Python VM Internals Tutorials

Documentation
Release 1.0.0

Smruthi Manjunath

January 22, 2017






Contents

CPython Overview

Structure of Python Objects

2.1 PyObject . . . . . . . e e
2.2 PyTypeObject . . . . . . . . i i i

Generated Python Bytecodes for a simple python code

.pyc files

4.1  Advantages of shipping pyc filesoverpy files: . . . ... ... ... ..
4.2 Disadvanatgeof pycfiles. . . . . .. .. ... oo,

Differences between the various versions of python are:
5.1 Differences between python 2.6 and2.7: . . . . ... ... .. .. ...
5.2 Difference between python 2.5and 2.6: . . . . . . ... ... ... ...

References:

Indices and tables

............... 11







Python VM Internals Tutorials Documentation, Release 1.0.0

This is a tutorial giving an overview of Python VM including CPython, bytecodes and their meaning, .pyc files and
differences between various versions of Python.

Contents 1



Python VM Internals Tutorials Documentation, Release 1.0.0

2 Contents



CHAPTER 1

CPython Overview

Cpython is a python bytecode compiler written in C. For every bytecode in python, there are corresponding C functions
that implement their functionalities. The main directories of CPython are Include/, where the header files such as
object.h, python.h, etc are present, the Object/ directory that contains the implementations such as string, int,
floats, etc., the Python/ directory that contains the parser importer, Lib/ that contains the library modules and the
Module/ that contains the C extension modules.




Python VM Internals Tutorials Documentation, Release 1.0.0

4 Chapter 1. CPython Overview



CHAPTER 2

Structure of Python Objects

In python, everything is considered as an object, from integers, to strings, to functions and classes. So, it is very
important to understand their structure.

2.1 PyObject

The following is the structure of a python object defined in ./Include/object.h:PyObject

typedef struct _object{

Py_ssize_t ob_refcnt;

struct _typeobjectx ob_type;
}PyObject;

This is the basic structure and it contains 2 fields ob_refcnt and ob_type that are mandatory for all the objects.
All objects have references and the number of references to an object are stored in ob_refcnt. If we execute this
statement on the python interpreter x=ob ject (). The address of the memory location allocated to the object on the
heap is stored in x. The reference count of object is incremented by 1 and is stored in ob_refcnt variable of the
object. This will be used for garbage collection. Object type is of type _t ypeobject, which is again a structure that
gives more details of the object such as, various functions and protocols implemented and supported by the object.

2.2 PyTypeObject

The structure _t ypeob ject is defined below:

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name;
int tp_basicsize, tp_itemsize;
destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods =*tp_as_mapping;




Python VM Internals Tutorials Documentation, Release 1.0.0

}PyTypeObject;

Python_VAR_HEAD, corresponds to basic structure of the object and an additional field ob_size that is O for
statically allocated type objects and has a value for dynamically allocated type objects. The next field is the t p_name,
that gives the type represented by a String. There are pointers to destructors,print, getters and setters functions. there
are also, other fields such as tp_basicsize and tp_itemsize, where tp_basicsize represents the size
of fixed length instances and tp_1itemsize represents the size variable length instances. The tp_as_number,
tp_as_sequence, tp_as_mapping represents the protocols that are implemented by the object. This includes
the functions object supports. Each of the protocols is a pointer to another structure that has the functions that are
implemented by the object type. There are other fields that an object type can contain.

6 Chapter 2. Structure of Python Objects




CHAPTER 3

Generated Python Bytecodes for a simple python code

Below is a simple python program and the bytecodes generated for the same:

#usr/bin python

# encoding: utf-8

import sys

def foo(a,b):
return a-b

print (foo(17,25))

Bytecode obtained

3 0 LOAD_CONST 0 (-1)
3 LOAD_CONST 1 (None)
6 IMPORT_NAME 0 (sys)
9 STORE_NAME 0 (sys)
4 12 LOAD_CONST 2 (<code object foo at 0x7fe405b04a30, file "bytsg
15 MAKE_FUNCTION 0
18 STORE_NAME 1 (foo)
6 21 LOAD_NAME 1 (foo)
24 LOAD_CONST 3 (17)
27 LOAD_CONST 4 (25
30 CALL_FUNCTION 2
33 PRINT_ITEM
34 PRINT_NEWLINE
35 LOAD_CONST 1 (None)

38

RETURN_VALUE

rcc.py",

The first bytecode is LOAD_CONST that pushes a constant on top of stack. The constant it pushes is indexed from the
co_consts array. The next line is the IMPORT_NAME that imports the module mentioned in the co_const [] array.
Import calls __import__ () that takes 5 parameters, namely name(sys), local, global, from list (list of modules
imported from a class eg:from a import a,b,c ) and level (absolute or relative). It pushes the module object on top of
the stack, STORE_NAME, pops it off the top of the stack and associates the module object with name sys and stores it
in the co_names [] array in index 0.

The next set of bytecodes are for the function definition. LOAD_CONST is used to push the co_names[2] on top of the
stack. So, it looks up co_names[] and finds foo code object in that location. The MAKE_FUNCTION pops the top of
the stack and converts the code into an actual callable and pushes it on top of the stack. STORE_NAME pops it from
top of the stack into the names array corresponding to foo.

The last set of bytecodes that are generated represent the print statement and the nested function call. First the callable
foo is pushed on top of the stack, then the positional arguments are pushed on top of the stack the CALL_FUNCTION,

line



Python VM Internals Tutorials Documentation, Release 1.0.0

pops top 2 elements from the stack and puts it into a tuple and then again pops the top of the stack which now contains
the callable foo, the tuple is passed to the callable, it performs the function and pushes the result value on top of the
stack. This is then popped by the print bytecode, that puts it on to the stdout. This is followed by a print newline, if the
print statement is not terminated by a comma. The RETURN_VALUE bytecode pops the top of the stack and returns it
to the caller. Lastly, the bytecode generated for the return(a-b) statement is

LOAD_FAST 0 (a)
LOAD_FAST 1 (b)
BINARY_ SUBTRACT
RETURN_VALUE

~ o W O

The parameters a and b are stored in a fast array that is associated with a method where locals and arguments are
stored. The LOAD_FAST pushes arguments a and b on top of the stack. BINARY_SUBTRACT pops the top two
elements of the stack, performs the subtraction and pushes the result on top of the stack which is returned to the caller
by RETURN_VALUE by popping the stack.

BINARY_SUBTRACT is implemented as follows:

TARGET (BINARY_SUBTRACT)

POP () ;

TOP () ;

x = PyNumber_Subtract (v, w);
Py_DECREF (V) ;

Py_DECREF (w) ;

SET_TOP (x) ;

if (x != NULL) DISPATCH();
break;

w

v

The values a and b that were previously pushed on top of the stack are now popped and put into registers. u, v and x
are registers. PyNumber_Subtract () is called and the value returned by it is put in x . The references for object
in v and w are decremented and the returned value is pushed on top of the stack. If x is null that is if there was an
exception or any error then it breaks out else dispatch () is called to execute the next instruction.

The PyNumber_Subtract () is used to find the product of the two numbers. Since, the type of the object on
which it is operating is unknown, it should be determined. This is achieved as follows, it calls another C function
binary_opl (), which receives the *PyObject pointer, which it dereferences to find the type of the object (u-
>ob_type). Then it checks if tp_as_number protocol is implemented by it, (u->ob_type->tp_as_number) and then
checks if the subtraction number is supported. If it is, it performs the subtraction and returns the value else it returns
PyNot_Implemented.

8 Chapter 3. Generated Python Bytecodes for a simple python code




CHAPTER 4

.pyc files

The .pyc files are compiled bytecodes, their structure is very simple, it has a 4 byte magic tag and then a 4 byte
modification timestamp that helps in determining whether or not the compiled bytecodes can be used for interpreting,
that is, if the modification time is the same as the last time the py file was compiled, it will directly interpret the
bytecodes. The rest of the file is a serialized byte stream whose format is dictated by the magic tag.

4.1 Advantages of shipping pyc files over py files:

* They are compact so easier to transmit over the network.
 Load faster as only interpretation of the bytecodes is required, compilation into bytecodes can be skipped.

» Provide some security, as you are not sending the source code, but it is easy to decode and get the bytecodes and
know what the program is doing.

4.2 Disadvanatge of pyc files

» Not compatible across python releases, as the magic tag changes, the pyc file format is different and hence not
recognized by the interpreter.




Python VM Internals Tutorials Documentation, Release 1.0.0

10 Chapter 4. .pyc files



CHAPTER 5

Differences between the various versions of python are:

There were a lot of changes that were made in each of the python releases, these are a few.

5.1 Differences between python 2.6 and 2.7:

* The garbage collector has been optimized for a common usage pattern where, the objects are allocated and
not deallocated for a long time. The garbage collector has 3 generations, young, middle and old. The young
generation is collected for every 700 allocations, the middle generation is collected for every 10 collections of
the middle generation but the old generation was collected for every 10 collections of the middle generation
previously. This has been modified to collecting the old generation not only for every 10 collections of the
middle generation but also, when the middle generation reaches atleast 10% of the objects in the old generation.
This does not happen that often as objects allocated are not deallocated that frequently. So, it is optimized for
full collection.

» The garbage collector tries to avoid tracking simple containers such as integers and strings which can’t be part
of a cycle. In Python 2.7, this is now true for tuples and dicts containing atomic types (such as ints, strings, etc.).
So, they will not be tracked by the garbage collector.

* Long integers are now stored internally either in base 2**15 or in base 2**30, the base being determined at
build time. Previously, they were always stored in base 2**15.

» The division algorithm for long integers has been made faster by tightening the inner loop, doing shifts instead
of multiplications, and fixing an unnecessary extra iteration and the string functions such as split(), replace()
methods have been optimized.

5.2 Difference between python 2.5 and 2.6:

* Type objects now have a cache of methods that can reduce the work required to find the correct method imple-
mentation for a particular class; once cached, the interpreter doesn’t need to traverse base classes to figure out
the right method to call

* Function calls that use keyword arguments are significantly faster by doing a quick pointer comparison, usually
saving the time of a full string comparisons. Since, parameter names are stored as interned strings.

* To reduce memory usage, the garbage collector will now clear internal free lists when garbage-collecting the
highest generation of objects.

11



Python VM Internals Tutorials Documentation, Release 1.0.0

12 Chapter 5. Differences between the various versions of python are:



CHAPTER 6

References:

 Python Innards : http://www.cyberhades.com/2011/11/16/interesante-listado-de-enlaces-sobre-python/
* Stepping through CPython by Larry Hastings, PyCon 2012

* http://docs.python.org/2/c-api/typeobj.html

* http://docs.python.org/2/whatsnew/2.7.html

* http://docs.python.org/2/whatsnew/2.6.html

Contents:

13


http://www.cyberhades.com/2011/11/16/interesante-listado-de-enlaces-sobre-python/
http://docs.python.org/2/c-api/typeobj.html
http://docs.python.org/2/whatsnew/2.7.html
http://docs.python.org/2/whatsnew/2.6.html

Python VM Internals Tutorials Documentation, Release 1.0.0

14 Chapter 6. References:



CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

15



	CPython Overview
	Structure of Python Objects
	PyObject
	PyTypeObject

	Generated Python Bytecodes for a simple python code
	.pyc files
	Advantages of shipping pyc files over py files:
	Disadvanatge of pyc files

	Differences between the various versions of python are:
	Differences between python 2.6 and 2.7:
	Difference between python 2.5 and 2.6:

	References:
	Indices and tables

