
DFYS-Autodiff Documentation
Release 1.0.3

fei Chen; YuetingFuoyu; Yan Zhao

Dec 12, 2018

Contents

1 Background 1
1.1 Introduction . 1
1.2 Mathematical Background . 1

2 Installation 3
2.1 Install Through PyPI . 3
2.2 Install Manually . 3

3 Getting Started 5
3.1 Univariate Functions . 5
3.2 Multivariate Functions . 6
3.3 Vector Functions . 9

4 Libraries Demo 11
4.1 autodiff.forward . 11
4.2 autodiff.rootfinding . 15
4.3 autodiff.optimize . 17
4.4 autodiff.plot . 22
4.5 autodiff.backprop . 24

5 Implementation Details 27
5.1 High-level Design . 27
5.2 Core Classes . 28
5.3 External Dependencies . 28

6 Functions Details 29
6.1 Autodiff.forward . 29
6.2 Autodiff.backprop . 29
6.3 Autodiff.rootfinding . 29
6.4 Autodiff.optimize . 29
6.5 Autodiff.plot . 29

7 Software Organization 31
7.1 Directory Structure . 31
7.2 Modules . 32
7.3 Test Automation . 32
7.4 Distribution . 32

i

8 Future Development 33
8.1 1. Optimization . 33
8.2 2. Extensions . 33
8.3 3. Improvement . 33

ii

CHAPTER 1

Background

1.1 Introduction

Automatic differentiation (AD) is a family of techniques for efficiently and accurately evaluating derivatives of nu-
meric functions expressed as computer programs. Application of AD includes Newton’s method for solving nonlinear
equations, real-parameter optimization, probabilistic inference, and backpropagation in neural networks. AD has been
extremely popular because of the booming development in machine learning and deep learning techniques. Our AD
sofeware package enable user to calculate derivatives using the forward and reverse mode.

Our package has feature including support for second order derivatives (including Hssian matrix), rooting finding,
optimization(Newton, Gradient Descent, BFGS), and backpropagation.

1.2 Mathematical Background

Automatic Differentiation decomposes a complex function into a sequence of operations on elementary functions,
evaluates the derivatives at each intermediate stage, repeatedly applies the chain rule to obtain the derivative of the
outermost function. We provides explanations for related math concepts below.

Elimentary functions

The class of functions consisting of the polynomials, the exponential functions, the logarithmic functions, the trigono-
metric functions, the inverse trigonometric functions,and the functions obtained from those listed by the four arithmetic
operations and by superposition(i.e. composition),applied by finitely many times.

Chain Rule - Used to compute the derivative of a composite function - Core of automatic differentiation

For the first derivative:

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
· 𝑑𝑢
𝑑𝑥

For the second derivative:

𝜕2𝑡

𝜕𝑥𝑖𝜕𝑥𝑗
=

∑︁
𝑘

(
𝜕𝑦

𝜕𝑢𝑘

𝑢2
𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
) +

∑︁
𝑘,𝑙

(
𝜕2𝑦

𝜕𝑢𝑘𝜕𝑢𝑙

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑙

𝜕𝑥𝑗
)

1

DFYS-Autodiff Documentation, Release 1.0.3

Topological Graph - Each node represent a variable - Arrows indicate topological orders(order of operations) and
operations themselves.

Forward Mode Autodifferentiation

Follow the topological order and store the values of each variable in the nodes. visit each node in topological order.

Let x denote our innermost function. For variable 𝑢𝑖 = 𝑔𝑖(𝑣) we already know
𝑑𝑣

𝑑𝑥
, calculate

𝑑𝑢𝑖

𝑑𝑥
=

𝑑𝑢𝑖

𝑑𝑣

𝑑𝑣

𝑑𝑥

Reverse Mode Autodifferentiation

Has forward computation and backward computation

Step 1: Forward Computation

Follow the topological order and store the values of each variable in each nodes.

Step 2: Backward Computation

let y denote our final output variable and 𝑢𝑗 , 𝑣𝑗 denote the intermediate variables

1. Initialize all partial derivative
𝑑𝑦

𝑑𝑢𝑗
to 0 and dy/dy = 1

2. visit each node in reverse topological order. For variable 𝑢𝑖 = 𝑔𝑖(𝑣1, ..., 𝑣𝑛) we already know
𝑑𝑦

𝑑𝑢𝑖
, increment

𝑑𝑦

𝑑𝑣𝑗
by

𝑑𝑦

𝑑𝑢𝑖

𝑑𝑢𝑖

𝑑𝑣𝑗

2 Chapter 1. Background

CHAPTER 2

Installation

2.1 Install Through PyPI

The easiest way to install autodiff is by pip. Just type in pip install DYFS-autodiff in the command
line.

pip install DFYS-autodiff

2.2 Install Manually

The user can choose to install autodiff directly from the source in this repository. We suppose that the user has
already installed pip and virtualenv:

1. clone the project repo by git clone git@github.com:D-F-Y-S/cs207-FinalProject.git

2. cd into the local repo and create a virtual environment by virtualenv env

3. activate the virtual environment by source env/bin/activate (use deactivate to deactivate the vir-
tual environment later.)

4. install the dependencies by pip install -r requirements.txt

5. install autodiff by pip install -e .

3

DFYS-Autodiff Documentation, Release 1.0.3

4 Chapter 2. Installation

CHAPTER 3

Getting Started

3.1 Univariate Functions

The standard workflow for autodiff is to first initiate a Variable, or several Variables. We then use these
Variable to construct Expressions, which can then be queried for values and derivatives.

In [24]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from autodiff.forward import *

Suppose we want to calculate the derivatives of 𝑓(𝑥) = cos(𝜋𝑥) exp(−𝑥2). We can start with creating a Variable
called x.

In [3]: x = Variable()

We then create the Expression for 𝑓(𝑥). Note that here cos and exp are library functions from autrodiff.

In [4]: f = cos(np.pi*x)*exp(-x**2)

We can then evaluate 𝑓(𝑥)‘s value and derivative by calling the evaluation_atmethod and the derivative_at
method. For derivative_at method, the first argument specifies which variable to take derivative with respect to,
the second argument specifies which point in the domain are the derivative to be calculated.

In [5]: f.evaluation_at({x: 1})

Out[5]: -0.36787944117144233

In [6]: f.derivative_at(x, {x: 1})

Out[6]: 0.7357588823428846

The derivative_at method supports second order derivative. If we want to calculate
𝑑2𝑓

𝑑𝑥2
, we can add another

argument order=2.

In [7]: f.derivative_at(x, {x: 1}, order=2)

Out[7]: 2.895065669313077

5

DFYS-Autodiff Documentation, Release 1.0.3

Both the methods evaluation_at and derivative_at are vectorized, and instead of pass in a scalar value, we
can pass in a numpy.array, and the output will be f’s value / derivative at all entried of the input. For example, we
can calculate the value, first order derivative and second order derivative of 𝑓(𝑥) on the interval [−2, 2] simply by

In [8]: interval = np.linspace(-2, 2, 200)
values = f.evaluation_at({x: interval})
der1st = f.derivative_at(x, {x: interval})
der2nd = f.derivative_at(x, {x: interval}, order=2)

Let’s see what they look like.

In [9]: fig = plt.figure(figsize=(16, 8))
plt.plot(interval, values, c='magenta', label='$f(x)$')
plt.plot(interval, der1st, c='deepskyblue', label='$\dfrac{df(x)}{dx}$')
plt.plot(interval, der2nd, c='purple', label='$\dfrac{d^2f(x)}{dx^2}$')
plt.xlabel('x')
plt.legend()
plt.show()

3.2 Multivariate Functions

The workflow with multivariate functions are essentially the same.

Suppose we want to calculate the derivatives of 𝑔(𝑥, 𝑦) = cos(𝜋𝑥) cos(𝜋𝑦) exp(−𝑥2 − 𝑦2). We can start with adding
another Variable called y.

In [10]: y = Variable()

We then create the Expression for 𝑔(𝑥, 𝑦).

In [11]: g = cos(np.pi*x) * cos(np.pi*y) * exp(-x**2-y**2)

We can then evaluate 𝑓(𝑥)‘s value and derivative by calling the evaluation_atmethod and the derivative_at
method, as usual.

In [12]: g.evaluation_at({x: 1.0, y: 1.0})

Out[12]: 0.1353352832366127

6 Chapter 3. Getting Started

DFYS-Autodiff Documentation, Release 1.0.3

In [13]: g.derivative_at(x, {x: 1.0, y: 1.0})

Out[13]: -0.27067056647322535

In [14]: g.derivative_at(x, {x: 1.0, y: 1.0})

Out[14]: -1.0650351405815222

Now we have two variables, we may want to calculate
𝜕2𝑔

𝜕𝑥𝜕𝑦
. We can just replace the first argument of

derivative_at to a tuple (x, y). In this case the third argument order=2 can be omitted, because the
Expression can infer from the first argument that we are looking for a second order derivative.

In [15]: g.derivative_at((x, y), {x: 1.0, y: 1.0})

Out[15]: 0.5413411329464506

We can also ask g for its Hessian matrix. A numpy.array will be returned.

In [29]: g.hessian_at({x: 1.0, y:1.0})

Out[29]: array([[-1.06503514, 0.54134113],
[0.54134113, -1.06503514]])

Since the evaluation_at method and derivarive_at method are vectorized, we can as well pass in a mesh
grid, and the output will be a grid of the same shape. For example, we can calculate the value, first order derivative
and second order derivative of f(x)f(x) on the interval 𝑥 ∈ [2, 2], 𝑦 ∈ [−2, 2] simply by

In [20]: us, vs = np.linspace(-2, 2, 200), np.linspace(-2, 2, 200)
uu, vv = np.meshgrid(us, vs)

In [21]: values = g.evaluation_at({x: uu, y:vv})
der1st = g.derivative_at(x, {x: uu, y:vv})
der2nd = g.derivative_at((x, y), {x: uu, y:vv})

Let’s see what they look like.

In [22]: def plt_surf(uu, vv, zz):
fig = plt.figure(figsize=(16, 8))
ax = Axes3D(fig)
surf = ax.plot_surface(uu, vv, zz, rstride=2, cstride=2, alpha=0.8, cmap='cool')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_proj_type('ortho')
plt.show()

In [25]: plt_surf(uu, vv, values)

3.2. Multivariate Functions 7

DFYS-Autodiff Documentation, Release 1.0.3

In [26]: plt_surf(uu, vv, der1st)

In [27]: plt_surf(uu, vv, der2nd)

8 Chapter 3. Getting Started

DFYS-Autodiff Documentation, Release 1.0.3

3.3 Vector Functions

Functions defined on R𝑛 ↦→ R𝑚 are also supported. Here we create an VectorFunction that represents ℎ(
[︂
𝑥
𝑦

]︂
) =[︂

𝑓(𝑥)
𝑔(𝑥, 𝑦)

]︂
.

In [30]: h = VectorFunction(exprlist=[f, g])

We can then evaluates ℎ(
[︂
𝑥
𝑦

]︂
)‘s value and gradient (

⎡⎢⎣𝜕𝑓

𝜕𝑥
𝜕𝑔

𝜕𝑥

⎤⎥⎦ and

⎡⎢⎣
𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑦

⎤⎥⎦) by calling its evaluation_at method and

gradient_at method. The jacobian_at function returns the Jacobian matrix (

⎡⎢⎣
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

⎤⎥⎦).

In [31]: h.evaluation_at({x: 1.0, y: -1.0})

Out[31]: array([-0.36787944, 0.13533528])

In [35]: h.gradient_at(0, {x: 1.0, y: -1.0})

Out[35]: array([0., 0.])

In [33]: h.jacobian_at({x: 1.0, y: -1.0})

Out[33]: array([[0.73575888, 0.],
[-0.27067057, 0.27067057]])

3.3. Vector Functions 9

DFYS-Autodiff Documentation, Release 1.0.3

10 Chapter 3. Getting Started

CHAPTER 4

Libraries Demo

4.1 autodiff.forward

4.1.1 Univariate Functions

The standard workflow for autodiff is to first initiate a Variable, or several Variables. We then use these
Variable to construct Expressions, which can then be queried for values and derivatives.

In [65]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from autodiff.forward import *

Suppose we want to calculate the derivatives of 𝑓(𝑥) = cos(𝜋𝑥) exp(−𝑥2). We can start with creating a Variable
called x.

In [66]: x = Variable()

We then create the Expression for 𝑓(𝑥). Note that here cos and exp are library functions from autrodiff.

In [67]: f = cos(np.pi*x)*exp(-x**2)

We can then evaluate 𝑓(𝑥)‘s value and derivative by calling the evaluation_atmethod and the derivative_at
method. For derivative_at method, the first argument specifies which variable to take derivative with respect to,
the second argument specifies which point in the domain are the derivative to be calculated.

In [68]: f.evaluation_at({x: 1})

Out[68]: -0.36787944117144233

In [69]: f.derivative_at(x, {x: 1})

Out[69]: 0.73575888234288456

The derivative_at method supports second order derivative. If we want to calculate
𝑑2𝑓

𝑑𝑥2
, we can add another

argument order=2.

In [70]: f.derivative_at(x, {x: 1}, order=2)

11

DFYS-Autodiff Documentation, Release 1.0.3

Out[70]: 2.8950656693130772

Both the methods evaluation_at and derivative_at are vectorized, and instead of pass in a scalar value, we
can pass in a numpy.array, and the output will be f’s value / derivative at all entried of the input. For example, we
can calculate the value, first order derivative and second order derivative of 𝑓(𝑥) on the interval [−2, 2] simply by

In [71]: interval = np.linspace(-2, 2, 200)
values = f.evaluation_at({x: interval})
der1st = f.derivative_at(x, {x: interval})
der2nd = f.derivative_at(x, {x: interval}, order=2)

In [72]: fig = plt.figure(figsize=(16, 8))
plt.plot(interval, values, c='magenta', label='$f(x)$')
plt.plot(interval, der1st, c='deepskyblue', label='$\dfrac{df(x)}{dx}$')
plt.plot(interval, der2nd, c='purple', label='$\dfrac{d^2f(x)}{dx^2}$')
plt.xlabel('x')
plt.legend()
plt.show()

4.1.2 Multivariate Functions

The workflow with multivariate functions are essentially the same.

Suppose we want to calculate the derivatives of 𝑔(𝑥, 𝑦) = cos(𝜋𝑥) cos(𝜋𝑦) exp(−𝑥2 − 𝑦2). We can start with adding
another Variable called y.

In [73]: y = Variable()

We then create the Expression for 𝑔(𝑥, 𝑦).

In [74]: g = cos(np.pi*x) * cos(np.pi*y) * exp(-x**2-y**2)

We can then evaluate 𝑓(𝑥)‘s value and derivative by calling the evaluation_atmethod and the derivative_at
method, as usual.

In [75]: g.evaluation_at({x: 1.0, y: 1.0})

Out[75]: 0.1353352832366127

12 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

In [76]: g.derivative_at(x, {x: 1.0, y: 1.0})

Out[76]: -0.27067056647322535

In [77]: g.derivative_at(x, {x: 1.0, y: 1.0})

Out[77]: -0.27067056647322535

Now we have two variables, we may want to calculate
𝜕2𝑔

𝜕𝑥𝜕𝑦
. We can just replace the first argument of

derivative_at to a tuple (x, y). In this case the third argument order=2 can be omitted, because the
Expression can infer from the first argument that we are looking for a second order derivative.

In [78]: g.derivative_at((x, y), {x: 1.0, y: 1.0})

Out[78]: 0.54134113294645059

We can also ask g for its Hessian matrix. A numpy.array will be returned.

In [79]: g.hessian_at({x: 1.0, y:1.0})

Out[79]: array([[-1.06503514, 0.54134113],
[0.54134113, -1.06503514]])

Since the evaluation_at method and derivarive_at method are vectorized, we can as well pass in a mesh
grid, and the output will be a grid of the same shape. For example, we can calculate the value, first order derivative
and second order derivative of f(x)f(x) on the interval 𝑥 ∈ [2, 2], 𝑦 ∈ [−2, 2] simply by

In [80]: us, vs = np.linspace(-2, 2, 200), np.linspace(-2, 2, 200)
uu, vv = np.meshgrid(us, vs)

In [81]: values = g.evaluation_at({x: uu, y:vv})
der1st = g.derivative_at(x, {x: uu, y:vv})
der2nd = g.derivative_at((x, y), {x: uu, y:vv})

Let’s see what they look like.

In [82]: def plt_surf(uu, vv, zz):
fig = plt.figure(figsize=(16, 8))
ax = Axes3D(fig)
surf = ax.plot_surface(uu, vv, zz, rstride=2, cstride=2, alpha=0.8, cmap='cool')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_proj_type('ortho')
plt.show()

In [83]: plt_surf(uu, vv, values)

4.1. autodiff.forward 13

DFYS-Autodiff Documentation, Release 1.0.3

In [84]: plt_surf(uu, vv, der1st)

In [85]: plt_surf(uu, vv, der2nd)

14 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

4.1.3 Vector Functions

Functions defined on R𝑛 ↦→ R𝑚 are also supported. Here we create an VectorFunction that represents ℎ(
[︂
𝑥
𝑦

]︂
) =[︂

𝑓(𝑥)
𝑔(𝑥, 𝑦)

]︂
.

In [86]: h = VectorFunction(exprlist=[f, g])

We can then evaluates ℎ(
[︂
𝑥
𝑦

]︂
)‘s value and gradient (

⎡⎢⎣𝜕𝑓

𝜕𝑥
𝜕𝑔

𝜕𝑥

⎤⎥⎦ and

⎡⎢⎣
𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑦

⎤⎥⎦) by calling its evaluation_at method and

gradient_at method. The jacobian_at function returns the Jacobian matrix (

⎡⎢⎣
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

⎤⎥⎦).

In [87]: h.evaluation_at({x: 1.0, y: -1.0})

Out[87]: array([-0.36787944, 0.13533528])

In [88]: h.gradient_at(0, {x: 1.0, y: -1.0})

Out[88]: array([0., 0.])

In [89]: h.jacobian_at({x: 1.0, y: -1.0})

Out[89]: array([[0.73575888, 0.],
[-0.27067057, 0.27067057]])

4.2 autodiff.rootfinding

Rootfinding module provides function newton_scalar to find the root of a given function with arbitrarily many
variables. It also works with back propagation mode. Here for visualization purpose we only show up to 2 variables.

4.2. autodiff.rootfinding 15

DFYS-Autodiff Documentation, Release 1.0.3

Example1: try to approximate: 𝑓 = 𝑠𝑖𝑛(𝑥)− 0.4𝑥 = 0 from 𝑥 = −2.5, 𝑦 = −1.5

In [90]: import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
from autodiff.forward import *
from autodiff.rootfinding import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

In [91]: x = Variable()
f = x**2-4*x
result_d = newton_scalar(f,{x:1},max_itr=100)

In [92]: xx= np.linspace(-np.pi,np.pi,100)
plt.plot(xx,xx**2,color = 'black')
plt.plot(xx,4*xx,color = 'blue')
plt.scatter([result_d[x]],[f.evaluation_at({x:result_d[x]})],color = 'red')

Out[92]: <matplotlib.collections.PathCollection at 0x107e954e0>

Example 2: 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑥𝑦 = 0 from 𝑥 = 1, and 𝑦 = 10

In [93]: x, y = Variable(), Variable()
f = x**2-x*y
result_d = newton_scalar(f,{x:1,y:10},max_itr = 100)

In [94]: fig = plt.figure(figsize=(16, 8))
ax = Axes3D(fig)
us, vs = np.linspace(-1, 1, 200), np.linspace(-1, 1, 200)
uu, vv = np.meshgrid(us, vs)
zz = f.evaluation_at({x: uu, y:vv})
ax.plot([0], [0], [0], marker='o', markersize=15, c='green',alpha = .5)
surf = ax.plot_surface(uu, vv, zz, rstride=2, cstride=2, alpha=0.8, cmap='cool')
ax.plot([result_d[x]], [result_d[y]],

[f.evaluation_at({x:result_d[x],y:result_d[y]})],
marker='x', markersize=20, c='red',alpha = .8)

ax.set_xlabel('x')

16 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(30, 50)
plt.show()

4.3 autodiff.optimize

In [95]: import numpy as np
from autodiff.forward import *
import autodiff.optimize as opt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
%matplotlib inline

We included several basic optimization routines built on autodiff.forward. Here we’ll use the Rosenbrock
function to demonstrate the use of these optimization routines. The Rosenbrock function is defined as 𝑓(𝑥, 𝑦) =
(𝑎− 𝑥)2 + 𝑏(𝑦 − 𝑥2)2. Here we use 𝑎 = 1, 𝑏 = 100.

In [96]: x, y = Variable(), Variable()
f = (1-x)**2 + 100*(y-x**2)**2

In [97]: us, vs = np.linspace(-2, 1.5, 200), np.linspace(0.0, 3.5, 200)
uu, vv = np.meshgrid(us, vs)
values = f.evaluation_at({x: uu, y:vv})

The landscape of the function looks like below. The global minimum is at [−1, 1], it is marked by the red star.

In [98]: def plt_surf(uu, vv, zz, traj=None, show_dest=False, show_traj=False):
fig = plt.figure(figsize=(16, 8))
ax = Axes3D(fig)
if show_traj: ax.plot(traj[0], traj[1], traj[2], marker='>', markersize=7, c='orange')
if show_dest: ax.plot([1.0], [1.0], [0.0], marker='*', markersize=15, c='red')
surf = ax.plot_surface(uu, vv, zz, rstride=2, cstride=2, alpha=0.8, cmap='cool')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

4.3. autodiff.optimize 17

DFYS-Autodiff Documentation, Release 1.0.3

ax.set_proj_type('ortho')
plt.show()

In [99]: plt_surf(uu, vv, values, show_dest=True)

4.3.1 autodiff.optimize.gradient_descent

Let’s say we start from (0.0, 3.0). We’ll first use gradient descent to find the miminum. The gradient descent is imple-
mented in autodiff.optimize.gradient_descent. Here we set the argument return_history=True
to return a whole history of optimization.

In [100]: hist = opt.gradient_descent(f, init_val_dict={x: 0.0, y: 3.0}, max_iter=10000,
return_history=True)

We can plot our optimization path as below. We can see that gradient descent approaches the minimum slowly because
the gradient around the minimum is small.

In [101]: hist = np.array(hist)
us, vs = hist[:, 0].flatten(), hist[:, 1].flatten()
zs = f.evaluation_at({x: us, y: vs})
plt_surf(uu, vv, values, (us, vs, zs), show_dest=True, show_traj=True)

18 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

4.3.2 autodiff.optimize.newton

We’ll then use Newton’s method to find the miminum. The Newton’s method is implemented in autodiff.
optimize.newton. Here we set the argument return_history=True to return a whole history of optimiza-
tion.

In [102]: hist = opt.newton(f, init_val_dict={x: 0.0, y: 3.0}, max_iter=10000,
return_history=True)

We can plot our optimization path as below. The Newton’s method makes use of second-derivative information. We
can see that the Newton’s method takes much fewer steps to reach the minimum.

In [103]: hist = np.array(hist)
us, vs = hist[:, 0].flatten(), hist[:, 1].flatten()
zs = f.evaluation_at({x: us, y: vs})
plt_surf(uu, vv, values, (us, vs, zs), show_dest=True, show_traj=True)

4.3. autodiff.optimize 19

DFYS-Autodiff Documentation, Release 1.0.3

4.3.3 autodiff.optimize.gradient_descent

Now let’s look at the gradient_descent method, unlike Newton’s method, one does not need the Hessian matrix to find
the minimum, while the trade off is that the algorithm might stuck in local minimum and takes more iteration.

In [104]: hist = opt.gradient_descent(f, init_val_dict={x: 0.0, y: 3.0}, max_iter=10000,
return_history=True)

We see gradient descent took a lot more steps then newton’s method.

In [105]: hist = np.array(hist)
us, vs = hist[:, 0].flatten(), hist[:, 1].flatten()
zs = f.evaluation_at({x: us, y: vs})
plt_surf(uu, vv, values, (us, vs, zs), show_dest=True, show_traj=True)

20 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

4.3.4 autodiff.optimize.bfgs

Lastly, we’ll use BFGS to find the miminum. BFGS is a quasi-Newton method that approximates the Hessian ma-
trix while doing the optimization. The optimization path of BFGS can be quite hysterical, so we’ll just show the
optimization result. It is [1.0, 1.0] as we expected.

In [106]: res = opt.bfgs(f, init_val_dict={x: 0.0, y: 3.0})

In [107]: print(res[x], res[y])

1.00000000001 1.00000000001

Let’s look at the plot for bfgs, we see it blows up before it get to the mininum

In [108]: hist = opt.bfgs(f, init_val_dict={x: 0.0, y: 0.0}, max_iter=10000,
return_history=True)

hist = np.array(hist)
us, vs = hist[:, 0].flatten(), hist[:, 1].flatten()
zs = f.evaluation_at({x: us, y: vs})
plt_surf(uu, vv, values, (us, vs, zs), show_dest=True, show_traj=True)

4.3. autodiff.optimize 21

DFYS-Autodiff Documentation, Release 1.0.3

Let take a closer look by excluding the very large value in the first few iterations

In [109]: hist_trim = hist[5:,:]

In [110]: us, vs = hist_trim[:, 0].flatten(), hist_trim[:, 1].flatten()
zs = f.evaluation_at({x: us, y: vs})
plt_surf(uu, vv, values, (us, vs, zs), show_dest=True, show_traj=True)

4.4 autodiff.plot

Plot function takes in a single expression, which only has two subcomponent. It then use either Newton’s Method or
Gradient Descent to calculate the minimum of the given function. It plots the values of the function at different points

22 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

in a contour map, with ranges specified by the user,and highlights the trajectory of the optimization algorithm reaching
the minimum.

In [111]: import autodiff.forward as fwd
import autodiff.optimize as opt
from autodiff.plot import plot_contour

In [112]: x, y = fwd.Variable(), fwd.Variable()
f = 100.0*(y - x**2)**2 + (1 - x)**2.0
init_val_dict = {x: 0.0, y: 1.0}
plot_contour(f,init_val_dict,x,y,plot_range=[-0.5,0.8],method = "gradient_descent")

We see that newton method merely used 2 iteration

In [113]: plot_contour(f,init_val_dict,x,y,plot_range=[-1,1.5],method = "newton")

4.4. autodiff.plot 23

DFYS-Autodiff Documentation, Release 1.0.3

4.5 autodiff.backprop

In [134]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from autodiff.backprop import *
from autodiff.forward import *
from autodiff.rootfinding import *
import time

Backpropagation module is built upon the interfaces developed in central code file “Autodiff.forward”. It calculate the
derivative of each nodes in the compuational graph with respect to the root nodes. Therefore with different root nodes,
we should expect to see different values of derivative. suppose we have the following structure:

𝑥 = 1, 𝑦 = 2

𝑐 = sin(𝑥)

𝑑 = 𝑐 · 𝑦

Note: after one round of back propagation, the .bder attributes stores the answer from the last round until it is cleared
when a new round is called upon.

In [135]: x = Variable()
y = Variable()
c = sin(x)
d = c*y
back_propagation(c,{x:1,y:2})
print('derivative of x with respect to c is ', x.bder)
print('derivative of y with respect to c is ', y.bder)
back_propagation(d,{x:1,y:2})
print('derivative of x with respect to c is ', x.bder)
print('derivative of y with respect to c is ', y.bder)

24 Chapter 4. Libraries Demo

DFYS-Autodiff Documentation, Release 1.0.3

derivative of x with respect to c is 0.540302305868
derivative of y with respect to c is 0
derivative of x with respect to c is 1.08060461174
derivative of y with respect to c is 0.841470984808

If we calculate by hand:

$

𝑑𝑐

𝑑𝑥
= 𝑐𝑜𝑠(1) = 0.54 (4.1)

𝑑𝑐

𝑑𝑦
= 0 (4.2)

𝑑𝑑

𝑑𝑥
= 𝑦 * 𝑑𝑐

𝑑𝑥
= 2 * 𝑐𝑜𝑠(1) = 1.08 (4.3)

𝑑𝑑

𝑑𝑦
= 𝑐 = 𝑠𝑖𝑛(1) = 0.84 (4.4)

(4.5)

$

Our Backward Mode is faster than Forward Mode when getting the derivatives of all nodes in a certain computational
graph because of caching the results in the process.

User can use our backward mode to make their own neural network

In [136]: start1 = time.time()
x = Variable()
y = Variable()
c = sin(x)
d = cos(y)
e = sin(x)*cos(y)
f = tan(e)
for i in range(10000):

back_propagation(f,{x:1,y:2})
end1 = time.time()
interval = end1-start1
print('derivative of x with respect to f is ', x.bder)
print('derivative of y with respect to f is ', y.bder)
print('derivative of c with respect to f is ', c.bder)
print('derivative of d with respect to f is ', d.bder)
print('derivative of e with respect to f is ', e.bder)
print('derivative of f with respect to f is ', f.bder)
print('derivative of g with respect to f is ', g.bder)
print('time taken is {} second'.format(interval))

derivative of x with respect to f is -0.254837416116
derivative of y with respect to f is -0.867211207612
derivative of c with respect to f is 0
derivative of d with respect to f is 0
derivative of e with respect to f is 1.1333910384
derivative of f with respect to f is 1
derivative of g with respect to f is 0
time taken is 0.43090200424194336 second

In [137]: start2 = time.time()
for i in range(10000):

forward_x = f.derivative_at(x,{x:1,y:2})
forward_y = f.derivative_at(y,{x:1,y:2})
forward_c = f.derivative_at(c,{x:1,y:2})
forward_d = f.derivative_at(d,{x:1,y:2})

4.5. autodiff.backprop 25

DFYS-Autodiff Documentation, Release 1.0.3

forward_e = f.derivative_at(e,{x:1,y:2})
forward_f = f.derivative_at(f,{x:1,y:2})
forward_g = f.derivative_at(g,{x:1,y:2})

end2 = time.time()
interval = end2-start2
print('derivative of x with respect to f is ', forward_x)
print('derivative of y with respect to f is ', forward_y)
print('derivative of c with respect to f is ', forward_c)
print('derivative of d with respect to f is ', forward_d)
print('derivative of e with respect to f is ', forward_e)
print('derivative of f with respect to f is ', forward_f)
print('derivative of g with respect to f is ', forward_g)
print(interval)

derivative of x with respect to f is -0.254837416116
derivative of y with respect to f is -0.867211207612
derivative of c with respect to f is -0.0
derivative of d with respect to f is -0.0
derivative of e with respect to f is 1.1333910384
derivative of f with respect to f is 1.0
derivative of g with respect to f is -0.0
0.8440079689025879

Back propagation is also integrated with the function Newton’s

Note that sine function have multiple roots, and newton’s method will only give you the first one it finds

In [142]: result_d=newton_scalar(d,{x:1,y:-1},max_itr = 25,method = 'backward')

In [143]: print('x:',result_d[x])
print('y:',result_d[y])
print('function value:',abs(d.evaluation_at({x:result_d[x],y:result_d[y]})))

x: 2.84112466652
y: -1.5707963268
function value: 5.91243550575e-13

26 Chapter 4. Libraries Demo

CHAPTER 5

Implementation Details

5.1 High-level Design

5.1.1 Core Functions: Static Structure

The centural data structure in autodiff are Expression and ElementaryFunction (which is the com-
mon interface shared by Add, Mul, Pow, Exp, Sin. . .). Expression represents a mathematical expression. It
is composed of one ElementaryFunction plus two sub-Expression’s. Expression has two child class:
Variable, which represents a ‘base’ variable and Constant, which represents a constant.

5.1.2 Core Functions: Dynamic Behavior

When a Expression’s derivative_at method is called, it will pass its sub-Expression(‘s) to the
ElementaryFunction’s derivative_at method. ElementaryFunction’s derivative_at method
will then compute the derivative based on chain rule. In this process, the ElementaryFunction will need the val-
ues and derivatives of the sub-Expression(s), so it will call the evaluation_at method and derivative_at
method of the sub-Expression(‘s), and use the returned value to calculate the derivative. In other words,
Expression and ElementaryFunctions will be calling each other recursively, until the base of this recur-
sive process is reached.

The base of this recursive process lies in the Constant class and the Variable class. When a Constant is called
to give its derivative, it returns 0. When a Variable is called to give its derivative, it checks whether itself is the
variable to be taken derivative with respect of, if yes, then it returns 1.0, otherwise it returns 0.0.

5.1.3 On Second Order derivatives

The implementation of second order derivative is conceptually very similar to the implementation of first order deriva-
tive, except that it implements a different chain rule. The knowledge of the chain rule is encompassed within the
derivative_at method of ElementaryFunction. Because all the ElementaryFunctions involves ei-
ther one or two sub-Expression, the Faà di Bruno’s formula is actually much less frightening to implement than it
seems in the following figure.

27

DFYS-Autodiff Documentation, Release 1.0.3

5.2 Core Classes

The core class of autodiff is Expression and its child classes (Variable and Constant). They share the
same interface: all implements their own evaluation_at and derivative_at methods. The dunder methods
of Expression is overridden so that any operation on Expressionwill also return an Expression. Variable
and Constant inherites these dunder methods so that they have the same behavior as Expression.

Expression is composed of one ElementaryFunction and two sub-Expressions.
ElementaryFunctions like Sin, Exp and Add implements the chain rule associated with the corresponding
elementary function. Note that sin and exp are different from Sin and Exp. The former two are actually factory
functions that returns a Expression which has Sin and Exp as its ElementaryFunction.

5.3 External Dependencies

autodiff depends on numpy. All of autodiff’s calculation is done in numpy for the efficiency and the advantage
of vectorization. The optimize moduel depends on scipy for solving linear systems. The plot module depends
on matplotlib for plotting.

28 Chapter 5. Implementation Details

CHAPTER 6

Functions Details

6.1 Autodiff.forward

6.2 Autodiff.backprop

6.3 Autodiff.rootfinding

6.4 Autodiff.optimize

6.5 Autodiff.plot

29

DFYS-Autodiff Documentation, Release 1.0.3

30 Chapter 6. Functions Details

CHAPTER 7

Software Organization

7.1 Directory Structure

The structure of autodiff’s project directory is as follows.

autodiff/

__init__.py
README.md
forward.py
backward.py
optimize.py
rootfinding.py
plot.py

tests/

README.md
test_forward.py
test_backward.py
test_optimize.py
test_rootfinding.py
test_plot.py

docs/

README.md
milestone1.ipynb
milestone2.ipynb
source/

Background.ipynb
Getting Started.ipynb
Implementation.ipynb
index.rst

(continues on next page)

31

DFYS-Autodiff Documentation, Release 1.0.3

(continued from previous page)

Installation.ipynb
Libraries_demo.ipynb
Future Development.ipynb
License.rst

.gitignore

.travis.yml
LICENSE.txt
README.md
requirements.txt
setup.cfg
setup.py

The source codes lies in the directory autodiff, in which the __init__.py is there to make autodiff a
package. The file forward.py contains the source code of forward mode autodifferentiation. The file backward.
py contains the source code of backward mode autodifferentiation. The file optimize.py contains optimization
routines built on top of autodifferentiation. The file rootfinding.py contains rootfinding routines. The file
plot.py contains utility functions for plotting.

The test suites lies in the directory tests. The test files are named to represent the module that they test.

The documents lies in the directory docs. milestone1.ipynb is the history version of document when submitting
milestone 1. milestone2.ipynb is the history version of document when submitting milestone 2. document.
ipynb, which is this file itself, is the final document.

Other files in the rrot directory includes: .gitignore, which specifies the files that should not be tracked by git,
.travis.yml, which is the configuration file for TravisCI, LICENSE.txt, which is the license for this package,
README.md, which is the README file for this package, requirements.txt, which specifies the dependensies
of this package, setup.cfg, which is the configuration file for installing this package, setup.py, which is the
script for installing this package.

7.2 Modules

There are now five modules: autodiff.forward for forward mode autodifferentiation, backward for backward
mode autodifferentiation, optimize for optimization, rootfinding for rootfinding, and plot for plotting.

7.3 Test Automation

The continuous integration is done by TravisCI and Coveralls.

7.4 Distribution

autodiff is distributed with PyPI.

32 Chapter 7. Software Organization

https://pypi.org/project/DFYS-autodiff/

CHAPTER 8

Future Development

8.1 1. Optimization

One of the shortcomings we notice of our current design is that, during the calculation, the derivate/value of an
expression at a single point may be evaluated multiple times. When the Expression tree is shallow, this doesn’t have
much effect on the computation time. However, when the Expression tree is deep, the time spent on redundant work
will grow exponentially, which can be a serious problem. We may want to add a cache to our library , so that when
the same derivative/value is queried, it is fetched from the cache instead of being computed again. This can largely
accelerate our library in the case of complex Expressions.

8.2 2. Extensions

Since most machine learning problems can be formulated as optimization problems, and optimization routines can
make use of automatic differentiations, we can actually develop a machine learning library on the top of our library.
Other possible extensions include: more visualization tools, more optimization methods, even higher-order derivative
than second-order, a neural network framework based on backward mode automatic differntiation.

8.3 3. Improvement

If user wish to add additional feature for the DFYS-autodiff package, please go to our GitHub_ repository, fork the
repository, make the improvement, and submit pull request to us.

This project is hosted on GitHub and PyPI.

33

https://github.com/D-F-Y-S/cs207-FinalProject
https://pypi.org/project/DFYS-autodiff/

	Background
	Introduction
	Mathematical Background

	Installation
	Install Through PyPI
	Install Manually

	Getting Started
	Univariate Functions
	Multivariate Functions
	Vector Functions

	Libraries Demo
	autodiff.forward
	autodiff.rootfinding
	autodiff.optimize
	autodiff.plot
	autodiff.backprop

	Implementation Details
	High-level Design
	Core Classes
	External Dependencies

	Functions Details
	Autodiff.forward
	Autodiff.backprop
	Autodiff.rootfinding
	Autodiff.optimize
	Autodiff.plot

	Software Organization
	Directory Structure
	Modules
	Test Automation
	Distribution

	Future Development
	1. Optimization
	2. Extensions
	3. Improvement

