

Welcome to csvdiff’s documentation!

Contents:

	csvdiff
	Overview

	Installing

	Examples

	License

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	dev

	0.3.2 (2017-07-20)

	0.3.1 (2016-04-20)

	0.3.0 (2015-01-07)

	0.2.0 (2014-12-30)

	0.1.0 (2014-03-15)

Indices and tables

	Index

	Module Index

	Search Page

csvdiff

[image: https://badge.fury.io/py/csvdiff.png]
 [http://badge.fury.io/py/csvdiff][image: https://travis-ci.org/larsyencken/csvdiff.png?branch=master]
 [https://travis-ci.org/larsyencken/csvdiff]
Overview

Generate a diff between two CSV files on the command-line.

csvdiff allows you to compare the semantic contents of two CSV files, ignoring things like row and column ordering in order to get to what’s actually changed. This is useful if you’re comparing the output of an automatic system from one day to the next, so that you can look at just what’s changed.

It’s also useful for maintaining patches to third-party data. Diffs generated by csvdiff are a subset of JSON and can be stored and applied using the matching csvpatch command. If upstream data changes, you can fetch the new version and re-apply your changes to it easily.

Installing

You’ll firstly need Python and pip. Then run:

pip install csvdiff

Examples

For example, suppose we have a.csv:

id,name,amount
1,bob,20
2,eva,63
3,sarah,7
4,jeff,19
6,fred,10

After some changes and corrections to the data, we now have b.csv:

id,name,amount
1,bob,23 <--- changed
3,sarah,7
4,jeff,19
5,mira,81 <--- added
6,fred,13 <--- changed

Now we can ask for a summary of differences:

$ csvdiff --style=summary id a.csv b.csv
1 rows removed (20.0%)
1 rows added (20.0%)
2 rows changed (40.0%)

Or look at the full diff pretty printed, to make it more readable:

$ csvdiff --style=pretty --output=diff.json id a.csv b.csv
$ cat diff.json
{
 "_index": [
 "id"
],
 "added": [
 {
 "amount": "81",
 "id": "5",
 "name": "mira"
 }
],
 "changed": [
 {
 "fields": {
 "amount": {
 "from": "20",
 "to": "23"
 }
 },
 "key": [
 "1"
]
 },
 {
 "fields": {
 "amount": {
 "from": "10",
 "to": "13"
 }
 },
 "key": [
 "6"
]
 }
],
 "removed": [
 {
 "amount": "63",
 "id": "2",
 "name": "eva"
 }
]
}

If you want to ignore a column from the comparison then you can do so by specifying a comma seperated list of column names to ignore. For example:

$ csvdiff --style=summary --ignore-columns=amount id a.csv b.csv
1 rows removed (20.0%)
1 rows added (20.0%)
0 rows changed (0%)

You can also choose to compare numeric fields only up to a certain number of significant figures. Use negative significant figures for orders of magnitude:

$ csvdiff --style=summary id a.csv c.csv
0 rows removed (0.0%)
0 rows added (0.0%)
2 rows changed (40.0%)
$ csvdiff --style=summary id --significance=-1 a.csv c.csv
files are identical

Diffs generated this way contain all the data that’s changed, and can be reapplied later if the original data changes. For example, suppose more data gets added to a.csv, giving us a-plus.csv:

id,name,amount
1,bob,20
2,eva,63
3,sarah,7
4,jeff,19
6,fred,10
8,henry,9

We can reapply our changes with the csvpatch command:

$ csvpatch --input=diff.json --output=b-plus.csv a-plus.csv
$ cat b-plus.csv
id,name,amount
1,bob,23
3,sarah,7
4,jeff,19
5,mira,81
6,fred,13
8,henry,9

This can be useful if you’re using csvdiff to transform data that’s outside your control. In this case, you maintain the patch file and simply reapply it when the upstream data provider gives you a fresh file.

For more usage options, run csvdiff --help or csvpatch --help.

License

BSD license

Installation

At the command line:

$ easy_install csvdiff

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv csvdiff
$ pip install csvdiff

Usage

To use csvdiff in a project:

import csvdiff

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/larsyencken/csvdiff/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

csvdiff could always use more documentation, whether as part of the
official csvdiff docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/larsyencken/csvdiff/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up csvdiff for local development.

	Fork the csvdiff repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/csvdiff.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv csvdiff
$ cd csvdiff/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 csvdiff tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/larsyencken/csvdiff/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_csvdiff

Credits

Development Lead

	Lars Yencken <lars@yencken.org>

Contributors

	Jason Marshall <j.j.marshall@kent.ac.uk>

History

dev

	Add the –significance option to limit to significant figures.

0.3.2 (2017-07-20)

	Add the –sep option for different delimiters.

	Fix a bug when a patched document becomes empty (#29).

0.3.1 (2016-04-20)

	Fix a bug in summary mode.

	Check for rows bleeding into one another.

0.3.0 (2015-01-07)

	Standardise patch format with a JSON schema.

	Provide a matching csvpatch command applying diffs.

	Add a man page and docs for csvpatch.

	Use exit codes to indicate difference.

	Add a –quiet option to csvdiff.

0.2.0 (2014-12-30)

	Uses click for the command-line interface.

	Drop YAML support in favour of pretty-printed JSON.

	Uses –style option to change output style.

	Provides a full man page.

0.1.0 (2014-03-15)

	First release on PyPI.

	Generates a JSON or YAML difference between two CSV files

	Specify multiple key components with -k

	Can provide a difference summary

	Assumes files use standard comma-separation, double-quoting and a header row with field names

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 csvdiff	

 	
 	
 csvdiff.error	

 	
 	
 csvdiff.patch	

 	
 	
 csvdiff.records	

Index

 A
 | C
 | D
 | F
 | I
 | L
 | N
 | P
 | R
 | S
 | V

A

 	
 	abort() (in module csvdiff.error)

 	
 	apply() (in module csvdiff.patch)

C

 	
 	convert() (csvdiff.CSVType method)

 	create() (in module csvdiff.patch)

 	create_indexed() (in module csvdiff.patch)

 	csvdiff (module)

 	
 	csvdiff.error (module)

 	csvdiff.patch (module)

 	csvdiff.records (module)

 	CSVType (class in csvdiff)

D

 	
 	diff_files() (in module csvdiff)

 	
 	diff_records() (in module csvdiff)

F

 	
 	FatalError

 	fieldnames (csvdiff.records.SafeDictReader attribute)

 	
 	filter_ignored() (in module csvdiff.records)

 	filter_significance() (in module csvdiff.patch)

I

 	
 	index() (in module csvdiff.records)

 	InvalidKeyError

 	InvalidPatchError

 	
 	is_empty() (in module csvdiff.patch)

 	is_typed() (in module csvdiff.patch)

 	is_valid() (in module csvdiff.patch)

L

 	
 	load() (in module csvdiff.patch)

 	(in module csvdiff.records)

N

 	
 	name (csvdiff.CSVType attribute)

P

 	
 	patch_file() (in module csvdiff)

 	
 	patch_records() (in module csvdiff)

R

 	
 	record_diff() (in module csvdiff.patch)

S

 	
 	SafeDictReader (class in csvdiff.records)

 	save() (in module csvdiff.patch)

 	(in module csvdiff.records)

 	
 	sort() (in module csvdiff.records)

V

 	
 	validate() (in module csvdiff.patch)

csvdiff

Synopsis

csvdiff [-o OUTPUT.json] [–style=STYLE] INDEXES FILE1.csv FILE2.csv

Description

The csvdiff command compares the contents of two CSV files and outputs any differences. The files must be in a standard CSV format, comma-separated with a header row and optional double-quotes around fields. The output is a human-readable JSON patch format. The INDEXES parameter a comma-separated list of fields, constituting a primary key for the files in question.

The options are as follows:

	-o OUTPUT –output=OUTPUT

	Write the JSON diff to the file OUTPUT instead of stdout.

	
--style=STYLE
	Choose between three output styles ([compact]/pretty/summary).
The compact and pretty formats output the entire diff;
summary outputs a count of rows added, removed and changed.

Example

For example, suppose we have a.csv:

id,name,amount
1,bob,20
2,eva,63
3,sarah,7
4,jeff,19
6,fred,10

and a matching file after some changes, b.csv:

id,name,amount
1,bob,23
3,sarah,7
4,jeff,19
5,mira,81
6,fred,13

Now we can ask for a summary of differences:

$ csvdiff --style=summary id a.csv b.csv
1 rows removed (20.0%)
1 rows added (20.0%)
2 rows changed (40.0%)

Or look at the full diff pretty printed, to make it more readable:

$ csvdiff --style=pretty id a.csv b.csv
{
 "added": [
 {
 "amount": "81",
 "id": "5",
 "name": "mira"
 }
],
 "changed": [
 {
 "fields": {
 "amount": {
 "from": "20",
 "to": "23"
 }
 },
 "key": [
 "1"
]
 },
 {
 "fields": {
 "amount": {
 "from": "10",
 "to": "13"
 }
 },
 "key": [
 "6"
]
 }
],
 "removed": [
 {
 "amount": "63",
 "id": "2",
 "name": "eva"
 }
]
}

It gives us the full listing of added and removed rows, as well as a listing of what fields changed for that shared a key.

Exit status

The csvdiff command exits 0 when no difference exists, 1 when a difference exists, 2 for a usage or other error.

Limitations

	The comparison is insensitive to column order by design; columns need not occur in the same order in both files.

	All fields are untyped and treated as strings.

Bugs

The full source is available at https://github.com/larsyencken/csvdiff

Please report bugs to https://github.com/larsyencken/csvdiff/issues

See also

Check the manpage for csvpatch (1) to look at applying diffs once they are generated.

csvdiff

	csvdiff package
	Submodules

	csvdiff.error module

	csvdiff.patch module

	csvdiff.records module

	Module contents

csvdiff

Synopsis

csvpatch [-i PATCH.json] [-o OUTPUT.csv] [–no-strict] INPUT.csv

Description

The csvpatch command applies a patch generated by csvdiff to a given CSV file. By default the patch is read from stdin, and the transformed CSV file is printed to stdout.

The options are as follows:

	
-i PATCH
	–input=PATCH
Read in the JSON patch from the file PATCH.

	-o OUTPUT –output=OUTPUT

	Write the transformed CSV data to the file OUTPUT.

	–strict/–no-strict

	In strict mode (the default), the input data must match the data used when originally generating the diff. In non-strict mode, the patch will be attempted even if the data has changed.

Example

For example, suppose we have a.csv:

id,name,amount
1,bob,20
2,eva,63
3,sarah,7

and a JSON patch generated by csvdiff diff.json:

{
 "_index": ["id"],
 "added": [
 {
 "amount": "81",
 "id": "5",
 "name": "mira"
 }
]
}

Then we can apply the patch by running:

$ csvpatch -i diff.json a.csv
id,name,amount
1,bob,20
2,eva,63
3,sarah,7
5,mira,81

The transformed CSV is output to stdout.

Exit status

The csvpatch command exits 0 when no errors occur, >0 on error.

Bugs

The full source is available at https://github.com/larsyencken/csvdiff

Please report bugs to https://github.com/larsyencken/csvdiff/issues

See also

Check the manpage for csvdiff (1) to look at generating diffs.

csvdiff package

Submodules

csvdiff.error module

	
exception csvdiff.error.FatalError

	Bases: exceptions.Exception

	
csvdiff.error.abort(message=None)

	

csvdiff.patch module

The the patch format.

	
exception csvdiff.patch.InvalidPatchError

	Bases: exceptions.Exception

	
csvdiff.patch.apply(diff, recs, strict=True)

	Transform the records with the patch. May fail if the records do not
match those expected in the patch.

	
csvdiff.patch.create(from_records, to_records, index_columns, ignore_columns=None)

	Diff two sets of records, using the index columns as the primary key for
both datasets.

	
csvdiff.patch.create_indexed(from_indexed, to_indexed, index_columns)

	

	
csvdiff.patch.filter_significance(diff, significance)

	Prune any changes in the patch which are due to numeric changes less than this level of
significance.

	
csvdiff.patch.is_empty(diff)

	Are there any actual differences encoded in the delta?

	
csvdiff.patch.is_typed(diff)

	Are any of the values in the diff typed?

	
csvdiff.patch.is_valid(diff)

	Validate the diff against the schema, returning True if it matches, False
otherwise.

	
csvdiff.patch.load(istream, strict=True)

	Deserialize a patch object.

	
csvdiff.patch.record_diff(lhs, rhs)

	Diff an individual row.

	
csvdiff.patch.save(diff, stream=<open file '<stdout>', mode 'w'>, compact=False)

	Serialize a patch object.

	
csvdiff.patch.validate(diff)

	Check the diff against the schema, raising an exception if it doesn’t
match.

csvdiff.records module

	
exception csvdiff.records.InvalidKeyError

	Bases: exceptions.Exception

	
class csvdiff.records.SafeDictReader(istream, sep=None)

	A CSV reader that streams records but gives nice errors if lines fail to parse.

	
fieldnames

	

	
csvdiff.records.filter_ignored(sequence, ignore_columns)

	

	
csvdiff.records.index(record_seq, index_columns)

	

	
csvdiff.records.load(file_or_stream, sep=', ')

	

	
csvdiff.records.save(record_seq, fieldnames, ostream)

	

	
csvdiff.records.sort(recs)

	

Module contents

	
class csvdiff.CSVType

	Bases: click.types.ParamType

	
convert(value, param, ctx)

	

	
name = 'csv'

	

	
csvdiff.diff_files(from_file, to_file, index_columns, sep=', ', ignored_columns=None)

	Diff two CSV files, returning the patch which transforms one into the
other.

	
csvdiff.diff_records(from_records, to_records, index_columns)

	Diff two sequences of dictionary records, returning the patch which
transforms one into the other.

	
csvdiff.patch_file(patch_stream, fromcsv_stream, tocsv_stream, strict=True, sep=', ')

	Apply the patch to the source CSV file, and save the result to the target
file.

	
csvdiff.patch_records(diff, from_records, strict=True)

	Apply the patch to the sequence of records, returning the transformed
records.

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to csvdiff's documentation!

 		csvdiff

 		Overview

 		Installing

 		Examples

 		License

 		Installation

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		dev

 		0.3.2 (2017-07-20)

 		0.3.1 (2016-04-20)

 		0.3.0 (2015-01-07)

 		0.2.0 (2014-12-30)

 		0.1.0 (2014-03-15)

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

