

Welcome to codeschool’s documentation!

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of codeschool!

[image: https://travis-ci.org/cslms/cs-server.svg?branch=dev]
 [https://travis-ci.org/cslms/cs-server][image: https://coveralls.io/repos/github/cslms/cs-server/badge.svg?branch=dev]
 [https://coveralls.io/github/cslms/cs-server?branch=dev][image: Code issues]
 [https://www.quantifiedcode.com/app/project/a366c3146ef146f4ae5c51e4bbe4258b]Code School LMS is a Django-based learning environment for programming. The most
basic functionality is a system for automatic grading of I/O based programming
questions.

In the future, we expect to support most features that a standard learning
environment supports like classroom management, discussion forums, quizzes, etc.

	Installation instructions
	Javascript deps

	Redis

	Invoke tasks

	Test it!

	API documentation
	Core services

	Core modules

	Core apps

	Learning management system

	Questions

	Extra

	Testing framework

	External modules

	Coding style
	Differences from PEP8

	Other considerations

	Naming conventions

	Docstrings

	Type hints

	Architectural guidelines

	Inconsistencies

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation instructions

First step is to clone the git repository:

$ git clone https://github.com/cslms/cs-server.git

At this point you might want to create a virtualenv, in order to isolate
Codeschool and its many dependencies from your Python environment. Please
install virtualenvwrapper from pip (pip install virtualenvwrapper) or
from your distribution packages, then execute:

$ virtualenvwrapper.sh
$ mkvirtualenv codeschool -p python3
$ workon codeschool

Move to the source tree and install all pip dependencies. This may take a while.

$ cd codeschool
$ pip install -e .[dev]

Javascript deps

If you want to make any frontend development, the next step should be installing
the correct Javascript packages from npm. Codeschool uses Webpack [https://webpack.github.io/] to create
“bundles” of web resources. This makes more efficient javascript and CSS and
allow us to use a CSS pre-processor (Sass).

You need node.js and npm to make it work:

Debian
$ apt-get install nodejs npm

Arch linux
pacman -S npm

After you have npm installed, execute:

$ npm install

Redis

Codeschool uses redis for cache. Redis must be installed and running before you
start codeschool.

Debian
$ apt-get install redis-server

Arch linux
$ redis-server

Invoke tasks

Codeschool uses invoke [http://www.pyinvoke.org] to control several aspects of development and
deployment. We start with the invoke task:

$ inv develop

This will download the Javascript dependencies, build the necessary bundles
with webpack, and then initialize the sqlite3 database. Codeschool is
database-agnostic, and you probably want to use a real database server such as
Posgres or MySQL in production.

Test it!

Finally, run the development sever and point your browser to http://localhost:8000:

$ python manage.py makemigrations
$ python manage.py migrate
$ python manage.py runserver

API Reference

All Codeschool modules and apps live inside the codeschool namespace. Besides
these core modules, the Codeschool team also maintains a few modules as external
dependencies. This page gives an overview of the architecture and the role
each module plays in the Codeschool infrastructure.

Core services

Core modules

	fixes: monkey-patch 3rd party libs

	components: jinja2/bricks components

	settings: django settings

	site: core templates

Core apps

	accounts: user authentication, login and signup (uses userena)

	cli: command line scripts that helps managing codeschool

	core: a mixed bag of core functionality

Learning management system

	lms: learning management system, control courses, grades, etc

Questions

	questions: implement different question types

Extra

	extra: optional codeschool activities

	gamification: points, badges and stars

	social: social network capabilities

Testing framework

Codeschool uses pytest [https://pytest.org] as a testing framework. The codeschool.tests module
provides an infrastructure with some useful fixtures, mocks, factories
and abstract test case classes.

Each app must provide a /tests/ module which is typically divided in the
following structure.

tests/test_appname.py
Unit tests that tests the main module functionality
and makes little or no access to the database. These tests should run fast and
are used in a TDD development cycle.

test/test_db.py
unittests that make database access. These module should
be marked with the pytest.mark.test_db mark and are excluded from the default
test suite. They should be executing before pushing any commit.

test/test_views.py
Test view functions and check if the urls exposed by the app are functional.
These tests typically uses both the database and Django’s request factory
objects. This module should be marked with pytest.mark.test_views mark.

test/test_ui.py
These module should hold all tests that uses the web driver. This is the slowest
part of the test suite and should be marked with pytest.mark.test_ui

Transition

Most Codeschool test folders are currently organized into two modules: test_unit.py
and test_integrations.py. This is a temporary arrengment until we refactor old
tests into the new infrastructure.

See also

	Testing
	Activities

External modules

	vendor: vendorized libs

Testing infrastructure

Activities

Abstract test cases for activities subclasses and surrounding models.

Subclasses must define a few required models and attributes:

class Fixtures(ActivityFixtures):
 base_class = MyClass

class TestMyClass(Fixtures, ActivityTests):
 def test_something(self, activity):
 assert activity.the_answer() == 45

class TestMySubmissions(Fixtures, SubmissionTests):
 def test_something_else(self, submission):
 assert submission.is_working_well() is True

Classes

	
class codeschool.tests.activities.ActivityFixtures

	Expose an “activity” and a “progress” fixtures that do not access the
database by default.

Users of this class must define an activity_class class attribute with
the class that should be tested.

	
class codeschool.tests.activities.ActivityTests

	Abstract tests for activities.

You should inherit from this class and maybe write additional tests methods
for the specific class you want to test.

	
class codeschool.tests.activities.ActivityTestsDb

	Activity tests that requires using the database.

	
class codeschool.tests.activities.ProgressTests

	Abstract tests for progress subclasses.

	
class codeschool.tests.activities.ProgressTestsDb

	Test Progress instances touching the database.

	
class codeschool.tests.activities.SubmissionTests

	Abstract tests for submission subclasses.

	
class codeschool.tests.activities.SubmissionTestsDb

	Submissions tests that use the database.

	
class codeschool.tests.activities.FeedbackTests

	Abstract tests for Feedback subclasses.

	
class codeschool.tests.activities.FeedbackTestsDb

	Feedback tests that use the database.

	
class codeschool.tests.activities.ActivityFixtures

	Expose an “activity” and a “progress” fixtures that do not access the
database by default.

Users of this class must define an activity_class class attribute with
the class that should be tested.

	
activity()

	An activity instance that does not touch the db.

	
activity_class

	alias of Activity

	
activity_db()

	A saved activity instance.

	
progress(activity, user)

	A progress instance for some activity.

	
progress_db(progress)

	A progress instance saved to the db.

	
user()

	An user

	
class codeschool.tests.activities.ActivityTests

	Abstract tests for activities.

You should inherit from this class and maybe write additional tests methods
for the specific class you want to test.

	
class codeschool.tests.activities.ActivityTestsDb

	Activity tests that requires using the database.

	
class codeschool.tests.activities.FeedbackTests

	Abstract tests for Feedback subclasses.

	
class codeschool.tests.activities.FeedbackTestsDb

	Feedback tests that use the database.

	
class codeschool.tests.activities.ProgressTests

	Abstract tests for progress subclasses.

	
class codeschool.tests.activities.ProgressTestsDb

	Test Progress instances touching the database.

	
class codeschool.tests.activities.SubmissionTests

	Abstract tests for submission subclasses.

	
class codeschool.tests.activities.SubmissionTestsDb

	Submissions tests that use the database.

Patchers/mockers

	
codeschool.tests.mocks.disable_commit()

	Disable commits for CommitMixin subclasses.

	
codeschool.tests.mocks.queryset_mock(data=(), cls=<class 'django.db.models.query.QuerySet'>)

	Mocks a few methods in the queryset API to make them return mocks instead
of consulting the database.

	
codeschool.tests.mocks.submit_for(cls)

	Makes submission work without access to the database.

	
codeschool.tests.mocks.wagtail_page(cls)

	A context manager that can be used to make wagtail pages usable without
using the database.

	Parameters:	cls – The model for the wagtail page.

Examples

	with wagtail_page(MyPage):

	page = MyPage(title=1,2,3)

Coding style

We use PEP8 as the base coding style. This basic style is enforced by flake8 [http://flake8.pycqa.org/en/latest/]
and autopep8 [https://github.com/hhatto/autopep8] tools. In order to check PEP8 compliance, just run:

$ flake8

from the codeschool root folder. autopep8 requires the recursive and inplace
options:

$ autopep8 src/codeschool -ir

Differences from PEP8

Line lengths

Line length is encouraged to be under 79 characters but this is not enforced.
It is acceptable to have slightly longer lines if it avoids to break lines in
a few sittuations. We leave to the humans to decide.

Named lambdas

PEP8 encourages using def’s instead of named lambdas. We don’t see a problem
with named lambdas and Python def’s can be really cumbersome when using
a more functional style. While Codeschool uses an object oriented archtecture,
we value immutability and functional styles.

Other considerations

We favor single quoted strings and triple-single-quoted strings for most cases.
Double quoted strings are reserved mostly to docstrings. You can use double
quotes if the string content has single quotes:

Do
st1 = 'foo'
st2 = '''multi
line
string'''
st3 = "good'ol string"

Don't
st4 = "foo"
st5 = """multi
line"""

Naming conventions

Use always CamelCase for class names and snake_case for everything else.
Functions and methods usually should be named after verbs if they introduce
side-effects and should be substantives if they are pure-ish functions that simply
return some value from the given arguments.

Try to avoid functions that both produce a side-effect and return an useful
value. This is usually a symptom of a poor architecture and should be refactored
into separate functions that perform each step separately.

Python cannot enforce strictly separation of functional/pure vs. impure code.
Mild side-effects are acceptable. Do not worry too much about those cases:

	Logging: this is a side-effect that we can simply ignore.

	Cache: although caching is technically a side-effect, it is just a simple
optimization. Usually it is good to expose a non-cached version of the
function for testing.

	Singletons: computation is performed and stored in a global state. This
obviously has side-effects, but we can treat as a form of caching. You
probably need to take some measures to make singletons testable and provide
some function to reset the global state across unittests. In any case,
avoid using singletons when possible.

Docstrings

Docstrings use Google style (google-style [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html]):

class MyClass:
 """
 A short (usually 1-sentence) description.

 An optional longer description that detail the class usage and
 additional assumptions and principles used to implement it.

 Attrs:
 attr_name (type):
 Description.

 Examples:
 Put some doctests with examples of how to use your class.
 >>> x = MyClass()
 >>> x.say_hello()
 "Hello!"
 """

 def some_method(self, arg1, arg2):
 """
 Short description.

 Optional long description.

 Examples:
 >>> x.some_method(1, 2)
 3

 Args:
 arg1 (type):
 Argument description
 arg2 (type):
 arg2 description

 Raises:
 Does it raise any exception? When?

 Returns:
 Description of the return value.

 See also:
 Additional information and links to other methods or functions.
 """

Observations:

Docstrings should always triple-double-quoted and start with an empty line.

Do:

def sqrt(x):
 """
 Return the square root of x.
 """
 ...

Don’ts:

def sqrt(x):
 """Return the square root of x."""
 ...

def sqrt(x):
 '''
 Return the square root of x.
 '''
 ...

Very short docstrings can use single double-quotes.

def sqrt(x):
 "Return the square root of x."

This is specially desirable when defining a sequence of very small functions.

Type hints

Python 3 introduced type hints, but they were largely ignored by the community.
Type hints have no defined runtime semantics and they are mostly used to
help static analyzers and IDEs to reason about Python code.

Type hints are a good idea, but we are admittedly a little bit lazy to put
them in most of our codebase. We encourage new code to use them and accept
patches that introduce type hints in existing code. The typing module introduced
in Python 3.5 is always allowed.

If you never saw a type hint in Python, here is an example:

def fib(n: int) -> int:
 """
 Returns the n-th Fibonacci number using an awful algorithm :)
 """
 return fib(n - 1) + fib(n - 2) if n > 1 else 1

Architectural guidelines

	Prefer immutable data structures over mutable ones.

	Prefer pure functions over classes.

	Prefer classes over impure functions.

	Avoid fat views: a view should collect information from the database and
only perform simple business logic (e.g., check permissions)

	Avoid fat models: the main concern of a model is validation and keeping
consistency of its own data.

	Table-level manipulation should be done in managers/querysets.

Inconsistencies

Sometimes we violate our own rules (Oooops!). Codeschool has some legacy code
written prior this coding style. We value consistency, but we also live in the
real world and acknowlegdge things are not always perfect. If you spot something
fishy, please submit an issue (or better yet, a pull request).

License

Codeschool.
Copyright (C) Fábio Macêdo Mendes

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 codeschool	

 	
 	
 codeschool.tests.activities	

 	
 	
 codeschool.tests.mocks	

Index

 A
 | C
 | D
 | F
 | P
 | Q
 | S
 | U
 | W

A

 	
 	activity() (codeschool.tests.activities.ActivityFixtures method)

 	activity_class (codeschool.tests.activities.ActivityFixtures attribute)

 	activity_db() (codeschool.tests.activities.ActivityFixtures method)

 	
 	ActivityFixtures (class in codeschool.tests.activities), [1]

 	ActivityTests (class in codeschool.tests.activities), [1]

 	ActivityTestsDb (class in codeschool.tests.activities), [1]

C

 	
 	codeschool.tests.activities (module)

 	
 	codeschool.tests.mocks (module)

D

 	
 	disable_commit() (in module codeschool.tests.mocks)

F

 	
 	FeedbackTests (class in codeschool.tests.activities), [1]

 	
 	FeedbackTestsDb (class in codeschool.tests.activities), [1]

P

 	
 	progress() (codeschool.tests.activities.ActivityFixtures method)

 	progress_db() (codeschool.tests.activities.ActivityFixtures method)

 	
 	ProgressTests (class in codeschool.tests.activities), [1]

 	ProgressTestsDb (class in codeschool.tests.activities), [1]

Q

 	
 	queryset_mock() (in module codeschool.tests.mocks)

S

 	
 	SubmissionTests (class in codeschool.tests.activities), [1]

 	
 	SubmissionTestsDb (class in codeschool.tests.activities), [1]

 	submit_for() (in module codeschool.tests.mocks)

U

 	
 	user() (codeschool.tests.activities.ActivityFixtures method)

W

 	
 	wagtail_page() (in module codeschool.tests.mocks)

Activities/Progress/Submission/Feedback

Many students interactions with Codeschool is done through the activities/
progress/submission/get_feedback cycle. Let us explain exactly the role of each
part and how students interactions are processed.

	Activities:

	Define a task or any other activity that the student should respond to.
Activities can be complex things such as “make this huge programming
project” or very simple things such as the task “download this file”.

Many important things in codeschool are implemented as Activities:
questions, quizzes, #TO-DO, etc.

	Progress:

	Once the student access an activity, Codeschool starts tracking its
progress. This creates an object that keeps track of all submissions and
the student performance. There is a unique Progress object per student per
Activity. It is responsible for awarding points and of increasing the total
student XP.

	Submission:

	Each interaction with an activity produces a submission.

	Feedback:

	Submissions and Progress objects can be judged and produce a Feedback.

Frequently asked questions

Users FAQ

What is Codeschool?

Codeschool is a Learning Management System focused on programming classes.

Developers FAQ

In which language Codeschool is written?

Codeschool is written in Python and uses Django for the backend. The frontend
is a mix between Elm and Javascript. Check our tech stack:

	Base: Python 3 + Django [https://djangoproject.org/] + Wagtail [https://wagtail.io/]

	API: Django REST Framework [http://www.django-rest-framework.org/]

	DB: Agnostic. The default configuration uses Sqlite for its simplicity

	Cache: Redis [https://redis.io/]

	Frontent: Elm [https://elm-lang.org/] + Material Design Lite [https://getmdl.io/] + Ace.js [https://ace.c9.io/]

	Frontend pipeline: Webpack [https://webpack.js.org/] + ES6

	CSS: Sass [https://sass-lang.com/] with BEM [https://getbem.com/] and inverted triangle [http://itcss.io/] methodology

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of codeschool!

Coding IO questions

Coding IO questions represent the standard online judge question type: users
submit a program that should solve some challenge and the answer is judged only
analysing the inputs and outputs passed to such a program. This question type
is very useful because challenges are become language agnostic. It is however
very difficult to analyse some other aspects such as code quality, architecture,
code style, etc.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to codeschool's documentation!

 		Installation instructions

 		Javascript deps

 		Redis

 		Invoke tasks

 		Test it!

 		API documentation

 		Core services

 		Core modules

 		Core apps

 		Learning management system

 		Questions

 		Extra

 		Testing framework

 		Transition

 		See also

 		External modules

 		Coding style

 		Differences from PEP8

 		Other considerations

 		Naming conventions

 		Docstrings

 		Type hints

 		Architectural guidelines

 		Inconsistencies

 		License

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

