Cyber Security Scoring Engine
Framework Documentation
Release

Brahm Lower

Jan 23, 2018

Overview

1 Introduction
L1 Features. o oo
1.2 Framework Components e e

2 Getting Started

2.1 ServerInstallation e e e e e e e e e

2.2 Client Installation e e e e e e e e e e e e

2.3 Admin Configuration e e e e e e
3 CSSEF Server

3.1 ServerlInstallation e e e e

3.2 Server Configuration L. e e e e e

4 CSSEF Client
4.1 Client Installation e e e e e e e e e e e
4.2 Client Configuration ot it e e e e e e

5 CSSEF Web Client
6 Overview
7 CSSEF Client

8 CSSEF Server
8.1 Makefile e e e

9 CSSEF Web Client

10 Documentation
10.1 Buildingthe docs o e e e e e e
10.2 Building Manually e
10.3 Building Automatically e e e e e

11 Competition Plugins

B~ W

AN L L

O \&

13
13
13

19

21

23

25
25

27

29
29
29
30

31

Cyber Security Scoring Engine Framework Documentation, Release

Danger: This project is no longer under development. There won’t be any further updates to the project, how-
ever the repo will remain available for future reference. Since the project is being formally discontinued, I am
relicensing it as MIT. If you have any questions, please feel free to email me.

Overview 1

Cyber Security Scoring Engine Framework Documentation, Release

2 Overview

CHAPTER 1

Introduction

Danger: This project is no longer under development. There won’t be any further updates to the project, how-
ever the repo will remain available for future reference. Since the project is being formally discontinued, I am
relicensing it as MIT. If you have any questions, please feel free to email me.

The Cyber Security Scoring Engine Framework (CSSEF) is an easy to use framework for hosting security competi-
tions. The primary purpose of the framework has been to make scoring security competitions as simple as possible,
so that more time and energy may be spent setting up the competition environment itself. Many of the features and
requirements were determined by the competitions hosted inhouse by the University of Alaska’s Cyber Security Club,
which attended the National Cyber Collegdet Defense Competition several years in a row. While initial development
focused on providing utilities for CCDC-like competitions, the project expanded to facilitate other types of competi-
tions as well, such as capture the flag events.

1.1 Features

Features include but are certainly not limited to the following. Please see the respective section of documentation for
more inforation on any particular feature.

* Multiple organization

» Password and token based authentication

» Easy to use command line interface

¢ Modern(ish) web client

¢ Plugin interface for multiple types of competitions

* A prebuilt plugin for CCDC-like competitions (see the plugins section)

Cyber Security Scoring Engine Framework Documentation, Release

1.2 Framework Components

1.2.1 Server

This is where the bulk of the framework lives. The server provides facilities to host various types of security related
competitions. Those facilities are consumed by plugins that use then to build some form of competition. This means
you can host a capture the flag competition and a CCDC-like competition on the same service. The server communi-
cates with the other clients via HTTP RPC calls, and uses sqlalchemy for databasing. For additional information, see
the server documentation.

1.2.2 Client

The client package provides endpoints for client applications (in the event you want to write your own), as well as a
command line tool. If you plan to install the web client, this package will be a required depenancy. See the client
documentation for more information, or the command line documentation for cli reference.

1.2.3 Web Client

The web client is meant to be an easy and painless tool for interacting with the server, as well as the various features
provided by competition plugins- especially when competitors may be submitting data during competition environ-
ments that don’t actually have the cssef client available. The web client is currently using django, which itself simply
consumes endpoints within the cssef client. For more information about the web client, see the cssef webui documen-
tation.

4 Chapter 1. Introduction

server.rst
client.rst
client.rst
cli.rst

CHAPTER 2

Getting Started

This short guide will walk through the process of setting up a basic installation of the CSSEF server. This includes
installing and configuring the dependancies, and verifying that the client is able to communicate properly with the
server.

2.1 Server Installation

The server requires systemd, python and pip.

Install the prerequisets

user@debian:~$ sudo apt-get install -y git python-pip python-dev systemd libsystemd-
—dev

Install the CSSEF server

user@debian:~$ git clone https://github.com/bplower/cssef.git
user@debian:~$ cd cssef/CssefServer
user@debian:~/cssef/CssefServer$ sudo make install

Verify the installation was successful

user@debian:~/cssef/CssefServer$ sudo systemctl is-enabled cssef-server.service
enabled

user@debian:~/cssef/CssefServer$ sudo systemctl start cssef-server.service
user@debian:~/cssef/CssefServer$ sudo systemctl status cssef-server.service | grep,,
—Active:

Active: active (running) since Thu 2016-09-01 22:00:49 AKDT; 6s ago

2.2 Client Installation

The client requires python and pip.

Cyber Security Scoring Engine Framework Documentation, Release

If you don’t have the repo cloned yet, clone it.

user@debian:~$ git clone https://github.com/bplower/cssef.git

Move to the client package directory and install the python package and execuables via make. The required pip
dependancies are prettytable, jsonrpcclient, and PyYAML.

user@debian:~$ cd cssef/CssefClient
user@debian:~/cssef/CssefClient$ sudo make install

2.3 Admin Configuration

Initially, there are no users or organization, so we will have to make them by using an administrator token. Set the
admin-token in the server configuration field to a secure passphrase to use for the initial configuration. Note that
this will be provided in plain text several times, but will be revoked after the configuration is complete.

Here we’re creating the token and assigning it to an environment variable. We’re changing the configuration file via
sed, however you may use the text editor of your choice. Afterward, restart the server to apply the configuration
changes.

user@debian:~$ admintoken='openssl rand -hex 16°

user@debian:~$ sudo sed —-i "s|admin-token:|admin-token: S$admintoken|" /etc/cssef/
—cssef-server.yml

user@debian:~$ sudo systemctl restart cssef-server.service

We can now provide the admintoken while executing commands. This will allow us to bypass authentication checks
and limits. First create an administrator organization for the admin account to exist within.

user@debian:~$ cssef-cli —--admin-token S$admintoken organization add —--
—name=Administrators —--maxMembers=10

o o o —————— - ot o
L ———— - f———————————— o o +

| maxMembers | description | name | url | id | maxCompetitions |,
—canDeleteCompetitions | canDeleteUsers | canAddCompetitions | canAddUsers |
—deletable |

o o o - o o
fm e ———— ——— o o o +

| 10 | None | Administrators | None | 1 | None | .
—True | True | True | True | True |

o o o - o —t——— o
G ——————————— - f——— o o +

And now, create an administrator user to use.

user@debian:~$ cssef-cli —--admin-token $admintoken user add --organization=1 —-
—name=Admin --username=admin --password=admin

- F——— - -
G —— Fm— +

| username | description | organization | password .
o | id | name |

Fmm Fem Fmm e
e ———— -t +

| admin | None | 1 | $2bS$10

—S$cHzkaFpT3va5LoTy jV4gHuxd3MZQpvm50UQCGecSiwbxYmsI7439a6 | 1 | Admin |

- - - -
pm e —————— - +

6 Chapter 2. Getting Started

Cyber Security Scoring Engine Framework Documentation, Release

Disable admintoken access by removing the admin token from the server configuration file.

user@debian:~$ sudo sed -i "s|admin-token:*|admin-token: |" /etc/cssef/cssef-server.yml
user@debian:~$ sudo systemctl restart cssef-server.service

This can be verified by attempting to list availble users using the admin token we used. At this point in time, the server
doesn’t explicitly deny the use of the admin-token, so it will continue to attempt to authenticate the user as normal.
Since we haven’t provided a valid username or password, access is not granted.

user@debian:~$ cssef-cli --admin-token $admintoken user get
An error was encountered:
No username provided.

Lastly, we can verify that authorization is working by logging in. Here we are not specifying the password, so
we are prompted for it. Since the authentication is successful, we received an authentication token, which will be
automatically provided by the client in future requests.

user@debian:~$ cssef-cli login —--username admin
Password:
Authentication was successful.

Now that we’ve been authenticated, we can list the available users.

user@debian:~$ cssef-cli user get

fomm fom fom e o
G fom +

| username | description | organization | password o
o | id | name |

fom e ——— e e
e fom +

| admin | None | 1 | $2b$10

—S$cHzkaFpT3va5LoTy jV4gHuUxd3MZQpvm50UQCGecSiwbxYmsI7439a6 | 1 | Admin |

fom o —— o B e
R Fom +

2.3. Admin Configuration 7

Cyber Security Scoring Engine Framework Documentation, Release

8 Chapter 2. Getting Started

CHAPTER 3

CSSEF Server

3.1 Server Installation

The server requires systemd, python and pip.

Install the prerequisets

user@debian:~$ sudo apt-get install -y git python-pip python-dev systemd libsystemd-
—dev

Install the CSSEF server

user@debian:~$ git clone https://github.com/bplower/cssef.git
user@debian:~$ cd cssef/CssefServer
user@debian:~/cssef/CssefServer$ sudo make install

Verify the installation was successful

user@debian:~/cssef/CssefServer$ sudo systemctl is-enabled cssef-server.service
enabled

user@debian:~/cssef/CssefServer$ sudo systemctl start cssef-server.service
user@debian:~/cssef/CssefServer$ sudo systemctl status cssef-server.service | grep,,
—Active:

Active: active (running) since Thu 2016-09-01 22:00:49 AKDT; 6s ago

3.2 Server Configuration

Configurations can be loaded from several different sources, where values loaded later will overwrite previously set
values. The order configuration values are loaded is as follows:

1. Default (hard coded)
2. Global config file

Cyber Security Scoring Engine Framework Documentation, Release

3. Command line configs
Please consider the following example:

The default client cache time for available endpoints is 24 hours, but is overwritten to a value of 12 hours
in the global config file. However, you are troublshooting something related to plugins, so you've started
the daemon with the cache time value set to 0 meaning the cache will be refreshed on each client request.

The value of the client cache time was overwritten twice in this example: once by the global configuration, and once
by the value provided on the command line. Any configuration option may be set through any of the configuration
sources (excluding the default configs for obvious reasons).

3.2.1 Available Options

admin-token This should only be used for initial setup, but may be used in the event you are locked out of adminis-
trator accounts. The client may provide the token to authorize requests by completely bypassing username and
password checks. If you are not actively using this, the value should be left blank, meaning admin-token auth is
disabled.

Default:
Example config file

Setting a weak admin token for initial setup
admin-token: abcl23def456

Example command line

user@debian:~$ cssefd start —-—-admin-token abcl23defd56

database-path While using sqlite as the backend database, this option will be for the absolute path to store the
database file at.

Default: /var/opt/cssef/db.sglite3

Example config file

Hold the database in memory for performance while testing

database-path:

Example command line

user@debian:~$ cssefd start --database-path ''

database-table-prefix This value will be the prefix for every table in the database. Depending on your database
backend, this may not be as important. The default will result in tables that look similar to “cssef_users”.

Attention: This feature is broken as of commit 993d87e. The prefix is hardcoded to “cssef” for the time
being.

Default: cssef

Example config file

Table prefix for production cssef installation
database-table-prefix: cssef-prod

10 Chapter 3. CSSEF Server

https://github.com/bplower/cssef/commit/993d87efef98d709209eead4340ff86a1da32f27

Cyber Security Scoring Engine Framework Documentation, Release

Example command line

user@debian:~$ cssefd start --database-table-prefix cssef-prod

logging I've completely skipped the logging values because they’re all basically useless right now. ..

installed-plugins This is a list of plugins that conform to the CSSEF plugin model that should be imported. Those
plugins must already be installed, and the entries in this list must be the names of the modules.

Default:
Example config file

Include the default CCDC like competition and CTF competition
installed-plugins:

— cssef-cdc

— cssef-ctf

Example command line

user@debian:~$ cssefd start --installed-plugins cssef-ccdc,cssef-ctf

3.2. Server Configuration 11

Cyber Security Scoring Engine Framework Documentation, Release

12 Chapter 3. CSSEF Server

CHAPTER 4

CSSEF Client

4.1 Client Installation

The client requires python and pip.

If you don’t have the repo cloned yet, clone it.

user@debian:~$ git clone https://github.com/bplower/cssef.git

Move to the client package directory and install the python package and execuables via make. The required pip
dependancies are prettytable, jsonrpcclient, and PyYAML.

user@debian:~$ cd cssef/CssefClient
user@debian:~/cssef/CssefClient$ sudo make install

4.2 Client Configuration

4.2.1 General

verbose This is by default false, but when set to true, will allow additional output to be printed detailing events and
actions that are happening.
Default: False

Example config file

I want to know EXACTLY what the client is doing all the time!
verbose: True

Example command line

13

Cyber Security Scoring Engine Framework Documentation, Release

user@debian:~$ cssef-cli --verbose organization get

task-timeout The time in seconds to wait for a task to be completed. This is in case the server is not running, or has
crashed while handling your request.

Default: 5

Example config file

My server is super fast so I should never have to wait.
task-timeout: 1

Example command line

user@debian:~$ cssef-cli —--task-timeout 30 organization get

4.2.2 Server Connection

rpc-hostname This is the hostname or IP address for the CSSEF server.
Default: localhost

Example config file

The CSSEF server for the practice competition
rpc-hostname: 10.0.0.50

Example command line

user@debian:~$ cssef-cli —--rpc-hostname cssef.example.com login

rpc-port This is the port the CSSEF server is using on the remote host.
Default: 5000
Example config file

Running the service on a non-standard port
rpc-port: 9001

Example command line

user@debian:~$ cssef-cli —--rpc-port 1234 login

4.2.3 Authentication

organization This is the organization you belong to. At this stage of development, the value is the ID of the organi-
zation, but this will eventually be updated to be the organizations name.
Defaut:

Example config file

Setting the organization so that we don't have to provide it each
time we authenticate
organization: 1

14 Chapter 4. CSSEF Client

Cyber Security Scoring Engine Framework Documentation, Release

Example command line

user@debian:~$ cssef-cli --organization 1 organization get

username This is the username for your account.
Default:

Example config file:

I'm getting sick of reintroducing myself all the time
username: admin

Example command line

user@debian:~$ cssef-cli --username admin organization get

password The password for your account. If you do not provide your password in a situation where it is required
(assuming you provide the rest of your credentials), you will be prompted for your password. This is exemplified
in the command line examples section.

Warning: It is an extremely bad idea to leave your password in plain text in a file. Please don’t set this in a
configuration file.

Default:
Example config file:

I make very bad decisions in life. This is one of them.
password: mypassword

Example command line

user@debian:~$ cssef-cli --password mypassword organization get

user@debian:~$ cssef-cli organization get
Password:

4.2.4 Token

token-auth-enabled This simply enables or disables the token authentication system. Setting this to ‘False’ makes
the login command useless since the login command is only used to retrieve an authentication token.

Default: True

Example config file

I was once bullied by tokens in school, so I don't want them on my
client at all. This will disable token authentication.
token—-auth-enabled: False

Example command line

user@debian:~$ cssef-cli —--token-auth-enabled false organization get

4.2. Client Configuration 15

Cyber Security Scoring Engine Framework Documentation, Release

token-file This is the file to store your current token in. This is a configuration you will most often set within your
local configuration file, since this tells the client where to find your token file.

Default: ~/.cssef/token

Example config file

I don't like file names less than two words in length, so I'm
renaming the token file
token-file: ~/.cssef/auth-token-file

Example command line

user@debian:~$ cssef-cli —--token-file ~/.cssef/tmp-token login

token-renewal-enabled Most tokens have expirations. When you log in, your token will expire after some period of
time, after which you will have to login again. Token renewal will request a new token each time you execute
a command. If the token expiration time is “T’, this means you won’t have to log in again unless it has been T
time since you last executed a cssef-cli request.

4.2.5 Endpoint Caching

endpoint-cache-enabled The client gets a list of available commands the server provides. This allows the server
to add and remove plugins (thus changing the available commands) without requiring the client to install or
uninstall additional components. Endpoint caching lets the client retain that list of endpoints so that it doesn’t
have to ask the server for it each time.

Default: True

Example config file

I'm a bleeding edge kind of guy- I have to make sure I have the
updated list as soon as it's availble, therefore I've disabled
endpoint caching.

endpoint-cache-enabled: False

Example command line

user@debian:~$ cssef-cli --endpoint-cache-enabled False organization get

force-endpoint-cache In some cases, you may want to force the the client to use the cached endpoint data. If you
already had cached data and decided that you never wanted to check available endpoints again, you could set
this a configuration file- but that is not recommended.

Default: False
Example config file

I will only ever be using the core endpoints, which I already have cached, so I,
—don't want to check updated endpoint EVER.
force-endpoint-cache: True

Example command line

user@debian:~$ cssef-cli --force-endpoint-cache True organization get

force-endpoint-server In some cases, you may want to force the client to check the server for available endpoints.
It is rather senseless to set this in a configuration file, since that would effectively act the same as setting
enpoint-cache-enabled: False.

16 Chapter 4. CSSEF Client

Cyber Security Scoring Engine Framework Documentation, Release

Default: False

Example config file

I'm not a rationable human, so I want endpoint caching enabled, but I never_
—want to use my cached copy of the data.
force-enpoint-server: True

Example command line

user@debian:~$ cssef-cli --force-endpoint-server True organization get

endpoint-cache-file This is the path to the file to cache the available endpoint data.
Default: ~/.cssef/endpoint-cache

Example config file

I have a super secret hiding place for special data like this
endpoint-cache-file: /dev/null

Example command line

user@debian:~$ cssef-cli —--endpoint-cache-file ~/.caches/cssef_endpoint-cache,
—organization get

endpoint-cache-time This is the maximum amount of time that may pass before the client will check for available
endpoints. This is based on the last time the file specified by endpoint-cache-file was modified. You
can see when a file was last modified by using stat. There isn’t much point to specifying this via command line,
unless to induce the same functionality as force—-endpoint-server.

If an integer with no metric is provided, it will be assumed to be seconds. For simplicity, you may provide
metrics for seconds, minutes, hours, and days using one of the following:

» The first letter of the metric (example: ‘d’ for days)
 The singlular of the metric (example: ‘hour”)
¢ The plurl of the metric (example: ‘minutes’)
Default: 12h
Example config file

My server is pretty fluid, and gets new/different plugins quite often, and I
—want to be sure I get those updates in a reasonable amount of time.
endpoint-cache-time: Sminutes

Example command line

user@debian:~$ cssef-cli --endpoint-cache-time 5s organization get

4.2. Client Configuration 17

Cyber Security Scoring Engine Framework Documentation, Release

18 Chapter 4. CSSEF Client

CHAPTER B

CSSEF Web Client

Download the AdminLTE resources:

wget https://almsaeedstudio.com/download/AdminLTE-master

Unzip that file and move the bootstrap, dist, and plugins folders to cssef/WebInterface/WebInterface/
static/.

19

Cyber Security Scoring Engine Framework Documentation, Release

20 Chapter 5. CSSEF Web Client

CHAPTER O

Overview

The CSSEF repository is broken into several distinct components, each of which is represented by directories at the
root of the repository. The following is a brief overview of each component. Continue on for more information about
each section.

CSSEF Server (CssefServer/) This is where the server side service and library lives. Like the client, all necessary
resources for the server pip package are contained here.

CSSEF Client (CssefClient/) This is where the client application and library lives. This includes all resources needed
for the pip package.

CSSEF Web Client (WeblInterface/) This is a web client that depends on the client library to function. It serves
the same purpose as the CLI client, but through a web interface. At this time, there are no package resources
available.

Documentation (docs/) This directory contains all documentation resouces for the project.

Competition Plugins (plugins/) This directory is for the development of competition plugins to use with the CSSEF.
At this time, it only houses code for the cssefcdc, which is largely composed of old code from the previous
itterations of the scoring engine framework.

21

Cyber Security Scoring Engine Framework Documentation, Release

22 Chapter 6. Overview

CHAPTER /

CSSEF Client

This is some content

23

Cyber Security Scoring Engine Framework Documentation, Release

24 Chapter 7. CSSEF Client

CHAPTER 8

CSSEF Server

Lets start with a quick overview of what everything in this directory is for, since most of it hasn’t been formally
organized.

cssefserver/ This directory contains the source for the pip package ‘cssef-server’.

tests/ Directory for tests for the ‘cssef-server’ package.

readme.md A readme file for github.

cssef-server An executable file to host a CSSEF server. This is what is started by systemd.
cssef-server.service A systemd service file, used to define the ‘cssef-server’ service.
cssef-server.yml A service configuration file, which is read in when the cssef server is started.
makefile Used to make running several tasks related to installation and testing easier.

setup.py A setup script that defines the ‘cssef-server’ python package for pip.

8.1 Makefile

At this time, the makefile must be run from the current directory (.../CssefServer) since resources are pathed referen-
tially.

install The actions of the install process are divided into four steps:
1. Install the ‘cssef-server’ package via pip.
2. Create necessary directories.
3. Copy service and config files.
4. Enable (but not start) the service within systemd.

uninstall Uninstall does most of the install process, but will leave the configuration files and database files, in case
those are still needed afterward.

1. Stop and disabled the the service within systemd.

25

Cyber Security Scoring Engine Framework Documentation, Release

2. Remove the .service file and service executable
3. Remove the python package via pip

reinstall This simply calls the uninstall and install portions of the make file. It is important to note here that the
contents of /etc/cssef/cssef-server.yml will be overwritten.

test This will run pylint and nosetests on the library and the cssef-server executable.

26 Chapter 8. CSSEF Server

CHAPTER 9

CSSEF Web Client

This is some content

27

Cyber Security Scoring Engine Framework Documentation, Release

28 Chapter 9. CSSEF Web Client

cHAaPTER 10

Documentation

Sphinx is used for documentation, and is hosted through Read The Docs. New commits to the repository will update
the live documentation.

The autodoc extension for Sphinx is used to create reference documentation from docstrings throughout the code. This
helps to enforce proper code documentation practices.

10.1 Building the docs

Building the documentation relies on sphinx and the sphinx rtd theme, but I also highly recommend installing sphinx-
autobuild.

’user@debian:~$ pip install sphinx sphinx-rtd-theme sphinx-autobuild

The documentation can be built manually or automatically. I'm lazy so I suggest using the automatic method, but I'll
cover the manual process anyway.

10.2 Building Manually

The makefile in the root of the docs folder is a lightly modified version of the standard makefile that comes with
sphinx, so if you’re familiar with sphinx, the process is the same.

’user@debian:~/cssef/docs$ make html

And that’s it! The resulting html files will be located within docs/build/html. From time to time, you may want to run
amake clean before rebuilding the documentation, just to make sure everything is fresh and up to date.

29

Cyber Security Scoring Engine Framework Documentation, Release

10.3 Building Automatically

Documentation can be automatically built and locally served using sphinx-autobuild. I’ve set up an option in the
makefile to watch the whole project (excluding the documentation build directory, and the autodocs directory), that
way we don’t have to remember how to propery run sphinx-autobuild. All you have to do is run the following
command:

user@debian:~/cssef/docs$ make livehtml

30 Chapter 10. Documentation

https://pypi.python.org/pypi/sphinx-autobuild

cHAPTER 11

Competition Plugins

This is some content

31

	Introduction
	Features
	Framework Components

	Getting Started
	Server Installation
	Client Installation
	Admin Configuration

	CSSEF Server
	Server Installation
	Server Configuration

	CSSEF Client
	Client Installation
	Client Configuration

	CSSEF Web Client
	Overview
	CSSEF Client
	CSSEF Server
	Makefile

	CSSEF Web Client
	Documentation
	Building the docs
	Building Manually
	Building Automatically

	Competition Plugins

