

Contents:

	Privex’s CryptoToken Converter Documentation

	Installation and configuration
	Requirements and Dependencies

	Install Core Dependencies

	Create Database and DB user

	Download and install the project

	Beem Wallet (if using Steem)

	Basic Configuration

	Final Setup

	Transaction Scanning and Conversion

	Running in Production

	Python Code Documentation
	steemengine module
	steemengine package
	Subpackages
	steemengine.settings (Django Settings)
	Submodules

	steemengine.settings.core module

	steemengine.settings.custom module

	steemengine.settings.log module

	Module contents

	Submodules

	steemengine.helpers module

	steemengine.urls module

	steemengine.wsgi module

	Module contents

	payments module
	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	payments package
	Subpackages
	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	Submodules

	payments.admin module

	payments.apps module

	payments.models module

	payments.serializers module

	payments.tests module

	payments.views module

	Module contents

	REST API Documentation
	Endpoints

	/api/convert/

	/api/deposits/

	/api/conversions/

	/api/pairs/

Python Code Documentation:

	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	steemengine package
	Subpackages
	steemengine.settings (Django Settings)
	Submodules

	steemengine.settings.core module

	steemengine.settings.custom module

	steemengine.settings.log module

	Module contents

	Submodules

	steemengine.helpers module

	steemengine.urls module

	steemengine.wsgi module

	Module contents

	payments package
	Subpackages
	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	Submodules

	payments.admin module

	payments.apps module

	payments.models module

	payments.serializers module

	payments.tests module

	payments.views module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Privex’s CryptoToken Converter Documentation

This documentation is for CryptoToken Converter, an open source project developed
by Privex Inc. [https://www.privex.io] for simple, anonymous conversion between two cryptocurrencies / tokens.

You can find the full source code for the project on our Github [https://github.com/Privex/cryptotoken-converter]

It allows for both uni-directional and bi-directional conversions between user specified
coin pairs, whether that’s BTC->LTC, or LTC->LTCP (Litecoin to Pegged Litecoin token).

Using CryptoToken Converter, you can easily operate services such as crypto <-> token gateways,
as well as token <-> token and crypto <-> crypto.

Out of the box, CryptoToken Converter comes with two Coin Handlers:

	
	Bitcoind Coin Handler

	Handles deposits/sending for coins which have a fork of
bitcoind without dramatic JSONRPC API changes (e.g. Litecoin, Dogecoin).

	
	SteemEngine Coin Handler

	Handles deposits/issuing/sending for tokens that exist on the Steem Engine [https://steem-engine.com]
platform - a side-chain of the Steem [https://steem.com] blockchain.

Every “coin pair” has an exchange rate set in the database, which can be
either statically set for pegged tokens, or dynamically updated for conversions
between two different cryptos/tokens.

Installation and configuration

Attention

This guide is aimed at Ubuntu Bionic 18.04 - if you’re not running Ubuntu 18.04, some parts of
the guide may not apply to you, or simply won’t work.

Tip

If you don’t have any machines running Ubuntu 18.04, you can grab a dedicated or virtual server [https://www.privex.io]
pre-installed with it from Privex [https://www.privex.io] - we’re the ones who wrote this software! :)

Requirements and Dependencies

Core Dependencies

	Python 3.7+ (may or may not work on older versions)

	PostgreSQL or MySQL for the database

	Nginx for the production web server

	Linux or macOS (OSX) is recommended (may work on Windows, however we refuse to actively support it)

Additional Requirements

	If you plan to use the Bitcoind Coin Handler you’ll need one or more coin daemons such as bitcoind ,
litecoind or dogecoind running in server mode, with an rpcuser and rpcpassword configured.

	If you plan to use the SteemEngine Coin Handler you’ll need a Steem account [https://anon.steem.network/] - for best operation it’s
recommended that you use Steem Engine [https://steem-engine.com] tokens that you’ve created (can issue them), and you must have
the active private key of the token owner account.

Knowledge

	You should have basic knowledge of navigating a Linux/Unix system, including running basic commands

	It may help if you have at least a basic understanding of the Python programming language

	If you plan to contribute to the project, or make modifications, you should read the documentation for
the Django Framework [https://docs.djangoproject.com/en/2.1/], and the third-party add-on Django REST Framework [https://www.django-rest-framework.org/]

Install Core Dependencies

For this guide, we’ll be using PostgreSQL, but you’re free to use MySQL if you’re more comfortable with it.

Using your system package manager, install Python 3.7, Postgres server, nginx, git, along with some various
important libraries needed for our Python packages.

sudo apt update
Install Python 3.7, Nginx, and Git
sudo apt install -y python3.7 python3.7-dev python3.7-venv nginx git

Install libssl-dev for the OpenSSL headers (required for the Beem python library)
and build-essential - various tools required for building and compiling the python dependencies
sudo apt install -y build-essential libssl-dev

The `postgresql` package will install the latest Postgres client and server, we also want libpq-dev,
which is the postgres client dev headers, sometimes needed for Python postgres libraries
sudo apt install -y postgresql libpq-dev

Install MariaDB (cross-compatible with MySQL) and the development headers to avoid issues with the Python
MySQL library
sudo apt install -y mariadb-server libmariadbclient-dev libmariadb-dev

Tip

The below step for setting your default python3 is optional, but it may help prevent issues when
python files refer to python3 and not python3.7

To avoid the issue of python3 referring to an older version of Python 3, you should run the following
commands to set up Python 3.7 as the default. On Ubuntu 18.04, Python 3.6 is the default used for python3.

Make sure both Python 3.6 (Ubuntu 18.04 default), and 3.7 are registered with update-alternatives
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.7 2
Set `python3.7` as the default version to use when `python3` is ran
sudo update-alternatives --set python3 /usr/bin/python3.7

To check if the above worked, you should see 3.7.x when running python3 -V like below:

user@host ~ $ python3 -V
Python 3.7.1

Create Database and DB user

For Postgres, this is very easy.

Simply run the below commands to create a user, a database, and make the user the owner of the DB.

Log in as the postgres user
root@host # su - postgres

Create a user, you'll be prompted for the password
S = not a superuser, D = cannot create databases, R = cannot create roles
l = can login, P = prompt for user's new password
$ createuser -SDRl -P steemengine
 Enter password for new role:
 Enter it again:

Create the database steemengine_pay with the new user as the owner

$ createdb -O steemengine steemengine_pay

If you've already created the DB, use psql to manually grant permissions to the user

$ psql
 psql (10.6 (Ubuntu 10.6-0ubuntu0.18.04.1))
 Type "help" for help.

 postgres=# GRANT ALL ON DATABASE steemengine TO steemengine_pay;

The above commands create a postgres user called steemengine and a database called steemengine_pay .

Feel free to adjust the username and database name to your liking.

Download and install the project

Tip

If you’re running this in production, for security you should create a limited account, and install the
project using that account.

Clone the repo, and enter the directory.

git clone https://github.com/privex/cryptotoken-converter
cd cryptotoken-converter

Create and activate a python virtual environment to avoid conflicts with any packages installed system-wide,
or any upgrades to the python version.

Create the virtual environment in the folder `venv`
python3.7 -m venv venv
Activate the virtual environment.
source venv/bin/activate

You must make sure to activate the virtualenv before you run any python files, or install any python packages.

While the virtualenv is activated, you’ll see the text (venv) on the side of your shell, like so:

(venv) user@host ~/cryptotoken-converter $

Now that the virtualenv is created and activated, we can install the python packages required to run this project.

pip3 is the package manager for Python 3, this command will install the packages listed in `requirements.txt`
pip3 install -r requirements.txt

Beem Wallet (if using Steem)

If you’re using a coin handler that uses the Steem network, such as SteemEngine Coin Handler, then you
must create a Beem wallet, and add the active private key for each Steem account you intend to send/issue from.

Create a new Beem wallet, make sure to remember your wallet password, you'll need it later.
beempy createwallet
Import the Private Active Key for each Steem account you plan to send/issue from.
beempy addkey

Basic Configuration

The first step of configuration is creating a .env file, this will contain various configuration details
needed to run the project.

Creates a file called `.env` if it doesn't already exist
touch .env
Ensures that `.env` can only be read/written to by your user.
chmod 700 .env

Open up .env in your favourite text editor (such as vim or nano).

Paste the following example config:

DB_USER=steemengine_pay
DB_PASS=MySuperSecretPassword
DB_NAME=steemengine
DEBUG=false
SECRET_KEY=VeryLongRandomStringUsedToProtectYourUserSessions
UNLOCK=

Some of the above options can simply be left out if they’re just the default, but it’s best to specify them anyway,
to avoid the application breaking due to changes to the default values.

Now we’ll explain what the above options do, as well as some extras.

Basic Config

SECRET_KEY - Required

A long (recommended 40+ chars) random string of uppercase letters, lowercase letters,
and numbers. It’s used for various Django functionality, including encryption of your user sessions/cookies.

DEBUG - Optional

If set to True Django will output detailed error pages, automatically re-load the app
when python files are modified, among other helpful development features. If not specified, it defaults
to False.

This should always be set to FALSE in production, otherwise the error pages WILL leak a lot of
information, including sensitive details such as passwords or API keys.

EX_FEE - Optional

This option sets the exchange fee, as a percentage. For example 1 would mean a 1% fee is
taken from each exchange from crypto->token and token->crypto.

You may also use decimal numbers, such as 0.5 for 0.5%, or to disable exchange fees, simply set it to 0
or remove the line entirely, as the default is no fee.

COIN_HANDLERS - Optional.

If you’re using any third party Coin Handlers or you want to disable some
of the default ones, this is a list of comma separated Coin Handler folder names.

Default: SteemEngine,Bitcoin

Steem Configuration

If you plan to use SteemEngine Coin Handler then you may want to configure these as needed.

STEEM_RPC_NODES - Optional

If you want to override the Steem RPC node(s) used for functions such as signing
the custom_json transactions from the token issuing account, you can specify them as a comma separated list.

They will be used in the order they are specified.

Default: Automatically use best node determined by Beem

Example: STEEM_RPC_NODES=https://steemd.privex.io,https://api.steemit.com

UNLOCK - Required if using Steem

The wallet password for Beem. This must be specified to allow Steem transactions to be automatically signed.
See the section Beem Wallet (if using Steem) to create a wallet.

Database Configuration

	DB_BACKEND - What type of DB are you using? mysql or postgresql Default: postgresql

	DB_HOST - What hostname/ip is the DB on? Default: localhost

	DB_NAME - What is the name of the database to use? Default: steemengine_pay

	DB_USER - What username to connect with? Default: steemengine

	DB_PASS - What password to connect with? Default: no password

Final Setup

The app is almost ready to go! Just a few last things.

To create the database structure (tables, relations etc.), you’ll need to run the Django migrations

./manage.py migrate

You’ll also want to create an admin account (superuser)

./manage.py createsuperuser

Now, start the Django server

./manage.py runserver

You should now be able to go to http://127.0.0.1:8000/admin/ in your browser and access the Django admin.

Login using the superuser account you’ve created.

Using the admin panel, create at least two Coin’s (payments.models.Coin), and at least
one Coin Pair (payments.models.CoinPair).

Make sure to set each Coin’s “Coin Type” correctly, so that Coin Handlers will detect them (use the types
“SteemEngine Token”, and “Bitcoind Compatible”). You may have to refresh the “Add Coin” page if some of the types
don’t show up.

After adding the coins, you should now be able to open one of the API pages in your browser, such as this one:
http://127.0.0.1:8000/api/coins/

If you can see your added coins on that page, everything should be working! :)

Now try making some conversions using the API: REST API Documentation

Transaction Scanning and Conversion

To handle incoming deposits, and converting deposits into their destination coin, there are two management
commands to run.

./manage.py load_txs

The command load_txs imports incoming transactions into the Deposits table for any Coin that
has a properly configured Coin Handler (Coin Handlers).

./manage.py convert_coins

The command convert_coins scans each deposit in the Deposit table to check if it’s valid, and which
Coin it should be converted to.

Each valid deposit will then be converted into it’s destination coin, and the deposit will be marked as
conv (Successfully Converted).

If you’re running with DEBUG set to true, you’ll see a detailed log of what it’s doing, so you can diagnose
any problems with your coin configuration and fix it.

When running in production, you would normally have these running on a cron - a scheduled task.

To find out how to run this in production, please read Running in Production

Running in Production

Python Code Documentation

steemengine module

	steemengine package
	Subpackages
	steemengine.settings (Django Settings)
	Submodules

	steemengine.settings.core module

	steemengine.settings.custom module

	steemengine.settings.log module

	Module contents

	Submodules

	steemengine.helpers module

	steemengine.urls module

	steemengine.wsgi module

	Module contents

payments module

	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	payments package
	Subpackages
	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

	Submodules

	payments.admin module

	payments.apps module

	payments.models module

	payments.serializers module

	payments.tests module

	payments.views module

	Module contents

steemengine package

Subpackages

	steemengine.settings (Django Settings)
	Submodules

	steemengine.settings.core module

	steemengine.settings.custom module

	steemengine.settings.log module

	Module contents

Submodules

steemengine.helpers module

Various helper functions for use in CryptoToken Converter.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
steemengine.helpers.decrypt_str(data: Union[str, bytes], key: Union[str, bytes] = None) → str

	Decrypts data previously encrypted using encrypt_str() with the same Fernet compatible key, and
returns the decrypted version as a string.

The key cannot just be a random “password”, it must be a 32-byte key encoded with URL Safe base64. Use the
management command ./manage.py generate_key to create a Fernet compatible encryption key.

Under the hood, Fernet uses AES-128 CBC to encrypt the data, with PKCS7 padding and HMAC_SHA256 authentication.

If the key parameter isn’t passed, or is empty (None / “”), then it will attempt to fall back to
settings.ENCRYPT_KEY - if that’s also empty, EncryptKeyMissing will be raised.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base64 encoded data to be decrypted, in the form of either a str or bytes.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Fernet encryption key (base64) for decryption, if blank, will fall back to settings.ENCRYPT_KEY

	Raises

	
	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	EncryptionError – Something went wrong while attempting to decrypt the data

	Return str decrypted_data

	The decrypted data as a string

	
steemengine.helpers.empty(v, zero=False, itr=False) → bool

	Quickly check if a variable is empty or not. By default only ‘’ and None are checked, use itr and zero to
test for empty iterable’s and zeroed variables.

Returns True if a variable is None or ‘’, returns False if variable passes the tests

	Parameters

	
	v – The variable to check if it’s empty

	zero – if zero=True, then return True if the variable is 0

	itr – if itr=True, then return True if the variable is [], {}, or is an iterable and has 0 length

	Return bool is_blank

	True if a variable is blank (None, '', 0, [] etc.)

	Return bool is_blank

	False if a variable has content (or couldn’t be checked properly)

	
steemengine.helpers.encrypt_str(data: Union[str, bytes], key: Union[str, bytes] = None) → str

	Encrypts a piece of data data passed as a string or bytes using Fernet with the passed 32-bit symmetric
encryption key key. Outputs the encrypted data as a Base64 string for easy storage.

The key cannot just be a random “password”, it must be a 32-byte key encoded with URL Safe base64. Use the
management command ./manage.py generate_key to create a Fernet compatible encryption key.

Under the hood, Fernet uses AES-128 CBC to encrypt the data, with PKCS7 padding and HMAC_SHA256 authentication.

If the key parameter isn’t passed, or is empty (None / “”), then it will attempt to fall back to
settings.ENCRYPT_KEY - if that’s also empty, EncryptKeyMissing will be raised.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data to be encrypted, in the form of either a str or bytes.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Fernet encryption key (base64) to be used, if left blank will fall back to settings.ENCRYPT_KEY

	Raises

	
	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	EncryptionError – Something went wrong while attempting to encrypt the data

	Return str encrypted_data

	The encrypted version of the passed data as a base64 encoded string.

	
steemengine.helpers.get_fernet(key: Union[str, bytes] = None) → cryptography.fernet.Fernet

	Used internally for getting Fernet instance with auto-fallback to settings.ENCRYPT_KEY and exception handling.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base64 Fernet symmetric key for en/decrypting data. If empty, will fallback to settings.ENCRYPT_KEY

	Raises

	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	Return Fernet f

	Instance of Fernet using passed key or settings.ENCRYPT_KEY for encryption.

	
steemengine.helpers.is_encrypted(data: Union[str, bytes], key: Union[str, bytes] = None) → bool

	Returns True if the passed data appears to be encrypted. Can only verify encryption if the same key
that was used to encrypt the data is passed.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data to check for encryption, either as a string or bytes

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base64 encoded Fernet symmetric key for decrypting data. If empty, fallback to settings.ENCRYPT_KEY

	Raises

	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	Return bool is_encrypted

	True if the data is encrypted, False if it’s not encrypted or wrong key used.

	
steemengine.helpers.random_str(size=50, chars='abcdefhkmnprstwxyz2345679ACDEFGHJKLMNPRSTWXYZ')

	

steemengine.urls module

steemengine URL Configuration

	The urlpatterns list routes URLs to views. For more information please see:

	https://docs.djangoproject.com/en/2.1/topics/http/urls/

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
steemengine.urls.path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RoutePattern'>)

	

	
steemengine.urls.re_path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RegexPattern'>)

	

steemengine.wsgi module

WSGI config for steemengine project.

It exposes the WSGI callable as a module-level variable named application.

For more information on this file, see
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/

Module contents

steemengine.settings (Django Settings)

Submodules

steemengine.settings.core module

This file contains the core settings of the application. Settings specified within this file are used directly by
the Django framework, or a third-party extension / application for Django.

User specifiable environment variables:

Basic Config

	DEBUG - If set to true, enable debugging features, such as extremely verbose error pages and automatic
code reloading on edit. DO NOT RUN WITH DEBUG IN PRODUCTION, IT IS NOT SAFE.

Default: False

	SECRET_KEY - MANDATORY - A long random string used to encrypt user sessions, among other security features.

	CORS_ORIGIN_ALLOW_ALL - If True, allow all cross-origin requests (disable whitelist). Default: True

	CORS_ORIGIN_WHITELIST - Comma separated list of domains and subdomains to allow CORS for. Adding a domain
does not automatically include it’s subdomains. All subdomains must be added manually. Default: Blank

	ALLOWED_HOSTS - Comma separated list of the domains you intend to run this on. For security
(e.g. preventing cookie theft), Django requires that you specify each hostname that this application should be
accessible from.
Default: 127.0.0.1,localhost (these are also auto added if DEBUG is True).

Database Settings

	DB_BACKEND - What type of DB are you using? mysql or postgresql Default: postgresql

	DB_HOST - What hostname/ip is the DB on? Default: localhost

	DB_NAME - What is the name of the database to use? Default: steemengine_pay

	DB_USER - What username to connect with? Default: steemengine

	DB_PASS - What password to connect with? Default: no password

For more information on this file, see
https://docs.djangoproject.com/en/2.1/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.1/ref/settings/

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

steemengine.settings.custom module

This file contains settings that are specific to CryptoToken Converter, and do not affect the core Django
framework.

User specifiable environment variables:

	STEEM_RPC_NODES - Comma-separated list of one/more Steem RPC nodes. If not set, will use the default beem nodes.

	BITSHARES_RPC_NODE - Node to use to connect to Bitshares network if Bitshares coin handler is enabled. If not
set, will default to wss://eu.nodes.bitshares.ws

	EX_FEE - Conversion fee taken by us, in percentage (i.e. “1” = 1%) Default: 0 (no fee)

	COIN_HANDLERS - A comma separated list of Coin Handler modules to load. Default: SteemEngine,Bitcoin

	COIN_HANDLERS_BASE - If your coin handlers are not located in payments.coin_handlers then you may change this
to point to the base module where your coin handlers are located.

	LOWFUNDS_NOTIFY - If you’re using the low wallet balance notifications, you can change how often it re-notifies
the admin emails ADMINS if the balance is still too low to fulfill a conversion. (in hours).
Default: 12 (hours)

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

steemengine.settings.log module

Logging configuration for CryptoToken Converter.

Valid environment log levels (from least to most severe) are:

DEBUG, INFO, WARNING
ERROR, FATAL, CRITICAL

User customisable environment variables are:

	CONSOLE_LOG_LEVEL - Messages equal to and above this level will be logged to the console (i.e. the output of
manage.py commands such as runserver or load_txs) Default: INFO in production, DEBUG when DEBUG setting is true

	DBGFILE_LEVEL - Messages equal to and above this level will be logged to the debug.log files.
Default: INFO in production, DEBUG when DEBUG setting is true.

	ERRFILE_LEVEL - Same as DBGFILE_LEVEL but for error.log - Default: WARNING

	LOGGER_NAMES - A comma separated list of logger instance names to apply the default logging settings onto.
Default: privex (Use same logging for Privex’s python packages)

	BASE_LOGGER_NAME - The logger instance name to use for the main logger. If this is not specified, or is blank,
then the logging API “RootLogger” will be used, which may automatically configure logging for various packages.

	BASE_LOG_FOLDER - A relative path from the root of the project (folder with manage.py) to the folder where
log files should be stored. Default: logs

	BASE_WEB_LOGS - Relative path from BASE_LOG_FOLDER where logs from the web app should be stored.
Default: web

	BASE_CRON_LOGS - Relative path from BASE_LOG_FOLDER where logs from scheduled commands (load_txs etc.) should be
stored. Default: crons

	
steemengine.settings.log.config_logger(*logger_names, log_dir='/home/docs/checkouts/readthedocs.org/user_builds/cryptotoken-converter/checkouts/stable/logs')

	Used to allow isolated parts of this project to easily change the log output folder, e.g. allow Django
management commands to change the logs folder to crons/

Currently only used by payments.management.CronLoggerMixin

Usage:

>>> config_logger('someapp', 'otherlogger', 'mylogger', log_dir='/full/path/to/log/folder')

	Parameters

	
	logger_names (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of logger names to replace logging config for (see LOGGER_NAMES)

	log_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully qualified path. Set each logger’s timed_file log directory to this

	Returns

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] instance of BASE_LOGGER

Module contents

Coin Handlers

Subpackages

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

Module contents

This module init file is responsible for loading the Coin Handler modules, and offering methods for accessing
loaders and managers.

A Coin Handler is a Python module (folder containing classes and init file) designed to handle sending/receiving
cryptocurrency/tokens for a certain network, or certain family of networks sharing similar code.

They may handle just one single coin, several coins, or they may even allow users to dynamically add coins by
querying for a specific coin_type from the model payments.models.Coin

A coin handler must contain:

	An __init__.py with a dictionary named exports, containing the keys ‘loader’ and/or ‘manager’ pointing
to the un-instantiated loader/manager class.

	If your init file needs to do some sort-of initialisation, such as dynamically generating provides for
your classes, or adding a new coin type to settings.COIN_TYPES, it’s best to place it in a function named
“reload” with a global boolean loaded so that you only initialise the module the first time it’s loaded.

See the example __init__.py near the bottom of this module docstring.

This is optional, but it will allow reload_handlers() to properly re-trigger your initialisation code
only when changes occur, such as Coin’s being created/updated in the database.

	Two classes, a Loader and a Manager. Each class can either in it’s own file, or in a single file containing
other classes / functions.

	A Loader is a class which extends base.BaseLoader, and is responsible for retrieving transactions
that occur on that coin to detect incoming transactions.

	A Manager is a class which extends base.BaseManager, and is responsible for handling sending/issuing
of coins/tokens, as well as other small functions such as validating addresses, and checking balances.

Your Loader class may choose to extend the helper class base.BatchLoader, allowing your loader
to use batches/chunking for memory efficiency, without having to write much code.

Your Coin Handler classes should ONLY use the exceptions in base.exceptions, along with any exceptions
listed in the :raises: pydoc statements of the overridden method.

For handling automatic retry when something goes wrong, you can use the decorator
base.decorators.retry_on_err()

Example __init__.py:

>>> from django.conf import settings
>>> from payments.coin_handlers.SteemEngine.SteemEngineLoader import SteemEngineLoader
>>> from payments.coin_handlers.SteemEngine.SteemEngineManager import SteemEngineManager
>>>
>>> loaded = False
>>>
>>> def reload():
>>> global loaded
>>> if 'steemengine' not in dict(settings.COIN_TYPES):
>>> settings.COIN_TYPES += (('steemengine', 'SteemEngine Token',),)
>>> loaded = True
>>>
>>> if not loaded:
>>> reload()
>>>
>>> exports = {
>>> "loader": SteemEngineLoader,
>>> "manager": SteemEngineManager
>>> }

For an example of how to layout your coin handler module, check out the pre-included Coin Handlers:

	SteemEngine

	Bitcoin

	
payments.coin_handlers.add_handler(handler, handler_type)

	

	
payments.coin_handlers.ch_base = 'payments.coin_handlers'

	Base module path to where the coin handler modules are located. E.g. payments.coin_handlers

	
payments.coin_handlers.get_loader(symbol: str) → payments.coin_handlers.base.BaseLoader.BaseLoader

	For some use-cases, you may want to just grab the first loader that supports this coin.

>>> m = get_loader('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the loader for (uppercase)

	Return BaseLoader

	An instance implementing base.BaseLoader

	
payments.coin_handlers.get_loaders(symbol: str = None) → list

	Get all loader’s, or all loader’s for a certain coin

	Parameters

	symbol – The coin symbol to get all loaders for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseLoader>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseLoader’s

	
payments.coin_handlers.get_manager(symbol: str) → payments.coin_handlers.base.BaseManager.BaseManager

	For some use-cases, you may want to just grab the first manager that supports this coin.

>>> m = get_manager('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the manager for (uppercase)

	Return BaseManager

	An instance implementing base.BaseManager

	
payments.coin_handlers.get_managers(symbol: str = None) → list

	Get all manager’s, or all manager’s for a certain coin

	Parameters

	symbol – The coin symbol to get all managers for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseManager>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseManager’s

	
payments.coin_handlers.handlers = {}

	A dictionary of coin symbols, containing instantiated managers (BaseManager) and loaders (BaseLoader)

Example layout:

handlers = {
 'ENG': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
 'SGTK': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
}

	
payments.coin_handlers.handlers_loaded = False

	Used to track whether the Coin Handlers have been initialized, so reload_handlers can be auto-called.

	
payments.coin_handlers.has_loader(symbol: str) → bool

	Helper function - does this symbol have a loader class?

	
payments.coin_handlers.has_manager(symbol: str) → bool

	Helper function - does this symbol have a manager class?

	
payments.coin_handlers.is_database_synchronized(database: str) → bool

	Check if all migrations have been ran. Useful for preventing auto-running code accessing models before the
tables even exist, thus preventing you from migrating…

>>> from django.db import DEFAULT_DB_ALIAS
>>> if not is_database_synchronized(DEFAULT_DB_ALIAS):
>>> log.warning('Cannot run reload_handlers because there are unapplied migrations!')
>>> return

	Parameters

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which Django database config is being used? Generally just pass django.db.DEFAULT_DB_ALIAS

	Return bool

	True if all migrations have been ran, False if not.

	
payments.coin_handlers.reload_handlers()

	Resets handler to an empty dict, then loads all settings.COIN_HANDLER classes into the dictionary handlers
using settings.COIN_HANDLERS_BASE as the base module path to load from

Bitcoind Coin Handler

Module contents

Bitcoind-based Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending any cryptocurrency which has a coin daemon that has a JSONRPC API
backwards compatible with bitcoind.

It will automatically handle any payments.models.Coin which has it’s type set to bitcoind

Coin object settings:

For each coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Bitcoind RPC compatible crypto (db value: bitcoind)

	setting_host

	The IP or hostname for the daemon. If not specified, defaults to 127.0.0.1 / localhost

	setting_port

	The RPC port for the daemon. If not specified, defaults to 8332

	setting_user

	The rpcuser for the daemon. Generally MUST be specified.

	setting_pass

	The rpcpassword for the daemon. Generally MUST be specified

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	confirms_needed Default 0; Amount of confirmations needed before loading a TX

	use_trusted Default: True; If enabled, TXs returned from the daemon with ‘trusted’:true will always be
accepted at 0 confs regardless of confirms_needed

	string_amt Default: True; If true, when sending coins, a Decimal will be used (as a string). This can
cause problems with older coins such as Dogecoin, so for older coins that need floats, set this to False.

Django Settings:

If you’d rather not store the RPC details in the database, you may specify them in Django’s settings.py.

If a coin symbol is specified in settings.COIND_RPC they will be used exclusively, and any handler settings
on the Coin object will be ignored.

If a settings key isn’t specified, the default is the same as shown for coin object settings.

Example COIND_RPC Setting:

COIND_RPC = {
 "BTC": {
 'user': 'bitcoinrpc',
 'password': 'SuperSecurePass',
 'host': '127.0.0.1',
 'port': 8332,
 'confirms_needed': 0,
 'string_amt': True,
 'use_trusted': True
 }
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Bitcoin.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, as there are many coins that use a direct fork of bitcoind, our classes can provide for any
models.Coin by scanning for coins with the type bitcoind. This saves us from hard coding
specific coin symbols.

Submodules

BitcoinLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader(symbols)

	Bases: payments.coin_handlers.base.BatchLoader.BatchLoader, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinLoader - Despite the name, loads TXs from any coin that has a bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
load_batch(symbol, limit=100, offset=0, account=None)

	Loads a batch of transactions for symbol in their original format into self.transactions

	Parameters

	
	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin symbol to load TXs for

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The amount of most recent TXs to skip (for pagination)

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – NOT USED BY THIS LOADER

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinManager - Despite the name, handles sending, balance, and deposit addresses for any coin that has a
bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
address_valid(address) → bool

	If address is determined to be valid by the coind RPC, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get the total amount received by an address, or the balance of the wallet if address not specified.

	Parameters

	
	address – Crypto address to get balance for, if None, returns whole wallet balance

	memo – NOT USED BY THIS MANAGER

	memo_case – NOT USED BY THIS MANAGER

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns a deposit address for this symbol
:return tuple: A tuple containing (‘address’, crypto_address)

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the coin daemon is up or not, by requesting basic information such as current block and version.

	Return bool

	True if the coin daemon appears to be working, False if it’s not

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send the amount amount of self.symbol to a given address.

Example - send 0.1 LTC to LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph

>>> s = BitcoinManager('LTC')
>>> s.send(address='LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph', amount=Decimal('0.1'))

	Parameters

	
	amount (Decimal) – Amount of coins to send, as a Decimal()

	address – Address to send the coins to

	from_address – NOT USED BY THIS MANAGER

	memo – NOT USED BY THIS MANAGER

	Raises

	
	AccountNotFound – The destination address isn’t valid

	NotEnoughBalance – The wallet does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
setting

	Retrieve only our symbol from self.settings for convenience

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinMixin module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BitcoinMixin - shared code used by both Bitcoin.BitcoinLoader and Bitcoin.BitcoinManager

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
all_coins

	Since this is a Mixin, it may be self.coin: Coin, or self.coins: List[Coin].
This property detects whether we have a single coin, or multiple, and returns them as a dict.

	Return dict coins

	A dict<str,Coin> of supported coins, mapped by symbol

SteemEngine Coin Handler

Module contents

SteemEngine Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the SteemEngine network.

It will automatically handle any payments.models.Coin which has it’s type set to steemengine

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.SteemEngine.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new tokens are constantly being created for SteemEngine, our classes can provide for any
models.Coin by scanning for coins with the type steemengine. This saves us from hard coding
specific coin symbols.

Submodules

SteemEngineLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader

This class handles loading transactions for the SteemEngine network, and can support almost any token
on SteemEngine.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
clean_txs(account: str, symbol: str, transactions: Iterable[dict]) → Generator[dict, None, None]

	Filters a list of transactions by the receiving account, yields dict’s conforming with
payments.models.Deposit

	Parameters

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ‘to’ account to filter by

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symbol of the token being filtered

	transactions (list<dict>) – A list<dict> of transactions to filter

	Returns

	A generator yielding dict s conforming to payments.models.Deposit

	
list_txs(batch=100) → Generator[dict, None, None]

	Get transactions for all coins in self.coins where the ‘to’ field matches coin.our_account
If load() hasn’t been ran already, it will automatically call self.load()
:param batch: Amount of transactions to load per batch
:return: Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
load_batch(account, symbol, limit=100, offset=0, retry=0)

	Load SteemEngine transactions for account/symbol into self.transactions with automatic retry on error

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

SteemEngineManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager

This class handles various operations for the SteemEngine network, and supports almost any token
on SteemEngine.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Issuing tokens to users

	Sending tokens to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account (address param) exists on Steem, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the SteemEngine API and Steem node works or not, by requesting basic information such as
the token metadata, and checking if our sending/receiving account exists on Steem.

	Return bool

	True if SteemEngine and Steem appear to be working, False if either is broken.

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data=None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

Example - Issue 5.10 SGTK to @privex

>>> s = SteemEngineManager('SGTK')
>>> s.issue(address='privex', amount=Decimal('5.10'))

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – (ignored) Cannot issue tokens with a memo on SteemEngine

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from,
 send_type:str - Should be statically set to "issue"
}

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send tokens to a given address/account, optionally specifying a memo if supported

Example - send 1.23 SGTK from @someguy123 to @privex with memo ‘hello’

>>> s = SteemEngineManager('SGTK')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of tokens to send, as a Decimal()

	address – Account to send the tokens to

	from_address – Account to send the tokens from

	memo – Memo to send tokens with (if supported)

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the token’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	TokenNotFound – When the requested token symbol does not exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data=None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

Steem Coin Handler

Module contents

Steem Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the Steem network.

It will automatically handle any payments.models.Coin which has it’s type set to steembase

Coin object settings:

For each payments.models.Coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Steem Network (or compatible fork) (db value: steembase)

	our_account

	This should be set to the username of the account you want to use for receiving/sending

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	rpcs - A JSON list<str> of RPC nodes to use, with a full HTTP/HTTPS URL. If this is not specified, Beem
will automatically try to use the best available RPC node for the Steem network.

	pass_store - Generally you do not need to touch this. It controls where Beem will look for the wallet
password. It defaults to environment

Example JSON custom config:

{
 "rpcs": [
 "https://steemd.privex.io",
 "https://api.steemit.com",
 "https://api.steem.house"
],
 "pass_store": "environment"
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Steem.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new Steem forks are constantly being created, our classes can provide for any
models.Coin by scanning for coins with the type steembase. This saves us from hard coding
specific coin symbols.

Submodules

SteemLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemLoader.SteemLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, payments.coin_handlers.Steem.SteemMixin.SteemMixin

SteemLoader - Loads transactions from the Steem network

Designed for the Steem Network with SBD and STEEM support. May or may not work with other Graphene coins.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For additional settings, please see the module docstring in coin_handlers.Steem

	
static clean_tx(tx: dict, symbol: str, account: str, memo: str = None, memo_case: bool = False) → Optional[dict]

	Filters an individual transaction. See clean_txs() for info

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
list_txs(batch=0) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=10000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
settings

	To ensure we always get fresh settings from the DB after a reload

SteemManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemManager.SteemManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Steem.SteemMixin.SteemMixin

This class handles various operations for the Steem network, and supports both STEEM and SBD.

It may or may not work with other Graphene coins, such as GOLOS / Whaleshares.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Health checking

	Sending assets to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account exists on Steem, will return True. Otherwise False.

	Parameters

	address – Steem account to check existence of

	Return bool

	True if account exists, False if it doesn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: ‘Symbol’, ‘Status’, ‘Coin Name’, ‘API Node’, ‘Head Block’, ‘Block Time’,
‘RPC Version’, ‘Our Account’, ‘Our Balance’ (all strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if our Steem node works or not, by requesting basic information such as the current block + time, and
checking if our sending/receiving account exists on Steem.

	Return bool

	True if Steem appearsto be working, False if it seems to be broken.

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo=None, trigger_data=None) → dict

	Send a supported currency to a given address/account, optionally specifying a memo if supported

Example - send 1.23 STEEM from @someguy123 to @privex with memo ‘hello’

>>> s = SteemManager('STEEM')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of currency to send, as a Decimal()

	address – Account to send the currency to

	from_address – Account to send the currency from

	memo – Memo to send currency with

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the asset’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account doesn’t exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

Coin Handler Base Classes

Submodules

BaseLoader

	
class payments.coin_handlers.base.BaseLoader.BaseLoader(symbols: list = None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseLoader - Base class for Transaction loaders

A transaction loader loads incoming transactions from one or more cryptocurrencies or tokens, whether through
a block explorer, or through a direct connection to a local RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Transaction loaders must be able to initialise themselves using the following data:

	The coin symbols self.symbols passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

	They should also use the logging instance settings.LOGGER_NAME

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, as well as configure the provides list to display
the tokens/coins that this loader handles.

	
list_txs(batch=100) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides = []

	

BaseManager

	
class payments.coin_handlers.base.BaseManager.BaseManager(symbol: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseManager - Base class for coin/token management

A coin manager handles balance checking, sending, and issuing of one or more cryptocurrencies or tokens,
generally through a direct connection to a local/remote RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Coin managers must be able to initialise themselves using the following data:

	The coin symbol self.symbol passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, set the can_issue boolean for detecting if this manager
can be used to issue (create/print) tokens/coins, as well as configure the provides list to display
the tokens/coins that this manager handles.

	
address_valid(address) → bool

	A simple boolean method, allowing API requests to validate the destination address/account prior to
giving the user deposit details.

	Parameters

	address – An address or account to send to

	Return bool

	Is the address valid? True if it is, False if it isn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Return the balance of self.symbol for our “wallet”, or a given address/account, optionally filtered by memo

	Parameters

	
	address – The address or account to get the balance for. If None, return our total wallet
(or default account) balance.

	memo – If not None (and coin supports memos), return the total balance of a given memo

	memo_case – Whether or not to total memo’s case sensitive, or not. False = case-insensitive memo

	Raises

	AccountNotFound – The requested account/address doesn’t exist

	Return Decimal

	Decimal() balance of address/account, optionally balance (total received) of a given memo

	
can_issue = False

	If this manager supports issuing (creating/printing) tokens/coins, set this to True

	
get_deposit() → tuple

	
	Return tuple

	If the coin uses addresses, this method should return a tuple of (‘address’, coin_address)

	Return tuple

	If the coin uses accounts/memos, this method should return a tuple (‘account’, receiving_account)
The memo will automatically be generated by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol, e.g. current block height, block time, wallet balance
whether the daemon / API is accessible, etc.

It should return a tuple containing the manager name, the headings for a health table,
and the health data for the passed symbol (Should include a symbol or coin name column)

You may use basic HTML tags in the health data result list, such as
 <u> and

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	To reduce the risk of unhandled exceptions by sending code, this method should do some basic checks against
the API to test whether the coin daemon / API is responding correctly.

This allows code which calls your send() or issue() method to detect the daemon / API is not working, and
then delay sending/issuing until later, instead of marking a convert / withdrawal status to an error.

The method body should be wrapped in a try/except, ensuring there’s a non-targeted except which
returns False

	Return bool

	True if the coin daemon / API appears to be working, False if it’s not

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – Memo to issue tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "issue"
}

	
orig_symbol = None

	The original unique database symbol ID

	
provides = []

	A list of token/coin symbols in uppercase that this loader supports e.g:

provides = ["LTC", "BTC", "BCH"]

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Send tokens to a given address/account, optionally specifying a memo and sender address/account if supported

Your send method should automatically subtract any blockchain transaction fees from the amount sent.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send, as a Decimal()

	address – Address or account to send the coins/tokens to

	memo – Memo to send coins/tokens with (if supported)

	from_address – Address or account to send from (if required)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this send transaction (e.g. the deposit that triggered this)

	Raises

	
	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	NotEnoughBalance – Sending account/address does not have enough balance to send

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data: Union[dict, list] = None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

	
symbol = None

	The native coin symbol, e.g. BTC, LTC, etc. (non-unique)

BatchLoader

	
class payments.coin_handlers.base.BatchLoader.BatchLoader(symbols: list = None)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BatchLoader - An abstract sub-class of BaseLoader which comes with some pre-written batching/chunking functions

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

This class is designed to save you time from re-writing your own “batching” / “chunking” functions.

Batching / chunking is a memory efficiency technique to prevent RAM leaks causing poor performance or crashes.
Instead of loading all 1K - 10K transactions into memory, you load only a small amount of transactions, such as
100 transactions, then you use a Python generator (the yield keyword) to return individual transactions, quietly
loading the next “batch” / “chunk” of 100 TXs after the first set has been processed, without interrupting the
caller’s for loop or other iteration.

This allows other functions to iterate over the transactions and process them on the fly, instead of having to load
the entire 1-10K transaction list into memory first.

The use of generators throughout this class helps to prevent the problem of RAM leaks due to constant
duplication of the transaction list (e.g. self.transactions, self.filtered_txs, self.cleaned_txs), especially
when the transaction lists contains thousands of transactions.

To use this class, simply extend it (instead of BaseLoader), and make sure to implement the two abstract methods:

	load_batch - Loads and stores a small batch of raw (original format) transactions for a given coin

	
	clean_txs - Filters the loaded TXs, yielding TXs (conformed to be compatible with models.Deposit)

	that were received by us (not sent), and various sanity checks depending on the type of coin.

If your Loader is for a coin which uses an account/memo system, set self.need_account = True before calling
BatchLoader’s constructor, and it will remove coins in self.symbols/coins that do not have a non-empty/null
our_account column.

You’re free to override any methods if you need to, just make sure to call this class’s constructor __init__
before/after your own constructor, otherwise some methods may break.

Flow of this class:

Transaction loading cron
 |
 V--> __init__(symbols:list)
 |--> load(tx_count:int)
 |--> list_txs(batch:int) -> _list_txs(coin:Coin, batch:int)
 V |--> load_batch(account, symbol, offset)
 V--> clean_txs(account, symbol, txs)

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming
with models.Deposit

Important things when implementing this function:

	Make sure to filter out transactions that were sent from our own wallet/account - otherwise internal
transfers will cause problems.

	Make sure each transaction is destined to us

	If your loader is account-based, make sure to only yield transactions where tx[“to_account”] == account.

	If your loader is address-based, make sure that you only return transactions that are being received by
our wallet, not being sent from it.

	If account isn’t None, assume that you must yield TXs sent to the given crypto address account

	If your loader deals with smart contract networks e.g. ETH, EOS, make sure that you only return transactions
valid on the matching smart contract, don’t blindly trust the symbol!

	Make sure that every dict that you yield conforms with the return standard shown for
BaseLoader.list_txs()

	While transactions is normally a list<dict> you should assume that it could potentially be a
Generator, writing the code Generator-friendly will ensure it can handle both lists and Generator’s.

Example:

>>> def clean_txs(self, symbol: str, transactions: Iterable[dict],
>>> account: str = None) -> Generator[dict, None, None]:
>>> for tx in transactions:
>>> try:
>>> if tx['from'].lower() == 'tokens': continue # Ignore token issues
>>> if tx['from'].lower() == account: continue # Ignore transfers from ourselves.
>>> if tx['to'].lower() != account.lower(): continue # If we aren't the receiver, we don't need it.
>>> clean_tx = dict(
>>> txid=tx['txid'], coin=symbol, tx_timestamp=parse(tx['timestamp']),
>>> from_account=tx['from'], to_account=tx['to'], memo=tx['memo'],
>>> amount=Decimal(tx['quantity'])
>>>)
>>> yield clean_tx
>>> except:
>>> log.exception('Error parsing transaction data. Skipping this TX. tx = %s', tx)
>>> continue

	Parameters

	
	symbol – The symbol of the token being filtered

	transactions – A list<dict> of transactions to filter

	account – The ‘to’ account or crypto address to filter by (only required for account-based loaders)

	Returns

	A generator yielding dict’s conforming to models.Deposit, check the PyDoc
return info for coin_handlers.base.BaseLoader.list_txs() for current format.

	
list_txs(batch=100) → Generator[dict, None, None]

	Yield transactions for all coins in self.coins as a generator, loads transactions in batches of batch
and returns them seamlessly using a generator.

If load() hasn’t been ran already, it will automatically call self.load()

	Parameters

	batch – Amount of transactions to load per batch

	Return Generator[dict, None, None]

	Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	Simply imports tx_count into an instance variable, and then sets self.loaded to True.

If self.need_account is set to True by a child/parent class, this method will remove any coins from
self.coins and self.symbols which have a blank/null our_account in the DB, ensuring that you can trust
that all coins listed in symbols/coins have an our_account which isn’t empty or None.

	Parameters

	tx_count (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load per symbol specified in constructor

	
load_batch(symbol, limit=100, offset=0, account=None)

	This function should load limit transactions in their raw format from your data source, skipping
the offset newest TXs efficiently, and store them in the instance var self.transactions

If you use the included decorator decorators.retry_on_err(), if any exceptions are thrown by your
method, it will simply re-run it with the same arguments up to 3 tries by default.

Basic implementation:

>>> @retry_on_err()
>>> def load_batch(self, symbol, limit=100, offset=0, account=None):
>>> self.transactions = self.my_rpc.get_tx_list(limit, offset)

	Parameters

	
	symbol – The symbol to load a batch of transactions for

	limit – The amount of transactions to load

	offset – Skip this many transactions (most recent first)

	account – An account name, or coin address to filter transactions using

Base Decorators

	
payments.coin_handlers.base.decorators.retry_on_err(max_retries: int = 3, delay: int = 3, **retry_conf)

	Decorates a function or class method, wraps the function/method with a try/catch block, and will automatically
re-run the function with the same arguments up to max_retries time after any exception is raised, with a
delay second delay between re-tries.

If it still throws an exception after max_retries retries, it will log the exception details with fail_msg,
and then re-raise it.

Usage (retry up to 5 times, 1 second between retries, stop immediately if IOError is detected):

>>> @retry_on_err(5, 1, fail_on=[IOError])
... def my_func(self, some=None, args=None):
... if some == 'io': raise IOError()
... raise FileExistsError()

This will be re-ran 5 times, 1 second apart after each exception is raised, before giving up:

>>> my_func()

Where-as this one will immediately re-raise the caught IOError on the first attempt, as it’s passed in fail_on:

>>> my_func('io')

	Parameters

	
	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total retry attempts before giving up

	delay (int [https://docs.python.org/3/library/functions.html#int]) – Amount of time in seconds to sleep before re-trying the wrapped function

	retry_conf – Less frequently used arguments, pass in as keyword args:

	(list) fail_on: A list() of Exception types that should result in immediate failure (don’t retry, raise)

	(str) retry_msg: Override the log message used for retry attempts. First message param %s is func name,
second message param %d is retry attempts remaining

	(str) fail_msg: Override the log message used after all retry attempts are exhausted. First message param %s
is func name, and second param %d is amount of times retried.

Base Exceptions

	
exception payments.coin_handlers.base.exceptions.AccountNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending or receiving account requested doesn’t exist

	
exception payments.coin_handlers.base.exceptions.AuthorityMissing

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Missing private key or other authorization for this operation

	
exception payments.coin_handlers.base.exceptions.CoinHandlerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all Coin handler exceptions to inherit

	
exception payments.coin_handlers.base.exceptions.DeadAPIError

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

A main API, e.g. a coin daemon or public node used by this coin handler is offline.

	
exception payments.coin_handlers.base.exceptions.IssueNotSupported

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

This class does not support issuing, the token name cannot be issued, or other issue problems.

	
exception payments.coin_handlers.base.exceptions.IssuerKeyError

	Bases: payments.coin_handlers.base.exceptions.AuthorityMissing

Attempted to issue tokens you don’t have the issuer key for

	
exception payments.coin_handlers.base.exceptions.MissingTokenMetadata

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Could not process a transaction or run the requested Loader/Manager method as required coin metadata is missing,
such as payments.models.Coin.our_account or a required key in the custom JSON settings.

	
exception payments.coin_handlers.base.exceptions.NotEnoughBalance

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending account does not have enough balance for this operation

	
exception payments.coin_handlers.base.exceptions.TokenNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The token/coin requested doesn’t exist

Module contents

Bitcoind Coin Handler

Module contents

Bitcoind-based Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending any cryptocurrency which has a coin daemon that has a JSONRPC API
backwards compatible with bitcoind.

It will automatically handle any payments.models.Coin which has it’s type set to bitcoind

Coin object settings:

For each coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Bitcoind RPC compatible crypto (db value: bitcoind)

	setting_host

	The IP or hostname for the daemon. If not specified, defaults to 127.0.0.1 / localhost

	setting_port

	The RPC port for the daemon. If not specified, defaults to 8332

	setting_user

	The rpcuser for the daemon. Generally MUST be specified.

	setting_pass

	The rpcpassword for the daemon. Generally MUST be specified

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	confirms_needed Default 0; Amount of confirmations needed before loading a TX

	use_trusted Default: True; If enabled, TXs returned from the daemon with ‘trusted’:true will always be
accepted at 0 confs regardless of confirms_needed

	string_amt Default: True; If true, when sending coins, a Decimal will be used (as a string). This can
cause problems with older coins such as Dogecoin, so for older coins that need floats, set this to False.

Django Settings:

If you’d rather not store the RPC details in the database, you may specify them in Django’s settings.py.

If a coin symbol is specified in settings.COIND_RPC they will be used exclusively, and any handler settings
on the Coin object will be ignored.

If a settings key isn’t specified, the default is the same as shown for coin object settings.

Example COIND_RPC Setting:

COIND_RPC = {
 "BTC": {
 'user': 'bitcoinrpc',
 'password': 'SuperSecurePass',
 'host': '127.0.0.1',
 'port': 8332,
 'confirms_needed': 0,
 'string_amt': True,
 'use_trusted': True
 }
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Bitcoin.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, as there are many coins that use a direct fork of bitcoind, our classes can provide for any
models.Coin by scanning for coins with the type bitcoind. This saves us from hard coding
specific coin symbols.

Submodules

BitcoinLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader(symbols)

	Bases: payments.coin_handlers.base.BatchLoader.BatchLoader, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinLoader - Despite the name, loads TXs from any coin that has a bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
load_batch(symbol, limit=100, offset=0, account=None)

	Loads a batch of transactions for symbol in their original format into self.transactions

	Parameters

	
	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin symbol to load TXs for

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The amount of most recent TXs to skip (for pagination)

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – NOT USED BY THIS LOADER

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinManager - Despite the name, handles sending, balance, and deposit addresses for any coin that has a
bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
address_valid(address) → bool

	If address is determined to be valid by the coind RPC, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get the total amount received by an address, or the balance of the wallet if address not specified.

	Parameters

	
	address – Crypto address to get balance for, if None, returns whole wallet balance

	memo – NOT USED BY THIS MANAGER

	memo_case – NOT USED BY THIS MANAGER

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns a deposit address for this symbol
:return tuple: A tuple containing (‘address’, crypto_address)

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the coin daemon is up or not, by requesting basic information such as current block and version.

	Return bool

	True if the coin daemon appears to be working, False if it’s not

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send the amount amount of self.symbol to a given address.

Example - send 0.1 LTC to LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph

>>> s = BitcoinManager('LTC')
>>> s.send(address='LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph', amount=Decimal('0.1'))

	Parameters

	
	amount (Decimal) – Amount of coins to send, as a Decimal()

	address – Address to send the coins to

	from_address – NOT USED BY THIS MANAGER

	memo – NOT USED BY THIS MANAGER

	Raises

	
	AccountNotFound – The destination address isn’t valid

	NotEnoughBalance – The wallet does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
setting

	Retrieve only our symbol from self.settings for convenience

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinMixin module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BitcoinMixin - shared code used by both Bitcoin.BitcoinLoader and Bitcoin.BitcoinManager

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
all_coins

	Since this is a Mixin, it may be self.coin: Coin, or self.coins: List[Coin].
This property detects whether we have a single coin, or multiple, and returns them as a dict.

	Return dict coins

	A dict<str,Coin> of supported coins, mapped by symbol

Steem Coin Handler

Module contents

Steem Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the Steem network.

It will automatically handle any payments.models.Coin which has it’s type set to steembase

Coin object settings:

For each payments.models.Coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Steem Network (or compatible fork) (db value: steembase)

	our_account

	This should be set to the username of the account you want to use for receiving/sending

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	rpcs - A JSON list<str> of RPC nodes to use, with a full HTTP/HTTPS URL. If this is not specified, Beem
will automatically try to use the best available RPC node for the Steem network.

	pass_store - Generally you do not need to touch this. It controls where Beem will look for the wallet
password. It defaults to environment

Example JSON custom config:

{
 "rpcs": [
 "https://steemd.privex.io",
 "https://api.steemit.com",
 "https://api.steem.house"
],
 "pass_store": "environment"
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Steem.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new Steem forks are constantly being created, our classes can provide for any
models.Coin by scanning for coins with the type steembase. This saves us from hard coding
specific coin symbols.

Submodules

SteemLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemLoader.SteemLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, payments.coin_handlers.Steem.SteemMixin.SteemMixin

SteemLoader - Loads transactions from the Steem network

Designed for the Steem Network with SBD and STEEM support. May or may not work with other Graphene coins.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For additional settings, please see the module docstring in coin_handlers.Steem

	
static clean_tx(tx: dict, symbol: str, account: str, memo: str = None, memo_case: bool = False) → Optional[dict]

	Filters an individual transaction. See clean_txs() for info

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
list_txs(batch=0) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=10000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
settings

	To ensure we always get fresh settings from the DB after a reload

SteemManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemManager.SteemManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Steem.SteemMixin.SteemMixin

This class handles various operations for the Steem network, and supports both STEEM and SBD.

It may or may not work with other Graphene coins, such as GOLOS / Whaleshares.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Health checking

	Sending assets to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account exists on Steem, will return True. Otherwise False.

	Parameters

	address – Steem account to check existence of

	Return bool

	True if account exists, False if it doesn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: ‘Symbol’, ‘Status’, ‘Coin Name’, ‘API Node’, ‘Head Block’, ‘Block Time’,
‘RPC Version’, ‘Our Account’, ‘Our Balance’ (all strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if our Steem node works or not, by requesting basic information such as the current block + time, and
checking if our sending/receiving account exists on Steem.

	Return bool

	True if Steem appearsto be working, False if it seems to be broken.

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo=None, trigger_data=None) → dict

	Send a supported currency to a given address/account, optionally specifying a memo if supported

Example - send 1.23 STEEM from @someguy123 to @privex with memo ‘hello’

>>> s = SteemManager('STEEM')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of currency to send, as a Decimal()

	address – Account to send the currency to

	from_address – Account to send the currency from

	memo – Memo to send currency with

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the asset’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account doesn’t exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

SteemEngine Coin Handler

Module contents

SteemEngine Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the SteemEngine network.

It will automatically handle any payments.models.Coin which has it’s type set to steemengine

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.SteemEngine.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new tokens are constantly being created for SteemEngine, our classes can provide for any
models.Coin by scanning for coins with the type steemengine. This saves us from hard coding
specific coin symbols.

Submodules

SteemEngineLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader

This class handles loading transactions for the SteemEngine network, and can support almost any token
on SteemEngine.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
clean_txs(account: str, symbol: str, transactions: Iterable[dict]) → Generator[dict, None, None]

	Filters a list of transactions by the receiving account, yields dict’s conforming with
payments.models.Deposit

	Parameters

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ‘to’ account to filter by

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symbol of the token being filtered

	transactions (list<dict>) – A list<dict> of transactions to filter

	Returns

	A generator yielding dict s conforming to payments.models.Deposit

	
list_txs(batch=100) → Generator[dict, None, None]

	Get transactions for all coins in self.coins where the ‘to’ field matches coin.our_account
If load() hasn’t been ran already, it will automatically call self.load()
:param batch: Amount of transactions to load per batch
:return: Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
load_batch(account, symbol, limit=100, offset=0, retry=0)

	Load SteemEngine transactions for account/symbol into self.transactions with automatic retry on error

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

SteemEngineManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager

This class handles various operations for the SteemEngine network, and supports almost any token
on SteemEngine.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Issuing tokens to users

	Sending tokens to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account (address param) exists on Steem, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the SteemEngine API and Steem node works or not, by requesting basic information such as
the token metadata, and checking if our sending/receiving account exists on Steem.

	Return bool

	True if SteemEngine and Steem appear to be working, False if either is broken.

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data=None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

Example - Issue 5.10 SGTK to @privex

>>> s = SteemEngineManager('SGTK')
>>> s.issue(address='privex', amount=Decimal('5.10'))

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – (ignored) Cannot issue tokens with a memo on SteemEngine

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from,
 send_type:str - Should be statically set to "issue"
}

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send tokens to a given address/account, optionally specifying a memo if supported

Example - send 1.23 SGTK from @someguy123 to @privex with memo ‘hello’

>>> s = SteemEngineManager('SGTK')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of tokens to send, as a Decimal()

	address – Account to send the tokens to

	from_address – Account to send the tokens from

	memo – Memo to send tokens with (if supported)

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the token’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	TokenNotFound – When the requested token symbol does not exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data=None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

Coin Handler Base Classes

Submodules

BaseLoader

	
class payments.coin_handlers.base.BaseLoader.BaseLoader(symbols: list = None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseLoader - Base class for Transaction loaders

A transaction loader loads incoming transactions from one or more cryptocurrencies or tokens, whether through
a block explorer, or through a direct connection to a local RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Transaction loaders must be able to initialise themselves using the following data:

	The coin symbols self.symbols passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

	They should also use the logging instance settings.LOGGER_NAME

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, as well as configure the provides list to display
the tokens/coins that this loader handles.

	
list_txs(batch=100) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides = []

	

BaseManager

	
class payments.coin_handlers.base.BaseManager.BaseManager(symbol: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseManager - Base class for coin/token management

A coin manager handles balance checking, sending, and issuing of one or more cryptocurrencies or tokens,
generally through a direct connection to a local/remote RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Coin managers must be able to initialise themselves using the following data:

	The coin symbol self.symbol passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, set the can_issue boolean for detecting if this manager
can be used to issue (create/print) tokens/coins, as well as configure the provides list to display
the tokens/coins that this manager handles.

	
address_valid(address) → bool

	A simple boolean method, allowing API requests to validate the destination address/account prior to
giving the user deposit details.

	Parameters

	address – An address or account to send to

	Return bool

	Is the address valid? True if it is, False if it isn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Return the balance of self.symbol for our “wallet”, or a given address/account, optionally filtered by memo

	Parameters

	
	address – The address or account to get the balance for. If None, return our total wallet
(or default account) balance.

	memo – If not None (and coin supports memos), return the total balance of a given memo

	memo_case – Whether or not to total memo’s case sensitive, or not. False = case-insensitive memo

	Raises

	AccountNotFound – The requested account/address doesn’t exist

	Return Decimal

	Decimal() balance of address/account, optionally balance (total received) of a given memo

	
can_issue = False

	If this manager supports issuing (creating/printing) tokens/coins, set this to True

	
get_deposit() → tuple

	
	Return tuple

	If the coin uses addresses, this method should return a tuple of (‘address’, coin_address)

	Return tuple

	If the coin uses accounts/memos, this method should return a tuple (‘account’, receiving_account)
The memo will automatically be generated by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol, e.g. current block height, block time, wallet balance
whether the daemon / API is accessible, etc.

It should return a tuple containing the manager name, the headings for a health table,
and the health data for the passed symbol (Should include a symbol or coin name column)

You may use basic HTML tags in the health data result list, such as
 <u> and

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	To reduce the risk of unhandled exceptions by sending code, this method should do some basic checks against
the API to test whether the coin daemon / API is responding correctly.

This allows code which calls your send() or issue() method to detect the daemon / API is not working, and
then delay sending/issuing until later, instead of marking a convert / withdrawal status to an error.

The method body should be wrapped in a try/except, ensuring there’s a non-targeted except which
returns False

	Return bool

	True if the coin daemon / API appears to be working, False if it’s not

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – Memo to issue tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "issue"
}

	
orig_symbol = None

	The original unique database symbol ID

	
provides = []

	A list of token/coin symbols in uppercase that this loader supports e.g:

provides = ["LTC", "BTC", "BCH"]

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Send tokens to a given address/account, optionally specifying a memo and sender address/account if supported

Your send method should automatically subtract any blockchain transaction fees from the amount sent.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send, as a Decimal()

	address – Address or account to send the coins/tokens to

	memo – Memo to send coins/tokens with (if supported)

	from_address – Address or account to send from (if required)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this send transaction (e.g. the deposit that triggered this)

	Raises

	
	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	NotEnoughBalance – Sending account/address does not have enough balance to send

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data: Union[dict, list] = None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

	
symbol = None

	The native coin symbol, e.g. BTC, LTC, etc. (non-unique)

BatchLoader

	
class payments.coin_handlers.base.BatchLoader.BatchLoader(symbols: list = None)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BatchLoader - An abstract sub-class of BaseLoader which comes with some pre-written batching/chunking functions

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

This class is designed to save you time from re-writing your own “batching” / “chunking” functions.

Batching / chunking is a memory efficiency technique to prevent RAM leaks causing poor performance or crashes.
Instead of loading all 1K - 10K transactions into memory, you load only a small amount of transactions, such as
100 transactions, then you use a Python generator (the yield keyword) to return individual transactions, quietly
loading the next “batch” / “chunk” of 100 TXs after the first set has been processed, without interrupting the
caller’s for loop or other iteration.

This allows other functions to iterate over the transactions and process them on the fly, instead of having to load
the entire 1-10K transaction list into memory first.

The use of generators throughout this class helps to prevent the problem of RAM leaks due to constant
duplication of the transaction list (e.g. self.transactions, self.filtered_txs, self.cleaned_txs), especially
when the transaction lists contains thousands of transactions.

To use this class, simply extend it (instead of BaseLoader), and make sure to implement the two abstract methods:

	load_batch - Loads and stores a small batch of raw (original format) transactions for a given coin

	
	clean_txs - Filters the loaded TXs, yielding TXs (conformed to be compatible with models.Deposit)

	that were received by us (not sent), and various sanity checks depending on the type of coin.

If your Loader is for a coin which uses an account/memo system, set self.need_account = True before calling
BatchLoader’s constructor, and it will remove coins in self.symbols/coins that do not have a non-empty/null
our_account column.

You’re free to override any methods if you need to, just make sure to call this class’s constructor __init__
before/after your own constructor, otherwise some methods may break.

Flow of this class:

Transaction loading cron
 |
 V--> __init__(symbols:list)
 |--> load(tx_count:int)
 |--> list_txs(batch:int) -> _list_txs(coin:Coin, batch:int)
 V |--> load_batch(account, symbol, offset)
 V--> clean_txs(account, symbol, txs)

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming
with models.Deposit

Important things when implementing this function:

	Make sure to filter out transactions that were sent from our own wallet/account - otherwise internal
transfers will cause problems.

	Make sure each transaction is destined to us

	If your loader is account-based, make sure to only yield transactions where tx[“to_account”] == account.

	If your loader is address-based, make sure that you only return transactions that are being received by
our wallet, not being sent from it.

	If account isn’t None, assume that you must yield TXs sent to the given crypto address account

	If your loader deals with smart contract networks e.g. ETH, EOS, make sure that you only return transactions
valid on the matching smart contract, don’t blindly trust the symbol!

	Make sure that every dict that you yield conforms with the return standard shown for
BaseLoader.list_txs()

	While transactions is normally a list<dict> you should assume that it could potentially be a
Generator, writing the code Generator-friendly will ensure it can handle both lists and Generator’s.

Example:

>>> def clean_txs(self, symbol: str, transactions: Iterable[dict],
>>> account: str = None) -> Generator[dict, None, None]:
>>> for tx in transactions:
>>> try:
>>> if tx['from'].lower() == 'tokens': continue # Ignore token issues
>>> if tx['from'].lower() == account: continue # Ignore transfers from ourselves.
>>> if tx['to'].lower() != account.lower(): continue # If we aren't the receiver, we don't need it.
>>> clean_tx = dict(
>>> txid=tx['txid'], coin=symbol, tx_timestamp=parse(tx['timestamp']),
>>> from_account=tx['from'], to_account=tx['to'], memo=tx['memo'],
>>> amount=Decimal(tx['quantity'])
>>>)
>>> yield clean_tx
>>> except:
>>> log.exception('Error parsing transaction data. Skipping this TX. tx = %s', tx)
>>> continue

	Parameters

	
	symbol – The symbol of the token being filtered

	transactions – A list<dict> of transactions to filter

	account – The ‘to’ account or crypto address to filter by (only required for account-based loaders)

	Returns

	A generator yielding dict’s conforming to models.Deposit, check the PyDoc
return info for coin_handlers.base.BaseLoader.list_txs() for current format.

	
list_txs(batch=100) → Generator[dict, None, None]

	Yield transactions for all coins in self.coins as a generator, loads transactions in batches of batch
and returns them seamlessly using a generator.

If load() hasn’t been ran already, it will automatically call self.load()

	Parameters

	batch – Amount of transactions to load per batch

	Return Generator[dict, None, None]

	Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	Simply imports tx_count into an instance variable, and then sets self.loaded to True.

If self.need_account is set to True by a child/parent class, this method will remove any coins from
self.coins and self.symbols which have a blank/null our_account in the DB, ensuring that you can trust
that all coins listed in symbols/coins have an our_account which isn’t empty or None.

	Parameters

	tx_count (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load per symbol specified in constructor

	
load_batch(symbol, limit=100, offset=0, account=None)

	This function should load limit transactions in their raw format from your data source, skipping
the offset newest TXs efficiently, and store them in the instance var self.transactions

If you use the included decorator decorators.retry_on_err(), if any exceptions are thrown by your
method, it will simply re-run it with the same arguments up to 3 tries by default.

Basic implementation:

>>> @retry_on_err()
>>> def load_batch(self, symbol, limit=100, offset=0, account=None):
>>> self.transactions = self.my_rpc.get_tx_list(limit, offset)

	Parameters

	
	symbol – The symbol to load a batch of transactions for

	limit – The amount of transactions to load

	offset – Skip this many transactions (most recent first)

	account – An account name, or coin address to filter transactions using

Base Decorators

	
payments.coin_handlers.base.decorators.retry_on_err(max_retries: int = 3, delay: int = 3, **retry_conf)

	Decorates a function or class method, wraps the function/method with a try/catch block, and will automatically
re-run the function with the same arguments up to max_retries time after any exception is raised, with a
delay second delay between re-tries.

If it still throws an exception after max_retries retries, it will log the exception details with fail_msg,
and then re-raise it.

Usage (retry up to 5 times, 1 second between retries, stop immediately if IOError is detected):

>>> @retry_on_err(5, 1, fail_on=[IOError])
... def my_func(self, some=None, args=None):
... if some == 'io': raise IOError()
... raise FileExistsError()

This will be re-ran 5 times, 1 second apart after each exception is raised, before giving up:

>>> my_func()

Where-as this one will immediately re-raise the caught IOError on the first attempt, as it’s passed in fail_on:

>>> my_func('io')

	Parameters

	
	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total retry attempts before giving up

	delay (int [https://docs.python.org/3/library/functions.html#int]) – Amount of time in seconds to sleep before re-trying the wrapped function

	retry_conf – Less frequently used arguments, pass in as keyword args:

	(list) fail_on: A list() of Exception types that should result in immediate failure (don’t retry, raise)

	(str) retry_msg: Override the log message used for retry attempts. First message param %s is func name,
second message param %d is retry attempts remaining

	(str) fail_msg: Override the log message used after all retry attempts are exhausted. First message param %s
is func name, and second param %d is amount of times retried.

Base Exceptions

	
exception payments.coin_handlers.base.exceptions.AccountNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending or receiving account requested doesn’t exist

	
exception payments.coin_handlers.base.exceptions.AuthorityMissing

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Missing private key or other authorization for this operation

	
exception payments.coin_handlers.base.exceptions.CoinHandlerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all Coin handler exceptions to inherit

	
exception payments.coin_handlers.base.exceptions.DeadAPIError

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

A main API, e.g. a coin daemon or public node used by this coin handler is offline.

	
exception payments.coin_handlers.base.exceptions.IssueNotSupported

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

This class does not support issuing, the token name cannot be issued, or other issue problems.

	
exception payments.coin_handlers.base.exceptions.IssuerKeyError

	Bases: payments.coin_handlers.base.exceptions.AuthorityMissing

Attempted to issue tokens you don’t have the issuer key for

	
exception payments.coin_handlers.base.exceptions.MissingTokenMetadata

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Could not process a transaction or run the requested Loader/Manager method as required coin metadata is missing,
such as payments.models.Coin.our_account or a required key in the custom JSON settings.

	
exception payments.coin_handlers.base.exceptions.NotEnoughBalance

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending account does not have enough balance for this operation

	
exception payments.coin_handlers.base.exceptions.TokenNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The token/coin requested doesn’t exist

Module contents

payments package

Subpackages

	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

Submodules

payments.admin module

	
class payments.admin.AddCoinPairView(**kwargs)

	Bases: django.views.generic.base.TemplateView

Admin view for easily adding two coins + two pairs in each direction

	
coin_types()

	View function to be called from template, for getting list of coin handler errors

	
get(request, *args, **kwargs)

	

	
post(request, *args, **kwargs)

	

	
template_name = 'admin/add_pair.html'

	

	
class payments.admin.AddressAccountMapAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('deposit_coin', 'deposit_address', 'destination_coin', 'destination_address')

	

	
list_filter = ('deposit_coin', 'destination_coin')

	

	
media

	

	
search_fields = ('deposit_address', 'destination_address')

	

	
class payments.admin.CoinAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
fieldsets = (('Unique Coin Symbol for refrencing from the API', {'fields': ('symbol',), 'description': "<p>Help: The 'Unique Coin Symbol' is not passed to the handler, and thus doesn't need to match the real token symbol on the network, it just needs to be unique, as it acts as the ID of the coin when making API calls.</p></p>
<hr/>"}), ("Native Token Symbol (must match the real symbol on it's network)", {'fields': ('symbol_id',), 'description': "<p>The 'Native Coin Symbol' is passed to the coin handler and does not have to be unique, but it MUST match the real symbol used by the token, otherwise the coin handler will be unable to send/receive the token.
If you leave this field blank when creating the coin, it will default to the Unique Coin Symbol.</p>
<hr/>"}), ('Display name, Coin Type (handler), Enable/Disable coin', {'fields': ('display_name', 'coin_type', 'enabled'), 'description': "<p>Help: The 'Display Name' is returned in API calls, and shown in the admin panel.</p> <p>The 'Coin Type' must be set correctly, it determines which network this coin is on, so that the correct Coin Handler will be used for the coin.</p><p>The 'Enabled' option decides whether or not this coin is in use. If you uncheck this, no conversions will take place for this coin, and it will not be returned on the API.</p><hr/>"}), ('Our account/address, and whether we can issue this coin', {'fields': ('our_account', 'can_issue'), 'description': "<p>Help: The 'Our Account (or address)' is passed to the coin handler and may not always need to be specified. For account based networks such as Steem, this setting generally MUST be filled in.
 The 'Can Issue' option determines whether the system should attempt to issue a token if our balance is too low to fulfill a conversion. If you are not the issuer of a token, keep this un-ticked.</p><hr/>"}), ('(Advanced) Coin Handler Settings', {'classes': ('collapse',), 'fields': ('setting_host', 'setting_port', 'setting_user', 'setting_pass', 'setting_json'), 'description': '<p>Help: The \'Handler Settings\' are all optional. Most coins will work just fine without changing any of these options.
The host/port/user/pass settings are designed for selecting a certain RPC node, however these may not always be respected by every handler.
 The \'Custom JSON\' field allows for additional settings specific to the coin handler, and you must enter valid JSON in this field, for example:</p> <code>{"contract": "eosio.token"}</code>

<hr/>'}), ('Low Funds Email Alert Settings', {'classes': ('collapse',), 'fields': ('notify_low_funds', 'funds_low', 'last_notified'), 'description': "<p>Help: You generally only need to touch the checkbox 'Send an email notification', as the 'Deposits currently stuck' and 'Last Email Notification' are automatically managed by the system.</p><hr/>"}))

	

	
get_fieldsets(request, obj=None)

	Hook for specifying fieldsets.

	
list_display = ('__str__', 'symbol', 'coin_type', 'enabled', 'our_account', 'can_issue')

	

	
list_filter = ('coin_type',)

	

	
media

	

	
ordering = ('symbol',)

	

	
class payments.admin.CoinHealthView(**kwargs)

	Bases: django.views.generic.base.TemplateView

Admin view for viewing health/status information of all coins in the system.

Loads the coin handler manager for each coin, and uses the health() function to grab status info for the coin.

Uses caching API to avoid constant RPC queries, and displays results as a standard admin view.

	
get(request, *args, **kwargs)

	

	
get_fails()

	View function to be called from template, for getting list of coin handler errors

	
handler_dic()

	View function to be called from template. Loads and queries coin handlers for health, with caching.

	
template_name = 'admin/coin_health.html'

	

	
class payments.admin.CoinPairAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('__str__', 'from_coin', 'to_coin', 'exchange_rate')

	

	
media

	

	
ordering = ('from_coin', 'to_coin')

	

	
class payments.admin.ConversionAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('from_coin', 'from_address', 'from_amount', 'to_coin', 'to_address', 'to_amount', 'tx_fee', 'ex_fee', 'created_at')

	

	
list_filter = ('from_coin', 'to_coin')

	

	
media

	

	
ordering = ('-created_at',)

	

	
search_fields = ('id', 'from_address', 'to_address', 'to_memo', 'to_txid')

	

	
class payments.admin.CustomAdmin(name='admin')

	Bases: django.contrib.admin.sites.AdminSite

To allow for custom admin views, we override AdminSite, so we can add custom URLs, among other things.

	
get_urls()

	

	
class payments.admin.DepositAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('txid', 'status', 'coin', 'amount', 'address', 'from_account', 'to_account', 'tx_timestamp')

	

	
list_filter = ('status', 'coin')

	

	
media

	

	
ordering = ('-tx_timestamp',)

	

	
search_fields = ('id', 'txid', 'address', 'from_account', 'to_account', 'memo', 'refund_address')

	

	
class payments.admin.KeyPairAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('network', 'public_key', 'account', 'key_type')

	

	
media

	

	
ordering = ('network', 'account')

	

	
payments.admin.clear_cache(request)

	Allow admins to clear the Django cache system

	
payments.admin.path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RoutePattern'>)

	

payments.apps module

	
class payments.apps.PaymentsConfig(app_name, app_module)

	Bases: django.apps.config.AppConfig

	
name = 'payments'

	

payments.models module

This file contains Models, classes which define database tables, and how they relate to each other.

Models are used for both querying the database, as well as inserting new rows and updating existing ones.

Models may also contain properties and functions to help make them easier to use.

Note: The coin_type choices tuple, COIN_TYPES is located in settings.py, and may be dynamically
altered by Coin Handlers. It does not enforce an enum on columns using it for choices , it’s simply used for a
dropdown list in the admin panel.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.models.AddressAccountMap(*args, **kwargs)

	Bases: django.db.models.base.Model

This database model maps normal Bitcoin-like addresses to a destination token, and their token account/address.

This is because deposits of coins such as Bitcoin/Litecoin do not contain any form of “memo”, so they must be
manually mapped onto a destination.

This model may be used for handling deposits for both memo-based (Bitshares-like) and address-based (Bitcoin-like)
deposits, as there is both a memo and address (or account) field for deposits + destination coin

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
conversions

	

	
deposit_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
deposit_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
destination_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
class payments.models.Coin(*args, **kwargs)

	Bases: django.db.models.base.Model

The operator of the service should define all coins and tokens they would like to support using the Django Admin.
The symbol is used as the primary key, so it must be unique. It will automatically be made uppercase.
Native Coin Symbol (e.g. BTC)

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
can_issue

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin_type

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
conversions_from

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
conversions_to

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposit_converts

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposit_maps

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposits

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
dest_maps

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
display_name

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
enabled

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
funds_low

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
last_notified

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
notify_low_funds

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
our_account

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
pairs

	

	
pairs_from

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
pairs_to

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
save(*args, **kwargs)

	To avoid inconsistency, the symbol is automatically made uppercase

	
setting_host

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_json

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_pass

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_port

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_user

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
settings

	Small helper property for quickly accessing the setting_xxxx fields, while also decoding the custom json
field into a dictionary/list

	Returns

	dict(host:str, port:str, user:str, password:str, json:dict/list)

	
should_notify_low

	Should we notify the admins that this coin’s wallet balance is too low?

Used to rate limit “???coin wallet balance is too low” emails sent to admins.

Usage:

>>> from django.core.mail import mail_admins
>>> c = Coin.objects.get(symbol='BTC')
>>> if c.should_notify_low:
>>> mail_admins('BTC hot wallet is low!', 'The hot wallet is low. Please refill.')

	Return bool

	True if we should notify the admins

	Return bool

	False if we should skip this email notification for now, or notifications are disabled.

	
symbol

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
symbol_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
class payments.models.CoinPair(*args, **kwargs)

	Bases: django.db.models.base.Model

A coin pair defines an allowed conversion direction between two coins
For example LTC (Litecoin) -> LTCP (Pegged Litecoin)

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
exchange_rate

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
from_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin_symbol

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
to_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
to_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_coin_symbol

	

	
class payments.models.Conversion(*args, **kwargs)

	Bases: django.db.models.base.Model

Once a models.Deposit has been scanned, assuming it has a valid address or account/memo, the
destination cryptocurrency/token will be sent to the user.

Successful conversion attempts are logged here, allowing for reference of where the coins came from, where
they went, and what fees were taken.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
created_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit

	Accessor to the related object on the forward side of a one-to-one relation.

In the example:

class Restaurant(Model):
 place = OneToOneField(Place, related_name='restaurant')

Restaurant.place is a ForwardOneToOneDescriptor instance.

	
deposit_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
ex_fee

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_amount

	

	
from_coin

	The coin that we were sent

	
from_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin_symbol

	

	
get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True, **kwargs)

	

	
get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True, **kwargs)

	

	
get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=False, **kwargs)

	

	
get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=False, **kwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
to_address

	Where was it sent to?

	
to_amount

	The amount of to_coin that was sent, stored as a high precision Decimal

	
to_coin

	The destination token/crypto this token will be converted to

	
to_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_coin_symbol

	

	
to_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_txid

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
tx_fee

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
updated_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
class payments.models.CryptoKeyPair(*args, **kwargs)

	Bases: django.db.models.base.Model

This model allows for storing key pairs (generally for cryptocurrency addresses/accounts) safely in the database.

The private key is automatically encrypted with AES-128 upon saving, ensuring it cannot be read from the admin
panel, any API leaks, or third party applications reading from the database.

For this model to function correctly, you must set ENCRYPT_KEY in .env by generating an encryption key
using ./manage.py generate_key

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
account

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
balance

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
key_type

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
network

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
private_key

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
public_key

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
save(*args, **kwargs)

	To ensure that private keys can only be entered / updated from the admin panel and not viewed, we
encrypt them with AES-128 when saving.

To avoid encrypting an already encrypted key, we only encrypt the key if we’re sure it’s not encrypted already.

	Raises

	
	EncryptionError – Something went wrong while encrypting the key

	EncryptKeyMissing – The key settings.ENCRYPT_KEY is not set or is not a valid encryption key.

	
used

	For disposable addresses, e.g. Bitcoin addresses, this field tracks whether it has been used for a deposit.

	
class payments.models.Deposit(*args, **kwargs)

	Bases: django.db.models.base.Model

A log of incoming token/crypto deposits, which will later be converted into crypto.

The primary key of a Deposit is the auto-generated id field - an auto incrementing integer.

There is a composite unique constraint on (txid, coin, vout), ensuring duplicate transactions do not get stored.

Deposits start out in state new , as they are processed by the conversion system they progress into either:

	‘err’ - An error occurred while converting / importing

	During the import/conversion there was a serious error that could not be recovered from
This should be investigated by a developer.

	‘inv’ - Invalid source/destination, user did not follow instructions correctly

	The coins were sent to a non-registered address, or a memo we don’t know how to process.
An admin should attempt to refund these coins to the sender.

	‘refund’ - The coins sent in this Deppsit were refunded

	Info about the refund should be in the refund_* fields

	‘mapped’ - Deposit passed initial sanity checks, and we know the destination coin, address/account and memo.

	Most deposits should only stay in this state for a few seconds, before they’re converted.
If a deposit stays in this state for more than a few minutes, it generally means something
is wrong with the Coin Handler, preventing it from sending the coins, e.g. low balance.

	‘conv’ - Successfully Converted

	The deposited coins were successfully converted into their destination coin, and there
should be a related models.Conversion containing the conversion details.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
STATUSES = (('err', 'Error Processing Transaction'), ('inv', 'Transaction is invalid'), ('refund', 'Coins were returned to user'), ('new', 'New (awaiting processing)'), ('mapped', 'Destination data found. Awaiting conversion.'), ('conv', 'Successfully converted'))

	

	
address

	If the deposit is from a classic Bitcoin-like cryptocurrency with addresses, then you should enter the
address where the coins were deposited into, in this field.

	
amount

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin

	The symbol of the cryptocurrency or token that was deposited, in uppercase. e.g. LTC, LTCP, BTCP, STEEMP

	
coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin_symbol

	

	
conversion

	Accessor to the related object on the reverse side of a one-to-one
relation.

In the example:

class Restaurant(Model):
 place = OneToOneField(Place, related_name='restaurant')

Place.restaurant is a ReverseOneToOneDescriptor instance.

	
convert_dest_address

	The destination address. Set after a deposit has been analyzed, and we know what coin it will be converted to.

	
convert_dest_memo

	The destination memo. Set after a deposit has been analyzed, and we know what coin it will be converted to.

	
convert_to

	The destination coin. Set after a deposit has been analyzed, and we know what coin it will be converted to

	
convert_to_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
created_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
error_reason

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_account

	If account-based coin, contains the name of the account that sent the coins

	
get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True, **kwargs)

	

	
get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True, **kwargs)

	

	
get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=False, **kwargs)

	

	
get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=False, **kwargs)

	

	
get_status_display(*, field=<django.db.models.fields.CharField: status>)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
last_convert_attempt

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
memo

	If the coin supports memos, and they’re required to identify a deposit, use this field.

	
objects = <django.db.models.manager.Manager object>

	

	
processed_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_amount

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_coin

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_txid

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refunded_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
status

	The current status of this deposit, see STATUSES

	
to_account

	If account-based coin, contains the name of the account that the coins were deposited into

	
tx_timestamp

	The date/time the transaction actually occurred on the chain

	
txid

	The transaction ID where the coins were received.

	
updated_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
vout

	If a transaction contains multiple deposits, for example, a Bitcoin transaction that contains several
outputs (vout’s) for our addresses, then each vout must have an consistent output number, i.e. one that will
not change each time the blockchain transaction is compared against the database.

payments.serializers module

	
class payments.serializers.CoinPairSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('id', 'from_coin', 'from_coin_symbol', 'to_coin', 'to_coin_symbol', 'exchange_rate', '__str__')

	

	
model

	alias of payments.models.CoinPair

	
class payments.serializers.CoinSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('symbol', 'display_name', 'our_account', 'can_issue')

	

	
model

	alias of payments.models.Coin

	
class payments.serializers.ConversionSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
exclude = ()

	

	
model

	alias of payments.models.Conversion

	
class payments.serializers.DepositSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('id', 'txid', 'coin', 'coin_symbol', 'vout', 'status', 'tx_timestamp', 'address', 'from_account', 'to_account', 'amount', 'memo', 'created_at', 'conversion', 'processed_at', 'convert_to')

	

	
model

	alias of payments.models.Deposit

payments.tests module

payments.views module

	
class payments.views.CoinAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
lookup_value_regex = '[^/]+'

	

	
queryset

	

	
serializer_class

	alias of payments.serializers.CoinSerializer

	
class payments.views.CoinPairAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('from_coin', 'to_coin')

	

	
lookup_value_regex = '[^/]+'

	

	
queryset

	

	
serializer_class

	alias of payments.serializers.CoinPairSerializer

	
class payments.views.ConversionAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('from_coin', 'to_coin', 'from_address', 'to_address', 'deposit__from_account', 'deposit__to_account', 'deposit__memo')

	

	
pagination_class

	alias of CustomPaginator

	
queryset

	

	
serializer_class

	alias of payments.serializers.ConversionSerializer

	
class payments.views.ConvertAPI(**kwargs)

	Bases: rest_framework.views.APIView

	
authentication_classes = (<class 'payments.views.DRFNoCSRF'>,)

	

	
post(request: rest_framework.request.Request)

	

	
class payments.views.CustomPaginator

	Bases: rest_framework.pagination.LimitOffsetPagination

	
default_limit = 100

	

	
max_limit = 1000

	

	
class payments.views.DRFNoCSRF

	Bases: rest_framework.authentication.SessionAuthentication

	
enforce_csrf(request)

	Enforce CSRF validation for session based authentication.

	
class payments.views.DepositAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('address', 'from_account', 'to_account', 'txid', 'memo', 'conversion__to_address', 'conversion__to_memo', 'conversion__to_txid', 'status', 'coin')

	

	
order_by = 'created'

	

	
pagination_class

	alias of CustomPaginator

	
queryset

	

	
serializer_class

	alias of payments.serializers.DepositSerializer

	
class payments.views.IndexView(**kwargs)

	Bases: django.views.generic.base.TemplateView

	
template_name = 'base.html'

	

	
payments.views.api_root(self, request, *args, **kwargs)

	

	
payments.views.r_err(msg, status=500)

	

Module contents

Coin Handlers

Subpackages

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

Module contents

This module init file is responsible for loading the Coin Handler modules, and offering methods for accessing
loaders and managers.

A Coin Handler is a Python module (folder containing classes and init file) designed to handle sending/receiving
cryptocurrency/tokens for a certain network, or certain family of networks sharing similar code.

They may handle just one single coin, several coins, or they may even allow users to dynamically add coins by
querying for a specific coin_type from the model payments.models.Coin

A coin handler must contain:

	An __init__.py with a dictionary named exports, containing the keys ‘loader’ and/or ‘manager’ pointing
to the un-instantiated loader/manager class.

	If your init file needs to do some sort-of initialisation, such as dynamically generating provides for
your classes, or adding a new coin type to settings.COIN_TYPES, it’s best to place it in a function named
“reload” with a global boolean loaded so that you only initialise the module the first time it’s loaded.

See the example __init__.py near the bottom of this module docstring.

This is optional, but it will allow reload_handlers() to properly re-trigger your initialisation code
only when changes occur, such as Coin’s being created/updated in the database.

	Two classes, a Loader and a Manager. Each class can either in it’s own file, or in a single file containing
other classes / functions.

	A Loader is a class which extends base.BaseLoader, and is responsible for retrieving transactions
that occur on that coin to detect incoming transactions.

	A Manager is a class which extends base.BaseManager, and is responsible for handling sending/issuing
of coins/tokens, as well as other small functions such as validating addresses, and checking balances.

Your Loader class may choose to extend the helper class base.BatchLoader, allowing your loader
to use batches/chunking for memory efficiency, without having to write much code.

Your Coin Handler classes should ONLY use the exceptions in base.exceptions, along with any exceptions
listed in the :raises: pydoc statements of the overridden method.

For handling automatic retry when something goes wrong, you can use the decorator
base.decorators.retry_on_err()

Example __init__.py:

>>> from django.conf import settings
>>> from payments.coin_handlers.SteemEngine.SteemEngineLoader import SteemEngineLoader
>>> from payments.coin_handlers.SteemEngine.SteemEngineManager import SteemEngineManager
>>>
>>> loaded = False
>>>
>>> def reload():
>>> global loaded
>>> if 'steemengine' not in dict(settings.COIN_TYPES):
>>> settings.COIN_TYPES += (('steemengine', 'SteemEngine Token',),)
>>> loaded = True
>>>
>>> if not loaded:
>>> reload()
>>>
>>> exports = {
>>> "loader": SteemEngineLoader,
>>> "manager": SteemEngineManager
>>> }

For an example of how to layout your coin handler module, check out the pre-included Coin Handlers:

	SteemEngine

	Bitcoin

	
payments.coin_handlers.add_handler(handler, handler_type)

	

	
payments.coin_handlers.ch_base = 'payments.coin_handlers'

	Base module path to where the coin handler modules are located. E.g. payments.coin_handlers

	
payments.coin_handlers.get_loader(symbol: str) → payments.coin_handlers.base.BaseLoader.BaseLoader

	For some use-cases, you may want to just grab the first loader that supports this coin.

>>> m = get_loader('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the loader for (uppercase)

	Return BaseLoader

	An instance implementing base.BaseLoader

	
payments.coin_handlers.get_loaders(symbol: str = None) → list

	Get all loader’s, or all loader’s for a certain coin

	Parameters

	symbol – The coin symbol to get all loaders for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseLoader>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseLoader’s

	
payments.coin_handlers.get_manager(symbol: str) → payments.coin_handlers.base.BaseManager.BaseManager

	For some use-cases, you may want to just grab the first manager that supports this coin.

>>> m = get_manager('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the manager for (uppercase)

	Return BaseManager

	An instance implementing base.BaseManager

	
payments.coin_handlers.get_managers(symbol: str = None) → list

	Get all manager’s, or all manager’s for a certain coin

	Parameters

	symbol – The coin symbol to get all managers for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseManager>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseManager’s

	
payments.coin_handlers.handlers = {}

	A dictionary of coin symbols, containing instantiated managers (BaseManager) and loaders (BaseLoader)

Example layout:

handlers = {
 'ENG': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
 'SGTK': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
}

	
payments.coin_handlers.handlers_loaded = False

	Used to track whether the Coin Handlers have been initialized, so reload_handlers can be auto-called.

	
payments.coin_handlers.has_loader(symbol: str) → bool

	Helper function - does this symbol have a loader class?

	
payments.coin_handlers.has_manager(symbol: str) → bool

	Helper function - does this symbol have a manager class?

	
payments.coin_handlers.is_database_synchronized(database: str) → bool

	Check if all migrations have been ran. Useful for preventing auto-running code accessing models before the
tables even exist, thus preventing you from migrating…

>>> from django.db import DEFAULT_DB_ALIAS
>>> if not is_database_synchronized(DEFAULT_DB_ALIAS):
>>> log.warning('Cannot run reload_handlers because there are unapplied migrations!')
>>> return

	Parameters

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which Django database config is being used? Generally just pass django.db.DEFAULT_DB_ALIAS

	Return bool

	True if all migrations have been ran, False if not.

	
payments.coin_handlers.reload_handlers()

	Resets handler to an empty dict, then loads all settings.COIN_HANDLER classes into the dictionary handlers
using settings.COIN_HANDLERS_BASE as the base module path to load from

Bitcoind Coin Handler

Module contents

Bitcoind-based Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending any cryptocurrency which has a coin daemon that has a JSONRPC API
backwards compatible with bitcoind.

It will automatically handle any payments.models.Coin which has it’s type set to bitcoind

Coin object settings:

For each coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Bitcoind RPC compatible crypto (db value: bitcoind)

	setting_host

	The IP or hostname for the daemon. If not specified, defaults to 127.0.0.1 / localhost

	setting_port

	The RPC port for the daemon. If not specified, defaults to 8332

	setting_user

	The rpcuser for the daemon. Generally MUST be specified.

	setting_pass

	The rpcpassword for the daemon. Generally MUST be specified

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	confirms_needed Default 0; Amount of confirmations needed before loading a TX

	use_trusted Default: True; If enabled, TXs returned from the daemon with ‘trusted’:true will always be
accepted at 0 confs regardless of confirms_needed

	string_amt Default: True; If true, when sending coins, a Decimal will be used (as a string). This can
cause problems with older coins such as Dogecoin, so for older coins that need floats, set this to False.

Django Settings:

If you’d rather not store the RPC details in the database, you may specify them in Django’s settings.py.

If a coin symbol is specified in settings.COIND_RPC they will be used exclusively, and any handler settings
on the Coin object will be ignored.

If a settings key isn’t specified, the default is the same as shown for coin object settings.

Example COIND_RPC Setting:

COIND_RPC = {
 "BTC": {
 'user': 'bitcoinrpc',
 'password': 'SuperSecurePass',
 'host': '127.0.0.1',
 'port': 8332,
 'confirms_needed': 0,
 'string_amt': True,
 'use_trusted': True
 }
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Bitcoin.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, as there are many coins that use a direct fork of bitcoind, our classes can provide for any
models.Coin by scanning for coins with the type bitcoind. This saves us from hard coding
specific coin symbols.

Submodules

BitcoinLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader(symbols)

	Bases: payments.coin_handlers.base.BatchLoader.BatchLoader, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinLoader - Despite the name, loads TXs from any coin that has a bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
load_batch(symbol, limit=100, offset=0, account=None)

	Loads a batch of transactions for symbol in their original format into self.transactions

	Parameters

	
	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin symbol to load TXs for

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The amount of most recent TXs to skip (for pagination)

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – NOT USED BY THIS LOADER

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinManager - Despite the name, handles sending, balance, and deposit addresses for any coin that has a
bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
address_valid(address) → bool

	If address is determined to be valid by the coind RPC, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get the total amount received by an address, or the balance of the wallet if address not specified.

	Parameters

	
	address – Crypto address to get balance for, if None, returns whole wallet balance

	memo – NOT USED BY THIS MANAGER

	memo_case – NOT USED BY THIS MANAGER

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns a deposit address for this symbol
:return tuple: A tuple containing (‘address’, crypto_address)

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the coin daemon is up or not, by requesting basic information such as current block and version.

	Return bool

	True if the coin daemon appears to be working, False if it’s not

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send the amount amount of self.symbol to a given address.

Example - send 0.1 LTC to LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph

>>> s = BitcoinManager('LTC')
>>> s.send(address='LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph', amount=Decimal('0.1'))

	Parameters

	
	amount (Decimal) – Amount of coins to send, as a Decimal()

	address – Address to send the coins to

	from_address – NOT USED BY THIS MANAGER

	memo – NOT USED BY THIS MANAGER

	Raises

	
	AccountNotFound – The destination address isn’t valid

	NotEnoughBalance – The wallet does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
setting

	Retrieve only our symbol from self.settings for convenience

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinMixin module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BitcoinMixin - shared code used by both Bitcoin.BitcoinLoader and Bitcoin.BitcoinManager

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
all_coins

	Since this is a Mixin, it may be self.coin: Coin, or self.coins: List[Coin].
This property detects whether we have a single coin, or multiple, and returns them as a dict.

	Return dict coins

	A dict<str,Coin> of supported coins, mapped by symbol

SteemEngine Coin Handler

Module contents

SteemEngine Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the SteemEngine network.

It will automatically handle any payments.models.Coin which has it’s type set to steemengine

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.SteemEngine.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new tokens are constantly being created for SteemEngine, our classes can provide for any
models.Coin by scanning for coins with the type steemengine. This saves us from hard coding
specific coin symbols.

Submodules

SteemEngineLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader

This class handles loading transactions for the SteemEngine network, and can support almost any token
on SteemEngine.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
clean_txs(account: str, symbol: str, transactions: Iterable[dict]) → Generator[dict, None, None]

	Filters a list of transactions by the receiving account, yields dict’s conforming with
payments.models.Deposit

	Parameters

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ‘to’ account to filter by

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symbol of the token being filtered

	transactions (list<dict>) – A list<dict> of transactions to filter

	Returns

	A generator yielding dict s conforming to payments.models.Deposit

	
list_txs(batch=100) → Generator[dict, None, None]

	Get transactions for all coins in self.coins where the ‘to’ field matches coin.our_account
If load() hasn’t been ran already, it will automatically call self.load()
:param batch: Amount of transactions to load per batch
:return: Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
load_batch(account, symbol, limit=100, offset=0, retry=0)

	Load SteemEngine transactions for account/symbol into self.transactions with automatic retry on error

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

SteemEngineManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager

This class handles various operations for the SteemEngine network, and supports almost any token
on SteemEngine.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Issuing tokens to users

	Sending tokens to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account (address param) exists on Steem, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the SteemEngine API and Steem node works or not, by requesting basic information such as
the token metadata, and checking if our sending/receiving account exists on Steem.

	Return bool

	True if SteemEngine and Steem appear to be working, False if either is broken.

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data=None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

Example - Issue 5.10 SGTK to @privex

>>> s = SteemEngineManager('SGTK')
>>> s.issue(address='privex', amount=Decimal('5.10'))

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – (ignored) Cannot issue tokens with a memo on SteemEngine

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from,
 send_type:str - Should be statically set to "issue"
}

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send tokens to a given address/account, optionally specifying a memo if supported

Example - send 1.23 SGTK from @someguy123 to @privex with memo ‘hello’

>>> s = SteemEngineManager('SGTK')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of tokens to send, as a Decimal()

	address – Account to send the tokens to

	from_address – Account to send the tokens from

	memo – Memo to send tokens with (if supported)

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the token’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	TokenNotFound – When the requested token symbol does not exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data=None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

Steem Coin Handler

Module contents

Steem Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the Steem network.

It will automatically handle any payments.models.Coin which has it’s type set to steembase

Coin object settings:

For each payments.models.Coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Steem Network (or compatible fork) (db value: steembase)

	our_account

	This should be set to the username of the account you want to use for receiving/sending

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	rpcs - A JSON list<str> of RPC nodes to use, with a full HTTP/HTTPS URL. If this is not specified, Beem
will automatically try to use the best available RPC node for the Steem network.

	pass_store - Generally you do not need to touch this. It controls where Beem will look for the wallet
password. It defaults to environment

Example JSON custom config:

{
 "rpcs": [
 "https://steemd.privex.io",
 "https://api.steemit.com",
 "https://api.steem.house"
],
 "pass_store": "environment"
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Steem.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new Steem forks are constantly being created, our classes can provide for any
models.Coin by scanning for coins with the type steembase. This saves us from hard coding
specific coin symbols.

Submodules

SteemLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemLoader.SteemLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, payments.coin_handlers.Steem.SteemMixin.SteemMixin

SteemLoader - Loads transactions from the Steem network

Designed for the Steem Network with SBD and STEEM support. May or may not work with other Graphene coins.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For additional settings, please see the module docstring in coin_handlers.Steem

	
static clean_tx(tx: dict, symbol: str, account: str, memo: str = None, memo_case: bool = False) → Optional[dict]

	Filters an individual transaction. See clean_txs() for info

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
list_txs(batch=0) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=10000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
settings

	To ensure we always get fresh settings from the DB after a reload

SteemManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemManager.SteemManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Steem.SteemMixin.SteemMixin

This class handles various operations for the Steem network, and supports both STEEM and SBD.

It may or may not work with other Graphene coins, such as GOLOS / Whaleshares.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Health checking

	Sending assets to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account exists on Steem, will return True. Otherwise False.

	Parameters

	address – Steem account to check existence of

	Return bool

	True if account exists, False if it doesn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: ‘Symbol’, ‘Status’, ‘Coin Name’, ‘API Node’, ‘Head Block’, ‘Block Time’,
‘RPC Version’, ‘Our Account’, ‘Our Balance’ (all strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if our Steem node works or not, by requesting basic information such as the current block + time, and
checking if our sending/receiving account exists on Steem.

	Return bool

	True if Steem appearsto be working, False if it seems to be broken.

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo=None, trigger_data=None) → dict

	Send a supported currency to a given address/account, optionally specifying a memo if supported

Example - send 1.23 STEEM from @someguy123 to @privex with memo ‘hello’

>>> s = SteemManager('STEEM')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of currency to send, as a Decimal()

	address – Account to send the currency to

	from_address – Account to send the currency from

	memo – Memo to send currency with

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the asset’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account doesn’t exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

Coin Handler Base Classes

Submodules

BaseLoader

	
class payments.coin_handlers.base.BaseLoader.BaseLoader(symbols: list = None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseLoader - Base class for Transaction loaders

A transaction loader loads incoming transactions from one or more cryptocurrencies or tokens, whether through
a block explorer, or through a direct connection to a local RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Transaction loaders must be able to initialise themselves using the following data:

	The coin symbols self.symbols passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

	They should also use the logging instance settings.LOGGER_NAME

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, as well as configure the provides list to display
the tokens/coins that this loader handles.

	
list_txs(batch=100) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides = []

	

BaseManager

	
class payments.coin_handlers.base.BaseManager.BaseManager(symbol: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseManager - Base class for coin/token management

A coin manager handles balance checking, sending, and issuing of one or more cryptocurrencies or tokens,
generally through a direct connection to a local/remote RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Coin managers must be able to initialise themselves using the following data:

	The coin symbol self.symbol passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, set the can_issue boolean for detecting if this manager
can be used to issue (create/print) tokens/coins, as well as configure the provides list to display
the tokens/coins that this manager handles.

	
address_valid(address) → bool

	A simple boolean method, allowing API requests to validate the destination address/account prior to
giving the user deposit details.

	Parameters

	address – An address or account to send to

	Return bool

	Is the address valid? True if it is, False if it isn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Return the balance of self.symbol for our “wallet”, or a given address/account, optionally filtered by memo

	Parameters

	
	address – The address or account to get the balance for. If None, return our total wallet
(or default account) balance.

	memo – If not None (and coin supports memos), return the total balance of a given memo

	memo_case – Whether or not to total memo’s case sensitive, or not. False = case-insensitive memo

	Raises

	AccountNotFound – The requested account/address doesn’t exist

	Return Decimal

	Decimal() balance of address/account, optionally balance (total received) of a given memo

	
can_issue = False

	If this manager supports issuing (creating/printing) tokens/coins, set this to True

	
get_deposit() → tuple

	
	Return tuple

	If the coin uses addresses, this method should return a tuple of (‘address’, coin_address)

	Return tuple

	If the coin uses accounts/memos, this method should return a tuple (‘account’, receiving_account)
The memo will automatically be generated by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol, e.g. current block height, block time, wallet balance
whether the daemon / API is accessible, etc.

It should return a tuple containing the manager name, the headings for a health table,
and the health data for the passed symbol (Should include a symbol or coin name column)

You may use basic HTML tags in the health data result list, such as
 <u> and

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	To reduce the risk of unhandled exceptions by sending code, this method should do some basic checks against
the API to test whether the coin daemon / API is responding correctly.

This allows code which calls your send() or issue() method to detect the daemon / API is not working, and
then delay sending/issuing until later, instead of marking a convert / withdrawal status to an error.

The method body should be wrapped in a try/except, ensuring there’s a non-targeted except which
returns False

	Return bool

	True if the coin daemon / API appears to be working, False if it’s not

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – Memo to issue tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "issue"
}

	
orig_symbol = None

	The original unique database symbol ID

	
provides = []

	A list of token/coin symbols in uppercase that this loader supports e.g:

provides = ["LTC", "BTC", "BCH"]

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Send tokens to a given address/account, optionally specifying a memo and sender address/account if supported

Your send method should automatically subtract any blockchain transaction fees from the amount sent.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send, as a Decimal()

	address – Address or account to send the coins/tokens to

	memo – Memo to send coins/tokens with (if supported)

	from_address – Address or account to send from (if required)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this send transaction (e.g. the deposit that triggered this)

	Raises

	
	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	NotEnoughBalance – Sending account/address does not have enough balance to send

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data: Union[dict, list] = None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

	
symbol = None

	The native coin symbol, e.g. BTC, LTC, etc. (non-unique)

BatchLoader

	
class payments.coin_handlers.base.BatchLoader.BatchLoader(symbols: list = None)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BatchLoader - An abstract sub-class of BaseLoader which comes with some pre-written batching/chunking functions

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

This class is designed to save you time from re-writing your own “batching” / “chunking” functions.

Batching / chunking is a memory efficiency technique to prevent RAM leaks causing poor performance or crashes.
Instead of loading all 1K - 10K transactions into memory, you load only a small amount of transactions, such as
100 transactions, then you use a Python generator (the yield keyword) to return individual transactions, quietly
loading the next “batch” / “chunk” of 100 TXs after the first set has been processed, without interrupting the
caller’s for loop or other iteration.

This allows other functions to iterate over the transactions and process them on the fly, instead of having to load
the entire 1-10K transaction list into memory first.

The use of generators throughout this class helps to prevent the problem of RAM leaks due to constant
duplication of the transaction list (e.g. self.transactions, self.filtered_txs, self.cleaned_txs), especially
when the transaction lists contains thousands of transactions.

To use this class, simply extend it (instead of BaseLoader), and make sure to implement the two abstract methods:

	load_batch - Loads and stores a small batch of raw (original format) transactions for a given coin

	
	clean_txs - Filters the loaded TXs, yielding TXs (conformed to be compatible with models.Deposit)

	that were received by us (not sent), and various sanity checks depending on the type of coin.

If your Loader is for a coin which uses an account/memo system, set self.need_account = True before calling
BatchLoader’s constructor, and it will remove coins in self.symbols/coins that do not have a non-empty/null
our_account column.

You’re free to override any methods if you need to, just make sure to call this class’s constructor __init__
before/after your own constructor, otherwise some methods may break.

Flow of this class:

Transaction loading cron
 |
 V--> __init__(symbols:list)
 |--> load(tx_count:int)
 |--> list_txs(batch:int) -> _list_txs(coin:Coin, batch:int)
 V |--> load_batch(account, symbol, offset)
 V--> clean_txs(account, symbol, txs)

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming
with models.Deposit

Important things when implementing this function:

	Make sure to filter out transactions that were sent from our own wallet/account - otherwise internal
transfers will cause problems.

	Make sure each transaction is destined to us

	If your loader is account-based, make sure to only yield transactions where tx[“to_account”] == account.

	If your loader is address-based, make sure that you only return transactions that are being received by
our wallet, not being sent from it.

	If account isn’t None, assume that you must yield TXs sent to the given crypto address account

	If your loader deals with smart contract networks e.g. ETH, EOS, make sure that you only return transactions
valid on the matching smart contract, don’t blindly trust the symbol!

	Make sure that every dict that you yield conforms with the return standard shown for
BaseLoader.list_txs()

	While transactions is normally a list<dict> you should assume that it could potentially be a
Generator, writing the code Generator-friendly will ensure it can handle both lists and Generator’s.

Example:

>>> def clean_txs(self, symbol: str, transactions: Iterable[dict],
>>> account: str = None) -> Generator[dict, None, None]:
>>> for tx in transactions:
>>> try:
>>> if tx['from'].lower() == 'tokens': continue # Ignore token issues
>>> if tx['from'].lower() == account: continue # Ignore transfers from ourselves.
>>> if tx['to'].lower() != account.lower(): continue # If we aren't the receiver, we don't need it.
>>> clean_tx = dict(
>>> txid=tx['txid'], coin=symbol, tx_timestamp=parse(tx['timestamp']),
>>> from_account=tx['from'], to_account=tx['to'], memo=tx['memo'],
>>> amount=Decimal(tx['quantity'])
>>>)
>>> yield clean_tx
>>> except:
>>> log.exception('Error parsing transaction data. Skipping this TX. tx = %s', tx)
>>> continue

	Parameters

	
	symbol – The symbol of the token being filtered

	transactions – A list<dict> of transactions to filter

	account – The ‘to’ account or crypto address to filter by (only required for account-based loaders)

	Returns

	A generator yielding dict’s conforming to models.Deposit, check the PyDoc
return info for coin_handlers.base.BaseLoader.list_txs() for current format.

	
list_txs(batch=100) → Generator[dict, None, None]

	Yield transactions for all coins in self.coins as a generator, loads transactions in batches of batch
and returns them seamlessly using a generator.

If load() hasn’t been ran already, it will automatically call self.load()

	Parameters

	batch – Amount of transactions to load per batch

	Return Generator[dict, None, None]

	Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	Simply imports tx_count into an instance variable, and then sets self.loaded to True.

If self.need_account is set to True by a child/parent class, this method will remove any coins from
self.coins and self.symbols which have a blank/null our_account in the DB, ensuring that you can trust
that all coins listed in symbols/coins have an our_account which isn’t empty or None.

	Parameters

	tx_count (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load per symbol specified in constructor

	
load_batch(symbol, limit=100, offset=0, account=None)

	This function should load limit transactions in their raw format from your data source, skipping
the offset newest TXs efficiently, and store them in the instance var self.transactions

If you use the included decorator decorators.retry_on_err(), if any exceptions are thrown by your
method, it will simply re-run it with the same arguments up to 3 tries by default.

Basic implementation:

>>> @retry_on_err()
>>> def load_batch(self, symbol, limit=100, offset=0, account=None):
>>> self.transactions = self.my_rpc.get_tx_list(limit, offset)

	Parameters

	
	symbol – The symbol to load a batch of transactions for

	limit – The amount of transactions to load

	offset – Skip this many transactions (most recent first)

	account – An account name, or coin address to filter transactions using

Base Decorators

	
payments.coin_handlers.base.decorators.retry_on_err(max_retries: int = 3, delay: int = 3, **retry_conf)

	Decorates a function or class method, wraps the function/method with a try/catch block, and will automatically
re-run the function with the same arguments up to max_retries time after any exception is raised, with a
delay second delay between re-tries.

If it still throws an exception after max_retries retries, it will log the exception details with fail_msg,
and then re-raise it.

Usage (retry up to 5 times, 1 second between retries, stop immediately if IOError is detected):

>>> @retry_on_err(5, 1, fail_on=[IOError])
... def my_func(self, some=None, args=None):
... if some == 'io': raise IOError()
... raise FileExistsError()

This will be re-ran 5 times, 1 second apart after each exception is raised, before giving up:

>>> my_func()

Where-as this one will immediately re-raise the caught IOError on the first attempt, as it’s passed in fail_on:

>>> my_func('io')

	Parameters

	
	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total retry attempts before giving up

	delay (int [https://docs.python.org/3/library/functions.html#int]) – Amount of time in seconds to sleep before re-trying the wrapped function

	retry_conf – Less frequently used arguments, pass in as keyword args:

	(list) fail_on: A list() of Exception types that should result in immediate failure (don’t retry, raise)

	(str) retry_msg: Override the log message used for retry attempts. First message param %s is func name,
second message param %d is retry attempts remaining

	(str) fail_msg: Override the log message used after all retry attempts are exhausted. First message param %s
is func name, and second param %d is amount of times retried.

Base Exceptions

	
exception payments.coin_handlers.base.exceptions.AccountNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending or receiving account requested doesn’t exist

	
exception payments.coin_handlers.base.exceptions.AuthorityMissing

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Missing private key or other authorization for this operation

	
exception payments.coin_handlers.base.exceptions.CoinHandlerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all Coin handler exceptions to inherit

	
exception payments.coin_handlers.base.exceptions.DeadAPIError

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

A main API, e.g. a coin daemon or public node used by this coin handler is offline.

	
exception payments.coin_handlers.base.exceptions.IssueNotSupported

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

This class does not support issuing, the token name cannot be issued, or other issue problems.

	
exception payments.coin_handlers.base.exceptions.IssuerKeyError

	Bases: payments.coin_handlers.base.exceptions.AuthorityMissing

Attempted to issue tokens you don’t have the issuer key for

	
exception payments.coin_handlers.base.exceptions.MissingTokenMetadata

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Could not process a transaction or run the requested Loader/Manager method as required coin metadata is missing,
such as payments.models.Coin.our_account or a required key in the custom JSON settings.

	
exception payments.coin_handlers.base.exceptions.NotEnoughBalance

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending account does not have enough balance for this operation

	
exception payments.coin_handlers.base.exceptions.TokenNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The token/coin requested doesn’t exist

Module contents

REST API Documentation

CryptoToken Converter exposes a REST API under the URL /api to allow any application
to easily interact with the system.

It uses Django REST Framework [https://www.django-rest-framework.org] which automatically generates a lot of the code running
behind the API endpoints.

Endpoints

For GET requests, any request parameters must either be sent as either:

Standard GET parameters - e.g. /api/deposits/?from_address=someguy123

Directly in the URL - e.g. /api/coins/LTC

For POST requests, you may send your request data/params as a normal URL encoded form,
or you may choose to send it as JSON.

application/json - JSON Encoded Body

{
 "my_param": "somevalue",
 "other.param": "other value"
}

application/x-www-form-urlencoded - Standard POST body

my_param=somevalue&other.param=other%20value

/api/convert/

Starts the conversion process between two coins.

Returns the deposit details for you to send the coins to.

Methods: POST (URL Encoded Form, or JSON)

POST Parameters:

	Parameter

	Type

	Description

	from_coin

	String

	Symbol of the coin to convert from

	to_coin

	String

	Symbol of the destination coin

	destination

	String

	The address or account on to_coin for receiving
your converted coins

All parameters are required.

Errors:

If the JSON response error key is present and set to true, the error message will be placed in message,
and a non-200 status code will be returned, related to the error reason.

Potential errors and their status codes:

	“An unknown error has occurred… please contact support”, 500

	“You must specify ‘from_coin’, ‘to_coin’, and ‘destination’”, 400

	“There is no such coin pair {} -> {}”, 404

	“The destination {} address/account ‘{}’ is not valid”, 400

Example error response:

POST /api/convert/

HTTP 400 Bad Request
Allow: POST, OPTIONS
Content-Type: application/json
Vary: Accept

{
 "error": true,
 "message": "You must specify 'from_coin', 'to_coin', and 'destination'"
}

Return Data:

All successful requests will include ex_rate (the amount of to_coin per from_coin), pair (details
about the coin pair that you have chosen), and destination (where the from_coin will be sent to).

Depending on whether the from_coin is an address based coin, or an account/memo based coin, the
actual deposit details will be returned differently. Address based coins will return address, while account
based coins will return account and memo.

Below are two examples to help explain this. SGTK is “Sometoken”, a SteemEngine token, meaning it’s account+memo
based. LTC is Litecoin, a classic address based cryptocurrency.

Example 1 (address based -> account based):

POST /api/convert/
from_coin=LTC&to_coin=SGTK&destination=someguy123

HTTP 200 OK
Content-Type: application/json

{
 "ex_rate": 100000.0,
 "destination": "someguy123",
 "pair": "LTC -> SGTK (100000.0000 SGTK per LTC)",
 "address": "MJL1E5oSqFLpdL9BswKmYonxU1Cq1WKWGL"
}

Example 2 (account based -> address based):

POST /api/convert/
from_coin=SGTK&to_coin=LTC&destination=MVYBriQcasb6zvtGjPfLKbbWcRoKWh4sAf

HTTP 200 OK
Content-Type: application/json
{
 "ex_rate": 0.01,
 "destination": "MVYBriQcasb6zvtGjPfLKbbWcRoKWh4sAf",
 "pair": "SGTK -> LTC (0.0100 LTC per SGTK)",
 "memo": "LTC MVYBriQcasb6zvtGjPfLKbbWcRoKWh4sAf",
 "account": "someguy123"
}

/api/deposits/

	/api/deposits/

	Returns all deposit attempts received by the system.
Can be filtered using the GET Parameters listed below.

	/api/deposits/<id>

	Returns a single deposit attempt by it’s ID

Methods: GET

GET Parameters:

These parameters can be used with the plain /api/deposits/ URL, to filter deposits based on various columns.

Note: Results from /api/deposits/ will always be returned as a list, even if there’s only one.

	Parameter

	Type

	Description

	address

	String

	Return deposits that were sent to this address
(only for address-based coins)

	txid

	String

	Return deposits with a matching transaction ID

	from_account

	String

	Return deposits that were sent from this account
(only for account-based coins)

	to_account

	String

	Return deposits that were sent to this account
(only for account-based coins)

	memo

	String

	Return deposits that were sent using this memo
(normally only for account-based coins)

Return Data:

Example 1 (Plain GET request):

GET /api/deposits/

HTTP 200 OK
Content-Type: application/json

[
 {
 "id": 4,
 "txid": "635dd656b3bd8c61699e6066c9b3c6e74696e195",
 "coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "vout": 0,
 "status": "conv",
 "tx_timestamp": "2019-03-20T03:46:30Z",
 "address": null,
 "from_account": "privex",
 "to_account": "someguy123",
 "amount": "1.00000000000000000000",
 "memo": "LTC LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "processed_at": "2019-03-20T04:31:30.643406Z",
 "convert_to": "http://127.0.0.1:8000/api/coins/LTC/"
 },
 {
 "id": 5,
 "txid": "b881d1ae8cf280184960c9c2d74bc1bd230f18f5adcd7fe695239dbf46b06c45",
 "coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "vout": 0,
 "status": "conv",
 "tx_timestamp": "2019-03-20T01:34:20Z",
 "address": "MFht1FmYhsRaSChGdqomxQpjtGtsjFHDQX",
 "from_account": null,
 "to_account": null,
 "amount": "0.10000000000000000000",
 "memo": null,
 "processed_at": "2019-03-20T04:46:53.602857Z",
 "convert_to": "http://127.0.0.1:8000/api/coins/SGTK/"
 }
]

Example 2 (Filtering results):

GET /api/deposits/?txid=635dd656b3bd8c61699e6066c9b3c6e74696e195

HTTP 200 OK
Content-Type: application/json

[
 {
 "id": 4,
 "txid": "635dd656b3bd8c61699e6066c9b3c6e74696e195",
 "coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "vout": 0,
 "status": "conv",
 "tx_timestamp": "2019-03-20T03:46:30Z",
 "address": null,
 "from_account": "privex",
 "to_account": "someguy123",
 "amount": "1.00000000000000000000",
 "memo": "LTC LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "processed_at": "2019-03-20T04:31:30.643406Z",
 "convert_to": "http://127.0.0.1:8000/api/coins/LTC/"
 }
]

Example 3 (ID Lookup):

GET /api/deposits/4/

HTTP 200 OK
Content-Type: application/json

{
 "id": 4,
 "txid": "635dd656b3bd8c61699e6066c9b3c6e74696e195",
 "coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "vout": 0,
 "status": "conv",
 "tx_timestamp": "2019-03-20T03:46:30Z",
 "address": null,
 "from_account": "privex",
 "to_account": "someguy123",
 "amount": "1.00000000000000000000",
 "memo": "LTC LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "processed_at": "2019-03-20T04:31:30.643406Z",
 "convert_to": "http://127.0.0.1:8000/api/coins/LTC/"
}

/api/conversions/

	/api/conversions/

	Returns all successful conversions sent by the system.
Can be filtered using the GET Parameters listed below.

	/api/conversions/<id>

	Returns a single conversion by it’s ID

Methods: GET

GET Parameters:

These parameters can be used with the plain /api/conversions/ URL, to filter conversions based on various columns.

Note: Results from /api/conversions/ will always be returned as a list, even if there’s only one.

	Parameter

	Type

	Description

	to_address

	String

	Return conversions that were sent to this address
or account (it’s used for both)

	to_txid

	String

	Return conversions with this outgoing TXID

	to_coin

	String

	Return conversions into this coin symbol

	from_coin

	String

	Return conversions from this coin symbol

	from_address

	String

	Return conversions that were sent from this address
or account (it’s used for both)

Return Data:

Note: The to_amount is the final amount that the user should have received AFTER ex_fee and tx_fee
were removed.

Example 1 (Plain GET request):

GET /api/conversions/

HTTP 200 OK
Content-Type: application/json
[
 {
 "url": "http://127.0.0.1:8000/api/conversions/6/",
 "from_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_memo": "Token Conversion from SGTK account privex",
 "to_amount": "0.00883200000000000000",
 "to_txid": "e4a5cb3ccc5524e20a39b1a076cef16a85efc68bf929e7a3ec4a834c30711e55",
 "tx_fee": "0.00016800000000000000",
 "ex_fee": "0.00100000000000000000",
 "created_at": "2019-03-21T10:14:20.021360Z",
 "updated_at": "2019-03-21T10:14:20.021373Z",
 "deposit": "http://127.0.0.1:8000/api/deposits/10/",
 "from_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin": "http://127.0.0.1:8000/api/coins/LTC/"
 },
 {
 "url": "http://127.0.0.1:8000/api/conversions/7/",
 "from_address": "someguy123",
 "to_address": "privex",
 "to_memo": "Token Conversion via LTC deposit address MTcPHSipXBzwhTWT8wXMtNf6vwAxovjpx9",
 "to_amount": "900.00000000000000000000",
 "to_txid": "55c30e43088c8aa6d7a74da1e29d3843cd7157e7",
 "tx_fee": "0.00000000000000000000",
 "ex_fee": "100.00000000000000000000",
 "created_at": "2019-03-21T10:15:47.071323Z",
 "updated_at": "2019-03-21T10:15:47.071340Z",
 "deposit": "http://127.0.0.1:8000/api/deposits/9/",
 "from_coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "to_coin": "http://127.0.0.1:8000/api/coins/SGTK/"
 }
]

Example 2 (Filtering results):

GET /api/conversions/?from_coin=SGTK&to_coin=LTC

HTTP 200 OK
Content-Type: application/json
[
 {
 "url": "http://127.0.0.1:8000/api/conversions/6/",
 "from_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_memo": "Token Conversion from SGTK account privex",
 "to_amount": "0.00883200000000000000",
 "to_txid": "e4a5cb3ccc5524e20a39b1a076cef16a85efc68bf929e7a3ec4a834c30711e55",
 "tx_fee": "0.00016800000000000000",
 "ex_fee": "0.00100000000000000000",
 "created_at": "2019-03-21T10:14:20.021360Z",
 "updated_at": "2019-03-21T10:14:20.021373Z",
 "deposit": "http://127.0.0.1:8000/api/deposits/10/",
 "from_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin": "http://127.0.0.1:8000/api/coins/LTC/"
 },
 {
 "url": "http://127.0.0.1:8000/api/conversions/5/",
 "from_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_memo": "Token Conversion from SGTK account privex",
 "to_amount": "0.00433200000000000000",
 "to_txid": null,
 "tx_fee": "0.00016800000000000000",
 "ex_fee": "0.00050000000000000000",
 "created_at": "2019-03-20T04:56:53.859675Z",
 "updated_at": "2019-03-20T04:56:53.859691Z",
 "deposit": "http://127.0.0.1:8000/api/deposits/7/",
 "from_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin": "http://127.0.0.1:8000/api/coins/LTC/"
 }
]

Example 3 (ID Lookup):

GET /api/conversions/5/

HTTP 200 OK
Content-Type: application/json

{
 "url": "http://127.0.0.1:8000/api/conversions/5/",
 "from_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_address": "LKjpPtgMbcFgbJJYwzfe1ZtR8x4bbs2V3o",
 "to_memo": "Token Conversion from SGTK account privex",
 "to_amount": "0.00433200000000000000",
 "to_txid": null,
 "tx_fee": "0.00016800000000000000",
 "ex_fee": "0.00050000000000000000",
 "created_at": "2019-03-20T04:56:53.859675Z",
 "updated_at": "2019-03-20T04:56:53.859691Z",
 "deposit": "http://127.0.0.1:8000/api/deposits/7/",
 "from_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin": "http://127.0.0.1:8000/api/coins/LTC/"
}

/api/pairs/

	/api/pairs/

	Returns all coin pairs supported by the system
Can be filtered using the GET Parameters listed below.

	/api/pairs/<id>

	Returns a single coin pair by it’s ID

Methods: GET

GET Parameters:

These parameters can be used with the plain /api/pairs/ URL, to filter coin pairs based on from/to symbol.

Note: Results from /api/pairs/ will always be returned as a list, even if there’s only one.

	Parameter

	Type

	Description

	to_coin

	String

	Return pairs with this destination coin symbol

	from_coin

	String

	Return pairs with this deposit coin symbol

Example 1 (Plain GET request):

GET /api/pairs/

HTTP 200 OK
Content-Type: application/json

[
 {
 "id": 1,
 "from_coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "from_coin_symbol": "LTC",
 "to_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin_symbol": "SGTK",
 "exchange_rate": "100000.00000000000000000000",
 "__str__": "LTC -> SGTK (100000.0000 SGTK per LTC)"
 },
 {
 "id": 2,
 "from_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "from_coin_symbol": "SGTK",
 "to_coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "to_coin_symbol": "LTC",
 "exchange_rate": "0.01000000000000000000",
 "__str__": "SGTK -> LTC (0.0100 LTC per SGTK)"
 }
]

Example 2 (Filtering results):

GET /api/pairs/?from_coin=LTC

HTTP 200 OK
Content-Type: application/json

[
 {
 "id": 1,
 "from_coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "from_coin_symbol": "LTC",
 "to_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin_symbol": "SGTK",
 "exchange_rate": "100000.00000000000000000000",
 "__str__": "LTC -> SGTK (100000.0000 SGTK per LTC)"
 }
]

Example 3 (ID Lookup):

GET /api/pairs/1/

HTTP 200 OK
Content-Type: application/json

{
 "id": 1,
 "from_coin": "http://127.0.0.1:8000/api/coins/LTC/",
 "from_coin_symbol": "LTC",
 "to_coin": "http://127.0.0.1:8000/api/coins/SGTK/",
 "to_coin_symbol": "SGTK",
 "exchange_rate": "100000.00000000000000000000",
 "__str__": "LTC -> SGTK (100000.0000 SGTK per LTC)"
}

Coin Handlers

Subpackages

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

Module contents

This module init file is responsible for loading the Coin Handler modules, and offering methods for accessing
loaders and managers.

A Coin Handler is a Python module (folder containing classes and init file) designed to handle sending/receiving
cryptocurrency/tokens for a certain network, or certain family of networks sharing similar code.

They may handle just one single coin, several coins, or they may even allow users to dynamically add coins by
querying for a specific coin_type from the model payments.models.Coin

A coin handler must contain:

	An __init__.py with a dictionary named exports, containing the keys ‘loader’ and/or ‘manager’ pointing
to the un-instantiated loader/manager class.

	If your init file needs to do some sort-of initialisation, such as dynamically generating provides for
your classes, or adding a new coin type to settings.COIN_TYPES, it’s best to place it in a function named
“reload” with a global boolean loaded so that you only initialise the module the first time it’s loaded.

See the example __init__.py near the bottom of this module docstring.

This is optional, but it will allow reload_handlers() to properly re-trigger your initialisation code
only when changes occur, such as Coin’s being created/updated in the database.

	Two classes, a Loader and a Manager. Each class can either in it’s own file, or in a single file containing
other classes / functions.

	A Loader is a class which extends base.BaseLoader, and is responsible for retrieving transactions
that occur on that coin to detect incoming transactions.

	A Manager is a class which extends base.BaseManager, and is responsible for handling sending/issuing
of coins/tokens, as well as other small functions such as validating addresses, and checking balances.

Your Loader class may choose to extend the helper class base.BatchLoader, allowing your loader
to use batches/chunking for memory efficiency, without having to write much code.

Your Coin Handler classes should ONLY use the exceptions in base.exceptions, along with any exceptions
listed in the :raises: pydoc statements of the overridden method.

For handling automatic retry when something goes wrong, you can use the decorator
base.decorators.retry_on_err()

Example __init__.py:

>>> from django.conf import settings
>>> from payments.coin_handlers.SteemEngine.SteemEngineLoader import SteemEngineLoader
>>> from payments.coin_handlers.SteemEngine.SteemEngineManager import SteemEngineManager
>>>
>>> loaded = False
>>>
>>> def reload():
>>> global loaded
>>> if 'steemengine' not in dict(settings.COIN_TYPES):
>>> settings.COIN_TYPES += (('steemengine', 'SteemEngine Token',),)
>>> loaded = True
>>>
>>> if not loaded:
>>> reload()
>>>
>>> exports = {
>>> "loader": SteemEngineLoader,
>>> "manager": SteemEngineManager
>>> }

For an example of how to layout your coin handler module, check out the pre-included Coin Handlers:

	SteemEngine

	Bitcoin

	
payments.coin_handlers.add_handler(handler, handler_type)

	

	
payments.coin_handlers.ch_base = 'payments.coin_handlers'

	Base module path to where the coin handler modules are located. E.g. payments.coin_handlers

	
payments.coin_handlers.get_loader(symbol: str) → payments.coin_handlers.base.BaseLoader.BaseLoader

	For some use-cases, you may want to just grab the first loader that supports this coin.

>>> m = get_loader('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the loader for (uppercase)

	Return BaseLoader

	An instance implementing base.BaseLoader

	
payments.coin_handlers.get_loaders(symbol: str = None) → list

	Get all loader’s, or all loader’s for a certain coin

	Parameters

	symbol – The coin symbol to get all loaders for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseLoader>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseLoader’s

	
payments.coin_handlers.get_manager(symbol: str) → payments.coin_handlers.base.BaseManager.BaseManager

	For some use-cases, you may want to just grab the first manager that supports this coin.

>>> m = get_manager('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the manager for (uppercase)

	Return BaseManager

	An instance implementing base.BaseManager

	
payments.coin_handlers.get_managers(symbol: str = None) → list

	Get all manager’s, or all manager’s for a certain coin

	Parameters

	symbol – The coin symbol to get all managers for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseManager>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseManager’s

	
payments.coin_handlers.handlers = {}

	A dictionary of coin symbols, containing instantiated managers (BaseManager) and loaders (BaseLoader)

Example layout:

handlers = {
 'ENG': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
 'SGTK': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
}

	
payments.coin_handlers.handlers_loaded = False

	Used to track whether the Coin Handlers have been initialized, so reload_handlers can be auto-called.

	
payments.coin_handlers.has_loader(symbol: str) → bool

	Helper function - does this symbol have a loader class?

	
payments.coin_handlers.has_manager(symbol: str) → bool

	Helper function - does this symbol have a manager class?

	
payments.coin_handlers.is_database_synchronized(database: str) → bool

	Check if all migrations have been ran. Useful for preventing auto-running code accessing models before the
tables even exist, thus preventing you from migrating…

>>> from django.db import DEFAULT_DB_ALIAS
>>> if not is_database_synchronized(DEFAULT_DB_ALIAS):
>>> log.warning('Cannot run reload_handlers because there are unapplied migrations!')
>>> return

	Parameters

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which Django database config is being used? Generally just pass django.db.DEFAULT_DB_ALIAS

	Return bool

	True if all migrations have been ran, False if not.

	
payments.coin_handlers.reload_handlers()

	Resets handler to an empty dict, then loads all settings.COIN_HANDLER classes into the dictionary handlers
using settings.COIN_HANDLERS_BASE as the base module path to load from

Bitcoind Coin Handler

Module contents

Bitcoind-based Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending any cryptocurrency which has a coin daemon that has a JSONRPC API
backwards compatible with bitcoind.

It will automatically handle any payments.models.Coin which has it’s type set to bitcoind

Coin object settings:

For each coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Bitcoind RPC compatible crypto (db value: bitcoind)

	setting_host

	The IP or hostname for the daemon. If not specified, defaults to 127.0.0.1 / localhost

	setting_port

	The RPC port for the daemon. If not specified, defaults to 8332

	setting_user

	The rpcuser for the daemon. Generally MUST be specified.

	setting_pass

	The rpcpassword for the daemon. Generally MUST be specified

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	confirms_needed Default 0; Amount of confirmations needed before loading a TX

	use_trusted Default: True; If enabled, TXs returned from the daemon with ‘trusted’:true will always be
accepted at 0 confs regardless of confirms_needed

	string_amt Default: True; If true, when sending coins, a Decimal will be used (as a string). This can
cause problems with older coins such as Dogecoin, so for older coins that need floats, set this to False.

Django Settings:

If you’d rather not store the RPC details in the database, you may specify them in Django’s settings.py.

If a coin symbol is specified in settings.COIND_RPC they will be used exclusively, and any handler settings
on the Coin object will be ignored.

If a settings key isn’t specified, the default is the same as shown for coin object settings.

Example COIND_RPC Setting:

COIND_RPC = {
 "BTC": {
 'user': 'bitcoinrpc',
 'password': 'SuperSecurePass',
 'host': '127.0.0.1',
 'port': 8332,
 'confirms_needed': 0,
 'string_amt': True,
 'use_trusted': True
 }
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Bitcoin.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, as there are many coins that use a direct fork of bitcoind, our classes can provide for any
models.Coin by scanning for coins with the type bitcoind. This saves us from hard coding
specific coin symbols.

Submodules

BitcoinLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader(symbols)

	Bases: payments.coin_handlers.base.BatchLoader.BatchLoader, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinLoader - Despite the name, loads TXs from any coin that has a bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
load_batch(symbol, limit=100, offset=0, account=None)

	Loads a batch of transactions for symbol in their original format into self.transactions

	Parameters

	
	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin symbol to load TXs for

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The amount of most recent TXs to skip (for pagination)

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – NOT USED BY THIS LOADER

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinManager - Despite the name, handles sending, balance, and deposit addresses for any coin that has a
bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
address_valid(address) → bool

	If address is determined to be valid by the coind RPC, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get the total amount received by an address, or the balance of the wallet if address not specified.

	Parameters

	
	address – Crypto address to get balance for, if None, returns whole wallet balance

	memo – NOT USED BY THIS MANAGER

	memo_case – NOT USED BY THIS MANAGER

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns a deposit address for this symbol
:return tuple: A tuple containing (‘address’, crypto_address)

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the coin daemon is up or not, by requesting basic information such as current block and version.

	Return bool

	True if the coin daemon appears to be working, False if it’s not

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send the amount amount of self.symbol to a given address.

Example - send 0.1 LTC to LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph

>>> s = BitcoinManager('LTC')
>>> s.send(address='LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph', amount=Decimal('0.1'))

	Parameters

	
	amount (Decimal) – Amount of coins to send, as a Decimal()

	address – Address to send the coins to

	from_address – NOT USED BY THIS MANAGER

	memo – NOT USED BY THIS MANAGER

	Raises

	
	AccountNotFound – The destination address isn’t valid

	NotEnoughBalance – The wallet does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
setting

	Retrieve only our symbol from self.settings for convenience

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinMixin module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BitcoinMixin - shared code used by both Bitcoin.BitcoinLoader and Bitcoin.BitcoinManager

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
all_coins

	Since this is a Mixin, it may be self.coin: Coin, or self.coins: List[Coin].
This property detects whether we have a single coin, or multiple, and returns them as a dict.

	Return dict coins

	A dict<str,Coin> of supported coins, mapped by symbol

SteemEngine Coin Handler

Module contents

SteemEngine Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the SteemEngine network.

It will automatically handle any payments.models.Coin which has it’s type set to steemengine

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.SteemEngine.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new tokens are constantly being created for SteemEngine, our classes can provide for any
models.Coin by scanning for coins with the type steemengine. This saves us from hard coding
specific coin symbols.

Submodules

SteemEngineLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader

This class handles loading transactions for the SteemEngine network, and can support almost any token
on SteemEngine.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
clean_txs(account: str, symbol: str, transactions: Iterable[dict]) → Generator[dict, None, None]

	Filters a list of transactions by the receiving account, yields dict’s conforming with
payments.models.Deposit

	Parameters

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ‘to’ account to filter by

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symbol of the token being filtered

	transactions (list<dict>) – A list<dict> of transactions to filter

	Returns

	A generator yielding dict s conforming to payments.models.Deposit

	
list_txs(batch=100) → Generator[dict, None, None]

	Get transactions for all coins in self.coins where the ‘to’ field matches coin.our_account
If load() hasn’t been ran already, it will automatically call self.load()
:param batch: Amount of transactions to load per batch
:return: Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
load_batch(account, symbol, limit=100, offset=0, retry=0)

	Load SteemEngine transactions for account/symbol into self.transactions with automatic retry on error

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

SteemEngineManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager

This class handles various operations for the SteemEngine network, and supports almost any token
on SteemEngine.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Issuing tokens to users

	Sending tokens to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account (address param) exists on Steem, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the SteemEngine API and Steem node works or not, by requesting basic information such as
the token metadata, and checking if our sending/receiving account exists on Steem.

	Return bool

	True if SteemEngine and Steem appear to be working, False if either is broken.

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data=None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

Example - Issue 5.10 SGTK to @privex

>>> s = SteemEngineManager('SGTK')
>>> s.issue(address='privex', amount=Decimal('5.10'))

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – (ignored) Cannot issue tokens with a memo on SteemEngine

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from,
 send_type:str - Should be statically set to "issue"
}

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send tokens to a given address/account, optionally specifying a memo if supported

Example - send 1.23 SGTK from @someguy123 to @privex with memo ‘hello’

>>> s = SteemEngineManager('SGTK')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of tokens to send, as a Decimal()

	address – Account to send the tokens to

	from_address – Account to send the tokens from

	memo – Memo to send tokens with (if supported)

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the token’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	TokenNotFound – When the requested token symbol does not exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data=None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

Steem Coin Handler

Module contents

Steem Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the Steem network.

It will automatically handle any payments.models.Coin which has it’s type set to steembase

Coin object settings:

For each payments.models.Coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Steem Network (or compatible fork) (db value: steembase)

	our_account

	This should be set to the username of the account you want to use for receiving/sending

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	rpcs - A JSON list<str> of RPC nodes to use, with a full HTTP/HTTPS URL. If this is not specified, Beem
will automatically try to use the best available RPC node for the Steem network.

	pass_store - Generally you do not need to touch this. It controls where Beem will look for the wallet
password. It defaults to environment

Example JSON custom config:

{
 "rpcs": [
 "https://steemd.privex.io",
 "https://api.steemit.com",
 "https://api.steem.house"
],
 "pass_store": "environment"
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Steem.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new Steem forks are constantly being created, our classes can provide for any
models.Coin by scanning for coins with the type steembase. This saves us from hard coding
specific coin symbols.

Submodules

SteemLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemLoader.SteemLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, payments.coin_handlers.Steem.SteemMixin.SteemMixin

SteemLoader - Loads transactions from the Steem network

Designed for the Steem Network with SBD and STEEM support. May or may not work with other Graphene coins.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For additional settings, please see the module docstring in coin_handlers.Steem

	
static clean_tx(tx: dict, symbol: str, account: str, memo: str = None, memo_case: bool = False) → Optional[dict]

	Filters an individual transaction. See clean_txs() for info

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
list_txs(batch=0) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=10000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
settings

	To ensure we always get fresh settings from the DB after a reload

SteemManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemManager.SteemManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Steem.SteemMixin.SteemMixin

This class handles various operations for the Steem network, and supports both STEEM and SBD.

It may or may not work with other Graphene coins, such as GOLOS / Whaleshares.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Health checking

	Sending assets to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account exists on Steem, will return True. Otherwise False.

	Parameters

	address – Steem account to check existence of

	Return bool

	True if account exists, False if it doesn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: ‘Symbol’, ‘Status’, ‘Coin Name’, ‘API Node’, ‘Head Block’, ‘Block Time’,
‘RPC Version’, ‘Our Account’, ‘Our Balance’ (all strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if our Steem node works or not, by requesting basic information such as the current block + time, and
checking if our sending/receiving account exists on Steem.

	Return bool

	True if Steem appearsto be working, False if it seems to be broken.

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo=None, trigger_data=None) → dict

	Send a supported currency to a given address/account, optionally specifying a memo if supported

Example - send 1.23 STEEM from @someguy123 to @privex with memo ‘hello’

>>> s = SteemManager('STEEM')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of currency to send, as a Decimal()

	address – Account to send the currency to

	from_address – Account to send the currency from

	memo – Memo to send currency with

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the asset’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account doesn’t exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

Coin Handler Base Classes

Submodules

BaseLoader

	
class payments.coin_handlers.base.BaseLoader.BaseLoader(symbols: list = None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseLoader - Base class for Transaction loaders

A transaction loader loads incoming transactions from one or more cryptocurrencies or tokens, whether through
a block explorer, or through a direct connection to a local RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Transaction loaders must be able to initialise themselves using the following data:

	The coin symbols self.symbols passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

	They should also use the logging instance settings.LOGGER_NAME

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, as well as configure the provides list to display
the tokens/coins that this loader handles.

	
list_txs(batch=100) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides = []

	

BaseManager

	
class payments.coin_handlers.base.BaseManager.BaseManager(symbol: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseManager - Base class for coin/token management

A coin manager handles balance checking, sending, and issuing of one or more cryptocurrencies or tokens,
generally through a direct connection to a local/remote RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Coin managers must be able to initialise themselves using the following data:

	The coin symbol self.symbol passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, set the can_issue boolean for detecting if this manager
can be used to issue (create/print) tokens/coins, as well as configure the provides list to display
the tokens/coins that this manager handles.

	
address_valid(address) → bool

	A simple boolean method, allowing API requests to validate the destination address/account prior to
giving the user deposit details.

	Parameters

	address – An address or account to send to

	Return bool

	Is the address valid? True if it is, False if it isn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Return the balance of self.symbol for our “wallet”, or a given address/account, optionally filtered by memo

	Parameters

	
	address – The address or account to get the balance for. If None, return our total wallet
(or default account) balance.

	memo – If not None (and coin supports memos), return the total balance of a given memo

	memo_case – Whether or not to total memo’s case sensitive, or not. False = case-insensitive memo

	Raises

	AccountNotFound – The requested account/address doesn’t exist

	Return Decimal

	Decimal() balance of address/account, optionally balance (total received) of a given memo

	
can_issue = False

	If this manager supports issuing (creating/printing) tokens/coins, set this to True

	
get_deposit() → tuple

	
	Return tuple

	If the coin uses addresses, this method should return a tuple of (‘address’, coin_address)

	Return tuple

	If the coin uses accounts/memos, this method should return a tuple (‘account’, receiving_account)
The memo will automatically be generated by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol, e.g. current block height, block time, wallet balance
whether the daemon / API is accessible, etc.

It should return a tuple containing the manager name, the headings for a health table,
and the health data for the passed symbol (Should include a symbol or coin name column)

You may use basic HTML tags in the health data result list, such as
 <u> and

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	To reduce the risk of unhandled exceptions by sending code, this method should do some basic checks against
the API to test whether the coin daemon / API is responding correctly.

This allows code which calls your send() or issue() method to detect the daemon / API is not working, and
then delay sending/issuing until later, instead of marking a convert / withdrawal status to an error.

The method body should be wrapped in a try/except, ensuring there’s a non-targeted except which
returns False

	Return bool

	True if the coin daemon / API appears to be working, False if it’s not

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – Memo to issue tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "issue"
}

	
orig_symbol = None

	The original unique database symbol ID

	
provides = []

	A list of token/coin symbols in uppercase that this loader supports e.g:

provides = ["LTC", "BTC", "BCH"]

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Send tokens to a given address/account, optionally specifying a memo and sender address/account if supported

Your send method should automatically subtract any blockchain transaction fees from the amount sent.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send, as a Decimal()

	address – Address or account to send the coins/tokens to

	memo – Memo to send coins/tokens with (if supported)

	from_address – Address or account to send from (if required)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this send transaction (e.g. the deposit that triggered this)

	Raises

	
	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	NotEnoughBalance – Sending account/address does not have enough balance to send

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data: Union[dict, list] = None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

	
symbol = None

	The native coin symbol, e.g. BTC, LTC, etc. (non-unique)

BatchLoader

	
class payments.coin_handlers.base.BatchLoader.BatchLoader(symbols: list = None)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BatchLoader - An abstract sub-class of BaseLoader which comes with some pre-written batching/chunking functions

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

This class is designed to save you time from re-writing your own “batching” / “chunking” functions.

Batching / chunking is a memory efficiency technique to prevent RAM leaks causing poor performance or crashes.
Instead of loading all 1K - 10K transactions into memory, you load only a small amount of transactions, such as
100 transactions, then you use a Python generator (the yield keyword) to return individual transactions, quietly
loading the next “batch” / “chunk” of 100 TXs after the first set has been processed, without interrupting the
caller’s for loop or other iteration.

This allows other functions to iterate over the transactions and process them on the fly, instead of having to load
the entire 1-10K transaction list into memory first.

The use of generators throughout this class helps to prevent the problem of RAM leaks due to constant
duplication of the transaction list (e.g. self.transactions, self.filtered_txs, self.cleaned_txs), especially
when the transaction lists contains thousands of transactions.

To use this class, simply extend it (instead of BaseLoader), and make sure to implement the two abstract methods:

	load_batch - Loads and stores a small batch of raw (original format) transactions for a given coin

	
	clean_txs - Filters the loaded TXs, yielding TXs (conformed to be compatible with models.Deposit)

	that were received by us (not sent), and various sanity checks depending on the type of coin.

If your Loader is for a coin which uses an account/memo system, set self.need_account = True before calling
BatchLoader’s constructor, and it will remove coins in self.symbols/coins that do not have a non-empty/null
our_account column.

You’re free to override any methods if you need to, just make sure to call this class’s constructor __init__
before/after your own constructor, otherwise some methods may break.

Flow of this class:

Transaction loading cron
 |
 V--> __init__(symbols:list)
 |--> load(tx_count:int)
 |--> list_txs(batch:int) -> _list_txs(coin:Coin, batch:int)
 V |--> load_batch(account, symbol, offset)
 V--> clean_txs(account, symbol, txs)

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming
with models.Deposit

Important things when implementing this function:

	Make sure to filter out transactions that were sent from our own wallet/account - otherwise internal
transfers will cause problems.

	Make sure each transaction is destined to us

	If your loader is account-based, make sure to only yield transactions where tx[“to_account”] == account.

	If your loader is address-based, make sure that you only return transactions that are being received by
our wallet, not being sent from it.

	If account isn’t None, assume that you must yield TXs sent to the given crypto address account

	If your loader deals with smart contract networks e.g. ETH, EOS, make sure that you only return transactions
valid on the matching smart contract, don’t blindly trust the symbol!

	Make sure that every dict that you yield conforms with the return standard shown for
BaseLoader.list_txs()

	While transactions is normally a list<dict> you should assume that it could potentially be a
Generator, writing the code Generator-friendly will ensure it can handle both lists and Generator’s.

Example:

>>> def clean_txs(self, symbol: str, transactions: Iterable[dict],
>>> account: str = None) -> Generator[dict, None, None]:
>>> for tx in transactions:
>>> try:
>>> if tx['from'].lower() == 'tokens': continue # Ignore token issues
>>> if tx['from'].lower() == account: continue # Ignore transfers from ourselves.
>>> if tx['to'].lower() != account.lower(): continue # If we aren't the receiver, we don't need it.
>>> clean_tx = dict(
>>> txid=tx['txid'], coin=symbol, tx_timestamp=parse(tx['timestamp']),
>>> from_account=tx['from'], to_account=tx['to'], memo=tx['memo'],
>>> amount=Decimal(tx['quantity'])
>>>)
>>> yield clean_tx
>>> except:
>>> log.exception('Error parsing transaction data. Skipping this TX. tx = %s', tx)
>>> continue

	Parameters

	
	symbol – The symbol of the token being filtered

	transactions – A list<dict> of transactions to filter

	account – The ‘to’ account or crypto address to filter by (only required for account-based loaders)

	Returns

	A generator yielding dict’s conforming to models.Deposit, check the PyDoc
return info for coin_handlers.base.BaseLoader.list_txs() for current format.

	
list_txs(batch=100) → Generator[dict, None, None]

	Yield transactions for all coins in self.coins as a generator, loads transactions in batches of batch
and returns them seamlessly using a generator.

If load() hasn’t been ran already, it will automatically call self.load()

	Parameters

	batch – Amount of transactions to load per batch

	Return Generator[dict, None, None]

	Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	Simply imports tx_count into an instance variable, and then sets self.loaded to True.

If self.need_account is set to True by a child/parent class, this method will remove any coins from
self.coins and self.symbols which have a blank/null our_account in the DB, ensuring that you can trust
that all coins listed in symbols/coins have an our_account which isn’t empty or None.

	Parameters

	tx_count (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load per symbol specified in constructor

	
load_batch(symbol, limit=100, offset=0, account=None)

	This function should load limit transactions in their raw format from your data source, skipping
the offset newest TXs efficiently, and store them in the instance var self.transactions

If you use the included decorator decorators.retry_on_err(), if any exceptions are thrown by your
method, it will simply re-run it with the same arguments up to 3 tries by default.

Basic implementation:

>>> @retry_on_err()
>>> def load_batch(self, symbol, limit=100, offset=0, account=None):
>>> self.transactions = self.my_rpc.get_tx_list(limit, offset)

	Parameters

	
	symbol – The symbol to load a batch of transactions for

	limit – The amount of transactions to load

	offset – Skip this many transactions (most recent first)

	account – An account name, or coin address to filter transactions using

Base Decorators

	
payments.coin_handlers.base.decorators.retry_on_err(max_retries: int = 3, delay: int = 3, **retry_conf)

	Decorates a function or class method, wraps the function/method with a try/catch block, and will automatically
re-run the function with the same arguments up to max_retries time after any exception is raised, with a
delay second delay between re-tries.

If it still throws an exception after max_retries retries, it will log the exception details with fail_msg,
and then re-raise it.

Usage (retry up to 5 times, 1 second between retries, stop immediately if IOError is detected):

>>> @retry_on_err(5, 1, fail_on=[IOError])
... def my_func(self, some=None, args=None):
... if some == 'io': raise IOError()
... raise FileExistsError()

This will be re-ran 5 times, 1 second apart after each exception is raised, before giving up:

>>> my_func()

Where-as this one will immediately re-raise the caught IOError on the first attempt, as it’s passed in fail_on:

>>> my_func('io')

	Parameters

	
	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total retry attempts before giving up

	delay (int [https://docs.python.org/3/library/functions.html#int]) – Amount of time in seconds to sleep before re-trying the wrapped function

	retry_conf – Less frequently used arguments, pass in as keyword args:

	(list) fail_on: A list() of Exception types that should result in immediate failure (don’t retry, raise)

	(str) retry_msg: Override the log message used for retry attempts. First message param %s is func name,
second message param %d is retry attempts remaining

	(str) fail_msg: Override the log message used after all retry attempts are exhausted. First message param %s
is func name, and second param %d is amount of times retried.

Base Exceptions

	
exception payments.coin_handlers.base.exceptions.AccountNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending or receiving account requested doesn’t exist

	
exception payments.coin_handlers.base.exceptions.AuthorityMissing

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Missing private key or other authorization for this operation

	
exception payments.coin_handlers.base.exceptions.CoinHandlerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all Coin handler exceptions to inherit

	
exception payments.coin_handlers.base.exceptions.DeadAPIError

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

A main API, e.g. a coin daemon or public node used by this coin handler is offline.

	
exception payments.coin_handlers.base.exceptions.IssueNotSupported

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

This class does not support issuing, the token name cannot be issued, or other issue problems.

	
exception payments.coin_handlers.base.exceptions.IssuerKeyError

	Bases: payments.coin_handlers.base.exceptions.AuthorityMissing

Attempted to issue tokens you don’t have the issuer key for

	
exception payments.coin_handlers.base.exceptions.MissingTokenMetadata

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Could not process a transaction or run the requested Loader/Manager method as required coin metadata is missing,
such as payments.models.Coin.our_account or a required key in the custom JSON settings.

	
exception payments.coin_handlers.base.exceptions.NotEnoughBalance

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending account does not have enough balance for this operation

	
exception payments.coin_handlers.base.exceptions.TokenNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The token/coin requested doesn’t exist

Module contents

steemengine package

Subpackages

	steemengine.settings (Django Settings)
	Submodules

	steemengine.settings.core module

	steemengine.settings.custom module

	steemengine.settings.log module

	Module contents

Submodules

steemengine.helpers module

Various helper functions for use in CryptoToken Converter.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
steemengine.helpers.decrypt_str(data: Union[str, bytes], key: Union[str, bytes] = None) → str

	Decrypts data previously encrypted using encrypt_str() with the same Fernet compatible key, and
returns the decrypted version as a string.

The key cannot just be a random “password”, it must be a 32-byte key encoded with URL Safe base64. Use the
management command ./manage.py generate_key to create a Fernet compatible encryption key.

Under the hood, Fernet uses AES-128 CBC to encrypt the data, with PKCS7 padding and HMAC_SHA256 authentication.

If the key parameter isn’t passed, or is empty (None / “”), then it will attempt to fall back to
settings.ENCRYPT_KEY - if that’s also empty, EncryptKeyMissing will be raised.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base64 encoded data to be decrypted, in the form of either a str or bytes.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Fernet encryption key (base64) for decryption, if blank, will fall back to settings.ENCRYPT_KEY

	Raises

	
	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	EncryptionError – Something went wrong while attempting to decrypt the data

	Return str decrypted_data

	The decrypted data as a string

	
steemengine.helpers.empty(v, zero=False, itr=False) → bool

	Quickly check if a variable is empty or not. By default only ‘’ and None are checked, use itr and zero to
test for empty iterable’s and zeroed variables.

Returns True if a variable is None or ‘’, returns False if variable passes the tests

	Parameters

	
	v – The variable to check if it’s empty

	zero – if zero=True, then return True if the variable is 0

	itr – if itr=True, then return True if the variable is [], {}, or is an iterable and has 0 length

	Return bool is_blank

	True if a variable is blank (None, '', 0, [] etc.)

	Return bool is_blank

	False if a variable has content (or couldn’t be checked properly)

	
steemengine.helpers.encrypt_str(data: Union[str, bytes], key: Union[str, bytes] = None) → str

	Encrypts a piece of data data passed as a string or bytes using Fernet with the passed 32-bit symmetric
encryption key key. Outputs the encrypted data as a Base64 string for easy storage.

The key cannot just be a random “password”, it must be a 32-byte key encoded with URL Safe base64. Use the
management command ./manage.py generate_key to create a Fernet compatible encryption key.

Under the hood, Fernet uses AES-128 CBC to encrypt the data, with PKCS7 padding and HMAC_SHA256 authentication.

If the key parameter isn’t passed, or is empty (None / “”), then it will attempt to fall back to
settings.ENCRYPT_KEY - if that’s also empty, EncryptKeyMissing will be raised.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data to be encrypted, in the form of either a str or bytes.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Fernet encryption key (base64) to be used, if left blank will fall back to settings.ENCRYPT_KEY

	Raises

	
	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	EncryptionError – Something went wrong while attempting to encrypt the data

	Return str encrypted_data

	The encrypted version of the passed data as a base64 encoded string.

	
steemengine.helpers.get_fernet(key: Union[str, bytes] = None) → cryptography.fernet.Fernet

	Used internally for getting Fernet instance with auto-fallback to settings.ENCRYPT_KEY and exception handling.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base64 Fernet symmetric key for en/decrypting data. If empty, will fallback to settings.ENCRYPT_KEY

	Raises

	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	Return Fernet f

	Instance of Fernet using passed key or settings.ENCRYPT_KEY for encryption.

	
steemengine.helpers.is_encrypted(data: Union[str, bytes], key: Union[str, bytes] = None) → bool

	Returns True if the passed data appears to be encrypted. Can only verify encryption if the same key
that was used to encrypt the data is passed.

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data to check for encryption, either as a string or bytes

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base64 encoded Fernet symmetric key for decrypting data. If empty, fallback to settings.ENCRYPT_KEY

	Raises

	EncryptKeyMissing – Either no key was passed, or something is wrong with the key.

	Return bool is_encrypted

	True if the data is encrypted, False if it’s not encrypted or wrong key used.

	
steemengine.helpers.random_str(size=50, chars='abcdefhkmnprstwxyz2345679ACDEFGHJKLMNPRSTWXYZ')

	

steemengine.urls module

steemengine URL Configuration

	The urlpatterns list routes URLs to views. For more information please see:

	https://docs.djangoproject.com/en/2.1/topics/http/urls/

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
steemengine.urls.path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RoutePattern'>)

	

	
steemengine.urls.re_path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RegexPattern'>)

	

steemengine.wsgi module

WSGI config for steemengine project.

It exposes the WSGI callable as a module-level variable named application.

For more information on this file, see
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/

Module contents

steemengine.settings (Django Settings)

Submodules

steemengine.settings.core module

This file contains the core settings of the application. Settings specified within this file are used directly by
the Django framework, or a third-party extension / application for Django.

User specifiable environment variables:

Basic Config

	DEBUG - If set to true, enable debugging features, such as extremely verbose error pages and automatic
code reloading on edit. DO NOT RUN WITH DEBUG IN PRODUCTION, IT IS NOT SAFE.

Default: False

	SECRET_KEY - MANDATORY - A long random string used to encrypt user sessions, among other security features.

	CORS_ORIGIN_ALLOW_ALL - If True, allow all cross-origin requests (disable whitelist). Default: True

	CORS_ORIGIN_WHITELIST - Comma separated list of domains and subdomains to allow CORS for. Adding a domain
does not automatically include it’s subdomains. All subdomains must be added manually. Default: Blank

	ALLOWED_HOSTS - Comma separated list of the domains you intend to run this on. For security
(e.g. preventing cookie theft), Django requires that you specify each hostname that this application should be
accessible from.
Default: 127.0.0.1,localhost (these are also auto added if DEBUG is True).

Database Settings

	DB_BACKEND - What type of DB are you using? mysql or postgresql Default: postgresql

	DB_HOST - What hostname/ip is the DB on? Default: localhost

	DB_NAME - What is the name of the database to use? Default: steemengine_pay

	DB_USER - What username to connect with? Default: steemengine

	DB_PASS - What password to connect with? Default: no password

For more information on this file, see
https://docs.djangoproject.com/en/2.1/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.1/ref/settings/

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

steemengine.settings.custom module

This file contains settings that are specific to CryptoToken Converter, and do not affect the core Django
framework.

User specifiable environment variables:

	STEEM_RPC_NODES - Comma-separated list of one/more Steem RPC nodes. If not set, will use the default beem nodes.

	BITSHARES_RPC_NODE - Node to use to connect to Bitshares network if Bitshares coin handler is enabled. If not
set, will default to wss://eu.nodes.bitshares.ws

	EX_FEE - Conversion fee taken by us, in percentage (i.e. “1” = 1%) Default: 0 (no fee)

	COIN_HANDLERS - A comma separated list of Coin Handler modules to load. Default: SteemEngine,Bitcoin

	COIN_HANDLERS_BASE - If your coin handlers are not located in payments.coin_handlers then you may change this
to point to the base module where your coin handlers are located.

	LOWFUNDS_NOTIFY - If you’re using the low wallet balance notifications, you can change how often it re-notifies
the admin emails ADMINS if the balance is still too low to fulfill a conversion. (in hours).
Default: 12 (hours)

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

steemengine.settings.log module

Logging configuration for CryptoToken Converter.

Valid environment log levels (from least to most severe) are:

DEBUG, INFO, WARNING
ERROR, FATAL, CRITICAL

User customisable environment variables are:

	CONSOLE_LOG_LEVEL - Messages equal to and above this level will be logged to the console (i.e. the output of
manage.py commands such as runserver or load_txs) Default: INFO in production, DEBUG when DEBUG setting is true

	DBGFILE_LEVEL - Messages equal to and above this level will be logged to the debug.log files.
Default: INFO in production, DEBUG when DEBUG setting is true.

	ERRFILE_LEVEL - Same as DBGFILE_LEVEL but for error.log - Default: WARNING

	LOGGER_NAMES - A comma separated list of logger instance names to apply the default logging settings onto.
Default: privex (Use same logging for Privex’s python packages)

	BASE_LOGGER_NAME - The logger instance name to use for the main logger. If this is not specified, or is blank,
then the logging API “RootLogger” will be used, which may automatically configure logging for various packages.

	BASE_LOG_FOLDER - A relative path from the root of the project (folder with manage.py) to the folder where
log files should be stored. Default: logs

	BASE_WEB_LOGS - Relative path from BASE_LOG_FOLDER where logs from the web app should be stored.
Default: web

	BASE_CRON_LOGS - Relative path from BASE_LOG_FOLDER where logs from scheduled commands (load_txs etc.) should be
stored. Default: crons

	
steemengine.settings.log.config_logger(*logger_names, log_dir='/home/docs/checkouts/readthedocs.org/user_builds/cryptotoken-converter/checkouts/stable/logs')

	Used to allow isolated parts of this project to easily change the log output folder, e.g. allow Django
management commands to change the logs folder to crons/

Currently only used by payments.management.CronLoggerMixin

Usage:

>>> config_logger('someapp', 'otherlogger', 'mylogger', log_dir='/full/path/to/log/folder')

	Parameters

	
	logger_names (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of logger names to replace logging config for (see LOGGER_NAMES)

	log_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully qualified path. Set each logger’s timed_file log directory to this

	Returns

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] instance of BASE_LOGGER

Module contents

payments package

Subpackages

	Coin Handlers
	Subpackages
	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

	Module contents

Submodules

payments.admin module

	
class payments.admin.AddCoinPairView(**kwargs)

	Bases: django.views.generic.base.TemplateView

Admin view for easily adding two coins + two pairs in each direction

	
coin_types()

	View function to be called from template, for getting list of coin handler errors

	
get(request, *args, **kwargs)

	

	
post(request, *args, **kwargs)

	

	
template_name = 'admin/add_pair.html'

	

	
class payments.admin.AddressAccountMapAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('deposit_coin', 'deposit_address', 'destination_coin', 'destination_address')

	

	
list_filter = ('deposit_coin', 'destination_coin')

	

	
media

	

	
search_fields = ('deposit_address', 'destination_address')

	

	
class payments.admin.CoinAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
fieldsets = (('Unique Coin Symbol for refrencing from the API', {'fields': ('symbol',), 'description': "<p>Help: The 'Unique Coin Symbol' is not passed to the handler, and thus doesn't need to match the real token symbol on the network, it just needs to be unique, as it acts as the ID of the coin when making API calls.</p></p>
<hr/>"}), ("Native Token Symbol (must match the real symbol on it's network)", {'fields': ('symbol_id',), 'description': "<p>The 'Native Coin Symbol' is passed to the coin handler and does not have to be unique, but it MUST match the real symbol used by the token, otherwise the coin handler will be unable to send/receive the token.
If you leave this field blank when creating the coin, it will default to the Unique Coin Symbol.</p>
<hr/>"}), ('Display name, Coin Type (handler), Enable/Disable coin', {'fields': ('display_name', 'coin_type', 'enabled'), 'description': "<p>Help: The 'Display Name' is returned in API calls, and shown in the admin panel.</p> <p>The 'Coin Type' must be set correctly, it determines which network this coin is on, so that the correct Coin Handler will be used for the coin.</p><p>The 'Enabled' option decides whether or not this coin is in use. If you uncheck this, no conversions will take place for this coin, and it will not be returned on the API.</p><hr/>"}), ('Our account/address, and whether we can issue this coin', {'fields': ('our_account', 'can_issue'), 'description': "<p>Help: The 'Our Account (or address)' is passed to the coin handler and may not always need to be specified. For account based networks such as Steem, this setting generally MUST be filled in.
 The 'Can Issue' option determines whether the system should attempt to issue a token if our balance is too low to fulfill a conversion. If you are not the issuer of a token, keep this un-ticked.</p><hr/>"}), ('(Advanced) Coin Handler Settings', {'classes': ('collapse',), 'fields': ('setting_host', 'setting_port', 'setting_user', 'setting_pass', 'setting_json'), 'description': '<p>Help: The \'Handler Settings\' are all optional. Most coins will work just fine without changing any of these options.
The host/port/user/pass settings are designed for selecting a certain RPC node, however these may not always be respected by every handler.
 The \'Custom JSON\' field allows for additional settings specific to the coin handler, and you must enter valid JSON in this field, for example:</p> <code>{"contract": "eosio.token"}</code>

<hr/>'}), ('Low Funds Email Alert Settings', {'classes': ('collapse',), 'fields': ('notify_low_funds', 'funds_low', 'last_notified'), 'description': "<p>Help: You generally only need to touch the checkbox 'Send an email notification', as the 'Deposits currently stuck' and 'Last Email Notification' are automatically managed by the system.</p><hr/>"}))

	

	
get_fieldsets(request, obj=None)

	Hook for specifying fieldsets.

	
list_display = ('__str__', 'symbol', 'coin_type', 'enabled', 'our_account', 'can_issue')

	

	
list_filter = ('coin_type',)

	

	
media

	

	
ordering = ('symbol',)

	

	
class payments.admin.CoinHealthView(**kwargs)

	Bases: django.views.generic.base.TemplateView

Admin view for viewing health/status information of all coins in the system.

Loads the coin handler manager for each coin, and uses the health() function to grab status info for the coin.

Uses caching API to avoid constant RPC queries, and displays results as a standard admin view.

	
get(request, *args, **kwargs)

	

	
get_fails()

	View function to be called from template, for getting list of coin handler errors

	
handler_dic()

	View function to be called from template. Loads and queries coin handlers for health, with caching.

	
template_name = 'admin/coin_health.html'

	

	
class payments.admin.CoinPairAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('__str__', 'from_coin', 'to_coin', 'exchange_rate')

	

	
media

	

	
ordering = ('from_coin', 'to_coin')

	

	
class payments.admin.ConversionAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('from_coin', 'from_address', 'from_amount', 'to_coin', 'to_address', 'to_amount', 'tx_fee', 'ex_fee', 'created_at')

	

	
list_filter = ('from_coin', 'to_coin')

	

	
media

	

	
ordering = ('-created_at',)

	

	
search_fields = ('id', 'from_address', 'to_address', 'to_memo', 'to_txid')

	

	
class payments.admin.CustomAdmin(name='admin')

	Bases: django.contrib.admin.sites.AdminSite

To allow for custom admin views, we override AdminSite, so we can add custom URLs, among other things.

	
get_urls()

	

	
class payments.admin.DepositAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('txid', 'status', 'coin', 'amount', 'address', 'from_account', 'to_account', 'tx_timestamp')

	

	
list_filter = ('status', 'coin')

	

	
media

	

	
ordering = ('-tx_timestamp',)

	

	
search_fields = ('id', 'txid', 'address', 'from_account', 'to_account', 'memo', 'refund_address')

	

	
class payments.admin.KeyPairAdmin(model, admin_site)

	Bases: django.contrib.admin.options.ModelAdmin

	
list_display = ('network', 'public_key', 'account', 'key_type')

	

	
media

	

	
ordering = ('network', 'account')

	

	
payments.admin.clear_cache(request)

	Allow admins to clear the Django cache system

	
payments.admin.path(route, view, kwargs=None, name=None, *, Pattern=<class 'django.urls.resolvers.RoutePattern'>)

	

payments.apps module

	
class payments.apps.PaymentsConfig(app_name, app_module)

	Bases: django.apps.config.AppConfig

	
name = 'payments'

	

payments.models module

This file contains Models, classes which define database tables, and how they relate to each other.

Models are used for both querying the database, as well as inserting new rows and updating existing ones.

Models may also contain properties and functions to help make them easier to use.

Note: The coin_type choices tuple, COIN_TYPES is located in settings.py, and may be dynamically
altered by Coin Handlers. It does not enforce an enum on columns using it for choices , it’s simply used for a
dropdown list in the admin panel.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.models.AddressAccountMap(*args, **kwargs)

	Bases: django.db.models.base.Model

This database model maps normal Bitcoin-like addresses to a destination token, and their token account/address.

This is because deposits of coins such as Bitcoin/Litecoin do not contain any form of “memo”, so they must be
manually mapped onto a destination.

This model may be used for handling deposits for both memo-based (Bitshares-like) and address-based (Bitcoin-like)
deposits, as there is both a memo and address (or account) field for deposits + destination coin

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
conversions

	

	
deposit_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
deposit_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
destination_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
destination_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
class payments.models.Coin(*args, **kwargs)

	Bases: django.db.models.base.Model

The operator of the service should define all coins and tokens they would like to support using the Django Admin.
The symbol is used as the primary key, so it must be unique. It will automatically be made uppercase.
Native Coin Symbol (e.g. BTC)

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
can_issue

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin_type

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
conversions_from

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
conversions_to

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposit_converts

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposit_maps

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
deposits

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
dest_maps

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
display_name

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
enabled

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
funds_low

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
last_notified

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
notify_low_funds

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
our_account

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
pairs

	

	
pairs_from

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
pairs_to

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
save(*args, **kwargs)

	To avoid inconsistency, the symbol is automatically made uppercase

	
setting_host

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_json

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_pass

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_port

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
setting_user

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
settings

	Small helper property for quickly accessing the setting_xxxx fields, while also decoding the custom json
field into a dictionary/list

	Returns

	dict(host:str, port:str, user:str, password:str, json:dict/list)

	
should_notify_low

	Should we notify the admins that this coin’s wallet balance is too low?

Used to rate limit “???coin wallet balance is too low” emails sent to admins.

Usage:

>>> from django.core.mail import mail_admins
>>> c = Coin.objects.get(symbol='BTC')
>>> if c.should_notify_low:
>>> mail_admins('BTC hot wallet is low!', 'The hot wallet is low. Please refill.')

	Return bool

	True if we should notify the admins

	Return bool

	False if we should skip this email notification for now, or notifications are disabled.

	
symbol

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
symbol_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
class payments.models.CoinPair(*args, **kwargs)

	Bases: django.db.models.base.Model

A coin pair defines an allowed conversion direction between two coins
For example LTC (Litecoin) -> LTCP (Pegged Litecoin)

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
exchange_rate

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
from_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin_symbol

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
to_coin

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
to_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_coin_symbol

	

	
class payments.models.Conversion(*args, **kwargs)

	Bases: django.db.models.base.Model

Once a models.Deposit has been scanned, assuming it has a valid address or account/memo, the
destination cryptocurrency/token will be sent to the user.

Successful conversion attempts are logged here, allowing for reference of where the coins came from, where
they went, and what fees were taken.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
created_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
deposit

	Accessor to the related object on the forward side of a one-to-one relation.

In the example:

class Restaurant(Model):
 place = OneToOneField(Place, related_name='restaurant')

Restaurant.place is a ForwardOneToOneDescriptor instance.

	
deposit_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
ex_fee

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_amount

	

	
from_coin

	The coin that we were sent

	
from_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_coin_symbol

	

	
get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True, **kwargs)

	

	
get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True, **kwargs)

	

	
get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=False, **kwargs)

	

	
get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=False, **kwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
to_address

	Where was it sent to?

	
to_amount

	The amount of to_coin that was sent, stored as a high precision Decimal

	
to_coin

	The destination token/crypto this token will be converted to

	
to_coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_coin_symbol

	

	
to_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
to_txid

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
tx_fee

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
updated_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
class payments.models.CryptoKeyPair(*args, **kwargs)

	Bases: django.db.models.base.Model

This model allows for storing key pairs (generally for cryptocurrency addresses/accounts) safely in the database.

The private key is automatically encrypted with AES-128 upon saving, ensuring it cannot be read from the admin
panel, any API leaks, or third party applications reading from the database.

For this model to function correctly, you must set ENCRYPT_KEY in .env by generating an encryption key
using ./manage.py generate_key

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
account

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
balance

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
key_type

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
network

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
private_key

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
public_key

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
save(*args, **kwargs)

	To ensure that private keys can only be entered / updated from the admin panel and not viewed, we
encrypt them with AES-128 when saving.

To avoid encrypting an already encrypted key, we only encrypt the key if we’re sure it’s not encrypted already.

	Raises

	
	EncryptionError – Something went wrong while encrypting the key

	EncryptKeyMissing – The key settings.ENCRYPT_KEY is not set or is not a valid encryption key.

	
used

	For disposable addresses, e.g. Bitcoin addresses, this field tracks whether it has been used for a deposit.

	
class payments.models.Deposit(*args, **kwargs)

	Bases: django.db.models.base.Model

A log of incoming token/crypto deposits, which will later be converted into crypto.

The primary key of a Deposit is the auto-generated id field - an auto incrementing integer.

There is a composite unique constraint on (txid, coin, vout), ensuring duplicate transactions do not get stored.

Deposits start out in state new , as they are processed by the conversion system they progress into either:

	‘err’ - An error occurred while converting / importing

	During the import/conversion there was a serious error that could not be recovered from
This should be investigated by a developer.

	‘inv’ - Invalid source/destination, user did not follow instructions correctly

	The coins were sent to a non-registered address, or a memo we don’t know how to process.
An admin should attempt to refund these coins to the sender.

	‘refund’ - The coins sent in this Deppsit were refunded

	Info about the refund should be in the refund_* fields

	‘mapped’ - Deposit passed initial sanity checks, and we know the destination coin, address/account and memo.

	Most deposits should only stay in this state for a few seconds, before they’re converted.
If a deposit stays in this state for more than a few minutes, it generally means something
is wrong with the Coin Handler, preventing it from sending the coins, e.g. low balance.

	‘conv’ - Successfully Converted

	The deposited coins were successfully converted into their destination coin, and there
should be a related models.Conversion containing the conversion details.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
STATUSES = (('err', 'Error Processing Transaction'), ('inv', 'Transaction is invalid'), ('refund', 'Coins were returned to user'), ('new', 'New (awaiting processing)'), ('mapped', 'Destination data found. Awaiting conversion.'), ('conv', 'Successfully converted'))

	

	
address

	If the deposit is from a classic Bitcoin-like cryptocurrency with addresses, then you should enter the
address where the coins were deposited into, in this field.

	
amount

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin

	The symbol of the cryptocurrency or token that was deposited, in uppercase. e.g. LTC, LTCP, BTCP, STEEMP

	
coin_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
coin_symbol

	

	
conversion

	Accessor to the related object on the reverse side of a one-to-one
relation.

In the example:

class Restaurant(Model):
 place = OneToOneField(Place, related_name='restaurant')

Place.restaurant is a ReverseOneToOneDescriptor instance.

	
convert_dest_address

	The destination address. Set after a deposit has been analyzed, and we know what coin it will be converted to.

	
convert_dest_memo

	The destination memo. Set after a deposit has been analyzed, and we know what coin it will be converted to.

	
convert_to

	The destination coin. Set after a deposit has been analyzed, and we know what coin it will be converted to

	
convert_to_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
created_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
error_reason

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
from_account

	If account-based coin, contains the name of the account that sent the coins

	
get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True, **kwargs)

	

	
get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True, **kwargs)

	

	
get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=False, **kwargs)

	

	
get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=False, **kwargs)

	

	
get_status_display(*, field=<django.db.models.fields.CharField: status>)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
last_convert_attempt

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
memo

	If the coin supports memos, and they’re required to identify a deposit, use this field.

	
objects = <django.db.models.manager.Manager object>

	

	
processed_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_address

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_amount

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_coin

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_memo

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refund_txid

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
refunded_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
status

	The current status of this deposit, see STATUSES

	
to_account

	If account-based coin, contains the name of the account that the coins were deposited into

	
tx_timestamp

	The date/time the transaction actually occurred on the chain

	
txid

	The transaction ID where the coins were received.

	
updated_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
vout

	If a transaction contains multiple deposits, for example, a Bitcoin transaction that contains several
outputs (vout’s) for our addresses, then each vout must have an consistent output number, i.e. one that will
not change each time the blockchain transaction is compared against the database.

payments.serializers module

	
class payments.serializers.CoinPairSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('id', 'from_coin', 'from_coin_symbol', 'to_coin', 'to_coin_symbol', 'exchange_rate', '__str__')

	

	
model

	alias of payments.models.CoinPair

	
class payments.serializers.CoinSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('symbol', 'display_name', 'our_account', 'can_issue')

	

	
model

	alias of payments.models.Coin

	
class payments.serializers.ConversionSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
exclude = ()

	

	
model

	alias of payments.models.Conversion

	
class payments.serializers.DepositSerializer(instance=None, data=<class 'rest_framework.fields.empty'>, **kwargs)

	Bases: rest_framework.serializers.HyperlinkedModelSerializer

	
class Meta

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
fields = ('id', 'txid', 'coin', 'coin_symbol', 'vout', 'status', 'tx_timestamp', 'address', 'from_account', 'to_account', 'amount', 'memo', 'created_at', 'conversion', 'processed_at', 'convert_to')

	

	
model

	alias of payments.models.Deposit

payments.tests module

payments.views module

	
class payments.views.CoinAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
lookup_value_regex = '[^/]+'

	

	
queryset

	

	
serializer_class

	alias of payments.serializers.CoinSerializer

	
class payments.views.CoinPairAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('from_coin', 'to_coin')

	

	
lookup_value_regex = '[^/]+'

	

	
queryset

	

	
serializer_class

	alias of payments.serializers.CoinPairSerializer

	
class payments.views.ConversionAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('from_coin', 'to_coin', 'from_address', 'to_address', 'deposit__from_account', 'deposit__to_account', 'deposit__memo')

	

	
pagination_class

	alias of CustomPaginator

	
queryset

	

	
serializer_class

	alias of payments.serializers.ConversionSerializer

	
class payments.views.ConvertAPI(**kwargs)

	Bases: rest_framework.views.APIView

	
authentication_classes = (<class 'payments.views.DRFNoCSRF'>,)

	

	
post(request: rest_framework.request.Request)

	

	
class payments.views.CustomPaginator

	Bases: rest_framework.pagination.LimitOffsetPagination

	
default_limit = 100

	

	
max_limit = 1000

	

	
class payments.views.DRFNoCSRF

	Bases: rest_framework.authentication.SessionAuthentication

	
enforce_csrf(request)

	Enforce CSRF validation for session based authentication.

	
class payments.views.DepositAPI(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

	
filterset_fields = ('address', 'from_account', 'to_account', 'txid', 'memo', 'conversion__to_address', 'conversion__to_memo', 'conversion__to_txid', 'status', 'coin')

	

	
order_by = 'created'

	

	
pagination_class

	alias of CustomPaginator

	
queryset

	

	
serializer_class

	alias of payments.serializers.DepositSerializer

	
class payments.views.IndexView(**kwargs)

	Bases: django.views.generic.base.TemplateView

	
template_name = 'base.html'

	

	
payments.views.api_root(self, request, *args, **kwargs)

	

	
payments.views.r_err(msg, status=500)

	

Module contents

Coin Handlers

Subpackages

	Bitcoind Coin Handler
	Module contents

	Submodules

	BitcoinLoader module

	BitcoinManager module

	BitcoinMixin module

	SteemEngine Coin Handler
	Module contents

	Submodules

	SteemEngineLoader module

	SteemEngineManager module

	Steem Coin Handler
	Module contents

	Submodules

	SteemLoader module

	SteemManager module

	Coin Handler Base Classes
	Submodules

	BaseLoader

	BaseManager

	BatchLoader

	Base Decorators

	Base Exceptions

	Module contents

Module contents

This module init file is responsible for loading the Coin Handler modules, and offering methods for accessing
loaders and managers.

A Coin Handler is a Python module (folder containing classes and init file) designed to handle sending/receiving
cryptocurrency/tokens for a certain network, or certain family of networks sharing similar code.

They may handle just one single coin, several coins, or they may even allow users to dynamically add coins by
querying for a specific coin_type from the model payments.models.Coin

A coin handler must contain:

	An __init__.py with a dictionary named exports, containing the keys ‘loader’ and/or ‘manager’ pointing
to the un-instantiated loader/manager class.

	If your init file needs to do some sort-of initialisation, such as dynamically generating provides for
your classes, or adding a new coin type to settings.COIN_TYPES, it’s best to place it in a function named
“reload” with a global boolean loaded so that you only initialise the module the first time it’s loaded.

See the example __init__.py near the bottom of this module docstring.

This is optional, but it will allow reload_handlers() to properly re-trigger your initialisation code
only when changes occur, such as Coin’s being created/updated in the database.

	Two classes, a Loader and a Manager. Each class can either in it’s own file, or in a single file containing
other classes / functions.

	A Loader is a class which extends base.BaseLoader, and is responsible for retrieving transactions
that occur on that coin to detect incoming transactions.

	A Manager is a class which extends base.BaseManager, and is responsible for handling sending/issuing
of coins/tokens, as well as other small functions such as validating addresses, and checking balances.

Your Loader class may choose to extend the helper class base.BatchLoader, allowing your loader
to use batches/chunking for memory efficiency, without having to write much code.

Your Coin Handler classes should ONLY use the exceptions in base.exceptions, along with any exceptions
listed in the :raises: pydoc statements of the overridden method.

For handling automatic retry when something goes wrong, you can use the decorator
base.decorators.retry_on_err()

Example __init__.py:

>>> from django.conf import settings
>>> from payments.coin_handlers.SteemEngine.SteemEngineLoader import SteemEngineLoader
>>> from payments.coin_handlers.SteemEngine.SteemEngineManager import SteemEngineManager
>>>
>>> loaded = False
>>>
>>> def reload():
>>> global loaded
>>> if 'steemengine' not in dict(settings.COIN_TYPES):
>>> settings.COIN_TYPES += (('steemengine', 'SteemEngine Token',),)
>>> loaded = True
>>>
>>> if not loaded:
>>> reload()
>>>
>>> exports = {
>>> "loader": SteemEngineLoader,
>>> "manager": SteemEngineManager
>>> }

For an example of how to layout your coin handler module, check out the pre-included Coin Handlers:

	SteemEngine

	Bitcoin

	
payments.coin_handlers.add_handler(handler, handler_type)

	

	
payments.coin_handlers.ch_base = 'payments.coin_handlers'

	Base module path to where the coin handler modules are located. E.g. payments.coin_handlers

	
payments.coin_handlers.get_loader(symbol: str) → payments.coin_handlers.base.BaseLoader.BaseLoader

	For some use-cases, you may want to just grab the first loader that supports this coin.

>>> m = get_loader('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the loader for (uppercase)

	Return BaseLoader

	An instance implementing base.BaseLoader

	
payments.coin_handlers.get_loaders(symbol: str = None) → list

	Get all loader’s, or all loader’s for a certain coin

	Parameters

	symbol – The coin symbol to get all loaders for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseLoader>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseLoader’s

	
payments.coin_handlers.get_manager(symbol: str) → payments.coin_handlers.base.BaseManager.BaseManager

	For some use-cases, you may want to just grab the first manager that supports this coin.

>>> m = get_manager('ENG')
>>> m.send(amount=Decimal(1), from_address='someguy123', address='privex')

	Parameters

	symbol – The coin symbol to get the manager for (uppercase)

	Return BaseManager

	An instance implementing base.BaseManager

	
payments.coin_handlers.get_managers(symbol: str = None) → list

	Get all manager’s, or all manager’s for a certain coin

	Parameters

	symbol – The coin symbol to get all managers for (uppercase)

	Return list

	If symbol not specified, a list of tuples (symbol, list<BaseManager>,)

	Return list

	If symbol IS specified, a list of instantiated base.BaseManager’s

	
payments.coin_handlers.handlers = {}

	A dictionary of coin symbols, containing instantiated managers (BaseManager) and loaders (BaseLoader)

Example layout:

handlers = {
 'ENG': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
 'SGTK': {
 'loaders': [SteemEngineLoader,],
 'managers': [SteemEngineLoader,],
 },
}

	
payments.coin_handlers.handlers_loaded = False

	Used to track whether the Coin Handlers have been initialized, so reload_handlers can be auto-called.

	
payments.coin_handlers.has_loader(symbol: str) → bool

	Helper function - does this symbol have a loader class?

	
payments.coin_handlers.has_manager(symbol: str) → bool

	Helper function - does this symbol have a manager class?

	
payments.coin_handlers.is_database_synchronized(database: str) → bool

	Check if all migrations have been ran. Useful for preventing auto-running code accessing models before the
tables even exist, thus preventing you from migrating…

>>> from django.db import DEFAULT_DB_ALIAS
>>> if not is_database_synchronized(DEFAULT_DB_ALIAS):
>>> log.warning('Cannot run reload_handlers because there are unapplied migrations!')
>>> return

	Parameters

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which Django database config is being used? Generally just pass django.db.DEFAULT_DB_ALIAS

	Return bool

	True if all migrations have been ran, False if not.

	
payments.coin_handlers.reload_handlers()

	Resets handler to an empty dict, then loads all settings.COIN_HANDLER classes into the dictionary handlers
using settings.COIN_HANDLERS_BASE as the base module path to load from

Bitcoind Coin Handler

Module contents

Bitcoind-based Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending any cryptocurrency which has a coin daemon that has a JSONRPC API
backwards compatible with bitcoind.

It will automatically handle any payments.models.Coin which has it’s type set to bitcoind

Coin object settings:

For each coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Bitcoind RPC compatible crypto (db value: bitcoind)

	setting_host

	The IP or hostname for the daemon. If not specified, defaults to 127.0.0.1 / localhost

	setting_port

	The RPC port for the daemon. If not specified, defaults to 8332

	setting_user

	The rpcuser for the daemon. Generally MUST be specified.

	setting_pass

	The rpcpassword for the daemon. Generally MUST be specified

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	confirms_needed Default 0; Amount of confirmations needed before loading a TX

	use_trusted Default: True; If enabled, TXs returned from the daemon with ‘trusted’:true will always be
accepted at 0 confs regardless of confirms_needed

	string_amt Default: True; If true, when sending coins, a Decimal will be used (as a string). This can
cause problems with older coins such as Dogecoin, so for older coins that need floats, set this to False.

Django Settings:

If you’d rather not store the RPC details in the database, you may specify them in Django’s settings.py.

If a coin symbol is specified in settings.COIND_RPC they will be used exclusively, and any handler settings
on the Coin object will be ignored.

If a settings key isn’t specified, the default is the same as shown for coin object settings.

Example COIND_RPC Setting:

COIND_RPC = {
 "BTC": {
 'user': 'bitcoinrpc',
 'password': 'SuperSecurePass',
 'host': '127.0.0.1',
 'port': 8332,
 'confirms_needed': 0,
 'string_amt': True,
 'use_trusted': True
 }
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Bitcoin.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, as there are many coins that use a direct fork of bitcoind, our classes can provide for any
models.Coin by scanning for coins with the type bitcoind. This saves us from hard coding
specific coin symbols.

Submodules

BitcoinLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader(symbols)

	Bases: payments.coin_handlers.base.BatchLoader.BatchLoader, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinLoader - Despite the name, loads TXs from any coin that has a bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
load_batch(symbol, limit=100, offset=0, account=None)

	Loads a batch of transactions for symbol in their original format into self.transactions

	Parameters

	
	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin symbol to load TXs for

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The amount of most recent TXs to skip (for pagination)

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – NOT USED BY THIS LOADER

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

BitcoinManager - Despite the name, handles sending, balance, and deposit addresses for any coin that has a
bitcoind-compatible JsonRPC API

Known to work with: bitcoind, litecoind, dogecoind

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For the required Django settings, please see the module docstring in coin_handlers.Bitcoin

	
address_valid(address) → bool

	If address is determined to be valid by the coind RPC, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get the total amount received by an address, or the balance of the wallet if address not specified.

	Parameters

	
	address – Crypto address to get balance for, if None, returns whole wallet balance

	memo – NOT USED BY THIS MANAGER

	memo_case – NOT USED BY THIS MANAGER

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns a deposit address for this symbol
:return tuple: A tuple containing (‘address’, crypto_address)

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the coin daemon is up or not, by requesting basic information such as current block and version.

	Return bool

	True if the coin daemon appears to be working, False if it’s not

	
provides

	Dynamically populated by Bitcoin.__init__

	
rpcs = {}

	For each coin connection specified in settings.COIND_RPC, we map it’s symbol to an instantiated instance
of BitcoinRPC - stored as a static property, ensuring we don’t have to constantly re-create them.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send the amount amount of self.symbol to a given address.

Example - send 0.1 LTC to LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph

>>> s = BitcoinManager('LTC')
>>> s.send(address='LVXXmgcVYBZAuiJM3V99uG48o3yG89h2Ph', amount=Decimal('0.1'))

	Parameters

	
	amount (Decimal) – Amount of coins to send, as a Decimal()

	address – Address to send the coins to

	from_address – NOT USED BY THIS MANAGER

	memo – NOT USED BY THIS MANAGER

	Raises

	
	AccountNotFound – The destination address isn’t valid

	NotEnoughBalance – The wallet does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
setting

	Retrieve only our symbol from self.settings for convenience

	
settings

	To ensure we always get fresh settings from the DB after a reload, self.settings gets _prep_settings()

BitcoinMixin module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BitcoinMixin - shared code used by both Bitcoin.BitcoinLoader and Bitcoin.BitcoinManager

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
all_coins

	Since this is a Mixin, it may be self.coin: Coin, or self.coins: List[Coin].
This property detects whether we have a single coin, or multiple, and returns them as a dict.

	Return dict coins

	A dict<str,Coin> of supported coins, mapped by symbol

SteemEngine Coin Handler

Module contents

SteemEngine Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the SteemEngine network.

It will automatically handle any payments.models.Coin which has it’s type set to steemengine

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.SteemEngine.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new tokens are constantly being created for SteemEngine, our classes can provide for any
models.Coin by scanning for coins with the type steemengine. This saves us from hard coding
specific coin symbols.

Submodules

SteemEngineLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader

This class handles loading transactions for the SteemEngine network, and can support almost any token
on SteemEngine.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
clean_txs(account: str, symbol: str, transactions: Iterable[dict]) → Generator[dict, None, None]

	Filters a list of transactions by the receiving account, yields dict’s conforming with
payments.models.Deposit

	Parameters

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ‘to’ account to filter by

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symbol of the token being filtered

	transactions (list<dict>) – A list<dict> of transactions to filter

	Returns

	A generator yielding dict s conforming to payments.models.Deposit

	
list_txs(batch=100) → Generator[dict, None, None]

	Get transactions for all coins in self.coins where the ‘to’ field matches coin.our_account
If load() hasn’t been ran already, it will automatically call self.load()
:param batch: Amount of transactions to load per batch
:return: Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
load_batch(account, symbol, limit=100, offset=0, retry=0)

	Load SteemEngine transactions for account/symbol into self.transactions with automatic retry on error

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

SteemEngineManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager

This class handles various operations for the SteemEngine network, and supports almost any token
on SteemEngine.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Issuing tokens to users

	Sending tokens to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account (address param) exists on Steem, will return True. Otherwise False.

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: Symbol, Status, Current Block, Node Version, Wallet Balance,
and number of p2p connections (all as strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if the SteemEngine API and Steem node works or not, by requesting basic information such as
the token metadata, and checking if our sending/receiving account exists on Steem.

	Return bool

	True if SteemEngine and Steem appear to be working, False if either is broken.

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data=None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

Example - Issue 5.10 SGTK to @privex

>>> s = SteemEngineManager('SGTK')
>>> s.issue(address='privex', amount=Decimal('5.10'))

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – (ignored) Cannot issue tokens with a memo on SteemEngine

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from,
 send_type:str - Should be statically set to "issue"
}

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steemengine.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount, address, memo=None, from_address=None, trigger_data=None) → dict

	Send tokens to a given address/account, optionally specifying a memo if supported

Example - send 1.23 SGTK from @someguy123 to @privex with memo ‘hello’

>>> s = SteemEngineManager('SGTK')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of tokens to send, as a Decimal()

	address – Account to send the tokens to

	from_address – Account to send the tokens from

	memo – Memo to send tokens with (if supported)

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the token’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	TokenNotFound – When the requested token symbol does not exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data=None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

Steem Coin Handler

Module contents

Steem Coin Handler

This python module is a Coin Handler for Privex’s CryptoToken Converter, designed to handle all required
functionality for both receiving and sending tokens on the Steem network.

It will automatically handle any payments.models.Coin which has it’s type set to steembase

Coin object settings:

For each payments.models.Coin you intend to use with this handler, you should configure it as such:

	Coin Key

	Description

	coin_type

	This should be set to Steem Network (or compatible fork) (db value: steembase)

	our_account

	This should be set to the username of the account you want to use for receiving/sending

	setting_json

	A JSON string for optional extra config (see below)

Extra JSON (Handler Custom) config options:

	rpcs - A JSON list<str> of RPC nodes to use, with a full HTTP/HTTPS URL. If this is not specified, Beem
will automatically try to use the best available RPC node for the Steem network.

	pass_store - Generally you do not need to touch this. It controls where Beem will look for the wallet
password. It defaults to environment

Example JSON custom config:

{
 "rpcs": [
 "https://steemd.privex.io",
 "https://api.steemit.com",
 "https://api.steem.house"
],
 "pass_store": "environment"
}

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
payments.coin_handlers.Steem.reload()

	Reload’s the provides property for the loader and manager from the DB.

By default, since new Steem forks are constantly being created, our classes can provide for any
models.Coin by scanning for coins with the type steembase. This saves us from hard coding
specific coin symbols.

Submodules

SteemLoader module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemLoader.SteemLoader(symbols)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, payments.coin_handlers.Steem.SteemMixin.SteemMixin

SteemLoader - Loads transactions from the Steem network

Designed for the Steem Network with SBD and STEEM support. May or may not work with other Graphene coins.

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

For additional settings, please see the module docstring in coin_handlers.Steem

	
static clean_tx(tx: dict, symbol: str, account: str, memo: str = None, memo_case: bool = False) → Optional[dict]

	Filters an individual transaction. See clean_txs() for info

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming with models.Deposit

	Filters out transactions that are not marked as ‘receive’

	Filters out mining transactions

	Filters by address if account is specified

	Filters out transactions that don’t have enough confirms, and are not reported as ‘trusted’

	Parameters

	
	symbol – Symbol of coin being cleaned

	transactions – A list<dict> or generator producing dict’s

	account – If not None, only return TXs sent to this address.

	Return Generator<dict>

	A generator outputting dictionaries formatted as below

Output Format:

{
 txid:str, coin:str (symbol), vout:int,
 tx_timestamp:datetime, address:str, amount:Decimal
}

	
list_txs(batch=0) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=10000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
settings

	To ensure we always get fresh settings from the DB after a reload

SteemManager module

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
class payments.coin_handlers.Steem.SteemManager.SteemManager(symbol: str)

	Bases: payments.coin_handlers.base.BaseManager.BaseManager, payments.coin_handlers.Steem.SteemMixin.SteemMixin

This class handles various operations for the Steem network, and supports both STEEM and SBD.

It may or may not work with other Graphene coins, such as GOLOS / Whaleshares.

It handles:

	Validating source/destination accounts

	Checking the balance for a given account, as well as the total amount received with a certain memo

	Health checking

	Sending assets to users

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

	
address_valid(address) → bool

	If an account exists on Steem, will return True. Otherwise False.

	Parameters

	address – Steem account to check existence of

	Return bool

	True if account exists, False if it doesn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Get token balance for a given Steem account, if memo is given - get total symbol amt received with this memo.

	Parameters

	
	address – Steem account to get balance for, if not set, uses self.coin.our_account

	memo – If not None, get total self.symbol received with this memo.

	memo_case – Case sensitive memo search

	Returns

	Decimal(balance)

	
get_deposit() → tuple

	Returns the deposit account for this symbol

	Return tuple

	A tuple containing (‘account’, receiving_account). The memo must be generated
by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol.

Health data will include: ‘Symbol’, ‘Status’, ‘Coin Name’, ‘API Node’, ‘Head Block’, ‘Block Time’,
‘RPC Version’, ‘Our Account’, ‘Our Balance’ (all strings)

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	Check if our Steem node works or not, by requesting basic information such as the current block + time, and
checking if our sending/receiving account exists on Steem.

	Return bool

	True if Steem appearsto be working, False if it seems to be broken.

	
provides

	This attribute is automatically generated by scanning for models.Coin s with the type steembase.
This saves us from hard coding specific coin symbols. See __init__.py for populating code.

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo=None, trigger_data=None) → dict

	Send a supported currency to a given address/account, optionally specifying a memo if supported

Example - send 1.23 STEEM from @someguy123 to @privex with memo ‘hello’

>>> s = SteemManager('STEEM')
>>> s.send(from_address='someguy123', address='privex', amount=Decimal('1.23'), memo='hello')

	Parameters

	
	amount (Decimal) – Amount of currency to send, as a Decimal()

	address – Account to send the currency to

	from_address – Account to send the currency from

	memo – Memo to send currency with

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – When both from_address and self.coin.our_account are blank.

	ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] – When the amount is lower than the lowest amount allowed by the asset’s precision

	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account doesn’t exist

	NotEnoughBalance – The account from_address does not have enough balance to send this amount.

	Return dict

	Result Information

Format:

{
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were sent from,
 send_type:str - Should be statically set to "send"
}

Coin Handler Base Classes

Submodules

BaseLoader

	
class payments.coin_handlers.base.BaseLoader.BaseLoader(symbols: list = None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseLoader - Base class for Transaction loaders

A transaction loader loads incoming transactions from one or more cryptocurrencies or tokens, whether through
a block explorer, or through a direct connection to a local RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Transaction loaders must be able to initialise themselves using the following data:

	The coin symbols self.symbols passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

	They should also use the logging instance settings.LOGGER_NAME

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, as well as configure the provides list to display
the tokens/coins that this loader handles.

	
list_txs(batch=100) → Generator[dict, None, None]

	The list_txs function processes the transaction data from load(), as well as handling any
pagination, if it’s required (e.g. only retrieve batch transactions at a time from the data source)

It should first check that load() has been ran if it’s required, if the data required
has not been loaded, it should call self.load()

To prevent memory leaks, this must be a generator function.

Below is an example of a generator function body, it loads batch transactions from the full transaction
list, pretends to processes them into txs, yields them, then loads another batch after the calling function
has iterated over the current txs

>>> t = self.transactions # All transactions
>>> b = batch
>>> finished = False
>>> offset = 0
>>> # To save memory, process 100 transactions per iteration, and yield them (generator)
>>> while not finished:
>>> txs = [] # Processed transactions
>>> # If there are less remaining TXs than batch size, get remaining txs and finish.
>>> if (len(t) - offset) < batch:
>>> finished = True
>>> # Do some sort-of processing on the tx to make it conform to `Deposit`, then append to txs
>>> for tx in t[offset:offset + batch]:
>>> txs.append(tx)
>>> offset += b
>>> for tx in txs:
>>> yield tx
>>> # At this point, the current batch is exhausted. Destroy the tx array to save memory.
>>> del txs

	Parameters

	batch (int [https://docs.python.org/3/library/functions.html#int]) – Amount of transactions to process/load per each batch

	Returns Generator

	A generator returning dictionaries that can be imported into models.Deposit

Dict format:

{txid:str, coin:str (symbol), vout:int, tx_timestamp:datetime,
 address:str, from_account:str, to_account:str, memo:str, amount:Decimal}

vout is optional. One of either {from_account, to_account, memo} OR {address} must be included.

	
load(tx_count=1000)

	The load function should prepare your loader, by either importing all of the data required for filtering,
or setting up a generator for the list_txs() method to load them paginated.

It does NOT return anything, it simply creates any connections required, sets up generator functions
if required for paginating the data, and/or pre-loads the first batch of transaction data.

	Parameters

	tx_count – The total amount of transactions that should be loaded PER SYMBOL, most recent first.

	Returns

	None

	
provides = []

	

BaseManager

	
class payments.coin_handlers.base.BaseManager.BaseManager(symbol: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BaseManager - Base class for coin/token management

A coin manager handles balance checking, sending, and issuing of one or more cryptocurrencies or tokens,
generally through a direct connection to a local/remote RPC node such as steemd or bitcoind using connection
settings set by the user in their Django settings.

Coin managers must be able to initialise themselves using the following data:

	The coin symbol self.symbol passed to the constructor

	The setting_xxx fields on self.coin payments.models.Coin

	The Django settings from django.conf import settings

If your class requires anything to be added to the Coin object settings, or the Django settings file,
you should write a comment listing which settings are required, which are optional, and their format/type.

e.g. (Optional) settings.STEEM_NODE - list of steem RPC nodes, or string of individual node, URL format

They must implement all of the methods in this class, set the can_issue boolean for detecting if this manager
can be used to issue (create/print) tokens/coins, as well as configure the provides list to display
the tokens/coins that this manager handles.

	
address_valid(address) → bool

	A simple boolean method, allowing API requests to validate the destination address/account prior to
giving the user deposit details.

	Parameters

	address – An address or account to send to

	Return bool

	Is the address valid? True if it is, False if it isn’t

	
balance(address: str = None, memo: str = None, memo_case: bool = False) → decimal.Decimal

	Return the balance of self.symbol for our “wallet”, or a given address/account, optionally filtered by memo

	Parameters

	
	address – The address or account to get the balance for. If None, return our total wallet
(or default account) balance.

	memo – If not None (and coin supports memos), return the total balance of a given memo

	memo_case – Whether or not to total memo’s case sensitive, or not. False = case-insensitive memo

	Raises

	AccountNotFound – The requested account/address doesn’t exist

	Return Decimal

	Decimal() balance of address/account, optionally balance (total received) of a given memo

	
can_issue = False

	If this manager supports issuing (creating/printing) tokens/coins, set this to True

	
get_deposit() → tuple

	
	Return tuple

	If the coin uses addresses, this method should return a tuple of (‘address’, coin_address)

	Return tuple

	If the coin uses accounts/memos, this method should return a tuple (‘account’, receiving_account)
The memo will automatically be generated by the calling function.

	
health() → Tuple[str, tuple, tuple]

	Return health data for the passed symbol, e.g. current block height, block time, wallet balance
whether the daemon / API is accessible, etc.

It should return a tuple containing the manager name, the headings for a health table,
and the health data for the passed symbol (Should include a symbol or coin name column)

You may use basic HTML tags in the health data result list, such as
 <u> and

	Return tuple health_data

	(manager_name:str, headings:list/tuple, health_data:list/tuple,)

	
health_test() → bool

	To reduce the risk of unhandled exceptions by sending code, this method should do some basic checks against
the API to test whether the coin daemon / API is responding correctly.

This allows code which calls your send() or issue() method to detect the daemon / API is not working, and
then delay sending/issuing until later, instead of marking a convert / withdrawal status to an error.

The method body should be wrapped in a try/except, ensuring there’s a non-targeted except which
returns False

	Return bool

	True if the coin daemon / API appears to be working, False if it’s not

	
issue(amount: decimal.Decimal, address: str, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Issue (create/print) tokens to a given address/account, optionally specifying a memo if supported

	Parameters

	
	amount (Decimal) – Amount of tokens to issue, as a Decimal()

	address – Address or account to issue the tokens to

	memo – Memo to issue tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account/address the coins were issued from.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "issue"
}

	
orig_symbol = None

	The original unique database symbol ID

	
provides = []

	A list of token/coin symbols in uppercase that this loader supports e.g:

provides = ["LTC", "BTC", "BCH"]

	
send(amount: decimal.Decimal, address: str, from_address: str = None, memo: str = None, trigger_data: Union[dict, list] = None) → dict

	Send tokens to a given address/account, optionally specifying a memo and sender address/account if supported

Your send method should automatically subtract any blockchain transaction fees from the amount sent.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send, as a Decimal()

	address – Address or account to send the coins/tokens to

	memo – Memo to send coins/tokens with (if supported)

	from_address – Address or account to send from (if required)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this send transaction (e.g. the deposit that triggered this)

	Raises

	
	AuthorityMissing – Cannot send because we don’t have authority to (missing key etc.)

	AccountNotFound – The requested account/address doesn’t exist

	NotEnoughBalance – Sending account/address does not have enough balance to send

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be statically set to "send"
}

	
send_or_issue(amount, address, memo=None, trigger_data: Union[dict, list] = None) → dict

	Attempt to send an amount to an address/account, if not enough balance, attempt to issue it instead.
You may override this method if needed.

	Parameters

	
	amount (Decimal) – Amount of coins/tokens to send/issue, as a Decimal()

	address – Address or account to send/issue the coins/tokens to

	memo – Memo to send/issue coins/tokens with (if supported)

	trigger_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata related to this issue transaction (e.g. the deposit that triggered this)

	Raises

	
	IssuerKeyError – Cannot issue because we don’t have authority to (missing key etc.)

	IssueNotSupported – Class does not support issuing, or requested symbol cannot be issued.

	AccountNotFound – The requested account/address doesn’t exist

	Return dict

	Result Information

Format:

dict {
 txid:str - Transaction ID - None if not known,
 coin:str - Symbol that was sent,
 amount:Decimal - The amount that was sent (after fees),
 fee:Decimal - TX Fee that was taken from the amount,
 from:str - The account(s)/address(es) the coins were sent from. if more than one, comma separated.
 If it's not possible to determine easily, set this to None.
 send_type:str - Should be set to "send" if the coins were sent, or "issue" if the coins were issued.
}

	
symbol = None

	The native coin symbol, e.g. BTC, LTC, etc. (non-unique)

BatchLoader

	
class payments.coin_handlers.base.BatchLoader.BatchLoader(symbols: list = None)

	Bases: payments.coin_handlers.base.BaseLoader.BaseLoader, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

BatchLoader - An abstract sub-class of BaseLoader which comes with some pre-written batching/chunking functions

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| CryptoToken Converter |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

This class is designed to save you time from re-writing your own “batching” / “chunking” functions.

Batching / chunking is a memory efficiency technique to prevent RAM leaks causing poor performance or crashes.
Instead of loading all 1K - 10K transactions into memory, you load only a small amount of transactions, such as
100 transactions, then you use a Python generator (the yield keyword) to return individual transactions, quietly
loading the next “batch” / “chunk” of 100 TXs after the first set has been processed, without interrupting the
caller’s for loop or other iteration.

This allows other functions to iterate over the transactions and process them on the fly, instead of having to load
the entire 1-10K transaction list into memory first.

The use of generators throughout this class helps to prevent the problem of RAM leaks due to constant
duplication of the transaction list (e.g. self.transactions, self.filtered_txs, self.cleaned_txs), especially
when the transaction lists contains thousands of transactions.

To use this class, simply extend it (instead of BaseLoader), and make sure to implement the two abstract methods:

	load_batch - Loads and stores a small batch of raw (original format) transactions for a given coin

	
	clean_txs - Filters the loaded TXs, yielding TXs (conformed to be compatible with models.Deposit)

	that were received by us (not sent), and various sanity checks depending on the type of coin.

If your Loader is for a coin which uses an account/memo system, set self.need_account = True before calling
BatchLoader’s constructor, and it will remove coins in self.symbols/coins that do not have a non-empty/null
our_account column.

You’re free to override any methods if you need to, just make sure to call this class’s constructor __init__
before/after your own constructor, otherwise some methods may break.

Flow of this class:

Transaction loading cron
 |
 V--> __init__(symbols:list)
 |--> load(tx_count:int)
 |--> list_txs(batch:int) -> _list_txs(coin:Coin, batch:int)
 V |--> load_batch(account, symbol, offset)
 V--> clean_txs(account, symbol, txs)

	
clean_txs(symbol: str, transactions: Iterable[dict], account: str = None) → Generator[dict, None, None]

	Filters a list of transactions transactions as required, yields dict’s conforming
with models.Deposit

Important things when implementing this function:

	Make sure to filter out transactions that were sent from our own wallet/account - otherwise internal
transfers will cause problems.

	Make sure each transaction is destined to us

	If your loader is account-based, make sure to only yield transactions where tx[“to_account”] == account.

	If your loader is address-based, make sure that you only return transactions that are being received by
our wallet, not being sent from it.

	If account isn’t None, assume that you must yield TXs sent to the given crypto address account

	If your loader deals with smart contract networks e.g. ETH, EOS, make sure that you only return transactions
valid on the matching smart contract, don’t blindly trust the symbol!

	Make sure that every dict that you yield conforms with the return standard shown for
BaseLoader.list_txs()

	While transactions is normally a list<dict> you should assume that it could potentially be a
Generator, writing the code Generator-friendly will ensure it can handle both lists and Generator’s.

Example:

>>> def clean_txs(self, symbol: str, transactions: Iterable[dict],
>>> account: str = None) -> Generator[dict, None, None]:
>>> for tx in transactions:
>>> try:
>>> if tx['from'].lower() == 'tokens': continue # Ignore token issues
>>> if tx['from'].lower() == account: continue # Ignore transfers from ourselves.
>>> if tx['to'].lower() != account.lower(): continue # If we aren't the receiver, we don't need it.
>>> clean_tx = dict(
>>> txid=tx['txid'], coin=symbol, tx_timestamp=parse(tx['timestamp']),
>>> from_account=tx['from'], to_account=tx['to'], memo=tx['memo'],
>>> amount=Decimal(tx['quantity'])
>>>)
>>> yield clean_tx
>>> except:
>>> log.exception('Error parsing transaction data. Skipping this TX. tx = %s', tx)
>>> continue

	Parameters

	
	symbol – The symbol of the token being filtered

	transactions – A list<dict> of transactions to filter

	account – The ‘to’ account or crypto address to filter by (only required for account-based loaders)

	Returns

	A generator yielding dict’s conforming to models.Deposit, check the PyDoc
return info for coin_handlers.base.BaseLoader.list_txs() for current format.

	
list_txs(batch=100) → Generator[dict, None, None]

	Yield transactions for all coins in self.coins as a generator, loads transactions in batches of batch
and returns them seamlessly using a generator.

If load() hasn’t been ran already, it will automatically call self.load()

	Parameters

	batch – Amount of transactions to load per batch

	Return Generator[dict, None, None]

	Generator yielding dict’s that conform to models.Deposit

	
load(tx_count=1000)

	Simply imports tx_count into an instance variable, and then sets self.loaded to True.

If self.need_account is set to True by a child/parent class, this method will remove any coins from
self.coins and self.symbols which have a blank/null our_account in the DB, ensuring that you can trust
that all coins listed in symbols/coins have an our_account which isn’t empty or None.

	Parameters

	tx_count (int [https://docs.python.org/3/library/functions.html#int]) – The amount of transactions to load per symbol specified in constructor

	
load_batch(symbol, limit=100, offset=0, account=None)

	This function should load limit transactions in their raw format from your data source, skipping
the offset newest TXs efficiently, and store them in the instance var self.transactions

If you use the included decorator decorators.retry_on_err(), if any exceptions are thrown by your
method, it will simply re-run it with the same arguments up to 3 tries by default.

Basic implementation:

>>> @retry_on_err()
>>> def load_batch(self, symbol, limit=100, offset=0, account=None):
>>> self.transactions = self.my_rpc.get_tx_list(limit, offset)

	Parameters

	
	symbol – The symbol to load a batch of transactions for

	limit – The amount of transactions to load

	offset – Skip this many transactions (most recent first)

	account – An account name, or coin address to filter transactions using

Base Decorators

	
payments.coin_handlers.base.decorators.retry_on_err(max_retries: int = 3, delay: int = 3, **retry_conf)

	Decorates a function or class method, wraps the function/method with a try/catch block, and will automatically
re-run the function with the same arguments up to max_retries time after any exception is raised, with a
delay second delay between re-tries.

If it still throws an exception after max_retries retries, it will log the exception details with fail_msg,
and then re-raise it.

Usage (retry up to 5 times, 1 second between retries, stop immediately if IOError is detected):

>>> @retry_on_err(5, 1, fail_on=[IOError])
... def my_func(self, some=None, args=None):
... if some == 'io': raise IOError()
... raise FileExistsError()

This will be re-ran 5 times, 1 second apart after each exception is raised, before giving up:

>>> my_func()

Where-as this one will immediately re-raise the caught IOError on the first attempt, as it’s passed in fail_on:

>>> my_func('io')

	Parameters

	
	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total retry attempts before giving up

	delay (int [https://docs.python.org/3/library/functions.html#int]) – Amount of time in seconds to sleep before re-trying the wrapped function

	retry_conf – Less frequently used arguments, pass in as keyword args:

	(list) fail_on: A list() of Exception types that should result in immediate failure (don’t retry, raise)

	(str) retry_msg: Override the log message used for retry attempts. First message param %s is func name,
second message param %d is retry attempts remaining

	(str) fail_msg: Override the log message used after all retry attempts are exhausted. First message param %s
is func name, and second param %d is amount of times retried.

Base Exceptions

	
exception payments.coin_handlers.base.exceptions.AccountNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending or receiving account requested doesn’t exist

	
exception payments.coin_handlers.base.exceptions.AuthorityMissing

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Missing private key or other authorization for this operation

	
exception payments.coin_handlers.base.exceptions.CoinHandlerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all Coin handler exceptions to inherit

	
exception payments.coin_handlers.base.exceptions.DeadAPIError

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

A main API, e.g. a coin daemon or public node used by this coin handler is offline.

	
exception payments.coin_handlers.base.exceptions.IssueNotSupported

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

This class does not support issuing, the token name cannot be issued, or other issue problems.

	
exception payments.coin_handlers.base.exceptions.IssuerKeyError

	Bases: payments.coin_handlers.base.exceptions.AuthorityMissing

Attempted to issue tokens you don’t have the issuer key for

	
exception payments.coin_handlers.base.exceptions.MissingTokenMetadata

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

Could not process a transaction or run the requested Loader/Manager method as required coin metadata is missing,
such as payments.models.Coin.our_account or a required key in the custom JSON settings.

	
exception payments.coin_handlers.base.exceptions.NotEnoughBalance

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The sending account does not have enough balance for this operation

	
exception payments.coin_handlers.base.exceptions.TokenNotFound

	Bases: payments.coin_handlers.base.exceptions.CoinHandlerException

The token/coin requested doesn’t exist

Module contents

 Python Module Index

 p |
 s

 		 	

 		
 p	

 	[image: -]
 	
 payments	

 	
 	
 payments.admin	

 	
 	
 payments.apps	

 	
 	
 payments.coin_handlers	

 	
 	
 payments.coin_handlers.base	

 	
 	
 payments.coin_handlers.base.BaseLoader	

 	
 	
 payments.coin_handlers.base.BaseManager	

 	
 	
 payments.coin_handlers.base.BatchLoader	

 	
 	
 payments.coin_handlers.base.decorators	

 	
 	
 payments.coin_handlers.base.exceptions	

 	
 	
 payments.coin_handlers.Bitcoin	

 	
 	
 payments.coin_handlers.Bitcoin.BitcoinLoader	

 	
 	
 payments.coin_handlers.Bitcoin.BitcoinManager	

 	
 	
 payments.coin_handlers.Bitcoin.BitcoinMixin	

 	
 	
 payments.coin_handlers.Steem	

 	
 	
 payments.coin_handlers.Steem.SteemLoader	

 	
 	
 payments.coin_handlers.Steem.SteemManager	

 	
 	
 payments.coin_handlers.SteemEngine	

 	
 	
 payments.coin_handlers.SteemEngine.SteemEngineLoader	

 	
 	
 payments.coin_handlers.SteemEngine.SteemEngineManager	

 	
 	
 payments.models	

 	
 	
 payments.serializers	

 	
 	
 payments.tests	

 	
 	
 payments.views	

 		 	

 		
 s	

 	[image: -]
 	
 steemengine	

 	
 	
 steemengine.helpers	

 	
 	
 steemengine.settings	

 	
 	
 steemengine.settings.core	

 	
 	
 steemengine.settings.custom	

 	
 	
 steemengine.settings.log	

 	
 	
 steemengine.urls	

 	
 	
 steemengine.wsgi	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	account (payments.models.CryptoKeyPair attribute)

 	AccountNotFound

 	add_handler() (in module payments.coin_handlers)

 	AddCoinPairView (class in payments.admin)

 	address (payments.models.Deposit attribute)

 	address_valid() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	
 	AddressAccountMap (class in payments.models)

 	AddressAccountMap.DoesNotExist

 	AddressAccountMap.MultipleObjectsReturned

 	AddressAccountMapAdmin (class in payments.admin)

 	all_coins (payments.coin_handlers.Bitcoin.BitcoinMixin.BitcoinMixin attribute)

 	amount (payments.models.Deposit attribute)

 	api_root() (in module payments.views)

 	authentication_classes (payments.views.ConvertAPI attribute)

 	AuthorityMissing

B

 	
 	balance (payments.models.CryptoKeyPair attribute)

 	balance() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	
 	BaseLoader (class in payments.coin_handlers.base.BaseLoader)

 	BaseManager (class in payments.coin_handlers.base.BaseManager)

 	BatchLoader (class in payments.coin_handlers.base.BatchLoader)

 	BitcoinLoader (class in payments.coin_handlers.Bitcoin.BitcoinLoader)

 	BitcoinManager (class in payments.coin_handlers.Bitcoin.BitcoinManager)

 	BitcoinMixin (class in payments.coin_handlers.Bitcoin.BitcoinMixin)

C

 	
 	can_issue (payments.coin_handlers.base.BaseManager.BaseManager attribute)

 	(payments.models.Coin attribute)

 	ch_base (in module payments.coin_handlers)

 	clean_tx() (payments.coin_handlers.Steem.SteemLoader.SteemLoader static method)

 	clean_txs() (payments.coin_handlers.base.BatchLoader.BatchLoader method)

 	(payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader method)

 	(payments.coin_handlers.Steem.SteemLoader.SteemLoader method)

 	(payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader method)

 	clear_cache() (in module payments.admin)

 	Coin (class in payments.models)

 	coin (payments.models.Deposit attribute)

 	Coin.DoesNotExist

 	Coin.MultipleObjectsReturned

 	coin_id (payments.models.Deposit attribute)

 	coin_symbol (payments.models.Deposit attribute)

 	coin_type (payments.models.Coin attribute)

 	coin_types() (payments.admin.AddCoinPairView method)

 	CoinAdmin (class in payments.admin)

 	CoinAPI (class in payments.views)

 	CoinHandlerException

 	CoinHealthView (class in payments.admin)

 	CoinPair (class in payments.models)

 	CoinPair.DoesNotExist

 	CoinPair.MultipleObjectsReturned

 	CoinPairAdmin (class in payments.admin)

 	CoinPairAPI (class in payments.views)

 	CoinPairSerializer (class in payments.serializers)

 	
 	CoinPairSerializer.Meta (class in payments.serializers)

 	CoinSerializer (class in payments.serializers)

 	CoinSerializer.Meta (class in payments.serializers)

 	config_logger() (in module steemengine.settings.log)

 	Conversion (class in payments.models)

 	conversion (payments.models.Deposit attribute)

 	Conversion.DoesNotExist

 	Conversion.MultipleObjectsReturned

 	ConversionAdmin (class in payments.admin)

 	ConversionAPI (class in payments.views)

 	conversions (payments.models.AddressAccountMap attribute)

 	conversions_from (payments.models.Coin attribute)

 	conversions_to (payments.models.Coin attribute)

 	ConversionSerializer (class in payments.serializers)

 	ConversionSerializer.Meta (class in payments.serializers)

 	convert_dest_address (payments.models.Deposit attribute)

 	convert_dest_memo (payments.models.Deposit attribute)

 	convert_to (payments.models.Deposit attribute)

 	convert_to_id (payments.models.Deposit attribute)

 	ConvertAPI (class in payments.views)

 	created_at (payments.models.Conversion attribute)

 	(payments.models.Deposit attribute)

 	CryptoKeyPair (class in payments.models)

 	CryptoKeyPair.DoesNotExist

 	CryptoKeyPair.MultipleObjectsReturned

 	CustomAdmin (class in payments.admin)

 	CustomPaginator (class in payments.views)

D

 	
 	DeadAPIError

 	decrypt_str() (in module steemengine.helpers)

 	default_limit (payments.views.CustomPaginator attribute)

 	Deposit (class in payments.models)

 	deposit (payments.models.Conversion attribute)

 	Deposit.DoesNotExist

 	Deposit.MultipleObjectsReturned

 	deposit_address (payments.models.AddressAccountMap attribute)

 	deposit_coin (payments.models.AddressAccountMap attribute)

 	deposit_coin_id (payments.models.AddressAccountMap attribute)

 	deposit_converts (payments.models.Coin attribute)

 	deposit_id (payments.models.Conversion attribute)

 	deposit_maps (payments.models.Coin attribute)

 	
 	deposit_memo (payments.models.AddressAccountMap attribute)

 	DepositAdmin (class in payments.admin)

 	DepositAPI (class in payments.views)

 	deposits (payments.models.Coin attribute)

 	DepositSerializer (class in payments.serializers)

 	DepositSerializer.Meta (class in payments.serializers)

 	dest_maps (payments.models.Coin attribute)

 	destination_address (payments.models.AddressAccountMap attribute)

 	destination_coin (payments.models.AddressAccountMap attribute)

 	destination_coin_id (payments.models.AddressAccountMap attribute)

 	destination_memo (payments.models.AddressAccountMap attribute)

 	display_name (payments.models.Coin attribute)

 	DRFNoCSRF (class in payments.views)

E

 	
 	empty() (in module steemengine.helpers)

 	enabled (payments.models.Coin attribute)

 	encrypt_str() (in module steemengine.helpers)

 	enforce_csrf() (payments.views.DRFNoCSRF method)

 	
 	error_reason (payments.models.Deposit attribute)

 	ex_fee (payments.models.Conversion attribute)

 	exchange_rate (payments.models.CoinPair attribute)

 	exclude (payments.serializers.ConversionSerializer.Meta attribute)

F

 	
 	fields (payments.serializers.CoinPairSerializer.Meta attribute)

 	(payments.serializers.CoinSerializer.Meta attribute)

 	(payments.serializers.DepositSerializer.Meta attribute)

 	fieldsets (payments.admin.CoinAdmin attribute)

 	filterset_fields (payments.views.CoinPairAPI attribute)

 	(payments.views.ConversionAPI attribute)

 	(payments.views.DepositAPI attribute)

 	from_account (payments.models.Deposit attribute)

 	
 	from_address (payments.models.Conversion attribute)

 	from_amount (payments.models.Conversion attribute)

 	from_coin (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	from_coin_id (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	from_coin_symbol (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	funds_low (payments.models.Coin attribute)

G

 	
 	get() (payments.admin.AddCoinPairView method)

 	(payments.admin.CoinHealthView method)

 	get_deposit() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	get_fails() (payments.admin.CoinHealthView method)

 	get_fernet() (in module steemengine.helpers)

 	get_fieldsets() (payments.admin.CoinAdmin method)

 	get_loader() (in module payments.coin_handlers)

 	get_loaders() (in module payments.coin_handlers)

 	
 	get_manager() (in module payments.coin_handlers)

 	get_managers() (in module payments.coin_handlers)

 	get_next_by_created_at() (payments.models.Conversion method)

 	(payments.models.Deposit method)

 	get_next_by_updated_at() (payments.models.Conversion method)

 	(payments.models.Deposit method)

 	get_previous_by_created_at() (payments.models.Conversion method)

 	(payments.models.Deposit method)

 	get_previous_by_updated_at() (payments.models.Conversion method)

 	(payments.models.Deposit method)

 	get_status_display() (payments.models.Deposit method)

 	get_urls() (payments.admin.CustomAdmin method)

H

 	
 	handler_dic() (payments.admin.CoinHealthView method)

 	handlers (in module payments.coin_handlers)

 	handlers_loaded (in module payments.coin_handlers)

 	has_loader() (in module payments.coin_handlers)

 	has_manager() (in module payments.coin_handlers)

 	health() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	
 	health_test() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

I

 	
 	id (payments.models.AddressAccountMap attribute)

 	(payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	(payments.models.CryptoKeyPair attribute)

 	(payments.models.Deposit attribute)

 	IndexView (class in payments.views)

 	
 	is_database_synchronized() (in module payments.coin_handlers)

 	is_encrypted() (in module steemengine.helpers)

 	issue() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	IssueNotSupported

 	IssuerKeyError

K

 	
 	key_type (payments.models.CryptoKeyPair attribute)

 	
 	KeyPairAdmin (class in payments.admin)

L

 	
 	last_convert_attempt (payments.models.Deposit attribute)

 	last_notified (payments.models.Coin attribute)

 	list_display (payments.admin.AddressAccountMapAdmin attribute)

 	(payments.admin.CoinAdmin attribute)

 	(payments.admin.CoinPairAdmin attribute)

 	(payments.admin.ConversionAdmin attribute)

 	(payments.admin.DepositAdmin attribute)

 	(payments.admin.KeyPairAdmin attribute)

 	list_filter (payments.admin.AddressAccountMapAdmin attribute)

 	(payments.admin.CoinAdmin attribute)

 	(payments.admin.ConversionAdmin attribute)

 	(payments.admin.DepositAdmin attribute)

 	
 	list_txs() (payments.coin_handlers.base.BaseLoader.BaseLoader method)

 	(payments.coin_handlers.Steem.SteemLoader.SteemLoader method)

 	(payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader method)

 	(payments.coin_handlers.base.BatchLoader.BatchLoader method)

 	load() (payments.coin_handlers.base.BaseLoader.BaseLoader method)

 	(payments.coin_handlers.Steem.SteemLoader.SteemLoader method)

 	(payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader method)

 	(payments.coin_handlers.base.BatchLoader.BatchLoader method)

 	load_batch() (payments.coin_handlers.base.BatchLoader.BatchLoader method)

 	(payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader method)

 	(payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader method)

 	lookup_value_regex (payments.views.CoinAPI attribute)

 	(payments.views.CoinPairAPI attribute)

M

 	
 	max_limit (payments.views.CustomPaginator attribute)

 	media (payments.admin.AddressAccountMapAdmin attribute)

 	(payments.admin.CoinAdmin attribute)

 	(payments.admin.CoinPairAdmin attribute)

 	(payments.admin.ConversionAdmin attribute)

 	(payments.admin.DepositAdmin attribute)

 	(payments.admin.KeyPairAdmin attribute)

 	
 	memo (payments.models.Deposit attribute)

 	MissingTokenMetadata

 	model (payments.serializers.CoinPairSerializer.Meta attribute)

 	(payments.serializers.CoinSerializer.Meta attribute)

 	(payments.serializers.ConversionSerializer.Meta attribute)

 	(payments.serializers.DepositSerializer.Meta attribute)

N

 	
 	name (payments.apps.PaymentsConfig attribute)

 	network (payments.models.CryptoKeyPair attribute)

 	
 	NotEnoughBalance

 	notify_low_funds (payments.models.Coin attribute)

O

 	
 	objects (payments.models.AddressAccountMap attribute)

 	(payments.models.Coin attribute)

 	(payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	(payments.models.CryptoKeyPair attribute)

 	(payments.models.Deposit attribute)

 	order_by (payments.views.DepositAPI attribute)

 	
 	ordering (payments.admin.CoinAdmin attribute)

 	(payments.admin.CoinPairAdmin attribute)

 	(payments.admin.ConversionAdmin attribute)

 	(payments.admin.DepositAdmin attribute)

 	(payments.admin.KeyPairAdmin attribute)

 	orig_symbol (payments.coin_handlers.base.BaseManager.BaseManager attribute)

 	our_account (payments.models.Coin attribute)

P

 	
 	pagination_class (payments.views.ConversionAPI attribute)

 	(payments.views.DepositAPI attribute)

 	pairs (payments.models.Coin attribute)

 	pairs_from (payments.models.Coin attribute)

 	pairs_to (payments.models.Coin attribute)

 	path() (in module payments.admin)

 	(in module steemengine.urls)

 	payments (module)

 	payments.admin (module)

 	payments.apps (module)

 	payments.coin_handlers (module)

 	payments.coin_handlers.base (module)

 	payments.coin_handlers.base.BaseLoader (module)

 	payments.coin_handlers.base.BaseManager (module)

 	payments.coin_handlers.base.BatchLoader (module)

 	payments.coin_handlers.base.decorators (module)

 	payments.coin_handlers.base.exceptions (module)

 	payments.coin_handlers.Bitcoin (module)

 	payments.coin_handlers.Bitcoin.BitcoinLoader (module)

 	payments.coin_handlers.Bitcoin.BitcoinManager (module)

 	payments.coin_handlers.Bitcoin.BitcoinMixin (module)

 	payments.coin_handlers.Steem (module)

 	
 	payments.coin_handlers.Steem.SteemLoader (module)

 	payments.coin_handlers.Steem.SteemManager (module)

 	payments.coin_handlers.SteemEngine (module)

 	payments.coin_handlers.SteemEngine.SteemEngineLoader (module)

 	payments.coin_handlers.SteemEngine.SteemEngineManager (module)

 	payments.models (module)

 	payments.serializers (module)

 	payments.tests (module)

 	payments.views (module)

 	PaymentsConfig (class in payments.apps)

 	post() (payments.admin.AddCoinPairView method)

 	(payments.views.ConvertAPI method)

 	private_key (payments.models.CryptoKeyPair attribute)

 	processed_at (payments.models.Deposit attribute)

 	provides (payments.coin_handlers.base.BaseLoader.BaseLoader attribute)

 	(payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader attribute)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager attribute)

 	(payments.coin_handlers.Steem.SteemLoader.SteemLoader attribute)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager attribute)

 	(payments.coin_handlers.SteemEngine.SteemEngineLoader.SteemEngineLoader attribute)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager attribute)

 	(payments.coin_handlers.base.BaseManager.BaseManager attribute)

 	public_key (payments.models.CryptoKeyPair attribute)

Q

 	
 	queryset (payments.views.CoinAPI attribute)

 	(payments.views.CoinPairAPI attribute)

 	(payments.views.ConversionAPI attribute)

 	(payments.views.DepositAPI attribute)

R

 	
 	r_err() (in module payments.views)

 	random_str() (in module steemengine.helpers)

 	re_path() (in module steemengine.urls)

 	refund_address (payments.models.Deposit attribute)

 	refund_amount (payments.models.Deposit attribute)

 	refund_coin (payments.models.Deposit attribute)

 	refund_memo (payments.models.Deposit attribute)

 	refund_txid (payments.models.Deposit attribute)

 	
 	refunded_at (payments.models.Deposit attribute)

 	reload() (in module payments.coin_handlers.Bitcoin)

 	(in module payments.coin_handlers.Steem)

 	(in module payments.coin_handlers.SteemEngine)

 	reload_handlers() (in module payments.coin_handlers)

 	retry_on_err() (in module payments.coin_handlers.base.decorators)

 	rpcs (payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader attribute)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager attribute)

S

 	
 	save() (payments.models.Coin method)

 	(payments.models.CryptoKeyPair method)

 	search_fields (payments.admin.AddressAccountMapAdmin attribute)

 	(payments.admin.ConversionAdmin attribute)

 	(payments.admin.DepositAdmin attribute)

 	send() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager method)

 	(payments.coin_handlers.Steem.SteemManager.SteemManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	send_or_issue() (payments.coin_handlers.base.BaseManager.BaseManager method)

 	(payments.coin_handlers.SteemEngine.SteemEngineManager.SteemEngineManager method)

 	serializer_class (payments.views.CoinAPI attribute)

 	(payments.views.CoinPairAPI attribute)

 	(payments.views.ConversionAPI attribute)

 	(payments.views.DepositAPI attribute)

 	setting (payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager attribute)

 	setting_host (payments.models.Coin attribute)

 	setting_json (payments.models.Coin attribute)

 	setting_pass (payments.models.Coin attribute)

 	setting_port (payments.models.Coin attribute)

 	setting_user (payments.models.Coin attribute)

 	
 	settings (payments.coin_handlers.Bitcoin.BitcoinLoader.BitcoinLoader attribute)

 	(payments.coin_handlers.Bitcoin.BitcoinManager.BitcoinManager attribute)

 	(payments.coin_handlers.Steem.SteemLoader.SteemLoader attribute)

 	(payments.models.Coin attribute)

 	should_notify_low (payments.models.Coin attribute)

 	status (payments.models.Deposit attribute)

 	STATUSES (payments.models.Deposit attribute)

 	steemengine (module)

 	steemengine.helpers (module)

 	steemengine.settings (module)

 	steemengine.settings.core (module)

 	steemengine.settings.custom (module)

 	steemengine.settings.log (module)

 	steemengine.urls (module)

 	steemengine.wsgi (module)

 	SteemEngineLoader (class in payments.coin_handlers.SteemEngine.SteemEngineLoader)

 	SteemEngineManager (class in payments.coin_handlers.SteemEngine.SteemEngineManager)

 	SteemLoader (class in payments.coin_handlers.Steem.SteemLoader)

 	SteemManager (class in payments.coin_handlers.Steem.SteemManager)

 	symbol (payments.coin_handlers.base.BaseManager.BaseManager attribute)

 	(payments.models.Coin attribute)

 	symbol_id (payments.models.Coin attribute)

T

 	
 	template_name (payments.admin.AddCoinPairView attribute)

 	(payments.admin.CoinHealthView attribute)

 	(payments.views.IndexView attribute)

 	to_account (payments.models.Deposit attribute)

 	to_address (payments.models.Conversion attribute)

 	to_amount (payments.models.Conversion attribute)

 	to_coin (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	to_coin_id (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	
 	to_coin_symbol (payments.models.CoinPair attribute)

 	(payments.models.Conversion attribute)

 	to_memo (payments.models.Conversion attribute)

 	to_txid (payments.models.Conversion attribute)

 	TokenNotFound

 	tx_fee (payments.models.Conversion attribute)

 	tx_timestamp (payments.models.Deposit attribute)

 	txid (payments.models.Deposit attribute)

U

 	
 	updated_at (payments.models.Conversion attribute)

 	(payments.models.Deposit attribute)

 	
 	used (payments.models.CryptoKeyPair attribute)

V

 	
 	vout (payments.models.Deposit attribute)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 Privex’s CryptoToken Converter Documentation

 		
 Installation and configuration

 		
 Requirements and Dependencies

 		
 Install Core Dependencies

 		
 Create Database and DB user

 		
 Download and install the project

 		
 Beem Wallet (if using Steem)

 		
 Basic Configuration

 		
 Final Setup

 		
 Transaction Scanning and Conversion

 		
 Running in Production

 		
 Python Code Documentation

 		
 steemengine module

 		
 steemengine package

 		
 payments module

 		
 Coin Handlers

 		
 Bitcoind Coin Handler

 		
 Steem Coin Handler

 		
 SteemEngine Coin Handler

 		
 Coin Handler Base Classes

 		
 payments package

 		
 REST API Documentation

 		
 Endpoints

 		
 /api/convert/

 		
 /api/deposits/

 		
 /api/conversions/

 		
 /api/pairs/

 		
 Coin Handlers

 		
 Subpackages

 		
 Bitcoind Coin Handler

 		
 SteemEngine Coin Handler

 		
 Steem Coin Handler

 		
 Coin Handler Base Classes

 		
 Module contents

 		
 steemengine package

 		
 Subpackages

 		
 steemengine.settings (Django Settings)

 		
 Submodules

 		
 steemengine.helpers module

 		
 steemengine.urls module

 		
 steemengine.wsgi module

 		
 Module contents

 		
 payments package

 		
 Subpackages

 		
 Coin Handlers

 		
 Submodules

 		
 payments.admin module

 		
 payments.apps module

 		
 payments.models module

 		
 payments.serializers module

 		
 payments.tests module

 		
 payments.views module

 		
 Module contents

_static/up.png

