csvkit
Release 1.0.0

Jun 13, 2017

Contents

1 About

2 Why csvkit?

3 Table of contents

3.1 Installation

3.1.1
3.1.2 Developers
3.2 Tutorial
3.2.1 Getting started
3.2.2 Examining the data
3.2.3 Power tools
324
3.3 Command-Line Usage
3.3.1
332
333
334 Appendices
3.4 Using as a Python library
34.1
342
343
344 csvkit.unicsv
3.4.5 csvkit.sniffer
3.5 Contributing to csvkit
3.5.1
352
353
3.6 Release process
4 Authors
5 License

6 Changelog
6.1 1.0.0
6.2 0.9.0

Input. o o
Processing
Output (and Analysis)

esvkit . ..o oo
csvkitpy2 oo
cesvkitpy3o

Principles
Process for contributing code
Legalese

Users

Going elsewhere with your data

63 0.8.0 + e, 44
6.4 073 o o oo 44
6.5 072 o oo 45
6.6 071 o oo o 45
6.7 070 o o e, 45
6.8 0.6.1 o e e, 45
6.9 050 oo e 46
6.0 044 o o o 46
601 043 o o o oo 46
7 Indices and tables 47
Python Module Index 49

CHAPTER 1

About

csvkit, Release 1.0.0

2 Chapter 1. About

CHAPTER 2

Why csvkit?

Because it makes your life easier.

Convert Excel to CSV:

in2csv data.xls > data.csv

Convert JSON to CSV:

in2csv data.json > data.csv

Print column names:

csvcut -n data.csv

Select a subset of columns:

csvcut —-c¢ column_a,column_c data.csv > new.csv

Reorder columns:

csvcut —-c¢ column_c,column_a data.csv > new.csv

Find rows with matching ells:

csvgrep —c phone_number -r 555-555-\d{4}" data.csv > matching.csv

Convert to JSON:

csvjson data.csv > data.json

Generate summary statistics:

’csvstat data.csv

Query with SQL:

csvkit, Release 1.0.0

’csvsql ——query "select name from data where age > 30" data.csv > old_folks.csv

Import into PostgreSQL:

’csvsql -—db postgresqgl:///database —--insert data.csv

Extract data from PostgreSQL.::

’sql2csv —--db postgresqgl:///database ——query "select * from data" > extract.csv

And much more...

4 Chapter 2. Why csvkit?

CHAPTER 3

Table of contents

Installation

Users

csvkit is works on Python versions 2.6, 2.7, 3.3 and 3.4, as well as PyPy. It is supported on OSX and Linux. It also
works—but is tested less frequently—on Windows.

Installing csvkit is simple:

’pip install csvkit

Note: If you are installing on Ubuntu you may need to install the Python development headers prior to install csvkit:

’sudo apt—-get install python-dev python-pip python-setuptools build-essential

Note: If the installation appears to be successful but running the tools fails, try updating your version of Python
setuptools:

pip install ——upgrade setuptools
pip install --upgrade csvkit

Note: If you are using Python2 and have a recent version of pip, you may need to run pip with the additional
arguments ——allow—external argparse.

http://pypy.org/

csvkit, Release 1.0.0

Developers

If you are a developer that also wants to hack on csvkit, install it this way:

git clone git://github.com/onyxfish/csvkit.git
cd csvkit
mkvirtualenv csvkit

If running Python 2
pip install -r requirements-py2.txt

If running Python 3
pip install -r requirements-py3.txt

python setup.py develop
tox

Before writing any code be sure to read the documentation for Contributing to csvkit.

Tutorial

The csvkit tutorial walks through processing and analyzing a real dataset:

Getting started

About this tutorial

There is no better way to learn how to use a new tool than to see it applied in a real world situation. This tutorial
will explain the workings of most of the csvkit utilities (including some nifty tricks) in the context of analyzing a real
dataset.

The data will be using is a subset of the United States Defense Logistic Agency Law Enforcement Support Office’s
(LESO) 1033 Program dataset, which describes how surplus military arms have been distributed to local police forces.
This data was widely cited in the aftermath of the Ferguson, Missouri protests. The particular data we are using comes
from an NPR report analyzing the data.

This tutorial assumes you are comfortable in the command line, but does not assume any prior experience doing data
processing or analysis.

Installing csvkit

Installing csvkit is easy:

$ sudo pip install csvkit

If you have problems installing, check out the common issues described in the /nstallation section of the full docu-
mentation.

Note: If you’re familiar with virtualenv, it’s better to install csvkit inside an env, in which case you should leave off
the sudo in the previous command.

6 Chapter 3. Table of contents

http://www.npr.org/2014/09/02/342494225/mraps-and-bayonets-what-we-know-about-the-pentagons-1033-program
http://virtualenv.readthedocs.org/en/latest/

csvkit, Release 1.0.0

Getting the data

Let’s start by creating a clean workspace:

S mkdir csvkit_tutorial
$ cd csvkit_tutorial

Now let’s fetch the data:

$ curl -L -0 https://github.com/onyxfish/csvkit/raw/master/examples/realdata/ne_1033_
—data.xlsx

in2csv: the Excel killer

For purposes of this tutorial, I’ve converted this data to Excel format. (NPR published it in CSV format.) If you have
Excel you can open the file and take a look at it, but really, who wants to wait for Excel to load? Instead, let’s make it
aCSV:

’$ in2csv ne_1033_data.xlsx

You should see a CSV version of the data dumped into your terminal. All csvkit utilities write to the terminal output
(“standard out”) by default. This isn’t very useful, so let’s write it to a file instead:

’$ in2csv ne_1033_data.xlsx > data.csv

data.csv will now contain a CSV version of our original file. If you aren’t familiar with the > syntax, it literally
means “redirect standard out to a file”, but it may be more convenient to think of it as “save”.

in2csv will convert a variety of common file formats, including xls, xlsx and fixed-width into CSV format.
csvlook: data periscope

Now that we have some data, we probably want to get some idea of what’s in it. We couldn’t open it in Excel or
Google Docs, but wouldn’t it be nice if we could just take a look in the command line? Enter csvlook:

$ csvlook data.csv

Now at first the output of csvliook isn’t going to appear very promising. You’ll see a mess of data, pipe character and
dashes. That’s because this dataset has many columns and they won’t all fit in the terminal at once. To fix this we need
to learn how to reduce our dataset before we look at it.

csvcut: data scalpel

csveut is the original csvkit tool, the one that started the whole thing. With it, we can slice, delete and reorder the
columns in our CSV. First, let’s just see what columns are in our data:

$ csvcut -n data.csv
1: state

county

fips

nsn

item_name

quantity

ui

~N o 0w N

3.2. Tutorial 7

csvkit, Release 1.0.0

8: acquisition_cost
9: total_cost
10: ship_date
11: federal_supply_category
12: federal_supply_category_name
13: federal_supply_class
14: federal_supply_class_name

As you’ll can see, our dataset has fourteen columns. Let’s take a look at just columns 2, 5 and 6:

’$ csvcut -c 2,5,6 data.csv

Now we’ve reduced our output CSV to only three columns.

We can also refer to columns by their names to make our lives easier:

’$ csvcut -c county,item_name,quantity data.csv

Putting it together with pipes

Now that we understand in2csv, csvlook and csvcut we can demonstrate the power of csvkit’s when combined
with the standard command line “pipe”. Try this command:

$ csvcut —-c county,item_name,quantity data.csv | csvlook | head

All csvkit utilities accept an input file as “standard in”, in addition to as a filename. This means that we can make the
output of one csvkit utility become the input of the next. In this case, the output of csvcut becomes the input to
csvlook. This also means we can use this output with standard unix commands such as head, which prints only
the first ten lines of it’s input. Here, the output of csv1ook becomes the input of head.

Pipeability is a core feature of csvkit. Of course, you can always write your output to a file using >, but many times it
makes more sense to use pipes for speed and brevity.

Of course, we can also pipe in2csv, combining all our previous operations into one:

$ in2csv ne_1033_data.xlsx | csvcut -c county,item_name,quantity | csvlook | head

Summing up

All the csvkit utilities work standard input and output. Any utility can be piped into another and into another and then
at some point down the road redirected to a file. In this way they form a data processing “pipeline” of sorts, allowing
you to do non-trivial, repeatable work without creating dozens of intermediary files.

Make sense? If you think you’ve got it figured out, you can move on to Examining the data.

Examining the data

csvstat: statistics without code

In the previous section we saw how we could use csvlook and csvcut to peek at slices of our data. This is a good
starting place for diving into a dataset, but in practice we usually want to get the widest possible view before we start
diving into specifics.

8 Chapter 3. Table of contents

csvkit, Release 1.0.0

csvstat is designed to give us just such a broad picture of our data. It is inspired by the summary() function from the
computational statistics programming language “R”.

Let’s examine summary statistics for some selected columns from our data (remember you can use csvcut -n
data.csv to see the columns in the data):

$ csvcut -c county,acquisition_cost,ship_date data.csv | csvstat
1. county
<type 'unicode'>
Nulls: False
Unique values: 35
5 most frequent values:

DOUGLAS: 760
DAKOTA: 42
CASS: 37
HALL: 23
LANCASTER: 18

Max length: 10
2. acquisition_cost
<type 'float'>
Nulls: False
Min: 0.0
Max: 412000.0
Sum: 5438254.0
Mean: 5249.27992278
Median: 6000.0
Standard Deviation: 13360.1600088
Unique wvalues: 75
5 most frequent values:

6800.0: 304
10747.0: 195
6000.0: 105
499.0: 98
0.0: 81

3. ship_date
<type 'datetime.date'>
Nulls: False
Min: 1984-12-31
Max: 2054-12-31
Unique values: 84
5 most frequent values:

2013-04-25: 495
2013-04-26: 160
2008-05-20: 28
2012-04-16: 26
2006-11-17: 20

Row count: 1036

csvstat algorithmically infers the type of each column in the data and then performs basic statistics on it. The
particular statistics computed depend on the type of the column.

In this example the first column, county was identified as type “unicode” (text). We see that there are 35 counties
represented in the dataset and that DOUGLAS is far and away the most frequently occuring. A quick Google search
shows that there are 93 counties in Nebraska, so we know that either not every county received equipment or that the
data is incomplete. We can also find out that Douglas county contains Omabha, the state’s largest city by far.

The acquisition_cost column is type “float” (number including a decimal). We see that the largest individual
cost was 412, 000. (Probably dollars, but let’s not presume.) Total acquisition costs were 5, 438, 254.

3.2. Tutorial 9

http://www.r-project.org/

csvkit, Release 1.0.0

Lastly, the ship_date column shows us that the earliest data is from 1984 and the latest from 2054. From this we
know that there is invalid data for at least one value, since presumably the equipment being shipped does not include
time travel devices. We may also note that an unusually large amount of equipment was shipped in April, 2013.

As a journalist, this quick glance at the data gave me a tremendous amount of information about the dataset. Although
we have to be careful about assuming to much from this quick glance (always double-check the numbers!) it can be
an invaluable way to familiarize yourself with a new dataset.

csvgrep: find the data you need

After reviewing the summary statistics you might wonder what equipment was received by a particular county. To get
a simple answer to the question we can use csvgrep to search for the state’s name amongst the rows. Let’s also use
csvcut to just look at the columns we care about and csv1ook to format the output:

$ csvcut —-c county, item_name, total_cost data.csv | csvgrep -c county -m LANCASTER |,
—csvlook

LANCASTER
LANCASTER
LANCASTER
LANCASTER
LANCASTER

MINE RESISTANT VEHICLE

IMAGE INTENSIFIER,NIGHT VISION
IMAGE INTENSIFIER,NIGHT VISION
IMAGE INTENSIFIER,NIGHT VISION
IMAGE INTENSIFIER,NIGHT VISION

412000
6800
6800
6800
6800

+ +
| county | item_name | total_cost |
[e o |
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120 [
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120 [
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0O
LANCASTER	LIGHT ARMORED VEHICLE	O
\ \		
\ \		
\ \		
\ \		
\ \		
+ +

LANCASTER county contains Lincoln, Nebraska, the capital of the state and it’s second-largest city. The —m flag
means “match” and will find text anywhere in a given column—in this case the county column. For those who need
a more powerful search you can also use —r to search for a regular expression.

csvsort: order matters

Now let’s use csvsort to sort the rows by the total_cost column, in reverse (descending) order:

$ csvcut -c county,item_name,total_cost data.csv | csvgrep -c county -m LANCASTER
—scsvsort —-c total cost -r | csvlook

I

- e e |
| county | item_name | total_cost |
[g e |
| LANCASTER | MINE RESISTANT VEHICLE | 412000 |
| LANCASTER | IMAGE INTENSIFIER,NIGHT VISION | 6800 |
| LANCASTER | IMAGE INTENSIFIER,NIGHT VISION | 6800 |
| LANCASTER | IMAGE INTENSIFIER,NIGHT VISION | 6800 |

10 Chapter 3. Table of contents

csvkit, Release 1.0.0

LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6800
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0
[T fmmm e |

Two interesting things should jump out about this sorted data: that LANCASTER county got a very expensive MINE
RESISTANT VEHICLE and that it also go three other LIGHT ARMORED VEHICLE.

What commands would you use to figure out if other counties also recieved large numbers of vehicles?

Summing up

At this point you should be able to use csvkit to investigate the basic properties of a dataset. If you understand this
section, you should be ready to move onto Power tools.

Power tools
csvjoin: merging related data

One of the most common operations that we need to perform on data is “joining” it to other, related data. For instance,
given a dataset about equipment supplied to counties in Nebraska, one might reasonably want to merge that with a
dataset containing the population of each county. csvjoin allows us to take two those two datasets (equipment and
population) and merge them, much like you might do with a SQL JOIN query. In order to demonstrate this, let’s grab
a second dataset:

$ curl -L -O https://github.com/onyxfish/csvkit/raw/master/examples/realdata/acs2012_
—5yr_population.csv

Now let’s see what’s in there:

$ csvstat acs2012_5yr_population.csv
1. fips

<type 'int'>

Nulls:

Min:
Max:
Sum:

Mean:
Median:
Standard Deviation:

3
3
2

False
1001
1185
891649
31093.0
31093
53.6904709112

Unique values: 93

2. name
<type 'unicode'>
Nulls: False
3.2. Tutorial 11

csvkit, Release 1.0.0

Unique values: 93
Max length: 23

3. total_population
<type 'int'>
Nulls: False
Min: 348
Max: 518271
Sum: 1827306
Mean: 19648.4516129
Median: 6294
Standard Deviation: 62164.0702096
Unique values: 93

4. margin_of_error
<type 'int'>
Nulls: False
Min: O
Max: 115
Sum: 1800
Mean: 19.3548387097
Median: 0
Standard Deviation: 37.6927719494
Unique values: 15
5 most frequent values:

0: 73
115: 2
114: 2
99: 2
73: 2

Row count: 93

As you can see, this data file contains population estimates for each county in Nebraska from the 2012 5-year ACS
estimates. This data was retrieved from Census Reporter and reformatted slightly for this example. Let’s join it to our
equipment data:

$ csvijoiln -c fips data.csv acs2012_5yr_population.csv > joined.csv

Since both files contain a fips column, we can use that to join the two. In our output you should see the population data
appended at the end of each row of data. Let’s combine this with what we’ve learned before to answer the question
“What was the lowest population county to receive equipment?”:

$ csvcut -c county, item_name, total_population joined.csv | csvsort -c total_
—population | csvlook | head

| ————— e fo————
e \

| county | item_name |
—~total_population |

R ettt f——————
e \

| MCPHERSON | RIFLE,5.56 MILLIMETER | 348
— \

| WHEELER | RIFLE,5.56 MILLIMETER | 725
— \

| GREELEY | RIFLE,7.62 MILLIMETER | 2515,
o |

| GREELEY | RIFLE,7.62 MILLIMETER | 2515
- \

| GREELEY | RIFLE,7.62 MILLIMETER | 2515
— \

12 Chapter 3. Table of contents

http://censusreporter.org/

csvkit, Release 1.0.0

| NANCE | RIFLE,5.56 MILLIMETER [3730,
. |
| NANCE | RIFLE,7.62 MILLIMETER | 3730,

— \

Two counties with fewer than one-thousand residents were the recipients of 5.56 millimeter assault rifles. This simple
example demonstrates the power of joining datasets. Although SQL will always be a more flexible option, csvjoin
will often get you where you need to go faster.

csvstack: combining subsets

Frequently large datasets are distributed in many small files. At some point you will probably want to merge those files
for aggregate analysis. csvstack allows you to “stack” the rows from CSV files with identical headers. To demonstrate,
let’s imagine we’ve decided that Nebraska and Kansas form a “region” and that it would be useful to analyze them in
a single dataset. Let’s grab the Kansas data:

$ curl -L -0 https://github.com/onyxfish/csvkit/raw/master/examples/realdata/ks_1033_
—data.csvstack

Now let’s stack these two data files:

$ csvstack ne_1033_data.csv ks_1033_data.csv > region.csv

Using csvstat we cansee that our region. csv contains both datasets:

$ csvstat -c state,acquisition_cost region.csv
1. state
<type 'unicode'>
Nulls: False
Values: KS, NE
8. acquisition_cost
<type 'float'>
Nulls: False
Min: 0.0
Max: 658000.0
Sum: 9447912.36
Mean: 3618.50339334
Median: 138.0
Standard Deviation: 23725.9555723
Unique values: 127
5 most frequent values:

120.0: 649
499.0: 449
138.0: 311
6800.0: 304
58.71: 218

Row count: 2611

If you supply the —g flag then csvstack can also add a “grouping column” to each row, so that you can tell which
file each row came from. In this case we don’t need this, but you can imagine a situation in which instead of having
a county column each of this datasets had simply been named nebraska.csv and kansas.csv. In that case,
using a grouping column would prevent us from losing information when we stacked them.

3.2. Tutorial 13

csvkit, Release 1.0.0

csvsql and sql2csv: ultimate power

Sometimes (almost always), the command line isn’t enough. It would be crazy to try to do all your analysis using
command line tools. Often times, the correct tool for data analysis is SQL. csvsqgl and sq/2csv form a bridge that eases
migrating your data into and out of a SQL database. For smaller datasets csvsqgl can also leverage sqlite to allow
execution of ad hoc SQL queries without ever touching a database.

By default, csvsqgl will generate a create table statement for your data. You can specify what sort of database you
are using with the -1 flag:

$ csvsgl -1 sglite joined.csv
CREATE TABLE joined (
state VARCHAR (2) NOT NULL,
county VARCHAR(10) NOT NULL,
fips INTEGER NOT NULL,
nsn VARCHAR(16) NOT NULL,
item_name VARCHAR(62) NOT NULL,
quantity VARCHAR (4) NOT NULL,
ui VARCHAR(7) NOT NULL,
acquisition_cost FLOAT NOT NULL,
total_cost VARCHAR(10) NOT NULL,
ship_date DATE NOT NULL,
federal_supply_category VARCHAR (34) NOT NULL,
federal_ supply_category_name VARCHAR (35) NOT NULL,
federal_supply_class VARCHAR(25) NOT NULL,
federal_supply_class_name VARCHAR (63),
name VARCHAR(21) NOT NULL,
total_population INTEGER NOT NULL,
margin_of_error INTEGER NOT NULL
)i

Here we have the sqlite “create table” statement for our joined data. You’ll see that, like csvstat, csvsqgl has done
it’s best to infer the column types.

Often you won’t care about storing the SQL statements locally. You can also use csvsqgl to create the table directly
in the database on your local machine. If you add the ——insert option the data will also be imported:

’$ csvsgql --db sqglite:///leso.db —-—-insert joined.csv

How can we check that our data was imported successfully? We could use the sqlite command line interface, but rather
than worry about the specifics of another tool, we can also use sgl2csv:

’$ sql2csv —-db sglite:///leso.db —--query "select x* from joined"

Note that the ——query parameter to sql2csv accepts any SQL query. For example, to export Douglas county from
the joined table from our sqlite database, we would run:

$ sgl2csv ——-db sqglite:///leso.db —--query "select » from Jjoined where county='DOUGLAS';
—" > douglas.csv

Sometimes, if you will only be running a single query, even constructing the database is a waste of time. For that case,
you can actually skip the database entirely and csvsqgl will create one in memory for you:

$ csvsgl --query "select county,item_name from joined where quantity > 5;" Jjoined.csv,,
— | csvlook

SQL queries directly on CSVs! Keep in mind when using this that you are loading the entire dataset into an in-memory
database, so it is likely to be very slow for large datasets.

14 Chapter 3. Table of contents

https://www.sqlite.org/

csvkit, Release 1.0.0

Summing up

csvijoin, csvstack, csvsgl and sgl2csv represent the power tools of csvkit. Using this tools can vastly
simplify processes that would otherwise require moving data between other systems. But what about cases where
these tools still don’t cut it? What if you need to move your data onto the web or into a legacy database system? We’ve
got a few solutions for those problems in our final section, Going elsewhere with your data.

Going elsewhere with your data
csvjson: going online

Very frequently one of the last steps in any data analysis is to get the data onto the web for display as a table, map or
chart. CSV is rarely the ideal format for this. More often than not what you want is JSON and that’s where csvjson
comes in. csvjson takes an input CSV and outputs neatly formatted JSON. For the sake of illustration, let’s use
csvcut and csvgrep to convert just a small slice of our data:

$ csvcut —-c county,item_name data.csv | csvgrep —-c county -m "GREELEY" | csvjson —-—
—~indent 4

[
"county": "GREELEY",

"item_name": "RIFLE,7.62 MILLIMETER"

"county": "GREELEY",
"item_name": "RIFLE,7.62 MILLIMETER"

"county": "GREELEY",
"item_name": "RIFLE,7.62 MILLIMETER"

A common usage of turning a CSV into a JSON file is for usage as a lookup table in the browser. This can be illustrated
with the ACS data we looked at earlier, which contains a unique £ips code for each county:

$ csvijson --indent 4 --key fips acs2012_5yr_population.csv | head

{

"31001": {
"fips": "31001",
"name": "Adams County, NE",
"total_population": "31299",
"margin_of_error": "0O"

}I

"31003": {
"fips": "31003",
"name": "Antelope County, NE",

For those making maps, csvjson can also output GeoJSON, see its documentation for more details.

csvpy: going into code

For the programmers out there, the command line is rarely as functional as just writing a little bit of code. csvpy
exists just to make a programmer’s life easier. Invoking it simply launches a Python interactive terminal, with the data
preloaded into a CSV reader:

3.2. Tutorial 15

csvkit, Release 1.0.0

$ csvpy data.csv

Welcome! "data.csv" has been loaded in a CSVKitReader object named "reader".
>>> print len(list (reader))

1037

>>> quit ()

In addition to being a time-saver, because this uses csvkit’s internal CSVKitReader the reader is Unicode aware.

csvformat: for legacy systems

It is a foundational principle of csvkit that it always outputs cleanly formatted CSV data. None of the normal csvkit
tools can be forced to produce pipe or tab-delimited output, despite these being common formats. This principle is
what allows the csvkit tools to chain together so easily and hopefully also reduces the amount of crummy, non-standard
CSV files in the world. However, sometimes a legacy system just has to have a pipe-delimited file and it would be
crazy to make you use another tool to create it. That’s why we’ve got csvformat.

Pipe-delimited:

’$ csvformat -D \| data.csv

Tab-delimited:

’$ csvformat -T data.csv

Quote every cell:

’$ csvformat -U 1 data.csv

Ampersand-delimited, dollar-signs for quotes, quote all strings, and asterisk for line endings:

’$ csvformat -D \& -Q \$ -U 2 -M * data.csv

You get the picture.

Summing up

Thus concludes the csvkit tutorial. At this point, I hope, you have a sense a breadth of possibilities these tools open
up with a relative small number of command line tools. Of course, this tutorial has only scratched the surface of the
available options, so remember to check the documentation for each tool as well.

So armed, go forth and expand the empire of the king of tabular file formats.

Command-Line Usage

csvkit is comprised of a number of individual command line utilities that be loosely divided into a few major categories:
Input, Processing, and Output. Documentation and examples for each utility are described on the following pages.

Input

in2csv

16 Chapter 3. Table of contents

csvkit, Release 1.0.0

Description

Converts various tabular data formats into CSV.

Converting fixed width requires that you provide a schema file with the “-s” option. The schema file should have the

following format:

column, start, length
name, 0, 30

birthday, 30,10

age, 40,3

The header line is required though the columns may be in any order:

usage: in2csv [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-f FORMAT] [-s SCHEMA]
[FILE]

Convert common, but less awesome, tabular data formats to CSV.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept
input on STDIN.

optional arguments:

-h, —-help show this help message and exit

-f FORMAT, —--format FORMAT
The format of the input file. If not specified will be
inferred from the file type. Supported formats: csv,
dbf, fixed, geojson, json, xls, xlsx.

-s SCHEMA, --schema SCHEMA
Specifies a CSV-formatted schema file for converting
fixed-width files. See documentation for details.

-k KEY, —--key KEY Specifies a top-level key to use look within for a
list of objects to be converted when processing JSON.

-y SNIFFLIMIT, --snifflimit SNIFFLIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

——-sheet SHEET The name of the XLSX sheet to operate on.

--no-inference Disable type inference when parsing the input.

See also: Arguments common to all utilities.

Note: DBF format is only supported when running on Python 2.

Examples

Convert the 2000 census geo headers file from fixed-width to CSV and from latin-1 encoding to utf8:

$ in2csv -e is0-8859-1 —-f fixed -s examples/realdata/census_2000/census2000_geo_
—sschema.csv examples/realdata/census_2000/usgeo_excerpt.upl > usgeo.csv

Note: A library of fixed-width schemas is maintained in the f s project:

3.3. Command-Line Usage

17

csvkit, Release 1.0.0

https://github.com/onyxfish/ffs

Convert an Excel .xls file:

’$ in2csv examples/test.xls

Standardize the formatting of a CSV file (quoting, line endings, etc.):

’$ in2csv examples/realdata/FY09_EDU_Recipients_by_State.csv

Fetch csvkit’s open issues from the Github API, convert the JSON response into a CSV and write it to a file:

$ curl https://api.github.com/repos/onyxfish/csvkit/issues?state=open | in2csv -f_
—Jjson -v > issues.csv

Convert a DBase DBF file to an equivalent CSV:

$ in2csv examples/testdbf.dbf > testdbf_converted.csv

Fetch the ten most recent robberies in Oakland, convert the GeoJSON response into a CSV and write it to a file:

$ curl "http://oakland.crimespotting.org/crime-data?format=json&type=robbery&count=10
—" | in2csv -f geojson > robberies.csv

sql2csv

Description

Executes arbitrary commands against a SQL database and outputs the results as a CSV:

usage: sqgl2csv [-h] [-v] [-1] [-—db CONNECTION_STRING] [-g QUERY] [-H] [FILE]
Execute an SQL query on a database and output the result to a CSV file.
positional arguments:

FILE The file to use as SQL query. If both FILE and QUERY

are omitted, query will be read from STDIN.

optional arguments:

-h, ——-help show this help message and exit
-v, ——-verbose Print detailed tracebacks when errors occur.
-1, ——-linenumbers Insert a column of line numbers at the front of the

output. Useful when piping to grep or as a simple
primary key.

——db CONNECTION_STRING
An sglalchemy connection string to connect to a
database.

——query QUERY
The SQL query to execute. If specified, it overrides
FILE and STDIN.

—-H, ——no-header-row Do not output column names.

18 Chapter 3. Table of contents

https://github.com/onyxfish/ffs

csvkit, Release 1.0.0

Examples

Load sample data into a table using csvsg/ and then query it using sql2csv:

$ csvsgl —--db "sqglite:///dummy.db" —--table "test" --insert examples/dummy.csv
$ sgl2csv —--db "sqglite:///dummy.db" --query "select x from test"

Load data about financial aid recipients into Postgresql. Then find the three states that received the most, while also
filtering out empty rows:

$ createdb recipients

$ csvsgl —--db "postgresqgl:///recipients" —--table "fy09" --insert examples/realdata/
—FY09_EDU_Recipients_by_State.csv

$ sgl2csv —-db "postgresqgl:///recipients" --query "select x from fy09 where \"State
—Name\" != "' order by fy09.\"TOTAL\" limit 3"

You can even use it as a simple SQL calculator (in this example an in-memory sqlite database is used as the default):

$ sgl2csv —-—-query "select 300 % 47 % 14 % 27 + 7000"

Processing
csvclean

Description

Cleans a CSV file of common syntax errors. Outputs [basename]_out.csv and [basename]_err.csv, the former contain-
ing all valid rows and the latter containing all error rows along with line numbers and descriptions:

usage: csvclean [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-n]
[FILE]

Fix common syntax errors in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept
input on STDIN.

optional arguments:
-h, --help show this help message and exit
-n, —-—-dry-run If this argument is present, no output will be
created. Information about what would have been done
will be printed to STDERR.

See also: Arguments common to all utilities.

Examples

Test a file with known bad rows:

$ csvclean -n examples/bad.csv

3.3. Command-Line Usage 19

csvkit, Release 1.0.0

Line 3: Expected 3 columns, found 4 columns
Line 4: Expected 3 columns, found 2 columns

csvcut

Description

Filters and truncates CSV files. Like unix “cut” command, but for tabular data:

usage: csvcut [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] I[-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-n] [-c COLUMNS] [-s] [-1]
[FILE]

Filter and truncate CSV files. Like unix "cut" command, but for tabular data.
positional arguments:
FILE The CSV file to operate on. If omitted, will accept
input on STDIN.

optional arguments:

-h, —--help show this help message and exit
-n, —-names Display column names and indices from the input CSV
and exit.

-c COLUMNS, --columns COLUMNS
A comma separated list of column indices or names to
be extracted. Defaults to all columns.

—-C NOT_COLUMNS, --not-columns NOT_COLUMNS
A comma separated list of column indices or names to
be excluded. Defaults to no columns.

-x, ——delete—-empty-rows
After cutting, delete rows which are completely empty.

See also: Arguments common to all utilities.

Note: csvcut does not implement row filtering, for this you should pipe data to csvgrep.

Examples

Print the indices and names of all columns:

$ csvcut —-n examples/realdata/FY09_EDU_Recipients_by_ State.csv
1: State Name

2: State Abbreviate

3: Code

4: Montgomery GI Bill-Active Duty

5: Montgomery GI Bill- Selective Reserve

6: Dependents' Educational Assistance

7: Reserve Educational Assistance Program

8: Post-Vietnam Era Veteran's Educational Assistance Program
9: TOTAL

10:

Extract the first and third columns:

20 Chapter 3. Table of contents

csvkit, Release 1.0.0

’$ csvcut -c 1,3 examples/realdata/FY09_EDU_Recipients_by_State.csv ‘

Extract columns named “TOTAL” and “State Name” (in that order):

’$ csvcut —-c TOTAL, "State Name" examples/realdata/FY09_EDU_Recipients_by_State.csv ‘

Add line numbers to a file, making no other changes:

’$ csvcut -1 examples/realdata/FY09_EDU_Recipients_by_State.csv ‘

csvgrep

Description

Filter tabular data to only those rows where certain columns contain a given value or match a regular expression:

usage: csvgrep [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p ESCAPECHAR] [-e ENCODING] [-1] [-n] [-c COLUMNS] [-r]
[FILE] [PATTERN]

Like the unix "grep" command, but for tabular data.
positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:

-h, —-help show this help message and exit
-n, —-names Display column names and indices from the input CSV
and exit.

—c COLUMNS, —-columns COLUMNS
A comma separated list of column indices or names to
be searched.

-m PATTERN, —-match PATTERN
The string to search for.

-r REGEX, —--regex REGEX
If specified, must be followed by a regular expression
which will be tested against the specified columns.

—-f MATCHFILE, —--file MATCHFILE
If specified, must be the path to a file. For each
tested row, if any line in the file (stripped of line
separators) is an exact match for the cell value, the
row will pass.

-i, ——invert-match If specified, select non-matching instead of matching
rOWS .

See also: Arguments common to all utilities.

NOTE: Even though ‘-m’, ‘-r’, and ‘-f” are listed as “optional” arguments, you must specify one of them.

Examples

Search for the row relating to Illinois:

3.3. Command-Line Usage 21

csvkit, Release 1.0.0

’$ csvgrep -c¢ 1 -m ILLINOIS examples/realdata/FY09_EDU_Recipients_by_State.csv

Search for rows relating to states with names beginning with the letter “T”:

’$ csvgrep —-c¢ 1 -r "7I" examples/realdata/FY09_EDU_Recipients_by_State.csv

csvjoin
Description

Merges two or more CSV tables together using a method analogous to SQL JOIN operation. By default it performs an
inner join, but full outer, left outer, and right outer are also available via flags. Key columns are specified with the -c
flag (either a single column which exists in all tables, or a comma-seperated list of columns with one corresponding to
each). If the columns flag is not provided then the tables will be merged “sequentially”, that is they will be merged in
row order with no filtering:

usage: csvjoin [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-7J JOIN] [--outer] [--left]
[-—right]

FILES [FILES ...]
Execute a SQL-1like join to merge CSV files on a specified column or columns.

positional arguments:
FILES The CSV files to operate on. If only one is specified,
it will be copied to STDOUT.

optional arguments:

-h, --help show this help message and exit

—-c COLUMNS, --columns COLUMNS
The column name(s) on which to join. Should be either
one name (or index) or a comma-separated list with one
name (or index) for each file, in the same order that
the files were specified. May also be left
unspecified, in which case the two files will be
joined sequentially without performing any matching.

——outer Perform a full outer join, rather than the default
inner join.
-—left Perform a left outer join, rather than the default

inner join. If more than two files are provided this
will be executed as a sequence of left outer joins,
starting at the left.

—-right Perform a right outer join, rather than the default
inner join. If more than two files are provided this
will be executed as a sequence of right outer joins,
starting at the right.

Note that the join operation requires reading all files into memory. Don't try
this on very large files.

See also: Arguments common to all utilities.

22 Chapter 3. Table of contents

csvkit, Release 1.0.0

Examples

csvijoin —-c¢ "ColumnKey,Column Key" —--outer filel.csv file2.csv

This command says you have two files to outer join, filel.csv and file2.csv. The key column in filel.csv is ColumnKey,

the key column in file2.csv is Column Key.

csvsort

Description

Sort CSV files. Like unix “sort” command, but for tabular data:

usage: csvsort [-h] [-d DELIMITER] [-t] [—-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-n] [-c COLUMNS] [-r]
[FILE]

Sort CSV files. Like unix "sort" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept
input on STDIN.

optional arguments:

-h, —--help show this help message and exit

-y SNIFFLIMIT, —--snifflimit SNIFFLIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.
Specify the encoding the input file.

-n, —--names Display column names and indices from the input CSV
and exit.

—-c COLUMNS, --columns COLUMNS
A comma separated list of column indices or names to
be extracted. Defaults to all columns.

-r, —-reverse Sort in descending order.

--no-inference Disable type inference when parsing the input.

See also: Arguments common to all utilities.

Examples

Sort the veteran’s education benefits table by the “TOTAL” column:

$ cat examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsort —-c 9

View the five states with the most individuals claiming veteran’s education benefits:

$ cat examples/realdata/FY09_EDU_Recipients_by_State.csv | csvcut -c 1,9 | csvsort -r,
—-c 2 | head -n 5

csvstack

3.3. Command-Line Usage 23

csvkit, Release 1.0.0

Description

Stack up the rows from multiple CSV files, optionally adding a grouping value to each row:

usage: csvstack [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING] [-g GROUPS] [-n GROUP_NAME]
FILES [FILES ...]

Stack up the rows from multiple CSV files, optionally adding a grouping value.

positional arguments:
FILES

optional arguments:

-h, --help show this help message and exit

—-g GROUPS, —--groups GROUPS
A comma-seperated list of values to add as "grouping
factors", one for each CSV being stacked. These will
be added to the stacked CSV as a new column. You may
specify a name for the grouping column using the -n
flag.

-n GROUP_NAME, --group—name GROUP_NAME
A name for the grouping column, e.g. "year". Only used
when also specifying -g.

—-—filenames Use the filename of each input file as its grouping
value. When specified, -g will be ignored.

See also: Arguments common to all utilities.

Examples

Contrived example: joining a set of homogoenous files for different years:

$ csvstack —g 2009,2010 examples/realdata/FY09_EDU_Recipients_by_State.csv examples/
—realdata/Datagov_FY10_EDU_recp_by_State.csv

Output (and Analysis)
csvformat

Description

Convert a CSV file to a custom output format.:

usage: csvformat [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-S] [-V]
[-D OUT_DELIMITER] [-T] [-Q OUT_QUOTECHAR] [-U {0,1,2,3}]
[-B] [-P OUT_ESCAPECHAR] [-M OUT_LINETERMINATOR]
[

FILE]
Convert a CSV file to a custom output format.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

24 Chapter 3. Table of contents

csvkit, Release 1.0.0

input on STDIN.

optional arguments:

-D OUT_DELIMITER, —-out-delimiter OUT_DELIMITER
Delimiting character of the output CSV file.

-T, ——out-tabs Specifies that the output CSV file is delimited with
tabs. Overrides "-D".

—Q OUT_QUOTECHAR, —--out—quotechar OUT_QUOTECHAR
Character used to quote strings in the output CSV
file.

-Uu {0,1,2,3}, —--out—quoting {0,1,2,3}
Quoting style used in the output CSV file. 0 = Quote
Minimal, 1 = Quote All, 2 = Quote Non-numeric, 3 =
Quote None.

-B, ——out-doublequote
Whether or not double quotes are doubled in the output
CSV file.

—-P OUT_ESCAPECHAR, —-out-escapechar OUT_ESCAPECHAR
Character used to escape the delimiter in the output
CSVv file if ——quoting 3 ("Quote None") is specified
and to escape the QUOTECHAR if --doublequote is not
specified.

-M OUT_LINETERMINATOR, —-out-lineterminator OUT_LINETERMINATOR
Character used to terminate lines in the output CSV
file.

See also: Arguments common to all utilities.

Examples

Convert “standard” CSV file to a pipe-delimited one:

’$ csvformat -D "|" examples/dummy.csv

Convert to ridiculous line-endings:

’$ csvformat -M "\r" examples/dummy.csv

csvjson

Description

Converts a CSV file into JSON or GeoJSON (depending on flags):

usage: csvijson [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-H] [-v] [-1]
[-—zero] [-1 INDENT] [-k KEY] [--lat LAT] [-—-lon LON]
[-—-crs CRS]
[FILE]

Convert a CSV file into JSON (or GeoJSON) .

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

3.3. Command-Line Usage 25

csvkit, Release 1.0.0

input on STDIN.

optional arguments:
-1 INDENT, --indent INDENT
Indent the output JSON this many spaces. Disabled by

default.

-k KEY, —-key KEY Output JSON as an array of objects keyed by a given
column, KEY, rather than as a list. All values in the
column must be unique. If —--lat and —-lon are also
specified, this column will be used as GeoJSON Feature
ID.

-—lat LAT A column index or name containing a latitude. Output

will be GeoJSON instead of JSON. Only wvalid if --lon
is also specified.

——lon LON A column index or name containing a longitude. Output
will be GeoJSON instead of JSON. Only wvalid if --lat
is also specified.

—-—crs CRS A coordinate reference system string to be included
with GeoJSON output. Only valid if --lat and --lon are
also specified.

See also: Arguments common to all utilities.

Examples

Convert veteran’s education dataset to JSON keyed by state abbreviation:

$ csvijson -k "State Abbreviate" -i 4 examples/realdata/FY09_EDU_Recipients_by_State.
—CSV

Results in a JSON document like:

[...]
"WA" :
{

nw., wn
. 14

"Code": "53",

"Reserve Educational Assistance Program": "549",

"Dependents' Educational Assistance": "2,192",

"Montgomery GI Bill-Active Duty": "7,969",

"State Name": "WASHINGTON",

"Montgomery GI Bill- Selective Reserve": "769",

"State Abbreviate": "WA",

"Post—Vietnam Era Veteran's Educational Assistance Program": "13",
"TOTAL": "11,492"

Converting locations of public art into GeoJSON:

$ csvijson --lat latitude --lon longitude —--k slug —--crs EPSG:4269 -1 4 examples/test_
—geo.csv

Results in a GeoJSON document like:

26 Chapter 3. Table of contents

csvkit, Release 1.0.0

"type": "FeatureCollection",
"bbox": [
-95.334619,
32.299076986939205,
-95.250699,
32.351434
]I
"crs": |
"type": "name",
"properties": {
"name": "EPSG:4269"
}
}I
"features": [

{

"geometry": |
"type": "Point",
"coordinates": [

-95.30181,
32.35066

by

"type": "Feature",

"id": "dcl",

"properties": {
"photo_credit": "",

"description”: "In addition to being the only coffee shop in downtown,

—Tyler, DCL also features regular exhibitions of work by local artists.",
"artist": "",
"title": "Downtown Coffee Lounge",
"install_date": "",
"address": "200 West Erwin Street",
"last_seen_date": "3/30/12",
"type": "Gallery",
"photo_url": ""

csviook

Description

Renders a CSV to the command line in a readable, fixed-width format:

usage: csvlook [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING]
[FILE]

Render a CSV file in the console as a fixed-width table.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

3.3. Command-Line Usage

27

csvkit, Release 1.0.0

input on STDIN.

optional arguments:
-h, --help show this help message and exit

If a table is too wide to display properly try truncating it using csvcut.
If the table is too long, try filtering it down with grep or piping the output to less.

See also: Arguments common to all utilities.

Examples

Basic use:

’$ csvlook examples/testfixed_converted.csv

This utility is especially useful as a final operation when piping through other utilities:

’$ csvcut -c 9,1 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvlook

csvpy

Description

Loads a CSV file into a csvkit .CSVKitReader object and then drops into a Python shell so the user can inspect
the data however they see fit:

usage: csvpy [-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-H] [-Vv]
FILE

Load a CSV file into a CSVKitReader object and then drops into a Python shell.

positional arguments:
FILE The CSV file to operate on.

optional arguments:
-h, —-help show this help message and exit
——dict Use CSVKitDictReader instead of CSVKitReader.

This utility will automatically use the IPython shell if it is installed, otherwise it will use the running Python shell.

Note: Due to platform limitations, csvpy does not accept file input on STDIN.

See also: Arguments common to all utilities.

Examples

Basic use:

28 Chapter 3. Table of contents

csvkit, Release 1.0.0

$ csvpy examples/dummy.csv

Welcome! "examples/dummy.csv" has been loaded in a CSVKitReader object named "reader".
>>> reader.next ()

[u'a', u'b', u'c']

As a dictionary:

$ csvpy —-dict examples/dummy.csv —-v

Welcome! "examples/dummy.csv" has been loaded in a CSVKitDictReader object named
—"reader".

>>> reader.next ()

{u'a': u'l', u'c': u'3’', u'b': u'2'}
csvsql
Description

Generate SQL statements for a CSV file or execute those statements directly on a database. In the latter case supports
both creating tables and inserting data:

[-h] [-d DELIMITER] [-t] [-g QUOTECHAR] [-u {0,1,2,3}] [-Db]

[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-H] [-V]

[~y SNIFFLIMIT]

[-1 {access, sybase,sglite,informix, firebird,mysqgl, oracle,maxdb,

usage: csvsqgl

—postgresgl,mssqgl}]
[-—db CONNECTION_STRING] [-—insert]
[FILE]

Generate SQL statements for a CSV file or create execute those statements
directly on a database.

Generate a SQL CREATE TABLE statement for a CSV file.

positional arguments:
FILE The CSV file(s) to operate on. If omitted, will accept
input on STDIN.

optional arguments:
-h, ——-help show this help message and exit
-y SNIFFLIMIT, —--snifflimit SNIFFLIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "O0" to disable sniffing entirely.
-1 {access,sybase,sqglite,informix, firebird, mysqgl, oracle,maxdb, postgresqgl,mssgl}, —-—
—dialect {access, sybase,sqglite, informix, firebird,mysqgl,oracle,maxdb,postgresqgl,mssqgl}
Dialect of SQL to generate. Only valid when —--db is
not specified.
——db CONNECTION_STRING
If present, a sglalchemy connection string to use to
directly execute generated SQL on a database.

—-—query QUERY Execute one or more SQL queries delimited by ";" and
output the result of the last query as CSV.

—-—-insert In addition to creating the table, also insert the
data into the table. Only valid when --db is
specified.

--table TABLE_NAME Specify a name for the table to be created. If

omitted, the filename (minus extension) will be used.

3.3. Command-Line Usage 29

csvkit, Release 1.0.0

—--no—-constraints Generate a schema without length limits or null
checks. Useful when sampling big tables.

—-—-no-create Skip creating a table. Only valid when --insert is
specified.

—--blanks Do not coerce empty strings to NULL values.

—-—-no—inference Disable type inference when parsing the input.

——db-schema Optional name of database schema to create table(s)
in.

See also: Arguments common to all utilities.

For information on connection strings and supported dialects refer to the SQLAlchemy documentation.

Note: Using the ——query option may cause rounding (in Python 2) or introduce [Python floating point issues](https:
//docs.python.org/3.4/tutorial/floatingpoint.html) (in Python 3).

Examples

Generate a statement in the PostgreSQL dialect:

$ csvsgl —-i postgresql examples/realdata/FY09_EDU_Recipients_by_State.csv

Create a table and import data from the CSV directly into Postgres:

$ createdb test
$ csvsgql —--db postgresqgl:///test —--table fy09 --insert examples/realdata/FYO09_EDU_
—Recipients_by_State.csv

For large tables it may not be practical to process the entire table. One solution to this is to analyze a sample of the
table. In this case it can be useful to turn off length limits and null checks with the no-constraints option:

$ head —-n 20 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsgl ——-no-—
—constraints —--table fy09

Create tables for an entire folder of CSVs and import data from those files directly into Postgres:

$ createdb test
$ csvsgl --db postgresqgl:///test -—-insert examples/*.csv

You can also use CSVSQL to “directly” query one or more CSV files. Please note that this will create an in-memory
SQL database, so it won’t be very fast:

$ csvsgl --query "select m.usda_id, avg(i.sepal_length) as mean_sepal_length from_
—iris as 1 Jjoin irismeta as m on (i.species = m.species) group by m.species"
—examples/iris.csv examples/irismeta.csv

csvstat

Description

Prints descriptive statistics for all columns in a CSV file. Will intelligently determine the type of each column and
then print analysis relevant to that type (ranges for dates, mean and median for integers, etc.):

30 Chapter 3. Table of contents

http://www.sqlalchemy.org/docs/dialects/
https://docs.python.org/3.4/tutorial/floatingpoint.html
https://docs.python.org/3.4/tutorial/floatingpoint.html

csvkit, Release 1.0.0

usage: csvstat [-h] [-d DELIMITER] [-t] [—-g QUOTECHAR] [-u {0,1,2,3}] [-Db]
[-p° ESCAPECHAR] [-e ENCODING]
[FILE]

Print descriptive statistics for all columns in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept
input on STDIN.

optional arguments:

-h, —--help show this help message and exit

-y SNIFFLIMIT, --snifflimit SNIFFLIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-c COLUMNS, --columns COLUMNS
A comma separated list of column indices or names to
be examined. Defaults to all columns.

——max Only output max.

--min Only output min.

——sum Only output sum.

—-mean Only output mean.

—--median Only output median.

—-—stdev Only output standard deviation.
—-—nulls Only output whether column contains nulls.
—-—unique Only output unique values.
—-—freq Only output frequent values.
—-—len Only output max value length.
—-—count Only output row count

See also: Arguments common to all utilities.

Examples

Basic use:

$ csvstat examples/realdata/FY09_EDU_Recipients_by_State.csv

When an statistic name is passed, only that stat will be printed:

$ csvstat —--freq examples/realdata/FY09_EDU_Recipients_by_State.csv

1. State Name: None

2. State Abbreviate: None

3. Code: None

4. Montgomery GI Bill-Active Duty: 3548.0

5. Montgomery GI Bill- Selective Reserve: 1019.0

6. Dependents' Educational Assistance: 1261.0

7. Reserve Educational Assistance Program: 715.0

8. Post-Vietnam Era Veteran's Educational Assistance Program: 6.0
9. TOTAL: 6520.0
10. _unnamed: None

If a single stat and a single column are requested, only a value will be returned:

3.3. Command-Line Usage 31

csvkit, Release 1.0.0

$ csvstat -c 4 —-—-freq examples/realdata/FY09_EDU_Recipients_by_State.csv

3548.0

Appendices

Arguments common to all utilities

All utilities which accept CSV as input share a set of common command-line arguments:

—-d DELIMITER, —-delimiter DELIMITER
Delimiting character of the input CSV file.
-t, ——tabs Specifies that the input CSV file is delimited with
tabs. Overrides "-d".
—g QUOTECHAR, ——-quotechar QUOTECHAR
Character used to quote strings in the input CSV file.
-u {0,1,2,3}, —-—-quoting {0,1,2,3}
Quoting style used in the input CSV file. 0 = Quote

Minimal, 1 = Quote All, 2 = Quote Non-numeric, 3 =
Quote None.

-b, ——doublequote Whether or not double quotes are doubled in the input
CSV file.

-p ESCAPECHAR, —-escapechar ESCAPECHAR
Character used to escape the delimiter if --quoting 3
("Quote None") is specified and to escape the
QUOTECHAR if --doublequote is not specified.

-z MAXFIELDSIZE, —-—maxfieldsize MAXFIELDSIZE
Maximum length of a single field in the input CSV

file.
-H, —-—no-header-row Specifies that the input CSV file has no header row.
—e ENCODING, --encoding ENCODING
-S, ——skipinitialspace

Ignore whitespace immediately following the delimiter.
-v, ——verbose Print detailed tracebacks when errors occur.

Specify the encoding the input file.
-1, ——-linenumbers Insert a column of line numbers at the front of the

output. Useful when piping to grep or as a simple
primary key.

——zero When interpreting or displaying column numbers, use
zero-based numbering instead of the default 1l-based
numbering.

These arguments may be used to override csvkit’s default “smart” parsing of CSV files. This is frequently necessary if
the input file uses a particularly unusual style of quoting or is an encoding that is not compatible with utf-8. Not every

command is supported by every tool, but the majority of them are.

Note that the output of csvkit’s utilities is always formatted with “default” formatting options. This means that when
executing multiple csvkit commands (either with a pipe or via intermediary files) it is only ever necessary to specify
formatting arguments the first time. (And doing so for subsequent commands will likely cause them to fail.)

Tips and Tricks

32 Chapter 3. Table of contents

csvkit, Release 1.0.0

Reading compressed CSVs

csvkit has builtin support for reading gzip or bz2 compressed input files. This is automatically detected based on
the file extension. For example:

$ csvstat examples/dummy.csv.gz
$ csvstat examples/dummy.csv.bz?2

Please note, the files are decompressed in memory, so this is a convenience, not an optimization.

Specifying STDIN as a file

Most tools default to STDIN if no filename is specified, but tools like csvjoin and csvstack accept multiple files, so
this is not possible. To work around this it is also possible to specify STDIN by using — as a filename. For example,
these three commands are functionally identical:

$ csvstat examples/dummy.csv
$ cat examples/dummy.csv | csvstat
$ cat examples/dummy.csv | csvstat -

This specification allows you to, for instance, csvstack input on STDIN with another file:

’$ cat ~/src/csvkit/examples/dummy.csv | csvstack ~/src/csvkit/examples/dummy3.csv -

Using as a Python library

csvkit is designed to be used a replacement for most of Python’s csv module. Important parts of the API are docu-
mented on the following pages.

Don’t!

’import csv

Do!

’import csvkit

csvkit

This module contains csvkit’s superpowered replacement for the builtin csv module. For Python 2 users, the greatest
improvement over the standard library full unicode support. Python 3’s csv module supports unicode internally, so
this module is provided primarily for compatability purposes.

e Python 2: csvkit.py2.

e Python 3: csvkit.py3.

csvkit.py2

Python2-specific classes.

3.4. Using as a Python library 33

https://docs.python.org/2.7/library/csv.html#module-csv
https://docs.python.org/2.7/library/csv.html#module-csv
https://docs.python.org/2.7/library/csv.html#module-csv

csvkit, Release 1.0.0

class csvkit.py2.CSVKitReader (f, encoding="utf-8’, maxfieldsize=None, **kwargs)
A unicode-aware CSV reader.

line_num
next ()

class csvkit.py2.CSVKitWriter (f, encoding="utf-8’, line_numbers=False, **kwargs)
A unicode-aware CSV writer.

writerow (row)
writerows (rows)

class csvkit.py2.CSVKitDictReader (f, fieldnames=None, restkey=None, restval=None, *args,

**kwargs)
A unicode-aware CSV DictReader.

fieldnames
next ()

class csvkit.py2.CSVKitDictWriter (f, fieldnames, encoding="utf-8’, line_numbers=False,

**kwargs)
A unicode-aware CSV DictWriter.

writerow (row)
writerows (rows)
writeheader ()

csvkit.py2.reader (*args, **kwargs)
A drop-in replacement for Python’s csv.reader () that leverages csvkit.py2.CSVKitReader.

csvkit.py2.writer (*args, **kwargs)
A drop-in replacement for Python’s csv.writer () thatleverages csvkit.py2.CSVKitWriter.

csvkit.py3

Python3-specific classes.

class csvkit .py3.CSVKitReader (f, **kwargs)
A wrapper around Python 3’s builtin csv.reader ().

dialect
line num
next ()

class csvkit.py3.CSVKitWriter (f, line_numbers=False, **kwargs)
A wrapper around Python 3’s builtin csv.writer ().

writerow (row)
writerows (rows)

class csvkit.py3.CSVKitDictReader (f, fieldnames=None, restkey=None, restval=None, di-
alect="excel’, *args, **kwds)
A wrapper around Python 3’s builtin csv.DictReader.

fieldnames

next ()

34 Chapter 3. Table of contents

https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.writer
https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.writer
https://docs.python.org/2.7/library/csv.html#csv.DictReader

csvkit, Release 1.0.0

class csvkit .py3.CSVKitDictWriter (f, fieldnames, line_numbers=False, **kwargs)
A wrapper around Python 3’s builtin csv.DictWriter.

writerow (row)
writerows (rows)
writeheader ()

csvkit.py3.reader (*args, **kwargs)
A drop-in replacement for Python’s csv.reader () thatleverages csvkit.py3.CSVKitReader.

csvkit.py3.writer (*args, **kwargs)
A drop-in replacement for Python’s csv.writer () that leverages csvkit.py3.CSVKitlWriter.

csvkit.unicsv

This module contains unicode aware replacements for csv.reader () and csv.writer (). The implementations
are largely copied from examples in the csv module documentation.

These classes are available for Python 2 only. The Python 3 version of csv supports unicode internally.

Note: You probably don’t want to use these classes directly. Try the csvkit module.

class csvkit.unicsv.UTF8Recoder (f, encoding)
Iterator that reads an encoded stream and reencodes the input to UTF-8.

next ()

class csvkit.unicsv.UnicodeCSVReader (f, encoding="utf-8’, maxfieldsize=None, **kwargs)
A CSV reader which will read rows from a file in a given encoding.

next ()
line_ num

class csvkit.unicsv.UnicodeCSVWriter (f, encoding="utf-8’, **kwargs)
A CSV writer which will write rows to a file in the specified encoding.

NB: Optimized so that eight-bit encodings skip re-encoding. See: https://github.com/onyxfish/csvkit/
issues/175

writerow (row)
writerows (rows)

class csvkit.unicsv.UnicodeCSVDictReader (f, fieldnames=None, restkey=None, restval=None,
*args, **kwargs)
Defer almost all implementation to csv.DictReader, but wraps our unicode reader instead of csv.
reader ().

fieldnames
next ()

class csvkit.unicsv.UnicodeCSVDictWriter (f, fieldnames, restval="", extrasaction="raise’, *args,

**ewds)
Defer almost all implementation to csv.DictWriter, but wraps our unicode writer instead of csv.

writer ().

writerow (rowdict)

3.4. Using as a Python library 35

https://docs.python.org/2.7/library/csv.html#csv.DictWriter
https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.writer
https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.writer
http://docs.python.org/library/csv.html#examples
https://github.com/onyxfish/csvkit/issues/175
https://github.com/onyxfish/csvkit/issues/175
https://docs.python.org/2.7/library/csv.html#csv.DictReader
https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.reader
https://docs.python.org/2.7/library/csv.html#csv.DictWriter
https://docs.python.org/2.7/library/csv.html#csv.writer
https://docs.python.org/2.7/library/csv.html#csv.writer

csvkit, Release 1.0.0

writerows (rowdicts)

writeheader ()

csvkit.sniffer

csvkit.sniffer.sniff dialect (sample)

A functional version of csv.Sniffer () .sniff, that extends the list of possible delimiters to include some
seen in the wild.

Contributing to csvkit

Principles

csvkit is to tabular data what the standard Unix text processing suite (grep, sed, cut, sort) is to text. As such, csvkit
adheres to the Unix philosophy.

1.

® N A »N

9.

Small is beautiful.

Make each program do one thing well.

Build a prototype as soon as possible.

Choose portability over efficiency.

Store data in flat text files.

Use software leverage to your advantage.

Use shell scripts to increase leverage and portability.
Avoid captive user interfaces.

Make every program a filter.

As there is no formally defined CSV format, csvkit encourages well-known formatting standards:

* Qutput favors compatability with the widest range of applications. This means that quoting is done with double-

quotes and only when necessary, columns are separated with commas, and lines are terminated with unix style
line endings (“\n”).

* Data that is modified or generated will prefer consistency over brevity. Floats always include at least one decimal

place, even if they are round. Dates and times are written in ISO8601 format.

Process for contributing code

Contributors should use the following roadmap to guide them through the process of submitting a contribution:

1.
2.

Fork the project on Github.

Check out the issue tracker and find a task that needs to be done and is of a scope you can realistically expect to
complete in a few days. Don’t worry about the priority of the issues at first, but try to choose something you’ll
enjoy. You’re much more likely to finish something to the point it can be merged if it’s something you really
enjoy hacking on.

Comment on the ticket letting everyone know you’re going to be hacking on it so that nobody duplicates your
effort. It’s also good practice to provide some general idea of how you plan on resolving the issue so that other
developers can make suggestions.

36

Chapter 3. Table of contents

http://en.wikipedia.org/wiki/Unix_philosophy
https://github.com/onyxfish/csvkit
https://github.com/onyxfish/csvkit/issues

csvkit, Release 1.0.0

10.

Write tests for the feature you’re building. Follow the format of the existing tests in the test directory to see how
this works. You can run all the tests with the command nosetests. The one exception to testing is command-
line scripts. These don’t need unit test, though all reusable components should be factored into library modules.

Write the code. Try to stay consistent with the style and organization of the existing codebase. A good patch
won’t be refused for stylistic reasons, but large parts of it may be rewritten and nobody wants that.

As your coding, periodically merge in work from the master branch and verify you haven’t broken anything by
running the test suite.

Write documentation for user-facing features (and library features once the API has stabilized).
Once it works, is tested, and has documentation, submit a pull request on Github.
Wait for it to either be merged or to recieve a comment about what needs to be fixed.

Rejoice.

Legalese

To the extent that they care, contributors should keep the following legal mumbo-jumbo in mind:

The source of csvkit and therefore of any contributions are licensed under the permissive MIT license. By submitting
a patch or pull request you are agreeing to release your code under this license. You will be acknowledged in the
AUTHORS file. As the owner of your specific contributions you retain the right to privately relicense your specific
code contributions (and no others), however, the released version of the code can never be retracted or relicensed.

Release process

© Y ® =N 0ok

. Verify no high priority issues are outstanding.

Run the full test suite with fresh environments for all versions: tox —r (Everything MUST pass.)
Ensure these files all have the correct version number:
« CHANGELOG
* setup.py
* docs/conf.py
Tag the release: git tag —-a x.y.z; git push —--tags
Roll out to PyPI: python setup.py sdist upload
Iterate the version number in all files where it is specified. (see list above)
Flag the new version for building on Read the Docs.
Wait for the documentation build to finish.
Flag the new release as the default documentation version.

Announce the release on Twitter, etc.

3.6. Release process 37

http://www.opensource.org/licenses/mit-license.php
https://github.com/onyxfish/csvkit/issues?q=is%3Aopen+is%3Aissue+label%3A%22High+Priority%22
https://readthedocs.org/dashboard/csvkit/versions/

csvkit, Release 1.0.0

38 Chapter 3. Table of contents

CHAPTER 4

Authors

The following individuals have contributed code to csvkit:

Christopher Groskopf
Joe Germuska
Aaron Bycoffe
Travis Mehlinger
Alejandro Companioni
Benjamin Wilson
Bryan Silverthorn
Evan Wheeler

Matt Bone

Ryan Pitts

Hari Dara

Jeff Larson

Jim Thaxton
Miguel Gonzalez
Anton Ian Sipos
Gregory Temchenko
Kevin Schaul

Marc Abramowitz
Noah Hoffman

Jan Schulz

Derek Wilson

39

csvkit, Release 1.0.0

Chris Rosenthal
Davide Setti
Gabi Davar
Sriram Karra
James McKinney
aarcro

Matt Dudys
Joakim Lundborg
Federico Scrinzi
Chris Rosenthal
Shane StClair
raistlin7447

Alex Dergachev
Jeff Paine

Jeroen Janssens
Sébastien Fievet
Travis Swicegood
Ryan Murphy
Diego Rabatone Oliveira
Matt Pettis
Tasneem Raja
Richard Low
Kristina Durivage
Espartaco Palma
pnaimoli

Michael Mior

40

Chapter 4. Authors

CHAPTER B

License

The MIT License
Copyright (c) 2014 Christopher Groskopf and contributers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

41

csvkit, Release 1.0.0

42 Chapter 5. License

CHAPTER O

Changelog

1.0.0

* Add missing docs for csveut -C. (#227)

* Reorganize docs so TOC works better. (#339)
* Render docs locally with RTD theme.

¢ Fix header in “tricks” docs.

¢ Add install instructions to tutorial. (#331)

* Add killer examples to doc index. (#328)

* Reorganize doc index

¢ Fix broken csvkit module documentation. (#327)

0.9.0

* Write missing sections of the tutorial. (#32)

* Remove -q arg from sql2csv (conflicts with common flag).

* Fix csvjoin in case where left dataset rows without all columns.
¢ Rewrote tutorial based on LESO data. (#324)

* Don’t error in csvjson if lat/lon columns are null. (#326)

* Maintain field order in output of csvjson.

¢ Add unit test for json in2csv. (#77)

* Maintain key order when converting JSON into CSV. (#325.)

» Upgrade python-dateutil to version 2.2 (#304)

43

csvkit, Release 1.0.0

Fix sorting of columns with null values. (#302)

Added release documentation.

Fill out short rows with null values. (#313)

Fix unicode output for csvlook and csvstat. (#315)

Add documentation for —zero. (#323)

Fix Integrity error when inserting zero rows in database with csvsql. (#299)
Add Michael Mior to AUTHORS. (#305)

Add —count option to CSV Stat.

Implement csvformat.

Fix bug causing CSVKitDictWriter to output ‘utf-8’ for blank fields.

0.8.0

Add pnaimoli to AUTHORS.

Fix column specification in csvstat. (#236)

Added “Tips and Tricks” documentation. (#297, #298)
Add Espartaco Palma to AUTHORS.

Remove unnecessary enumerate calls. (#292)
Deprecated DBF support for Python 3+.

Add support for Python 3.3 and 3.4 (#239)

0.7.3

Fix date handling with openpyxl > 2.0 (#285)

Add Kiristina Durivage to AUTHORS. (#243)

Added Richard Low to AUTHORS.

Support SQL queries “directly” on CSV files. (#276)
Add Tasneem Raja to AUTHORS.

Fix off-by-one error in open ended column ranges. (#238)
Add Matt Pettis to AUTHORS.

Add line numbers flag to csvlook (#244)

Only install argparse for Python < 2.7. (#224)

Add Diego Rabatone Oliveira to AUTHORS.

Add Ryan Murphy to AUTHORS.

Fix DBF dependency. (#270)

44

Chapter 6. Changelog

csvkit, Release 1.0.0

0.7.2

¢ Fix CHANGELOG for release.

0.7.1

» Fix homepage url in setup.py.

0.7.0

 Fix XLSX datetime normalization bug. (#223)

¢ Add raistlin7447 to AUTHORS.

* Merged sql2csv utility (#259).

* Add Jeroen Janssens to AUTHORS.

* Validate csvsql DB connections before parsing CSVs. (#257)
¢ Clarify install process for Ubuntu. (#249)

* Clarify docs for —escapechar. (#242)

e Make import csvkit API compatible with import csv.
* Update Travis CI link. (#258)

* Add Sébastien Fievet to AUTHORS.

» Use case-sensitive name for SQLAlchemy (#237)

¢ Add Travis Swicegood to AUTHORS.

0.6.1

* Add Chris Rosenthal to AUTHORS.

* Fix multi-file input to csvsql. (#193)

* Passing —snifflimit=0 to disable dialect sniffing. (#190)
¢ Add aarcro to the AUTHORS file.

* Improve performance of csvgrep. (#204)

e Add Matt Dudys to AUTHORS.

* Add support for —skipinitialspace. (#201)

¢ Add Joakim Lundborg to AUTHORS.

¢ Add —no-inference option to in2csv and csvsql. (#206)
* Add Federico Scrinzi to AUTHORS file.

* Add —no-header-row to all tools. (#189)

* Fix csvstack blowing up on empty files. (#209)

6.5. 0.7.2 45

csvkit, Release 1.0.0

Add Chris Rosenthal to AUTHORS file.
Add —db-schema option to csvsql. (#216)
Add Shane StClair to AUTHORS file.

Add —no-inference support to csvsort. (#222)

0.5.0

Implement geojson support in csvjson. (#159)

Optimize writing of eight bit codecs. (#175)

Created csvpy. (#44)

Support —not-columns for excluding columns. (#137)

Add Jan Schulz to AUTHORS file.

Add Windows scripts. (#111, #176)

csvjoin, csvsql and csvstack will no longer hold open all files. (#178)
Added Noah Hoffman to AUTHORS.

Make csvlook output compatible with emacs table markup. (#174)

044

Add Derek Wilson to AUTHORS.

Add Kevin Schaul to AUTHORS.

Add DBF support to in2csv. (#11, #160)

Support —zero option for zero-based column indexing. (#144)
Support mixing nulls and blanks in string columns.
Add -blanks option to csvsql. (#149)

Add multi-file (glob) support to csvsql. (#146)
Add Gregory Temchenko to AUTHORS.

Add —no-create option to csvsql. (#148)

Add Anton Ian Sipos to AUTHORS.

Fix broken pipe errors. (#150)

0.4.3

Begin CHANGELOG (a bit late, I’ll admit).

46

Chapter 6. Changelog

CHAPTER /

Indices and tables

* genindex
* modindex

e search

47

csvkit, Release 1.0.0

48 Chapter 7. Indices and tables

Python Module Index

C

csvkit, 33
csvkit.py2,33
csvkit.py3, 34
csvkit.sniffer, 36
csvkit.unicsv, 35

49

csvkit, Release 1.0.0

50 Python Module Index

Index

C

csvkit (module), 33

csvkit.py2 (module), 33

csvkit.py3 (module), 34

csvkit.sniffer (module), 36

csvkit.unicsv (module), 35
CSVKitDictReader (class in csvkit.py2), 34
CSVKitDictReader (class in csvkit.py3), 34
CSVKitDictWriter (class in csvkit.py2), 34
CSVKitDictWriter (class in csvkit.py3), 34
CSVKitReader (class in csvkit.py2), 33
CSVKitReader (class in csvkit.py3), 34
CSVKitWriter (class in csvkit.py2), 34
CSVKitWriter (class in csvkit.py3), 34

D

dialect (csvkit.py3.CSVKitReader attribute), 34

F

fieldnames (csvkit.py2.CSVKitDictReader attribute), 34

fieldnames (csvkit.py3.CSVKitDictReader attribute), 34

fieldnames (csvkit.unicsv.UnicodeCSVDictReader
attribute), 35

L

line_num (csvkit.py2.CSVKitReader attribute), 34

line_num (csvkit.py3.CSVKitReader attribute), 34

line_num (csvkit.unicsv.UnicodeCSVReader attribute),
35

N

next() (csvkit.py2.CSVKitDictReader method), 34

next() (csvkit.py2.CSVKitReader method), 34

next() (csvkit.py3.CSVKitDictReader method), 34

next() (csvkit.py3.CSVKitReader method), 34

next() (csvkit.unicsv.UnicodeCSVDictReader method),
35

next() (csvkit.unicsv.UnicodeCSVReader method), 35

next() (csvkit.unicsv.UTF8Recoder method), 35

R

reader() (in module csvkit.py?2), 34
reader() (in module csvkit.py3), 35

S

sniff_dialect() (in module csvkit.sniffer), 36

U

UnicodeCSVDictReader (class in csvkit.unicsv), 35
UnicodeCSVDictWriter (class in csvkit.unicsv), 35
UnicodeCSVReader (class in csvkit.unicsv), 35
UnicodeCSVWriter (class in csvkit.unicsv), 35
UTF8Recoder (class in csvkit.unicsv), 35

W

writeheader() (csvkit.py2.CSVKitDictWriter method), 34

writeheader() (csvkit.py3.CSVKitDictWriter method), 35

writeheader() (csvkit.unicsv.UnicodeCSVDictWriter
method), 36

writer() (in module csvkit.py2), 34

writer() (in module csvkit.py3), 35

writerow() (csvkit.py2.CSVKitDictWriter method), 34

writerow() (csvkit.py2.CSVKitWriter method), 34

writerow() (csvkit.py3.CSVKitDictWriter method), 35

writerow() (csvkit.py3.CSVKitWriter method), 34

writerow() (csvkit.unicsv.UnicodeCSVDictWriter
method), 35

writerow() (csvkit.unicsv.UnicodeCSVWriter method),
35

writerows() (csvkit.py2.CSVKitDictWriter method), 34

writerows() (csvkit.py2.CSVKitWriter method), 34

writerows() (csvkit.py3.CSVKitDictWriter method), 35

writerows() (csvkit.py3.CSVKitWriter method), 34

writerows() (csvkit.unicsv.UnicodeCSVDictWriter
method), 35

writerows() (csvkit.unicsv.UnicodeCSVWriter method),
35

51

	About
	Why csvkit?
	Table of contents
	Installation
	Users
	Developers

	Tutorial
	Getting started
	Examining the data
	Power tools
	Going elsewhere with your data

	Command-Line Usage
	Input
	Processing
	Output (and Analysis)
	Appendices

	Using as a Python library
	csvkit
	csvkit.py2
	csvkit.py3
	csvkit.unicsv
	csvkit.sniffer

	Contributing to csvkit
	Principles
	Process for contributing code
	Legalese

	Release process

	Authors
	License
	Changelog
	1.0.0
	0.9.0
	0.8.0
	0.7.3
	0.7.2
	0.7.1
	0.7.0
	0.6.1
	0.5.0
	0.4.4
	0.4.3

	Indices and tables
	Python Module Index

