

	Creates a cross-table formatter.

Arguments:

	aggregates_on – specify how to put aggregates in the table. Might
be one of rows, columns or cells (default).

If aggregates are put on rows or columns, then respective row or
column is added per aggregate. The data contains single aggregate
values.

If aggregates are put in the table as cells, then the data contains
tuples of aggregates in the order as specified in the aggregates
argument of format() method.

	
format(result, onrows=None, oncolumns=None, aggregates=None, aggregates_on=None)

	Creates a cross table from a drilldown (might be any list of records).
onrows contains list of attribute names to be placed at rows and
oncolumns contains list of attribute names to be placet at columns.
aggregates is a list of aggregates to be put into cells. If
aggregates are not specified, then only record_count is used.

Returns a named tuble with attributes:

	columns - labels of columns. The tuples correspond to values of
attributes in oncolumns.

	rows - labels of rows as list of tuples. The tuples correspond to
values of attributes in onrows.

	data - list of aggregate data per row. Each row is a list of
aggregate tuples.

	
class cubes.HTMLCrossTableFormatter(aggregates_on='cells', measure_labels=None, aggregation_labels=None, measure_label_format=None, count_label=None, table_style=None)

	Create a simple HTML table formatter. See CrossTableFormatter for
information about arguments.

See also

	Data Formatters

	Formatters documentation.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Aggregation Browsing Backends

Backends for browsing aggregates of various data sources

SQL

SQL backend uses SQLAlchemy for generating queries. It supports all databases
that the SQLAlchemy supports such as:

	Drizzle

	Firebird

	Informix

	Microsoft SQL Server

	MySQL

	Oracle

	PostgreSQL

	SQLite

	Sybase

Browser

	
class cubes.backends.sql.mapper.SnowflakeMapper(cube, mappings=None, locale=None, schema=None, fact_name=None, dimension_prefix=None, dimension_suffix=None, joins=None, dimension_schema=None, **options)

	A snowflake schema mapper for a cube. The mapper creates required
joins, resolves table names and maps logical references to tables and
respective columns.

Attributes:

	cube - mapped cube

	mappings – dictionary containing mappings

	simplify_dimension_references – references for flat dimensions
(with one level and no details) will be just dimension names, no
attribute name. Might be useful when using single-table schema, for
example, with couple of one-column dimensions.

	dimension_prefix – default prefix of dimension tables, if
default table name is used in physical reference construction

	dimension_suffix – default suffix of dimension tables, if
default table name is used in physical reference construction

	fact_name – fact name, if not specified then cube.name is used

	schema – default database schema

	dimension_schema – schema whre dimension tables are stored (if
different than fact table schema)

mappings is a dictionary where keys are logical attribute references
and values are table column references. The keys are mostly in the
form:

	attribute for measures and fact details

	attribute.locale for localized fact details

	dimension.attribute for dimension attributes

	dimension.attribute.locale for localized dimension attributes

The values might be specified as strings in the form table.column
(covering most of the cases) or as a dictionary with keys schema,
table and column for more customized references.

	
physical(attribute, locale=None)

	Returns physical reference as tuple for attribute, which should
be an instance of cubes.model.Attribute. If there is no
dimension specified in attribute, then fact table is assumed. The
returned tuple has structure: (schema, table, column).

The algorithm to find physicl reference is as follows:

IF localization is requested:
 IF is attribute is localizable:
 IF requested locale is one of attribute locales
 USE requested locale
 ELSE
 USE default attribute locale
 ELSE
 do not localize

IF mappings exist:
 GET string for logical reference
 IF locale:
 append '.' and locale to the logical reference

 IF mapping value exists for localized logical reference
 USE value as reference

IF no mappings OR no mapping was found:
 column name is attribute name

 IF locale:
 append '_' and locale to the column name

 IF dimension specified:
 # Example: 'date.year' -> 'date.year'
 table name is dimension name

 IF there is dimension table prefix
 use the prefix for table name

 ELSE (if no dimension is specified):
 # Example: 'date' -> 'fact.date'
 table name is fact table name

	
physical_references(attributes, expand_locales=False)

	Convert attributes to physical attributes. If expand_locales is
True then physical reference for every attribute locale is
returned.

	
relevant_joins(attributes, expand_locales=False)

	Get relevant joins to the attributes - list of joins that
are required to be able to acces specified attributes. attributes
is a list of three element tuples: (schema, table, attribute).

	
table_map()

	Return list of references to all tables. Keys are aliased
tables: (schema, aliased_table_name) and values are
real tables: (schema, table_name). Included is the fact table
and all tables mentioned in joins.

To get list of all physical tables where aliased tablesare included
only once:

finder = JoinFinder(cube, joins, fact_name)
tables = set(finder.table_map().keys())

	
tables_for_attributes(attributes, expand_locales=False)

	Returns a list of tables – tuples (schema, table) that contain
attributes.

Slicer

Mixpanel

Mongo DB

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

HTTP WSGI OLAP Server Reference

Light-weight HTTP WSGI server based on the Flask [http://flask.pocoo.org/] framework. For more
information about using the server see OLAP Server.

	
cubes.server.slicer

	Flask Blueprint instance.

See Integration With Flask Application for a use example.

	
cubes.server.workspace

	Flask Local object referring to current application’s workspace.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Authentication and Authorization

See also

Authorization and Authentication

Authentication

Authorization

	
class cubes.Authorizer

	
	
authorize(token, cubes)

	Returns list of authorized cubes from cubes. If none of the cubes
are authorized an empty list is returned.

Default implementation returs the same cubes list as provided.

	
hierarchy_limits(token, cube)

	Returns a list of tuples: (dimension, hierarchy, level).

	
restricted_cell(token, cube, cell=None)

	Restricts the cell for cube according to authorization by
token. If no cell is provided or the cell is empty then returns
the restriction cell. If there is no restriction, returns the original
cell if provided or None.

	
class cubes.SimpleAuthorizer(rights_file=None, roles_file=None, roles=None, rights=None, identity_dimension=None, order=None, guest=None, **options)

	Creates a simple JSON-file based authorizer. Reads data from
rights_file and roles_file and merge them with roles and
rights dictionaries respectively.

	
expand_roles(right)

	Merge right with its roles. right has to be a dictionary.

	
exception cubes.NotAuthorized

	Raised when user is not authorized for the request.

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Utility functions

Utility functions for computing combinations of dimensions and hierarchy
levels

	
class cubes.common.IgnoringDictionary(*args, **kwds)

	Initialize an ordered dictionary. The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary.

	
set(key, value)

	Sets value for key even if value is null.

	
class cubes.common.MissingPackage(package, feature=None, source=None, comment=None)

	Bogus class to handle missing optional packages - packages that are not
necessarily required for Cubes, but are needed for certain features.

	
cubes.common.localize_common(obj, trans)

	Localize common attributes: label and description

	
cubes.common.localize_attributes(attribs, translations)

	Localize list of attributes. translations should be a dictionary with
keys as attribute names, values are dictionaries with localizable
attribute metadata, such as label or description.

	
cubes.common.get_localizable_attributes(obj)

	Returns a dictionary with localizable attributes of obj.

	
cubes.common.assert_instance(obj, class_, label)

	Raises ArgumentError when obj is not instance of cls

	
cubes.common.assert_all_instances(list_, class_, label='object')

	Raises ArgumentError when objects in list_ are not instances of
cls

	
cubes.common.read_json_file(path, kind=None)

	Read a JSON from path. This is convenience function that provides
more descriptive exception handling.

	
cubes.common.sorted_dependencies(graph)

	Return keys from deps ordered by dependency (topological sort).
deps is a dictionary where keys are strings and values are list of
strings where keys is assumed to be dependant on values.

Example:

A ---> B -+--> C
 |
 +--> D --> E

Will be: {"A": ["B"], "B": ["C", "D"], "D": ["E"],"E": []}

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

Cubes Release Notes

	Cubes 1.0 release notes
	Overview

	Model

	Backends

	Visualizer

	Other Minor Changes

	Migration to 1.0

	v1.0.1 Changes

	Cubes 0.6 to 0.10.2 Release Notes
	0.10.2

	0.10.1

	0.10

	0.9.1

	Version 0.9

	Version 0.8

	Version 0.7.1

	Version 0.7

	Version 0.6

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Cubes Release Notes

Cubes 1.0 release notes

These release notes cover the new features and changes (some of them backward
incompatible).

Overview

The biggest new feature in cubes is the “pluggable” model. You are no longer
limited to one one model, one type of data store (database) and one set of
cubes. The new Workspace is now framework-level controller object that
manages models (model sources), cubes and datastores. To the future more
features will be added to the workspace.

[image: ../_images/cubes-analytical-workspace-overview.png]
Analytical Workspace Overview

New Workspace related objects:

	model provider – creates model objects from a model source (might be a
foreign API/service or custom database)

	store – provides access and connection to cube’s data

For more information see the Workspace documentation.

Other notable new features in Cubes 1.0 are:

	Rewritten Slicer server in Flask [http://flask.pocoo.org] as a reusable
Blueprint [http://flask.pocoo.org/docs/blueprints/].

	New server API.

	support for outer joins in the SQL backend.

	Distinction between measures and aggregates

	Extensible authorization and authentication

	Visualizer

Python Versions

Cubes 1.0 supports Python >= 2.7 for Python 2 series and Python >= 3.4.1 for
Python 3 series.

Analytical Workspace

The old backend architecture was limiting. It allowed only one store to be
used, the model had to be known before the server started, it was not possible
to get the model from a remote source.

For more details about the new workspace see the Analytical Workspace
documentation.

Configuration

The slicer.ini configuration has changed to reflect new features.

The section [workspace] now contains global configuration of a cubes
workspace session. The database connection has moved into [store] (or
similar, if there are more).

The database connection is specified either in the [store] section or in a
separate stores.ini file where one section is one store, section name is
store name (as referenced from cube models).

If there is only one model, it can be specified either in the [workspace]
section as model. Multiple models are specified in the [models]
section.

To sum it up:

	[server] backend is now [store] type for every store

	[server] log and log_level has moved to [workspace]

	[model] is now either model option of [workspace] or list of
multiple models in the [models] section

The old configuration:

[server]
host: localhost
port: 5000
reload: yes
log_level: info

[workspace]
url: postgres://localhost/mydata"

[model]
path: grants_model.json

Is now:

[workspace]
log_level: info
model: grants_model.json

[server]
host: localhost
port: 5000
reload: yes

[store]
type: sql
url: postgres://localhost/mydata

Check your configuration files.

See also

Configuration

Server

Slicer server is now a Flask [http://flask.pocoo.org] application and a
reusable Blueprint [http://flask.pocoo.org/docs/blueprints/]. It is
possible to include the Slicer in your application at an end-point of your
choice.

For more information, see the recipe.

Other server changes:

	do not expose internal exceptions, only user exceptions

	added simple authentication methods: HTTP Basic (behind a proxy) and
parameter-based identity. Both are permissive and serve just for passing an
identity to the authorizer.

HTTP Server API

Server end-points have changed.

New end-points:

	/version

	/info

	/cubes

	/cube/<cube>/model

	/cube/<cube>/aggregate

	/cube/<cube>/facts

	/cube/<cube>/fact

	/cube/<cube>/members/<dimension>

	/cube/<cube>/cell

	/cube/<cube>/report

Removed end-points:

	/model – without replacement doe to the new concepts of workspace.
Alternative is to get list of basic cube info using /cubes.

	/model/cubes – without replacement, use /cubes

	/model/cube/<cube> – use /cube/<cube>/model instead

	/model/dimension/* – without replacement due to the new concepts of
workspace

	all top-level browser actions such as /aggregate – now the cube name has
to be explicit

Parameter changes:

	/aggregate uses aggregates=, does not accept measure= any more

	/aggregate now accepts format= to generate CSV output

	new parameter headers= for CSV output: with headers as attribute names,
headers as attribute labels (human readable) or no headers at all

	it is now possible to specify multiple drilldowns, separated by | in one
drilldown= parameter

	cuts for date dimension accepts named relative time references such as
cut=date:90daysago-today. See the server documentation for more information.

	dimension path elements can contain special characters if they are escaped
by a backslash \ such as cut=city:Nové\ Mesto

Many actions now accept format= parameter, which can be json, csv
or json_lines (new-line separated JSON).

Response changes:

	/cubes (replacement for /model) returns a list of basic cubes info:
name, label, description and category. It does not return full cube
description with dimensions.

	/cube/<cube>/model has new keys: aggregates and features

See also

OLAP Server

Outer Joins

Support for thee types of joins was added to the SQL backend: match (inner),
master (left outer) and detail (right outer).

The outer joins allows for example to use whole date dimension table and
have “empty cells” for dates where there are no facts.

When an right outer join (detail method) is present, then aggregate values
are coalesced to zero (based on the function either the values or the result
is coalesced). For example: AVG coalesces values: AVG(COALESCE(c, 0)), SUM
coalesces result: COALESCE(SUM(c), 0).

See also

SQL Backend – Outer Joins Documentation

Statutils

Module with statistical aggregate functions such as simple moving average or
weighted moving average.

Provided functions:

	wma – weighted moving average

	sma – simple moving average

	sms – simple moving sum

	smstd – simple moving st. deviation

	smrsd – simple moving relative st. deviation

	smvar – simple moving variance

The function are applied on the already computed aggregation results. Backends
migh handle the function internally if they can.

Window functions respect window_size property of aggregates.

Browser

	cuts now have an invert flag (might not be supported by all backends)

	aggregate() has new argument split which is a cell that defines
artificial flag-like dimension with two values: 0 – aggergated cell is
outside of the split cell, 1 – aggregated cell is within the split cell

Both invert and split features are still provisional, their interface
might change.

Slicer

	added slicer model convert to convert between json and directory bundle

Model

Model and modeling related changes are:

	new concept of model providers (see details below)

	measure aggregates (see details below)

	cardinality of dimensions and dimension levels

	dimension and level roles

	attribute missing values

	format property of a measure and aggregate

	namespaces

Note

cubes, dimensions, levels and hierarchies can no longer be
dictionaries, they should be lists of dictionaries and the dictionaries
should have a name property set. This was depreciated long ago.

Model Providers

The models of cubes are now being created by the model providers. Model
provider is an object that creates Cubes and Dimension instances from it’s
source. Built-in model provider is cubes.StaticModelProvider which
creates cubes objects from JSON files and dictionaries.

See also

Model Providers, Model Providers Reference

Namespaces

Cubes from stores can be wrapped in a model namespace. By-default, the
namespace is the same as the name of the store. The cubes are referenced as
NAMESPACE.CUBE such as foreign.sales. For backward compatibility reasons
and for simplicity there are two cube lookup methods: recursive and
global.

Measures and Aggregates

Cubes now distinguishes between measures and aggregates. measure
represents a numerical fact property, aggregate represents aggregated value
(applied aggregate function on a property, or provided natively by the
backend).

This new approach of aggregates makes development of backends and clients
much easier. There is no need to construct and guess aggregate measures or
splitting the names from the functions. Backends receive concrete objects with
sufficient information to perform the aggregation (either by a function or
fetch already computed value).

Functionality additions and changes:

	New model objects: cubes.Attribute (for dimension or detail),
cubes.Measure and cubes.MeasureAggregate.

	New model creation/helper functions: cubes.create_measure_aggregate(),
cubes.create_measure()

	cubes.create_cube() is back

	cubes.Cube.aggregates_for_measure() – return all aggregates referring the
measure

	cubes.Cube.get_aggregates() – get a list of aggregates according to names

	cubes.Measure.default_aggregates() – create a list of default
aggregates for the measure

	calculators_for_aggregates() in statutils – returns post-aggregation
calculators

	Added a cube metadata flag to control creation of default aggregates:
implicit_aggregates. Default is True

	Cube initialization has no creation of defaults – it should belong to the
model provider or create_cube() function

	If there is no function specified, we consider the aggregate to be specified
in the mappings

record_count

Implicit aggregate record_count is no longer provided for every cube. It
has to be explicitly defined as an aggregate:

"aggregates": [
 {
 "name": "item_count",
 "label": "Total Items",
 "function": "count"
 }
]

It can be named and labelled in any way.

If cube has no aggregates, then new default aggregate named fact_count is
created.

See also

Measures and Aggregates Documentation,
Logical Model and Metadata

Dimension Links

Linking of dimensions to cubes can be fine-tuned by specifying multiple
properties of the dimension in the cube’s context:

	hierarchies – cube’s dimension can have only certain hierarchies from the
original dimension

	detault_hierarchy_name – it is possible to specify different default
hierarchy

	nonadditive – override the dimensions’ non-additive property

	cardinality – use if dimension might have different cardinality in the new
context

	alias – reuse dimensions in a cube but give them different names

Backends

	Backends should now implement provide_aggregate() method instead of
aggregate() – the later takes care of argument conversion and preparation.
See Backends for more information.

SQL Backend

	New module functions with new AggregationFunction objects

	Added get_aggregate_function() and available_aggregate_functions()

	Renamed star module to browser

	Updated the code to use the new aggregates instead of old measures. Affected
parts of the code are now cleaner and more understandable

	Moved calculated_aggregations_for_measure to library-level statutils module
as calculators_for_aggregates

	function dictionary is no longer used

New Backends

	Mixpanel: Mixpanel Backend

	Slicer: Slicer Server

	Mongo: MongoDB Backend

	Google Analytics: Google Analytics Backend

See also

How to Write a Backend Extension

Visualizer

There is a cubes visualizer included in the Cubes that can connect to any
cubes slicer server over HTTP. It is purely HTML/JavaScript application.

Other Minor Changes

	Cell.contains_level(dim, level, hierarhy) – returns True when the cell
contains level level of dimension dim

	renamed AggregationBrowser.values() to
cubes.AggregationBrowser.members()

	AggregationResult.measures changed to AggregationResult.aggregates (see
AggregationResult)

	browser’s __init__ signature has changed to include the store

	changed the exception hierarchy. Now has two branches: UserError and
InternalError – the UserError can be returned to the client, the
InternalError should remain privade on the server side.

	to_dict() of model objects returns an ordered dictionary for nicer JSON
output

	New class cubes.Facts that should be returned by
cubes.AggregationBrowser.facts()

	cubes.cuts_from_string() has two new arguments member_converters and
role_member_converters

	New class cubes.Drilldown to get more information about the
drilldown

Migration to 1.0

Checklists for migrating a Cubes project from pre-1.0 to 1.0:

The slicer.ini

	Rename [workspace] to [store]

	Create new empty [workspace]

	Move [server] backend to [store] type

	Move [server] log, log_level to the new [workspace]

	Rename [model] path to [models] main and remove all non-model references
(such as locales).

The minimal configuration looks like:

[store]
type: sql
url: sqlite:///data.sqlite

[models]
main: model.json

See configuration changes for an example and
configuration documentation for more information.

The Model

There are not many model changes, mostly measures and aggregates related.

	Make sure that dimensions, cubes, levels and hierarchies
are not dictionaries but lists of dictionaries with name property.

	Create the explicit record_count aggregate, if you are using it. Note
that you can name and label the aggregate as you like.

"aggregates": [
 {
 "name": "record_count",
 "label": "Total Items",
 "function": "count"
 }
]

	In measures rename aggregations to aggregates or even better:
create explicit, full aggregate definitions.

See Aggregates for more information.

Slicer Front-end

The biggest change in the front-ends is the removal of the /model
end-point without equivalend replacement. Use /cubes to get list of
provided cubes. The cube definition contains whole dimension descriptions.

	Change from /model to /cubes

	Change from /model/cube/<name> to /cube/<name>/model

	Cube has to be explicit in every request, therefore /aggregate does not
work any more, use /cube/<name>/aggregate

	Change aggregate parameter measure to aggregates

Refer to the OLAP Server documentation for the new response structures.
There were minor changes, mostly additions.

Additional and Optional Considerations for Migration

	if your model is too big, split it into multiple models and add them to the
[models] section. Note that the dimensions can be shared between models.

	put all your models into a separate directory and use the [workspace]
models_path property. The paths in [models] are relative to the
models_path

	if you have muliple stores, create a separate stores.ini file where the
section names are store names. Set the [workspace] stores to the
stores.ini path if it is different than default.

	Add "role"="time" to a date dimension – you might benefit
from new date-related additions and special dimension handling in the
available front-ends

	Review joins and set appropriate join method if desired, for example
detail for a date dimension.

	Add cardinality metadata to dimension levels if appropriate.

	Look at the cube’s model features property to learn what the front-end
can expect from the backend for that cube

	Look at the /info response

v1.0.1 Changes

	[feature] Added SimpleAuthorizer.expand_roles

	[feature] create indexes for aggregated table

	[change] make workspace optional

	[change] Allow user to supply an external workspace to the slicer

	[change] modified create_cube_aggregate

	[fix] correct physical attribute schema handling in SQL backend - fact
details were getting dimension schema

	[fix] increase debug level in hello_world example

	[fix] more descriptive error messages in browser/backend

	[fix] Use store instead of datastore (remaining places)

	various documentation fixes

	various example fixes

Contributors:

	Dmitriy Trochshenko

	Friedrich Lindenberg

	Lucas Taylor

	Michal Skop

	Gasper Zejn

	jerry dumblauskas

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Cubes 1.0.1 documentation

 	Cubes Release Notes

Cubes 0.6 to 0.10.2 Release Notes

0.10.2

Summary:

	many improvements in handling multiple hierarchies

	more support of multiple hierarchies in the slicer server either as
parameter or with syntax dimension@hierarchy:
	dimension values: GET /dimension/date?hierarchy=dqmy

	cut: get first quarter of 2012 ?cut=date@dqmy:2012,1

	drill-down on hierarchy with week on implicit (next) level: ?drilldown=date@ywd

	drill-down on hierarchy with week with exlpicitly specified week level:
?drilldown=date@ywd:week

	order and order attribute can now be specified for a Level

	optional safe column aliases (see docs for more info) for databases that
have non-standard requirements for column labels even when quoted

Thanks:

	Jose Juan Montes (@jjmontesl)

	Andrew Zeneski

	Reinier Reisy Quevedo Batista (@rquevedo)

New Features

	added order to Level object - can be asc, desc or None for unspecified
order (will be ignored)

	added order_attribute to Level object - specifies attribute to be used for
ordering according to order. If not specified, then first attribute is
going to be used.

	added hierarchy argument to AggregationResult.table_rows()

	str(cube) returns cube name, useful in functions that can accept both cube
name and cube object

	added cross table formatter and its HTML variant

	GET /dimension accepts hierarchy parameter

	added create_workspace_from_config() to simplify workspace creation
directly from slicer.ini file (this method might be slightly changed in the
future)

	to_dict() method of model objects now has a flag create_label which
provides label attribute derived from the object’s name, if label is missing

	#95: Allow charset to be specified in Content-Type header

SQL:

	added option to SQL workspace/browser safe_labels to use safe column
labels for databases that do not support characters like . in column names
even when quoted (advanced feature, does not work with denormalization)

	browser accepts include_cell_count and include_summary arguments to
optionally disable/enable inclusion of respective results in the aggregation
result object

	added implicit ordering by levels to aggregate and dimension values methods
(for list of facts it is not yet decided how this should work)

	#97: partially implemented sort_key, available in aggregate() and
values() methods

Server:

	added comma separator for order= parameter

	reflected multiple search backend support in slicer server

Other:

	added vim syntax highlighting goodie

Changes

	AggregationResult.cross_table is depreciated, use cross table formatter
instead

	load_model() loads and applies translations

	slicer server uses new localization methods (removed localization code from slicer)

	workspace context provides proper list of locales and new key ‘translations’

	added base class Workspace which backends should subclass; backends should
use workspace.localized_model(locale)

	create_model() accepts list of translations

Fixes

	browser.set_locale() now correctly changes browser’s locale

	#97: Dimension values call cartesians when cutting by a different dimension

	#99: Dimension “template” does not copy hierarchies

0.10.1

Quick Summary:

	multiple hierarchies:
	Python: cut = PointCut("date", [2010,15], hierarchy='ywd')

	Server: GET /aggregate?cut=date@ywd:2010,15

	Server drilldown: GET /aggregate?drilldown=date@ywd:week

	added experimental result formatters (API might change)

	added experimental pre-aggregations

New Features

	added support for multiple hierarchies

	added dimension_schema option to star browser – use this when you have
all dimensions grouped in a separate schema than fact table

	added HierarchyError - used for example when drilling down deeper than
possible within that hierarchy

	added result formatters: simple_html_table, simple_data_table, text_table

	added create_formatter(formatter_type, options ...)

	AggregationResult.levels is a new dictionary containing levels that the
result was drilled down to. Keys are dimension names, values are levels.

	AggregationResult.table_rows() output has a new variable is_base to denote
whether the row is base or not in regard to table_rows dimension.

	added create_server(config_path) to simplify wsgi script

	added aggregates: avg, stddev and variance (works only in databases that
support those aggregations, such as PostgreSQL)

	added preliminary implemenation of pre-aggregation to sql worskspace:
	create_conformed_rollup()

	create_conformed_rollups()

	create_cube_aggregate()

Server:

	multiple drilldowns can be specified in single argument:
drilldown=date,product

	there can be multiple cut arguments that will be appended into single cell

	added requests: GET /cubes and GET /cube/NAME/dimensions

Changes

	Important: Changed string representation of a set cut: now using
semicolon ‘;’ as a separator instead of a plus symbol ‘+’

	aggregation browser subclasses should now fill result’s levels variable
with coalesced_drilldown() output for requested drill-down levels.

	Moved coalesce_drilldown() from star browser to cubes.browser module to be
reusable by other browsers. Method might be renamed in the future.

	if there is only one level (default) in a dimension, it will have same label
as the owning dimension

	hierarchy definition errors now raise ModelError instead of generic
exception

Fixes

	order of joins is preserved

	fixed ordering bug

	fixed bug in generating conditions from range cuts

	AggregationResult.table_rows now works when there is no point cut

	get correct reference in table_rows – now works when simple denormalized
table is used

	raise model exception when a table is missing due to missing join

	search in slicer updated for latest changes

	fixed bug that prevented using cells with attributes in aliased joined
tables

0.10

Quick Summary

	Dimension defition can have a “template”. For example:

{
 "name": "contract_date",
 "template": "date"
}

	added table_rows() and cross_table()

	added simple_model(cube_name, dimension_names, measures)

	Incompatibilities: use create_model() instead of Model(**dict), if you

	were using just load_model(), you are fine.

New Features

	To address issue #8 create_model(dict) was added as replacement for
Model(dict). Model() from now on will expect correctly constructed model
objects. create_model() will be able to handle various simplifications and
defaults during the construction process.

	added info attribute to all model objects. It can be used to store custom,
application or front-end specific information

	preliminary implementation of cross_table() (interface might be changed)

	AggregationResult.table_rows() - new method that iterates through
drill-down rows and returns a tuple with key, label, path, and rest of the
fields.

	dimension in model description can specify another template dimension – all
properties from the template will be inherited in the new dimension. All
dimension properties specified in the new dimension completely override the
template specification

	added point_cut_for_dimension

	added simple_model(cube_name, dimensions, measures) – creates a single-cube
model with flat dimensions from a list of dimension names and measures from
a list of measure names. For example:

model = simple_model("contracts", ["year","contractor", "type"], ["amount"])

Slicer Server:

	/cell – return cell details (replaces /details)

Changes

	creation of a model from dictionary through Model(dict) is depreciated, use
create_model(dict) instead. All initialization code will be moved there.
Depreciation warnings were added. Old functionality retained for the time
being. (important)

	Replaced Attribute.full_name() with Attribute.ref()

	Removed Dimension.attribute_reference() as same can be achieved with
dim(attr).ref()

	AggregationResult.drilldown renamed to AggregationResults.cells

Planned Changes:

	str(Attribute) will return ref() instead of attribute name as it is more
useful

Fixes

	order of dimensions is now preserved in the Model

0.9.1

Summary: Range cuts, denormalize with slicer tool, cells in /report query

New Features

	cut_from_string(): added parsing of range and set cuts from string;
introduced requirement for key format: Keys should now have format
“alphanumeric character or underscore” if they are going to be converted to
strings (for example when using slicer HTTP server)

	cut_from_dict(): create a cut (of appropriate class) from a dictionary
description

	Dimension.attribute(name): get attribute instance from name

	added exceptions: CubesError, ModelInconsistencyError, NoSuchDimensionError,
NoSuchAttributeError, ArgumentError, MappingError, WorkspaceError and
BrowserError

StarBrowser:

	implemented RangeCut conditions

Slicer Server:

	/report JSON now accepts cell with full cell description as dictionary,
overrides URL parameters

Slicer tool:

	denormalize option for (bulk) denormalization of cubes (see the the slicer
documentation for more information)

Changes

	all /report JSON requests should now have queries wrapped in the key
queries. This was originally intended way of use, but was not correctly
implemented. A descriptive error message is returned from the server if the
key queries is not present. Despite being rather a bug-fix, it is listed
here as it requires your attention for possible change of your code.

	warn when no backend is specified during slicer context creation

Fixes

	Better handling of missing optional packages, also fixes #57 (now works
without slqalchemy and without werkzeug as expected)

	see change above about /report and queries

	push more errors as JSON responses to the requestor, instead of just failing
with an exception

Version 0.9

Important Changes

Summary of most important changes that might affect your code:

Slicer: Change all your slicer.ini configuration files to have
[workspace] section instead of old [db] or [backend]. Depreciation
warning is issued, will work if not changed.

Model: Change dimensions in model to be an array instead of a
dictionary. Same with cubes. Old style: "dimensions" = { "date" = ... }
new style: "dimensions" = [{ "name": "date", ... }]. Will work if not
changed, just be prepared.

Python: Use Dimension.hierarchy() instead of Dimension.default_hierarchy.

New Features

	slicer_context() - new method that holds all relevant information from
configuration. can be reused when creating tools that work in connected
database environment

	added Hierarchy.all_attributes() and .key_attributes()

	Cell.rollup_dim() - rolls up single dimension to a specified level. this might
later replace the Cell.rollup() method

	Cell.drilldown() - drills down the cell

	create_workspace() - new top-level method for creating a workspace by name
of a backend and a configuration dictionary. Easier to create browsers (from
possible browser pool) programmatically. The browser name might be full
module name path or relative to the cubes.backends, for example
sql.browser for default SQL denormalized browser.

	get_backend() - get backend by name

	AggregationBrowser.cell_details(): New method returning values of attributes
representing the cell. Preliminary implementation, return value might
change.

	AggregationBrowser.cut_details(): New method returning values of attributes
representing a single cut. Preliminary implementation, return value might
change.

	Dimension.validate() now checks whether there are duplicate attributes

	Cube.validate() now checks whether there are duplicate measures or details

SQL backend:

	new StarBrowser implemented:

	StarBrowser supports snowflakes or denormalization (optional)

	for snowflake browsing no write permission is required (does not have to
be denormalized)

	new DenormalizedMapper for mapping logical model to denormalized view

	new SnowflakeMapper for mapping logical model to a snowflake schema

	ddl_for_model() - get schema DDL as string for model

	join finder and attribute mapper are now just Mapper - class responsible for
finding appropriate joins and doing logical-to-physical mappings

	coalesce_attribute() - new method for coalescing multiple ways of describing
a physical attribute (just attribute or table+schema+attribute)

	dimension argument was removed from all methods working with attributes
(the dimension is now required attribute property)

	added create_denormalized_view() with options: materialize, create_index,
keys_only

Slicer:

	slicer ddl - generate schema DDL from model

	slicer test - test configuration and model against database and report list
of issues, if any

	Backend options are now in [workspace], removed configurability of custom
backend section. Warning are issued when old section names [db] and
[backend] are used

	server responds to /details which is a result of
AggregationBrowser.cell_details()

Examples:

	added simple Flask based web example - dimension aggregation browser

Changes

	in Model: dimension and cube dictionary specification during model
initialization is depreciated, list should be used (with explicitly
mentioned attribute “name”) – important

	important: Now all attribute references in the model (dimension
attributes, measures, ...) are required to be instances of Attribute() and
the attribute knows it’s dimension

	removed hierarchy argument from Dimension.all_attributes() and
Dimension.key_attributes()

	renamed builder to denormalizer

	Dimension.default_hierarchy is now depreciated in favor of
Dimension.hierarchy() which now accepts no arguments or argument None -
returning default hierarchy in those two cases

	metadata are now reused for each browser within one workspace - speed
improvement.

Fixes

	Slicer version should be same version as Cubes: Original intention was to
have separate server, therefore it had its own versioning. Now there is no
reason for separate version, moreover it can introduce confusion.

	Proper use of database schema in the Mapper

Version 0.8

New Features

	Started writing StarBrowser - another SQL aggregation browser with different
approach (see code/docs)

Slicer Server:

	added configuration option modules under [server] to load additional
modules

	added ability to specify backend module

	backend configuration is in [backend] by default, for SQL it stays in [db]

	added server config option for default prettyprint value (useful for
demontration purposes)

Documentation:

	Changed license to MIT + small addition. Please refer to the LICENSE file.

	Updated documentation - added missing parts, made reference more readable,
moved class and function reference docs from descriptive part to reference
(API) part.

	added backend documentation

	Added “Hello World!” example

Changed Features

	removed default SQL backend from the server

	moved worskpace creation into the backend module

Fixes

	Fixed create_view to handle not materialized properly (thanks to deytao)

	Slicer tool header now contains #!/usr/bin/env python

Version 0.7.1

Added tutorials in tutorials/ with models in tutorials/models/ and data in
tutorials/data/:

	
	Tutorial 1:

	
	how to build a model programatically

	how to create a model with flat dimensions

	how to aggregate whole cube

	how to drill-down and aggregate through a dimension

	
	Tutorial 2:

	
	how to create and use a model file

	mappings

	
	Tutorial 3:

	
	how hierarhies work

	drill-down through a hierarchy

	
	Tutorial 4 (not blogged about it yet):

	
	how to launch slicer server

New Features

	New method: Dimension.attribute_reference: returns full reference to an
attribute

	str(cut) will now return constructed string representation of a cut as it
can be used by Slicer

Slicer server:

	added /locales to slicer

	added locales key in /model request

	added Access-Control-Allow-Origin for JS/jQuery

Changes

	Allow dimensions in cube to be a list, not only a dictionary (internally it
is ordered dictionary)

	Allow cubes in model to be a list, not only a dictionary (internally it is
ordered dictionary)

Slicer server:

	slicer does not require default cube to be specified: if no cube is in the
request then try default from config or get first from model

Fixes

	Slicer not serves right localization regardless of what localization was
used first after server was launched (changed model localization copy to be
deepcopy (as it should be))

	Fixes some remnants that used old Cell.foo based browsing to
Browser.foo(cell, ...) only browsing

	fixed model localization issues; once localized, original locale was not
available

	Do not try to add locale if not specified. Fixes #11:
https://github.com/Stiivi/cubes/issues/11

Version 0.7

WARNING: Minor backward API incompatibility - Cuboid renamed to Cell.

Changes

	Class ‘Cuboid’ was renamed to more correct ‘Cell’. ‘Cuboid’ is a part of
cube with subset of dimensions.

	all APIs with ‘cuboid’ in their name/arguments were renamed to use ‘cell’
instead

	Changed initialization of model classes: Model, Cube, Dimension, Hierarchy,
Level to be more “pythony”: instead of using initialization dictionary, each
attribute is listed as parameter, rest is handled from variable list of key
word arguments

	Improved handling of flat and detail-less dimensions (dimensions represented
just by one attribute which is also a key)

Model Initialization Defaults:

	If no levels are specified during initialization, then dimension name is
considered flat, with single attribute.

	If no hierarchy is specified and levels are specified, then default
hierarchy will be created from order of levels

	If no levels are specified, then one level is created, with name default
and dimension will be considered flat

Note: This initialization defaults might be moved into a separate utility
function/class that will populate incomplete model

New features

Slicer server:

	changed to handle multiple cubes within model: you have to specify a cube
for /aggregate, /facts,... in form: /cube/<cube_name>/<browser_action>

	reflect change in configuration: removed view, added view_prefix and
view_suffix, the cube view name will be constructed by concatenating
view prefix + cube name + view suffix

	in aggregate drill-down: explicit dimension can be specified with
drilldown=dimension:level, such as: date:month

This change is considered final and therefore we can mark it is as API version 1.

Version 0.6

New features

Cubes:

	added ‘details’ to cube - attributes that might contain fact details which
are not relevant to aggregation, but might be interesting when displaying
facts

	added ordering of facts in aggregation browser

	SQL denormalizer can now add indexes to key columns, if requested

	one detail table can be used more than once in SQL denomralizer (such as an
organisation for both - receiver and donor), added key ``alias`` to
``joins`` in model description

Slicer server:

	added log a and log_level configuration options (under [server])

	added format= parameter to /facts, accepts json and csv

	added fields= parameter to /facts - comma separated list of returned
fields in CSV

	share single sqlalchemy engine within server thread

	limit number of facts returned in JSON (configurable by
json_record_limit in [server] section)

Experimental:
(might change or be removed, use with caution)

	added cubes searching frontend for separate cubes_search experimenal Sphinx backend (see
https://bitbucket.org/Stiivi/cubes-search)

Fixes

	fixed localization bug in fact(s) - now uses proper attribute name without
locale suffix

	fixed passing of pagination and ordering parameters from server to
aggregation browser when
requesting facts

	fixed bug when using multiple conditions in SQL aggregator

	make host/port optional separately

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Cubes 1.0.1 documentation

 Python Module Index

 c |
 s

 			

 		
 c	

 	[image: -]
 	
 cubes	

 	
 	
 cubes.common	

 			

 		
 s	

 	
 	
 server	
 HTTP WSGI Server

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Cubes 1.0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	add_dimension() (cubes.Cube method)

 	add_slicer() (cubes.Workspace method)

 	add_translation() (cubes.Namespace method)

 	

 	(cubes.Workspace method)

 	aggregate() (cubes.AggregationBrowser method)

 	

 	(cubes.Cube method)

 	aggregates_for_measure() (cubes.Cube method)

 	AggregationBrowser (class in cubes)

 	AggregationResult (class in cubes)

 	all_aggregate_attributes (cubes.Cube attribute)

 	all_attributes (cubes.Cube attribute)

 	

 	(cubes.Hierarchy attribute)

 	all_attributes() (cubes.Drilldown method)

 	

 	(cubes.Mapper method)

 	

 	assert_all_instances() (in module cubes.common)

 	assert_instance() (in module cubes.common)

 	assert_low_cardinality() (cubes.AggregationBrowser method)

 	Attribute (class in cubes)

 	attribute() (cubes.Cube method)

 	

 	(cubes.Dimension method)

 	(cubes.Level method)

 	(cubes.Mapper method)

 	attribute_list() (in module cubes)

 	AttributeBase (class in cubes)

 	attributes (cubes.Dimension attribute)

 	authorize() (cubes.Authorizer method)

 	Authorizer (class in cubes)

B

 	

 	bind() (cubes.ModelProvider method)

 	

 	browser() (cubes.Workspace method)

C

 	

 	cached() (cubes.AggregationResult method)

 	CalculatedResultIterator (class in cubes)

 	Cell (class in cubes)

 	cell_details() (cubes.AggregationBrowser method)

 	clone() (cubes.Dimension method)

 	close() (cubes.Workspace method)

 	contains_level() (cubes.Cell method)

 	create_attribute() (in module cubes)

 	create_cube() (in module cubes)

 	create_dimension() (in module cubes)

 	create_level() (in module cubes)

 	create_measure() (in module cubes)

 	create_measure_aggregate() (in module cubes)

 	create_namespace() (cubes.Namespace method)

 	

 	CrossTableFormatter (class in cubes)

 	Cube (class in cubes)

 	cube() (cubes.ModelProvider method)

 	

 	(cubes.Namespace method)

 	(cubes.Workspace method)

 	cube_features() (cubes.Workspace method)

 	cube_metadata() (cubes.ModelProvider method)

 	cube_options() (cubes.ModelProvider method)

 	cubes.common (module)

 	cubes.server.slicer (in module server)

 	cubes.server.workspace (in module server)

 	Cut (class in cubes)

 	cut_details() (cubes.AggregationBrowser method)

 	cut_for_dimension() (cubes.Cell method)

 	cuts_from_string() (in module cubes)

D

 	

 	deepest_levels() (cubes.Cell method)

 	

 	(cubes.Drilldown method)

 	default_aggregates() (cubes.Measure method)

 	default_metadata() (cubes.ModelProvider method)

 	Dimension (class in cubes)

 	dimension() (cubes.Cube method)

 	

 	(cubes.ModelProvider method)

 	(cubes.Workspace method)

 	

 	dimension_cuts() (cubes.Cell method)

 	dimension_metadata() (cubes.ModelProvider method)

 	Drilldown (class in cubes)

 	drilldown() (cubes.Cell method)

 	drilldown_for_dimension() (cubes.Drilldown method)

E

 	

 	expand_attribute_metadata() (in module cubes)

 	expand_cube_metadata() (in module cubes)

 	expand_dimension_links() (in module cubes)

 	

 	expand_dimension_metadata() (in module cubes)

 	expand_level_metadata() (in module cubes)

 	expand_roles() (cubes.SimpleAuthorizer method)

F

 	

 	fact() (cubes.AggregationBrowser method)

 	Facts (class in cubes)

 	facts() (cubes.AggregationBrowser method)

 	features() (cubes.AggregationBrowser method)

 	

 	find_cube() (cubes.Namespace method)

 	flush_lookup_cache() (cubes.Workspace method)

 	format() (cubes.CrossTableFormatter method)

G

 	

 	get_aggregates() (cubes.Cube method)

 	get_attributes() (cubes.Cube method)

 	get_localizable_attributes() (in module cubes.common)

 	

 	get_measures() (cubes.Cube method)

 	get_store() (cubes.Workspace method)

H

 	

 	has_details (cubes.Dimension attribute)

 	

 	(cubes.Level attribute)

 	has_dimension() (cubes.AggregationResult method)

 	hierarchies (cubes.Dimension attribute)

 	Hierarchy (class in cubes)

 	

 	hierarchy() (cubes.Dimension method)

 	hierarchy_limits() (cubes.Authorizer method)

 	high_cardinality_levels() (cubes.Drilldown method)

 	HTMLCrossTableFormatter (class in cubes)

I

 	

 	IgnoringDictionary (class in cubes.common)

 	import_model() (cubes.Workspace method)

 	initialize_from_store() (cubes.ModelProvider method)

 	is_base() (cubes.Cell method)

 	

 	is_builtin_function() (cubes.AggregationBrowser method)

 	is_flat (cubes.Dimension attribute)

 	is_last() (cubes.Hierarchy method)

 	items_as_strings() (cubes.Drilldown method)

K

 	

 	key_attributes() (cubes.Dimension method)

 	

 	(cubes.Hierarchy method)

L

 	

 	Level (class in cubes)

 	level() (cubes.Dimension method)

 	level_depth() (cubes.Cut method)

 	

 	(cubes.PointCut method)

 	(cubes.RangeCut method)

 	(cubes.SetCut method)

 	level_depths() (cubes.Cell method)

 	level_index() (cubes.Hierarchy method)

 	level_names (cubes.Dimension attribute)

 	levels (cubes.Dimension attribute)

 	levels_for_depth() (cubes.Hierarchy method)

 	levels_for_path() (cubes.Hierarchy method)

 	

 	levels_from_drilldown() (in module cubes)

 	link_cube() (cubes.Workspace method)

 	link_dimensions() (cubes.Cube method)

 	list_cubes() (cubes.ModelProvider method)

 	

 	(cubes.Namespace method)

 	(cubes.StaticModelProvider method)

 	(cubes.Workspace method)

 	localize() (cubes.AttributeBase method)

 	localize_attributes() (in module cubes.common)

 	localize_common() (in module cubes.common)

 	logical() (cubes.Mapper method)

M

 	

 	Mapper (class in cubes)

 	Measure (class in cubes)

 	measure() (cubes.Cube method)

 	measure_aggregate() (cubes.Cube method)

 	MeasureAggregate (class in cubes)

 	members() (cubes.AggregationBrowser method)

 	

 	MissingPackage (class in cubes.common)

 	ModelError

 	ModelIncosistencyError

 	ModelProvider (class in cubes)

 	multi_slice() (cubes.Cell method)

N

 	

 	Namespace (class in cubes)

 	namespace() (cubes.Namespace method)

 	next_level() (cubes.Hierarchy method)

 	nonadditive_type() (cubes.Cube method)

 	

 	NoSuchAttributeError

 	NoSuchDimensionError

 	NotAuthorized

P

 	

 	path_details() (cubes.AggregationBrowser method)

 	path_from_string() (in module cubes)

 	path_is_base() (cubes.Hierarchy method)

 	physical() (cubes.backends.sql.mapper.SnowflakeMapper method)

 	

 	(cubes.Mapper method)

 	physical_references() (cubes.backends.sql.mapper.SnowflakeMapper method)

 	point_cut_for_dimension() (cubes.Cell method)

 	point_slice() (cubes.Cell method)

 	

 	PointCut (class in cubes)

 	prepare_aggregates() (cubes.AggregationBrowser method)

 	prepare_order() (cubes.AggregationBrowser method)

 	previous_level() (cubes.Hierarchy method)

 	provide_aggregate() (cubes.AggregationBrowser method)

 	public_cell() (cubes.Cell method)

 	public_dimensions() (cubes.ModelProvider method)

R

 	

 	RangeCut (class in cubes)

 	read_json_file() (in module cubes.common)

 	read_model_metadata() (in module cubes)

 	read_model_metadata_bundle() (in module cubes)

 	ref() (cubes.Attribute method)

 	register_default_store() (cubes.Workspace method)

 	register_store() (cubes.Workspace method)

 	relevant_joins() (cubes.backends.sql.mapper.SnowflakeMapper method)

 	

 	remove_dimension() (cubes.Cube method)

 	report() (cubes.AggregationBrowser method)

 	requires_store() (cubes.ModelProvider method)

 	restricted_cell() (cubes.Authorizer method)

 	result_levels() (cubes.Drilldown method)

 	rollup() (cubes.Cell method)

 	

 	(cubes.Hierarchy method)

 	rollup_dim() (cubes.Cell method)

S

 	

 	server (module)

 	set() (cubes.common.IgnoringDictionary method)

 	set_locale() (cubes.Mapper method)

 	SetCut (class in cubes)

 	SimpleAuthorizer (class in cubes)

 	SimpleDataTableFormatter (class in cubes)

 	SimpleHTMLTableFormatter (class in cubes)

 	slice() (cubes.Cell method)

 	

 	SnowflakeMapper (class in cubes.backends.sql.mapper)

 	sorted_dependencies() (in module cubes.common)

 	split_logical() (cubes.Mapper method)

 	StaticModelProvider (class in cubes)

 	string_from_cuts() (in module cubes)

 	string_from_path() (in module cubes)

 	string_to_drilldown() (in module cubes)

T

 	

 	table_map() (cubes.backends.sql.mapper.SnowflakeMapper method)

 	table_rows() (cubes.AggregationResult method)

 	tables_for_attributes() (cubes.backends.sql.mapper.SnowflakeMapper method)

 	test() (cubes.AggregationBrowser method)

 	

 	TextTableFormatter (class in cubes)

 	to_dict() (cubes.AggregationResult method)

 	

 	(cubes.Cell method)

 	(cubes.Cube method)

 	(cubes.Cut method)

 	(cubes.Dimension method)

 	(cubes.Hierarchy method)

 	(cubes.Level method)

 	(cubes.PointCut method)

 	(cubes.RangeCut method)

 	(cubes.SetCut method)

 	to_str() (cubes.Cell method)

 	translation_lookup() (cubes.Namespace method)

V

 	

 	validate() (cubes.Cube method)

 	

 	(cubes.Dimension method)

W

 	

 	Workspace (class in cubes)

 	

 	write_model_metadata_bundle() (in module cubes)

 Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

 _images/url_cutting.png
cut:all transactions in year 2010

URL:
Drill-down URL pattern: cuyear2010
cut=year:2010jclass=class_key /

ut:all transactions for cass 3 n year 2010

cutall ransactions for entity 9 in year 2010

URL
cut=year:2010jcess3

Drill-down URL pattern: cut=year2010fto9
Ut=year2010jcass=3.sub_class key

cut:all transactions for ciass 3,subelass 7 in year 2010

URL
cut=year2010cass37 Sl vansactons forenty 5 inyear 2010,cass 3 subdass 7

cut=year2010jcess3 705

_images/cubes-measure_vs_aggregate.png
facts

<
S
R

measure

aggregate: Drjce_sum = price

facts

_images/schema_star.png

_images/cubes-backend_browser.png
Logical

model

3

aggregate

\/-\

il

Browser

—

Physical

Store

physical data store
(database or API)

_images/mapping_logical_to_physical.png
I Oj'ca’

Name

1 open procedure
¥ unknown

¥ competive dilogue
1 resticid procedure
W negotated procedure wihoutpublishing

Amount

sor80s6210€
s479519613€
s223187949€
3297238 367 €
2537073324 €

snare
212%
2535%
1954%
1525%
7%

_images/schema-two_joins.png
Dimension: product

—— 9 | [Coone
vt - .
ey :
L — code
oy o
gy

notes.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

Development Notes

This chapter contains notes related to Cubes development, such as:

		unresolved design decisions

		suggestions

		proposals for changes

		explaination for certain design decisions

I’ve included this document as part of documentation to get more feedback or to help understanding why
certain things are done in certain way at the time being.

Fact Table

Currently all models are required to specify fact table. This can be somehow discovered from model and
model mapping. Or from database schema itself.

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

_images/cubes-slicer_authorization_and_authentication_overview.png
request

Server

authenticate

o =

Slicer Server Authenticator

identity

authorize
cube and cell access

authorize

Workspace
(cube, cell)

i

Workspace

access/restriction

_images/denormalized_schema.png
subject dimension supplier dimension geography dim. date dim.

1 | She |)
F T > >1< >

contract

_images/dimension_attribute_implicit_map.png
product.name
—— p—

toble= column=
dimension attribute

_images/cubes-point-range-set-cut.png
(S E

point

¢

set

reference/index.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

Reference

Contents:

		Workspace Reference

		Model Reference
		Creating model objects from metadata

		Model components

		Model Providers Reference
		Model Providers

		Model Metadata

		Aggregation Browser Reference
		Aggregate browsing

		Slicing and Dicing

		Formatters Reference
		Formatters

		Aggregation Browsing Backends
		SQL

		Slicer

		Mixpanel

		Mongo DB

		HTTP WSGI OLAP Server Reference

		Authentication and Authorization
		Authentication

		Authorization

		Utility functions

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

blog/README.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

 This folder contains copies of Cubes blog-posts on http://blog.databrewery.org. They are written in Markdown for Tumblr.

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

extensions/index.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

Extension Developer’s Reference

This part of documentation is for developers that would like to develop
various cubes extensions, such as browsers, stores, formatters and more.

Contents:

		Backends
		Store

		Aggregation Browser

		Model Providers
		Cube

		Store

		Authenticators and Authorizers
		Authorizer

		Authenticator

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

backends/index.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

Backends

Backend is a collection of objects that provide Cubes functionality for
various types of data stores, browsers or model providers.

Included backends:

Contents:

		SQL Backend
		Store Configuration

		Model Requirements

		Mappings

		Joins

		MongoDB Backend
		Store Configuration

		Mappings

		Collection Filter

		Mixpanel Backend
		Store Configuration and Model

		Example

		Notes

		Slicer Server
		Store Configuration and Model

		Example

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

_images/schema-common_db_schema.png
schema: sales_datamart

store sales product
id product id ia
code Store.id ode
address amount name
— — —

_images/cubes-analytical-workspace-overview.png
Model Providers

Static Model
Provider

APl Model
Provider

090 0

sales churn activations

o

events

Stores @ @

Bl Data 2
(Mongo)

Bl Data
(Postgres)

-

Events.
(AP))

_images/schema-many_to_many-intention.png
7

interactions representative

representative id
channel name
amount team

_images/cubes-tutorial03-hierarchy-detail.png
ftem Category ~ Sub-Category ~ Line ltem

category subcategory line_item

<mumm

level key attribute

subcategory
Coegory Jabel Subestepory Jabe

¢

dimension hierarchy i attribute

_images/schema-prefix.png
dim store fisales’ dim _product
ia product id o
code store id code
address amount name.

_images/cubes-workspace_simplified.png
Qoo g

sales churn activations —

—
o 0 Q

Bl Data 2 Events
(Mongo) ey

Bl Data
(Postgres)

_images/schema-localized_labels.png

_images/dimension_attribute_prefix_map.png
dim_product.name
— i

table = column =
prefix-+ dimension atribute

_images/mapping-overview.png
logical
reference

localize, if needed

Explicit

do we have
mapping?

use mapping value as
reference

Implicit

construct reference

table and
column

table and
column

_images/cubes-sql_joins-match.png
facts

match

master

date

_images/cubes-open_data_related_servers.png
related

o

Open Slicer UK

&

related

o

_images/joins-in_physical.png
Physical Schema s

moster-detoi join master-detail join

suppliers
=E] =]

dm_organisations ft_contracts dm_country dm_region

—
consumers

_images/cubes-slicer_backend.png
Model Providers

Static Model
Provider

Slicer Model
Provider

2o

activations external events

Stores @

Local Data

L

Slicer Browser

http://otherhost/slicer

External Slicer

_images/schema-default.png
store sales product
id productid ia
code Store_id ode
address amount name

_static/file.png

_images/dimension_desc.png
evellabel (can be

dmemsinname | Uednodhoc

{deruer) PO IPPS) o)

Hrmenn
month_sname weekday
year month weekday_name

dmensio hierarchy

Receiver

industry_parme to_entity ame
industry_short_name to_eniity homepage
K to_entiy_company_id
(el ey
(used forcggregations) adtioal el
atites inccing

buman readable abel

_static/down-pressed.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

_images/localization_model_files.png
describes model translation only structure is ignored.
(shouid match master)

Slovalc sk English:en Hungarian: hu

_images/mapping-example1.png
table and column
database schema

mapping
Product.Nname o =
S —

dimension ~ attribute products sales

_images/cubes-tutorial03-drilldown_explained.png
aggregation interest drill-down context

_¥ L* actual context point

def drill_down(& cell, < dimension, path = [1):

hierarchy = < dimension.default_hierarchy

if hierarchy.path_is_base(path):
return

levels = hierarchy. levels_for_path(path, drilldown=True)

 current_level = levels[-1]
\ drilled down level

2 level_key = < dimension.attribute_reference(® current_level.key)
© level_label = < dimension.attribute_reference(current_level.label_attribute)

to be displayed

result = browser.aggregate (i cell,\drilldown=[dinension])
for record in result.drilldown:
print "%s: %d" % (record[® level labell, record["record_count"])

new slice by

drill_path = path[:] + [record[Z level key]]
& drill_down_cell = i cell.slice(< dimension, drill_path)

o<

drill_down (& drill_down_cell, < dimension, drill_path)

path + one drill-down level
sliced same
aggregation interest drill-down context

_images/cube-dims_and_cell.png
IocatiV data cell

product

time

_images/snowflake_schema.png
===

subject category subject

date

contract

supplier supplier type

city region

_images/cubes-tutorial03-hierarchy.png
level label (can be
used in ad-hoc

dimension name Jevel name
(identifier) reporting apps) (identifer)
tem Category Sub-Category (Line tem

ategory | subcategory

category subcategory

dimension hierarchy vl ey e

_images/schema-different_db_schemas.png
dimensions facts
store sales product
id productid ia
code Store_id ode
address amount name
e’ e —

slicer.man.html

 Navigation

 		
 index

 		
 modules |

 		Cubes 1.0.1 documentation »

slicer

Cubes command line utility and server

		Author:		Stefan Urbanek <stefan.urbanek@gmail.com>

		Date:		2012-11-13

		Copyright:		MIT

		Version:		0.1

		Manual section:		1

SYNOPSIS

slicer command [options]

slicer model validate [-d|–defaults] [-w|–no-warnings] [-t|–translation translation]

slicer serve config.ini

slicer extract_locale

slicer translate

slicer test

slicer ddl [–dimension-prefix dimension_prefix] [–dimension-suffix dimension_suffix] [–fact_prefix prefix] [–fact_suffix suffix] [–backend backend] url model

slicer denormalize [-p prefix] [-f|–force] [-m|materialize] [-i|–index] [-s|–schema schema] [-c|–cube cube] config.ini

DESCRIPTION

slicer is a command-line front ent to many of cubes functionalities, from
model validation to local server.

OPTIONS

		
--help, -h
		Show this help message and exit.

COMMANDS

serve

Run Cubes OLAP HTTP server.

Example server configuration file slicer.ini:

[server]
host: localhost
port: 5000
reload: yes
log_level: info

[workspace]
url: sqlite:///tutorial.sqlite
view_prefix: vft_

[model]
path: models/model_04.json

To run local server:

slicer serve slicer.ini

In the [server] section, space separated list of modules to be imported can
be specified under option modules:

[server]
modules=cutom_backend
...

For more information about OLAP HTTP server see cubes documentation.

model validate

Usage:

slicer model validate /path/to/model/directory
slicer model validate model.json
slicer model validate http://somesite.com/model.json

Optional arguments:

-d, --defaults show defaults
-w, --no-warnings disable warnings
-t TRANSLATION, --translation TRANSLATION
 model translation file

Example output:

loading model wdmmg_model.json

cubes: 1
 wdmmg
dimensions: 5
 date
 pog
 region
 cofog
 from

found 3 issues
validation results:
warning: No hierarchies in dimension 'date', flat level 'year' will be used
warning: Level 'year' in dimension 'date' has no key attribute specified
warning: Level 'from' in dimension 'from' has no key attribute specified
0 errors, 3 warnings

The tool output contains recommendation whether the model can be used:

		model can be used - if there are no errors, no warnings and no defaults used,
mostly when the model is explicitly described in every detail

		model can be used, make sure that defaults reflect reality - there are no
errors, no warnings, but the model might be not complete and default
assumptions are applied

		not recommended to use the model, some issues might emerge - there are just
warnings, no validation errors. Some queries or any other operations might
produce invalid or unexpected output

		model can not be used - model contain errors and it is unusable

model json

For any given input model produce reusable JSON model.

model extract_locale

Extract localizable parts of the model. Use this before you start translating the model to get
translation template.

model translate

Translate model using translation file:

slicer model translate model.json translation.json

ddl

Note

This is experimental command.

Generates DDL schema of a model for SQL backend

Usage:

slicer ddl [-h] [--dimension-prefix DIMENSION_PREFIX]
 [--fact-prefix FACT_PREFIX] [--backend BACKEND]
 url model

positional arguments:

url SQL database connection URL
model model reference - can be a local file path or URL

optional arguments:

--dimension-prefix DIMENSION_PREFIX
 prefix for dimension tables
--fact-prefix FACT_PREFIX
 prefix for fact tables
--backend BACKEND backend name (currently limited only to SQL backends)

denormalize

Usage:

slicer denormalize [-h] [-p PREFIX] [-f] [-m] [-i] [-s SCHEMA]
 [-c CUBE] config

positional arguments:

config slicer confuguration .ini file

optional arguments:

-h, --help show this help message and exit
-p PREFIX, --prefix PREFIX
 prefix for denormalized views (overrides config value)
-f, --force replace existing views
-m, --materialize create materialized view (table)
-i, --index create index for key attributes
-s SCHEMA, --schema SCHEMA
 target view schema (overrides config value)
-c CUBE, --cube CUBE cube(s) to be denormalized, if not specified then all
 in the model

Examples

If you plan to use denormalized views, you have to specify it in the
configuration in the [workspace] section:

[workspace]
denormalized_view_prefix = mft_
denormalized_view_schema = denorm_views

This switch is used by the browser:
use_denormalization = yes

The denormalization will create tables like denorm_views.mft_contracts for
a cube named contracts. The browser will use the view if option
use_denormalization is set to a true value.

Denormalize all cubes in the model:

slicer denormalize slicer.ini

Denormalize only one cube:

slicer denormalize -c contracts slicer.ini

Create materialized denormalized view with indexes:

slicer denormalize --materialize --index slicer.ini

Replace existing denormalized view of a cube:

slicer denormalize --force -c contracts slicer.ini

Schema

Schema where denormalized view is created is schema specified in the
configuration file. Schema is shared with fact tables and views. If you want
to have views in separate schema, specify denormalized_view_schema option
in the configuration.

If for any specific reason you would like to denormalize into a completely
different schema than specified in the configuration, you can specify it with
the --schema option.

View name

By default, a view name is the same as corresponding cube name. If there is
denormalized_view_prefix option in the configuration, then the prefix is
prepended to the cube name. Or it is possible to override the option with
command line argument --prefix.

Note

The tool will not allow to create view if it’s name is the same as fact
table name and is in the same schema. It is not even possible to
--force it. A

SEE ALSO

		Cubes documentation [http://packages.python.org/cubes/slicer.html]

 © Copyright 2010-2014, Stefan Urbanek.
 Created using Sphinx 1.2.2.

_images/mapping-logical_to_physical.png
logical
reference

Localization

is attribute is localization has attribute

localizable? requested? requested ocale?.

no locale locale = locale =

(no localization) default attr. locale requested locale

Mappings

do we have create logical use mapping value as

8 mapping exists? PPing

mappings? reference string reference
Column

column =

localize(attribute)

Table

is dimension
specified?

is fact table
specified?

table = table =
fact table prefix + cube name

table
prefix + dimension

_images/schema-labels.png
Product

product
ia
ode

price
—

Unit Price Amount

productid

mount
—_—

_static/minus.png

_images/schema-mapping.png
store

product

Sales year

total_amount

_images/localization_levels.png
Typy tovarov @.,

ma Podiel

9236002701€ 6638%

884603953 636%
[} m 569970435€ 410%
W sluzby informatnych technol 554459 144€ 398%
B Architektonické. stavebni.in . 374432 467€ 269%

W ostamé 2294439651€

_images/cubes-analytical-workspace-overview1.png
Model Providers

Static Model
Provider

APl Model
Provider

090 0

sales churn activations

o

events

Stores @ @

Bl Data 2
(Mongo)

Bl Data
(Postgres)

-

Events.
(AP))

_images/cubes-backend_store.png
Logical Physical
connect

wm o, | =

Browser Store

physical data store
(database or AP))

_images/schema-flat_dimension.png
sales

product

year

amount

_images/schema-alias.png
fesales

dim orgar

supplier id

id

clent id

amount
S—

address
—_—

_images/cubes-outer_join_aggregate_statement.png
Master Fact Outer Detail

E E 7

outer detail|

outer master O
o

o
D
outer d4 —_— | — di
master prm— p— _P—

fact table

outer detail

outer detail
match

=|=] =EEE
d2

d2.1

_images/cubes-slice_and_dice-cell.png

_images/schema_snowflake.png
6 0

_images/schema-localized_data.png
product
o

code

name_ir

_images/browser-package.png
Browser

Cu

L Point cut <> Range Cut AP setcut

_images/schema-label_attributes.png
key
label

aggregate or filer

]
- /_>2
name. "”m

T | e

Total 500

_images/logical-to-physical.png
Report

Logical Model

-

o D D

Dimension:
Geograoty

[

Hierarchy
Level I: Level 2
Country Regon

Acrite At
seographycountry || geographyregion

Mapping
Mepping

Physical Schema

Join

Fact

Dim: Country Dim: Region

Mapping Mapping

_images/cubes-model_providers.png
Static Model

add model
Static Model Provider
orkspace
1 1
1 1
i | setcube Custom Model
| | dimension, .
1 1 B
@ t‘ Custom Model - — + G
Provider
public cubes public Joreign store
dimensions model

foreign model reference
(partial description)

_images/mapping-to_localized.png
Localization

logical
reference

is localization
requested?

is attribute
localizable?

no locale
(no localization)

has attribute
requested ocale?,

v

locale =
default attr. locale

locale =

requested locale

localized logical
reference

_images/cubes-sql_joins-master.png
master date

master \dey

_images/cubes-model_metadata.png
Model

name

label

description

cubes

dimensions

public dimensions

locale

info

provider

store

mappings

joins

browser options

Logical

&
b

=

Physical

_images/cubes-sql_joins-detail.png
facts detail date

master detail

_images/schema-hierarchy1.png
sales product
product_id id
code
amount name
S—

category_code

Category

I

_images/schema-many_to_many.png
interactions

representative_group id

channel

amount

ige_representative
group_id
representative id

representative

id

team

_images/schema-hierarchy2.png
dim_date

id

year

quarter

month

month_name.

week

day.

weekday

