

    
      Navigation

      
        	
          index

        	cstore_fdw stable documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cstore-fdw/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cstore-fdw/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	cstore_fdw stable documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  search.html


    
      Navigation


      
        		
          index


        		cstore_fdw stable documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

README.html


    
      Navigation


      
        		
          index


        		cstore_fdw stable documentation »

 
      


    


    
      
          
            
  
cstore_fdw


[image: Build Status] [https://travis-ci.org/citusdata/cstore_fdw]
[image: Coverage] [https://coveralls.io/r/citusdata/cstore_fdw]


This extension implements a columnar store for PostgreSQL. Columnar stores
provide notable benefits for analytic use-cases where data is loaded in batches.


Join the Mailing List [https://groups.google.com/forum/#!forum/cstore-users] to stay on top of the latest developments.



Introduction


This extension uses the Optimized Row Columnar (ORC) format for its data layout.
ORC improves upon the RCFile format developed at Facebook, and brings the
following benefits:



		Compression: Reduces in-memory and on-disk data size by 2-4x. Can be extended
to support different codecs.


		Column projections: Only reads column data relevant to the query. Improves
performance for I/O bound queries.


		Skip indexes: Stores min/max statistics for row groups, and uses them to skip
over unrelated rows.





Further, we used the Postgres foreign data wrapper APIs and type representations
with this extension. This brings:



		Support for 40+ Postgres data types. The user can also create new types and
use them.


		Statistics collection. PostgreSQL’s query optimizer uses these stats to
evaluate different query plans and pick the best one.


		Simple setup. Create foreign table and copy data. Run SQL.








Building


cstore_fdw depends on protobuf-c for serializing and deserializing table metadata.
So we need to install these packages first:


# Fedora 17+, CentOS, and Amazon Linux
sudo yum install protobuf-c-devel

# Ubuntu 10.4+
sudo apt-get install protobuf-c-compiler
sudo apt-get install libprotobuf-c0-dev

# Mac OS X
brew install protobuf-c



Note. In CentOS 5 and 6, you may need to install or update EPEL 5 or EPEL 6
repositories. See [this page]
(http://www.rackspace.com/knowledge_center/article/installing-rhel-epel-repo-on-centos-5x-or-6x)
for instructions.


Note. In Amazon Linux, EPEL 6 repository is installed by default, but it is not
enabled. See these instructions [http://aws.amazon.com/amazon-linux-ami/faqs/#epel]
for how to enable it.


Once you have protobuf-c installed on your machine, you are ready to build
cstore_fdw.  For this, you need to include the pg_config directory path in
your make command. This path is typically the same as your PostgreSQL
installation’s bin/ directory path. For example:


PATH=/usr/local/pgsql/bin/:$PATH make
sudo PATH=/usr/local/pgsql/bin/:$PATH make install



Note. cstore_fdw requires PostgreSQL 9.3, 9.4 or 9.5. It doesn’t support earlier
versions of PostgreSQL.





Usage


Before using cstore_fdw, you need to add it to shared_preload_libraries
in your postgresql.conf and restart Postgres:


shared_preload_libraries = 'cstore_fdw'    # (change requires restart)



The following parameters can be set on a cstore foreign table object.



		filename (optional): The absolute path to the location for storing table data.
If you don’t specify the filename option, cstore_fdw will automatically
choose the $PGDATA/cstore_fdw directory to store the files. If specified the
value of this parameter will be used as a prefix for all files created to
store table data. For example, the value /cstore_fdw/my_table could result in
the files /cstore_fdw/my_table and /cstore_fdw/my_table.footer being used
to manage table data.


		compression (optional): The compression used for compressing value streams.
Valid options are none and pglz. The default is none.


		stripe_row_count (optional): Number of rows per stripe. The default is
150000. Reducing this decreases the amount memory used for loading data
and querying, but also decreases the performance.


		block_row_count (optional): Number of rows per column block. The default is
10000. cstore_fdw compresses, creates skip indexes, and reads from disk
at the block granularity. Increasing this value helps with compression and results
in fewer reads from disk. However, higher values also reduce the probability of
skipping over unrelated row blocks.





To load or append data into a cstore table, you have two options:



		You can use the COPY command [http://www.postgresql.org/docs/current/static/sql-copy.html] to load or append data from
a file, a program, or STDIN.


		You can use the INSERT INTO cstore_table SELECT ... syntax to load or
append data from another table.





You can use the ANALYZE command [http://www.postgresql.org/docs/current/static/sql-analyze.html] to collect statistics
about the table. These statistics help the query planner to help determine the
most efficient execution plan for each query.


Note. We currently don’t support updating table using DELETE, and UPDATE
commands. We also don’t support single row inserts.





Updating from earlier versions to 1.4


To update your existing cstore_fdw installation from earlier versions 1.4
you can take the following steps:



		Download and install cstore_fdw version 1.4 using instructions from the “Building”
section,


		Restart the PostgreSQL server,


		Run the ALTER EXTENSION cstore_fdw UPDATE; command.








Example


As an example, we demonstrate loading and querying data to/from a column store
table from scratch here. Let’s start with downloading and decompressing the data
files.


wget http://examples.citusdata.com/customer_reviews_1998.csv.gz
wget http://examples.citusdata.com/customer_reviews_1999.csv.gz

gzip -d customer_reviews_1998.csv.gz
gzip -d customer_reviews_1999.csv.gz



Then, let’s log into Postgres, and run the following commands to create a column
store foreign table:


-- load extension first time after install
CREATE EXTENSION cstore_fdw;

-- create server object
CREATE SERVER cstore_server FOREIGN DATA WRAPPER cstore_fdw;

-- create foreign table
CREATE FOREIGN TABLE customer_reviews
(
    customer_id TEXT,
    review_date DATE,
    review_rating INTEGER,
    review_votes INTEGER,
    review_helpful_votes INTEGER,
    product_id CHAR(10),
    product_title TEXT,
    product_sales_rank BIGINT,
    product_group TEXT,
    product_category TEXT,
    product_subcategory TEXT,
    similar_product_ids CHAR(10)[]
)
SERVER cstore_server
OPTIONS(compression 'pglz');



Next, we load data into the table:


COPY customer_reviews FROM '/home/user/customer_reviews_1998.csv' WITH CSV;
COPY customer_reviews FROM '/home/user/customer_reviews_1999.csv' WITH CSV;



Note. If you are getting ERROR: cannot copy to foreign table "customer_reviews" when trying to run the COPY commands, double check that you
have added cstore_fdw to shared_preload_libraries in postgresql.conf
and restarted Postgres.


Next, we collect data distribution statistics about the table. This is optional,
but usually very helpful:


ANALYZE customer_reviews;



Finally, let’s run some example SQL queries on the column store table.


-- Find all reviews a particular customer made on the Dune series in 1998.
SELECT
    customer_id, review_date, review_rating, product_id, product_title
FROM
    customer_reviews
WHERE
    customer_id ='A27T7HVDXA3K2A' AND
    product_title LIKE '%Dune%' AND
    review_date >= '1998-01-01' AND
    review_date <= '1998-12-31';

-- Do we have a correlation between a book's title's length and its review ratings?
SELECT
    width_bucket(length(product_title), 1, 50, 5) title_length_bucket,
    round(avg(review_rating), 2) AS review_average,
    count(*)
FROM
   customer_reviews
WHERE
    product_group = 'Book'
GROUP BY
    title_length_bucket
ORDER BY
    title_length_bucket;






Usage with CitusDB


The example above illustrated how to load data into a PostgreSQL database running
on a single host. However, sometimes your data is too large to analyze effectively
on a single host. CitusDB is a product built by Citus Data that allows you to run
a distributed PostgreSQL database to analyze your data using the power of multiple
hosts. CitusDB is based on a modern PostgreSQL version and allows you to easily
install PostgreSQL extensions and foreign data wrappers, including cstore_fdw. For
an example of how to use cstore_fdw with CitusDB see the
CitusDB documentation [https://www.citusdata.com/documentation/citusdb-documentation/].





Using Skip Indexes


cstore_fdw partitions each column into multiple blocks. Skip indexes store minimum
and maximum values for each of these blocks. While scanning the table, if min/max
values of the block contradict the WHERE clause, then the block is completely
skipped. This way, the query processes less data and hence finishes faster.


To use skip indexes more efficiently, you should load the data after sorting it
on a column that is commonly used in the WHERE clause. This ensures that there is
a minimum overlap between blocks and the chance of them being skipped is higher.


In practice, the data generally has an inherent dimension (for example a time field)
on which it is naturally sorted. Usually, the queries also have a filter clause on
that column (for example you want to query only the last week’s data), and hence you
don’t need to sort the data in such cases.





Uninstalling cstore_fdw


Before uninstalling the extension, first you need to drop all the cstore tables:


postgres=# DROP FOREIGN TABLE cstore_table_1;
...
postgres=# DROP FOREIGN TABLE cstore_table_n;



Then, you should drop the cstore server and extension:


postgres=# DROP SERVER cstore_server;
postgres=# DROP EXTENSION cstore_fdw;



cstore_fdw automatically creates some directories inside the PostgreSQL’s data
directory to store its files. To remove them, you can run:


$ rm -rf $PGDATA/cstore_fdw



Then, you should remove cstore_fdw from shared_preload_libraries in
your postgresql.conf:


shared_preload_libraries = ''    # (change requires restart)



Finally, to uninstall the extension you can run the following command in the
extension’s source code directory. This will clean up all the files copied during
the installation:


$ sudo PATH=/usr/local/pgsql/bin/:$PATH make uninstall






Changeset



Version 1.4



		(Feature) Added support for TRUNCATE TABLE


		(Fix) Added support for PostgreSQL 9.5








Version 1.3



		(Feature) Added support for ALTER TABLE ADD COLUMN and ALTER TABLE DROP COLUMN.


		(Feature) Added column list support in COPY FROM.


		(Optimization) Improve row count estimation, which results in better plans.


		(Fix) Fix the deadlock issue during concurrent inserts.


		(Fix) Return correct result when using whole row references.








Version 1.2



		(Feature) Added support for COPY TO.


		(Feature) Added support for INSERT INTO cstore_table SELECT ....


		(Optimization) Improved memory usage.


		(Fix) Dropping multiple cstore tables in a single command cleans-up files
of all them.








Version 1.1



		(Feature) Make filename option optional, and use a default directory inside
$PGDATA to manage cstore tables.


		(Feature) Automatically delete files on DROP FOREIGN TABLE.


		(Fix) Return empty table if no data has been loaded. Previously, cstore_fdw
errored out.


		(Fix) Fix overestimating relation column counts when planning.


		(Feature) Added cstore_table_size(tablename) for getting the size of a cstore
table in bytes.










Copyright


Copyright (c) 2016 Citus Data, Inc.


This module is free software; you can redistribute it and/or modify it under the
Apache v2.0 License.


For all types of questions and comments about the wrapper, please contact us at
engage @ citusdata.com.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/up.png





TODO.html


    
      Navigation


      
        		
          index


        		cstore_fdw stable documentation »

 
      


    


    
      
          
            
  To see the list of features and bug-fixes planned for next releases, see our
development roadmap [https://github.com/citusdata/cstore_fdw/wiki/Roadmap].



Requested Features



		Improve write performance


		Improve read performance


		Add checksum logic


		Add new compression methods


		Enable INSERT/DELETE/UPDATE


		Enable users other than superuser to safely create columnar tables (permissions)


		Transactional semantics


		Add config setting to make pg_fsync() optional








Known Issues



		Copy command ignores NOT NULL constraints.


		Planning functions don’t take into account average column width.


		Planning functions don’t correctly take into account block skipping benefits.


		On 32-bit platforms, when file size is outside the 32-bit signed range, EXPLAIN
command prints incorrect file size.


		If two different columnar tables are configured to point to the same file,
writes to the underlying file aren’t protected from each other.


		When a data load is in progress, concurrent reads on the table overestimate the
page count.


		We have a minor memory leak in CStoreEndWrite. We need to also free the
comparisonFunctionArray.


		block_filtering test fails on Ubuntu because the “da_DK” locale is not enabled
by default.


		We don’t yet incorporate the compression method’s impact on disk I/O into cost
estimates.


		CitusDB integration errors:


		Concurrent staging cstore_fdw tables doesn’t work.


		Setting a default value for column with ALTER TABLE has limited support for
existing rows.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/comment.png





_static/down-pressed.png





_static/down.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/plus.png





_static/minus.png





_static/comment-close.png





_static/up-pressed.png





