

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

cryptoassets.core

[image: _images/logo.png]

The ultimate solution to build cryptoassets services
cryptoassets.core is Bitcoin, cryptocurrency and cryptoassets database and accounting library for Python.

	Community and resources

	Installation

	Getting started

	Service and commands

	Configuration

	Application and API service support

	Cryptocurrency and asset support

	API documentation

	Extending

	Security and data integrity

	Developing cryptoassets.core

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Community and resources

	Project homepage [https://bitbucket.org/miohtama/cryptoassets]

	Documentation [http://cryptoassetscore.readthedocs.org/]

	Discussion group and mailing list [https://groups.google.com/forum/#!forum/cryptoassets/]

	Source code and issue tracker [https://bitbucket.org/miohtama/cryptoassets]

	Continuos integration service [https://drone.io/bitbucket.org/miohtama/cryptoassets]

	Code coverage report [https://codecov.io/bitbucket/miohtama/cryptoassets?ref=master]

[image: _images/koalatrain.jpg]

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Installation

	Installing cryptoassets.core package
	Requirements

	Create a virtualenv
	OSX

	Ubuntu / Debian

	Installing cryptoassets package
	Installing the release version

	Installing the development version

Installing cryptoassets.core package

Requirements

You need at least Python version 3.4.

	Ubuntu 14.04 comes with Python 3.4. Install Python 3.4 on older versions of Ubuntu [http://askubuntu.com/q/449555/24746]

	Install Python 3.4 on OSX [https://www.python.org/downloads/mac-osx/]

	Microsoft Windows is unsupported at the moment as the authors do not have access to Microsoft Windows development tools

Create a virtualenv

cryptoassets.core is distributed as a Python package. To use packages in your application, follow the Python community best practices and create a virtualenv [https://packaging.python.org/en/latest/installing.html#virtual-environments] where you to install the third party packages and their dependencies.

OSX

For Homebrew with Python 3.4 installed:

mkdir myproject
cd myproject
virtualenv python3.4 -m venv venv
source venv/bin/activate

Ubuntu / Debian

First get a virtualenv which is not old and horribly broken, like the one in the system default installation:

sudo pip install -U virtualenv

This creates /usr/local/bin/virtualenv. Then:

mkdir myproject
cd myproject
virtualenv -p python3.4 venv
source venv/bin/activate

Note

Ubuntu and Debian have an open issue regarding Python 3.4 virtualenv support. Thus, check the link below for how to workaround installation issues if you are using a non-conforming distribution.

	Issues with Ubuntu / Debian, Python 3.4 and virtualenv [https://lists.debian.org/debian-python/2014/03/msg00045.html] - see workaround [https://bugs.launchpad.net/ubuntu/+source/python3.4/+bug/1290847/comments/58]

Installing cryptoassets package

Installing the release version

After virtualenv is created and active you can run:

Install the known good versions of dependencies
curl -o requirements.txt "https://bitbucket.org/miohtama/cryptoassets/raw/9bfbe5e16fd878cbb8231f06d8825e1e1af94495/requirements.txt" && pip install -r requirements.txt

Install the latest release version of cryptoassets.core package
pip install cryptoassets.core

This will use the latest package pindowns of known good version set.

Installing the development version

You can install git checkout if you want to develop / bug fix cryptoassets.core itself.

First install dependencies.

Checkout and install from Bitbucket:

git clone https://miohtama@bitbucket.org/miohtama/cryptoassets.git
cd cryptoassets
python setup.py develop

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Getting started

	Introduction

	Benefits

	Basics
	Interacting with cryptoassets.core

	Example command-line application
	Install cryptoassets.core

	Application code

	Example configuration

	Creating the database structure

	Running the example

	Obtaining testnet Bitcoins and sending them

	After completing the example
	Django integration

	More about SQLAlchemy

	Questions?

Introduction

This tutorial introduces cryptoassets.core: what it does for you and how to set up a trivial Bitcoin wallet command line application on the top of it.

cryptoassets.core [https://bitbucket.org/miohtama/cryptoassets] is a Python framework providing safe, scalable and future-proof cryptocurrency and cryptoassets accounting for your Python application. You can use it to accept cryptocurrency payments, build cryptoasset services and exchanges.

	See PyPi download page [https://pypi.python.org/pypi/cryptoassets.core]

	See project homepage [https://bitbucket.org/miohtama/cryptoassets]

Benefits

cryptoassets.core is built on the top of Python programming language [http://python.org], community ecosystem and best practices. Python is proven tool for building financial applications and is widely used to develop cryptoassets software and Bitcoin exchanges. cryptoassets.core is

	Easy [http://cryptoassetscore.readthedocs.org/en/latest/gettingstarted.html]: Documented user-friendly APIs.

	Extensible [http://cryptoassetscore.readthedocs.org/en/latest/extend.html]: Any cryptocurrency and cryptoassets support.

	Safe [http://cryptoassetscore.readthedocs.org/en/latest/integrity.html]: Secure and high data integrity.

	Lock-in free [http://cryptoassetscore.readthedocs.org/en/latest/backends.html]: Vendor independent and platform agnostics.

	Customizable [http://cryptoassetscore.readthedocs.org/en/latest/extend.html#overriding-parts-of-the-framework]: Override and tailor any part of the framework for your specific needs.

Basics

[image: _images/cryptoassets_framework.png]

	You can use cryptoassets.core framework in any Python application, including Django applications. Python 3 is required.

	cryptoassets.core is designed to be extendable to support altcoins and different cryptoassets [http://coinmarketcap.com/].

	cryptoassets.core works with API services (block.io, blockchain.info) and daemons (bitcoind, dogecoind). The framework uses term backend to refer these. You either sign up for an account on the API service or run the daemon on your own server (*)

	Basic SQLAlchemy [http://www.sqlalchemy.org/] knowledge is required for using the models API.

	A separate a cryptoassets helper service process is responsible for communicating between your application and cryptoasset networks. This process runs on background on your server.

	cryptoassets.core framework is initialized from a configuration, which can be passed in as a Python dictionary or a YAML configuration file.

	For data integrity reasons, cryptoassets.core database connection usually differs from the default application database connection.

	At the moment cryptoassets.core is in initial version 0.1 release. Expect the scope of the project to expand to support other cryptoassets (Counterparty [http://counterparty.io/], Ethereum [http://ethereum.org/], BitShares-X [http://wiki.bitshares.org/index.php/Bitshares_X]) out of the box.

Note

Please note that running bitcoind on a server requires at least 2 GB of RAM and 25 GB of disk space, so low end box hosting plans are not up for the task.

Interacting with cryptoassets.core

The basic programming flow with cryptoassets.core is

	You set up cryptoassets.core.app.CryptoAssetsApp instance and configure it inside your Python code.

	You set up a channel how cryptoassets helper service process calls backs your application. Usually this happens over HTTP web hooks.

	You put your cryptoassets database accessing code to a separate function and decorate it with cryptoassets.core.app.CryptoAssetsApp.conflict_resolver to obtain transaction conflict aware SQLAlchemy session.

	In your cryptoasset application logic, you obtain an instance to cryptoassets.core.models.GenericWallet subclass. Each cryptoasset has its own set of SQLAlchemy model classes. The wallet instance contains the accounting information: which assets and which transactions belong to which users. Simple applications usually require only one default wallet instance.

	After having set up the wallet, call various wallet model API methods like cryptoassets.core.models.GenericWallet.send().

	For receiving the payments you need to create at least one receiving address (see cryptoassets.core.models.GenericWallet.create_receiving_address()). Cryptoassets helper service triggers events which your application listens to and then performs application logic when a payment or a deposit is received.

Example command-line application

Below is a simple Bitcoin wallet terminal application using block.io [https://block.io] API service as the backend. It is configured to work with Bitcoin Testnet [https://en.bitcoin.it/wiki/Testnet]. Testnet Bitcoins are worthless, free to obtain and thus useful for application development and testing.

The example comes with pre-created account on block.io. It is recommended that you sign up for your own block.io [https://block.io/users/sign_up] account and API key and use them instead of ones in the example configuration.

Install cryptoassets.core

First make sure you have created a virtualenv and installed cryptoassets.core and its dependencies.

Application code

Note

The example is tested only for UNIX systems (Linux and OSX). The authors do not have availability of Microsoft development environments to ensure Microsoft Windows compatibility.

Here is an example walkthrough how to set up a command line application.

Save this as example.py file.

"""cryptoassets.core example application"""

import os
import warnings
from decimal import Decimal
import datetime

from sqlalchemy.exc import SAWarning

from cryptoassets.core.app import CryptoAssetsApp
from cryptoassets.core.configure import Configurator
from cryptoassets.core.utils.httpeventlistener import simple_http_event_listener
from cryptoassets.core.models import NotEnoughAccountBalance

Because we are using a toy database and toy money, we ignore this SQLLite database warning
warnings.filterwarnings(
 'ignore',
 r"^Dialect sqlite\+pysqlite does *not* support Decimal objects natively\, "
 "and SQLAlchemy must convert from floating point - rounding errors and other "
 "issues may occur\. Please consider storing Decimal numbers as strings or "
 "integers on this platform for lossless storage\.$",
 SAWarning, r'^sqlalchemy\.sql\.type_api$')

assets_app = CryptoAssetsApp()

This will load the configuration file for the cryptoassets framework
for the same path as examply.py is
conf_file = os.path.join(os.path.dirname(__file__), "example.config.yaml")
configurer = Configurator(assets_app)
configurer.load_yaml_file(conf_file)

This will set up SQLAlchemy database connections, as loaded from
config. It's also make assets_app.conflict_resolver available for us
assets_app.setup_session()

This function will be run in its own background thread,
where it runs mini HTTP server to receive and process
any events which cryptoassets service sends to our
process
@simple_http_event_listener(configurer.config)
def handle_cryptoassets_event(event_name, data):
 if event_name == "txupdate":
 address = data["address"]
 confirmations = data["confirmations"]
 txid = data["txid"]
 print("")
 print("")
 print("Got transaction notification txid:{} addr:{}, confirmations:{}".
 format(txid, address, confirmations))
 print("")

def get_wallet_and_account(session):
 """Return or create instances of the default wallet and accout.

 :return: Tuple (BitcoinWallet instance, BitcoinAccount instance)
 """

 # This returns the class cryptoassets.core.coins.bitcoin.models.BitcoinWallet.
 # It is a subclass of cryptoassets.core.models.GenericWallet.
 # You can register several of cryptocurrencies to be supported within your application,
 # but in this example we use only Bitcoin.
 WalletClass = assets_app.coins.get("btc").wallet_model

 # One application can have several wallets.
 # Within a wallet there are several accounts, which can be
 # user accounts or automated accounts (like escrow).
 wallet = WalletClass.get_or_create_by_name("default wallet", session)
 session.flush()

 account = wallet.get_or_create_account_by_name("my account")
 session.flush()

 # If we don't have any receiving addresses, create a default one
 if len(account.addresses) == 0:
 wallet.create_receiving_address(account, automatic_label=True)
 session.flush()

 return wallet, account

Every time you access cryptoassets database it must happen
in sidea managed transaction function.
#
Use ConflictResolevr.managed_transaction decoreator your function gets an extra
``session`` argument as the first argument. This is the SQLAlchemy
database session you should use to manipulate the database.
#
In the case of a database transaction conflict, ConflictResolver
will rollback code in your function and retry again.
#
For more information see
http://cryptoassetscore.readthedocs.org/en/latest/api/utils.html#transaction-conflict-resolver
#
@assets_app.conflict_resolver.managed_transaction
def create_receiving_address(session):
 """Create new receiving address on the default wallet and account."""
 wallet, my_account = get_wallet_and_account(session)

 # All addresses must have unique label on block.io.
 # Note that this is not a limitation of Bitcoin,
 # but block.io service itself.
 wallet.create_receiving_address(my_account, automatic_label=True)

@assets_app.conflict_resolver.managed_transaction
def send_to(session, address, amount):
 """Perform the actual send operation within managed transaction."""
 wallet, my_account = get_wallet_and_account(session)
 friendly_date = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S")
 transaction = wallet.send(my_account, address, amount, "Test send at {}".format(friendly_date))
 print("Created new transaction #{}".format(transaction.id))

def send():
 """Ask how many BTCTEST bitcoins to send and to which address."""
 address = input("Give the bitcoin TESTNET address where you wish to send the bitcoins:")
 amount = input("Give the amount in BTC to send:")

 try:
 amount = Decimal(amount)
 except ValueError:
 print("Please enter a dot separated decimal number as amount.")
 return

 try:
 send_to(address, amount)
 except NotEnoughAccountBalance:
 print("*" * 40)
 print("Looks like your wallet doesn't have enough Bitcoins to perform the send. Please top up your wallet from testnet faucet.")
 print("*" * 40)

@assets_app.conflict_resolver.managed_transaction
def print_status(session):
 """Print the state of our wallet and transactions."""
 wallet, account = get_wallet_and_account(session)

 # Get hold of classes we use for modelling Bitcoin
 # These classes are defined in cryptoassets.core.coin.bitcoind.model models
 Address = assets_app.coins.get("btc").address_model
 Transaction = assets_app.coins.get("btc").transaction_model

 print("-" * 40)
 print("Account #{}, confirmed balance {:.8f} BTC, incoming BTC {:.8f}". \
 format(account.id, account.balance, account.get_unconfirmed_balance()))

 print("")
 print("Receiving addresses available:")
 print("(Send Testnet Bitcoins to them to see what happens)")

 for address in session.query(Address).filter(Address.account == account):
 print("- {}: confirmed received {:.8f} BTC".format(address.address, address.balance))
 print("")
 print("Wallet transactions:")
 for tx in session.query(Transaction):
 if tx.state in ("pending", "broadcasted"):

 # This transactions might not be broadcasted out by
 # cryptoassets helper service yet, thus it
 # does not have network txid yet
 txid = "(pending broadcast)" if tx.state == "pending" else tx.txid

 print("- OUT tx:{} to {} amount:{:.8f} BTC confirmations:{}".format(
 txid, tx.address.address, tx.amount, tx.confirmations))
 elif tx.state in ("incoming", "processed"):
 print("- IN tx:{} to:{} amount:{:.8f} BTC confirmations:{}".format(
 tx.txid, tx.address.address, tx.amount, tx.confirmations))
 else:
 print("- OTHER tx:{} {} amount:{:.8f} BTC".format(
 tx.id, tx.state, tx.amount))

 print("")
 print("Available commands:")
 print("1) Create new receiving address")
 print("2) Send bitcoins to other address")
 print("3) Quit")

print("Welcome to cryptoassets example app")
print("")

running = True
while running:

 print_status()
 command = input("Enter command [1-3]:")
 print("")
 if command == "1":
 create_receiving_address()
 elif command == "2":
 send()
 elif command == "3":
 running = False
 else:
 print("Unknown command!")

Example configuration

Save this as example.config.yaml file.

Cryptoassets.core configuration for example application

database:
 url: sqlite:////tmp/cryptoassets.example.sqlite

What services we use to run talk to the cryptocurrency networks.
This will configure us to use pre-defined block.io API service
testnet accounts for BTC and Doge (coins are worthless)
coins:
 btc:
 backend:
 class: cryptoassets.core.backend.blockio.BlockIo
 api_key: b2db-c8ad-29d2-c611
 pin: ThisIsNotVerySecret1
 network: btctest
 # walletnotify section tells how we receive
 # transaction updates from the the backend
 # (new deposits to the backend wallet)
 walletnotify:
 class: cryptoassets.core.backend.blockiowebsocket.BlockIoWebsocketNotifyHandler

This section tells how cryptoassets helper process will
notify your app from events like new incoming transactions
and outgoing transaction confirmation updates
events:
 # For each event, we send a HTTP webhook notification
 # to your app. Your app should be listening HTTP at localhost:10000
 example_app:
 class: cryptoassets.core.event.http.HTTPEventHandler
 url: http://localhost:10000

Creating the database structure

The example application uses SQLite [http://www.sqlite.org/] database as a simple self-contained test database.

Run the command to create the database tables:

cryptoassets-initialize-database example.config.yaml

This should print out:

[11:49:16] cryptoassets.core version 0.0
[11:49:16] Creating database tables for sqlite:////tmp/cryptoassets.example.sqlite

Running the example

The example application is fully functional and you can start your Bitcoin wallet business right away. Only one more thing to do...

...the communication between cryptoasset networks and your application is handled by the cryptoassets helper service background process. Thus, nothing comes in or goes out to your application if the helper service process is not running. Start the helper service:

cryptoassets-helper-service example.config.yaml

You should see something like this:

...
[00:23:09] [cryptoassets.core.service.main splash_version] cryptoassets.core version 0.0

You might get some connection refused errors, because the app is not up yet. Please ignore those now.

Now leave cryptoassets helper service running and start the example application in another terminal:

python example.py

You should see something like this:

Welcome to cryptoassets example app

Receiving addresses available:
(Send testnet Bitcoins to them to see what happens)
- 2MzGzEUyHgqBXzbuGCJDSBPKAyRxhj2q9hj: total received 0.00000000 BTC

We know about the following transactions:

Give a command
1) Create new receiving address
2) Send Bitcoins to other address
3) Quit

You will get some Rescanned transactions log messages on the start up if you didn’t change the default block.io credentials. These are test transactions from other example users.

Now you can send or receive Bitcoins within your application. If you don’t start the helper service the application keeps functioning, but all external cryptoasset network traffic is being buffered until the cryptoassets helper service is running again.

If you want to reset the application just delete the database file /tmp/cryptoassets.test.sqlite.

Obtaining testnet Bitcoins and sending them

The example runs on testnet Bitcoins which are not real Bitcoins. Get some testnet coins and send them from the faucet to the receiving address provided by the application.

List of services providing faucets giving out Testnet Bitcoins [http://bitcoin.stackexchange.com/q/17690/5464].

No more than 0.01 Bitcoins are needed for playing around with the example app.

After sending the Bitcoins you should see a notification printed for an incoming transaction in ~30 seconds which is the time it takes for the Bitcoin transaction to propagate through testnet:

Got transaction notification txid:512a082c2f4908d243cb52576cd5d22481344faba0d7a837098f9af81cfa8ef3 addr:2N7Fi392deSEnQgiYbmpw1NmK6vMVrVzuwc, confirmations:0

After completing the example

Explore model API documentation, configuration and what tools there are available.

You can also study Liberty Music Store open source application, built on the top of Django and Bitcoin [http://libertymusicstore.net/].

Django integration

If you are using Django [http://djangoproject.com/] see cryptoassets.django package [https://bitbucket.org/miohtama/cryptoassets.django].

More about SQLAlchemy

Please see these tutorials

	Official SQLAlchemy tutorial [http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html]

	SQLAlchemy ORM Examples [http://www.pythoncentral.io/sqlalchemy-orm-examples/] by Xiaonuo Gantan

Questions?

See the community resources how to contact the developers.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Service and commands

	Introduction

	cryptoassets-helper-service
	Running the service with Python project

	Running the service with Django

	Status server

	System service integration

	cryptoassets-initialize-database

	cryptoassets-scan-received

Introduction

Cryptoassets helper service is a standalone process responsible for communication between cryptocurrency networks, cryptocurrency API providers and your application.

Primarily Cryptoassets helper service

	Broadcasts new outgoing transactions to the cryptocurrency network

	Gets transaction notifications from cryptocurrency daemons and APIs and then notifies your application about the transaction updates

Even if network connections go down, you lose connection to APIs or cryptocurrency networks, cryptoassets library continuous to work somewhat indepedently. The users can send and receive transactions, which are buffered until the network becomes available again. Some functions, which are synchronous by nature, like creating new addresses, might not be available.

Besides providing a daemon for communications additional helping commands are available

	Initialize database

	Rescan wallet for missed transations

cryptoassets-helper-service

This command is the service helper process. The service process must be running on the background for your application to receive external deposit transactions and broadcast outgoing transctions.

Running the service with Python project

After installing cryptoassets.core to your virtualenv you should be able to run the cryptoassets helper service as following:

cryptoassets-helper-service <your YAML config file>

Running the service with Django

If you are running a Django [https://www.djangoproject.com/] application, a special Django management command is provided by cryptoassets.django library [https://bitbucket.org/miohtama/cryptoassets.django].

Status server

	Cryptoassets helper service* comes with a built-in mini status server. You can use this to

	Diagnose to see that cryptoassets helper service process is alive and runnign well

	Debug incoming and outgoing transaction issues

By default the status server listens to http://localhost:18881. See configuration how to include a status server in cryptoassets helper service.

Note

Status server is designed only for testing and diagnostics purpose and does not scale to production use.

Warning

It is not safe to expose status server to the Internet. Make sure you have authenticating proxy set up or only expose this to localhost.

System service integration

To have automatic start/stop and other functionality for cryptoassets helper service, use something akin systemd or supervisord [http://supervisord.org/].

Send SIGTERM signal to the service for graceful shutdown. Give the service 45 seconds to gracefully shutdown its own threads until sending SIGKILL if the service has not terminated itself.

The clean shutdown is indicated by exit code 0.

In the case of any of the service threads dying the service will shutdown itself with exit code 2.

You can configure logging using Python logging best practices.

Note

Further system exit codes coming in upcoming releases.

cryptoassets-initialize-database

This command will create database tables for different cryptocurrencies as described in the configuration file. Usually you need to do this only once when setting up the database.

cryptoassets-scan-received

Rescan all receiving addresses for missed deposit transactions.

This is also performed automatically on startup of cryptoassets helper service.

For more information see cryptoassets.core.tools.receivescan.

Note

At the moment it is not recommended to run this command while cryptoassetshelper is running on background.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Configuration

	Introduction

	Creating application object and configuring it
	Configuring using YAML configuration file

	Configuring using Python dict

	Configuration sections
	database
	url

	echo

	coins
	models

	testnet

	max_confirmation_count

	backend

	walletnotify

	events

	status_server
	ip

	port

	service
	broadcast_period

	logging

Introduction

cryptoassets.core must know about cryptocurrencies, databases and backends you use in your application.

Creating application object and configuring it

Most of interaction with cryptoassets.core is done through cryptoassets.core.app.CryptoAssetsApp application object. Create one singleton instance within your application:

from cryptoassets.core.app import CryptoAssetsApp

assets_app = CryptoAssetsApp()

Configuring using YAML configuration file

Use cryptoassets.configuration.Configuraror.load_yaml_file() to load YAML syntax [http://en.wikipedia.org/wiki/YAML] config file:

from cryptoassets.core.app import CryptoAssetsApp
from cryptoassets.core.configuration import Configurator

assets_app = CryptoAssetsApp()

This will load the configuration file for the cryptoassets framework
configurer = Configurator(assets_app)
configurer.load_yaml_file("my-cryptoassets-settings.yaml")

Example YAML configuration file:

Cryptoassets.core configuration for example application

database:
 url: sqlite:////tmp/cryptoassets.example.sqlite

What services we use to run talk to the cryptocurrency networks.
This will configure us to use pre-defined block.io API service
testnet accounts for BTC and Doge (coins are worthless)
coins:
 btc:
 backend:
 class: cryptoassets.core.backend.blockio.BlockIo
 api_key: b2db-c8ad-29d2-c611
 pin: ThisIsNotVerySecret1
 network: btctest
 # walletnotify section tells how we receive
 # transaction updates from the the backend
 # (new deposits to the backend wallet)
 walletnotify:
 class: cryptoassets.core.backend.blockiowebsocket.BlockIoWebsocketNotifyHandler

This section tells how cryptoassets helper process will
notify your app from events like new incoming transactions
and outgoing transaction confirmation updates
events:
 # For each event, we send a HTTP webhook notification
 # to your app. Your app should be listening HTTP at localhost:10000
 example_app:
 class: cryptoassets.core.event.http.HTTPEventHandler
 url: http://localhost:10000

Configuring using Python dict

You can give your settings as Python dictionary:

CRYPTOASSETS_SETTINGS = {

 # You can use a separate database for cryptoassets,
 # or share the Django database. In any case, cryptoassets
 # will use a separate db connection.
 "database": {
 "url": "postgresql://localhost/cryptoassets",
 "echo": True,
 },

 # Locally running bitcoind in testnet
 "coins": {
 "btc": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:9999/",

 # bitcoind has 60 seconds to get back to us
 "timeout": 60,

 # Cryptoassets helper process will use this UNIX named pipe to communicate
 # with bitcoind
 "walletnotify": {
 "class": "cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler",
 "ip": "127.0.0.1",
 "port": 28882
 },
 },

 # We run in testnet mode
 "testnet": True
 },
 },
}

configurator.load_from_dict(CRYPTOASSETS_SETTINGS)

Configuration sections

database

Configure usd SQLAlchemy database connection.

Example:

"database": {
 "url": "postgresql://localhost/cryptoassets",
 "echo": true,
}

Note

The database connection will always use Serializable transaction isolation level.

For more information see

	Data integrity

	SQLAlchemy isolation_level [http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Connection.execution_options.params.isolation_level]

url

SQLAlchemy connection URL [http://docs.sqlalchemy.org/en/latest/core/engines.html].

echo

Set to true (or in Python to True) and executed SQL statements will be logged via Python logging [http://stackoverflow.com/a/2950685/315168].

coins

Configure database models and used backends for cryptocurrencies and assets enabled in your application.

This dictonary contains a list of subentries.

	Name of each entry is acronym of the cryptoasset in lowercase (btc, doge)

Example:

"coins": {
 # AppleByte using applebyted (bitcoind-like) as the backend
 "aby": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:8607/",
 "walletnotify": {
 "class": "cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler",
 "ip": "127.0.0.1",
 "port": 28882
 },
 },
 },

 "bitcoin": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://foo:bar@127.0.0.1:8332/"
 "max_tracked_incoming_confirmations": 20,
 "walletnotify":
 "class": "cryptoassets.core.backend.pipewalletnotify.PipedWalletNotifyHandler",
 "fname": "/tmp/cryptoassets-unittest-walletnotify"
 }
 }
},

models

Optional.

You can set up your own altcoin or override default SQLAlchemy model configuration for an existing cryptoasset.

The value of this variable is the Python module containing coin_description variable. For more information how to describe your cryptoasset models, see cryptoassets.core.coin.registry.

Example:

"jesuscoin": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:8607/",
 "walletnotify": {
 "class": "cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler",
 "ip": "127.0.0.1",
 "port": 28882
 },
 },
 "models": "mycoin.models"
},

testnet

Set to true (Python True) if the coin backend is connected to a testnet.

This may affect address validation in the future. Currently this information is not utilized.

Example:

"jesuscoin": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:8607/",
 },
 "testnet": True
},

max_confirmation_count

This is how many confirmations tools.confirmationupdate tracks for each network transactions, both incoming and outgoing, until we consider it “closed” and stop polling backend for updates. The default value is 15.

For more information see cryptoassets.core.tools.confirmationupdate.

backend

Installed backends for one cryptoasset in coins section.

For the available backends see backends list.

Each backend contains the following options

	param class:	tells which backend we are going to use

	param walletnofiy:

		tells what kind of incoming transaction notifications we have from the backend

	param max_tracked_incoming_confirmations:

		This applications for mined coins and backends which do not actively post confirmations updates. It tells up to how many confirmations we poll the backend for confirmation updates. For details see cryptoassets.core.tools.opentransactions.

Other options: All backends take connection details (url, IPs) and credentials (passwords, API keys, etc.) These options are backend specific, so see the details from the backend documentation.

Example:

"coins" : {
 "btc": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:8607/",
 "walletnotify": {
 "class": "cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler",
 "ip": "127.0.0.1",
 "port": 28882
 },
 },
 },
}

walletnotify

Wallet notify configuration tells how cryptoassets helper service receives cryptoasset transaction updates from the cryptoassets backend (bitcoind, API service). Unless this is configured, cryptoassets service or your application won’t know about incoming transactions.

walletnotify section must be given in under backend configuration. It’s content depends on the chosen wallet notification method. For more information see qallet notification documentation.

Example:

"jesuscoin": {
 "backend": {
 "class": "cryptoassets.core.backend.bitcoind.Bitcoind",
 "url": "http://x:y@127.0.0.1:8607/",
 "walletnotify": {
 "class": "cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler",
 "ip": "127.0.0.1",
 "port": 28882
 },
 },
},

events

Event handling is configured in the events section of the configuration file.

Event handling configuration tells how cryptoassets helper service notifies your application about occured events (transaction updates, etc.). There exist various means to communicate between your application and cryptoassets helper service.

For more information and examples read event API documentation.

Event section consists name and configuration data pairs. Currently event handler name is only used for logging purposes. You can configure multiple event handlers

Each handler gets class parameters and event handler specific setup parameters.

Example configuration

List of cryptoassets notification handlers.
Use this special handler to convert cryptoassets notifications to Django signals.
"events": {
 "django": {
 "class": "cryptoassets.core.event.python.InProcessNotifier",
 "callback": "cryptoassets.django.incoming.handle_tx_update"
 }
},

status_server

Configure mini status server which you can use to check cryptoassets helper service status.

Example:

"database": {
 "url": "sqlite:////tmp/payments.sqlite",
},

...

"status-server": {
 "ip": "127.0.0.1",
 "port": 9000
}

ip

IP address the status server will be listening to. Default 127.0.0.1.

port

Port the status server is listening to.s

service

Cryptoassets helper service process specific configuration. These sections only concern cryptoassets helper service process itself, not any framework calls you make inside your own Python application.

Example:

service:
 broadcast_period: 60
 logging:
 formatters:
 verbose:
 format: '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'

 handlers:
 file:
 level: DEBUG
 class: logging.FileHandler
 filename: /tmp/cryptoassets-startstop-test.log
 formatter: verbose
 console:
 level: DEBUG
 class: logging.StreamHandler
 formatter: verbose
 stream: ext://sys.stdout

 root:
 handlers:
 - file
 - console
 level: DEBUG

broadcast_period

How often (seconds) the helper service will check for outgoing transactions to broadcast.

Default is 30 seconds.

logging

Configure logging for cryptoassets helper service. Loggers are not configured if you import and call cryptoassets.core framework from your application.

cryptoassets.core uses standard Python logging [https://docs.python.org/3/library/logging.html] mechanism.

For logging within your application when calling model methods configure logging with Python logging configuration [https://docs.python.org/3/howto/logging.html#configuring-logging].

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Application and API service support

	Introduction
	Running your cryptocurrency daemon (bitcoind)

	Using API service

	Configuration

	Backends
	bitcoind
	Wallet notifications

	HTTP webhook for bitcoind
	Options

	Testing

	Named UNIX pipe for bitcoind
	Options

	Redis pubsub for bitcoind
	Options

	block.io
	Wallet notifications over websockets
	Options

	Wallet notifications over web hooks (HTTP)
	Options

	Securing the webhooks

	blockchain.info

	null

Introduction

cryptoassets.core can operate on raw cryptocurrency server daemon. Alternative you can choose one of the API services in the case you do not have the budget to run the full cryptocurrency node.

One instance of cryptoassets.core supports multiple backends. E.g. you can run application doing both Bitcoin and Dogecoin at the same time. However one backend can be enabled for one cryptoasset at a time.

After the backend has been set up you rarely interact it with directly. Instead, you use model APIs and cryptoassets helper service takes care of cryptoassets operations.

Running your cryptocurrency daemon (bitcoind)

Pros

	You have 100% control of assets

	You are not dependend of any vendor (downtime, asset seizure)

Cons

	Running bitcoind requires root server access, 2 GB of RAM and 25 GB of disk space minimum and cannot be done on low budget web hosting accounts

	You need to have sysadmin skills and be aware of server security

Using API service

Pros

	Easy to set up

	Works with even low budget hosting

Cons

	Increases attack surface

	If the service provider goes out of business you might lose your hot wallet assets

Configuration

The backend is configured separate for each cryptocurrency (BTC, Doge) and registered in cryptoassets.backend.registry. Each backend takes different initialization arguments like API keys and passwords. You usually set up these in cryptoassets.core config.

The active backend configuration can be read through cryptoassets.core.coin.registry.CoinRegistry. Bindings between the backends and the cryptocurrenct are described by cryptoassets.core.coin.registry.Coin class.

Backends

bitcoind

bitcoind and bitcoind-derivate backend. Interact directly with bitcoind service running on your own server.

Because most bitcoin forks have the same JSON-RPC API [https://en.bitcoin.it/wiki/API_reference_%28JSON-RPC%29] as the original bitcoind, you can use this backend for having service for most bitcoind-derived altcoins.

You must configure bitcoind on your server to work with cryptoassets.core. This happens by editing bitcoin.conf [https://en.bitcoin.it/wiki/Running_Bitcoin#Bitcoin.conf_Configuration_File].

Example bitcoin.conf:

We use bitcoin testnet, not real bitcoins
testnet=1

Enable JSON-RPC
server=1

Username and password
rpcuser=foo
rpcpassword=bar

rpctimeout=5
rpcport=8332

This must be enabled for gettransaction() to work
txindex=1

Send notifications to cryptoassetshelper service over HTTP
walletnotify=curl --data "txid=%s" http://localhost:28882

Note

You need to install curl on your server too (sudo apt install curl)

The backend configuration takes following parameters.

	param class:	Always cryptoassets.core.backend.bitcoind.Bitcoind

	param url:	Bitcoind connection URL with username and password (rpcuser and rpcassword in bitcoin config) for AuthServiceProxy [https://github.com/jgarzik/python-bitcoinrpc]. Usually something like http://foo:bar@127.0.0.1:8332/

	param walletnotify:

		Dictionary of parameters to set up walletnotify handler.

	param timeout:	Timeout for JSON-RPC call. Default is 15 seconds. If the timeout occurs, the API operation can be considered as failed and the bitcoind as dead.

Wallet notifications

Wallet notifications (or, short, walletnotify) is the term used by cryptoasset.core to describe how backend communicates back to cryptoassets helper service. It’s named after bitcoind walletnotify [https://en.bitcoin.it/wiki/Running_Bitcoin#Bitcoin.conf_Configuration_File] option.

	You can setup different wallet notify method depending if you run daemon application locally, on a remote server or you use some API service

	In theory, you could mix and match backends and wallet notifications methods. But just stick to what is recommended for the backend recommends.

	Each cryptoasset require its own notification channel (named pipe, HTTP server port)

HTTP webhook for bitcoind

Handle walletnofify notificatians from bitcoind through curl / wget HTTP request.

This is useful in cases where bitcoind or alike is running on a remote server and you wish to receive walletnotifications from there. In this case, you can set up SSH tunnel and forward the locally started HTTP wallet notify listener to the bitcoind server.

Creates a HTTP server running in port 28882 (default). To receive a new transaction notification do a HTTP POST to this server:

curl --data "txid=%s" http://localhost:28882

E.g. in bitcoind.conf:

walletnotify=curl --data "txid=%s" http://localhost:28882

Options

	param class:	Always cryptoassets.core.backend.httpwalletnotify.HTTPWalletNotifyHandler

	param ip:	Bound IP address. Default 127.0.0.1 (localhost).

	parma port:	Bound port. Default 28882.

Testing

To test that the wallet notifications are coming through

	Make sure cryptoassetshelper service is running

	Do curl --data "txid=foobar" http://localhost:28882 on the server where bitcoind is running

	You should see in the logs of cryptoassetshelper: Error communicating with bitcoind API call gettransaction: Invalid or non-wallet transaction id

Named UNIX pipe for bitcoind

Named pipes can be used to send incoming transactions notifications from locally installed cryptoassets daemons, namely bitcoind likes.

Cryptoassets helper service creates a name unix pipe [https://en.wikipedia.org/wiki/Named_pipe].

Bitcoind or similar writes the transaction id to this pipe when updates are available for the transaction.

Named pipes are little bit more flexible than running a shell command, as you can do in-process handling of incoming transactions in a background thread, making it suitable for unit testing and such.

Example configuration:

Locally running bitcoind in testnet
coins:
 btc:
 backend:
 class: cryptoassets.core.backend.bitcoind.Bitcoind
 url: http://foo:bar@127.0.0.1:8332/
 walletnotify:
 class: cryptoassets.core.backend.pipewalletnotify.PipedWalletNotifyHandler
 fname: /tmp/cryptoassets-walletnotify-pipe

And corresponding bitcoind.conf:

walletnotify=echo $1 >> /tmp/cryptoassets--walletnotify-pipe

Please note that you might want to use timeout (gtimeout on OSX) to prevent bad behavior in the case cryptoassets helper service is unable to read from the time. Thus, incoming transaction notifications are discarded after certain timeout:

walletnotify=gtimeout --kill-after=10 5 /bin/bash -c "echo $1 >> /tmp/cryptoassets-unittest-walletnotify-pipe"

Options

	param class:	Always cryptoassets.core.backend.pipewalletnotify.PipedWalletNotifyHandler

	param fname:	Filename where the pipe is opened. Please note that any existing filename which same name is removed.

	param mode:	Unix file mode for the created pipe.

Redis pubsub for bitcoind

Use Redis pubsub for walletnotify notifications.

Redis [http://redis.io] offers mechanism called pubsub [http://redis.io/topics/pubsub] for channeled communication which can be used e.g. for interprocess communications.

	Connects to a Redis database over authenticated conneciton

	Opens a pubsub connection to a specific channel

	bitcoind walletnofify writes notifies to this channel using redis-cli command line tool

	This thread reads pubsub channel, triggers the service logic on upcoming notify

Example walletnotify line:

walletnotify=redis-cli publish bitcoind_walletnotify_pubsub %self

To install Redis on bitcoind server:

apt-get install redis-server redis-tools

Warning

The Redis authenticated connection is not encrypted. Use VPN or SSH tunnel to connect Redis over Internet.

Options

	param class:	Always cryptoassets.core.backend.rediswalletnotify.RedisWalletNotifyHandler

	param host:	IP/domain where Redis is running, default is localhost.

	param port:	TCP/IP port Redis is listetning to

	param db:	Redis database number

	param username:	optional username

	param password:	optional password

	param channel:	Name of Redis pubsub channel where we write transaction txids, default bitcoind_walletnotify_pubsub

block.io

Block.Io API backend.

Supports Bitcoin, Dogecoin and Litecoin on block.io [https://block.io] API.

The backend configuration takes following parameters.

	param class:	Always cryptoassets.core.backend.blockio.BlockIo

	param api_key:	block.io API key

	param password:	block.io password

	param network:	one of btc, btctest, doge, dogetest, see chain.so [https://chain.so] for full list

	param walletnotify:

		Configuration of wallet notify service set up for incoming transactions. You must use cryptoassets.core.backend.blockiowebhook.BlockIoWebhookNotifyHandler or cryptoassets.core.backend.blockiowebocket.BlockIoWebsocketNotifyHandler as walletnotify for incoming transactions for now. See below for more details.

Example configuration for block.io backend using websockets.

Cryptoassets.core configuration for running block.io unit tests

database:
 url: sqlite:////tmp/cryptoassts-unittest-blockio.sqlite

coins:
 doge:
 backend:
 class: cryptoassets.core.backend.blockio.BlockIo
 api_key: yyy
 pin: xxxx
 network: dogetest
 walletnotify:
 class: cryptoassets.core.backend.blockiowebsocket.BlockIoWebsocketNotifyHandler

Wallet notifications over websockets

Handle notifications for incoming transactions using block.io websockets API.

https://block.io/docs/notifications

This will spin off a thread opening a websocket connection to block.io and listening for incoming events.

We use websocket-client library [https://pypi.python.org/pypi/websocket-client] for websockets communications from Python.

Options

	param class:	Always cryptoassets.core.backend.blockiowebsocket.BlockIoWebsocketNotifyHandler

Wallet notifications over web hooks (HTTP)

Handle notifications for incoming transactions using block.io HTTPO POST webhook API.

https://block.io/docs/notifications

This will spin off a HTTP server in a separate IP and port to listen to HTTP requests made by the block.io.
You need to specify an external URL how block.io can reach the public IP address of your server.

Options

	param class:	Always cryptoassets.core.backend.blockiowebhook.BlockIoWebhookNotifyHandler

	param url:	To which public URL your webhook handler is mapped. The URL must not be guessable and must cointain random string, so that malicious actors cannot spoof incoming transaction requests.

	param ip:	Bound IP address. Default 127.0.0.1 (localhost).

	parma port:	Bound port. Default 33233.

Securing the webhooks

Do not expose webhook service port directly to the internet. Instead, use your web server to create a reverse proxy behind a hidden URL, so you can safely receive notifications from block.io.

HTTPS support through Nginx

Here is an example Nginx web server configuration how decode HTTPS and then forward block.io requets to the upstream server running in the cryptoassets helper service process:

Secret block.io webhook endpoint
location /blockio-account-nofity/xyz {
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_pass http://localhost:33233;
}

blockchain.info

blockchain.info backend.

The support is disabled in this version

null

Non-functional cryptocurrency backend doing nothing. Use for testing purposes.

The backend configuration takes following parameters.

	param class:	Always cryptoassets.core.backend.null.DummyCoinBackend

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Cryptocurrency and asset support

	Introduction

	Bitcoin

	Dogecoin

	AppleByte

Introduction

cryptoassets.core supports different cryptocurrencies. We use SQLAlchemy [http://www.sqlalchemy.org/] to generate a set of database tables and model classes for each coin. Then this coin can be send and received using a backend which takes care of communicating with the underlying cryptocurrency network.

See how to add support for more cryptocurrencies.

Bitcoin

Supported backends:

	bitcoind

	block.io

	blockchain.info

More info about Bitcoin [http://bitcoin.it/].

Bitcoin database implementation.

All amounts are stored in satoshis in integer fields.

Modify BitcoinTransaction.confirmation_count global
to set the threshold when transcations are considered confirmed.

Dogecoin

More info about Dogecoin [http://dogecoin.com/].

Supported backends:

	dogecoind (bitcoind-like)

	block.io

Dogecoin database support.

AppleByte

More info about AppleByte [http://applebyte.me/].

Supported backends:

	applebyted (bitcoind-like)

AppleByte database support.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

API documentation

Warning

readthedocs.org has issues building Python API documentation at the moment. This issue is being investigated. Meanwhile you can checkout cryptoassets.core source, install Sphinx package and run “make html” to build docs yourself.

Contents:

	Base models
	Cryptoasset registry

	Default models

	Model API conventions

	Model classes

	Validation

	Configuration and setup
	Introduction

	Config coding conventions

	Cryptoassets Application

	Configuration API

	Events
	Introduction

	Events types

	Event handlers

	Incoming transaction confirmation updates

	Tools and asset management
	Transaction confirmation count updates

	Broadcasting outgoing transactions

	Rescan receiving addresses

	Importing existing wallet

	Cryptoassets helper service
	Service main

	Backends
	Introduction

	Backend base class

	Transaction updater

	Utilities
	Introduction

	Transaction conflict resolver

	Automatic enumeration classes

	Python dictionary deep merge

	HTTP event listener decorator

	Ngrok automatic HTTP endpoint tunneling

	Cryptocurrency models
	Introduction

	Bitcoin

	Dogecoin

	Litecoin

	AppleByte

	Unit tests
	Introduction

	Backend tests

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Base models

	Cryptoasset registry

	Default models

	Model API conventions
	Model discovery

	Session lifecycle

	Model classes
	Account

	Address

	Transaction

	NetworkTransaction

	Wallet

	Validation

Base models describe how cryptoassets.core handles any cryptocurrency on the database level.
SQLAlchemy library [http://www.sqlalchemy.org/] is used for modeling.

Models are abstract and when you instiate a new cryptocurrency,
you inherit from the base classes and set the cryptocurrency specific properties.

Models also specify the core API how to interact with cryptoassets.core

See how to get started interacting with models.

For more information, see coin documentation and how to extend the framework with your own altcoins.

Cryptoasset registry

All running cryptoassets are maintained in a coin registry.

Each cryptoasset provides its own Wallet SQLAlchemy model and backend instance which is used to communicate with the network of the cryptoasset.

	
class cryptoassets.core.coin.registry.CoinModelDescription(coin_name, wallet_model_name, address_model_name, account_model_name, transaction_model_name, network_transaction_model_name, address_validator)[source]

	Describe one cryptocurrency data structures: what SQLAlchemy models and database tables it uses.

The instance of this class is used by cryptoassets.core.models.CoinDescriptionModel to build the model relatinoships and foreign keys between the tables of one cryptoasset.

Create the description with fully dotted paths to Python classes.

	Parameters:	coin_name – Name of this coin, lowercase acronym

	
Wallet

	Get wallet model class.

	
Address

	Get address model class.

	
Account

	Get account model class.

	
NetworkTransaction

	Get network transaction model class.

	
Transaction

	Get transaction model class.

	
class cryptoassets.core.coin.registry.Coin(coin_description, backend=None, max_confirmation_count=15, testnet=False)[source]

	Describe one cryptocurrency setup.

Binds cryptocurrency to its backend and database models.

We also carry a flag if we are running in testnet or not. This affects address validation.

Create a binding between asset models and backend.

	Parameters:	
	coin_description – cryptoassets.core.coin.registry.CoinModelDescription

	testnet – Are we running a testnet node or real node.

	backend – cryptoassets.core.backend.base.CoinBackend

	
backend = None

	Subclass of cryptoassets.core.backend.base.CoinBackend.

	
name = None

	Lowercase acronym name of this asset

	
max_confirmation_count = None

	This is how many confirmations tools.confirmationupdate tracks for each network transactions, both incoming and outgoing, until we consider it “closed” and stop polling backend for updates.

	
address_model

	Property to get SQLAlchemy model for address of this cryptoasset.

Subclass of cryptoassets.core.models.GenericAddress.

	
transaction_model

	Property to get SQLAlchemy model for transaction of this cryptoasset.

Subclass of cryptoassets.core.models.GenericTransaction.

	
account_model

	Property to get SQLAlchemy model for account of this cryptoasset.

Subclass of cryptoassets.core.models.GenericAccount.

	
wallet_model

	Property to get SQLAlchemy model for account of this cryptoasset.

Subclass of cryptoassets.core.models.GenericWallet.

	
network_transaction_model

	Property to get SQLAlchemy model for account of this cryptoasset.

Subclass of cryptoassets.core.models.GenericWallet.

	
validate_address(address)[source]

	Check the address validy against current network.

	Returns:	True if given address is valid.

	
class cryptoassets.core.coin.registry.CoinRegistry[source]

	Holds data of set up cryptocurrencies.

Usually you access this through cryptoasssets.core.app.CryptoassetsApp.coins instance.

Example:

cryptoassets_app = CryptoassetsApp()
... setup ...

bitcoin = cryptoassets_app.coins.get("btc)

print("We are running bitcoin with backend {}".format(bitcoin.backend))

	
all()[source]

	Get all registered coin models.

	Returns:	List of tuples(coin name, Coin)

	
get(name)[source]

	Return coin setup data by its acronym name.

	Parameters:	name – All lowercase, e.g. btc.

Default models

Default cryptocurrency names and their models.

	
cryptoassets.core.coin.defaults.COIN_MODEL_DEFAULTS = {'ltc': 'cryptoassets.core.coin.litecoin.models', 'btc': 'cryptoassets.core.coin.bitcoin.models', 'aby': 'cryptoassets.core.coin.applebyte.models', 'doge': 'cryptoassets.core.coin.dogecoin.models'}

	This is the default mapping between the three-letter coin acronyms and their SQLAlchemy model presentations. If you want to use your own database models you can override any of these in your configuration.

Model API conventions

The following conventions are followed in the model API

Model discovery

	Abstract base classes are called GenericXxx like GenericWallet.

	Actual class implementation is in coin module, e.g. cryptoassets.core.coin.bitcoin.models.BitcoinWallet.

	You do not access the model classes directly, but through configured assets registry. E.g. to get a hold of BitcoinWallet class you do Wallet = cryptoassets_app.coins.get("btc").coin_model.

	The usual starting point for the calls is to get or create cryptoassets.core.models.GenericWallet instance. Check out cryptoassets.core.models.GenericWallet.get_or_create_by_name().

Session lifecycle

	API tries to use the SQLAlchemy database session of the object if possible: Session.object_session(self). If not, session must be explicitly given and you get your session inside a helper closure function decorated by cryptoassets.core.utils.conflictresolver.ConflictResolver.managed_transaction(). This way we guarantee graceful handling of transaction conflicts.

	API never does session.flush() or session.commit()

	API will do session.add() for newly created objects

Model classes

Below are the base classes for models. All cryptoassets have the same API as described these models.

Account

	
class cryptoassets.core.models.GenericAccount[source]

	An account within the wallet.

We associate addresses and transactions to one account.

The accountn can be owned by some user (user’s wallet), or it can be escrow account or some other form of automatic transaction account.

The transaction between the accounts of the same wallet are internal
and happen off-blockhain.

A special account is reserved for network fees caused by outgoing transactions.

	
NETWORK_FEE_ACCOUNT = 'Network fees'

	Special label for an account where wallet
will put all network fees charged by the backend

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	Running counter used in foreign key references

	
name = Column(None, String(length=255), table=None)

	Human-readable name for this account

	
created_at = Column(None, DateTime(), table=None, default=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f814cae8>))

	When this account was created

	
updated_at = Column(None, DateTime(), table=None, onupdate=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f814cb70>))

	Then the balance was updated, or new address generated

	
balance = Column(None, Numeric(precision=21, scale=8), table=None, nullable=False, default=ColumnDefault(0))

	Available internal balance on this account
NOTE: Accuracy checked for bitcoin only

	
pick_next_receiving_address_label()[source]

	Generates a new receiving address label which is not taken yet.

Some services, like block.io, requires all receiving addresses to have an unique label. We use this helper function in the situations where it is not meaningful to hand-generate labels every time.

Generated labels are not user-readable, they are only useful for admin and accounting purposes.

	
get_unconfirmed_balance()[source]

	Get the balance of this incoming transactions balance.

TODO: Move to its own subclass

TODO: Denormalize unconfirmed balances for faster look up?

	Returns:	Decimal

Address

	
class cryptoassets.core.models.GenericAddress(**kwargs)[source]

	The base class for cryptocurrency addresses.

The address can represent a

	Receiving address in our system. In this case we have account set to non-NULL.

	External address outside our system. In this account is set to NULL. This address has been referred in outgoing broadcast (XXX: subject to change)

We can know about receiving addresses which are addresses without our system where somebody can deposit cryptocurrency. We also know about outgoing addresses where somebody has sent cryptocurrency from our system. For outgoing addresses wallet reference is null.

Warning

Some backends (block.io) enforce that receiving address labels must be unique across the system. Other’s don’t.
Just bear this in mind when creating address labels. E.g. suffix them with a timetamp to make them more unique.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	Running counter used in foreign key references

	
address = Column(None, String(length=127), table=None, nullable=False)

	The string presenting the address label in the network

	
label = Column(None, String(length=255), table=None)

	Human-readable label for this address. User for the transaction history listing of the user.

	
balance = Column(None, Numeric(precision=21, scale=8), table=None, nullable=False, default=ColumnDefault(0))

	Received balance of this address. Only confirmed deposits count, filtered by GenericConfirmationTransaction.confirmations. For getting other balances, check get_balance_by_confirmations().
NOTE: Numeric Accuracy checked for Bitcoin only ATM

	
archived_at = Column(None, DateTime(), table=None)

	Archived addresses are no longer in active incoming transaction polling
and may not appear in the user wallet list

	
get_received_transactions(external=True, internal=True)[source]

	Get all transactions this address have received, both internal and external deposits.

	
get_balance_by_confirmations(confirmations=0, include_internal=True)[source]

	Calculates address’s received balance of all arrived incoming transactions where confirmation count threshold is met.

By default confirmations is zero, so we get unconfirmed balance.

Note

This is all time received balance, not balance left after spending.

TODO: Move to its own subclass

	Parameters:	confirmations – Confirmation count as threshold

Transaction

	
class cryptoassets.core.models.GenericTransaction(**kwargs)[source]

	A transaction between accounts, incoming transaction or outgoing transaction.

Transactions can be classified as following:

	Deposit: Incoming, external, transaction from cryptocurrency network.

	Has network_transaction set.

	Has receiving_account set.

	No sending_account

	Broadcast: Outgoign, external, transaction to cryptocurrency network.

	Has network_transaction set.

	Has receiving_account set.

	No receiving_account

	Internal transactions

	Which are not visible outside our system.

	have both sending_account and receiving_account set.

	network_transaction is null

	Internal transactions can be further classified as: ìnternal (normal between accounts), balance_import (initial wallet import to system) and network_fee (fees accounted to the network fee account when transaction was broadcasted)

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	Running counter used in foreign key references

	
created_at = Column(None, DateTime(), table=None, default=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f8152598>))

	When this transaction become visible in our database

	
credited_at = Column(None, DateTime(), table=None)

	When the incoming transaction was credited on the account.
For internal transactions it is instantly.
For external transactions this is when the confirmation threshold is exceeded.

	
processed_at = Column(None, DateTime(), table=None)

	When this transaction was processed by the application.
For outgoing transactions this is the broadcasting time.
For incoming transactions, your application may call
mark_as_processed to mark it has handled the transaction.

	
amount = Column(None, Numeric(precision=21, scale=8), table=None)

	Amount in the cryptocurrency minimum unit
Note: Accuracy checked for Bitcoin only

	
state = Column(None, Enum('pending', 'broadcasted', 'incoming', 'processed', 'internal', 'network_fee', 'balance_import', name='transaction_state'), table=None, nullable=False)

	Different states this transaction can be

pending: outgoing transaction waiting for the broadcast

broadcasted: outgoing transaction has been sent to the network

incoming: we see the transaction incoming to our system, but the confirmation threshold is not exceeded yet
processed: the application marked this transaction as handled and cryptoassets.core stops trying to notify your application about the transaction

internal: This transaction was between the accounts within one of our wallets

network_fee: When the transaction has been broadcasted, we create an internal transaction to account the occured network fees

	
label = Column(None, String(length=255), table=None)

	Human readable label what this transaction is all about.
Must be unique for each account

	
can_be_confirmed()[source]

	Return if the transaction can be considered as final.

	
txid

	Return txid of associated network transaction (if any).

Shortcut for self.network_transaction.txid.

NetworkTransaction

	
class cryptoassets.core.models.GenericNetworkTransaction(**kwargs)[source]

	A transaction in cryptocurrencty networkwhich is concern of our system.

External transactions can be classified as

	Deposits: incoming transactions to our receiving addresses

	Broadcasts: we are sending out currency to the network

If our intenal transaction (cryptoassets.core.models.Transaction) has associated network transaction, it’s transaction.network_transaction reference is set. Otherwise transactions are internal transactions and not visible in blockchain.

Note

NetworkTransaction does not have reference to wallet. One network transaction may contain transfers to many wallets.

Handling incoming deposit transactions

For more information see cryptoassets.core.backend.transactionupdater and cryptoassets.core.tools.confirmationupdate.

Broadcasting outgoing transactions

Broadcast constructs an network transaction and bundles any number of outgoing pending transactions to it. During the broadcast, one can freely bundle transactions together to lower the network fees, or mix transactions for additional privacy.

Broadcasts are constructed by Cryptoassets helper service which will periodically scan for outgoing transactions and construct broadcasts of them. After constructing, broadcasting is attempted. If the backend, for a reason or another, fails to make a broadcast then this broadcast is marked as open and must be manually vetted to succeeded or failed.

For more information see cryptoassets.core.tools.broadcast.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	Running counter used in foreign key references

	
created_at = Column(None, DateTime(), table=None, default=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f80d7d90>))

	When this transaction become visible in our database

	
txid = Column(None, String(length=255), table=None)

	Network transaction has associated with this transaction.
E.g. Bitcoin transaction hash.

	
transaction_type = Column(None, Enum('deposit', 'broadcast', name='network_transaction_type'), table=None, nullable=False)

	Is this transaction incoming or outgoing from our system

	
opened_at = Column(None, DateTime(), table=None)

	When broadcast was marked as outgoing

	
closed_at = Column(None, DateTime(), table=None)

	When broadcast was marked as sent

	
classmethod get_or_create_deposit(session, txid)[source]

	Get a hold of incoming transaction.

	Returns:	tuple(Instance of cryptoassets.core.models.GenericNetworkTransaction., bool created)

	
class cryptoassets.core.models.GenericConfirmationNetworkTransaction(**kwargs)[source]

	Mined transaction which receives “confirmations” from miners in blockchain.

This is a subtype of GenericNetworkTransaction with confirmation counting abilities.

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
confirmations = Column(None, Integer(), table=None, nullable=False, default=ColumnDefault(-1))

	How many miner confirmations this tx has received. The value is -1 until the transaction is succesfully broadcasted, after which is it 0

	
confirmation_count = 3

	How many confirmations to wait until the transaction is set as confirmed.
TODO: Make this configurable.

	
can_be_confirmed()[source]

	Does this transaction have enough confirmations it could be confirmed by our standards.

Wallet

	
class cryptoassets.core.models.GenericWallet[source]

	A generic wallet implemetation.

Inside the wallet there is a number of accounts.

We support internal transaction between the accounts of the same wallet as off-chain transactions. If you call send()``for the address which is managed by the same wallet, an internal transaction is created by ``send_internal().

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	Running counter used in foreign key references

	
name = Column(None, String(length=255), table=None)

	The human-readable name for this wallet. Only used for debugging purposes.

	
created_at = Column(None, Date(), table=None, default=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f8152ea0>))

	When this wallet was created

	
updated_at = Column(None, Date(), table=None, onupdate=ColumnDefault(<function ColumnDefault._maybe_wrap_callable.<locals>.<lambda> at 0x7f35f8152f28>))

	Last time when the balance was updated or new receiving address created.

	
balance = Column(None, Numeric(precision=21, scale=8), table=None)

	The total balance of this wallet in the minimum unit of cryptocurrency
NOTE: accuracy checked for Bitcoin only

	
classmethod get_by_id(session, wallet_id)[source]

	Returns an existing wallet instance by its id.

	Returns:	Wallet instance

	
classmethod get_or_create_by_name(name, session)[source]

	Returns a new or existing instance of a named wallet.

	Returns:	Wallet instance

	
create_account(name)[source]

	Create a new account inside this wallet.

	Returns:	GenericAccout object

	
get_or_create_network_fee_account()[source]

	Lazily create the special account where we account all network fees.

This is for internal bookkeeping only. These fees MAY be
charged from the users doing the actual transaction, but it
must be solved on the application level.

	
create_receiving_address(account, label=None, automatic_label=False)[source]

	Creates a new receiving address.

All incoming transactions on this address are put on the given account.

The notifications for transctions to the address might not be immediately available after the address creation depending on the backend. For example, with block.io you need to wait some seconds before it is safe to send anything to the address if you wish to receive the wallet notification.

	Parameters:	
	account – GenericAccount object

	label – Label for this address - must be human-readable

	Returns:	GenericAddress object

	
get_or_create_external_address(address)[source]

	Create an accounting entry for an address which is outside our system.

When we send out external transactions, they go to these address entries.
These addresses do not have wallet or account connected to our system.

	Parameters:	address – Address as a string

	
send(from_account, receiving_address, amount, label, force_external=False, testnet=False)[source]

	Send the amount of cryptocurrency to the target address.

If the address is hosted in the same wallet do the internal send with cryptoassets.core.models.GenericWallet.send_internal(), otherwise go through the public blockchain with cryptoassets.core.models.GenericWallet.send_external().

	Parameters:	
	from_account – The account owner from whose balance we

	receiving_address – Receiving address as a string

	amount – Instance of Decimal

	label – Recorded text to the sending wallet

	testnet – Assume the address is testnet address. Currently not used, but might affect address validation in the future.

	force_external – Set to true to force the transaction go through the network even if the target address is in our system.

	Returns:	Transaction object

	
add_address(account, label, address)[source]

	Adds an external address under this wallet, under this account.

There shouldn’t be reason to call this directly, unless it is for testing purposes.

	Parameters:	
	account – Account instance

	address – Address instance

	
get_account_by_address(address)[source]

	Check if a particular address belongs to receiving address of this wallet and return its account.

This does not consider bitcoin change addresses and such.

	Returns:	Account instance or None if the wallet doesn’t know about the address

	
get_pending_outgoing_transactions()[source]

	Get the list of outgoing transactions which have not been associated with any broadcast yet.

	
get_receiving_addresses(archived=False)[source]

	Get all receiving addresses for this wallet.

This is mostly used by the backend to get the list
of receiving addresses to monitor for incoming transactions
on the startup.

	Parameters:	expired – Include expired addresses

	
get_deposit_transactions()[source]

	Get all deposit transactions to this wallet.

These are external incoming transactions, both unconfirmed and confirmed.

	Returns:	SQLAlchemy query of Transaction model

	
get_active_external_received_transcations()[source]

	Return unconfirmed transactions which are still pending the network confirmations to be credited.

	Returns:	SQLAlchemy query of Transaction model

	
refresh_account_balance(account)[source]

	Refresh the balance for one account.

If you have imported any addresses, this will recalculate balances from the backend.

TODO: This method will be replaced with wallet import.

TODO: This screws ups bookkeeping, so DON’T call this on production.
It doesn’t write fixing entries yet.

	Parameters:	account – GenericAccount instance

	
send_internal(from_account, to_account, amount, label, allow_negative_balance=False)[source]

	Tranfer currency internally between the accounts of this wallet.

	Parameters:	
	from_account – GenericAccount

	to_account – GenericAccount

	amount – The amount to transfer in wallet book keeping unit

	
send_external(from_account, to_address, amount, label, testnet=False)[source]

	Create a new external transaction and put it to the transaction queue.

When you send cryptocurrency out from the wallet, the transaction is put to the outgoing queue. Only after you broadcast has been performed (cryptoassets.core.tools.broadcast) the transaction is send out to the network. This is to guarantee the system responsiveness and fault-tolerance, so that outgoing transactions are created even if we have temporarily lost the connection with the cryptocurrency network. Broadcasting is usually handled by cryptoassets helper service.

	Parameters:	
	from_account – Instance of cryptoassets.core.models.GenericAccount

	to_address – Address as a string

	amount – Instance of Decimal

	label – Recorded to the sending wallet history

	testnet – to_address is a testnet address

	Returns:	Instance of cryptoassets.core.models.GenericTransaction

	
charge_network_fees(broadcast, fee)[source]

	Account network fees due to transaction broadcast.

By default this creates a new accounting entry on a special account
(GenericAccount.NETWORK_FEE_ACCOUNT) where the network fees are put.

	Parameters:	
	txs – Internal transactions participating in send

	txid – External transaction id

	fee – Fee as the integer

	
refresh_total_balance()[source]

	Make the balance to match with the actual backend.

This is only useful for send_external() balance checks.
Actual address balances will be out of sync after calling this
(if the balance is incorrect).

	
deposit(ntx, address, amount, extra=None)[source]

	Informs the wallet updates regarding external incoming transction.

This method should be called by the coin backend only.

Write the transaction to the database.
Notify the application of the new transaction status.
Wait for the application to mark the transaction as processed.

Note that we may receive the transaction many times with different confirmation counts.

	Parameters:	
	ntx – Associated cryptoassets.core.models.NetworkTransaction

	address – Address as a string

	amount – Int, as the basic currency unit

	extra – Extra variables to set on the transaction object as a dictionary. (Currently not used)

	Returns:	tuple (Account instance, new or existing Transaction object, credited boolean)

	
mark_transaction_processed(transaction_id)[source]

	Mark that the transaction was processed by the client application.

This will stop retrying to post the transaction to the application.

Validation

Coin models support pluggable address validators.

We provide some validators just to make sure we don’t write bad outgoing transactions to our database.

	
class cryptoassets.core.coin.validate.AddressValidator[source]

	Define address validation interface.

You should not call this directly, instead use cryptoassets.core.coin.registry.Coin.validate_address().

	
validate_address(address, testnet)[source]

	

	Parameters:	
	address – Address as a string

	testnet – We are in testnet

	Returns:	True if the address is valid

	
class cryptoassets.core.coin.validate.HashAddresValidator[source]

	Check that hash in the address is good.

Does not do extensive checks like address type, etc. one could do with pycoin.

http://rosettacode.org/wiki/Bitcoin/address_validation

	
class cryptoassets.core.coin.validate.NetworkCodeAddressValidator(netcode, testnetcode)[source]

	Check if Bitcoin style address is valid using pycoin library.

XXX: Issues, could not get working.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Configuration and setup

	Introduction

	Config coding conventions

	Cryptoassets Application

	Configuration API

Introduction

APIs for configuring cryptoassets.core.

Config coding conventions

	All config variables use underscore notitation (e.g. status_server instead of status-server) to be consistent with Python code

Cryptoassets Application

Cryptoassets application manager.

	
class cryptoassets.core.app.Subsystem[source]

	Enumerator for available cryptoassets library subsystems.

Depending on your application entry point and user case, you might not want to initialize all features of cryptoassets framework within your Python application. For example, multiple web server processes cannot initialize status server each, but this functinonality is purposed for the daemon applications.

	
database = None

	Initialize database connections

	
status_server = None

	Open HTTP status server running

	
backend = None

	Try to connect to backend APIs

	
broadcast = None

	Start processes and threads for broadcasting outgoing transactions

	
incoming_transactions = None

	Start processes and threads for walletnotify hooks

	
event_handler_registry = None

	Post notifications

	
class cryptoassets.core.app.CryptoAssetsApp(subsystems=[<Subsystem.database: 1>, <Subsystem.backend: 3>])[source]

	This class ties all strings together to make a runnable cryptoassets app.

Initialize a cryptoassets framework.

	Parameters:	subsystems – Give the list of subsystems you want to initialize. Because the same configuration file can be used by e.g. both web server and command line application, and config file parts like status server are only relevant in the context of the command line application, this can tell the cryptoassets framework how to set up itself. By default it initializes all the subsystems.

	
engine = None

	SQLAlchemy database used engine

	
coins = None

	cryptoassets.core.coin.registry.CoinRegistry instance

	
event_handler_registry = None

	Dict of notify handlers

	
status_server = None

	Configured status server
See notes in cryptoassets.core.service.main.Service

	
transaction_retries = None

	The number of attempts we try to replay conflicted transactions. Set by configuration.

	
conflict_resolver = None

	cryptoassets.core.utils.conflictresolver.ConflictResolver instance we use to resolve database conflicts

	
is_enabled(subsystem)[source]

	Are we running with a specific subsystem enabled.

	
setup_session(transaction_retries=3)[source]

	Configure SQLAlchemy models and transaction conflict resolutoin.

Also, bind created cryptocurrency models to their configured backends.

	
open_session()[source]

	Get new read-write session for the database.

	
open_readonly_session()[source]

	Get new read-only access to database.

This session can never write to db, so db can ignore transactions and optimize for speed.

TODO

	
create_tables()[source]

	Create database tables.

Usually call only once when settings up the production database, or every time unit test case runs.

	
clear_tables()[source]

	Delete all data in the database, but leaving tables intact.

Useful to get clean state in unit testing.

Warning

No questions asked. Don’t dare to call outside testing or your data is really gone.

Configuration API

Configuring cryptoassets.core for your project.

Setup SQLAlchemy, backends, etc. based on individual dictionaries or YAML syntax configuration file.

	
cryptoassets.core.configure.logger = None

	XXX: logger cannot be used in this module due to order of logger initialization?

	
exception cryptoassets.core.configure.ConfigurationError[source]

	ConfigurationError is thrown when the Configurator thinks somethink cannot make sense with the config data.

	
class cryptoassets.core.configure.Configurator(app, service=None)[source]

	Read configuration data and set up Cryptoassets library.

Reads Python or YAML format config data and then setss cryptoassets.core.app.CryptoassetsApp up and running accordingly.

	Parameters:	
	app – cryptoassets.core.app.CryptoassetsApp instance

	service – cryptoassets.core.service.main.Service instance (optional)

	
config = None

	Store full parsed configuration as Python dict for later consumption

	
setup_engine(configuration)[source]

	Setup database engine.

See sqlalchemy.engine_from_config for details.

TODO: Move engine to its own module?

	Parameters:	configuration (dict) – engine configuration section

	
setup_backend(coin, data)[source]

	Setup backends.

	Parameters:	data – dictionary of backend configuration entries

	
setup_model(module)[source]

	Setup SQLAlchemy models.

	Parameters:	module – Python module defining SQLAlchemy models for a cryptocurrency

	Returns:	cryptoassets.core.coin.registry.CoinModelDescription instance

	
setup_event_handlers(event_handler_registry)[source]

	Read notification settings.

Example notifier format:

{
 "shell": {
 "class": "cryptoassets.core.event_handler_registry.shell.ShellNotifier",
 "script": "/usr/bin/local/new-payment.sh"
 }
}

	
setup_status_server(config)[source]

	Prepare status server instance for the cryptoassets helper service.

	
setup_service(config)[source]

	Configure cryptoassets service helper process.

	
load_from_dict(config)[source]

	Load configuration from Python dictionary.

Populates app with instances required to run cryptocurrency.core framework.

	
classmethod setup_service_logging(config)[source]

	Setup Python loggers for the helper service process.

	Parameters:	config – service -> logging configure section.

	
classmethod setup_startup(config)[source]

	Service helper process specific setup when launched from command line.

Reads configuration service section, ATM only interested in logging subsection.

This is run before the actual Cryptoassets application initialization. We need logging initialized beforehand so that we can print out nice $VERSIONNUMBER is starting message.

	
static prepare_yaml_file(fname)[source]

	Extract config dictionary from a YAML file.

	
load_yaml_file(fname, overrides={})[source]

	Load config from a YAML file.

	Parameters:	
	fname – Path to the YAML file

	overrides – Python nested dicts for specific setting overrides

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Events

	Introduction

	Events types

	Event handlers
	HTTP webhook

	In-process Python

	Shell script

	Incoming transaction confirmation updates

Introduction

cryptoassets.core fires events which your application may listen. Most interesting once are:

	New incoming transaction

	New confirmations for incoming transactions

	New confirmations for outgoing transactions

cryptoassets.core will also post more complex events in the future (cold wallet top ups, etc.).

Also see event handling configuration.

Events types

cryptoassets.core currently sends the following events.

Note

In the future the scope of the events will be expanded: cold wallet top ups, network issues, etc.

	
cryptoassets.core.event.events.txupdate(coin_name, transaction, network_transaction, transaction_type, txid, account, address, amount, credited, **extra)[source]

	txupdate event reports the confirmation changes of incoming transaction (deposit) or outgoing transaction (broadcasted).

This event is fired for each transaction, when its confirmations changes. One network transaction may contain several deposit or broadcast transactions and they all trigger the event.

When the incoming transaction is first seen in the network, but it is not yet confirmed, confirmations is 0. Evaluate the risk of double spending [https://en.bitcoin.it/wiki/Double-spending] for these kind of transactions in your application context.

	Parameters:	
	coin_name – Lowercase acronym name for this asset

	transaction – Id of cryptoasset.core.models.GenericTransaction instance

	network_transaction – Id of cryptoasset.core.models.GenericNetworkTransaction instance

	transaction_type – String deposit (incoming) or broadcast (outgoing)

	txid – Network transaction id (transaction hash) as a string

	account – Database account id as int, either receiving account (deposit) or sending account (broadcast)

	amount – How much the transaction is worth of, as Decimal

	credited – Has this transaction reaches system-set confirmation threshold

	extra – Any cryptoasset specific data as dict, e.g. dict(confirmations=0) in the case of mined coins

	Returns:	Event data as dict()

Event handlers

Event handlers tell how cryptoassets.core will post the event to your application.

cryptoassets.core offers a framework how you can flexbile queue notifications for your application, regardless of API service or cryptocurrency you work on.

	If you want to your web server process handle events, configure HTTP webhook

	If you want to run event handling code inside cryptoasset helper service, use in-process Python notifications

HTTP webhook

Send events to your application as HTTP POST request.

The HTTP POST contains two fields, event_name (string) and data (JSON).

Decimals are converted to strings for serialization.

Configuration options

	param class:	Always cryptoassets.core.event.http.HTTPEventHandler.

	param url:	Do a HTTP POST to this URL on a new event. Example: http://localhost:30000.

In-process Python

In-process Python event handling.

Run Python function each time event occures. This assumes you have your Python application code in the same virtualenv as cryptoassets.core is. The code is executed directly within cryptoassets helper service process.

Configuration options

	param class:	Always cryptoassets.core.event.python.InProcessEventHandler.

	param callback:	A dotted name to Python callback function fn(event_name, data) which will be called upon a notification. event_name is a string, data is a dict.

Shell script

Run a script on a notification.

Execute an UNIX command on a new event.

Blocks the execution until the executed command returns.

The following environment variables are set for the script:

CRYPTOASSETS_EVENT_NAME="event name as a string"
CRYPTOASSETS_EVENT_DATA="JSON encoded data"

If the executed command returns non-zero status, this notification handler raises ShellNotificationFailed.

Configuration options

	param class:	Always cryptoassets.core.event.script.ScriptEventHandler.

	param script:	Executed shell command

	param log_output:

		If true send the output from the executed command to cryptoassets logs on INFO log level

	
exception cryptoassets.core.event.script.ScriptNotificationFailed[source]

	Script executed for the notification returned non-zero exit code.

Incoming transaction confirmation updates

Handling incoming cryptoasset transactions is as not as straightforward as one would hope, especially with limited APIs provided with bitcoind and its derivates. Incoming transaction event chain for bitcoind goes as following:

For 0 confirmations and 1 confirmations

	# Receive raw cryptocurrency protocol packet

	
	Read transaction from the network

	# API service notification / bitcoind walletnotify shell hook

	
	Push out notification about the updated transaction status

	# Cryptoassets helper service (cryptoassets-helper)

	
	Catch the low level transaction update notification (via named pipe, HTTP hook)

	Write updated transaction information to the database

	Update account balances, etc.

	Call all generic cryptoasets notification handlers with txupdate event

	# Your application

	
	Listen for txupdate event

	Process updated transaction

For 2 and more confirmations

	# Cryptoassets helper service (cryptoassets-helper)

	
	Run periodical open transaction update task - cryptoassets.core.tools.opentransactions

	Poll the bitcond for transactions where the confirmation count in the database has not reached the maximum threshold yet. This is 15 confirmations by default.

	
	If the transaction confirmation count has changed in the backend.

	
	Update account balances, etc.

	Call all generic cryptoasets notification handlers

For 15 and more confirmations

	These transactions are not polled anymore in the backend and are considered final.

	The threshold can be adjusted in backend settings.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Tools and asset management

	Transaction confirmation count updates

	Broadcasting outgoing transactions

	Rescan receiving addresses

	Importing existing wallet

Transaction confirmation count updates

Network transactions are considered open as long as the confirmation threshold has not been reached.

Because backends do not actively report the progress of confirmation status, we poll the backend for all network transactions (deposits, broadcasts) until the confirmation threshold has been reached. For example, bitcoind gives you a walletnotify only for 0 and 1 confirmations. block.io does not have any confirmation hooks, but you can subcribe to chain.so real-time API to receive 0 confirmations notificatoin to an address.

cryptoassets.core.tools.confirmationupdate.update_confirmations() polls the backend. It will scan all transactions where confirmation threshold has not been reached and then ask the backend of more transaction details. Eventually all open incoming transactions exceed the confirmation threshold and we can stop polling them.

The poller is set up in cryptoassets.core.service.main.Service.

More information about walletnotify behavior

	http://bitcoin.stackexchange.com/a/24483/5464

	
cryptoassets.core.tools.confirmationupdate.get_open_network_transactions(session, NetworkTransaction, confirmation_threshold)[source]

	Get list of transaction_type, txid of transactions we need to check.

	
cryptoassets.core.tools.confirmationupdate.update_confirmations(transaction_updater, confirmation_threshold)[source]

	Periodically rescan all open transactions for one particular cryptocurrency.

We try to keep transaction conflicts in minimum by not batching too many backend operations per each database session.

	Parameters:	
	confirmation_treshold – Rescan the transaction if it has less confirmations than this

	transaction_updater – cryptoassets.core.backend.transactionupdater.TransactionUpdater instance

	Returns:	Number of txupdate events fired

Broadcasting outgoing transactions

Broadcast outgoing transactions.

Broadcaster is responsible for the following things

	Check that there hasn’t been any interrupted broadcats before

	Make sure there can be one and only one attempt to broadcast at any moment - so we don’t have double broadcast problems

	Scan database for outgoing external transactions

	Merge and allocate these transactions to outgoing broadcasts

	If there are any unbroadcasted broadcasts, mark them scheduled for broadcast and attempt to broadcast them

	
class cryptoassets.core.tools.broadcast.Broadcaster(wallet, conflict_resolver, backend)[source]

	Create and send transactions to the cryptoasset networks.

	
get_wallet(session)[source]

	Get a wallet instance within db transaction.

	
get_broadcast(session, broadcast_id)[source]

	Get a wallet instance within db transaction.

	
collect_for_broadcast()[source]

	

	Returns:	Number of outgoing transactions collected for a broadcast

	
check_interrupted_broadcasts()[source]

	Check that there aren’t any broadcasts which where opened, but never closed.

	Returns:	List Open broadcast ids or empty list if all good

	
send_broadcasts()[source]

	Pick up any unbroadcasted broadcasts and attempt to send them.

Carefully do broadcasts within managed transactions, so that if something goes wrong we have a clear audit trail where it failed. Then one can manually check the blockchain if our transaction got there and close the broadcast by hand.

	Returns:	tuple (broadcasted network transaction count, total charged network fees)

	
do_broadcasts()[source]

	Collect new outgoing transactions for a broadcast and send out all existing and new outgoing transactions.

Rescan receiving addresses

Scan all receiving addresses to see if we have missed any incoming transactions.

Importing existing wallet

Import existing wallet balance to the accounting.

If you have a wallet in some service and you wish to use it with cryptoassets.core, you need to tell cryptoassets.core what to do with the existing balance in the wallet, from the time before the wallet was managed by cryptoassets.core.

This is especially useful for testing. To run unit tests you need to have some cryptocurrency balance somewhere. You have known backends which you configure the unit tests to connect to. These backends have default wallets and there is some balance on these wallets, so unit tests can perform withdraw tests.

	
cryptoassets.core.tools.walletimport.create_import_transaction(amount, account)[source]

	Put wallet extra coins, for which we do not know the owner, on a specific account.

Execute inside transaction manager.

	Parameters:	
	amount (Decimal) – How many extra coins to account

	account – Account instance where to put coins

	
cryptoassets.core.tools.walletimport.import_unaccounted_balance(backend, wallet, account)[source]

	Creates a new transaction which will put all assets in the wallet on a new account.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Cryptoassets helper service

	Service main

Service main

Cryptoassets helper service is a standalone process managing cryptoasset backend connections and transaction updates.

Manages asynchronous tasks for sending and receiving cryptocurrency over various APIs. This includes

	Broadcasting transactions to the cryptocurrency network asynchronously

	Handle incoming transactions and write them to the database, calls your application via event handlers

	Updates confirmation counts of open transactions

	
cryptoassets.core.service.main.logger = None

	Must be instiated after the logging configure is passed in

	
cryptoassets.core.service.main.splash_version()[source]

	Log out cryptoassets.core package version.

	
class cryptoassets.core.service.main.Service(config, subsystems=[<Subsystem.database: 1>, <Subsystem.backend: 3>], daemon=False, logging=True)[source]

	Main cryptoassets helper service.

This class runs cryptoassets helper service process itself and various command line utilities (initialize-database, etc.)

We uses Advanced Python Scheduler [http://apscheduler.readthedocs.org/] to run timed jobs (broadcasts, confirmatino updates).

Status server (cryptoassets.core.service.status) can be started for inspecting our backend connections are running well.

	Parameters:	
	config – cryptoassets configuration dictionary

	subsystems – List of subsystems needed to initialize for this process

	daemon – Run as a service

	
status_server = None

	Status server instance

	
incoming_transaction_runnables = None

	coin name -> IncomingTransactionRunnable

	
broadcast_period = None

	How often we check out for outgoing transactions

	
config(config, logging_)[source]

	Load configuration from Python dict.

Initialize logging system if necessary.

	
setup()[source]

	Start background threads and such.

	
setup_session()[source]

	Setup database sessions and conflict resolution.

	
initialize_db()[source]

	

	
start_status_server()[source]

	Start the status server on HTTP.

The server is previously set up by configure module.We need just to pass the status report generator of this service to it before starting it up.

	
setup_incoming_notifications()[source]

	Start incoming transaction handlers.

	
setup_sigterm()[source]

	Capture SIGTERM and shutdown on it.

	
poll_broadcast()[source]

	“A scheduled task to broadcast any new transactions to the bitcoin network.

Each wallet is broadcasted in its own transaction.

	
poll_network_transaction_confirmations()[source]

	Scan incoming open transactions.

	Returns:	Number of rescans attempted

	
scan_received()[source]

	Scan through all received transactions, see if we missed some through walletnotify.

	
start()[source]

	Start cryptoassets helper service.

Keep running until we get SIGTERM or CTRL+C.

	Returns:	Process exit code

	
run_thread_monitor()[source]

	Run thread monitor until terminated by SIGTERM.

	
check_threads()[source]

	Check all the critical threads are running and do shutdown if any of the threads has died unexpectly.

	Returns:	True if all threads stil alive

	
shutdown(unclean=False)[source]

	Shutdown the service process.

	Parameters:	unclean – True if we terminate due to exception

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Backends

	Introduction

	Backend base class

	Transaction updater

Introduction

Backends are responsible to interact with cryptoassets network themselves. cryptoassets.core provides abstraction layer, so that you can separate your own application database and code from the underlying cryptoasset network API.

Backend base class

Base classes for cryptocurrency backend.

	
class cryptoassets.core.backend.base.CoinBackend[source]

	Cryptocurrency management backend.

Provide necessecities for low-level cryptocurrency usage, like creating wallets, addresses, sending and receiving the currency.

Manage communications with the cryptocurrency network. The commucications can be done either by API service (block.io, blockchain.info) or raw protocol daemon (bitcoind).

The accounting amounts are in the integer amounts defined by the datbase models, e.g. satoshis for Bitcoin. If the backend supplies amounts in different unit, they most be converted forth and back by the backend. For the example, see cryptoassets.core.backend.blockio.

	
max_tracked_incoming_confirmations = None

	If track_incoming_confirmations is set to true, this is how many confirmations we track for each incoming transactions until we consider it “closed”. Please note that this is API will most likely be changed in the future and this variable move to somewhere else.
The variable is set by Configurator.setup_backend.

	
require_tracking_incoming_confirmations()[source]

	Does this backend need to have some help to get incoming transaction confirmations tracked.

Some daemons and walletnotify methods, namely bitcoind, only notify us back the first occurence of an incoming transactions. If we want to receive further confirmations from the transaction, we need to manually poll the transactions where our confirmation threshold is not yet met.

Set this to true and the cryptoassets helper service will start a background job (cryptoassets.core.tools.confirmationupdate to keep receiving updates about the confirmations).

	Returns:	True or False

	
create_address(label)[source]

	Create a new receiving address.

	
get_balances(addresses)[source]

	Get balances on multiple addresses.

Return the address balance in the native format (backend converts to satoshis, etc.)

	Yield:	(address, balance) tuples

	
send(recipients)[source]

	Broadcast outgoing transaction.

This is called by send/receive process.

	Parameters:	recipients – Dict of (address, internal amount)

	
get_backend_balance()[source]

	Get full available hot wallet balance on the backend.

May take backend-specific optional kwargs like confirmations.

This is used for cryptoassets.core.tools.walletimport.

	Returns:	Decimal

	
list_received_transactions(extra)[source]

	List all received transactions the backend is aware off.

	Parameters:	extra – Dict of backend-specific optional arguments like dict(confirmations=0).

	Returns:	Instance of cryptoassets.core.backend.base.ListTransactionsIterator.

	
create_transaction_updater(conflict_resolver, event_handler_registry)[source]

	Create transaction updater to handle database writes with this backend.

Creates cryptoassets.core.backend.transactionupdater.TransactionUpdater instance.
This TransactionUpdater is bound to this backend and provides safe APIs for doing broadcast and deposit updates.

	
setup_incoming_transactions(conflict_resolver, event_handler_registry)[source]

	Configure the incoming transaction notifies from backend.

The configuration for wallet notifies have been given to the backend earlier in the backend constructor. Now we read this configure, resolve the walletnotify handler class and instiate it.

We’ll hook into backend by creating cryptoassets.core.backend.transactionupdater.TransactionUpdater instance, which gets the list of event_handler_registry it needs to call on upcoming transaction.

	Parameters:	
	conflict_resolver – cryptoassets.core.utils.conflictresolver.ConflictResolver instance which is used to manage transactions

	event_handler_registry –

	param event_handler_registry:

		:py:class`cryptoassets.core.event.registry.EventHandlerRegistry` instance or None if we don’t want to notify of new transactions and just update the database

	Returns:	Instance of cryptoassets.core.backend.base.IncomingTransactionRunnable

	
class cryptoassets.core.backend.base.ListTransactionsIterator(backend)[source]

	Helper to iterate all transactions in the backend.

Because different backends iterate to different directions, we abstract this away.

Note

bitcoind iterates from index 0 with different batch sizes. block.io iterates from the latest transcation with fixed batch size of 100 and needs before txid parameter for the next batch.

	
fetch_next_txids()[source]

	Get next batch of transactions.

txdata must be dict bitcoind-like format:

{
 confirmations: 0,
 txid: "xxx",
 "details": {
 "category": "received",
 "amount": Decimal(1),
 "address": "foobar"
 }
}

	Returns:	List of next (txid, txdata) paits to iterate or empty list if iterating is done.

	
class cryptoassets.core.backend.base.IncomingTransactionRunnable[source]

	Backend specific thread/process taking care of accepting incoming transaction notifications from the network.

	
register_new_addresses()[source]

	Backend has created new addresses and the incoming transcation monitor must know about them.

Some monitoring systems need to refresh after new addresses have been added to the pool.

Transaction updater

	
class cryptoassets.core.backend.transactionupdater.TransactionUpdater(conflict_resolver, backend, coin, event_handler_registry)[source]

	TransactionUpdater write transactions updates from API/backend to the database.

TransactionUpdater uses cryptoassets.core.utils.conflictresolver.ConflictResolver database transaction helper when updating transactions. This gives us guarantees that updates having possible db transaction conflicts are gracefully handled.

The backend has hooked up some kind of wallet notify handler. The wallet notify handler uses TransactionUpdater to write updates of incoming transactoins to the database.

TransactionUpdater is also responsible to fire any notification handlers to signal the cryptoassets client application to handle new transactions.

TransactionUpdater is generally run inside cryptoassets.core.service.main.Server process, as this process is responsible for all incoming transaction updates. No web or other front end should try to make their own updates.

	Parameters:	
	conflict_resolver – cryptoassets.core.utils.conflictresolver.ConflictResolver

	backend – cryptoasets.core.backend.base.CoinBackend instance. TODO: To be removed - redundant with coin.

	coin – cryptoasets.core.coin.registry.Coin instance

	event_handler_registry – :py:class`cryptoassets.core.event.registry.EventHandlerRegistry` instance

	
last_wallet_notify = None

	UTC timestamp when we got the last transaction notification

	
event_handler_registry = None

	event_handler_registry registry we are going to inform about transaction status updates

	
stats = None

	Diagnostics and bookkeeping statistics

	
verify_amount(transaction_type, txdata, address, amount)[source]

	Check that transaction amounts have not somehow changed between confirmations.

It gets tricky here because bitcoind reports its internal stuff and has negative amounts for send transactions, versus what you see in blockchain and other services is only receiving outputs. We place some temporary workaround we hope to get rid of later.

	
update_network_transaction_confirmations(transaction_type, txid, txdata)[source]

	Create or update NetworkTransaction in the database.

Ask the backend about updates for a network transaction. Any action is taken only if the confirmation count has changed since the last call.

For desposits, updates the confirmation count of inbound network deposit transaction. For all associated receiving addresses and transactions, confirmation and crediting check if performed, account balances updated and txupdate event fired.

For broadcasts, updates the confirmation count of outbound transactions.

Relevant event handlers are fired (cryptoassets.core.transactionupdater.TransactionUpdater.event_handler_registry)

	Parameters:	
	transaction_type – “deposit” or “broadcast”. Note that we might have two ntx’s for one real network transaction, as we are sending bitcoins to ourselves.

	txid – Network transaction hash

	txdata – Transaction details, as given by the backend, translated to bitcoind format

	Returns:	Tuple (new or existing network transaction id, fired txupdate events as a list)

	
handle_wallet_notify(txid)[source]

	Handle incoming wallet notifications.

Fetch transaction info from the backend and update all receiving addresses we are managing within that transaction.

	Parameters:	txid – Network transaction hash

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Utilities

	Introduction

	Transaction conflict resolver
	Preface

	Benefits and design goals

	Transaction retries

	Example

	Rules and limitations

	Compatibility

	API documentation

	Automatic enumeration classes

	Python dictionary deep merge

	HTTP event listener decorator

	Ngrok automatic HTTP endpoint tunneling
	Installation

	Ngrok tunnel code

	Example code

	Other

Introduction

Here is collection of helper classes.

Transaction conflict resolver

ConflictResolver is a helper class to provide serialized transaction conflict resolution mechanism in your SQLAlchemy application.

Preface

Transaction conflict resolution is a way to deal with concurrency and race condition [http://en.wikipedia.org/wiki/Race_condition] issues within multiuser application. It is a way to resolve race conditions when two users, or two threads, are performing an action affecting the same data set simultaneously.

There are two basic ways of concurrency control [http://en.wikipedia.org/wiki/Concurrency_control]

	Up-front locking [http://en.wikipedia.org/wiki/Lock_%28computer_science%29]: You use interprocess / interserver locks to signal you are about to access and modify resources. If there are concurrent access the actors accessing the resource wait for the lock before taking action. This is pessimistic concurrency control mechanism [http://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_mechanisms].

	Transaction serialization [http://en.wikipedia.org/wiki/Serializability]: Database detects concurrent access from different clients (a.k.a serialization anomaly) and do not let concurrent modifications to take place. Instead, only one transaction is let through and other conflicting transactions are rolled back. The strongest level of transaction isolation [http://en.wikipedia.org/wiki/Isolation_%28database_systems%29] is achieved using SQL Serializable [http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Serializable] isolation level. This is optimistic concurrency control mechanism [http://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_mechanisms].

For complex systems, locking may pose scalability and complexity issues. More fine grained locking is required, placing cognitive load on the software developer to carefully think and manage all locks upfront to prevent race conditions and deadlocks. Thus, locking may be error prone approach in real world application development [http://en.wikipedia.org/wiki/Software_transactional_memory#Conceptual_advantages_and_disadvantages] (TBD needs better sources).

Relying on database transaction serialization is easier from the development perspective. If you use serialized transactions you know there will never be database race conditions. In the worst case there is an user error saying there was concurrency error. But transaction serialization creates another problem: your application must be aware of potential transaction conflicts and in the case of transaction conflict it must be able to recover from them.

Please note that when system is under high load and having high concurrent issue rate, both approaches will lead to degraded performance. In pessimistic approach, clients are waiting for locks, never getting them and eventually timing out. In optimistic approach high transaction conflict rate may exceed the rate the system can successfully replay transactions. Long running transaction are also an issue in both approaches, thus batch processing is encouraged to use limited batch size for each transaction if possible.

Benefits and design goals

cryptoassets.core.utils.conflictresolver.ConflictResolver is a helper class to manage serialized transaction conflicts in your code and resolve them in idiomatic Python manner. The design goals include

	Race condition free codebase because there is no need for application level locking

	Easy, Pythonic, to use

	Simple

	Have fine-grained control over transaction life cycle

	Works with SQLAlchemy [http://sqlalchemy.org/]

These all should contribute toward cleaner, more robust and bug free, application codebase.

The work was inspired by ZODB transaction package [https://pypi.python.org/pypi/transaction] which provides abstract two-phase commit protocol for Python. transaction package contains more features, works across databases, but also has more complex codebase and lacks decorator approach provided by ConflictResolver. Whereas ConflictResolver works directly with SQLAlchemy sessions, making it more straightforward to use in SQLAlchemy-only applications.

Transaction retries

In the core of transaction serialization approach is recovery from the transaction conflict. If you do not have any recovery mechanism, when two users edit the same item on a website and press save simultaneously, leading to a transaction conflict in the database, one of the user gets save succeed the other gets an internal error page. The core principle here is that we consider transaction conflict a rare event under normal system load conditions i.e. it is rare users press the save simultaneously. But it still very bad user experience to serve an error page for one of the users, especially if the system itself knows how it could recovery from the situation - without needing intervention from the user.

ConflictResolver approach to recovery is to

	Run a transaction sensitive code within a marked Python code block

	If the code block raises an exception which we identify to be a transaction conflict error from the database, just reset the situation and replay the code block

	Repeat this X times and give up if it seems like our transaction is never going through (because of too high system load or misdesigned long running transaction blocking all writes)

Marked Python code blocks are created using Python function decorators [https://www.python.org/dev/peps/pep-0318/]. This is not optimal approach in the sense of code cleanness and Python with block would be preferred. However, Python with lacks ability to run loops which is prerequisite for transaction retries [http://stackoverflow.com/q/27351433/315168]. However combined with Python closures [http://stackoverflow.com/q/4020419/315168], the boilerplate is quite minimal.

Example

Here is a simple example how to use ConflictResolver:

from cryptoassets.core.utils.conflictresolver import ConflictResolver
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('postgresql:///unittest-conflict-resolution',
 isolation_level='SERIALIZABLE')

Create new session for SQLAlchemy engine
def create_session():
 Session = sessionmaker()
 Session.configure(bind=engine)
 return Session()

conflict_resolver = ConflictResolver(create_session, retries=3)

Create a decorated function which can try to re-run itself in the case of conflict
@conflict_resolver.managed_transaction
def top_up_balance(session, amount):

 # Many threads could modify this account simultanously,
 # as incrementing the value in application code is
 # not atomic
 acc = session.query(Account).get(1)
 acc.balance += amount

Execute the conflict sensitive code inside a transaction aware code block
top_up_balance(100)

Rules and limitations

The rules:

	You must not blindly swallow all exceptions (generic Python Exception) within managed_transactions. Example how to handle exceptions if generic exception catching is needed:

Create a decorated function which can try to re-run itself in the case of conflict
@conflict_resolver.managed_transaction
def myfunc(session):

 try:
 my_code()
 except Exception as e:
 if ConflictResolver.is_retryable_exception(e):
 # This must be passed to the function decorator, so it can attempt retry
 raise
 # Otherwise the exception is all yours

	Use special read-only database sessions if you know you do not need to modify the database and you need weaker transaction guarantees e.g. for displaying the total balance.

	Never do external actions, like sending emails, inside managed_transaction. If the database transaction is replayed, the code is run twice and you end up sending the same email twice.

	Managed transaction code block should be as small and fast as possible to avoid transaction conflict congestion. Avoid long-running transactions by splitting up big transaction to smaller worker batches.

Compatibility

ConflictResolver should be compatible with all SQL databases providing Serializable isolation level. However, because Python SQL drivers and SQLAlchemy do not standardize the way how SQL execution communicates the transaction conflict back to the application, the exception mapping code might need to be updated to handle your database driver.

API documentation

See ConflictResolver API documentation below.

	
cryptoassets.core.utils.conflictresolver.DATABASE_COFLICT_ERRORS = [(<class 'sqlalchemy.orm.exc.StaleDataError'>, None)]

	Tuples of (Exception class, test function). Behavior copied from _retryable_errors definitions copied from zope.sqlalchemy

	
class cryptoassets.core.utils.conflictresolver.ConflictResolver(session_factory, retries)[source]

	Helper class to resolve transaction conflicts in graceful manner.

	Parameters:	
	session_factory – callback() which will give us a new SQLAlchemy session object for each transaction and retry

	retries – The number of attempst we try to re-run the transaction in the case of transaction conflict.

	
classmethod is_retryable_exception(e)[source]

	Does the exception look like a database conflict error?

Check for database driver specific cases.

	Parameters:	e – Python Exception instance

	
managed_transaction(func)[source]

	Function decorator for SQL Serialized transaction conflict resolution through retries.

managed_transaction decorator will retry to run the decorator function. Retries are attempted until ConflictResolver.retries is exceeded, in the case the original SQL exception is let to fall through.

Please obey the rules and limitations of transaction retries in the decorated functions.

	
managed_non_retryable_transaction(func)[source]

	Provide managed_transactions decorator API compatibility without retrying.

Decorate your transaction handling functions with this method if you absolute must not run the code twice for transaction retry and the user error is desirable outcome.

	
transaction()[source]

	Get a transaction contextmanager instance using the conflict resolver session.

This approach does not support conflict resolution, because Python context managers don’t support looping. Instead, it will let any exception fall through. ConflictResolver.transaction is only useful to access the configured SQLAlchemy session in easy manner.

	Useful for unit testing

	Useful for shell sessions

Transaction handling

	Transaction is committed if the context manager exists succesfully

	Transaction is rolled back on an exception

Example:

conflict_resolver = ConflictResolver(create_session, retries=3)
with conflict_resolver.transaction() as session:
 account = session.query(Account).get(1)
 account.balance += 1

	
exception cryptoassets.core.utils.conflictresolver.CannotResolveDatabaseConflict[source]

	The managed_transaction decorator has given up trying to resolve the conflict.

We have exceeded the threshold for database conflicts. Probably long-running transactions or overload are blocking our rows in the database, so that this transaction would never succeed in error free manner. Thus, we need to tell our service user that unfortunately this time you cannot do your thing.

Conflict resolver unit tests provide tests for different transaction conflict resolution outcomes and their resolution. If you are unsure Python database driver can handle transaction conflicts, this is a good smoke test to find out.

Automatic enumeration classes

	
class cryptoassets.core.utils.enum.AutoNumber[source]

	Enum pattern with automatic numbering of values.

https://docs.python.org/3/library/enum.html#autonumber

Python dictionary deep merge

	
cryptoassets.core.utils.dictutil.merge_dict(a, b)[source]

	merges b into a and return merged result.

NOTE: tuples and arbitrary objects are not handled as it is totally ambiguous what should happen

Courtesy of http://stackoverflow.com/a/15836901/315168

HTTP event listener decorator

Convenience decorator to open HTTP event listever for configured cryptoassets service.

Opens a new HTTP server running a background thread. Whenever cryptoassets helper service posts a new event, it will be received by this HTTP server which then executes the event in your application context.

This can be used only once per application, so you need to dispatch listened events to your own event handling funcions in one singleton handler.

The callback receives two arguments, event_name (string) and data (dict). Data payload depends on the event type.

Example:

app = CryptoAssetsApp()

This will load the configuration file for the cryptoassets framework
configurer = Configurator(app)
configurer.load_yaml_file("cryptoassets-settings.yaml")

@simple_http_event_listener(configurer.config)
def my_event_callback(event_name, data):
 if event_name == "txupdate":
 print("Got transaction update {}".format(data))

	
cryptoassets.core.utils.httpeventlistener.simple_http_event_listener(config, daemon=True)[source]

	Function decorator to make the target function to retrieve events from cryptoassets helper service over HTTP event callback.

You can also call this manually from command line from testing:

curl --data 'event_name=txupdate&data={"transaction_type":"broadcast","address":"x","confirmations":2,"txid":"foobar"}' http://127.0.0.1:10000

	Parameters:	
	config – cryptoassets.core app configuration as Python dict. We’ll extract the information which port and IP to listen to on HTTP server from there.

	func – The event handling callback function, callback(event_name, data_dict).

	daemon – Should the server be started as a daemon thread (does not prevent Python application quitting unless explictly stopped)

Ngrok automatic HTTP endpoint tunneling

Expose local HTTP ports to the world using ngrok service.

Today many API services provide webhooks calling back your website or system over HTTP. This enables simple third party interprocess communications for websites. However unless you are running in production, you often find yourself in a situation where it is not possible to get an Internet exposed HTTP endpoint over publicly accessible IP address. These situations may include your home desktop, public WI-FI access point or continuous integration services. Thus, developing or testing against webhook APIs become painful for contemporary nomad developers.

ngrok [https://ngrok.com/] (source <https://github.com/inconshreveable/ngrok>_) is a pay-what-you-want service to create HTTP tunnels through third party relays. What makes ngrok attractice is that the registration is dead simple with Github credentials and upfront payments are not required. ngrok is also open source, so you can run your own relay for sensitive traffic.

In this blog post, I present a Python solution how to programmatically create ngrok tunnels on-demand. This is especially useful for webhook unit tests, as you have zero configuration tunnels available anywhere where you run your code. ngrok is spawned as a controlled subprocess for a given URL. Then, you can tell your webhook service provider to use this URL to make calls back to your unit tests.

One could use ngrok completely login free. In this case you lose the ability to name your HTTP endpoints. I have found it practical to have control over the endpoint URLs, as this makes debugging much more easier.

For real-life usage, you can check cryptoassets.core project [https://pypi.python.org/pypi/cryptoassets.core] where I came up with ngrok method. ngrok succesfully tunneled me out from drone.io CI service [http://drone.io/] and my laptop.

Installation

Installing ngrok on OSX from Homebrew [http://brew.sh/]:

brew install ngrok

Installing ngrok for Ubuntu:

apt-get install -y unzip
cd /tmp
wget -O ngrok.zip "https://api.equinox.io/1/Applications/ap_pJSFC5wQYkAyI0FIVwKYs9h1hW/Updates/Asset/ngrok.zip?os=linux&arch=386&channel=stable"
unzip ngrok
mv ngrok /usr/local/bin

Official ngrok download, self-contained zips [https://ngrok.com/].

Sign up for the ngrok service and grab your auth token.

Export auth token as an environment variable in your shell, don’t store it in version control system:

export NGROK_AUTH_TOKEN=xxx

Ngrok tunnel code

Below is Python 3 code for NgrokTunnel class. See the full source code here [https://bitbucket.org/miohtama/cryptoassets/src/b0758d8cdf74e00d58b513b8e65b05f9f706160f/cryptoassets/core/utils/tunnel.py?at=feat-blockio-webhook].

Example code

Here is a short pseudo example from cryptoassets.core block.io webhook handler unit tests. See the full unit test code here [https://bitbucket.org/miohtama/cryptoassets/src/b0758d8cdf74e00d58b513b8e65b05f9f706160f/cryptoassets/core/tests/test_block_io.py?at=feat-blockio-webhook#cl-111].:

class BlockWebhookTestCase(CoinTestRoot, unittest.TestCase):

 def setUp(self):

 self.ngrok = None

 self.backend.walletnotify_config["class"] = "cryptoassets.core.backend.blockiowebhook.BlockIoWebhookNotifyHandler"

 # We need ngrok tunnel for webhook notifications
 auth_token = os.environ["NGROK_AUTH_TOKEN"]
 self.ngrok = NgrokTunnel(21211, auth_token)

 # Pass dynamically generated tunnel URL to backend config
 tunnel_url = self.ngrok.start()
 self.backend.walletnotify_config["url"] = tunnel_url
 self.backend.walletnotify_config["port"] = 21211

 # Start the web server
 self.incoming_transactions_runnable = self.backend.setup_incoming_transactions(self.app.conflict_resolver, self.app.event_handler_registry)

 self.incoming_transactions_runnable.start()

 def teardown(self):

 # Stop webserver
 incoming_transactions_runnable = getattr(self, "incoming_transactions_runnable", None)
 if incoming_transactions_runnable:
 incoming_transactions_runnable.stop()

 # Stop tunnelling
 if self.ngrok:
 self.ngrok.stop()
 self.ngrok = None

Other

Please see the unit tests [https://bitbucket.org/miohtama/cryptoassets/src/b0758d8cdf74e00d58b513b8e65b05f9f706160f/cryptoassets/core/tests/test_tunnel.py?at=feat-blockio-webhook] for NgrokTunnel class itself.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Cryptocurrency models

	Introduction

	Bitcoin

	Dogecoin

	Litecoin

	AppleByte

Introduction

List of available cryptocurrency models out of the box.

Bitcoin

Bitcoin database implementation.

All amounts are stored in satoshis in integer fields.

Modify BitcoinTransaction.confirmation_count global
to set the threshold when transcations are considered confirmed.

Dogecoin

Dogecoin database support.

Litecoin

Litecoin database support.

AppleByte

AppleByte database support.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 	API documentation

Unit tests

	Introduction

	Backend tests

Introduction

Some unit tests used to verify functionality.

Backend tests

	
cryptoassets.core.tests.base.has_inet()[source]

	py.test condition for checking if we are online.

	
cryptoassets.core.tests.base.has_local_bitcoind()[source]

	Use this to disable some tests in CI enviroment where 15 minute deadline applies.

	
cryptoassets.core.tests.base.is_slow_test_hostile()[source]

	Use this to disable some tests in CI enviroment where 15 minute deadline applies.

	
class cryptoassets.core.tests.base.CoinTestRoot[source]

	Have only initialization methods for the tests.

	
create_engine()[source]

	Create SQLAclhemy database engine for the tests.

	
wait_address(address)[source]

	block.io needs subscription refresh every time we create a new address.

Because we do not have IPC mechanism to tell when block.io refresh is ready, we just wait few seconds for now. block.io poller should recheck the database for new addresses every second.

	
setup_receiving(wallet)[source]

	Necerssary setup to monitor incoming transactions for the backend.

	
teardown_receiving()[source]

	Teardown incoming transaction monitoring.

	
setup_coin()[source]

	Setup coin backend for this test case.

	
setup_balance()[source]

	Create an a wallet and an account with balance.

	
class cryptoassets.core.tests.base.CoinTestCase[source]

	Abstract base class for all cryptocurrency backend tests.

This verifies that a cryptocurrency backend works against cryptoassets.core models API.

Inherit from this test case, implement backend abstract methods and run the test case.
If all test passes, the backend is compatible with cryptoassets.core.

	
test_create_address()[source]

	Creates a new wallet and fresh bitcoin address there.

	
test_get_receiving_addresses()[source]

	Creates a new wallet and fresh bitcoin address there.

	
test_create_account()[source]

	Creates a new wallet and fresh bitcoin address there.

	
test_send_internal()[source]

	Creates a new wallet and fresh bitcoin address there.

	
test_send_internal_low_balance()[source]

	Does internal transaction where balance requirement is not met.

	
test_send_internal_same_account()[source]

	Does internal transaction where balance requirement is not met.

	
test_cannot_import_existing_address()[source]

	Do not allow importing an address which already exists.

	
test_refresh_account_balance()[source]

	Read the external balance to an account.

	
test_send_external()[source]

	Send Bitcoins from external address

	
test_charge_network_fee()[source]

	Do an external transaction and see we account network fees correctly.

	
test_broadcast_no_transactions()[source]

	Broadcast must not fail even we don’t have any transactions.

	
test_receive_external_spoofed()[source]

	Test receiving external transaction.

Don’t actually receive anything, spoof the incoming transaction.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Extending

	Introduction

	Adding new cryptocurrency model

	Adding new cryptocurrecy backend

	Overriding parts of the framework

Introduction

cryptoassets.core has extensible architecture

	You can easily include new crytocurrencies and assets

	You can choose to use any protocol backend instead of bitcoind

	You can override almost any part of the system with your own class or subclass

Note

Currently the architecture is heavily geared towards mined coins. This will change in the future and class hiearchy is abstracted so that traits like mining (block confirmations) go into their own class tree. Alternatively, consensus based coins (Ripple, Stellar) get their own corresponding base classes.

Adding new cryptocurrency model

Adding support for bitcoind derived altcoin is as easy as creating models file (for example see cryptoassets.core.coin.applebyte.mdoels) and givin the models module in the config file. You can use the stock cryptoassets.core.backend.bitcoind if altcoin is JSON-RPC compatible with bitcoind (they are).

Adding support for non-bitcoin like cryptoassets includes subclassing API classes and having corresponding backend. You can still use services like database transaction conflict resolution.

Adding new cryptocurrecy backend

Subclass cryptoassets.core.backend.base.CoinBackend.

Create a backend specific unit test which subclasses cryptoassets.core.tests.base.CoinTestCase. If all CoinTestCase tests passed, your backend is more or less feature complete and complete with cryptoassets.core.

Overriding parts of the framework

You can switch and replace any part of the framework. For example, you might want to optimize certain components, like bitcoind connections for scalability.

	Database models can be overridden with models configuration and thus you can replace any stock API method with your own.

	You can plug in your own backend.

	You can subclass cryptoassets.core.app.CryptoassetsApp and override initialization methods to plug-in your own code.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Security and data integrity

	Introduction

	Eliminating race conditions
	Transaction conflict handling

	Data separation

	Data integrity on failed broadcasts

	Missed incoming transactions

	Missed transactions confirmations

	Choosing your database

Introduction

cryptoassets.core is built following defensive programming principles [http://en.wikipedia.org/wiki/Defensive_programming] to mitigate developer human error, data integrity and security issues.

When dealing with financial transactions, especially ones which cannot be reversed [http://blog.stakeventures.com/articles/2012/03/07/the-may-scale-of-money-hardness-and-bitcoin], it is imperative that one gets its transaction handling correctly. cryptoassets.core provides tools and methods, so that even inexperienced developers do not shoot themselves into a foot when writing cryptoassets code.

This includes mitigation against

	Human-errors by the developers

	External attackers trying to exploit issues in the financial code

Potential issues and threads for cryptoassets services include

	Race conditions allowing over-balance withdrawals or account balance mix up (data integrity issues)

	Double transaction broadcasts doing double withdrawals from hot wallet

	Partially lost data on unclean service shutdown

	Partially lost data when having Internet connectivity issues

	Database damage with bad migration

	Improper cold wallet handling increases the risk of losing customer assets

Below is how cryptoassets.core addresses these issues.

Eliminating race conditions

The production cryptoassets.core always runs its database transactions on serializable transactino isolation level [http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Serializable]. Note that this is not the default for most database setups. Serializable transactions isolation level means that each transaction would happen in a complete isolation, one after each another, and thus there cannot be race conditions. If the database detects transactions touching the same data, only one of conflicting transactions may pass through and the others are aborted with application-level exception.

Serializable transaction isolation simply prevents all kind of race conditions. Alternative would be writing application level locking code, which is prone to errors, as it incumbers more cognitive overhead for the developers themselves. Better let the database developers take care of the locking, as they have liven their life by solving concurrency issues and they are expert on it.

	PostgreSQL transaction isolation levels [http://www.postgresql.org/docs/devel/static/transaction-iso.html]

Transaction conflict handling

cryptoassets.core provides tools to handle serialized transaction rollbacks in Pythonic way.

cryptoassets.core.utils.conflictresolver is an utility class extensively used through cryptoassets.core. It’s cryptoassets.core.utils.conflictresolver.ConflictResolver.managed_transaction() function decorator allows one easily write transaction sensitive code blocks.

Data separation

Each cryptoasset gets it own set of database tables. This sets some static-typing like limits making it less likely for a developer to accidentally mix and match wrong currencies.

Having own set of tables is future-proof path: when cryptocurrencies themselves develop and get new features, you can migrate the cryptocurrency specific tables to support these features.

Data integrity on failed broadcasts

One possible error condition is not knowing if the outgoing transaction was broadcasted. For example, you send out a transaction and the network connection to bitcoind dies, or server goes down, just about when bitcoind is about to write JSON-RPC API reply “transaction broadcasted”.

When cryptoassets.core does outgoing transaction broadcasts, it separately commits when broadcast was started (opened_at) when broadcast was ended (closed_at). Broadcasts which never receives ending mark is considered “broken” and cryptoassets helper service never managed to write to the database whether this broadcast got out to the network or not.

For broken transactions one needs to manually check from blockchain, by matching opened_at timestamp and transaction amount, whether the broadcast made to blockchain before the broadcasting process failed.

	Set txid and closed_at for the transactions if they got out to blockchain

	Remove opened_at timestamp if the transaction never made to the blockchain and should be rebroadcasted

Missed incoming transactions

For a reason or another, cryptoassets.core may miss the initial wallet notification from the network for new deposit transaction arriving to the address in your application wallet. Particularly, cryptoassets helper service could be down when the incoming transaction was broadcasted.

cryptoassets helper service rescans all receiving addresses on start up. Thus, restarting cryptoassets helper service fixes the problem. Alternatively, you can manually run rescan command.

Missed transactions confirmations

For a reason or another, your application may fail to process transaction update events.

E.g.

	Event hook calling your application failed

	Cryptoassets helper service was down when wallet notification arrived

Cryptoassets helper service will poll all transactions where the transaction confirmation count is below a threshold value. If you miss confirmation notification cryptoassets.core keeps polling the transaction and resend the transaction update message to your application. When your application is satisfied with the confirmation count it can mark the transaction processed.

Choosing your database

MySQL InnoDB engine is known for various prone-to-human-error issues [http://blog.ionelmc.ro/2014/12/28/terrible-choices-mysql/], sacrifing predictability and data integrity for legacy compatibility and performance. It is recommended you use cryptoassets.core on PostgreSQL or other alternative database unless you have considerable MySQL experience.

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Developing cryptoassets.core

	Running tests
	Testing prerequisites

	Examples for running tests

	Bitcoind testnet
	Setting up TESTNET bitcoind on OSX

	Building bitcoind on Ubuntu

	Topping up bitcoind

	Testnet faucet

	Dumping your TESTNET private address for importing in tests

	Using bitcoind with multiple backends

	Conflicted transactions

	Continuous integration
	Full CI test suite

	Releases

Running tests

Unit tests are PyTest based [http://pytest.org/].

Testing prerequisites

To run all tests several components must be in-place

	pip install test-extra-requirements.txt`

	Check block.io credentials in tests/config.yaml files (hardcoded accounts, testnet coins)

	bitcoind running testnet on localhost, configured for named UNIX pipe wallet notifications (see config snipped below). bitcoind must have account cryptoassets with enough balance to do withdraw tests.

	PostgreSQL database unittest-conflict-resolution where you can connect on localhost without username and password

	Redis installed, with preferable empty database 0

	ngrok account [http://ngrok.com] is required for running block.io webhook tests. You need to create export NGROK_AUTH_TOKEN environment variable in order run block.io tests:

export NGROK_AUTH_TOKEN=xxx

Examples for running tests

Running all tests:

py.test cryptoassets

Running a single test case:

py.test cryptoassets/core/tests/test_conflictresolver.py

Running a single test:

py.test -k "BitcoindTestCase.test_send_internal" cryptoassets

Running a single test with verbose Python logging output to stdout (useful for pinning down why the test fails):

VERBOSE_TEST=1 py.test -k "BitcoindTestCase.test_send_internal" cryptoassets

Running tests for continuous integration service (15 minute timeout) and skipping slow tests where transactions are routed through cryptocurrency network (full BTC send/receive test, etc.):

CI=true py.test cryptoassets

Running unittests using vanilla Python 3 unittest:

python -m unittest discover

(This ignores all skipping hints)

More info

	http://pytest.org/latest/usage.html

Bitcoind testnet

Setting up TESTNET bitcoind on OSX

Edit /Users/mikko/Library/Application Support/Bitcoin/bitcoin.conf:

testnet=1
server=1
rpcuser=foo
rpcpassword=bar
rpctimeout=5
rpcport=8332
txindex=1
rpcthreads=64
walletnotify=gtimeout --kill-after=10 5 /bin/bash -c "echo %s >> /tmp/cryptoassets-unittest-walletnotify-pipe

Restart Bitcoin-Qt. Now it should give green icon instead of standard orange.

Test the JSON-RPC server connection:

curl --user foo:bar --data-binary '{"id":"t0", "method": "getinfo", "params": [] }' http://127.0.0.1:8332/

http://suffix.be/blog/getting-started-bitcoin-testnet

Starting bitcoind in debug mode:

/Applications/Bitcoin-Qt.app/Contents/MacOS/Bitcoin-Qt -printtoconsole -debug

Building bitcoind on Ubuntu

	http://bitzuma.com/posts/compile-bitcoin-core-from-source-on-ubuntu/

Topping up bitcoind

First create a receiving address under bitcoind accounting account cryptoassets:

curl --user foo:bar --data-binary '{"id":"t0", "method": "getnewaddress", "params": ["cryptoassets"] }' http://127.0.0.1:8332/

Write down the result.

Testnet faucet

Get Testnet coins from here:

http://tpfaucet.appspot.com/

(Alternative testnet faucets [http://bitcoin.stackexchange.com/questions/17690/is-there-any-where-to-get-free-testnet-bitcoins].)

Send them to the receiving address you created.

Then list bitcoind accounts and balances, to see you have the new receiving address and the balance arrives there:

curl –user foo:bar –data-binary ‘{“id”:”t0”, “method”: “listaccounts”, “params”: [] }’ http://127.0.0.1:8332/

Dumping your TESTNET private address for importing in tests

Example using public address mk2o9anFwtHFGFKeD89Qxh5YBhNMQk7NrS:

curl --user foo:bar --data-binary '{"id":"t0", "method": "dumpprivkey", "params": ["mk2o9anFwtHFGFKeD89Qxh5YBhNMQk7NrS"] }' http://127.0.0.1:8332/

Using bitcoind with multiple backends

If you are using same bitcoind testnet instance to drive several cryptoassets backends, you can multiplex incoming transactions to several wallet notify pipes with a shell script like:

#!/bin/bash
echo "Got txid $1" >> /tmp/txlist.txt
Timeout is needed to work around for hanging named pipe cases where Bitcoin-QT process starts to write to a named pipe, but nobody is reading it, thus preventing clean shutdown of the parent process (bitcoind)
gtimeout --kill-after=10 5 /bin/bash -c "echo $1 >> /tmp/cryptoassets-unittest-walletnotify-pipe"
gtimeout --kill-after=10 5 /bin/bash -c "echo $1 >> /tmp/tatianastore-cryptoassets-helper-walletnotify"
exit 0

Also needs coreutils on OSX:

brew install coreutils

Conflicted transactions

If Bitcoin-QT starts to display transactions sent via RPC as conflicted status

	Your walletnotifty script might be broken, CTRL+C abort Bitcoin-QT in terminal, check error messages:

/Users/mikko/code/notify.sh: line 3: timeout: command not found
runCommand error: system(/Users/mikko/code/notify.sh 94506c797452745b87e734caf35ec4b62c0ef61f6c7efa5869f22ec0f1a71abf) returned 32512

	rescan blockchain (unclean shutdown?):

/Applications/Bitcoin-Qt.app/Contents/MacOS/Bitcoin-Qt -printtoconsole -debug -rescan

	Make sure “Spend unconfirmed outputs” is toggled off in Bitcoin-QT preferences

	Make sure you are displaying correct transactions and not old ones (Bitcoin QT pops old conflicting transactions at the top of the history list). Choose “Today” from Bitcoin QT transaction list filters.

Continuous integration

Continuous integration is running on drone.io <https://drone.io/bitbucket.org/miohtama/cryptoassets/>`_.

See tests/setup-testing-droneio.sh how tests are executed.

Full CI test suite

Because some tests may take more than 15 minutes to execute, full test suite cannot be run on CI environment. There is script full-run-tests.sh which can be used to run tests on Linux VM + bitcoind testnet instance.

Run this script on a server having running Bitcoind instance.

Releases

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cryptoassets	

 	
 	
 cryptoassets.core.app	

 	
 	
 cryptoassets.core.backend.base	

 	
 	
 cryptoassets.core.backend.bitcoind	

 	
 	
 cryptoassets.core.backend.blockchain	

 	
 	
 cryptoassets.core.backend.blockio	

 	
 	
 cryptoassets.core.backend.blockiowebhook	

 	
 	
 cryptoassets.core.backend.blockiowebsocket	

 	
 	
 cryptoassets.core.backend.httpwalletnotify	

 	
 	
 cryptoassets.core.backend.null	

 	
 	
 cryptoassets.core.backend.pipewalletnotify	

 	
 	
 cryptoassets.core.backend.rediswalletnotify	

 	
 	
 cryptoassets.core.backend.transactionupdater	

 	
 	
 cryptoassets.core.coin.applebyte.models	

 	
 	
 cryptoassets.core.coin.bitcoin.models	

 	
 	
 cryptoassets.core.coin.defaults	

 	
 	
 cryptoassets.core.coin.dogecoin.models	

 	
 	
 cryptoassets.core.coin.litecoin.models	

 	
 	
 cryptoassets.core.coin.registry	

 	
 	
 cryptoassets.core.coin.validate	

 	
 	
 cryptoassets.core.configure	

 	
 	
 cryptoassets.core.event.events	

 	
 	
 cryptoassets.core.event.http	

 	
 	
 cryptoassets.core.event.python	

 	
 	
 cryptoassets.core.event.script	

 	
 	
 cryptoassets.core.service.main	

 	
 	
 cryptoassets.core.tests.base	

 	
 	
 cryptoassets.core.tests.test_conflictresolver	

 	
 	
 cryptoassets.core.tools.broadcast	

 	
 	
 cryptoassets.core.tools.confirmationupdate	

 	
 	
 cryptoassets.core.tools.receivescan	

 	
 	
 cryptoassets.core.tools.walletimport	

 	
 	
 cryptoassets.core.utils.conflictresolver	

 	
 	
 cryptoassets.core.utils.dictutil	

 	
 	
 cryptoassets.core.utils.enum	

 	
 	
 cryptoassets.core.utils.httpeventlistener	

 	
 	
 cryptoassets.core.utils.tunnel	

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	cryptoassets.core - Cryptoassets and Bitcoin framework for Python

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	Account (cryptoassets.core.coin.registry.CoinModelDescription attribute)

 	account_model (cryptoassets.core.coin.registry.Coin attribute)

 	add_address() (cryptoassets.core.models.GenericWallet method)

 	Address (cryptoassets.core.coin.registry.CoinModelDescription attribute)

 	address (cryptoassets.core.models.GenericAddress attribute)

 	address_model (cryptoassets.core.coin.registry.Coin attribute)

 	

 	AddressValidator (class in cryptoassets.core.coin.validate)

 	all() (cryptoassets.core.coin.registry.CoinRegistry method)

 	amount (cryptoassets.core.models.GenericTransaction attribute)

 	archived_at (cryptoassets.core.models.GenericAddress attribute)

 	AutoNumber (class in cryptoassets.core.utils.enum)

B

 	

 	backend (cryptoassets.core.app.Subsystem attribute)

 	

 	(cryptoassets.core.coin.registry.Coin attribute)

 	balance (cryptoassets.core.models.GenericAccount attribute)

 	

 	(cryptoassets.core.models.GenericAddress attribute)

 	(cryptoassets.core.models.GenericWallet attribute)

 	broadcast (cryptoassets.core.app.Subsystem attribute)

 	

 	broadcast_period (cryptoassets.core.service.main.Service attribute)

 	Broadcaster (class in cryptoassets.core.tools.broadcast)

C

 	

 	can_be_confirmed() (cryptoassets.core.models.GenericConfirmationNetworkTransaction method)

 	

 	(cryptoassets.core.models.GenericTransaction method)

 	CannotResolveDatabaseConflict

 	charge_network_fees() (cryptoassets.core.models.GenericWallet method)

 	check_interrupted_broadcasts() (cryptoassets.core.tools.broadcast.Broadcaster method)

 	check_threads() (cryptoassets.core.service.main.Service method)

 	clear_tables() (cryptoassets.core.app.CryptoAssetsApp method)

 	closed_at (cryptoassets.core.models.GenericNetworkTransaction attribute)

 	Coin (class in cryptoassets.core.coin.registry)

 	COIN_MODEL_DEFAULTS (in module cryptoassets.core.coin.defaults)

 	CoinBackend (class in cryptoassets.core.backend.base)

 	CoinModelDescription (class in cryptoassets.core.coin.registry)

 	CoinRegistry (class in cryptoassets.core.coin.registry)

 	coins (cryptoassets.core.app.CryptoAssetsApp attribute)

 	CoinTestCase (class in cryptoassets.core.tests.base)

 	CoinTestRoot (class in cryptoassets.core.tests.base)

 	collect_for_broadcast() (cryptoassets.core.tools.broadcast.Broadcaster method)

 	config (cryptoassets.core.configure.Configurator attribute)

 	config() (cryptoassets.core.service.main.Service method)

 	ConfigurationError

 	Configurator (class in cryptoassets.core.configure)

 	confirmation_count (cryptoassets.core.models.GenericConfirmationNetworkTransaction attribute)

 	confirmations (cryptoassets.core.models.GenericConfirmationNetworkTransaction attribute)

 	conflict_resolver (cryptoassets.core.app.CryptoAssetsApp attribute)

 	ConflictResolver (class in cryptoassets.core.utils.conflictresolver)

 	create_account() (cryptoassets.core.models.GenericWallet method)

 	create_address() (cryptoassets.core.backend.base.CoinBackend method)

 	create_engine() (cryptoassets.core.tests.base.CoinTestRoot method)

 	create_import_transaction() (in module cryptoassets.core.tools.walletimport)

 	create_receiving_address() (cryptoassets.core.models.GenericWallet method)

 	create_tables() (cryptoassets.core.app.CryptoAssetsApp method)

 	create_transaction_updater() (cryptoassets.core.backend.base.CoinBackend method)

 	created_at (cryptoassets.core.models.GenericAccount attribute)

 	

 	(cryptoassets.core.models.GenericNetworkTransaction attribute)

 	(cryptoassets.core.models.GenericTransaction attribute)

 	(cryptoassets.core.models.GenericWallet attribute)

 	credited_at (cryptoassets.core.models.GenericTransaction attribute)

 	cryptoassets.core.app (module)

 	cryptoassets.core.backend.base (module)

 	

 	cryptoassets.core.backend.bitcoind (module)

 	cryptoassets.core.backend.blockchain (module)

 	cryptoassets.core.backend.blockio (module)

 	cryptoassets.core.backend.blockiowebhook (module)

 	cryptoassets.core.backend.blockiowebsocket (module)

 	cryptoassets.core.backend.httpwalletnotify (module)

 	cryptoassets.core.backend.null (module)

 	cryptoassets.core.backend.pipewalletnotify (module)

 	cryptoassets.core.backend.rediswalletnotify (module)

 	cryptoassets.core.backend.transactionupdater (module)

 	cryptoassets.core.coin.applebyte.models (module), [1]

 	cryptoassets.core.coin.bitcoin.models (module), [1]

 	cryptoassets.core.coin.defaults (module)

 	cryptoassets.core.coin.dogecoin.models (module), [1]

 	cryptoassets.core.coin.litecoin.models (module)

 	cryptoassets.core.coin.registry (module)

 	cryptoassets.core.coin.validate (module)

 	cryptoassets.core.configure (module)

 	cryptoassets.core.event.events (module)

 	cryptoassets.core.event.http (module)

 	cryptoassets.core.event.python (module)

 	cryptoassets.core.event.script (module)

 	cryptoassets.core.service.main (module)

 	cryptoassets.core.tests.base (module)

 	cryptoassets.core.tests.test_conflictresolver (module)

 	cryptoassets.core.tools.broadcast (module)

 	cryptoassets.core.tools.confirmationupdate (module)

 	cryptoassets.core.tools.receivescan (module)

 	cryptoassets.core.tools.walletimport (module)

 	cryptoassets.core.utils.conflictresolver (module)

 	cryptoassets.core.utils.dictutil (module)

 	cryptoassets.core.utils.enum (module)

 	cryptoassets.core.utils.httpeventlistener (module)

 	cryptoassets.core.utils.tunnel (module)

 	CryptoAssetsApp (class in cryptoassets.core.app)

D

 	

 	database (cryptoassets.core.app.Subsystem attribute)

 	DATABASE_COFLICT_ERRORS (in module cryptoassets.core.utils.conflictresolver)

 	

 	deposit() (cryptoassets.core.models.GenericWallet method)

 	do_broadcasts() (cryptoassets.core.tools.broadcast.Broadcaster method)

E

 	

 	engine (cryptoassets.core.app.CryptoAssetsApp attribute)

 	

 	event_handler_registry (cryptoassets.core.app.CryptoAssetsApp attribute)

 	

 	(cryptoassets.core.app.Subsystem attribute)

 	(cryptoassets.core.backend.transactionupdater.TransactionUpdater attribute)

F

 	

 	fetch_next_txids() (cryptoassets.core.backend.base.ListTransactionsIterator method)

G

 	

 	GenericAccount (class in cryptoassets.core.models)

 	GenericAddress (class in cryptoassets.core.models)

 	GenericConfirmationNetworkTransaction (class in cryptoassets.core.models)

 	GenericNetworkTransaction (class in cryptoassets.core.models)

 	GenericTransaction (class in cryptoassets.core.models)

 	GenericWallet (class in cryptoassets.core.models)

 	get() (cryptoassets.core.coin.registry.CoinRegistry method)

 	get_account_by_address() (cryptoassets.core.models.GenericWallet method)

 	get_active_external_received_transcations() (cryptoassets.core.models.GenericWallet method)

 	get_backend_balance() (cryptoassets.core.backend.base.CoinBackend method)

 	get_balance_by_confirmations() (cryptoassets.core.models.GenericAddress method)

 	get_balances() (cryptoassets.core.backend.base.CoinBackend method)

 	get_broadcast() (cryptoassets.core.tools.broadcast.Broadcaster method)

 	

 	get_by_id() (cryptoassets.core.models.GenericWallet class method)

 	get_deposit_transactions() (cryptoassets.core.models.GenericWallet method)

 	get_open_network_transactions() (in module cryptoassets.core.tools.confirmationupdate)

 	get_or_create_by_name() (cryptoassets.core.models.GenericWallet class method)

 	get_or_create_deposit() (cryptoassets.core.models.GenericNetworkTransaction class method)

 	get_or_create_external_address() (cryptoassets.core.models.GenericWallet method)

 	get_or_create_network_fee_account() (cryptoassets.core.models.GenericWallet method)

 	get_pending_outgoing_transactions() (cryptoassets.core.models.GenericWallet method)

 	get_received_transactions() (cryptoassets.core.models.GenericAddress method)

 	get_receiving_addresses() (cryptoassets.core.models.GenericWallet method)

 	get_unconfirmed_balance() (cryptoassets.core.models.GenericAccount method)

 	get_wallet() (cryptoassets.core.tools.broadcast.Broadcaster method)

H

 	

 	handle_wallet_notify() (cryptoassets.core.backend.transactionupdater.TransactionUpdater method)

 	has_inet() (in module cryptoassets.core.tests.base)

 	

 	has_local_bitcoind() (in module cryptoassets.core.tests.base)

 	HashAddresValidator (class in cryptoassets.core.coin.validate)

I

 	

 	id (cryptoassets.core.models.GenericAccount attribute)

 	

 	(cryptoassets.core.models.GenericAddress attribute)

 	(cryptoassets.core.models.GenericNetworkTransaction attribute)

 	(cryptoassets.core.models.GenericTransaction attribute)

 	(cryptoassets.core.models.GenericWallet attribute)

 	import_unaccounted_balance() (in module cryptoassets.core.tools.walletimport)

 	incoming_transaction_runnables (cryptoassets.core.service.main.Service attribute)

 	incoming_transactions (cryptoassets.core.app.Subsystem attribute)

 	IncomingTransactionRunnable (class in cryptoassets.core.backend.base)

 	

 	initialize_db() (cryptoassets.core.service.main.Service method)

 	is_enabled() (cryptoassets.core.app.CryptoAssetsApp method)

 	is_retryable_exception() (cryptoassets.core.utils.conflictresolver.ConflictResolver class method)

 	is_slow_test_hostile() (in module cryptoassets.core.tests.base)

L

 	

 	label (cryptoassets.core.models.GenericAddress attribute)

 	

 	(cryptoassets.core.models.GenericTransaction attribute)

 	last_wallet_notify (cryptoassets.core.backend.transactionupdater.TransactionUpdater attribute)

 	list_received_transactions() (cryptoassets.core.backend.base.CoinBackend method)

 	ListTransactionsIterator (class in cryptoassets.core.backend.base)

 	

 	load_from_dict() (cryptoassets.core.configure.Configurator method)

 	load_yaml_file() (cryptoassets.core.configure.Configurator method)

 	logger (in module cryptoassets.core.configure)

 	

 	(in module cryptoassets.core.service.main)

M

 	

 	managed_non_retryable_transaction() (cryptoassets.core.utils.conflictresolver.ConflictResolver method)

 	managed_transaction() (cryptoassets.core.utils.conflictresolver.ConflictResolver method)

 	mark_transaction_processed() (cryptoassets.core.models.GenericWallet method)

 	

 	max_confirmation_count (cryptoassets.core.coin.registry.Coin attribute)

 	max_tracked_incoming_confirmations (cryptoassets.core.backend.base.CoinBackend attribute)

 	merge_dict() (in module cryptoassets.core.utils.dictutil)

N

 	

 	name (cryptoassets.core.coin.registry.Coin attribute)

 	

 	(cryptoassets.core.models.GenericAccount attribute)

 	(cryptoassets.core.models.GenericWallet attribute)

 	NETWORK_FEE_ACCOUNT (cryptoassets.core.models.GenericAccount attribute)

 	network_transaction_model (cryptoassets.core.coin.registry.Coin attribute)

 	

 	NetworkCodeAddressValidator (class in cryptoassets.core.coin.validate)

 	NetworkTransaction (cryptoassets.core.coin.registry.CoinModelDescription attribute)

O

 	

 	open_readonly_session() (cryptoassets.core.app.CryptoAssetsApp method)

 	open_session() (cryptoassets.core.app.CryptoAssetsApp method)

 	

 	opened_at (cryptoassets.core.models.GenericNetworkTransaction attribute)

P

 	

 	pick_next_receiving_address_label() (cryptoassets.core.models.GenericAccount method)

 	poll_broadcast() (cryptoassets.core.service.main.Service method)

 	poll_network_transaction_confirmations() (cryptoassets.core.service.main.Service method)

 	

 	prepare_yaml_file() (cryptoassets.core.configure.Configurator static method)

 	processed_at (cryptoassets.core.models.GenericTransaction attribute)

R

 	

 	refresh_account_balance() (cryptoassets.core.models.GenericWallet method)

 	refresh_total_balance() (cryptoassets.core.models.GenericWallet method)

 	register_new_addresses() (cryptoassets.core.backend.base.IncomingTransactionRunnable method)

 	

 	require_tracking_incoming_confirmations() (cryptoassets.core.backend.base.CoinBackend method)

 	run_thread_monitor() (cryptoassets.core.service.main.Service method)

S

 	

 	scan_received() (cryptoassets.core.service.main.Service method)

 	ScriptNotificationFailed

 	send() (cryptoassets.core.backend.base.CoinBackend method)

 	

 	(cryptoassets.core.models.GenericWallet method)

 	send_broadcasts() (cryptoassets.core.tools.broadcast.Broadcaster method)

 	send_external() (cryptoassets.core.models.GenericWallet method)

 	send_internal() (cryptoassets.core.models.GenericWallet method)

 	Service (class in cryptoassets.core.service.main)

 	setup() (cryptoassets.core.service.main.Service method)

 	setup_backend() (cryptoassets.core.configure.Configurator method)

 	setup_balance() (cryptoassets.core.tests.base.CoinTestRoot method)

 	setup_coin() (cryptoassets.core.tests.base.CoinTestRoot method)

 	setup_engine() (cryptoassets.core.configure.Configurator method)

 	setup_event_handlers() (cryptoassets.core.configure.Configurator method)

 	setup_incoming_notifications() (cryptoassets.core.service.main.Service method)

 	setup_incoming_transactions() (cryptoassets.core.backend.base.CoinBackend method)

 	setup_model() (cryptoassets.core.configure.Configurator method)

 	

 	setup_receiving() (cryptoassets.core.tests.base.CoinTestRoot method)

 	setup_service() (cryptoassets.core.configure.Configurator method)

 	setup_service_logging() (cryptoassets.core.configure.Configurator class method)

 	setup_session() (cryptoassets.core.app.CryptoAssetsApp method)

 	

 	(cryptoassets.core.service.main.Service method)

 	setup_sigterm() (cryptoassets.core.service.main.Service method)

 	setup_startup() (cryptoassets.core.configure.Configurator class method)

 	setup_status_server() (cryptoassets.core.configure.Configurator method)

 	shutdown() (cryptoassets.core.service.main.Service method)

 	simple_http_event_listener() (in module cryptoassets.core.utils.httpeventlistener)

 	splash_version() (in module cryptoassets.core.service.main)

 	start() (cryptoassets.core.service.main.Service method)

 	start_status_server() (cryptoassets.core.service.main.Service method)

 	state (cryptoassets.core.models.GenericTransaction attribute)

 	stats (cryptoassets.core.backend.transactionupdater.TransactionUpdater attribute)

 	status_server (cryptoassets.core.app.CryptoAssetsApp attribute)

 	

 	(cryptoassets.core.app.Subsystem attribute)

 	(cryptoassets.core.service.main.Service attribute)

 	Subsystem (class in cryptoassets.core.app)

T

 	

 	teardown_receiving() (cryptoassets.core.tests.base.CoinTestRoot method)

 	test_broadcast_no_transactions() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_cannot_import_existing_address() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_charge_network_fee() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_create_account() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_create_address() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_get_receiving_addresses() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_receive_external_spoofed() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_refresh_account_balance() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_send_external() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_send_internal() (cryptoassets.core.tests.base.CoinTestCase method)

 	

 	test_send_internal_low_balance() (cryptoassets.core.tests.base.CoinTestCase method)

 	test_send_internal_same_account() (cryptoassets.core.tests.base.CoinTestCase method)

 	Transaction (cryptoassets.core.coin.registry.CoinModelDescription attribute)

 	transaction() (cryptoassets.core.utils.conflictresolver.ConflictResolver method)

 	transaction_model (cryptoassets.core.coin.registry.Coin attribute)

 	transaction_retries (cryptoassets.core.app.CryptoAssetsApp attribute)

 	transaction_type (cryptoassets.core.models.GenericNetworkTransaction attribute)

 	TransactionUpdater (class in cryptoassets.core.backend.transactionupdater)

 	txid (cryptoassets.core.models.GenericNetworkTransaction attribute)

 	

 	(cryptoassets.core.models.GenericTransaction attribute)

 	txupdate() (in module cryptoassets.core.event.events)

U

 	

 	update_confirmations() (in module cryptoassets.core.tools.confirmationupdate)

 	update_network_transaction_confirmations() (cryptoassets.core.backend.transactionupdater.TransactionUpdater method)

 	

 	updated_at (cryptoassets.core.models.GenericAccount attribute)

 	

 	(cryptoassets.core.models.GenericWallet attribute)

V

 	

 	validate_address() (cryptoassets.core.coin.registry.Coin method)

 	

 	(cryptoassets.core.coin.validate.AddressValidator method)

 	

 	verify_amount() (cryptoassets.core.backend.transactionupdater.TransactionUpdater method)

W

 	

 	wait_address() (cryptoassets.core.tests.base.CoinTestRoot method)

 	Wallet (cryptoassets.core.coin.registry.CoinModelDescription attribute)

 	

 	wallet_model (cryptoassets.core.coin.registry.Coin attribute)

 Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/koalatrain.jpg

_static/down.png

_static/up.png

_static/file.png

_static/plus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 All modules for which code is available

		cryptoassets.core.app

		cryptoassets.core.backend.base

		cryptoassets.core.backend.transactionupdater

		cryptoassets.core.coin.registry

		cryptoassets.core.coin.validate

		cryptoassets.core.configure

		cryptoassets.core.event.events

		cryptoassets.core.event.script

		cryptoassets.core.models

		cryptoassets.core.service.main

		cryptoassets.core.tests.base

		cryptoassets.core.tools.broadcast

		cryptoassets.core.tools.confirmationupdate

		cryptoassets.core.tools.walletimport

		cryptoassets.core.utils.conflictresolver

		cryptoassets.core.utils.dictutil

		cryptoassets.core.utils.enum

		cryptoassets.core.utils.httpeventlistener

		sqlalchemy.sql.schema

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/app.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.app

"""Cryptoassets application manager."""
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session

from .models import Base

from .utils.enum import AutoNumber
from .utils.conflictresolver import ConflictResolver

[docs]class Subsystem(AutoNumber):
 """Enumerator for available cryptoassets library subsystems.

 Depending on your application entry point and user case, you might not want to initialize all features of cryptoassets framework within your Python application. For example, multiple web server processes cannot initialize status server each, but this functinonality is purposed for the daemon applications.
 """

 #: Initialize database connections
 database = ()

 #: Open HTTP status server running
 status_server = ()

 #: Try to connect to backend APIs
 backend = ()

 #: Start processes and threads for broadcasting outgoing transactions
 broadcast = ()

 #: Start processes and threads for walletnotify hooks
 incoming_transactions = ()

 #: Post notifications
 event_handler_registry = ()

ALL_SUBSYSTEMS = Subsystem.__members__.values()

[docs]class CryptoAssetsApp:
 """This class ties all strings together to make a runnable cryptoassets app."""

 def __init__(self, subsystems=[Subsystem.database, Subsystem.backend]):
 """Initialize a cryptoassets framework.

 :param subsystems: Give the list of subsystems you want to initialize. Because the same configuration file can be used by e.g. both web server and command line application, and config file parts like status server are only relevant in the context of the command line application, this can tell the cryptoassets framework how to set up itself. By default it initializes all the subsystems.
 """

 self.subsystems = subsystems

 #: SQLAlchemy database used engine
 self.engine = None

 #: cryptoassets.core.coin.registry.CoinRegistry instance
 self.coins = {}

 #: Dict of notify handlers
 self.event_handler_registry = {}

 self.session = None

 #: Configured status server
 #: See notes in cryptoassets.core.service.main.Service
 self.status_server = None

 #: The number of attempts we try to replay conflicted transactions. Set by configuration.
 self.transaction_retries = None

 #: cryptoassets.core.utils.conflictresolver.ConflictResolver instance we use to resolve database conflicts
 self.conflict_resolver = None

[docs] def is_enabled(self, subsystem):
 """Are we running with a specific subsystem enabled."""
 return subsystem in self.subsystems

[docs] def setup_session(self, transaction_retries=3):
 """Configure SQLAlchemy models and transaction conflict resolutoin.

 Also, bind created cryptocurrency models to their configured backends.
 """

 if not self.is_enabled(Subsystem.database):
 raise RuntimeError("Database subsystem was not enabled")

 self.Session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=self.engine))

 self.conflict_resolver = ConflictResolver(self.open_session, self.transaction_retries)

 for name, coin in self.coins.all():
 coin.wallet_model.backend = coin.backend
 coin.address_model.backend = coin.backend
 coin.transaction_model.backend = coin.backend
 coin.account_model.backend = coin.backend

[docs] def open_session(self):
 """Get new read-write session for the database."""
 return self.Session()

[docs] def open_readonly_session(self):
 """Get new read-only access to database.

 This session can never write to db, so db can ignore transactions and optimize for speed.

 TODO
 """
 raise NotImplementedError()

[docs] def create_tables(self):
 """Create database tables.

 Usually call only once when settings up the production database, or every time unit test case runs.
 """
 if not self.is_enabled(Subsystem.database):
 raise RuntimeError("Database subsystem was not enabled")

 Base.metadata.create_all(self.engine)

[docs] def clear_tables(self):
 """Delete all data in the database, but leaving tables intact.

 Useful to get clean state in unit testing.

 .. warning ::

 No questions asked. Don't dare to call outside testing or your data is really gone.
 """
 for name, coin in self.coins.all():
 with self.conflict_resolver.transaction() as session:
 session.query(coin.wallet_model).delete()
 session.query(coin.transaction_model).delete()
 session.query(coin.network_transaction_model).delete()
 session.query(coin.account_model).delete()
 session.query(coin.address_model).delete()

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/models.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.models

"""Base classes for SQL Alchemy models.

A set of abstract base classes which each cryptocurrency can inherit from.
Some special dependencies and hints need to be given for subclasses in order for
SQLAlchemy to be able to generate tables correctly.

See cryptoassets.coin modules for examples.
"""

import datetime
from collections import Counter
from decimal import Decimal

from sqlalchemy.sql import func
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import Numeric
from sqlalchemy import String
from sqlalchemy import Date
from sqlalchemy import DateTime
from sqlalchemy import ForeignKey
from sqlalchemy import Enum
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy.orm import relationship
from sqlalchemy.orm import scoped_session
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm.session import Session
from sqlalchemy.schema import UniqueConstraint

Base = declarative_base()

def _now():
 return datetime.datetime.utcnow()

class NotEnoughAccountBalance(Exception):
 """The user tried to send too much from a specific account. """

class NotEnoughWalletBalance(Exception):
 """The user tried to send too much from a specific account.

 This should be only raised through coin backend API reply
 and we never check this internally.
 """

class SameAccount(Exception):
 """Cannot do internal transaction within the same account.

 """

class BadAddress(Exception):
 """Cannot send to invalid address."""

class CannotCreateAddress(Exception):
 """Backend failed to create a new receiving address."""

class TableName:
 """Mix-in class to create database tables based on the coin description. """

 @declared_attr
 def __tablename__(cls):
 if not hasattr(cls, "coin_description"):
 # Abstract base class
 return None
 return cls.coin_description.name()

class CoinBackend:
 """Mix-in class to allow coin backend property on models."""

 #: Set by cryptoassets.app.CryptoassetsApp.setup_session
 backend = None

class CoinDescriptionModel(Base):
 """Base class for all cryptocurrency models."""

 __abstract__ = True

 #: Reference to :py:class:`cryptoassets.core.coin.registry.CoinDescription` which tells the relationships between this model and its counterparts in the system
 coin_description = None

[docs]class GenericAccount(CoinDescriptionModel, CoinBackend):
 """ An account within the wallet.

 We associate addresses and transactions to one account.

 The accountn can be owned by some user (user's wallet), or it can be escrow account or some other form of automatic transaction account.

 The transaction between the accounts of the same wallet are internal
 and happen off-blockhain.

 A special account is reserved for network fees caused by outgoing transactions.
 """
 #: Special label for an account where wallet
 #: will put all network fees charged by the backend
 NETWORK_FEE_ACCOUNT = "Network fees"

 __abstract__ = True

 #: Running counter used in foreign key references
 id = Column(Integer, primary_key=True)

 #: Human-readable name for this account
 name = Column(String(255),)

 #: When this account was created
 created_at = Column(DateTime, default=_now)

 #: Then the balance was updated, or new address generated
 updated_at = Column(DateTime, onupdate=_now)

 #: Available internal balance on this account
 #: NOTE: Accuracy checked for bitcoin only
 balance = Column(Numeric(21, 8), default=0, nullable=False)

 def __init__(self):
 self.balance = 0

 @declared_attr
 def __tablename__(cls):
 return cls.coin_description.account_table_name

 @declared_attr
 def wallet_id(cls):
 return Column(Integer, ForeignKey('{}.id'.format(cls.coin_description.wallet_table_name)))

 @declared_attr
 def wallet(cls):
 return relationship(cls.coin_description.wallet_model_name, backref="accounts")

[docs] def pick_next_receiving_address_label(self):
 """Generates a new receiving address label which is not taken yet.

 Some services, like block.io, requires all receiving addresses to have an unique label. We use this helper function in the situations where it is not meaningful to hand-generate labels every time.

 Generated labels are not user-readable, they are only useful for admin and accounting purposes.
 """
 session = Session.object_session(self)

 Address = self.coin_description.Address
 addresses = session.query(Address).filter(Address.account == self)
 friendly_date = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S")
 return "Receiving address #{} for account #{} created at {}".format(addresses.count()+1, self.id, friendly_date)

[docs] def get_unconfirmed_balance(self):
 """Get the balance of this incoming transactions balance.

 TODO: Move to its own subclass

 TODO: Denormalize unconfirmed balances for faster look up?

 :return: Decimal
 """
 session = Session.object_session(self)

 Transaction = self.coin_description.Transaction
 NetworkTransaction = self.coin_description.NetworkTransaction
 Address = self.coin_description.Address
 Account = self.__class__

 unconfirmed_amount = func.sum(Transaction.amount).label("unconfirmed_amount")
 unconfirmed_amounts = session.query(unconfirmed_amount).join(NetworkTransaction).filter(NetworkTransaction.confirmations < NetworkTransaction.confirmation_count).join(Address).filter(Address.account == self)

 results = unconfirmed_amounts.all()
 assert len(results) == 1
 # SQL might spit out None if no matching rows
 return results[0][0] or Decimal(0)

 def __str__(self):
 return "ACC:{} name:{} bal:{} wallet:{}".format(self.id, self.name, self.balance, self.wallet.id if self.wallet else "-")

[docs]class GenericAddress(CoinDescriptionModel):
 """ The base class for cryptocurrency addresses.

 The address can represent a

 * Receiving address in our system. In this case we have **account** set to non-NULL.

 * External address outside our system. In this **account** is set to NULL. This address has been referred in outgoing broadcast (XXX: subject to change)

 We can know about receiving addresses which are addresses without our system where somebody can deposit cryptocurrency. We also know about outgoing addresses where somebody has sent cryptocurrency from our system. For outgoing addresses ``wallet`` reference is null.

 .. warning::

 Some backends (block.io) enforce that receiving address labels must be unique across the system. Other's don't.
 Just bear this in mind when creating address labels. E.g. suffix them with a timetamp to make them more unique.

 """
 __abstract__ = True

 #: Running counter used in foreign key references
 id = Column(Integer, primary_key=True)

 #: The string presenting the address label in the network
 address = Column(String(127), nullable=False)

 #: Human-readable label for this address. User for the transaction history listing of the user.
 label = Column(String(255))

 #: Received balance of this address. Only *confirmed* deposits count, filtered by GenericConfirmationTransaction.confirmations. For getting other balances, check ``get_balance_by_confirmations()``.
 #: NOTE: Numeric Accuracy checked for Bitcoin only ATM
 balance = Column(Numeric(21, 8), default=0, nullable=False)
 created_at = Column(DateTime, default=_now)
 updated_at = Column(DateTime, onupdate=_now)

 #: Archived addresses are no longer in active incoming transaction polling
 #: and may not appear in the user wallet list
 archived_at = Column(DateTime, default=None, nullable=True)

 @declared_attr
 def __tablename__(cls):
 return cls.coin_description.address_table_name

 @declared_attr
 def account_id(cls):
 assert cls.coin_description.account_table_name
 return Column(Integer, ForeignKey(cls.coin_description.account_table_name + ".id"))

 def is_deposit(self):
 return self.account is not None

 #: If account is set to nul then this is an external address
 @declared_attr
 def account(cls):
 """The owner account of this receiving addresses.

 This is None if the address is not a receiving addresses, but only exists in the network, outside our system.
 """
 assert cls.coin_description.account_model_name
 return relationship(cls.coin_description.account_model_name, backref="addresses")

[docs] def get_received_transactions(self, external=True, internal=True):
 """Get all transactions this address have received, both internal and external deposits."""
 session = Session.object_session(self)
 Transaction = self.coin_description.Transaction

 q_internal = session.query(Transaction).filter(Transaction.sending_account != None, Transaction.receiving_account == self) # noqa

 q_external = session.query(Transaction).filter(Transaction.network_transaction != None, Transaction.address == self) # noqa

 if internal and external:
 return q_internal.union(q_external)
 elif internal:
 return q_internal
 elif external:
 return q_external
 else:
 return None

[docs] def get_balance_by_confirmations(self, confirmations=0, include_internal=True):
 """Calculates address's received balance of all arrived incoming transactions where confirmation count threshold is met.

 By default confirmations is zero, so we get unconfirmed balance.

 .. note ::

 This is all time received balance, not balance left after spending.

 TODO: Move to its own subclass

 :param confirmations: Confirmation count as threshold
 """
 total = 0

 for t in self.get_received_transactions():
 if t.network_transaction:
 if t.network_transaction.confirmations >= confirmations:
 total += t.amount
 elif t.state == "internal":
 assert t.receiving_account == self
 total += t.amount
 else:
 raise RuntimeError("Cannot handle tx {}".format(t))

 return total

 @declared_attr
 def __table_args__(cls):
 return (UniqueConstraint('account_id', 'address', name='_account_address_uc'),)

 def __str__(self):
 return "Addr:{} [{}] deposit:{} account:{} balance:{} label:{} updated:{}".format(self.id, self.address, self.is_deposit(), self.account and self.account.id or "-", self.balance, self.label, self.updated_at)

[docs]class GenericTransaction(CoinDescriptionModel):
 """A transaction between accounts, incoming transaction or outgoing transaction.

 Transactions can be classified as following:

 * Deposit: Incoming, external, transaction from cryptocurrency network.

 * Has ``network_transaction`` set.

 * Has ``receiving_account`` set.

 * No ``sending_account``

 * Broadcast: Outgoign, external, transaction to cryptocurrency network.

 * Has ``network_transaction`` set.

 * Has ``receiving_account`` set.

 * No ``receiving_account``

 * Internal transactions

 * Which are not visible outside our system.

 * have both ``sending_account`` and ``receiving_account`` set.

 * ``network_transaction`` is null

 * Internal transactions can be further classified as: ``ìnternal`` (normal between accounts), ``balance_import`` (initial wallet import to system) and ``network_fee`` (fees accounted to the network fee account when transaction was broadcasted)

 """
 __abstract__ = True

 #: Running counter used in foreign key references
 id = Column(Integer, primary_key=True)

 #: When this transaction become visible in our database
 created_at = Column(DateTime, default=_now)

 #: When the incoming transaction was credited on the account.
 #: For internal transactions it is instantly.
 #: For external transactions this is when the confirmation threshold is exceeded.
 credited_at = Column(DateTime, nullable=True, default=None)

 #: When this transaction was processed by the application.
 #: For outgoing transactions this is the broadcasting time.
 #: For incoming transactions, your application may call
 #: ``mark_as_processed`` to mark it has handled the transaction.
 processed_at = Column(DateTime, nullable=True, default=None)

 #: Amount in the cryptocurrency minimum unit
 #: Note: Accuracy checked for Bitcoin only
 amount = Column(Numeric(21, 8))

 #: Different states this transaction can be
 #:
 #: **pending**: outgoing transaction waiting for the broadcast
 #:
 #: **broadcasted**: outgoing transaction has been sent to the network
 #:
 #: **incoming**: we see the transaction incoming to our system, but the confirmation threshold is not exceeded yet
 #
 #: **processed**: the application marked this transaction as handled and cryptoassets.core stops trying to notify your application about the transaction
 #:
 #: **internal**: This transaction was between the accounts within one of our wallets
 #:
 #: **network_fee**: When the transaction has been broadcasted, we create an internal transaction to account the occured network fees
 #:
 state = Column(Enum('pending', 'broadcasted', 'incoming', 'processed', 'internal', 'network_fee', 'balance_import', name="transaction_state"), nullable=False)

 #: Human readable label what this transaction is all about.
 #: Must be unique for each account
 label = Column(String(255), nullable=True)

 # Dynamically generated attributes based on the coin name

 @declared_attr
 def __tablename__(cls):
 return cls.coin_description.transaction_table_name

 @declared_attr
 def wallet_id(cls):
 return Column(Integer, ForeignKey(cls.coin_description.wallet_table_name + ".id"), nullable=False)

 @declared_attr
 def address_id(cls):
 return Column(Integer, ForeignKey(cls.coin_description.address_table_name + ".id"), nullable=True)

 @declared_attr
 def sending_account_id(cls):
 return Column(Integer, ForeignKey(cls.coin_description.account_table_name + ".id"))

 @declared_attr
 def receiving_account_id(cls):
 return Column(Integer, ForeignKey(cls.coin_description.account_table_name + ".id"))

 @declared_attr
 def network_transaction_id(cls):
 return Column(Integer, ForeignKey(cls.coin_description.network_transaction_table_name + ".id"))

 @declared_attr
 def address(cls):
 """ External cryptocurrency network address associated with the transaction.

 For outgoing transactions this is the walletless Address object holding only
 the address string.

 For incoming transactions this is the Address object with the reference
 to the Account object who we credited for this transfer.
 """
 return relationship(cls.coin_description.address_model_name, # noqa
 primaryjoin="{}.address_id == {}.id".format(cls.__name__, cls.coin_description.address_model_name),
 backref="transactions")

 @declared_attr
 def sending_account(cls):
 """ The account where the payment was made from.
 """
 return relationship(cls.coin_description.account_model_name, # noqa
 primaryjoin="{}.sending_account_id == {}.id".format(cls.__name__, cls.coin_description.account_model_name),
 backref="sent_transactions")

 @declared_attr
 def receiving_account(cls):
 """ The account which received the payment.
 """
 return relationship(cls.coin_description.account_model_name, # noqa
 primaryjoin="{}.receiving_account_id == {}.id".format(cls.__name__, cls.coin_description.account_model_name),
 backref="received_transactions")

 @declared_attr
 def network_transaction(cls):
 """Associated cryptocurrency network transaction.
 """
 return relationship(cls.coin_description.network_transaction_model_name, # noqa
 primaryjoin="{}.network_transaction_id == {}.id".format(cls.__name__, cls.coin_description.network_transaction_model_name),
 backref="transactions")

 @declared_attr
 def wallet(cls):
 """ Which Wallet object contains this transaction.
 """
 return relationship(cls.coin_description.wallet_model_name, backref="transactions")

[docs] def can_be_confirmed(self):
 """ Return if the transaction can be considered as final.
 """
 return True

 @property
 def txid(self):
 """Return txid of associated network transaction (if any).

 Shortcut for ``self.network_transaction.txid``.
 """
 if self.network_transaction:
 return self.network_transaction.txid
 return None

 def __str__(self):
 # TODO: Move confirmations part to subclass
 return "TX:{} state:{} txid:{} sending acco:{} receiving acco:{} amount:{}, confirms:{}".format(self.id, self.state, self.txid, self.sending_account and self.sending_account.id, self.receiving_account and self.receiving_account.id, self.amount, getattr(self, "confirmations", "-"))

class GenericConfirmationTransaction(GenericTransaction):
 """Mined transaction which receives "confirmations" from miners in blockchain.

 This works in pair with :py:class:`cryptoassets.core.models.GenericConfirmationNetworkTransaction`. :py:class`GenericConfirmationTransaction` has logic to decide when the incoming transaction is final and the balance in the coming transaction appears credited on :py:class:`cryptoassets.core.models.GenericAccount`.
 """

 __abstract__ = True

 #: How many confirmations to wait until the deposit is set as credited.
 #: TODO: Make this configurable.
 confirmation_count = 3

 def can_be_confirmed(self):
 """Does this transaction have enough confirmations it could be confirmed by our standards."""
 return self.confirmations >= self.confirmation_count

 @property
 def confirmations(self):
 """Get number of confirmations the incoming NetworkTransaction has.

 .. note::

 Currently confirmations count supported only for deposit transactions.

 :return: -1 if the confirmation count is not available
 """

 # -1 was chosen instead of none to make confirmation count easier

 ntx = self.network_transaction
 if ntx is None:
 return -1

 if ntx.confirmations is None:
 return -1

 assert ntx
 assert isinstance(ntx, GenericConfirmationNetworkTransaction)
 return ntx.confirmations

[docs]class GenericWallet(CoinDescriptionModel, CoinBackend):
 """ A generic wallet implemetation.

 Inside the wallet there is a number of accounts.

 We support internal transaction between the accounts of the same wallet as off-chain transactions. If you call ``send()``for the address which is managed by the same wallet, an internal transaction is created by ``send_internal()``.
 """

 __abstract__ = True

 #: Running counter used in foreign key references
 id = Column(Integer, primary_key=True)

 #: The human-readable name for this wallet. Only used for debugging purposes.
 name = Column(String(255), unique=True)

 #: When this wallet was created
 created_at = Column(Date, default=_now)

 #: Last time when the balance was updated or new receiving address created.
 updated_at = Column(Date, onupdate=_now)

 #: The total balance of this wallet in the minimum unit of cryptocurrency
 #: NOTE: accuracy checked for Bitcoin only
 balance = Column(Numeric(21, 8))

 @declared_attr
 def __tablename__(cls):
 return cls.coin_description.wallet_table_name

 def __init__(self):
 self.balance = 0

 @classmethod
[docs] def get_by_id(cls, session, wallet_id):
 """Returns an existing wallet instance by its id.

 :return: Wallet instance
 """

 assert wallet_id
 assert type(wallet_id) == int

 instance = session.query(cls).get(wallet_id)
 return instance

 @classmethod
[docs] def get_or_create_by_name(cls, name, session):
 """Returns a new or existing instance of a named wallet.

 :return: Wallet instance
 """

 assert name
 assert type(name) == str

 instance = session.query(cls).filter_by(name=name).first()

 if not instance:
 instance = cls()
 instance.name = name
 session.add(instance)

 return instance

[docs] def create_account(self, name):
 """Create a new account inside this wallet.

 :return: GenericAccout object
 """

 session = Session.object_session(self)

 assert session

 account = self.coin_description.Account()
 account.name = name
 account.wallet = self
 session.add(account)
 return account

 def get_account_by_name(self, name):
 session = Session.object_session(self)
 instance = session.query(self.coin_description.Account).filter_by(name=name).first()
 return instance

 def get_or_create_account_by_name(self, name):
 session = Session.object_session(self)

 instance = session.query(self.coin_description.Account).filter_by(name=name).first()
 if not instance:
 instance = self.create_account(name)

 return instance

[docs] def get_or_create_network_fee_account(self):
 """Lazily create the special account where we account all network fees.

 This is for internal bookkeeping only. These fees MAY be
 charged from the users doing the actual transaction, but it
 must be solved on the application level.
 """
 return self.get_or_create_account_by_name(self.coin_description.Account.NETWORK_FEE_ACCOUNT)

[docs] def create_receiving_address(self, account, label=None, automatic_label=False):
 """ Creates a new receiving address.

 All incoming transactions on this address are put on the given account.

 The notifications for transctions to the address might not be immediately available after the address creation depending on the backend. For example, with block.io you need to wait some seconds before it is safe to send anything to the address if you wish to receive the wallet notification.

 :param account: GenericAccount object

 :param label: Label for this address - must be human-readable

 :return: GenericAddress object
 """

 session = Session.object_session(self)

 assert session
 assert account
 assert account.id

 assert label or automatic_label, "You must give explicit label for the address or use automatic_label option"

 if not label and automatic_label:
 label = account.pick_next_receiving_address_label()

 try:
 _address = self.backend.create_address(label=label)
 except Exception as e:
 raise CannotCreateAddress("Backend failed to create address for account {} label {}".format(account.id, label)) from e

 address = self.coin_description.Address()
 address.address = _address
 address.account = account
 address.label = label
 address.wallet = self

 session.add(address)

 return address

[docs] def get_or_create_external_address(self, address):
 """ Create an accounting entry for an address which is outside our system.

 When we send out external transactions, they go to these address entries.
 These addresses do not have wallet or account connected to our system.

 :param address: Address as a string
 """

 assert type(address) == str

 session = Session.object_session(self)

 _address = session.query(self.coin_description.Address).filter_by(address=address, account_id=None).first()
 if not _address:
 _address = self.coin_description.Address()
 _address.address = address
 _address.account = None
 _address.label = "External {}".format(address)
 session.add(_address)

 return _address

[docs] def send(self, from_account, receiving_address, amount, label, force_external=False, testnet=False):
 """Send the amount of cryptocurrency to the target address.

 If the address is hosted in the same wallet do the internal send with :py:meth:`cryptoassets.core.models.GenericWallet.send_internal`, otherwise go through the public blockchain with :py:meth:`cryptoassets.core.models.GenericWallet.send_external`.

 :param from_account: The account owner from whose balance we

 :param receiving_address: Receiving address as a string

 :param amount: Instance of `Decimal`

 :param label: Recorded text to the sending wallet

 :param testnet: Assume the address is testnet address. Currently not used, but might affect address validation in the future.

 :param force_external: Set to true to force the transaction go through the network even if the target address is in our system.

 :return: Transaction object
 """
 session = Session.object_session(self)

 assert isinstance(from_account, self.coin_description.Account)
 assert type(receiving_address) == str
 assert isinstance(amount, Decimal)

 # TODO: Check minimal withdrawal amount

 Address = self.coin_description.Address

 internal_receiving_address = session.query(Address).filter(Address.address == receiving_address, Address.account != None).first() # noqa

 if internal_receiving_address and not force_external:
 to_account = internal_receiving_address.account
 return self.send_internal(from_account, to_account, amount, label)
 else:
 return self.send_external(from_account, receiving_address, amount, label)

[docs] def add_address(self, account, label, address):
 """ Adds an external address under this wallet, under this account.

 There shouldn't be reason to call this directly, unless it is for testing purposes.

 :param account: Account instance

 :param address: Address instance
 """
 session = Session.object_session(self)

 assert session, "Tried to add address to a non-bound wallet object"

 address_obj = self.coin_description.Address()
 address_obj.address = address
 address_obj.account = account
 address_obj.label = label
 session.add(address_obj)
 return address_obj

 def get_accounts(self):
 session = Session.object_session(self)
 # Go through all accounts and all their addresses

 return session.query(self.coin_description.Account).filter(self.coin_description.Account.wallet_id == self.id) # noqa

[docs] def get_account_by_address(self, address):
 """Check if a particular address belongs to receiving address of this wallet and return its account.

 This does not consider bitcoin change addresses and such.

 :return: Account instance or None if the wallet doesn't know about the address
 """
 session = Session.object_session(self)
 addresses = session.query(self.coin_description.Address).filter(self.coin_description.Address.address == address).join(self.coin_description.Account).filter(self.coin_description.Account.wallet_id == self.id) # noqa
 _address = addresses.first()
 if _address:
 return _address.account
 return None

[docs] def get_pending_outgoing_transactions(self):
 """Get the list of outgoing transactions which have not been associated with any broadcast yet."""

 session = Session.object_session(self)
 Transaction = self.coin_description.Transaction
 txs = session.query(Transaction).filter(Transaction.state == "pending", Transaction.receiving_account == None, Transaction.network_transaction == None) # noqa
 return txs

[docs] def get_receiving_addresses(self, archived=False):
 """ Get all receiving addresses for this wallet.

 This is mostly used by the backend to get the list
 of receiving addresses to monitor for incoming transactions
 on the startup.

 :param expired: Include expired addresses
 """

 session = Session.object_session(self)

 if archived:
 raise RuntimeError("TODO")

 # Go through all accounts and all their addresses
 return session.query(self.coin_description.Address).filter(self.coin_description.Address.archived_at == None).join(self.coin_description.Account).filter(self.coin_description.Account.wallet_id == self.id) # noqa

[docs] def get_deposit_transactions(self):
 """Get all deposit transactions to this wallet.

 These are external incoming transactions, both unconfirmed and confirmed.

 :return: SQLAlchemy query of Transaction model
 """

 session = Session.object_session(self)

 # Go through all accounts and all their addresses
 # XXX: Make state handling more robust
 Transaction = self.coin_description.Transaction
 NetworkTransaction = self.coin_description.NetworkTransaction

 return session.query(Transaction).filter(Transaction.wallet == self).filter(Transaction.network_transaction_id != None).join(NetworkTransaction).filter(NetworkTransaction.transaction_type == "deposit") # noqa

[docs] def get_active_external_received_transcations(self):
 """Return unconfirmed transactions which are still pending the network confirmations to be credited.

 :return: SQLAlchemy query of Transaction model
 """
 Transaction = self.coin_description.Transaction
 deposits = self.get_deposit_transactions()
 return deposits.filter(Transaction.credited_at == None) # noqa

[docs] def refresh_account_balance(self, account):
 """Refresh the balance for one account.

 If you have imported any addresses, this will recalculate balances from the backend.

 TODO: This method will be replaced with wallet import.

 TODO: This screws ups bookkeeping, so DON'T call this on production.
 It doesn't write fixing entries yet.

 :param account: GenericAccount instance
 """
 session = Session.object_session(self)

 assert session
 assert account.wallet == self

 addresses = session.query(self.coin_description.Address).filter(self.coin_description.Address.account == account).values("address")

 total_balance = 0

 # The backend might do exists checks using in operator
 # to this, we cannot pass generator, thus list()
 for address, balance in self.backend.get_balances(list(item.address for item in addresses)):
 total_balance += balance
 session.query(self.coin_description.Address).filter(self.coin_description.Address.address == address).update({"balance": balance})

 account.balance = total_balance

[docs] def send_internal(self, from_account, to_account, amount, label, allow_negative_balance=False):
 """ Tranfer currency internally between the accounts of this wallet.

 :param from_account: GenericAccount

 :param to_account: GenericAccount

 :param amount: The amount to transfer in wallet book keeping unit
 """
 session = Session.object_session(self)

 assert from_account
 assert to_account

 assert from_account.wallet == self
 assert to_account.wallet == self
 # Cannot do internal transactions within the account
 assert from_account.id
 assert to_account.id

 assert isinstance(amount, Decimal)

 if from_account.id == to_account.id:
 raise SameAccount("Transaction receiving and sending internal account is same: #{}".format(from_account.id))

 if not allow_negative_balance:
 if from_account.balance < amount:
 raise NotEnoughAccountBalance("Cannot send, needs {} account balance is {}", amount, from_account.balance)

 transaction = self.coin_description.Transaction()
 transaction.sending_account = from_account
 transaction.receiving_account = to_account
 transaction.amount = amount
 transaction.wallet = self
 transaction.credited_at = _now()
 transaction.label = label
 transaction.state = "internal"
 session.add(transaction)

 from_account.balance -= amount
 to_account.balance += amount

 return transaction

[docs] def send_external(self, from_account, to_address, amount, label, testnet=False):
 """Create a new external transaction and put it to the transaction queue.

 When you send cryptocurrency out from the wallet, the transaction is put to the outgoing queue. Only after you broadcast has been performed (:py:mod:`cryptoassets.core.tools.broadcast`) the transaction is send out to the network. This is to guarantee the system responsiveness and fault-tolerance, so that outgoing transactions are created even if we have temporarily lost the connection with the cryptocurrency network. Broadcasting is usually handled by *cryptoassets helper service*.

 :param from_account: Instance of :py:class:`cryptoassets.core.models.GenericAccount`

 :param to_address: Address as a string

 :param amount: Instance of `Decimal`

 :param label: Recorded to the sending wallet history

 :param testnet: to_address is a testnet address

 :return: Instance of :py:class:`cryptoassets.core.models.GenericTransaction`
 """
 session = Session.object_session(self)

 assert session
 assert from_account.wallet == self

 if not self.coin_description.address_validator.validate_address(to_address, testnet):
 raise BadAddress("Cannot send to address {}".format(to_address))

 # TODO: Currently we don't allow
 # negative withdrawals on external sends
 #
 if from_account.balance < amount:
 raise NotEnoughAccountBalance()

 _address = self.get_or_create_external_address(to_address)

 transaction = self.coin_description.Transaction()
 transaction.sending_account = from_account
 transaction.amount = amount
 transaction.state = "pending"
 transaction.wallet = self
 transaction.address = _address
 transaction.label = label
 session.add(transaction)

 from_account.balance -= amount
 self.balance -= amount

 return transaction

[docs] def charge_network_fees(self, broadcast, fee):
 """Account network fees due to transaction broadcast.

 By default this creates a new accounting entry on a special account
 (`GenericAccount.NETWORK_FEE_ACCOUNT`) where the network fees are put.

 :param txs: Internal transactions participating in send

 :param txid: External transaction id

 :param fee: Fee as the integer
 """

 session = Session.object_session(self)

 fee_account = self.get_or_create_network_fee_account()

 # TODO: Not sure which one is better approach
 # assert fee_account.id, "Fee account is not properly constructed, flush() DB"
 session.flush()

 transaction = self.coin_description.Transaction()
 transaction.sending_account = fee_account
 transaction.receiving_account = None
 transaction.amount = fee
 transaction.state = "network_fee"
 transaction.wallet = self
 transaction.label = "Network fees for {}".format(broadcast.txid)

 fee_account.balance -= fee
 self.balance -= fee

 session.add(fee_account)
 session.add(transaction)

[docs] def refresh_total_balance(self):
 """ Make the balance to match with the actual backend.

 This is only useful for send_external() balance checks.
 Actual address balances will be out of sync after calling this
 (if the balance is incorrect).
 """
 self.balance = self.backend.get_balance()

[docs] def deposit(self, ntx, address, amount, extra=None):
 """Informs the wallet updates regarding external incoming transction.

 This method should be called by the coin backend only.

 Write the transaction to the database.
 Notify the application of the new transaction status.
 Wait for the application to mark the transaction as processed.

 Note that we may receive the transaction many times with different confirmation counts.

 :param ntx: Associated :py:class:`cryptoassets.core.models.NetworkTransaction`

 :param address: Address as a string

 :param amount: Int, as the basic currency unit

 :param extra: Extra variables to set on the transaction object as a dictionary. (Currently not used)

 :return: tuple (Account instance, new or existing Transaction object, credited boolean)
 """

 session = Session.object_session(self)

 assert self.id
 assert amount > 0, "Receiving transaction to {} with amount {}".format(address, amount)
 assert ntx
 assert ntx.id
 assert type(address) == str

 _address = session.query(self.coin_description.Address).filter(self.coin_description.Address.address == address).first() # noqa

 assert _address, "Wallet {} does not have address {}".format(self.id, address)
 assert _address.id

 # TODO: Have something smarter here after we use relationships
 account = session.query(self.coin_description.Account).filter(self.coin_description.Account.id == _address.account_id).first() # noqa
 assert account.wallet == self

 # Check if we already have this transaction
 Transaction = self.coin_description.Transaction
 transaction = session.query(Transaction).filter(Transaction.network_transaction_id == ntx.id, self.coin_description.Transaction.address_id == _address.id).first()

 if not transaction:
 # We have not seen this transaction before in the database
 transaction = self.coin_description.Transaction()
 transaction.network_transaction = ntx
 transaction.address = _address
 transaction.state = "incoming"
 transaction.wallet = self
 transaction.amount = amount
 else:
 assert transaction.state in ("incoming", "credited")
 assert transaction.sending_account is None

 transaction.sending_account = None
 transaction.receiving_account = account
 session.add(transaction)

 if not transaction.credited_at:

 if transaction.can_be_confirmed():
 # Consider this transaction to be confirmed and update the receiving account
 transaction.credited_at = _now()
 account.balance += transaction.amount
 _address.balance += transaction.amount
 account.wallet.balance += transaction.amount
 session.add(account)

 return account, transaction

[docs] def mark_transaction_processed(self, transaction_id):
 """ Mark that the transaction was processed by the client application.

 This will stop retrying to post the transaction to the application.
 """

 session = Session.object_session(self)

 assert type(transaction_id) == int

 # Only non-archived addresses can receive transactions
 transactions = session.query(self.coin_description.Transaction.id, self.coin_description.Transaction.state).filter(self.coin_description.Transaction.id == transaction_id, self.coin_description.Transaction.state == "incoming") # noqa

 # We should mark one and only one transaction processed
 assert transactions.count() == 1

 transactions.update(dict(state="processed", processed_at=_now()))

[docs]class GenericNetworkTransaction(CoinDescriptionModel):
 """A transaction in cryptocurrencty networkwhich is concern of our system.

 External transactions can be classified as

 * Deposits: incoming transactions to our receiving addresses

 * Broadcasts: we are sending out currency to the network

 If our intenal transaction (:py:class:`cryptoassets.core.models.Transaction`) has associated network transaction, it's ``transaction.network_transaction`` reference is set. Otherwise transactions are internal transactions and not visible in blockchain.

 .. note ::

 NetworkTransaction does not have reference to wallet. One network transaction may contain transfers to many wallets.

 Handling incoming deposit transactions

 For more information see :py:mod:`cryptoassets.core.backend.transactionupdater` and :py:mod:`cryptoassets.core.tools.confirmationupdate`.

 Broadcasting outgoing transactions

 Broadcast constructs an network transaction and bundles any number of outgoing pending transactions to it. During the broadcast, one can freely bundle transactions together to lower the network fees, or mix transactions for additional privacy.

 Broadcasts are constructed by Cryptoassets helper service which will periodically scan for outgoing transactions and construct broadcasts of them. After constructing, broadcasting is attempted. If the backend, for a reason or another, fails to make a broadcast then this broadcast is marked as open and must be manually vetted to succeeded or failed.

 For more information see :py:mod:`cryptoassets.core.tools.broadcast`.
 """

 __abstract__ = True

 #: Running counter used in foreign key references
 id = Column(Integer, primary_key=True)

 #: When this transaction become visible in our database
 created_at = Column(DateTime, default=_now)

 #: Network transaction has associated with this transaction.
 #: E.g. Bitcoin transaction hash.
 txid = Column(String(255), nullable=True)

 #: Is this transaction incoming or outgoing from our system
 transaction_type = Column(Enum('deposit', 'broadcast', name="network_transaction_type"), nullable=False)

 state = Column(Enum('incoming', 'credited', 'pending', 'broadcasted', name="network_transaction_state"), nullable=False)

 #: When broadcast was marked as outgoing
 opened_at = Column(DateTime)

 #: When broadcast was marked as sent
 closed_at = Column(DateTime)

 @declared_attr
 def __tablename__(cls):
 return cls.coin_description.network_transaction_table_name

 @declared_attr
 def __table_args__(cls):
 """Each txid can appear twice, once for deposit once for broadcast. """
 return (UniqueConstraint('transaction_type', 'txid', name='_transaction_type_txid_uc'),)

 def __str__(self):
 return "NTX:{} type:{} state:{} txid:{} opened_at:{} closed_at:{}".format(self.id, self.transaction_type, self.state, self.txid, self.opened_at, self.closed_at)

 @classmethod
[docs] def get_or_create_deposit(cls, session, txid):
 """Get a hold of incoming transaction.

 :return: tuple(Instance of :py:class:`cryptoassets.core.models.GenericNetworkTransaction`., bool created)
 """
 NetworkTransaction = cls
 instance = session.query(NetworkTransaction).filter_by(transaction_type="deposit", txid=txid).first()

 if not instance:
 instance = NetworkTransaction()
 instance.txid = txid
 instance.transaction_type = "deposit"
 instance.state = "incoming"
 session.add(instance)
 return instance, True
 else:
 return instance, False

[docs]class GenericConfirmationNetworkTransaction(GenericNetworkTransaction):
 """Mined transaction which receives "confirmations" from miners in blockchain.

 This is a subtype of ``GenericNetworkTransaction`` with confirmation counting abilities.
 """
 __abstract__ = True

 #: How many miner confirmations this tx has received. The value is ``-1`` until the transaction is succesfully broadcasted, after which is it ``0``
 confirmations = Column(Integer, nullable=False, default=-1)

 #: How many confirmations to wait until the transaction is set as confirmed.
 #: TODO: Make this configurable.
 confirmation_count = 3

[docs] def can_be_confirmed(self):
 """ Does this transaction have enough confirmations it could be confirmed by our standards. """
 return self.confirmations >= self.confirmation_count

 def __str__(self):
 return "NTX:{} type:{} state:{} txid:{} confirmations:{}, opened_at:{} closed_at:{}".format(self.id, self.transaction_type, self.state, self.txid, self.confirmations, self.opened_at, self.closed_at)

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/sqlalchemy/sql/schema.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for sqlalchemy.sql.schema

sql/schema.py
Copyright (C) 2005-2014 the SQLAlchemy authors and contributors
<see AUTHORS file>
#
This module is part of SQLAlchemy and is released under
the MIT License: http://www.opensource.org/licenses/mit-license.php

"""The schema module provides the building blocks for database metadata.

Each element within this module describes a database entity which can be
created and dropped, or is otherwise part of such an entity. Examples include
tables, columns, sequences, and indexes.

All entities are subclasses of :class:`~sqlalchemy.schema.SchemaItem`, and as
defined in this module they are intended to be agnostic of any vendor-specific
constructs.

A collection of entities are grouped into a unit called
:class:`~sqlalchemy.schema.MetaData`. MetaData serves as a logical grouping of
schema elements, and can also be associated with an actual database connection
such that operations involving the contained elements can contact the database
as needed.

Two of the elements here also build upon their "syntactic" counterparts, which
are defined in :class:`~sqlalchemy.sql.expression.`, specifically
:class:`~sqlalchemy.schema.Table` and :class:`~sqlalchemy.schema.Column`.
Since these objects are part of the SQL expression language, they are usable
as components in SQL expressions.

"""
from __future__ import absolute_import

import inspect
from .. import exc, util, event, inspection
from .base import SchemaEventTarget, DialectKWArgs
from . import visitors
from . import type_api
from .base import _bind_or_error, ColumnCollection
from .elements import ClauseElement, ColumnClause, _truncated_label, \
 _as_truncated, TextClause, _literal_as_text,\
 ColumnElement, _find_columns, quoted_name
from .selectable import TableClause
import collections
import sqlalchemy
from . import ddl
import types

RETAIN_SCHEMA = util.symbol('retain_schema')

def _get_table_key(name, schema):
 if schema is None:
 return name
 else:
 return schema + "." + name

@inspection._self_inspects
class SchemaItem(SchemaEventTarget, visitors.Visitable):
 """Base class for items that define a database schema."""

 __visit_name__ = 'schema_item'

 def _execute_on_connection(self, connection, multiparams, params):
 return connection._execute_default(self, multiparams, params)

 def _init_items(self, *args):
 """Initialize the list of child items for this SchemaItem."""

 for item in args:
 if item is not None:
 item._set_parent_with_dispatch(self)

 def get_children(self, **kwargs):
 """used to allow SchemaVisitor access"""
 return []

 def __repr__(self):
 return util.generic_repr(self)

 @property
 @util.deprecated('0.9', 'Use ``<obj>.name.quote``')
 def quote(self):
 """Return the value of the ``quote`` flag passed
 to this schema object, for those schema items which
 have a ``name`` field.

 """

 return self.name.quote

 @util.memoized_property
 def info(self):
 """Info dictionary associated with the object, allowing user-defined
 data to be associated with this :class:`.SchemaItem`.

 The dictionary is automatically generated when first accessed.
 It can also be specified in the constructor of some objects,
 such as :class:`.Table` and :class:`.Column`.

 """
 return {}

 def _schema_item_copy(self, schema_item):
 if 'info' in self.__dict__:
 schema_item.info = self.info.copy()
 schema_item.dispatch._update(self.dispatch)
 return schema_item

class Table(DialectKWArgs, SchemaItem, TableClause):
 """Represent a table in a database.

 e.g.::

 mytable = Table("mytable", metadata,
 Column('mytable_id', Integer, primary_key=True),
 Column('value', String(50))
)

 The :class:`.Table` object constructs a unique instance of itself based
 on its name and optional schema name within the given
 :class:`.MetaData` object. Calling the :class:`.Table`
 constructor with the same name and same :class:`.MetaData` argument
 a second time will return the *same* :class:`.Table` object - in this way
 the :class:`.Table` constructor acts as a registry function.

 .. seealso::

 :ref:`metadata_describing` - Introduction to database metadata

 Constructor arguments are as follows:

 :param name: The name of this table as represented in the database.

 The table name, along with the value of the ``schema`` parameter,
 forms a key which uniquely identifies this :class:`.Table` within
 the owning :class:`.MetaData` collection.
 Additional calls to :class:`.Table` with the same name, metadata,
 and schema name will return the same :class:`.Table` object.

 Names which contain no upper case characters
 will be treated as case insensitive names, and will not be quoted
 unless they are a reserved word or contain special characters.
 A name with any number of upper case characters is considered
 to be case sensitive, and will be sent as quoted.

 To enable unconditional quoting for the table name, specify the flag
 ``quote=True`` to the constructor, or use the :class:`.quoted_name`
 construct to specify the name.

 :param metadata: a :class:`.MetaData` object which will contain this
 table. The metadata is used as a point of association of this table
 with other tables which are referenced via foreign key. It also
 may be used to associate this table with a particular
 :class:`.Connectable`.

 :param *args: Additional positional arguments are used primarily
 to add the list of :class:`.Column` objects contained within this
 table. Similar to the style of a CREATE TABLE statement, other
 :class:`.SchemaItem` constructs may be added here, including
 :class:`.PrimaryKeyConstraint`, and :class:`.ForeignKeyConstraint`.

 :param autoload: Defaults to False: the Columns for this table should
 be reflected from the database. Usually there will be no Column
 objects in the constructor if this property is set.

 :param autoload_replace: If ``True``, when using ``autoload=True``
 and ``extend_existing=True``,
 replace ``Column`` objects already present in the ``Table`` that's
 in the ``MetaData`` registry with
 what's reflected. Otherwise, all existing columns will be
 excluded from the reflection process. Note that this does
 not impact ``Column`` objects specified in the same call to ``Table``
 which includes ``autoload``, those always take precedence.
 Defaults to ``True``.

 .. versionadded:: 0.7.5

 :param autoload_with: If autoload==True, this is an optional Engine
 or Connection instance to be used for the table reflection. If
 ``None``, the underlying MetaData's bound connectable will be used.

 :param extend_existing: When ``True``, indicates that if this
 :class:`.Table` is already present in the given :class:`.MetaData`,
 apply further arguments within the constructor to the existing
 :class:`.Table`.

 If ``extend_existing`` or ``keep_existing`` are not set, an error is
 raised if additional table modifiers are specified when
 the given :class:`.Table` is already present in the
 :class:`.MetaData`.

 .. versionchanged:: 0.7.4
 ``extend_existing`` will work in conjunction
 with ``autoload=True`` to run a new reflection operation against
 the database; new :class:`.Column` objects will be produced
 from database metadata to replace those existing with the same
 name, and additional :class:`.Column` objects not present
 in the :class:`.Table` will be added.

 As is always the case with ``autoload=True``, :class:`.Column`
 objects can be specified in the same :class:`.Table` constructor,
 which will take precedence. I.e.::

 Table("mytable", metadata,
 Column('y', Integer),
 extend_existing=True,
 autoload=True,
 autoload_with=engine
)

 The above will overwrite all columns within ``mytable`` which
 are present in the database, except for ``y`` which will be used as is
 from the above definition. If the ``autoload_replace`` flag
 is set to False, no existing columns will be replaced.

 :param implicit_returning: True by default - indicates that
 RETURNING can be used by default to fetch newly inserted primary key
 values, for backends which support this. Note that
 create_engine() also provides an implicit_returning flag.

 :param include_columns: A list of strings indicating a subset of
 columns to be loaded via the ``autoload`` operation; table columns who
 aren't present in this list will not be represented on the resulting
 ``Table`` object. Defaults to ``None`` which indicates all columns
 should be reflected.

 :param info: Optional data dictionary which will be populated into the
 :attr:`.SchemaItem.info` attribute of this object.

 :param keep_existing: When ``True``, indicates that if this Table
 is already present in the given :class:`.MetaData`, ignore
 further arguments within the constructor to the existing
 :class:`.Table`, and return the :class:`.Table` object as
 originally created. This is to allow a function that wishes
 to define a new :class:`.Table` on first call, but on
 subsequent calls will return the same :class:`.Table`,
 without any of the declarations (particularly constraints)
 being applied a second time. Also see extend_existing.

 If extend_existing or keep_existing are not set, an error is
 raised if additional table modifiers are specified when
 the given :class:`.Table` is already present in the
 :class:`.MetaData`.

 :param listeners: A list of tuples of the form ``(<eventname>, <fn>)``
 which will be passed to :func:`.event.listen` upon construction.
 This alternate hook to :func:`.event.listen` allows the establishment
 of a listener function specific to this :class:`.Table` before
 the "autoload" process begins. Particularly useful for
 the :meth:`.DDLEvents.column_reflect` event::

 def listen_for_reflect(table, column_info):
 "handle the column reflection event"
 # ...

 t = Table(
 'sometable',
 autoload=True,
 listeners=[
 ('column_reflect', listen_for_reflect)
])

 :param mustexist: When ``True``, indicates that this Table must already
 be present in the given :class:`.MetaData` collection, else
 an exception is raised.

 :param prefixes:
 A list of strings to insert after CREATE in the CREATE TABLE
 statement. They will be separated by spaces.

 :param quote: Force quoting of this table's name on or off, corresponding
 to ``True`` or ``False``. When left at its default of ``None``,
 the column identifier will be quoted according to whether the name is
 case sensitive (identifiers with at least one upper case character are
 treated as case sensitive), or if it's a reserved word. This flag
 is only needed to force quoting of a reserved word which is not known
 by the SQLAlchemy dialect.

 :param quote_schema: same as 'quote' but applies to the schema identifier.

 :param schema: The schema name for this table, which is required if
 the table resides in a schema other than the default selected schema
 for the engine's database connection. Defaults to ``None``.

 The quoting rules for the schema name are the same as those for the
 ``name`` parameter, in that quoting is applied for reserved words or
 case-sensitive names; to enable unconditional quoting for the
 schema name, specify the flag
 ``quote_schema=True`` to the constructor, or use the
 :class:`.quoted_name` construct to specify the name.

 :param useexisting: Deprecated. Use extend_existing.

 :param **kw: Additional keyword arguments not mentioned above are
 dialect specific, and passed in the form ``<dialectname>_<argname>``.
 See the documentation regarding an individual dialect at
 :ref:`dialect_toplevel` for detail on documented arguments.

 """

 __visit_name__ = 'table'

 def __new__(cls, *args, **kw):
 if not args:
 # python3k pickle seems to call this
 return object.__new__(cls)

 try:
 name, metadata, args = args[0], args[1], args[2:]
 except IndexError:
 raise TypeError("Table() takes at least two arguments")

 schema = kw.get('schema', None)
 if schema is None:
 schema = metadata.schema
 keep_existing = kw.pop('keep_existing', False)
 extend_existing = kw.pop('extend_existing', False)
 if 'useexisting' in kw:
 msg = "useexisting is deprecated. Use extend_existing."
 util.warn_deprecated(msg)
 if extend_existing:
 msg = "useexisting is synonymous with extend_existing."
 raise exc.ArgumentError(msg)
 extend_existing = kw.pop('useexisting', False)

 if keep_existing and extend_existing:
 msg = "keep_existing and extend_existing are mutually exclusive."
 raise exc.ArgumentError(msg)

 mustexist = kw.pop('mustexist', False)
 key = _get_table_key(name, schema)
 if key in metadata.tables:
 if not keep_existing and not extend_existing and bool(args):
 raise exc.InvalidRequestError(
 "Table '%s' is already defined for this MetaData "
 "instance. Specify 'extend_existing=True' "
 "to redefine "
 "options and columns on an "
 "existing Table object." % key)
 table = metadata.tables[key]
 if extend_existing:
 table._init_existing(*args, **kw)
 return table
 else:
 if mustexist:
 raise exc.InvalidRequestError(
 "Table '%s' not defined" % (key))
 table = object.__new__(cls)
 table.dispatch.before_parent_attach(table, metadata)
 metadata._add_table(name, schema, table)
 try:
 table._init(name, metadata, *args, **kw)
 table.dispatch.after_parent_attach(table, metadata)
 return table
 except:
 metadata._remove_table(name, schema)
 raise

 @property
 @util.deprecated('0.9', 'Use ``table.schema.quote``')
 def quote_schema(self):
 """Return the value of the ``quote_schema`` flag passed
 to this :class:`.Table`.
 """

 return self.schema.quote

 def __init__(self, *args, **kw):
 """Constructor for :class:`~.schema.Table`.

 This method is a no-op. See the top-level
 documentation for :class:`~.schema.Table`
 for constructor arguments.

 """
 # __init__ is overridden to prevent __new__ from
 # calling the superclass constructor.

 def _init(self, name, metadata, *args, **kwargs):
 super(Table, self).__init__(
 quoted_name(name, kwargs.pop('quote', None)))
 self.metadata = metadata

 self.schema = kwargs.pop('schema', None)
 if self.schema is None:
 self.schema = metadata.schema
 else:
 quote_schema = kwargs.pop('quote_schema', None)
 self.schema = quoted_name(self.schema, quote_schema)

 self.indexes = set()
 self.constraints = set()
 self._columns = ColumnCollection()
 PrimaryKeyConstraint()._set_parent_with_dispatch(self)
 self.foreign_keys = set()
 self._extra_dependencies = set()
 if self.schema is not None:
 self.fullname = "%s.%s" % (self.schema, self.name)
 else:
 self.fullname = self.name

 autoload = kwargs.pop('autoload', False)
 autoload_with = kwargs.pop('autoload_with', None)
 # this argument is only used with _init_existing()
 kwargs.pop('autoload_replace', True)
 include_columns = kwargs.pop('include_columns', None)

 self.implicit_returning = kwargs.pop('implicit_returning', True)

 if 'info' in kwargs:
 self.info = kwargs.pop('info')
 if 'listeners' in kwargs:
 listeners = kwargs.pop('listeners')
 for evt, fn in listeners:
 event.listen(self, evt, fn)

 self._prefixes = kwargs.pop('prefixes', [])

 self._extra_kwargs(**kwargs)

 # load column definitions from the database if 'autoload' is defined
 # we do it after the table is in the singleton dictionary to support
 # circular foreign keys
 if autoload:
 self._autoload(metadata, autoload_with, include_columns)

 # initialize all the column, etc. objects. done after reflection to
 # allow user-overrides
 self._init_items(*args)

 def _autoload(self, metadata, autoload_with, include_columns,
 exclude_columns=()):

 if autoload_with:
 autoload_with.run_callable(
 autoload_with.dialect.reflecttable,
 self, include_columns, exclude_columns
)
 else:
 bind = _bind_or_error(
 metadata,
 msg="No engine is bound to this Table's MetaData. "
 "Pass an engine to the Table via "
 "autoload_with=<someengine>, "
 "or associate the MetaData with an engine via "
 "metadata.bind=<someengine>")
 bind.run_callable(
 bind.dialect.reflecttable,
 self, include_columns, exclude_columns
)

 @property
 def _sorted_constraints(self):
 """Return the set of constraints as a list, sorted by creation
 order.

 """
 return sorted(self.constraints, key=lambda c: c._creation_order)

 def _init_existing(self, *args, **kwargs):
 autoload = kwargs.pop('autoload', False)
 autoload_with = kwargs.pop('autoload_with', None)
 autoload_replace = kwargs.pop('autoload_replace', True)
 schema = kwargs.pop('schema', None)
 if schema and schema != self.schema:
 raise exc.ArgumentError(
 "Can't change schema of existing table from '%s' to '%s'",
 (self.schema, schema))

 include_columns = kwargs.pop('include_columns', None)

 if include_columns is not None:
 for c in self.c:
 if c.name not in include_columns:
 self._columns.remove(c)

 for key in ('quote', 'quote_schema'):
 if key in kwargs:
 raise exc.ArgumentError(
 "Can't redefine 'quote' or 'quote_schema' arguments")

 if 'info' in kwargs:
 self.info = kwargs.pop('info')

 if autoload:
 if not autoload_replace:
 exclude_columns = [c.name for c in self.c]
 else:
 exclude_columns = ()
 self._autoload(
 self.metadata, autoload_with,
 include_columns, exclude_columns)

 self._extra_kwargs(**kwargs)
 self._init_items(*args)

 def _extra_kwargs(self, **kwargs):
 self._validate_dialect_kwargs(kwargs)

 def _init_collections(self):
 pass

 @util.memoized_property
 def _autoincrement_column(self):
 for col in self.primary_key:
 if (col.autoincrement and col.type._type_affinity is not None and
 issubclass(col.type._type_affinity,
 type_api.INTEGERTYPE._type_affinity) and
 (not col.foreign_keys or
 col.autoincrement == 'ignore_fk') and
 isinstance(col.default, (type(None), Sequence)) and
 (col.server_default is None or
 col.server_default.reflected)):
 return col

 @property
 def key(self):
 """Return the 'key' for this :class:`.Table`.

 This value is used as the dictionary key within the
 :attr:`.MetaData.tables` collection. It is typically the same
 as that of :attr:`.Table.name` for a table with no
 :attr:`.Table.schema` set; otherwise it is typically of the form
 ``schemaname.tablename``.

 """
 return _get_table_key(self.name, self.schema)

 def __repr__(self):
 return "Table(%s)" % ', '.join(
 [repr(self.name)] + [repr(self.metadata)] +
 [repr(x) for x in self.columns] +
 ["%s=%s" % (k, repr(getattr(self, k))) for k in ['schema']])

 def __str__(self):
 return _get_table_key(self.description, self.schema)

 @property
 def bind(self):
 """Return the connectable associated with this Table."""

 return self.metadata and self.metadata.bind or None

 def add_is_dependent_on(self, table):
 """Add a 'dependency' for this Table.

 This is another Table object which must be created
 first before this one can, or dropped after this one.

 Usually, dependencies between tables are determined via
 ForeignKey objects. However, for other situations that
 create dependencies outside of foreign keys (rules, inheriting),
 this method can manually establish such a link.

 """
 self._extra_dependencies.add(table)

 def append_column(self, column):
 """Append a :class:`~.schema.Column` to this :class:`~.schema.Table`.

 The "key" of the newly added :class:`~.schema.Column`, i.e. the
 value of its ``.key`` attribute, will then be available
 in the ``.c`` collection of this :class:`~.schema.Table`, and the
 column definition will be included in any CREATE TABLE, SELECT,
 UPDATE, etc. statements generated from this :class:`~.schema.Table`
 construct.

 Note that this does **not** change the definition of the table
 as it exists within any underlying database, assuming that
 table has already been created in the database. Relational
 databases support the addition of columns to existing tables
 using the SQL ALTER command, which would need to be
 emitted for an already-existing table that doesn't contain
 the newly added column.

 """

 column._set_parent_with_dispatch(self)

 def append_constraint(self, constraint):
 """Append a :class:`~.schema.Constraint` to this
 :class:`~.schema.Table`.

 This has the effect of the constraint being included in any
 future CREATE TABLE statement, assuming specific DDL creation
 events have not been associated with the given
 :class:`~.schema.Constraint` object.

 Note that this does **not** produce the constraint within the
 relational database automatically, for a table that already exists
 in the database. To add a constraint to an
 existing relational database table, the SQL ALTER command must
 be used. SQLAlchemy also provides the
 :class:`.AddConstraint` construct which can produce this SQL when
 invoked as an executable clause.

 """

 constraint._set_parent_with_dispatch(self)

 def append_ddl_listener(self, event_name, listener):
 """Append a DDL event listener to this ``Table``.

 .. deprecated:: 0.7
 See :class:`.DDLEvents`.

 """

 def adapt_listener(target, connection, **kw):
 listener(event_name, target, connection)

 event.listen(self, "" + event_name.replace('-', '_'), adapt_listener)

 def _set_parent(self, metadata):
 metadata._add_table(self.name, self.schema, self)
 self.metadata = metadata

 def get_children(self, column_collections=True,
 schema_visitor=False, **kw):
 if not schema_visitor:
 return TableClause.get_children(
 self, column_collections=column_collections, **kw)
 else:
 if column_collections:
 return list(self.columns)
 else:
 return []

 def exists(self, bind=None):
 """Return True if this table exists."""

 if bind is None:
 bind = _bind_or_error(self)

 return bind.run_callable(bind.dialect.has_table,
 self.name, schema=self.schema)

 def create(self, bind=None, checkfirst=False):
 """Issue a ``CREATE`` statement for this
 :class:`.Table`, using the given :class:`.Connectable`
 for connectivity.

 .. seealso::

 :meth:`.MetaData.create_all`.

 """

 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaGenerator,
 self,
 checkfirst=checkfirst)

 def drop(self, bind=None, checkfirst=False):
 """Issue a ``DROP`` statement for this
 :class:`.Table`, using the given :class:`.Connectable`
 for connectivity.

 .. seealso::

 :meth:`.MetaData.drop_all`.

 """
 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaDropper,
 self,
 checkfirst=checkfirst)

 def tometadata(self, metadata, schema=RETAIN_SCHEMA,
 referred_schema_fn=None):
 """Return a copy of this :class:`.Table` associated with a different
 :class:`.MetaData`.

 E.g.::

 m1 = MetaData()

 user = Table('user', m1, Column('id', Integer, priamry_key=True))

 m2 = MetaData()
 user_copy = user.tometadata(m2)

 :param metadata: Target :class:`.MetaData` object, into which the
 new :class:`.Table` object will be created.

 :param schema: optional string name indicating the target schema.
 Defaults to the special symbol :attr:`.RETAIN_SCHEMA` which indicates
 that no change to the schema name should be made in the new
 :class:`.Table`. If set to a string name, the new :class:`.Table`
 will have this new name as the ``.schema``. If set to ``None``, the
 schema will be set to that of the schema set on the target
 :class:`.MetaData`, which is typically ``None`` as well, unless
 set explicitly::

 m2 = MetaData(schema='newschema')

 # user_copy_one will have "newschema" as the schema name
 user_copy_one = user.tometadata(m2, schema=None)

 m3 = MetaData() # schema defaults to None

 # user_copy_two will have None as the schema name
 user_copy_two = user.tometadata(m3, schema=None)

 :param referred_schema_fn: optional callable which can be supplied
 in order to provide for the schema name that should be assigned
 to the referenced table of a :class:`.ForeignKeyConstraint`.
 The callable accepts this parent :class:`.Table`, the
 target schema that we are changing to, the
 :class:`.ForeignKeyConstraint` object, and the existing
 "target schema" of that constraint. The function should return the
 string schema name that should be applied.
 E.g.::

 def referred_schema_fn(table, to_schema,
 constraint, referred_schema):
 if referred_schema == 'base_tables':
 return referred_schema
 else:
 return to_schema

 new_table = table.tometadata(m2, schema="alt_schema",
 referred_schema_fn=referred_schema_fn)

 .. versionadded:: 0.9.2

 """

 if schema is RETAIN_SCHEMA:
 schema = self.schema
 elif schema is None:
 schema = metadata.schema
 key = _get_table_key(self.name, schema)
 if key in metadata.tables:
 util.warn("Table '%s' already exists within the given "
 "MetaData - not copying." % self.description)
 return metadata.tables[key]

 args = []
 for c in self.columns:
 args.append(c.copy(schema=schema))
 table = Table(
 self.name, metadata, schema=schema,
 *args, **self.kwargs
)
 for c in self.constraints:
 if isinstance(c, ForeignKeyConstraint):
 referred_schema = c._referred_schema
 if referred_schema_fn:
 fk_constraint_schema = referred_schema_fn(
 self, schema, c, referred_schema)
 else:
 fk_constraint_schema = (
 schema if referred_schema == self.schema else None)
 table.append_constraint(
 c.copy(schema=fk_constraint_schema, target_table=table))

 else:
 table.append_constraint(
 c.copy(schema=schema, target_table=table))
 for index in self.indexes:
 # skip indexes that would be generated
 # by the 'index' flag on Column
 if len(index.columns) == 1 and \
 list(index.columns)[0].index:
 continue
 Index(index.name,
 unique=index.unique,
 *[table.c[col] for col in index.columns.keys()],
 **index.kwargs)
 return self._schema_item_copy(table)

class Column(SchemaItem, ColumnClause):
 """Represents a column in a database table."""

 __visit_name__ = 'column'

 def __init__(self, *args, **kwargs):
 """
 Construct a new ``Column`` object.

 :param name: The name of this column as represented in the database.
 This argument may be the first positional argument, or specified
 via keyword.

 Names which contain no upper case characters
 will be treated as case insensitive names, and will not be quoted
 unless they are a reserved word. Names with any number of upper
 case characters will be quoted and sent exactly. Note that this
 behavior applies even for databases which standardize upper
 case names as case insensitive such as Oracle.

 The name field may be omitted at construction time and applied
 later, at any time before the Column is associated with a
 :class:`.Table`. This is to support convenient
 usage within the :mod:`~sqlalchemy.ext.declarative` extension.

 :param type_: The column's type, indicated using an instance which
 subclasses :class:`~sqlalchemy.types.TypeEngine`. If no arguments
 are required for the type, the class of the type can be sent
 as well, e.g.::

 # use a type with arguments
 Column('data', String(50))

 # use no arguments
 Column('level', Integer)

 The ``type`` argument may be the second positional argument
 or specified by keyword.

 If the ``type`` is ``None`` or is omitted, it will first default to
 the special type :class:`.NullType`. If and when this
 :class:`.Column` is made to refer to another column using
 :class:`.ForeignKey` and/or :class:`.ForeignKeyConstraint`, the type
 of the remote-referenced column will be copied to this column as
 well, at the moment that the foreign key is resolved against that
 remote :class:`.Column` object.

 .. versionchanged:: 0.9.0
 Support for propagation of type to a :class:`.Column` from its
 :class:`.ForeignKey` object has been improved and should be
 more reliable and timely.

 :param *args: Additional positional arguments include various
 :class:`.SchemaItem` derived constructs which will be applied
 as options to the column. These include instances of
 :class:`.Constraint`, :class:`.ForeignKey`, :class:`.ColumnDefault`,
 and :class:`.Sequence`. In some cases an equivalent keyword
 argument is available such as ``server_default``, ``default``
 and ``unique``.

 :param autoincrement: This flag may be set to ``False`` to
 indicate an integer primary key column that should not be
 considered to be the "autoincrement" column, that is
 the integer primary key column which generates values
 implicitly upon INSERT and whose value is usually returned
 via the DBAPI cursor.lastrowid attribute. It defaults
 to ``True`` to satisfy the common use case of a table
 with a single integer primary key column. If the table
 has a composite primary key consisting of more than one
 integer column, set this flag to True only on the
 column that should be considered "autoincrement".

 The setting *only* has an effect for columns which are:

 * Integer derived (i.e. INT, SMALLINT, BIGINT).

 * Part of the primary key

 * Not refering to another column via :class:`.ForeignKey`, unless
 the value is specified as ``'ignore_fk'``::

 # turn on autoincrement for this column despite
 # the ForeignKey()
 Column('id', ForeignKey('other.id'),
 primary_key=True, autoincrement='ignore_fk')

 It is typically not desirable to have "autoincrement" enabled
 on such a column as its value intends to mirror that of a
 primary key column elsewhere.

 * have no server side or client side defaults (with the exception
 of Postgresql SERIAL).

 The setting has these two effects on columns that meet the
 above criteria:

 * DDL issued for the column will include database-specific
 keywords intended to signify this column as an
 "autoincrement" column, such as AUTO INCREMENT on MySQL,
 SERIAL on Postgresql, and IDENTITY on MS-SQL. It does
 not issue AUTOINCREMENT for SQLite since this is a
 special SQLite flag that is not required for autoincrementing
 behavior.

 .. seealso::

 :ref:`sqlite_autoincrement`

 * The column will be considered to be available as
 cursor.lastrowid or equivalent, for those dialects which
 "post fetch" newly inserted identifiers after a row has
 been inserted (SQLite, MySQL, MS-SQL). It does not have
 any effect in this regard for databases that use sequences
 to generate primary key identifiers (i.e. Firebird, Postgresql,
 Oracle).

 .. versionchanged:: 0.7.4
 ``autoincrement`` accepts a special value ``'ignore_fk'``
 to indicate that autoincrementing status regardless of foreign
 key references. This applies to certain composite foreign key
 setups, such as the one demonstrated in the ORM documentation
 at :ref:`post_update`.

 :param default: A scalar, Python callable, or
 :class:`.ColumnElement` expression representing the
 default value for this column, which will be invoked upon insert
 if this column is otherwise not specified in the VALUES clause of
 the insert. This is a shortcut to using :class:`.ColumnDefault` as
 a positional argument; see that class for full detail on the
 structure of the argument.

 Contrast this argument to ``server_default`` which creates a
 default generator on the database side.

 :param doc: optional String that can be used by the ORM or similar
 to document attributes. This attribute does not render SQL
 comments (a future attribute 'comment' will achieve that).

 :param key: An optional string identifier which will identify this
 ``Column`` object on the :class:`.Table`. When a key is provided,
 this is the only identifier referencing the ``Column`` within the
 application, including ORM attribute mapping; the ``name`` field
 is used only when rendering SQL.

 :param index: When ``True``, indicates that the column is indexed.
 This is a shortcut for using a :class:`.Index` construct on the
 table. To specify indexes with explicit names or indexes that
 contain multiple columns, use the :class:`.Index` construct
 instead.

 :param info: Optional data dictionary which will be populated into the
 :attr:`.SchemaItem.info` attribute of this object.

 :param nullable: If set to the default of ``True``, indicates the
 column will be rendered as allowing NULL, else it's rendered as
 NOT NULL. This parameter is only used when issuing CREATE TABLE
 statements.

 :param onupdate: A scalar, Python callable, or
 :class:`~sqlalchemy.sql.expression.ClauseElement` representing a
 default value to be applied to the column within UPDATE
 statements, which wil be invoked upon update if this column is not
 present in the SET clause of the update. This is a shortcut to
 using :class:`.ColumnDefault` as a positional argument with
 ``for_update=True``.

 :param primary_key: If ``True``, marks this column as a primary key
 column. Multiple columns can have this flag set to specify
 composite primary keys. As an alternative, the primary key of a
 :class:`.Table` can be specified via an explicit
 :class:`.PrimaryKeyConstraint` object.

 :param server_default: A :class:`.FetchedValue` instance, str, Unicode
 or :func:`~sqlalchemy.sql.expression.text` construct representing
 the DDL DEFAULT value for the column.

 String types will be emitted as-is, surrounded by single quotes::

 Column('x', Text, server_default="val")

 x TEXT DEFAULT 'val'

 A :func:`~sqlalchemy.sql.expression.text` expression will be
 rendered as-is, without quotes::

 Column('y', DateTime, server_default=text('NOW()'))

 y DATETIME DEFAULT NOW()

 Strings and text() will be converted into a
 :class:`.DefaultClause` object upon initialization.

 Use :class:`.FetchedValue` to indicate that an already-existing
 column will generate a default value on the database side which
 will be available to SQLAlchemy for post-fetch after inserts. This
 construct does not specify any DDL and the implementation is left
 to the database, such as via a trigger.

 :param server_onupdate: A :class:`.FetchedValue` instance
 representing a database-side default generation function. This
 indicates to SQLAlchemy that a newly generated value will be
 available after updates. This construct does not specify any DDL
 and the implementation is left to the database, such as via a
 trigger.

 :param quote: Force quoting of this column's name on or off,
 corresponding to ``True`` or ``False``. When left at its default
 of ``None``, the column identifier will be quoted according to
 whether the name is case sensitive (identifiers with at least one
 upper case character are treated as case sensitive), or if it's a
 reserved word. This flag is only needed to force quoting of a
 reserved word which is not known by the SQLAlchemy dialect.

 :param unique: When ``True``, indicates that this column contains a
 unique constraint, or if ``index`` is ``True`` as well, indicates
 that the :class:`.Index` should be created with the unique flag.
 To specify multiple columns in the constraint/index or to specify
 an explicit name, use the :class:`.UniqueConstraint` or
 :class:`.Index` constructs explicitly.

 :param system: When ``True``, indicates this is a "system" column,
 that is a column which is automatically made available by the
 database, and should not be included in the columns list for a
 ``CREATE TABLE`` statement.

 For more elaborate scenarios where columns should be
 conditionally rendered differently on different backends,
 consider custom compilation rules for :class:`.CreateColumn`.

 ..versionadded:: 0.8.3 Added the ``system=True`` parameter to
 :class:`.Column`.

 """

 name = kwargs.pop('name', None)
 type_ = kwargs.pop('type_', None)
 args = list(args)
 if args:
 if isinstance(args[0], util.string_types):
 if name is not None:
 raise exc.ArgumentError(
 "May not pass name positionally and as a keyword.")
 name = args.pop(0)
 if args:
 coltype = args[0]

 if hasattr(coltype, "_sqla_type"):
 if type_ is not None:
 raise exc.ArgumentError(
 "May not pass type_ positionally and as a keyword.")
 type_ = args.pop(0)

 if name is not None:
 name = quoted_name(name, kwargs.pop('quote', None))
 elif "quote" in kwargs:
 raise exc.ArgumentError("Explicit 'name' is required when "
 "sending 'quote' argument")

 super(Column, self).__init__(name, type_)
 self.key = kwargs.pop('key', name)
 self.primary_key = kwargs.pop('primary_key', False)
 self.nullable = kwargs.pop('nullable', not self.primary_key)
 self.default = kwargs.pop('default', None)
 self.server_default = kwargs.pop('server_default', None)
 self.server_onupdate = kwargs.pop('server_onupdate', None)

 # these default to None because .index and .unique is *not*
 # an informational flag about Column - there can still be an
 # Index or UniqueConstraint referring to this Column.
 self.index = kwargs.pop('index', None)
 self.unique = kwargs.pop('unique', None)

 self.system = kwargs.pop('system', False)
 self.doc = kwargs.pop('doc', None)
 self.onupdate = kwargs.pop('onupdate', None)
 self.autoincrement = kwargs.pop('autoincrement', True)
 self.constraints = set()
 self.foreign_keys = set()

 # check if this Column is proxying another column
 if '_proxies' in kwargs:
 self._proxies = kwargs.pop('_proxies')
 # otherwise, add DDL-related events
 elif isinstance(self.type, SchemaEventTarget):
 self.type._set_parent_with_dispatch(self)

 if self.default is not None:
 if isinstance(self.default, (ColumnDefault, Sequence)):
 args.append(self.default)
 else:
 if getattr(self.type, '_warn_on_bytestring', False):
 if isinstance(self.default, util.binary_type):
 util.warn("Unicode column received non-unicode "
 "default value.")
 args.append(ColumnDefault(self.default))

 if self.server_default is not None:
 if isinstance(self.server_default, FetchedValue):
 args.append(self.server_default._as_for_update(False))
 else:
 args.append(DefaultClause(self.server_default))

 if self.onupdate is not None:
 if isinstance(self.onupdate, (ColumnDefault, Sequence)):
 args.append(self.onupdate)
 else:
 args.append(ColumnDefault(self.onupdate, for_update=True))

 if self.server_onupdate is not None:
 if isinstance(self.server_onupdate, FetchedValue):
 args.append(self.server_onupdate._as_for_update(True))
 else:
 args.append(DefaultClause(self.server_onupdate,
 for_update=True))
 self._init_items(*args)

 util.set_creation_order(self)

 if 'info' in kwargs:
 self.info = kwargs.pop('info')

 if kwargs:
 raise exc.ArgumentError(
 "Unknown arguments passed to Column: " + repr(list(kwargs)))

@property
def quote(self):
return getattr(self.name, "quote", None)

 def __str__(self):
 if self.name is None:
 return "(no name)"
 elif self.table is not None:
 if self.table.named_with_column:
 return (self.table.description + "." + self.description)
 else:
 return self.description
 else:
 return self.description

 def references(self, column):
 """Return True if this Column references the given column via foreign
 key."""

 for fk in self.foreign_keys:
 if fk.column.proxy_set.intersection(column.proxy_set):
 return True
 else:
 return False

 def append_foreign_key(self, fk):
 fk._set_parent_with_dispatch(self)

 def __repr__(self):
 kwarg = []
 if self.key != self.name:
 kwarg.append('key')
 if self.primary_key:
 kwarg.append('primary_key')
 if not self.nullable:
 kwarg.append('nullable')
 if self.onupdate:
 kwarg.append('onupdate')
 if self.default:
 kwarg.append('default')
 if self.server_default:
 kwarg.append('server_default')
 return "Column(%s)" % ', '.join(
 [repr(self.name)] + [repr(self.type)] +
 [repr(x) for x in self.foreign_keys if x is not None] +
 [repr(x) for x in self.constraints] +
 [(self.table is not None and "table=<%s>" %
 self.table.description or "table=None")] +
 ["%s=%s" % (k, repr(getattr(self, k))) for k in kwarg])

 def _set_parent(self, table):
 if not self.name:
 raise exc.ArgumentError(
 "Column must be constructed with a non-blank name or "
 "assign a non-blank .name before adding to a Table.")
 if self.key is None:
 self.key = self.name

 existing = getattr(self, 'table', None)
 if existing is not None and existing is not table:
 raise exc.ArgumentError(
 "Column object already assigned to Table '%s'" %
 existing.description)

 if self.key in table._columns:
 col = table._columns.get(self.key)
 if col is not self:
 for fk in col.foreign_keys:
 table.foreign_keys.remove(fk)
 if fk.constraint in table.constraints:
 # this might have been removed
 # already, if it's a composite constraint
 # and more than one col being replaced
 table.constraints.remove(fk.constraint)

 table._columns.replace(self)

 if self.primary_key:
 table.primary_key._replace(self)
 Table._autoincrement_column._reset(table)
 elif self.key in table.primary_key:
 raise exc.ArgumentError(
 "Trying to redefine primary-key column '%s' as a "
 "non-primary-key column on table '%s'" % (
 self.key, table.fullname))
 self.table = table

 if self.index:
 if isinstance(self.index, util.string_types):
 raise exc.ArgumentError(
 "The 'index' keyword argument on Column is boolean only. "
 "To create indexes with a specific name, create an "
 "explicit Index object external to the Table.")
 Index(None, self, unique=bool(self.unique))
 elif self.unique:
 if isinstance(self.unique, util.string_types):
 raise exc.ArgumentError(
 "The 'unique' keyword argument on Column is boolean "
 "only. To create unique constraints or indexes with a "
 "specific name, append an explicit UniqueConstraint to "
 "the Table's list of elements, or create an explicit "
 "Index object external to the Table.")
 table.append_constraint(UniqueConstraint(self.key))

 fk_key = (table.key, self.key)
 if fk_key in self.table.metadata._fk_memos:
 for fk in self.table.metadata._fk_memos[fk_key]:
 fk._set_remote_table(table)

 def _on_table_attach(self, fn):
 if self.table is not None:
 fn(self, self.table)
 event.listen(self, 'after_parent_attach', fn)

 def copy(self, **kw):
 """Create a copy of this ``Column``, unitialized.

 This is used in ``Table.tometadata``.

 """

 # Constraint objects plus non-constraint-bound ForeignKey objects
 args = \
 [c.copy(**kw) for c in self.constraints] + \
 [c.copy(**kw) for c in self.foreign_keys if not c.constraint]

 type_ = self.type
 if isinstance(type_, SchemaEventTarget):
 type_ = type_.copy(**kw)

 c = self._constructor(
 name=self.name,
 type_=type_,
 key=self.key,
 primary_key=self.primary_key,
 nullable=self.nullable,
 unique=self.unique,
 system=self.system,
 # quote=self.quote,
 index=self.index,
 autoincrement=self.autoincrement,
 default=self.default,
 server_default=self.server_default,
 onupdate=self.onupdate,
 server_onupdate=self.server_onupdate,
 doc=self.doc,
 *args
)
 return self._schema_item_copy(c)

 def _make_proxy(self, selectable, name=None, key=None,
 name_is_truncatable=False, **kw):
 """Create a *proxy* for this column.

 This is a copy of this ``Column`` referenced by a different parent
 (such as an alias or select statement). The column should
 be used only in select scenarios, as its full DDL/default
 information is not transferred.

 """
 fk = [ForeignKey(f.column, _constraint=f.constraint)
 for f in self.foreign_keys]
 if name is None and self.name is None:
 raise exc.InvalidRequestError(
 "Cannot initialize a sub-selectable"
 " with this Column object until its 'name' has "
 "been assigned.")
 try:
 c = self._constructor(
 _as_truncated(name or self.name) if
 name_is_truncatable else (name or self.name),
 self.type,
 key=key if key else name if name else self.key,
 primary_key=self.primary_key,
 nullable=self.nullable,
 _proxies=[self], *fk)
 except TypeError:
 util.raise_from_cause(
 TypeError(
 "Could not create a copy of this %r object. "
 "Ensure the class includes a _constructor() "
 "attribute or method which accepts the "
 "standard Column constructor arguments, or "
 "references the Column class itself." % self.__class__)
)

 c.table = selectable
 selectable._columns.add(c)
 if selectable._is_clone_of is not None:
 c._is_clone_of = selectable._is_clone_of.columns[c.key]
 if self.primary_key:
 selectable.primary_key.add(c)
 c.dispatch.after_parent_attach(c, selectable)
 return c

 def get_children(self, schema_visitor=False, **kwargs):
 if schema_visitor:
 return [x for x in (self.default, self.onupdate)
 if x is not None] + \
 list(self.foreign_keys) + list(self.constraints)
 else:
 return ColumnClause.get_children(self, **kwargs)

class ForeignKey(DialectKWArgs, SchemaItem):
 """Defines a dependency between two columns.

 ``ForeignKey`` is specified as an argument to a :class:`.Column` object,
 e.g.::

 t = Table("remote_table", metadata,
 Column("remote_id", ForeignKey("main_table.id"))
)

 Note that ``ForeignKey`` is only a marker object that defines
 a dependency between two columns. The actual constraint
 is in all cases represented by the :class:`.ForeignKeyConstraint`
 object. This object will be generated automatically when
 a ``ForeignKey`` is associated with a :class:`.Column` which
 in turn is associated with a :class:`.Table`. Conversely,
 when :class:`.ForeignKeyConstraint` is applied to a :class:`.Table`,
 ``ForeignKey`` markers are automatically generated to be
 present on each associated :class:`.Column`, which are also
 associated with the constraint object.

 Note that you cannot define a "composite" foreign key constraint,
 that is a constraint between a grouping of multiple parent/child
 columns, using ``ForeignKey`` objects. To define this grouping,
 the :class:`.ForeignKeyConstraint` object must be used, and applied
 to the :class:`.Table`. The associated ``ForeignKey`` objects
 are created automatically.

 The ``ForeignKey`` objects associated with an individual
 :class:`.Column` object are available in the `foreign_keys` collection
 of that column.

 Further examples of foreign key configuration are in
 :ref:`metadata_foreignkeys`.

 """

 __visit_name__ = 'foreign_key'

 def __init__(self, column, _constraint=None, use_alter=False, name=None,
 onupdate=None, ondelete=None, deferrable=None,
 initially=None, link_to_name=False, match=None,
 **dialect_kw):
 """
 Construct a column-level FOREIGN KEY.

 The :class:`.ForeignKey` object when constructed generates a
 :class:`.ForeignKeyConstraint` which is associated with the parent
 :class:`.Table` object's collection of constraints.

 :param column: A single target column for the key relationship. A
 :class:`.Column` object or a column name as a string:
 ``tablename.columnkey`` or ``schema.tablename.columnkey``.
 ``columnkey`` is the ``key`` which has been assigned to the column
 (defaults to the column name itself), unless ``link_to_name`` is
 ``True`` in which case the rendered name of the column is used.

 .. versionadded:: 0.7.4
 Note that if the schema name is not included, and the
 underlying :class:`.MetaData` has a "schema", that value will
 be used.

 :param name: Optional string. An in-database name for the key if
 `constraint` is not provided.

 :param onupdate: Optional string. If set, emit ON UPDATE <value> when
 issuing DDL for this constraint. Typical values include CASCADE,
 DELETE and RESTRICT.

 :param ondelete: Optional string. If set, emit ON DELETE <value> when
 issuing DDL for this constraint. Typical values include CASCADE,
 DELETE and RESTRICT.

 :param deferrable: Optional bool. If set, emit DEFERRABLE or NOT
 DEFERRABLE when issuing DDL for this constraint.

 :param initially: Optional string. If set, emit INITIALLY <value> when
 issuing DDL for this constraint.

 :param link_to_name: if True, the string name given in ``column`` is
 the rendered name of the referenced column, not its locally
 assigned ``key``.

 :param use_alter: passed to the underlying
 :class:`.ForeignKeyConstraint` to indicate the constraint should
 be generated/dropped externally from the CREATE TABLE/ DROP TABLE
 statement. See that classes' constructor for details.

 :param match: Optional string. If set, emit MATCH <value> when issuing
 DDL for this constraint. Typical values include SIMPLE, PARTIAL
 and FULL.

 :param **dialect_kw: Additional keyword arguments are dialect
 specific, and passed in the form ``<dialectname>_<argname>``. The
 arguments are ultimately handled by a corresponding
 :class:`.ForeignKeyConstraint`. See the documentation regarding
 an individual dialect at :ref:`dialect_toplevel` for detail on
 documented arguments.

 .. versionadded:: 0.9.2

 """

 self._colspec = column
 if isinstance(self._colspec, util.string_types):
 self._table_column = None
 else:
 if hasattr(self._colspec, '__clause_element__'):
 self._table_column = self._colspec.__clause_element__()
 else:
 self._table_column = self._colspec

 if not isinstance(self._table_column, ColumnClause):
 raise exc.ArgumentError(
 "String, Column, or Column-bound argument "
 "expected, got %r" % self._table_column)
 elif not isinstance(
 self._table_column.table, (util.NoneType, TableClause)):
 raise exc.ArgumentError(
 "ForeignKey received Column not bound "
 "to a Table, got: %r" % self._table_column.table
)

 # the linked ForeignKeyConstraint.
 # ForeignKey will create this when parent Column
 # is attached to a Table, *or* ForeignKeyConstraint
 # object passes itself in when creating ForeignKey
 # markers.
 self.constraint = _constraint
 self.parent = None
 self.use_alter = use_alter
 self.name = name
 self.onupdate = onupdate
 self.ondelete = ondelete
 self.deferrable = deferrable
 self.initially = initially
 self.link_to_name = link_to_name
 self.match = match
 self._unvalidated_dialect_kw = dialect_kw

 def __repr__(self):
 return "ForeignKey(%r)" % self._get_colspec()

 def copy(self, schema=None):
 """Produce a copy of this :class:`.ForeignKey` object.

 The new :class:`.ForeignKey` will not be bound
 to any :class:`.Column`.

 This method is usually used by the internal
 copy procedures of :class:`.Column`, :class:`.Table`,
 and :class:`.MetaData`.

 :param schema: The returned :class:`.ForeignKey` will
 reference the original table and column name, qualified
 by the given string schema name.

 """

 fk = ForeignKey(
 self._get_colspec(schema=schema),
 use_alter=self.use_alter,
 name=self.name,
 onupdate=self.onupdate,
 ondelete=self.ondelete,
 deferrable=self.deferrable,
 initially=self.initially,
 link_to_name=self.link_to_name,
 match=self.match,
 **self._unvalidated_dialect_kw
)
 return self._schema_item_copy(fk)

 def _get_colspec(self, schema=None):
 """Return a string based 'column specification' for this
 :class:`.ForeignKey`.

 This is usually the equivalent of the string-based "tablename.colname"
 argument first passed to the object's constructor.

 """
 if schema:
 _schema, tname, colname = self._column_tokens
 return "%s.%s.%s" % (schema, tname, colname)
 elif self._table_column is not None:
 return "%s.%s" % (
 self._table_column.table.fullname, self._table_column.key)
 else:
 return self._colspec

 @property
 def _referred_schema(self):
 return self._column_tokens[0]

 def _table_key(self):
 if self._table_column is not None:
 if self._table_column.table is None:
 return None
 else:
 return self._table_column.table.key
 else:
 schema, tname, colname = self._column_tokens
 return _get_table_key(tname, schema)

 target_fullname = property(_get_colspec)

 def references(self, table):
 """Return True if the given :class:`.Table` is referenced by this
 :class:`.ForeignKey`."""

 return table.corresponding_column(self.column) is not None

 def get_referent(self, table):
 """Return the :class:`.Column` in the given :class:`.Table`
 referenced by this :class:`.ForeignKey`.

 Returns None if this :class:`.ForeignKey` does not reference the given
 :class:`.Table`.

 """

 return table.corresponding_column(self.column)

 @util.memoized_property
 def _column_tokens(self):
 """parse a string-based _colspec into its component parts."""

 m = self._get_colspec().split('.')
 if m is None:
 raise exc.ArgumentError(
 "Invalid foreign key column specification: %s" %
 self._colspec)
 if (len(m) == 1):
 tname = m.pop()
 colname = None
 else:
 colname = m.pop()
 tname = m.pop()

 # A FK between column 'bar' and table 'foo' can be
 # specified as 'foo', 'foo.bar', 'dbo.foo.bar',
 # 'otherdb.dbo.foo.bar'. Once we have the column name and
 # the table name, treat everything else as the schema
 # name. Some databases (e.g. Sybase) support
 # inter-database foreign keys. See tickets#1341 and --
 # indirectly related -- Ticket #594. This assumes that '.'
 # will never appear *within* any component of the FK.

 if (len(m) > 0):
 schema = '.'.join(m)
 else:
 schema = None
 return schema, tname, colname

 def _resolve_col_tokens(self):
 if self.parent is None:
 raise exc.InvalidRequestError(
 "this ForeignKey object does not yet have a "
 "parent Column associated with it.")

 elif self.parent.table is None:
 raise exc.InvalidRequestError(
 "this ForeignKey's parent column is not yet associated "
 "with a Table.")

 parenttable = self.parent.table

 # assertion, can be commented out.
 # basically Column._make_proxy() sends the actual
 # target Column to the ForeignKey object, so the
 # string resolution here is never called.
 for c in self.parent.base_columns:
 if isinstance(c, Column):
 assert c.table is parenttable
 break
 else:
 assert False
 ######################

 schema, tname, colname = self._column_tokens

 if schema is None and parenttable.metadata.schema is not None:
 schema = parenttable.metadata.schema

 tablekey = _get_table_key(tname, schema)
 return parenttable, tablekey, colname

 def _link_to_col_by_colstring(self, parenttable, table, colname):
 if not hasattr(self.constraint, '_referred_table'):
 self.constraint._referred_table = table
 else:
 assert self.constraint._referred_table is table

 _column = None
 if colname is None:
 # colname is None in the case that ForeignKey argument
 # was specified as table name only, in which case we
 # match the column name to the same column on the
 # parent.
 key = self.parent
 _column = table.c.get(self.parent.key, None)
 elif self.link_to_name:
 key = colname
 for c in table.c:
 if c.name == colname:
 _column = c
 else:
 key = colname
 _column = table.c.get(colname, None)

 if _column is None:
 raise exc.NoReferencedColumnError(
 "Could not initialize target column "
 "for ForeignKey '%s' on table '%s': "
 "table '%s' has no column named '%s'" %
 (self._colspec, parenttable.name, table.name, key),
 table.name, key)

 self._set_target_column(_column)

 def _set_target_column(self, column):
 # propagate TypeEngine to parent if it didn't have one
 if self.parent.type._isnull:
 self.parent.type = column.type

 # super-edgy case, if other FKs point to our column,
 # they'd get the type propagated out also.
 if isinstance(self.parent.table, Table):
 fk_key = (self.parent.table.key, self.parent.key)
 if fk_key in self.parent.table.metadata._fk_memos:
 for fk in self.parent.table.metadata._fk_memos[fk_key]:
 if fk.parent.type._isnull:
 fk.parent.type = column.type

 self.column = column

 @util.memoized_property
 def column(self):
 """Return the target :class:`.Column` referenced by this
 :class:`.ForeignKey`.

 If no target column has been established, an exception
 is raised.

 .. versionchanged:: 0.9.0
 Foreign key target column resolution now occurs as soon as both
 the ForeignKey object and the remote Column to which it refers
 are both associated with the same MetaData object.

 """

 if isinstance(self._colspec, util.string_types):

 parenttable, tablekey, colname = self._resolve_col_tokens()

 if tablekey not in parenttable.metadata:
 raise exc.NoReferencedTableError(
 "Foreign key associated with column '%s' could not find "
 "table '%s' with which to generate a "
 "foreign key to target column '%s'" %
 (self.parent, tablekey, colname),
 tablekey)
 elif parenttable.key not in parenttable.metadata:
 raise exc.InvalidRequestError(
 "Table %s is no longer associated with its "
 "parent MetaData" % parenttable)
 else:
 raise exc.NoReferencedColumnError(
 "Could not initialize target column for "
 "ForeignKey '%s' on table '%s': "
 "table '%s' has no column named '%s'" % (
 self._colspec, parenttable.name, tablekey, colname),
 tablekey, colname)
 elif hasattr(self._colspec, '__clause_element__'):
 _column = self._colspec.__clause_element__()
 return _column
 else:
 _column = self._colspec
 return _column

 def _set_parent(self, column):
 if self.parent is not None and self.parent is not column:
 raise exc.InvalidRequestError(
 "This ForeignKey already has a parent !")
 self.parent = column
 self.parent.foreign_keys.add(self)
 self.parent._on_table_attach(self._set_table)

 def _set_remote_table(self, table):
 parenttable, tablekey, colname = self._resolve_col_tokens()
 self._link_to_col_by_colstring(parenttable, table, colname)
 self.constraint._validate_dest_table(table)

 def _remove_from_metadata(self, metadata):
 parenttable, table_key, colname = self._resolve_col_tokens()
 fk_key = (table_key, colname)

 if self in metadata._fk_memos[fk_key]:
 # TODO: no test coverage for self not in memos
 metadata._fk_memos[fk_key].remove(self)

 def _set_table(self, column, table):
 # standalone ForeignKey - create ForeignKeyConstraint
 # on the hosting Table when attached to the Table.
 if self.constraint is None and isinstance(table, Table):
 self.constraint = ForeignKeyConstraint(
 [], [], use_alter=self.use_alter, name=self.name,
 onupdate=self.onupdate, ondelete=self.ondelete,
 deferrable=self.deferrable, initially=self.initially,
 match=self.match,
 **self._unvalidated_dialect_kw
)
 self.constraint._elements[self.parent] = self
 self.constraint._set_parent_with_dispatch(table)
 table.foreign_keys.add(self)

 # set up remote ".column" attribute, or a note to pick it
 # up when the other Table/Column shows up
 if isinstance(self._colspec, util.string_types):
 parenttable, table_key, colname = self._resolve_col_tokens()
 fk_key = (table_key, colname)
 if table_key in parenttable.metadata.tables:
 table = parenttable.metadata.tables[table_key]
 try:
 self._link_to_col_by_colstring(
 parenttable, table, colname)
 except exc.NoReferencedColumnError:
 # this is OK, we'll try later
 pass
 parenttable.metadata._fk_memos[fk_key].append(self)
 elif hasattr(self._colspec, '__clause_element__'):
 _column = self._colspec.__clause_element__()
 self._set_target_column(_column)
 else:
 _column = self._colspec
 self._set_target_column(_column)

class _NotAColumnExpr(object):
 def _not_a_column_expr(self):
 raise exc.InvalidRequestError(
 "This %s cannot be used directly "
 "as a column expression." % self.__class__.__name__)

 __clause_element__ = self_group = lambda self: self._not_a_column_expr()
 _from_objects = property(lambda self: self._not_a_column_expr())

class DefaultGenerator(_NotAColumnExpr, SchemaItem):
 """Base class for column *default* values."""

 __visit_name__ = 'default_generator'

 is_sequence = False
 is_server_default = False
 column = None

 def __init__(self, for_update=False):
 self.for_update = for_update

 def _set_parent(self, column):
 self.column = column
 if self.for_update:
 self.column.onupdate = self
 else:
 self.column.default = self

 def execute(self, bind=None, **kwargs):
 if bind is None:
 bind = _bind_or_error(self)
 return bind._execute_default(self, **kwargs)

 @property
 def bind(self):
 """Return the connectable associated with this default."""
 if getattr(self, 'column', None) is not None:
 return self.column.table.bind
 else:
 return None

class ColumnDefault(DefaultGenerator):
 """A plain default value on a column.

 This could correspond to a constant, a callable function,
 or a SQL clause.

 :class:`.ColumnDefault` is generated automatically
 whenever the ``default``, ``onupdate`` arguments of
 :class:`.Column` are used. A :class:`.ColumnDefault`
 can be passed positionally as well.

 For example, the following::

 Column('foo', Integer, default=50)

 Is equivalent to::

 Column('foo', Integer, ColumnDefault(50))

 """

 def __init__(self, arg, **kwargs):
 """"Construct a new :class:`.ColumnDefault`.

 :param arg: argument representing the default value.
 May be one of the following:

 * a plain non-callable Python value, such as a
 string, integer, boolean, or other simple type.
 The default value will be used as is each time.
 * a SQL expression, that is one which derives from
 :class:`.ColumnElement`. The SQL expression will
 be rendered into the INSERT or UPDATE statement,
 or in the case of a primary key column when
 RETURNING is not used may be
 pre-executed before an INSERT within a SELECT.
 * A Python callable. The function will be invoked for each
 new row subject to an INSERT or UPDATE.
 The callable must accept exactly
 zero or one positional arguments. The one-argument form
 will receive an instance of the :class:`.ExecutionContext`,
 which provides contextual information as to the current
 :class:`.Connection` in use as well as the current
 statement and parameters.

 """
 super(ColumnDefault, self).__init__(**kwargs)
 if isinstance(arg, FetchedValue):
 raise exc.ArgumentError(
 "ColumnDefault may not be a server-side default type.")
 if util.callable(arg):
 arg = self._maybe_wrap_callable(arg)
 self.arg = arg

 @util.memoized_property
 def is_callable(self):
 return util.callable(self.arg)

 @util.memoized_property
 def is_clause_element(self):
 return isinstance(self.arg, ClauseElement)

 @util.memoized_property
 def is_scalar(self):
 return not self.is_callable and \
 not self.is_clause_element and \
 not self.is_sequence

 def _maybe_wrap_callable(self, fn):
 """Wrap callables that don't accept a context.

 This is to allow easy compatibility with default callables
 that aren't specific to accepting of a context.

 """
 try:
 argspec = util.get_callable_argspec(fn, no_self=True)
 except TypeError:
 return lambda ctx: fn()

 defaulted = argspec[3] is not None and len(argspec[3]) or 0
 positionals = len(argspec[0]) - defaulted

 if positionals == 0:
 return lambda ctx: fn()
 elif positionals == 1:
 return fn
 else:
 raise exc.ArgumentError(
 "ColumnDefault Python function takes zero or one "
 "positional arguments")

 def _visit_name(self):
 if self.for_update:
 return "column_onupdate"
 else:
 return "column_default"
 __visit_name__ = property(_visit_name)

 def __repr__(self):
 return "ColumnDefault(%r)" % self.arg

class Sequence(DefaultGenerator):
 """Represents a named database sequence.

 The :class:`.Sequence` object represents the name and configurational
 parameters of a database sequence. It also represents
 a construct that can be "executed" by a SQLAlchemy :class:`.Engine`
 or :class:`.Connection`, rendering the appropriate "next value" function
 for the target database and returning a result.

 The :class:`.Sequence` is typically associated with a primary key column::

 some_table = Table(
 'some_table', metadata,
 Column('id', Integer, Sequence('some_table_seq'),
 primary_key=True)
)

 When CREATE TABLE is emitted for the above :class:`.Table`, if the
 target platform supports sequences, a CREATE SEQUENCE statement will
 be emitted as well. For platforms that don't support sequences,
 the :class:`.Sequence` construct is ignored.

 .. seealso::

 :class:`.CreateSequence`

 :class:`.DropSequence`

 """

 __visit_name__ = 'sequence'

 is_sequence = True

 def __init__(self, name, start=None, increment=None, schema=None,
 optional=False, quote=None, metadata=None,
 quote_schema=None,
 for_update=False):
 """Construct a :class:`.Sequence` object.

 :param name: The name of the sequence.
 :param start: the starting index of the sequence. This value is
 used when the CREATE SEQUENCE command is emitted to the database
 as the value of the "START WITH" clause. If ``None``, the
 clause is omitted, which on most platforms indicates a starting
 value of 1.
 :param increment: the increment value of the sequence. This
 value is used when the CREATE SEQUENCE command is emitted to
 the database as the value of the "INCREMENT BY" clause. If ``None``,
 the clause is omitted, which on most platforms indicates an
 increment of 1.
 :param schema: Optional schema name for the sequence, if located
 in a schema other than the default.
 :param optional: boolean value, when ``True``, indicates that this
 :class:`.Sequence` object only needs to be explicitly generated
 on backends that don't provide another way to generate primary
 key identifiers. Currently, it essentially means, "don't create
 this sequence on the Postgresql backend, where the SERIAL keyword
 creates a sequence for us automatically".
 :param quote: boolean value, when ``True`` or ``False``, explicitly
 forces quoting of the schema name on or off. When left at its
 default of ``None``, normal quoting rules based on casing and
 reserved words take place.
 :param quote_schema: set the quoting preferences for the ``schema``
 name.
 :param metadata: optional :class:`.MetaData` object which will be
 associated with this :class:`.Sequence`. A :class:`.Sequence`
 that is associated with a :class:`.MetaData` gains access to the
 ``bind`` of that :class:`.MetaData`, meaning the
 :meth:`.Sequence.create` and :meth:`.Sequence.drop` methods will
 make usage of that engine automatically.

 .. versionchanged:: 0.7
 Additionally, the appropriate CREATE SEQUENCE/
 DROP SEQUENCE DDL commands will be emitted corresponding to this
 :class:`.Sequence` when :meth:`.MetaData.create_all` and
 :meth:`.MetaData.drop_all` are invoked.

 Note that when a :class:`.Sequence` is applied to a :class:`.Column`,
 the :class:`.Sequence` is automatically associated with the
 :class:`.MetaData` object of that column's parent :class:`.Table`,
 when that association is made. The :class:`.Sequence` will then
 be subject to automatic CREATE SEQUENCE/DROP SEQUENCE corresponding
 to when the :class:`.Table` object itself is created or dropped,
 rather than that of the :class:`.MetaData` object overall.
 :param for_update: Indicates this :class:`.Sequence`, when associated
 with a :class:`.Column`, should be invoked for UPDATE statements
 on that column's table, rather than for INSERT statements, when
 no value is otherwise present for that column in the statement.

 """
 super(Sequence, self).__init__(for_update=for_update)
 self.name = quoted_name(name, quote)
 self.start = start
 self.increment = increment
 self.optional = optional
 if metadata is not None and schema is None and metadata.schema:
 self.schema = schema = metadata.schema
 else:
 self.schema = quoted_name(schema, quote_schema)
 self.metadata = metadata
 self._key = _get_table_key(name, schema)
 if metadata:
 self._set_metadata(metadata)

 @util.memoized_property
 def is_callable(self):
 return False

 @util.memoized_property
 def is_clause_element(self):
 return False

 @util.dependencies("sqlalchemy.sql.functions.func")
 def next_value(self, func):
 """Return a :class:`.next_value` function element
 which will render the appropriate increment function
 for this :class:`.Sequence` within any SQL expression.

 """
 return func.next_value(self, bind=self.bind)

 def _set_parent(self, column):
 super(Sequence, self)._set_parent(column)
 column._on_table_attach(self._set_table)

 def _set_table(self, column, table):
 self._set_metadata(table.metadata)

 def _set_metadata(self, metadata):
 self.metadata = metadata
 self.metadata._sequences[self._key] = self

 @property
 def bind(self):
 if self.metadata:
 return self.metadata.bind
 else:
 return None

 def create(self, bind=None, checkfirst=True):
 """Creates this sequence in the database."""

 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaGenerator,
 self,
 checkfirst=checkfirst)

 def drop(self, bind=None, checkfirst=True):
 """Drops this sequence from the database."""

 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaDropper,
 self,
 checkfirst=checkfirst)

 def _not_a_column_expr(self):
 raise exc.InvalidRequestError(
 "This %s cannot be used directly "
 "as a column expression. Use func.next_value(sequence) "
 "to produce a 'next value' function that's usable "
 "as a column element."
 % self.__class__.__name__)

@inspection._self_inspects
class FetchedValue(_NotAColumnExpr, SchemaEventTarget):
 """A marker for a transparent database-side default.

 Use :class:`.FetchedValue` when the database is configured
 to provide some automatic default for a column.

 E.g.::

 Column('foo', Integer, FetchedValue())

 Would indicate that some trigger or default generator
 will create a new value for the ``foo`` column during an
 INSERT.

 .. seealso::

 :ref:`triggered_columns`

 """
 is_server_default = True
 reflected = False
 has_argument = False

 def __init__(self, for_update=False):
 self.for_update = for_update

 def _as_for_update(self, for_update):
 if for_update == self.for_update:
 return self
 else:
 return self._clone(for_update)

 def _clone(self, for_update):
 n = self.__class__.__new__(self.__class__)
 n.__dict__.update(self.__dict__)
 n.__dict__.pop('column', None)
 n.for_update = for_update
 return n

 def _set_parent(self, column):
 self.column = column
 if self.for_update:
 self.column.server_onupdate = self
 else:
 self.column.server_default = self

 def __repr__(self):
 return util.generic_repr(self)

class DefaultClause(FetchedValue):
 """A DDL-specified DEFAULT column value.

 :class:`.DefaultClause` is a :class:`.FetchedValue`
 that also generates a "DEFAULT" clause when
 "CREATE TABLE" is emitted.

 :class:`.DefaultClause` is generated automatically
 whenever the ``server_default``, ``server_onupdate`` arguments of
 :class:`.Column` are used. A :class:`.DefaultClause`
 can be passed positionally as well.

 For example, the following::

 Column('foo', Integer, server_default="50")

 Is equivalent to::

 Column('foo', Integer, DefaultClause("50"))

 """

 has_argument = True

 def __init__(self, arg, for_update=False, _reflected=False):
 util.assert_arg_type(arg, (util.string_types[0],
 ClauseElement,
 TextClause), 'arg')
 super(DefaultClause, self).__init__(for_update)
 self.arg = arg
 self.reflected = _reflected

 def __repr__(self):
 return "DefaultClause(%r, for_update=%r)" % \
 (self.arg, self.for_update)

class PassiveDefault(DefaultClause):
 """A DDL-specified DEFAULT column value.

 .. deprecated:: 0.6
 :class:`.PassiveDefault` is deprecated.
 Use :class:`.DefaultClause`.
 """
 @util.deprecated("0.6",
 ":class:`.PassiveDefault` is deprecated. "
 "Use :class:`.DefaultClause`.",
 False)
 def __init__(self, *arg, **kw):
 DefaultClause.__init__(self, *arg, **kw)

class Constraint(DialectKWArgs, SchemaItem):
 """A table-level SQL constraint."""

 __visit_name__ = 'constraint'

 def __init__(self, name=None, deferrable=None, initially=None,
 _create_rule=None,
 **dialect_kw):
 """Create a SQL constraint.

 :param name:
 Optional, the in-database name of this ``Constraint``.

 :param deferrable:
 Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
 issuing DDL for this constraint.

 :param initially:
 Optional string. If set, emit INITIALLY <value> when issuing DDL
 for this constraint.

 :param _create_rule:
 a callable which is passed the DDLCompiler object during
 compilation. Returns True or False to signal inline generation of
 this Constraint.

 The AddConstraint and DropConstraint DDL constructs provide
 DDLElement's more comprehensive "conditional DDL" approach that is
 passed a database connection when DDL is being issued. _create_rule
 is instead called during any CREATE TABLE compilation, where there
 may not be any transaction/connection in progress. However, it
 allows conditional compilation of the constraint even for backends
 which do not support addition of constraints through ALTER TABLE,
 which currently includes SQLite.

 _create_rule is used by some types to create constraints.
 Currently, its call signature is subject to change at any time.

 :param **dialect_kw: Additional keyword arguments are dialect
 specific, and passed in the form ``<dialectname>_<argname>``. See
 the documentation regarding an individual dialect at
 :ref:`dialect_toplevel` for detail on documented arguments.

 """

 self.name = name
 self.deferrable = deferrable
 self.initially = initially
 self._create_rule = _create_rule
 util.set_creation_order(self)
 self._validate_dialect_kwargs(dialect_kw)

 @property
 def table(self):
 try:
 if isinstance(self.parent, Table):
 return self.parent
 except AttributeError:
 pass
 raise exc.InvalidRequestError(
 "This constraint is not bound to a table. Did you "
 "mean to call table.append_constraint(constraint) ?")

 def _set_parent(self, parent):
 self.parent = parent
 parent.constraints.add(self)

 def copy(self, **kw):
 raise NotImplementedError()

def _to_schema_column(element):
 if hasattr(element, '__clause_element__'):
 element = element.__clause_element__()
 if not isinstance(element, Column):
 raise exc.ArgumentError("schema.Column object expected")
 return element

def _to_schema_column_or_string(element):
 if hasattr(element, '__clause_element__'):
 element = element.__clause_element__()
 if not isinstance(element, util.string_types + (ColumnElement,)):
 msg = "Element %r is not a string name or column element"
 raise exc.ArgumentError(msg % element)
 return element

class ColumnCollectionMixin(object):
 def __init__(self, *columns):
 self.columns = ColumnCollection()
 self._pending_colargs = [_to_schema_column_or_string(c)
 for c in columns]
 if self._pending_colargs and \
 isinstance(self._pending_colargs[0], Column) and \
 isinstance(self._pending_colargs[0].table, Table):
 self._set_parent_with_dispatch(self._pending_colargs[0].table)

 def _set_parent(self, table):
 for col in self._pending_colargs:
 if isinstance(col, util.string_types):
 col = table.c[col]
 self.columns.add(col)

class ColumnCollectionConstraint(ColumnCollectionMixin, Constraint):
 """A constraint that proxies a ColumnCollection."""

 def __init__(self, *columns, **kw):
 """
 :param *columns:
 A sequence of column names or Column objects.

 :param name:
 Optional, the in-database name of this constraint.

 :param deferrable:
 Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
 issuing DDL for this constraint.

 :param initially:
 Optional string. If set, emit INITIALLY <value> when issuing DDL
 for this constraint.

 :param **kw: other keyword arguments including dialect-specific
 arguments are propagated to the :class:`.Constraint` superclass.

 """
 Constraint.__init__(self, **kw)
 ColumnCollectionMixin.__init__(self, *columns)

 def _set_parent(self, table):
 Constraint._set_parent(self, table)
 ColumnCollectionMixin._set_parent(self, table)

 def __contains__(self, x):
 return x in self.columns

 def copy(self, **kw):
 c = self.__class__(name=self.name, deferrable=self.deferrable,
 initially=self.initially, *self.columns.keys())
 return self._schema_item_copy(c)

 def contains_column(self, col):
 return self.columns.contains_column(col)

 def __iter__(self):
 # inlining of
 # return iter(self.columns)
 # ColumnCollection->OrderedProperties->OrderedDict
 ordered_dict = self.columns._data
 return (ordered_dict[key] for key in ordered_dict._list)

 def __len__(self):
 return len(self.columns._data)

class CheckConstraint(Constraint):
 """A table- or column-level CHECK constraint.

 Can be included in the definition of a Table or Column.
 """

 def __init__(self, sqltext, name=None, deferrable=None,
 initially=None, table=None, _create_rule=None,
 _autoattach=True):
 """Construct a CHECK constraint.

 :param sqltext:
 A string containing the constraint definition, which will be used
 verbatim, or a SQL expression construct. If given as a string,
 the object is converted to a :class:`.Text` object. If the textual
 string includes a colon character, escape this using a backslash::

 CheckConstraint(r"foo ~ E'a(?\:b|c)d")

 :param name:
 Optional, the in-database name of the constraint.

 :param deferrable:
 Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
 issuing DDL for this constraint.

 :param initially:
 Optional string. If set, emit INITIALLY <value> when issuing DDL
 for this constraint.

 """

 super(CheckConstraint, self).\
 __init__(name, deferrable, initially, _create_rule)
 self.sqltext = _literal_as_text(sqltext)
 if table is not None:
 self._set_parent_with_dispatch(table)
 elif _autoattach:
 cols = _find_columns(self.sqltext)
 tables = set([c.table for c in cols
 if isinstance(c.table, Table)])
 if len(tables) == 1:
 self._set_parent_with_dispatch(
 tables.pop())

 def __visit_name__(self):
 if isinstance(self.parent, Table):
 return "check_constraint"
 else:
 return "column_check_constraint"
 __visit_name__ = property(__visit_name__)

 def copy(self, target_table=None, **kw):
 if target_table is not None:
 def replace(col):
 if self.table.c.contains_column(col):
 return target_table.c[col.key]
 else:
 return None
 sqltext = visitors.replacement_traverse(self.sqltext, {}, replace)
 else:
 sqltext = self.sqltext
 c = CheckConstraint(sqltext,
 name=self.name,
 initially=self.initially,
 deferrable=self.deferrable,
 _create_rule=self._create_rule,
 table=target_table,
 _autoattach=False)
 return self._schema_item_copy(c)

class ForeignKeyConstraint(Constraint):
 """A table-level FOREIGN KEY constraint.

 Defines a single column or composite FOREIGN KEY ... REFERENCES
 constraint. For a no-frills, single column foreign key, adding a
 :class:`.ForeignKey` to the definition of a :class:`.Column` is a
 shorthand equivalent for an unnamed, single column
 :class:`.ForeignKeyConstraint`.

 Examples of foreign key configuration are in :ref:`metadata_foreignkeys`.

 """
 __visit_name__ = 'foreign_key_constraint'

 def __init__(self, columns, refcolumns, name=None, onupdate=None,
 ondelete=None, deferrable=None, initially=None,
 use_alter=False, link_to_name=False, match=None,
 table=None, **dialect_kw):
 """Construct a composite-capable FOREIGN KEY.

 :param columns: A sequence of local column names. The named columns
 must be defined and present in the parent Table. The names should
 match the ``key`` given to each column (defaults to the name) unless
 ``link_to_name`` is True.

 :param refcolumns: A sequence of foreign column names or Column
 objects. The columns must all be located within the same Table.

 :param name: Optional, the in-database name of the key.

 :param onupdate: Optional string. If set, emit ON UPDATE <value> when
 issuing DDL for this constraint. Typical values include CASCADE,
 DELETE and RESTRICT.

 :param ondelete: Optional string. If set, emit ON DELETE <value> when
 issuing DDL for this constraint. Typical values include CASCADE,
 DELETE and RESTRICT.

 :param deferrable: Optional bool. If set, emit DEFERRABLE or NOT
 DEFERRABLE when issuing DDL for this constraint.

 :param initially: Optional string. If set, emit INITIALLY <value> when
 issuing DDL for this constraint.

 :param link_to_name: if True, the string name given in ``column`` is
 the rendered name of the referenced column, not its locally assigned
 ``key``.

 :param use_alter: If True, do not emit the DDL for this constraint as
 part of the CREATE TABLE definition. Instead, generate it via an
 ALTER TABLE statement issued after the full collection of tables
 have been created, and drop it via an ALTER TABLE statement before
 the full collection of tables are dropped. This is shorthand for the
 usage of :class:`.AddConstraint` and :class:`.DropConstraint`
 applied as "after-create" and "before-drop" events on the MetaData
 object. This is normally used to generate/drop constraints on
 objects that are mutually dependent on each other.

 :param match: Optional string. If set, emit MATCH <value> when issuing
 DDL for this constraint. Typical values include SIMPLE, PARTIAL
 and FULL.

 :param **dialect_kw: Additional keyword arguments are dialect
 specific, and passed in the form ``<dialectname>_<argname>``. See
 the documentation regarding an individual dialect at
 :ref:`dialect_toplevel` for detail on documented arguments.

 .. versionadded:: 0.9.2

 """
 super(ForeignKeyConstraint, self).\
 __init__(name, deferrable, initially, **dialect_kw)

 self.onupdate = onupdate
 self.ondelete = ondelete
 self.link_to_name = link_to_name
 if self.name is None and use_alter:
 raise exc.ArgumentError("Alterable Constraint requires a name")
 self.use_alter = use_alter
 self.match = match

 self._elements = util.OrderedDict()

 # standalone ForeignKeyConstraint - create
 # associated ForeignKey objects which will be applied to hosted
 # Column objects (in col.foreign_keys), either now or when attached
 # to the Table for string-specified names
 for col, refcol in zip(columns, refcolumns):
 self._elements[col] = ForeignKey(
 refcol,
 _constraint=self,
 name=self.name,
 onupdate=self.onupdate,
 ondelete=self.ondelete,
 use_alter=self.use_alter,
 link_to_name=self.link_to_name,
 match=self.match,
 deferrable=self.deferrable,
 initially=self.initially,
 **self.dialect_kwargs
)

 if table is not None:
 self._set_parent_with_dispatch(table)
 elif columns and \
 isinstance(columns[0], Column) and \
 columns[0].table is not None:
 self._set_parent_with_dispatch(columns[0].table)

 @property
 def _referred_schema(self):
 for elem in self._elements.values():
 return elem._referred_schema
 else:
 return None

 def _validate_dest_table(self, table):
 table_keys = set([elem._table_key()
 for elem in self._elements.values()])
 if None not in table_keys and len(table_keys) > 1:
 elem0, elem1 = sorted(table_keys)[0:2]
 raise exc.ArgumentError(
 'ForeignKeyConstraint on %s(%s) refers to '
 'multiple remote tables: %s and %s' % (
 table.fullname,
 self._col_description,
 elem0,
 elem1
))

 @property
 def _col_description(self):
 return ", ".join(self._elements)

 @property
 def columns(self):
 return list(self._elements)

 @property
 def elements(self):
 return list(self._elements.values())

 def _set_parent(self, table):
 super(ForeignKeyConstraint, self)._set_parent(table)

 self._validate_dest_table(table)

 for col, fk in self._elements.items():
 # string-specified column names now get
 # resolved to Column objects
 if isinstance(col, util.string_types):
 try:
 col = table.c[col]
 except KeyError:
 raise exc.ArgumentError(
 "Can't create ForeignKeyConstraint "
 "on table '%s': no column "
 "named '%s' is present." % (table.description, col))

 if not hasattr(fk, 'parent') or \
 fk.parent is not col:
 fk._set_parent_with_dispatch(col)

 if self.use_alter:
 def supports_alter(ddl, event, schema_item, bind, **kw):
 return table in set(kw['tables']) and \
 bind.dialect.supports_alter

 event.listen(table.metadata, "after_create",
 ddl.AddConstraint(self, on=supports_alter))
 event.listen(table.metadata, "before_drop",
 ddl.DropConstraint(self, on=supports_alter))

 def copy(self, schema=None, **kw):
 fkc = ForeignKeyConstraint(
 [x.parent.key for x in self._elements.values()],
 [x._get_colspec(schema=schema)
 for x in self._elements.values()],
 name=self.name,
 onupdate=self.onupdate,
 ondelete=self.ondelete,
 use_alter=self.use_alter,
 deferrable=self.deferrable,
 initially=self.initially,
 link_to_name=self.link_to_name,
 match=self.match
)
 for self_fk, other_fk in zip(
 self._elements.values(),
 fkc._elements.values()):
 self_fk._schema_item_copy(other_fk)
 return self._schema_item_copy(fkc)

class PrimaryKeyConstraint(ColumnCollectionConstraint):
 """A table-level PRIMARY KEY constraint.

 The :class:`.PrimaryKeyConstraint` object is present automatically
 on any :class:`.Table` object; it is assigned a set of
 :class:`.Column` objects corresponding to those marked with
 the :paramref:`.Column.primary_key` flag::

 >>> my_table = Table('mytable', metadata,
 ... Column('id', Integer, primary_key=True),
 ... Column('version_id', Integer, primary_key=True),
 ... Column('data', String(50))
 ...)
 >>> my_table.primary_key
 PrimaryKeyConstraint(
 Column('id', Integer(), table=<mytable>,
 primary_key=True, nullable=False),
 Column('version_id', Integer(), table=<mytable>,
 primary_key=True, nullable=False)
)

 The primary key of a :class:`.Table` can also be specified by using
 a :class:`.PrimaryKeyConstraint` object explicitly; in this mode of usage,
 the "name" of the constraint can also be specified, as well as other
 options which may be recognized by dialects::

 my_table = Table('mytable', metadata,
 Column('id', Integer),
 Column('version_id', Integer),
 Column('data', String(50)),
 PrimaryKeyConstraint('id', 'version_id',
 name='mytable_pk')
)

 The two styles of column-specification should generally not be mixed.
 An warning is emitted if the columns present in the
 :class:`.PrimaryKeyConstraint`
 don't match the columns that were marked as ``primary_key=True``, if both
 are present; in this case, the columns are taken strictly from the
 :class:`.PrimaryKeyConstraint` declaration, and those columns otherwise
 marked as ``primary_key=True`` are ignored. This behavior is intended to
 be backwards compatible with previous behavior.

 .. versionchanged:: 0.9.2 Using a mixture of columns within a
 :class:`.PrimaryKeyConstraint` in addition to columns marked as
 ``primary_key=True`` now emits a warning if the lists don't match.
 The ultimate behavior of ignoring those columns marked with the flag
 only is currently maintained for backwards compatibility; this warning
 may raise an exception in a future release.

 For the use case where specific options are to be specified on the
 :class:`.PrimaryKeyConstraint`, but the usual style of using
 ``primary_key=True`` flags is still desirable, an empty
 :class:`.PrimaryKeyConstraint` may be specified, which will take on the
 primary key column collection from the :class:`.Table` based on the
 flags::

 my_table = Table('mytable', metadata,
 Column('id', Integer, primary_key=True),
 Column('version_id', Integer, primary_key=True),
 Column('data', String(50)),
 PrimaryKeyConstraint(name='mytable_pk',
 mssql_clustered=True)
)

 .. versionadded:: 0.9.2 an empty :class:`.PrimaryKeyConstraint` may now
 be specified for the purposes of establishing keyword arguments with
 the constraint, independently of the specification of "primary key"
 columns within the :class:`.Table` itself; columns marked as
 ``primary_key=True`` will be gathered into the empty constraint's
 column collection.

 """

 __visit_name__ = 'primary_key_constraint'

 def _set_parent(self, table):
 super(PrimaryKeyConstraint, self)._set_parent(table)

 if table.primary_key is not self:
 table.constraints.discard(table.primary_key)
 table.primary_key = self
 table.constraints.add(self)

 table_pks = [c for c in table.c if c.primary_key]
 if self.columns and table_pks and \
 set(table_pks) != set(self.columns.values()):
 util.warn(
 "Table '%s' specifies columns %s as primary_key=True, "
 "not matching locally specified columns %s; setting the "
 "current primary key columns to %s. This warning "
 "may become an exception in a future release" %
 (
 table.name,
 ", ".join("'%s'" % c.name for c in table_pks),
 ", ".join("'%s'" % c.name for c in self.columns),
 ", ".join("'%s'" % c.name for c in self.columns)
)
)
 table_pks[:] = []

 for c in self.columns:
 c.primary_key = True
 c.nullable = False
 self.columns.extend(table_pks)

 def _reload(self, columns):
 """repopulate this :class:`.PrimaryKeyConstraint` given
 a set of columns.

 Existing columns in the table that are marked as primary_key=True
 are maintained.

 Also fires a new event.

 This is basically like putting a whole new
 :class:`.PrimaryKeyConstraint` object on the parent
 :class:`.Table` object without actually replacing the object.

 The ordering of the given list of columns is also maintained; these
 columns will be appended to the list of columns after any which
 are already present.

 """

 # set the primary key flag on new columns.
 # note any existing PK cols on the table also have their
 # flag still set.
 for col in columns:
 col.primary_key = True

 self.columns.extend(columns)

 self._set_parent_with_dispatch(self.table)

 def _replace(self, col):
 self.columns.replace(col)

class UniqueConstraint(ColumnCollectionConstraint):
 """A table-level UNIQUE constraint.

 Defines a single column or composite UNIQUE constraint. For a no-frills,
 single column constraint, adding ``unique=True`` to the ``Column``
 definition is a shorthand equivalent for an unnamed, single column
 UniqueConstraint.
 """

 __visit_name__ = 'unique_constraint'

class Index(DialectKWArgs, ColumnCollectionMixin, SchemaItem):
 """A table-level INDEX.

 Defines a composite (one or more column) INDEX.

 E.g.::

 sometable = Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100))
)

 Index("some_index", sometable.c.name)

 For a no-frills, single column index, adding
 :class:`.Column` also supports ``index=True``::

 sometable = Table("sometable", metadata,
 Column("name", String(50), index=True)
)

 For a composite index, multiple columns can be specified::

 Index("some_index", sometable.c.name, sometable.c.address)

 Functional indexes are supported as well, typically by using the
 :data:`.func` construct in conjunction with table-bound
 :class:`.Column` objects::

 Index("some_index", func.lower(sometable.c.name))

 .. versionadded:: 0.8 support for functional and expression-based indexes.

 An :class:`.Index` can also be manually associated with a :class:`.Table`,
 either through inline declaration or using
 :meth:`.Table.append_constraint`. When this approach is used, the names
 of the indexed columns can be specified as strings::

 Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100)),
 Index("some_index", "name", "address")
)

 To support functional or expression-based indexes in this form, the
 :func:`.text` construct may be used::

 from sqlalchemy import text

 Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100)),
 Index("some_index", text("lower(name)"))
)

 .. versionadded:: 0.9.5 the :func:`.text` construct may be used to
 specify :class:`.Index` expressions, provided the :class:`.Index`
 is explicitly associated with the :class:`.Table`.

 .. seealso::

 :ref:`schema_indexes` - General information on :class:`.Index`.

 :ref:`postgresql_indexes` - PostgreSQL-specific options available for
 the :class:`.Index` construct.

 :ref:`mysql_indexes` - MySQL-specific options available for the
 :class:`.Index` construct.

 :ref:`mssql_indexes` - MSSQL-specific options available for the
 :class:`.Index` construct.

 """

 __visit_name__ = 'index'

 def __init__(self, name, *expressions, **kw):
 """Construct an index object.

 :param name:
 The name of the index

 :param *expressions:
 Column expressions to include in the index. The expressions
 are normally instances of :class:`.Column`, but may also
 be arbitrary SQL expressions which ultimately refer to a
 :class:`.Column`.

 :param unique=False:
 Keyword only argument; if True, create a unique index.

 :param quote=None:
 Keyword only argument; whether to apply quoting to the name of
 the index. Works in the same manner as that of
 :paramref:`.Column.quote`.

 :param **kw: Additional keyword arguments not mentioned above are
 dialect specific, and passed in the form
 ``<dialectname>_<argname>``. See the documentation regarding an
 individual dialect at :ref:`dialect_toplevel` for detail on
 documented arguments.

 """
 self.table = None

 columns = []
 for expr in expressions:
 if not isinstance(expr, ClauseElement):
 columns.append(expr)
 else:
 cols = []
 visitors.traverse(expr, {}, {'column': cols.append})
 if cols:
 columns.append(cols[0])

 self.expressions = expressions
 self.name = quoted_name(name, kw.pop("quote", None))
 self.unique = kw.pop('unique', False)
 self._validate_dialect_kwargs(kw)

 # will call _set_parent() if table-bound column
 # objects are present
 ColumnCollectionMixin.__init__(self, *columns)

 def _set_parent(self, table):
 ColumnCollectionMixin._set_parent(self, table)

 if self.table is not None and table is not self.table:
 raise exc.ArgumentError(
 "Index '%s' is against table '%s', and "
 "cannot be associated with table '%s'." % (
 self.name,
 self.table.description,
 table.description
)
)
 self.table = table
 for c in self.columns:
 if c.table != self.table:
 raise exc.ArgumentError(
 "Column '%s' is not part of table '%s'." %
 (c, self.table.description)
)
 table.indexes.add(self)

 self.expressions = [
 expr if isinstance(expr, ClauseElement)
 else colexpr
 for expr, colexpr in util.zip_longest(self.expressions,
 self.columns)
]

 @property
 def bind(self):
 """Return the connectable associated with this Index."""

 return self.table.bind

 def create(self, bind=None):
 """Issue a ``CREATE`` statement for this
 :class:`.Index`, using the given :class:`.Connectable`
 for connectivity.

 .. seealso::

 :meth:`.MetaData.create_all`.

 """
 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaGenerator, self)
 return self

 def drop(self, bind=None):
 """Issue a ``DROP`` statement for this
 :class:`.Index`, using the given :class:`.Connectable`
 for connectivity.

 .. seealso::

 :meth:`.MetaData.drop_all`.

 """
 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaDropper, self)

 def __repr__(self):
 return 'Index(%s)' % (
 ", ".join(
 [repr(self.name)] +
 [repr(e) for e in self.expressions] +
 (self.unique and ["unique=True"] or [])
))

DEFAULT_NAMING_CONVENTION = util.immutabledict({
 "ix": 'ix_%(column_0_label)s'
})

class MetaData(SchemaItem):
 """A collection of :class:`.Table` objects and their associated schema
 constructs.

 Holds a collection of :class:`.Table` objects as well as
 an optional binding to an :class:`.Engine` or
 :class:`.Connection`. If bound, the :class:`.Table` objects
 in the collection and their columns may participate in implicit SQL
 execution.

 The :class:`.Table` objects themselves are stored in the
 :attr:`.MetaData.tables` dictionary.

 :class:`.MetaData` is a thread-safe object for read operations.
 Construction of new tables within a single :class:`.MetaData` object,
 either explicitly or via reflection, may not be completely thread-safe.

 .. seealso::

 :ref:`metadata_describing` - Introduction to database metadata

 """

 __visit_name__ = 'metadata'

 def __init__(self, bind=None, reflect=False, schema=None,
 quote_schema=None,
 naming_convention=DEFAULT_NAMING_CONVENTION
):
 """Create a new MetaData object.

 :param bind:
 An Engine or Connection to bind to. May also be a string or URL
 instance, these are passed to create_engine() and this MetaData will
 be bound to the resulting engine.

 :param reflect:
 Optional, automatically load all tables from the bound database.
 Defaults to False. ``bind`` is required when this option is set.

 .. deprecated:: 0.8
 Please use the :meth:`.MetaData.reflect` method.

 :param schema:
 The default schema to use for the :class:`.Table`,
 :class:`.Sequence`, and other objects associated with this
 :class:`.MetaData`. Defaults to ``None``.

 :param quote_schema:
 Sets the ``quote_schema`` flag for those :class:`.Table`,
 :class:`.Sequence`, and other objects which make usage of the
 local ``schema`` name.

 :param naming_convention: a dictionary referring to values which
 will establish default naming conventions for :class:`.Constraint`
 and :class:`.Index` objects, for those objects which are not given
 a name explicitly.

 The keys of this dictionary may be:

 * a constraint or Index class, e.g. the :class:`.UniqueConstraint`,
 :class:`.ForeignKeyConstraint` class, the :class:`.Index` class

 * a string mnemonic for one of the known constraint classes;
 ``"fk"``, ``"pk"``, ``"ix"``, ``"ck"``, ``"uq"`` for foreign key,
 primary key, index, check, and unique constraint, respectively.

 * the string name of a user-defined "token" that can be used
 to define new naming tokens.

 The values associated with each "constraint class" or "constraint
 mnemonic" key are string naming templates, such as
 ``"uq_%(table_name)s_%(column_0_name)s"``,
 which describe how the name should be composed. The values
 associated with user-defined "token" keys should be callables of the
 form ``fn(constraint, table)``, which accepts the constraint/index
 object and :class:`.Table` as arguments, returning a string
 result.

 The built-in names are as follows, some of which may only be
 available for certain types of constraint:

 * ``%(table_name)s`` - the name of the :class:`.Table` object
 associated with the constraint.

 * ``%(referred_table_name)s`` - the name of the :class:`.Table`
 object associated with the referencing target of a
 :class:`.ForeignKeyConstraint`.

 * ``%(column_0_name)s`` - the name of the :class:`.Column` at
 index position "0" within the constraint.

 * ``%(column_0_label)s`` - the label of the :class:`.Column` at
 index position "0", e.g. :attr:`.Column.label`

 * ``%(column_0_key)s`` - the key of the :class:`.Column` at
 index position "0", e.g. :attr:`.Column.key`

 * ``%(referred_column_0_name)s`` - the name of a :class:`.Column`
 at index position "0" referenced by a
 :class:`.ForeignKeyConstraint`.

 * ``%(constraint_name)s`` - a special key that refers to the
 existing name given to the constraint. When this key is
 present, the :class:`.Constraint` object's existing name will be
 replaced with one that is composed from template string that
 uses this token. When this token is present, it is required that
 the :class:`.Constraint` is given an expicit name ahead of time.

 * user-defined: any additional token may be implemented by passing
 it along with a ``fn(constraint, table)`` callable to the
 naming_convention dictionary.

 .. versionadded:: 0.9.2

 .. seealso::

 :ref:`constraint_naming_conventions` - for detailed usage
 examples.

 """
 self.tables = util.immutabledict()
 self.schema = quoted_name(schema, quote_schema)
 self.naming_convention = naming_convention
 self._schemas = set()
 self._sequences = {}
 self._fk_memos = collections.defaultdict(list)

 self.bind = bind
 if reflect:
 util.warn_deprecated("reflect=True is deprecate; please "
 "use the reflect() method.")
 if not bind:
 raise exc.ArgumentError(
 "A bind must be supplied in conjunction "
 "with reflect=True")
 self.reflect()

 tables = None
 """A dictionary of :class:`.Table` objects keyed to their name or "table key".

 The exact key is that determined by the :attr:`.Table.key` attribute;
 for a table with no :attr:`.Table.schema` attribute, this is the same
 as :attr:`.Table.name`. For a table with a schema, it is typically of the
 form ``schemaname.tablename``.

 .. seealso::

 :attr:`.MetaData.sorted_tables`

 """

 def __repr__(self):
 return 'MetaData(bind=%r)' % self.bind

 def __contains__(self, table_or_key):
 if not isinstance(table_or_key, util.string_types):
 table_or_key = table_or_key.key
 return table_or_key in self.tables

 def _add_table(self, name, schema, table):
 key = _get_table_key(name, schema)
 dict.__setitem__(self.tables, key, table)
 if schema:
 self._schemas.add(schema)

 def _remove_table(self, name, schema):
 key = _get_table_key(name, schema)
 removed = dict.pop(self.tables, key, None)
 if removed is not None:
 for fk in removed.foreign_keys:
 fk._remove_from_metadata(self)
 if self._schemas:
 self._schemas = set([t.schema
 for t in self.tables.values()
 if t.schema is not None])

 def __getstate__(self):
 return {'tables': self.tables,
 'schema': self.schema,
 'schemas': self._schemas,
 'sequences': self._sequences,
 'fk_memos': self._fk_memos}

 def __setstate__(self, state):
 self.tables = state['tables']
 self.schema = state['schema']
 self._bind = None
 self._sequences = state['sequences']
 self._schemas = state['schemas']
 self._fk_memos = state['fk_memos']

 def is_bound(self):
 """True if this MetaData is bound to an Engine or Connection."""

 return self._bind is not None

 def bind(self):
 """An :class:`.Engine` or :class:`.Connection` to which this
 :class:`.MetaData` is bound.

 Typically, a :class:`.Engine` is assigned to this attribute
 so that "implicit execution" may be used, or alternatively
 as a means of providing engine binding information to an
 ORM :class:`.Session` object::

 engine = create_engine("someurl://")
 metadata.bind = engine

 .. seealso::

 :ref:`dbengine_implicit` - background on "bound metadata"

 """
 return self._bind

 @util.dependencies("sqlalchemy.engine.url")
 def _bind_to(self, url, bind):
 """Bind this MetaData to an Engine, Connection, string or URL."""

 if isinstance(bind, util.string_types + (url.URL,)):
 self._bind = sqlalchemy.create_engine(bind)
 else:
 self._bind = bind
 bind = property(bind, _bind_to)

 def clear(self):
 """Clear all Table objects from this MetaData."""

 dict.clear(self.tables)
 self._schemas.clear()
 self._fk_memos.clear()

 def remove(self, table):
 """Remove the given Table object from this MetaData."""

 self._remove_table(table.name, table.schema)

 @property
 def sorted_tables(self):
 """Returns a list of :class:`.Table` objects sorted in order of
 foreign key dependency.

 The sorting will place :class:`.Table` objects that have dependencies
 first, before the dependencies themselves, representing the
 order in which they can be created. To get the order in which
 the tables would be dropped, use the ``reversed()`` Python built-in.

 .. seealso::

 :attr:`.MetaData.tables`

 :meth:`.Inspector.get_table_names`

 """
 return ddl.sort_tables(self.tables.values())

 def reflect(self, bind=None, schema=None, views=False, only=None,
 extend_existing=False,
 autoload_replace=True,
 **dialect_kwargs):
 """Load all available table definitions from the database.

 Automatically creates ``Table`` entries in this ``MetaData`` for any
 table available in the database but not yet present in the
 ``MetaData``. May be called multiple times to pick up tables recently
 added to the database, however no special action is taken if a table
 in this ``MetaData`` no longer exists in the database.

 :param bind:
 A :class:`.Connectable` used to access the database; if None, uses
 the existing bind on this ``MetaData``, if any.

 :param schema:
 Optional, query and reflect tables from an alterate schema.
 If None, the schema associated with this :class:`.MetaData`
 is used, if any.

 :param views:
 If True, also reflect views.

 :param only:
 Optional. Load only a sub-set of available named tables. May be
 specified as a sequence of names or a callable.

 If a sequence of names is provided, only those tables will be
 reflected. An error is raised if a table is requested but not
 available. Named tables already present in this ``MetaData`` are
 ignored.

 If a callable is provided, it will be used as a boolean predicate to
 filter the list of potential table names. The callable is called
 with a table name and this ``MetaData`` instance as positional
 arguments and should return a true value for any table to reflect.

 :param extend_existing: Passed along to each :class:`.Table` as
 :paramref:`.Table.extend_existing`.

 .. versionadded:: 0.9.1

 :param autoload_replace: Passed along to each :class:`.Table` as
 :paramref:`.Table.autoload_replace`.

 .. versionadded:: 0.9.1

 :param **dialect_kwargs: Additional keyword arguments not mentioned
 above are dialect specific, and passed in the form
 ``<dialectname>_<argname>``. See the documentation regarding an
 individual dialect at :ref:`dialect_toplevel` for detail on
 documented arguments.

 .. versionadded:: 0.9.2 - Added
 :paramref:`.MetaData.reflect.**dialect_kwargs` to support
 dialect-level reflection options for all :class:`.Table`
 objects reflected.

 """
 if bind is None:
 bind = _bind_or_error(self)

 with bind.connect() as conn:

 reflect_opts = {
 'autoload': True,
 'autoload_with': conn,
 'extend_existing': extend_existing,
 'autoload_replace': autoload_replace
 }

 reflect_opts.update(dialect_kwargs)

 if schema is None:
 schema = self.schema

 if schema is not None:
 reflect_opts['schema'] = schema

 available = util.OrderedSet(
 bind.engine.table_names(schema, connection=conn))
 if views:
 available.update(
 bind.dialect.get_view_names(conn, schema)
)

 if schema is not None:
 available_w_schema = util.OrderedSet(["%s.%s" % (schema, name)
 for name in available])
 else:
 available_w_schema = available

 current = set(self.tables)

 if only is None:
 load = [name for name, schname in
 zip(available, available_w_schema)
 if extend_existing or schname not in current]
 elif util.callable(only):
 load = [name for name, schname in
 zip(available, available_w_schema)
 if (extend_existing or schname not in current)
 and only(name, self)]
 else:
 missing = [name for name in only if name not in available]
 if missing:
 s = schema and (" schema '%s'" % schema) or ''
 raise exc.InvalidRequestError(
 'Could not reflect: requested table(s) not available '
 'in %s%s: (%s)' %
 (bind.engine.url, s, ', '.join(missing)))
 load = [name for name in only if extend_existing or
 name not in current]

 for name in load:
 Table(name, self, **reflect_opts)

 def append_ddl_listener(self, event_name, listener):
 """Append a DDL event listener to this ``MetaData``.

 .. deprecated:: 0.7
 See :class:`.DDLEvents`.

 """
 def adapt_listener(target, connection, **kw):
 tables = kw['tables']
 listener(event, target, connection, tables=tables)

 event.listen(self, "" + event_name.replace('-', '_'), adapt_listener)

 def create_all(self, bind=None, tables=None, checkfirst=True):
 """Create all tables stored in this metadata.

 Conditional by default, will not attempt to recreate tables already
 present in the target database.

 :param bind:
 A :class:`.Connectable` used to access the
 database; if None, uses the existing bind on this ``MetaData``, if
 any.

 :param tables:
 Optional list of ``Table`` objects, which is a subset of the total
 tables in the ``MetaData`` (others are ignored).

 :param checkfirst:
 Defaults to True, don't issue CREATEs for tables already present
 in the target database.

 """
 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaGenerator,
 self,
 checkfirst=checkfirst,
 tables=tables)

 def drop_all(self, bind=None, tables=None, checkfirst=True):
 """Drop all tables stored in this metadata.

 Conditional by default, will not attempt to drop tables not present in
 the target database.

 :param bind:
 A :class:`.Connectable` used to access the
 database; if None, uses the existing bind on this ``MetaData``, if
 any.

 :param tables:
 Optional list of ``Table`` objects, which is a subset of the
 total tables in the ``MetaData`` (others are ignored).

 :param checkfirst:
 Defaults to True, only issue DROPs for tables confirmed to be
 present in the target database.

 """
 if bind is None:
 bind = _bind_or_error(self)
 bind._run_visitor(ddl.SchemaDropper,
 self,
 checkfirst=checkfirst,
 tables=tables)

class ThreadLocalMetaData(MetaData):
 """A MetaData variant that presents a different ``bind`` in every thread.

 Makes the ``bind`` property of the MetaData a thread-local value, allowing
 this collection of tables to be bound to different ``Engine``
 implementations or connections in each thread.

 The ThreadLocalMetaData starts off bound to None in each thread. Binds
 must be made explicitly by assigning to the ``bind`` property or using
 ``connect()``. You can also re-bind dynamically multiple times per
 thread, just like a regular ``MetaData``.

 """

 __visit_name__ = 'metadata'

 def __init__(self):
 """Construct a ThreadLocalMetaData."""

 self.context = util.threading.local()
 self.__engines = {}
 super(ThreadLocalMetaData, self).__init__()

 def bind(self):
 """The bound Engine or Connection for this thread.

 This property may be assigned an Engine or Connection, or assigned a
 string or URL to automatically create a basic Engine for this bind
 with ``create_engine()``."""

 return getattr(self.context, '_engine', None)

 @util.dependencies("sqlalchemy.engine.url")
 def _bind_to(self, url, bind):
 """Bind to a Connectable in the caller's thread."""

 if isinstance(bind, util.string_types + (url.URL,)):
 try:
 self.context._engine = self.__engines[bind]
 except KeyError:
 e = sqlalchemy.create_engine(bind)
 self.__engines[bind] = e
 self.context._engine = e
 else:
 # TODO: this is squirrely. we shouldn't have to hold onto engines
 # in a case like this
 if bind not in self.__engines:
 self.__engines[bind] = bind
 self.context._engine = bind

 bind = property(bind, _bind_to)

 def is_bound(self):
 """True if there is a bind for this thread."""
 return (hasattr(self.context, '_engine') and
 self.context._engine is not None)

 def dispose(self):
 """Dispose all bound engines, in all thread contexts."""

 for e in self.__engines.values():
 if hasattr(e, 'dispose'):
 e.dispose()

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/configure.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.configure

"""Configuring cryptoassets.core for your project.

Setup SQLAlchemy, backends, etc. based on individual dictionaries or YAML syntax configuration file.
"""

import io
import inspect
import logging
import logging.config

import yaml

from zope.dottedname.resolve import resolve

from sqlalchemy import engine_from_config

from .coin.defaults import COIN_MODEL_DEFAULTS
from .coin.registry import Coin
from .coin.registry import CoinRegistry

from .backend.base import CoinBackend

from .coin import registry as coin_registry

from .event.registry import EventHandlerRegistry
from .event.base import EventHandler

from .service import status
from .app import Subsystem
from .utils.dictutil import merge_dict

#: XXX: logger cannot be used in this module due to order of logger initialization?
logger = None

[docs]class ConfigurationError(Exception):
 """ConfigurationError is thrown when the Configurator thinks somethink cannot make sense with the config data."""

[docs]class Configurator:
 """Read configuration data and set up Cryptoassets library.

 Reads Python or YAML format config data and then setss :py:class:`cryptoassets.core.app.CryptoassetsApp` up and running accordingly.
 """

 def __init__(self, app, service=None):
 """
 :param app: :py:class:`cryptoassets.core.app.CryptoassetsApp` instance

 :param service: :py:class:`cryptoassets.core.service.main.Service` instance (optional)
 """
 self.app = app

 self.service = service

 #: Store full parsed configuration as Python dict for later consumption
 self.config = None

[docs] def setup_engine(self, configuration):
 """Setup database engine.

 See ``sqlalchemy.engine_from_config`` for details.

 TODO: Move engine to its own module?

 :param dict configuration: ``engine`` configuration section
 """

 # Do not enable database
 if not self.app.is_enabled(Subsystem.database):
 return

 transaction_retries = configuration.pop("transaction_retries", 3)
 self.app.transaction_retries = transaction_retries

 echo = configuration.get("echo") in (True, "true")
 engine = engine_from_config(configuration, prefix="", echo=echo, isolation_level="SERIALIZABLE")
 return engine

[docs] def setup_backend(self, coin, data):
 """Setup backends.

 :param data: dictionary of backend configuration entries
 """

 # Do not enable
 if not self.app.is_enabled(Subsystem.backend):
 return

 if not data:
 raise ConfigurationError("backends section missing in config")

 data = data.copy() # No mutate in place
 klass = data.pop("class")
 data["coin"] = coin
 provider = resolve(klass)

 max_tracked_incoming_confirmations = data.pop("max_tracked_incoming_confirmations", 15)

 # Pass given configuration options to the backend as is
 try:
 instance = provider(**data)
 except TypeError as te:
 # TODO: Here we reflect potential passwords from the configuration file
 # back to the terminal
 # TypeError: __init__() got an unexpected keyword argument 'network'
 raise ConfigurationError("Could not initialize backend {} with options {}".format(klass, data)) from te

 assert isinstance(instance, CoinBackend)

 return instance

[docs] def setup_model(self, module):
 """Setup SQLAlchemy models.

 :param module: Python module defining SQLAlchemy models for a cryptocurrency

 :return: :py:class:`cryptoassets.core.coin.registry.CoinModelDescription` instance
 """
 _engine = None

 result = resolve(module) # Imports module, making SQLAlchemy aware of it
 if not result:
 raise ConfigurationError("Could not resolve {}".format(module))

 coin_description = getattr(result, "coin_description", None)
 if not coin_description:
 raise ConfigurationError("Module does not export coin_description attribute: {}".format(module))

 return coin_description

 def setup_coins(self, coins):

 coin_registry = CoinRegistry()

 if not coins:
 raise ConfigurationError("No cryptocurrencies given in the config.")

 for name, data in coins.items():
 default_models_module = COIN_MODEL_DEFAULTS.get(name)
 models_module = data.get("models", default_models_module)

 if not models_module:
 raise ConfigurationError("Don't know which SQLAlchemy model to use for coin {}.".format(name))

 coin_description = self.setup_model(models_module)

 backend_config = data.get("backend")
 if not backend_config:
 raise ConfigurationError("No backend config given for {}".format(name))

 max_confirmation_count = int(data.get("max_confirmation_count", 15))

 testnet = data.get("testnet") in ("true", True)

 coin = Coin(coin_description, max_confirmation_count=max_confirmation_count, testnet=testnet)

 backend = self.setup_backend(coin, data.get("backend"))

 coin.backend = backend

 coin_registry.register(name, coin)

 return coin_registry

[docs] def setup_event_handlers(self, event_handler_registry):
 """Read notification settings.

 Example notifier format::

 {
 "shell": {
 "class": "cryptoassets.core.event_handler_registry.shell.ShellNotifier",
 "script": "/usr/bin/local/new-payment.sh"
 }
 }

 """

 # Do not enable event_handler_registry
 if not self.app.is_enabled(Subsystem.event_handler_registry):
 return

 notifier_registry = EventHandlerRegistry()

 if not event_handler_registry:
 # event_handler_registry not configured
 return

 for name, data in event_handler_registry.items():
 data = data.copy() # No mutate in place
 klass = data.pop("class")
 provider = resolve(klass)
 # Pass given configuration options to the backend as is
 try:
 instance = provider(**data)
 except TypeError as te:
 # TODO: Here we reflect potential passwords from the configuration file
 # back to the terminal
 # TypeError: __init__() got an unexpected keyword argument 'network'
 raise ConfigurationError("Could not initialize notifier {} with options {}".format(klass, data)) from te

 assert isinstance(instance, EventHandler)
 notifier_registry.register(name, instance)

 return notifier_registry

[docs] def setup_status_server(self, config):
 """Prepare status server instance for the cryptoassets helper service.
 """
 if not config:
 return

 # Do not enable status server
 if not self.app.is_enabled(Subsystem.status_server):
 return

 ip = config.get("ip", "127.0.0.1")
 port = int(config.get("port", "18881"))

 server = status.StatusHTTPServer(ip, port)
 return server

[docs] def setup_service(self, config):
 """Configure cryptoassets service helper process."""
 assert self.service

 # Nothing given, use defaults
 if not config:
 return

 if "broadcast_period" in config:
 self.service.broadcast_period = int(config["broadcast_period"])

[docs] def load_from_dict(self, config):
 """ Load configuration from Python dictionary.

 Populates ``app`` with instances required to run ``cryptocurrency.core`` framework.
 """

 self.app.engine = self.setup_engine(config.get("database"))
 self.app.coins = self.setup_coins(config.get("coins"))

 # XXX: Backwards compatibility ... drop in some point
 self.app.status_server = self.setup_status_server(config.get("status_server") or config.get("status-server"))

 self.app.event_handler_registry = self.setup_event_handlers(config.get("events"))

 if self.service:
 self.setup_service(config.get("service"))

 self.config = config

 @classmethod
[docs] def setup_service_logging(cls, config):
 """Setup Python loggers for the helper service process.

 :param config: service -> logging configure section.
 """
 if not config:
 # Go with the stderr
 logging.basicConfig()
 else:
 config["version"] = 1
 logging.config.dictConfig(config)

 @classmethod
[docs] def setup_startup(cls, config):
 """Service helper process specific setup when launched from command line.

 Reads configuration ``service`` section, ATM only interested in ``logging`` subsection.

 This is run before the actual Cryptoassets application initialization. We need logging initialized beforehand so that we can print out nice ``$VERSIONNUMBER is starting`` message.
 """

 service = config.get("service", {})
 logging = service.get("logging", None)
 cls.setup_service_logging(logging)

 return config

 @staticmethod
[docs] def prepare_yaml_file(fname):
 """Extract config dictionary from a YAML file."""
 stream = io.open(fname, "rt")
 config = yaml.safe_load(stream)
 stream.close()

 if not type(config) == dict:
 raise ConfigurationError("YAML configuration file must be mapping like")

 return config

[docs] def load_yaml_file(self, fname, overrides={}):
 """Load config from a YAML file.

 :param fname: Path to the YAML file

 :param overrides: Python nested dicts for specific setting overrides
 """
 config = self.prepare_yaml_file(fname)
 merge_dict(config, overrides)
 self.load_from_dict(config)

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/utils/dictutil.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.utils.dictutil

class MergeError(Exception):
 pass

def merge_dict(a, b):
 """merges b into a and return merged result.

[docs] NOTE: tuples and arbitrary objects are not handled as it is totally ambiguous what should happen

 Courtesy of http://stackoverflow.com/a/15836901/315168
 """
 key = None
 # ## debug output
 # sys.stderr.write("DEBUG: %s to %s\n" %(b,a))
 try:
 if a is None or isinstance(a, str) or isinstance(a, int) or isinstance(a, float):
 # border case for first run or if a is a primitive
 a = b
 elif isinstance(a, list):
 # lists can be only appended
 if isinstance(b, list):
 # merge lists
 a.extend(b)
 else:
 # append to list
 a.append(b)
 elif isinstance(a, dict):
 # dicts must be merged
 if isinstance(b, dict):
 for key in b:
 if key in a:
 a[key] = merge_dict(a[key], b[key])
 else:
 a[key] = b[key]
 else:
 raise MergeError('Cannot merge non-dict "%s" into dict "%s"' % (b, a))
 else:
 raise MergeError('NOT IMPLEMENTED "%s" into "%s"' % (b, a))
 except TypeError as e:
 raise MergeError('TypeError "%s" in key "%s" when merging "%s" into "%s"' % (e, key, b, a))
 return a

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_modules/cryptoassets/core/utils/enum.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.utils.enum

from enum import Enum

[docs]class AutoNumber(Enum):
 """Enum pattern with automatic numbering of values.

 https://docs.python.org/3/library/enum.html#autonumber
 """

 def __new__(cls):
 value = len(cls.__members__) + 1
 obj = object.__new__(cls)
 obj._value_ = value
 return obj

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/utils/conflictresolver.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.utils.conflictresolver

"""ConflictResolver is a helper class to provide serialized transaction conflict resolution mechanism in your SQLAlchemy application.

Preface

Transaction conflict resolution is a way to deal with concurrency and `race condition <http://en.wikipedia.org/wiki/Race_condition>`_ issues within multiuser application. It is a way to resolve race conditions when two users, or two threads, are performing an action affecting the same data set simultaneously.

There are two basic ways of `concurrency control <http://en.wikipedia.org/wiki/Concurrency_control>`_

* `Up-front locking <http://en.wikipedia.org/wiki/Lock_%28computer_science%29>`_: You use interprocess / interserver locks to signal you are about to access and modify resources. If there are concurrent access the actors accessing the resource wait for the lock before taking action. This is `pessimistic concurrency control mechanism <http://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_mechanisms>`_.

* `Transaction serialization <http://en.wikipedia.org/wiki/Serializability>`_: Database detects concurrent access from different clients (a.k.a serialization anomaly) and do not let concurrent modifications to take place. Instead, only one transaction is let through and other conflicting transactions are rolled back. The strongest level of `transaction isolation <http://en.wikipedia.org/wiki/Isolation_%28database_systems%29>`_ is achieved using SQL `Serializable <http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Serializable>`_ isolation level. This is `optimistic concurrency control mechanism <http://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_mechanisms>`_.

For complex systems, locking may pose scalability and complexity issues. More fine grained locking is required, placing cognitive load on the software developer to carefully think and manage all locks upfront to prevent race conditions and deadlocks. Thus, `locking may be error prone approach in real world application development <http://en.wikipedia.org/wiki/Software_transactional_memory#Conceptual_advantages_and_disadvantages>`_ (TBD needs better sources).

Relying on database transaction serialization is easier from the development perspective. If you use serialized transactions you know there will never be database race conditions. In the worst case there is an user error saying there was concurrency error. But transaction serialization creates another problem: your application must be aware of potential transaction conflicts and in the case of transaction conflict it must be able to recover from them.

Please note that when system is under high load and having high concurrent issue rate, both approaches will lead to degraded performance. In pessimistic approach, clients are waiting for locks, never getting them and eventually timing out. In optimistic approach high transaction conflict rate may exceed the rate the system can successfully replay transactions. Long running transaction are also an issue in both approaches, thus batch processing is encouraged to use limited batch size for each transaction if possible.

Benefits and design goals

:py:class:`cryptoassets.core.utils.conflictresolver.ConflictResolver` is a helper class to manage serialized transaction conflicts in your code and resolve them in idiomatic Python manner. The design goals include

* Race condition free codebase because there is no need for application level locking

* Easy, Pythonic, to use

* Simple

* Have fine-grained control over transaction life cycle

* Works with `SQLAlchemy <http://sqlalchemy.org/>`_

These all should contribute toward cleaner, more robust and bug free, application codebase.

The work was inspired by `ZODB transaction package <https://pypi.python.org/pypi/transaction>`_ which provides abstract two-phase commit protocol for Python. *transaction* package contains more features, works across databases, but also has more complex codebase and lacks decorator approach provided by *ConflictResolver*. Whereas ConflictResolver works directly with SQLAlchemy sessions, making it more straightforward to use in SQLAlchemy-only applications.

Transaction retries

In the core of transaction serialization approach is recovery from the transaction conflict. If you do not have any recovery mechanism, when two users edit the same item on a website and press save simultaneously, leading to a transaction conflict in the database, one of the user gets save succeed the other gets an internal error page. The core principle here is that we consider transaction conflict a rare event under normal system load conditions i.e. it is rare users press the save simultaneously. But it still very bad user experience to serve an error page for one of the users, especially if the system itself knows how it could recovery from the situation - without needing intervention from the user.

ConflictResolver approach to recovery is to

* Run a transaction sensitive code within a marked Python code block

* If the code block raises an exception which we identify to be a transaction conflict error from the database, just reset the situation and replay the code block

* Repeat this X times and give up if it seems like our transaction is never going through (because of too high system load or misdesigned long running transaction blocking all writes)

Marked Python code blocks are created using Python `function decorators <https://www.python.org/dev/peps/pep-0318/>`_. This is not optimal approach in the sense of code cleanness and Python ``with`` block would be preferred. However, Python ``with`` `lacks ability to run loops which is prerequisite for transaction retries <http://stackoverflow.com/q/27351433/315168>`_. However combined with Python `closures <http://stackoverflow.com/q/4020419/315168>`_, the boilerplate is quite minimal.

Example

Here is a simple example how to use ConflictResolver::

 from cryptoassets.core.utils.conflictresolver import ConflictResolver
 from sqlalchemy import create_engine
 from sqlalchemy.orm import sessionmaker

 engine = create_engine('postgresql:///unittest-conflict-resolution',
 isolation_level='SERIALIZABLE')

 # Create new session for SQLAlchemy engine
 def create_session():
 Session = sessionmaker()
 Session.configure(bind=engine)
 return Session()

 conflict_resolver = ConflictResolver(create_session, retries=3)

 # Create a decorated function which can try to re-run itself in the case of conflict
 @conflict_resolver.managed_transaction
 def top_up_balance(session, amount):

 # Many threads could modify this account simultanously,
 # as incrementing the value in application code is
 # not atomic
 acc = session.query(Account).get(1)
 acc.balance += amount

 # Execute the conflict sensitive code inside a transaction aware code block
 top_up_balance(100)

Rules and limitations

The rules:

- You must not blindly swallow all exceptions (generic Python ``Exception``) within ``managed_transactions``. Example how to handle exceptions if generic exception catching is needed::

 # Create a decorated function which can try to re-run itself in the case of conflict
 @conflict_resolver.managed_transaction
 def myfunc(session):

 try:
 my_code()
 except Exception as e:
 if ConflictResolver.is_retryable_exception(e):
 # This must be passed to the function decorator, so it can attempt retry
 raise
 # Otherwise the exception is all yours

- Use special read-only database sessions if you know you do not need to modify the database and you need weaker transaction guarantees e.g. for displaying the total balance.

- Never do external actions, like sending emails, inside ``managed_transaction``. If the database transaction is replayed, the code is run twice and you end up sending the same email twice.

- Managed transaction code block should be as small and fast as possible to avoid transaction conflict congestion. Avoid long-running transactions by splitting up big transaction to smaller worker batches.

Compatibility

ConflictResolver should be compatible with all SQL databases providing Serializable isolation level. However, because Python SQL drivers and SQLAlchemy do not standardize the way how SQL execution communicates the transaction conflict back to the application, the exception mapping code might need to be updated to handle your database driver.

API documentation

See *ConflictResolver* API documentation below.

"""

import warnings
import logging
from collections import Counter

from sqlalchemy.orm.exc import ConcurrentModificationError
from sqlalchemy.exc import OperationalError
from sqlalchemy.exc import DBAPIError

UNSUPPORTED_DATABASE = "Seems like we might know how to support serializable transactions for this database. We don't know or it is untested. Thus, the reliability of the service may suffer. See transaction documentation for the details."

#: Tuples of (Exception class, test function). Behavior copied from _retryable_errors definitions copied from zope.sqlalchemy
DATABASE_COFLICT_ERRORS = []

try:
 import psycopg2.extensions
except ImportError:
 pass
else:
 DATABASE_COFLICT_ERRORS.append((psycopg2.extensions.TransactionRollbackError, None))

ORA-08177: can't serialize access for this transaction
try:
 import cx_Oracle
except ImportError:
 pass
else:
 DATABASE_COFLICT_ERRORS.append((cx_Oracle.DatabaseError, lambda e: e.args[0].code == 8177))

if not DATABASE_COFLICT_ERRORS:
 # TODO: Do this when cryptoassets app engine is configured
 warnings.warn(UNSUPPORTED_DATABASE, UserWarning, stacklevel=2)

#: XXX: We need to confirm is this the right way for MySQL, SQLIte?
DATABASE_COFLICT_ERRORS.append((ConcurrentModificationError, None))

logger = logging.getLogger(__name__)

[docs]class ConflictResolver:
 """Helper class to resolve transaction conflicts in graceful manner.
 """

 def __init__(self, session_factory, retries):
 """
 :param session_factory: `callback()` which will give us a new SQLAlchemy session object for each transaction and retry

 :param retries: The number of attempst we try to re-run the transaction in the case of transaction conflict.
 """
 self.retries = retries

 self.session_factory = session_factory

 # Simple beancounting diagnostics how well we are doing
 self.stats = Counter(success=0, retries=0, errors=0, unresolved=0)

 @classmethod
[docs] def is_retryable_exception(self, e):
 """Does the exception look like a database conflict error?

 Check for database driver specific cases.

 :param e: Python Exception instance
 """

 # TODO: OpertionalError raised locally, DBAPIError on Drone.IO
 # What's difference between these two SQL set ups?
 if not isinstance(e, (OperationalError, DBAPIError)):
 # Not an SQLAlchemy exception
 return False

 # The exception SQLAlchemy wrapped
 orig = e.orig

 for err, func in DATABASE_COFLICT_ERRORS:
 # EXception type matches, now compare its values
 if isinstance(orig, err):
 if func:
 return func(e)
 else:
 return True

 return False

[docs] def managed_transaction(self, func):
 """Function decorator for SQL Serialized transaction conflict resolution through retries.

 ``managed_transaction`` decorator will retry to run the decorator function. Retries are attempted until ``ConflictResolver.retries`` is exceeded, in the case the original SQL exception is let to fall through.

 Please obey the rules and limitations of transaction retries in the decorated functions.
 """

 def decorated_func(*args, **kwargs):

 # Read attemps from app configuration
 attempts = self.retries

 session = self.session_factory()

 while attempts >= 0:

 try:
 result = func(session, *args, **kwargs)
 session.commit()
 self.stats["success"] += 1
 return result

 except Exception as e:

 session.rollback()

 if self.is_retryable_exception(e):
 self.stats["retries"] += 1
 attempts -= 1
 if attempts < 0:
 self.stats["unresolved"] += 1
 raise CannotResolveDatabaseConflict("Could not replay the transaction {} even after {} attempts".format(func, self.retries)) from e
 continue
 else:
 self.stats["errors"] += 1
 # All other exceptions should fall through
 raise

 # Make tracebacks friendlier
 decorated_func.__name__ = "{} wrapped by managed_transaction".format(func.__name__)

 return decorated_func

[docs] def managed_non_retryable_transaction(self, func):
 """Provide ``managed_transactions`` decorator API compatibility without retrying.

 Decorate your transaction handling functions with this method if you absolute must not run the code twice for transaction retry and the user error is desirable outcome.
 """

 def decorated_func(*args, **kwargs):

 session = self.session_factory()

 try:
 result = func(session, *args, **kwargs)
 session.commit()
 self.stats["success"] += 1
 return result

 except Exception as e:

 session.rollback()

 if self.is_retryable_exception(e):
 self.stats["unresolved"] += 1
 raise CannotResolveDatabaseConflict("Cannot attempt to retry the transaction {}".format(func)) from e
 else:
 self.stats["errors"] += 1
 # All other exceptions should fall through
 raise

 # Make tracebacks friendlier
 decorated_func.__name__ = "{} wrapped by managed_transaction".format(func.__name__)

 return decorated_func

[docs] def transaction(self):
 """Get a transaction contextmanager instance using the conflict resolver session.

 This approach **does not** support conflict resolution, because Python context managers don't support looping. Instead, it will let any exception fall through. ``ConflictResolver.transaction`` is only useful to access the configured SQLAlchemy session in easy manner.

 * Useful for unit testing

 * Useful for shell sessions

 Transaction handling

 * Transaction is committed if the context manager exists succesfully

 * Transaction is rolled back on an exception

 Example::

 conflict_resolver = ConflictResolver(create_session, retries=3)
 with conflict_resolver.transaction() as session:
 account = session.query(Account).get(1)
 account.balance += 1

 """
 return ContextManager(self)

[docs]class CannotResolveDatabaseConflict(Exception):
 """The managed_transaction decorator has given up trying to resolve the conflict.

 We have exceeded the threshold for database conflicts. Probably long-running transactions or overload are blocking our rows in the database, so that this transaction would never succeed in error free manner. Thus, we need to tell our service user that unfortunately this time you cannot do your thing.
 """

class ContextManager:

 def __init__(self, conflict_resolver):
 self.conflict_resolver = conflict_resolver

 def __enter__(self):
 self.session = self.conflict_resolver.session_factory()
 return self.session

 def __exit__(self, exc_type, exc_value, traceback):
 if exc_type:
 self.session.rollback()
 else:
 self.session.commit()

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/tests/base.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.tests.base

import abc
import os
import time
import logging
from decimal import Decimal

import requests
import pytest

from sqlalchemy.exc import IntegrityError
from sqlalchemy import create_engine
from sqlalchemy import pool

from ..models import NotEnoughAccountBalance
from ..models import SameAccount

from ..app import CryptoAssetsApp
from ..app import Subsystem
from ..configure import Configurator
from ..tools import walletimport
from ..tools import broadcast
from ..tools import confirmationupdate
from ..tools import receivescan

from . import testlogging
from . import testwarnings
from ..utils import danglingthreads

logger = logging.getLogger(__name__)

_connected = None

[docs]def has_inet():
 """py.test condition for checking if we are online."""
 global _connected

 if _connected is None:
 try:
 requests.get("http://google.com")
 _connected = True
 except:
 _connected = False

 return _connected

[docs]def has_local_bitcoind():
 """Use this to disable some tests in CI enviroment where 15 minute deadline applies."""
 return "CI" not in os.environ

[docs]def is_slow_test_hostile():
 """Use this to disable some tests in CI enviroment where 15 minute deadline applies."""
 return "CI" in os.environ or "SKIP_SLOW_TEST" in os.environ

[docs]class CoinTestRoot:
 """Have only initialization methods for the tests."""

 def setUp(self):

 testwarnings.begone()
 testlogging.setup()

 self.app = CryptoAssetsApp([Subsystem.database, Subsystem.backend, Subsystem.event_handler_registry, Subsystem.incoming_transactions])
 self.configurator = Configurator(self.app)

 session = self.app.session

 self.Address = None
 self.Transaction = None
 self.Wallet = None
 self.Account = None
 self.NetworkTransaction = None

 # How many satoshis we use in send_external()
 self.external_send_amount = Decimal("0.0001")
 self.network_fee = Decimal("0.0001")

 # Looks like network fee on btctest varies so we need to have at least two different allowed fees
 self.allowed_network_fees = []

 self.setup_coin()

 self.app.setup_session()
 self.app.create_tables()

 # Purge old test data
 with self.app.conflict_resolver.transaction() as session:
 session.query(self.Address).delete()
 session.query(self.Transaction).delete()
 session.query(self.Wallet).delete()
 session.query(self.Account).delete()
 session.query(self.NetworkTransaction).delete()

[docs] def create_engine(self):
 """Create SQLAclhemy database engine for the tests."""

 # XXX: Not sure what would be the correct way to run tests,
 # so that we respect transaction consistency in external received transactions
 # which are usually done in external thread or process
 # pool = pool.SingletonThreadPool()
 # engine = create_engine('sqlite:///unittest.sqlite', echo=False, poolclass=pool.SingletonThreadPool)

 engine = create_engine('sqlite://', connect_args={'check_same_thread': False}, poolclass=pool.StaticPool)

 return engine

[docs] def wait_address(self, address):
 """block.io needs subscription refresh every time we create a new address.

 Because we do not have IPC mechanism to tell when block.io refresh is ready, we just wait few seconds for now. block.io poller should recheck the database for new addresses every second.
 """
 time.sleep(3)

 @abc.abstractmethod
[docs] def setup_receiving(self, wallet):
 """Necerssary setup to monitor incoming transactions for the backend."""

 @abc.abstractmethod
[docs] def teardown_receiving(self):
 """Teardown incoming transaction monitoring."""

 def tearDown(self):
 self.teardown_receiving()
 danglingthreads.check_dangling_threads()

 @abc.abstractmethod
[docs] def setup_coin(self):
 """Setup coin backend for this test case."""

 def broadcast(self, wallet):
 broadcaster = broadcast.Broadcaster(wallet, self.app.conflict_resolver, self.backend)
 return broadcaster.do_broadcasts()

[docs] def setup_balance(self):
 """Create an a wallet and an account with balance. """

 # These objects must be committed before setup_test_fund_address() is called
 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 account = wallet.create_account("Test account")
 session.flush()
 walletimport.import_unaccounted_balance(self.backend, wallet, account)

 # Make sure we got balance after refresh
 with self.app.conflict_resolver.transaction() as session:
 account = session.query(self.Account).get(1)
 wallet = session.query(self.Wallet).get(1)
 self.assertGreater(account.balance, 0, "We need have some balance on the unit test wallet to proceed with the send test")

[docs]class CoinTestCase(CoinTestRoot):
 """Abstract base class for all cryptocurrency backend tests.

 This verifies that a cryptocurrency backend works against cryptoassets.core models API.

 Inherit from this test case, implement backend abstract methods and run the test case.
 If all test passes, the backend is compatible with *cryptoassets.core*.
 """

[docs] def test_create_address(self):
 """ Creates a new wallet and fresh bitcoin address there. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()
 account = wallet.create_account("Test account")
 session.flush()
 address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))

 # TODO: Check for valid bitcoin addresss
 self.assertGreater(len(address.address), 10)

[docs] def test_get_receiving_addresses(self):
 """ Creates a new wallet and fresh bitcoin address there. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()

 self.assertEqual(wallet.get_receiving_addresses().count(), 0)

 account = wallet.create_account("Test account")
 session.flush()
 wallet.create_receiving_address(account, "Test address {}".format(time.time()))
 session.flush()
 self.assertEqual(wallet.get_receiving_addresses().count(), 1)

 # The second wallet should not affect the addresses on the first one
 wallet2 = self.Wallet()
 session.add(wallet2)
 session.flush()

 self.assertEqual(wallet2.get_receiving_addresses().count(), 0)

 account = wallet2.create_account("Test account")
 session.flush()
 wallet2.create_receiving_address(account, "Test address {}".format(time.time()))
 session.flush()

 self.assertEqual(wallet.get_accounts().count(), 1)
 self.assertEqual(wallet.get_receiving_addresses().count(), 1)
 self.assertEqual(wallet2.get_receiving_addresses().count(), 1)

 # Test 2 accounts in one wallet

 account2 = wallet2.create_account("Test account 2")
 session.flush()
 wallet2.create_receiving_address(account2, "Test address {}".format(time.time()))
 session.flush()

 self.assertEqual(wallet.get_receiving_addresses().count(), 1)
 self.assertEqual(wallet2.get_receiving_addresses().count(), 2)

[docs] def test_create_account(self):
 """ Creates a new wallet and fresh bitcoin address there. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)

 # Must flush before we refer to wallet pk
 session.flush()

 account = wallet.create_account("Test account")
 self.assertEqual(account.balance, 0)

[docs] def test_send_internal(self):
 """ Creates a new wallet and fresh bitcoin address there. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()

 sending_account = wallet.create_account("Test account")
 receiving_account = wallet.create_account("Test account 2")
 session.flush()
 sending_account.balance = 100
 tx = wallet.send_internal(sending_account, receiving_account, Decimal(100), "Test transaction")
 self.assertEqual(receiving_account.balance, 100)
 self.assertEqual(sending_account.balance, 0)

 # ...
 # Write the transaction
 # ...

 with self.app.conflict_resolver.transaction() as session:
 # We should have created one transaction
 self.assertEqual(session.query(self.Transaction.id).count(), 1)
 tx = session.query(self.Transaction).first()
 self.assertEqual(tx.sending_account, sending_account)
 self.assertEqual(tx.receiving_account, receiving_account)

[docs] def test_send_internal_low_balance(self):
 """ Does internal transaction where balance requirement is not met. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()
 sending_account = wallet.create_account("Test account")
 receiving_account = wallet.create_account("Test account 2")
 sending_account.balance = 100
 session.flush()
 assert sending_account.id

 def test():
 wallet.send_internal(sending_account, receiving_account, Decimal(110), "Test transaction")

 self.assertRaises(NotEnoughAccountBalance, test)

[docs] def test_send_internal_same_account(self):
 """ Does internal transaction where balance requirement is not met. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()
 sending_account = wallet.create_account("Test account")
 sending_account.balance = 100
 session.flush()
 assert sending_account.id

 def test():
 wallet.send_internal(sending_account, sending_account, Decimal(10), "Test transaction")

 self.assertRaises(SameAccount, test)

[docs] def test_cannot_import_existing_address(self):
 """ Do not allow importing an address which already exists. """

 def test():

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)

 account = wallet.create_account("Test account")
 session.flush()

 address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))

 with self.app.conflict_resolver.transaction() as session:
 self.assertEqual(session.query(self.Address).count(), 1)

 with self.app.conflict_resolver.transaction() as session:

 wallet.add_address(account, "Test import {}".format(time.time()), address.address)
 # Should not be reached
 self.assertEqual(session.query(self.Address.id).count(), 1)

 self.assertRaises(IntegrityError, test)

[docs] def test_refresh_account_balance(self):
 """ Read the external balance to an account. """

 self.setup_balance()

 with self.app.conflict_resolver.transaction() as session:
 account = session.query(self.Account).get(1)
 # Assume we have at least 5 TESTNET bitcoins there
 self.assertIsNot(account.balance, 0, "Account balance was zero after refresh_account_balance()")
 self.assertGreater(account.balance, Decimal("0.001"))

[docs] def test_send_external(self):
 """ Send Bitcoins from external address """

 self.setup_balance()

 with self.app.conflict_resolver.transaction() as session:

 wallet = session.query(self.Wallet).get(1)
 account = session.query(self.Account).get(1)

 receiving_address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))

 # Send Bitcoins through BlockChain
 tx = wallet.send_external(account, receiving_address.address, self.external_send_amount, "Test send {}".format(time.time()))
 session.flush()

 # We should have created one transaction
 # which is not broadcasted yet
 self.assertGreater(session.query(self.Transaction.id).count(), 0)
 self.assertEqual(tx.sending_account, account)
 self.assertEqual(tx.receiving_account, None)
 self.assertEqual(tx.state, "pending")
 self.assertEqual(tx.txid, None)
 self.assertIsNone(tx.processed_at)
 self.broadcast(wallet)

 # Reread the tranansaction
 tx = session.query(self.Transaction).get(tx.id)

 self.assertEqual(tx.state, "broadcasted")
 self.assertIsNotNone(tx.txid)
 self.assertIsNotNone(tx.processed_at)

 @pytest.mark.skipif(is_slow_test_hostile(), reason="This may take up to 20 minutes")
 def test_update_broadcast_confirmation_count(self):
 """Do a broadcast and see we get updates for the confirmation count."""

 self.setup_balance()
 Transaction = self.Transaction

 with self.app.conflict_resolver.transaction() as session:

 wallet = session.query(self.Wallet).get(1)
 account = session.query(self.Account).get(1)

 # Random address on block.io testnet test wallet
 tx = wallet.send_external(account, "2N5Ji2nCnvjTXDxsv9dPuKocXicctSuNs4n", self.external_send_amount, "Test send {}".format(time.time()))
 session.flush()

 self.broadcast(wallet)

 # Reread the tranansaction
 tx = session.query(self.Transaction).get(tx.id)
 self.assertEqual(tx.state, "broadcasted")
 self.assertIsNotNone(tx.network_transaction)
 tx_id = tx.id

 transaction_updater = self.backend.create_transaction_updater(self.app.conflict_resolver, None)

 deadline = time.time() + 40 * 60
 while time.time() < deadline:

 confirmationupdate.update_confirmations(transaction_updater, 5)

 time.sleep(5.0)

 with self.app.conflict_resolver.transaction() as session:
 tx = session.query(Transaction).get(tx_id)

 logger.debug("Polling transaction updates for txid %s, confirmations %d", tx.txid, tx.confirmations)

 if tx.network_transaction.confirmations >= 1:
 break

 self.assertLess(time.time(), deadline, "Did not receive updates for broadcast tx {}".format(tx.network_transaction.txid))

 self.assertGreaterEqual(transaction_updater.stats["network_transaction_updates"], 1)
 # We should have
 # 1 update for 0 confirmations
 # 1 update for 1 confirmations
 self.assertEqual(transaction_updater.stats["broadcast_updates"], 2)
 self.assertEqual(transaction_updater.stats["deposit_updates"], 0)

[docs] def test_charge_network_fee(self):
 """Do an external transaction and see we account network fees correctly."""

 self.setup_balance()

 with self.app.conflict_resolver.transaction() as session:
 account = session.query(self.Account).get(1)
 wallet = session.query(self.Wallet).get(1)

 receiving_address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))
 session.flush()

 # Send Bitcoins through BlockChain
 wallet.send_external(account, receiving_address.address, self.external_send_amount, "Test send {}".format(time.time()))
 session.flush()

 txcount, fees = self.broadcast(wallet)
 self.assertEqual(txcount, 1)
 self.assertGreater(fees, 0)

 # Our fee account goes below zero, because network fees
 # are subtracted from there
 fee_account = wallet.get_or_create_network_fee_account()
 self.assertLess(fee_account.balance, 0)

 fee_txs = session.query(self.Transaction).filter(self.Transaction.state == "network_fee")
 self.assertEqual(fee_txs.count(), 1)

 allowed_fees = self.allowed_network_fees + [self.network_fee]
 fee = fee_txs.first().amount

 self.assertTrue(fee in allowed_fees, "Got fee {}, allowed {}".format(fee, allowed_fees))

[docs] def test_broadcast_no_transactions(self):
 """ Broadcast must not fail even we don't have any transactions. """

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()
 broadcaster = broadcast.Broadcaster(wallet, self.app.conflict_resolver, self.backend)

 broadcaster.do_broadcasts()

[docs] def test_receive_external_spoofed(self):
 """ Test receiving external transaction.

 Don't actually receive anything, spoof the incoming transaction.
 """

 test_amount = 1000
 NetworkTransaction = self.NetworkTransaction

 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)

 ntx, created = NetworkTransaction.get_or_create_deposit(session, "foobar")
 session.flush()

 account = wallet.create_account("Test account")
 session.flush()
 receiving_address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))
 session.flush()
 wallet.deposit(ntx, receiving_address.address, test_amount, dict(confirmations=0))

 # ...
 # write the transaction
 # ...

 with self.app.conflict_resolver.transaction() as session:
 # First we should just register the transaction as incoming
 txs = session.query(self.Transaction).filter(self.Transaction.state == "incoming")
 self.assertEqual(txs.count(), 1)
 self.assertEqual(txs.first().amount, test_amount)
 self.assertFalse(txs.first().can_be_confirmed())
 self.assertEqual(account.balance, 0)
 self.assertEqual(wallet.balance, 0)
 self.assertIsNone(txs.first().processed_at)

 ntx, created = NetworkTransaction.get_or_create_deposit(session, "foobar")
 ntx.confirmations = 999
 # Exceed the confirmation threshold
 wallet.deposit(ntx, receiving_address.address, test_amount, dict(confirmations=6))

 txs = session.query(self.Transaction).filter(self.Transaction.state == "incoming")
 self.assertTrue(txs.first().can_be_confirmed())
 self.assertEqual(account.balance, test_amount)
 self.assertEqual(wallet.balance, test_amount)
 self.assertEqual(receiving_address.balance, test_amount)
 self.assertIsNone(txs.first().processed_at)

 # Mark the transaction as processed the transaction
 wallet.mark_transaction_processed(txs.first().id)

 txs = session.query(self.Transaction).filter(self.Transaction.state == "processed")
 self.assertEqual(txs.count(), 1)
 self.assertIsNotNone(txs.first().processed_at)

 @pytest.mark.skipif(is_slow_test_hostile(), reason="Running send + receive loop may take > 20 minutes")
 def test_send_receive_external(self):
 """ Test sending and receiving external transaction within the backend wallet.

 This is especially tricky test case, as we are reusing some of the old
 test addresses for the sending the transaction and they may have
 extra outgoing and incoming transactions ready to hit from the previous tests.
 """

 try:

 self.Transaction.confirmation_count = self.external_transaction_confirmation_count

 self.setup_balance()
 wallet_id = 1

 with self.app.conflict_resolver.transaction() as session:

 # Reload objects from db for this transaction
 wallet = session.query(self.Wallet).get(wallet_id)
 account = session.query(self.Account).get(1)
 txs_before_send = wallet.get_deposit_transactions().count()

 # Create account for receiving the tx
 receiving_account = wallet.create_account("Test receiving account {}".format(time.time()))
 session.flush()
 receiving_address = wallet.create_receiving_address(receiving_account, "Test receiving address {}".format(time.time()))

 session.flush()
 # See that the created address was properly committed
 self.assertGreater(wallet.get_receiving_addresses().count(), 0)
 self.setup_receiving(wallet)

 # Because of block.io needs subscription refresh for new addresses, we sleep here before we can think of sending anything to justly created address
 self.wait_address(receiving_address)

 # Commit new receiveing address to the database

 with self.app.conflict_resolver.transaction() as session:

 # Make sure we don't have any balance beforehand
 receiving_account = session.query(self.Account).get(receiving_account.id)
 self.assertEqual(receiving_account.balance, 0, "Receiving account got some balance already before sending")

 logger.info("Sending from account %d to %s amount %f", account.id, receiving_address.address, self.external_send_amount)
 tx = wallet.send(account, receiving_address.address, self.external_send_amount, "Test send", force_external=True)
 session.flush()
 self.assertEqual(tx.state, "pending")
 self.assertEqual(tx.label, "Test send")

 broadcasted_count, tx_fees = self.broadcast(wallet)

 # Reread the changed transaction
 tx = session.query(self.Transaction).get(tx.id)
 self.assertEqual(tx.state, "broadcasted")
 self.assertEqual(broadcasted_count, 1)

 tx = session.query(self.Transaction).get(tx.id)
 logger.info("External transaction is %s", tx.txid)

 receiving_address_id = receiving_address.id
 tx_id = tx.id
 receiving_address_str = receiving_address.address

 # Wait until backend notifies us the transaction has been received
 logger.info("Monitoring receiving address {} on wallet {}".format(receiving_address.address, wallet.id))

 deadline = time.time() + self.external_receiving_timeout
 succeeded = False

 while time.time() < deadline:
 time.sleep(30.0)

 # Make sure confirmations are updated
 transaction_updater = self.backend.create_transaction_updater(self.app.conflict_resolver, None)
 confirmationupdate.update_confirmations(transaction_updater, 5)

 # Don't hold db locked for an extended perior
 with self.app.conflict_resolver.transaction() as session:
 Address = self.Address
 wallet = session.query(self.Wallet).get(wallet_id)
 address = session.query(Address).filter(self.Address.id == receiving_address_id)
 self.assertEqual(address.count(), 1)
 account = address.first().account
 txs = wallet.get_deposit_transactions()

 print(account.name, account.balance, len(wallet.transactions), wallet.get_active_external_received_transcations().count())

 # The transaction is confirmed and the account is credited
 # and we have no longer pending incoming transaction
 if account.balance > 0 and wallet.get_active_external_received_transcations().count() == 0 and len(wallet.transactions) >= 3:
 succeeded = True
 break

 # Check txid on
 # https://chain.so/testnet/btc
 self.assertTrue(succeeded, "Never got the external transaction status through database, backend:{} txid:{} receiving address:{} wait:{}s".format(self.backend, tx_id, receiving_address_str, self.external_receiving_timeout))

 # Just some debug output
 with self.app.conflict_resolver.transaction() as session:
 address = session.query(self.Address).filter(self.Address.id == receiving_address_id)
 account = address.first().account
 logger.info("Receiving account %d balance %f", account.id, account.balance)

 tx = session.query(self.Transaction).get(tx_id)
 logger.info("Broadcasted transaction %d txid %s confirmations %s", tx.id, tx.txid, tx.confirmations)

 finally:
 self.Transaction.confirmation_count = 3
 self.teardown_receiving()

 # Final checks
 with self.app.conflict_resolver.transaction() as session:
 account = session.query(self.Account).filter(self.Account.wallet_id == wallet_id).first()
 wallet = session.query(self.Wallet).get(wallet_id)
 self.assertGreater(account.balance, 0, "Timeouted receiving external transaction")

 # 1 broadcasted, 1 network fee, 1 external
 self.assertGreaterEqual(len(wallet.transactions), 3)

 # The transaction should be external
 txs = wallet.get_deposit_transactions()
 self.assertEqual(txs.count(), txs_before_send + 1)

 # The transaction should no longer be active
 txs = wallet.get_active_external_received_transcations()
 self.assertEqual(txs.count(), 0)

 self.assertGreater(account.balance, 0, "Timeouted receiving external transaction")

 @pytest.mark.skipif(is_slow_test_hostile(), reason="This may take up to few minutes")
 def test_receive_scan(self):
 """Make sure we don't miss transactions even if helper service is down.

 We simulate a missed transaction (backend deposit updates are not running) and then manually trigger rescan to see rescan picks up the transaction.
 """

 Address = self.Address

 # First create incoming address
 with self.app.conflict_resolver.transaction() as session:
 wallet = self.Wallet()
 session.add(wallet)
 session.flush()

 account = wallet.create_account("Test account")
 session.flush()
 address = wallet.create_receiving_address(account, "Test address {}".format(time.time()))
 addr_str = address.address

 # Then perform send to this address using raw backend, so we shouldn't get notification the incoming deposit
 txid, fees = self.backend.send(recipients={addr_str: self.external_send_amount}, label="Test broadcast")

 # Now ask backend until we know the tx is broadcasted
 deadline = time.time() + 30
 while True:
 txdata = self.backend.get_transaction(txid)
 if txdata["confirmations"] >= 0:
 break
 self.assertLess(time.time(), deadline)

 missed = receivescan.scan(self.app.coins, self.app.conflict_resolver, None)
 self.assertEqual(missed, 1)

 # Check that address is now credited
 with self.app.conflict_resolver.transaction() as session:
 address = session.query(Address).filter(Address.address == addr_str).first()
 self.assertGreater(len(address.transactions), 0)

 @pytest.mark.skipif(is_slow_test_hostile(), reason="May take > 20 minutes")
 def test_confirmation_updates(self):
 """Test that we get confirmation count increase for an incoming transaction.

 We stress out ``tools.confirmationupdate`` functionality. See CoinBackend base class for comments.

 This test will take > 15 minutes to run.

 Bitcoin testnet block rate is SLOW and we need to wait at least 2 blocks.

 http://blockexplorer.com/testnet
 """

 self.Transaction.confirmation_count = 3

 self.setup_balance()

 transaction_updater = self.backend.create_transaction_updater(self.app.conflict_resolver, None)

 with self.app.conflict_resolver.transaction() as session:

 # Reload objects from db for this transaction
 wallet = session.query(self.Wallet).get(1)
 account = session.query(self.Account).get(1)

 # Create account for receiving the tx
 receiving_account = wallet.create_account("Test receiving account {}".format(time.time()))
 session.flush()
 receiving_address = wallet.create_receiving_address(receiving_account, "Test receiving address {}".format(time.time()))

 self.setup_receiving(wallet)

 # Commit new receiveing address to the database

 with self.app.conflict_resolver.transaction() as session:

 # Make sure we don't have any balance beforehand
 receiving_account = session.query(self.Account).get(receiving_account.id)
 self.assertEqual(receiving_account.balance, 0, "Receiving account got some balance already before sending")

 logger.info("Sending from account %d to %s amount %f", account.id, receiving_address.address, self.external_send_amount)
 tx = wallet.send(account, receiving_address.address, self.external_send_amount, "Test send", force_external=True)
 session.flush()

 broadcasted_count, tx_fees = self.broadcast(wallet)

 self.assertEqual(broadcasted_count, 1)
 receiving_address_id = receiving_address.id

 # Wait until backend notifies us the transaction has been received
 logger.info("Monitoring receiving address {} on wallet {}".format(receiving_address.address, wallet.id))

 # Testnet seem to take confirmations up to 60 minutes... le fuu the shitcoin
 # We wait 2 hours!
 deadline = time.time() + 45 * 60

 while time.time() < deadline:

 confirmationupdate.update_confirmations(transaction_updater, 3)

 time.sleep(30)

 # Don't hold db locked for an extended perior
 with self.app.conflict_resolver.transaction() as session:
 wallet = session.query(self.Wallet).get(1)
 address = session.query(self.Address).get(receiving_address_id)
 account = address.account

 txs = wallet.get_deposit_transactions()

 logger.info("Checking out addr {} incoming txs {}".format(address.address, txs.count()))
 for tx in txs:
 logger.debug(tx)

 # The transaction is confirmed and the account is credited
 # and we have no longer pending incoming transaction
 if txs.count() > 0:
 assert txs.count() < 2
 tx = txs[0]
 if tx.confirmations >= 2:
 # We got more than 1 confirmation, good, we are counting!
 break

 if time.time() > deadline:
 # Print some debug output to diagnose
 for tx in session.query(self.Transaction).all():
 logger.error(tx)

 for ntx in session.query(self.NetworkTransaction).all():
 logger.error(ntx)

 self.assertLess(time.time(), deadline, "Never got confirmations update through")

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/backend/base.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.backend.base

"""Base classes for cryptocurrency backend."""

import abc

from zope.dottedname.resolve import resolve

from ..utils.conflictresolver import ConflictResolver
from ..event.registry import EventHandlerRegistry
from .transactionupdater import TransactionUpdater

[docs]class CoinBackend(abc.ABC):
 """ Cryptocurrency management backend.

 Provide necessecities for low-level cryptocurrency usage, like creating wallets, addresses, sending and receiving the currency.

 Manage communications with the cryptocurrency network. The commucications can be done either by API service (block.io, blockchain.info) or raw protocol daemon (bitcoind).

 The accounting amounts are in the integer amounts defined by the datbase models, e.g. satoshis for Bitcoin. If the backend supplies amounts in different unit, they most be converted forth and back by the backend. For the example, see :py:class:`cryptoassets.core.backend.blockio`.
 """

 def __init__(self):
 #: If ``track_incoming_confirmations`` is set to true, this is how many confirmations we track for each incoming transactions until we consider it "closed". Please note that this is API will most likely be changed in the future and this variable move to somewhere else.
 #: The variable is set by ``Configurator.setup_backend``.
 max_tracked_incoming_confirmations = None

 @abc.abstractmethod
[docs] def require_tracking_incoming_confirmations(self):
 """Does this backend need to have some help to get incoming transaction confirmations tracked.

 Some daemons and walletnotify methods, namely bitcoind, only notify us back the first occurence of an incoming transactions. If we want to receive further confirmations from the transaction, we need to manually poll the transactions where our confirmation threshold is not yet met.

 Set this to true and the cryptoassets helper service will start a background job (:py:mod:`cryptoassets.core.tools.confirmationupdate` to keep receiving updates about the confirmations).

 :return: True or False
 """

 @abc.abstractmethod
[docs] def create_address(self, label):
 """ Create a new receiving address.
 """

 @abc.abstractmethod
[docs] def get_balances(self, addresses):
 """Get balances on multiple addresses.

 Return the address balance in the native format (backend converts to satoshis, etc.)

 :yield: (address, balance) tuples
 """

 @abc.abstractmethod
[docs] def send(self, recipients):
 """Broadcast outgoing transaction.

 This is called by send/receive process.

 :param recipients: Dict of (address, internal amount)
 """

 @abc.abstractmethod
[docs] def get_backend_balance(self):
 """Get full available hot wallet balance on the backend.

 May take backend-specific optional kwargs like ``confirmations``.

 This is used for :py:mod:`cryptoassets.core.tools.walletimport`.

 :return: Decimal
 """

 @abc.abstractmethod
[docs] def list_received_transactions(self, extra):
 """List all received transactions the backend is aware off.

 :param extra: Dict of backend-specific optional arguments like ``dict(confirmations=0)``.

 :return: Instance of :py:class:`cryptoassets.core.backend.base.ListTransactionsIterator`.
 """

[docs] def create_transaction_updater(self, conflict_resolver, event_handler_registry):
 """Create transaction updater to handle database writes with this backend.

 Creates :py:class:`cryptoassets.core.backend.transactionupdater.TransactionUpdater` instance.
 This TransactionUpdater is bound to this backend and provides safe APIs for doing broadcast and deposit updates.
 """
 tx_updater = TransactionUpdater(conflict_resolver, self, self.coin, event_handler_registry)
 return tx_updater

[docs] def setup_incoming_transactions(self, conflict_resolver, event_handler_registry):
 """Configure the incoming transaction notifies from backend.

 The configuration for wallet notifies have been given to the backend earlier in the backend constructor. Now we read this configure, resolve the walletnotify handler class and instiate it.

 We'll hook into backend by creating ``cryptoassets.core.backend.transactionupdater.TransactionUpdater`` instance, which gets the list of event_handler_registry it needs to call on upcoming transaction.

 :param conflict_resolver: cryptoassets.core.utils.conflictresolver.ConflictResolver instance which is used to manage transactions

 :param event_handler_registry: :param event_handler_registry: :py:class`cryptoassets.core.event.registry.EventHandlerRegistry` instance or None if we don't want to notify of new transactions and just update the database

 :return: Instance of :py:class:`cryptoassets.core.backend.base.IncomingTransactionRunnable`
 """

 assert conflict_resolver, "Cannot setup incoming transactions without transaction conflict resolver in place"
 assert isinstance(conflict_resolver, ConflictResolver)
 assert isinstance(event_handler_registry, EventHandlerRegistry) or event_handler_registry is None

 config = self.walletnotify_config

 if not config:
 return

 config = config.copy()

 transaction_updater = self.create_transaction_updater(conflict_resolver, event_handler_registry)

 klass = config.pop("class")
 provider = resolve(klass)
 config["transaction_updater"] = transaction_updater
 # Pass given configuration options to the backend as is
 try:
 handler = provider(**config)
 except TypeError as te:
 # TODO: Here we reflect potential passwords from the configuration file
 # back to the terminal
 # TypeError: __init__() got an unexpected keyword argument 'network'
 raise RuntimeError("Could not initialize backend {} with options {}".format(klass, config)) from te

 return handler

[docs]class ListTransactionsIterator(abc.ABC):
 """Helper to iterate all transactions in the backend.

 Because different backends iterate to different directions, we abstract this away.

 .. note ::

 bitcoind iterates from index 0 with different batch sizes. block.io iterates from the latest transcation with fixed batch size of 100 and needs before txid parameter for the next batch.
 """

 def __init__(self, backend):
 """
 """
 self.backend = backend

 @abc.abstractmethod
[docs] def fetch_next_txids():
 """Get next batch of transactions.

 txdata must be dict bitcoind-like format::

 {
 confirmations: 0,
 txid: "xxx",
 "details": {
 "category": "received",
 "amount": Decimal(1),
 "address": "foobar"
 }
 }

 :return: List of next (txid, txdata) paits to iterate or empty list if iterating is done.
 """

[docs]class IncomingTransactionRunnable(abc.ABC):
 """Backend specific thread/process taking care of accepting incoming transaction notifications from the network."""

 @abc.abstractmethod
 def start(self):
 pass

 @abc.abstractmethod
 def stop(self):
 pass

[docs] def register_new_addresses(self):
 """Backend has created new addresses and the incoming transcation monitor must know about them.

 Some monitoring systems need to refresh after new addresses have been added to the pool.
 """

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/utils/httpeventlistener.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.utils.httpeventlistener

"""Convenience decorator to open HTTP event listever for configured cryptoassets service.

Opens a new HTTP server running a background thread. Whenever cryptoassets helper service posts a new event, it will be received by this HTTP server which then executes the event in your application context.

This can be used only once per application, so you need to dispatch listened events to your own event handling funcions in one singleton handler.

The callback receives two arguments, ``event_name`` (string) and ``data`` (dict). Data payload depends on the event type.

Example::

 app = CryptoAssetsApp()

 # This will load the configuration file for the cryptoassets framework
 configurer = Configurator(app)
 configurer.load_yaml_file("cryptoassets-settings.yaml")

 @simple_http_event_listener(configurer.config)
 def my_event_callback(event_name, data):
 if event_name == "txupdate":
 print("Got transaction update {}".format(data))

"""

import json
import threading
import atexit
import urllib
import logging
from http.server import HTTPServer
from http.server import BaseHTTPRequestHandler

from cgi import parse_header
from cgi import parse_multipart
from urllib.parse import parse_qs

logger = logging.getLogger(__name__)

class CryptoassetsServiceRequestHandler(BaseHTTPRequestHandler):
 """Very crude HTTP POST processor.

 Extra txid from the POST request.
 """

 def log_request(self, code=None, size=None):
 logger.debug("HTTP %d", code)

 def do_POST(self):

 try:
 # http://stackoverflow.com/a/12731208/315168
 # Extract and print the contents of the POST
 length = int(self.headers['Content-Length'])
 post_data = parse_qs(self.rfile.read(length).decode('utf-8'))

 if "data" not in post_data:
 raise RuntimeError("Incoming POST did not contain data field: {}".format(post_data))

 event_name = post_data["event_name"][0]
 data = post_data["data"][0]

 logger.debug("Handling incoming event %s", event_name)

 data = json.loads(data)
 self.server.func(event_name, data)

 self.send_response(200, "OK")
 self.end_headers()
 return ""
 except Exception as e:
 logger.error("Error handling incoming event")
 logger.exception(e)
 self.send_response(500, "Internal server error")
 self.end_headers()
 raise e

class EventCaptureHTTPServer(HTTPServer):
 """HTTP Server responsing to event HTTP POST notifications."""

class SimpleHTTPEventListenerThread(threading.Thread):

 def __init__(self, ip, port, func):
 """
 :param func: The event handling callback function

 :param ip: IP address / host to bind

 :param port: Port to bind
 """

 self.func = func

 #: HTTP server instance we are running
 self.httpd = None

 server_address = (ip, port)

 try:
 self.httpd = EventCaptureHTTPServer(server_address, CryptoassetsServiceRequestHandler)

 # XXX: More explicitly pass this around?
 self.httpd.func = func
 except OSError as e:
 raise RuntimeError("Could not start cryptoassets server HTTP event listener at {}:{}".format(ip, port)) from e

 self.running = False

 threading.Thread.__init__(self)

 def run(self):
 self.running = True
 self.httpd.serve_forever()

 def stop(self):
 self.running = False
 if self.httpd:
 self.httpd.shutdown()

[docs]def simple_http_event_listener(config, daemon=True):
 """Function decorator to make the target function to retrieve events from cryptoassets helper service over HTTP event callback.

 You can also call this manually from command line from testing::

 curl --data 'event_name=txupdate&data={"transaction_type":"broadcast","address":"x","confirmations":2,"txid":"foobar"}' http://127.0.0.1:10000

 :param config: *cryptoassets.core* app configuration as Python dict. We'll extract the information which port and IP to listen to on HTTP server from there.

 :param func: The event handling callback function, ``callback(event_name, data_dict)``.

 :param daemon: Should the server be started as a daemon thread (does not prevent Python application quitting unless explictly stopped)
 """

 def actual_decorator(func):

 assert type(config) == dict

 # Exract status server address from the configuration
 notify_config = config.get("events")

 if not notify_config:
 raise RuntimeError("Could not get the configuration for cryptoassets service process events")

 # Get first HTTP event handling entty from the config and grab it's IP and URL there
 host = port = None
 for data in notify_config.values():
 if data["class"] == "cryptoassets.core.event.http.HTTPEventHandler":
 url = urllib.parse.urlparse(data["url"])
 port = url.port
 host = url.hostname

 assert url.path in ("/", ""), "Simple HTTP Event listener doesn't support URLs with paths, your path was {}".format(url.path)

 break

 else:
 raise RuntimeError("Could not find cryptoassets.core.event.http.HTTPEventHandler configuration in cryptoassets config")

 server = SimpleHTTPEventListenerThread(host, port, func)
 server.daemon = daemon
 server.start()

 def handle_cleanup():
 server.stop()

 atexit.register(handle_cleanup)

 func.http_server = server

 return func

 return actual_decorator

__all__ = [simple_http_event_listener]

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/service/main.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.service.main

"""Cryptoassets helper service is a standalone process managing cryptoasset backend connections and transaction updates.

Manages asynchronous tasks for sending and receiving cryptocurrency over various APIs. This includes

* Broadcasting transactions to the cryptocurrency network asynchronously

* Handle incoming transactions and write them to the database, calls your application via event handlers

* Updates confirmation counts of open transactions

"""

import sys
import datetime
import logging
import time
import signal

import pkg_resources
from apscheduler.schedulers.background import BackgroundScheduler

from ..app import CryptoAssetsApp
from ..app import Subsystem
from ..app import ALL_SUBSYSTEMS
from ..configure import Configurator
from ..backend.base import IncomingTransactionRunnable
from ..coin.registry import Coin

from ..tools import confirmationupdate
from ..tools import receivescan
from ..tools import broadcast

from ..utils import danglingthreads

from . import status
from . import defaultlogging

#: Must be instiated after the logging configure is passed in
logger = None

[docs]def splash_version():
 """Log out cryptoassets.core package version."""
 version = pkg_resources.require("cryptoassets.core")[0].version
 logger.info("cryptoassets.core version %s", version)

[docs]class Service:
 """Main cryptoassets helper service.

 This class runs *cryptoassets helper service* process itself and various command line utilities (*initialize-database*, etc.)

 We uses `Advanced Python Scheduler <http://apscheduler.readthedocs.org/>`_ to run timed jobs (broadcasts, confirmatino updates).

 Status server (:py:mod:`cryptoassets.core.service.status`) can be started for inspecting our backend connections are running well.

 """
 def __init__(self, config, subsystems=[Subsystem.database, Subsystem.backend], daemon=False, logging=True):
 """
 :param config: cryptoassets configuration dictionary

 :param subsystems: List of subsystems needed to initialize for this process

 :param daemon: Run as a service
 """
 self.app = CryptoAssetsApp(subsystems)

 #: Status server instance
 self.status_server = None

 #: coin name -> IncomingTransactionRunnable
 self.incoming_transaction_runnables = {}
 self.running = False
 self.last_broadcast = None
 self.receive_scan_thread = None

 #: How often we check out for outgoing transactions
 self.broadcast_period = 30

 # List of active running threads
 self.threads = []

 self.daemon = daemon

 self.config(config, logging_=logging)
 self.setup()

[docs] def config(self, config, logging_):
 """Load configuration from Python dict.

 Initialize logging system if necessary.
 """
 self.configurator = Configurator(self.app, self)
 self.configurator.load_from_dict(config)
 if logging_:
 self.setup_logging(config)

 # Now logging is up'n'running and we can finally create logger for this Python module
 global logger
 logger = logging.getLogger(__name__)

 splash_version()

[docs] def setup(self):
 """Start background threads and such."""

 if Subsystem.broadcast in self.app.subsystems:
 self.setup_jobs()

 if Subsystem.database in self.app.subsystems:
 self.setup_session()

 if Subsystem.incoming_transactions in self.app.subsystems:
 self.setup_incoming_notifications()

 # XXX: We are aliasing here, because configurator can only touch app object. Need to figure out something cleaner.
 self.status_server = self.app.status_server

 def setup_logging(self, config):

 if not self.daemon or not config.get("service", {}).get("logging"):
 # Setup console logging if we run as a batch command or service config lacks logging
 defaultlogging.setup_stdout_logging()

[docs] def setup_session(self):
 """Setup database sessions and conflict resolution."""
 self.app.setup_session()

[docs] def initialize_db(self):
 """ """
 logger.info("Creating database tables for %s", self.app.engine.url)
 self.app.setup_session()
 self.app.create_tables()

 def setup_jobs(self):
 logger.debug("Setting up broadcast scheduled job")
 self.scheduler = BackgroundScheduler()
 self.broadcast_job = self.scheduler.add_job(self.poll_broadcast, 'interval', seconds=self.broadcast_period)
 self.open_transaction_job = self.scheduler.add_job(self.poll_network_transaction_confirmations, 'interval', minutes=1)

[docs] def start_status_server(self):
 """Start the status server on HTTP.

 The server is previously set up by ``configure`` module.We need just to pass the status report generator of this service to it before starting it up.
 """
 if self.status_server:
 report_generator = status.StatusReportGenerator(self, self.app.conflict_resolver)
 logger.info("Starting status server %s with report generators %s", self.status_server, report_generator)
 self.status_server.start(report_generator)

 self.threads.append(self.status_server)

[docs] def setup_incoming_notifications(self):
 """Start incoming transaction handlers.
 """

 assert self.app.conflict_resolver

 for name, coin, in self.app.coins.all():
 assert type(name) == str
 assert isinstance(coin, Coin)
 backend = coin.backend
 runnable = backend.setup_incoming_transactions(self.app.conflict_resolver, self.app.event_handler_registry)
 if runnable:
 logger.info("Setting up incoming transaction notifications for %s using %s", coin, runnable.__class__)
 assert isinstance(runnable, IncomingTransactionRunnable)
 if runnable:
 self.incoming_transaction_runnables[name] = runnable
 self.threads.append(runnable)

[docs] def setup_sigterm(self):
 """Capture SIGTERM and shutdown on it."""

 old_sigint = None

 def term_handler(signum, frame):
 logger.info("Received SIGTERM")
 self.running = False

 def keyboard_handler(signum, frame):
 logger.info("Received SIGINT")
 self.running = False

 # Reove keyboard handler, so that CTRL+C twice does hard kill
 signal.signal(signal.SIGINT, old_sigint)

 # Set the signal handler and a 5-second alarm
 signal.signal(signal.SIGTERM, term_handler)
 old_sigint = signal.signal(signal.SIGINT, keyboard_handler)

[docs] def poll_broadcast(self):
 """"A scheduled task to broadcast any new transactions to the bitcoin network.

 Each wallet is broadcasted in its own transaction.
 """
 self.last_broadcast = datetime.datetime.utcnow()

 for name, coin in self.app.coins.all():
 wallet_class = coin.wallet_model

 @self.app.conflict_resolver.managed_transaction
 def create_broadcasters(session):
 return [broadcast.Broadcaster(wallet, self.app.conflict_resolver, coin.backend) for wallet in session.query(wallet_class).all()]

 broadcasters = create_broadcasters()

 for broadcaster in broadcasters:
 broadcaster.do_broadcasts()

[docs] def poll_network_transaction_confirmations(self):
 """Scan incoming open transactions.

 :return: Number of rescans attempted
 """

 rescans = 0
 for name, coin in self.app.coins.all():
 if coin.backend.require_tracking_incoming_confirmations():

 max_confirmation_count = coin.max_confirmation_count

 tx_updater = coin.backend.create_transaction_updater(self.app.conflict_resolver, self.app.event_handler_registry)
 confirmationupdate.update_confirmations(tx_updater, max_confirmation_count)
 rescans += 1

 return rescans

[docs] def scan_received(self):
 """Scan through all received transactions, see if we missed some through walletnotify."""
 receivescan.scan(self.app.coins, self.app.conflict_resolver, self.app.event_handler_registry)

 def start_startup_receive_scan(self):
 self.receive_scan_thread = receivescan.BackgroundScanThread(self.app.coins, self.app.conflict_resolver, self.app.event_handler_registry)
 self.receive_scan_thread.start()

 self.threads.append(self.receive_scan_thread)

[docs] def start(self):
 """Start cryptoassets helper service.

 Keep running until we get SIGTERM or CTRL+C.

 :return: Process exit code
 """
 logger.info("Starting cryptoassets helper service")
 self.running = True
 self.scheduler.start()
 for coin, runnable in self.incoming_transaction_runnables.items():
 logger.info("Starting incoming transaction notifications for %s", coin)
 runnable.start()

 self.start_status_server()
 self.start_startup_receive_scan()

 self.setup_sigterm()

 if self.daemon:
 # Leave cryptoassets helper service running
 return self.run_thread_monitor()
 else:
 # Testing from unit tests
 return

[docs] def run_thread_monitor(self):
 """Run thread monitor until terminated by SIGTERM."""
 self.running = True

 while self.running:
 if not self.check_threads():
 logger.fatal("Shutting down due to failed thread")
 self.shutdown(unclean=True)
 return 2
 time.sleep(3.0)

 self.shutdown()

 return 0

[docs] def check_threads(self):
 """Check all the critical threads are running and do shutdown if any of the threads has died unexpectly.

 :return: True if all threads stil alive
 """

 for thread in self.threads:
 if not thread.is_alive():

 # Assume all of our threads have thead.running attribute set False when they terminate their main loop normally
 if getattr(thread, "running", False) is True:
 logger.error("Thread abnormally terminated %s", thread)
 return False

 return True

[docs] def shutdown(self, unclean=False):
 """Shutdown the service process.

 :param unclean: True if we terminate due to exception
 """

 logger.info("Attempting shutdown of cryptoassets helper service, unclean %s", unclean)
 self.running = False

 for runnable in self.incoming_transaction_runnables.values():
 runnable.stop()

 if self.scheduler.running:
 self.scheduler.shutdown()

 logger.info("Attempting of shutdown status server")
 if self.app.status_server:
 self.app.status_server.stop()
 self.app.status_server = None

 logger.debug("Checking for dangling threads")
 danglingthreads.check_dangling_threads()
 logger.debug("Quit")

setuptools entry points

def parse_config_argv():
 if len(sys.argv) < 2:
 sys.exit("Usage: {} <configfile.config.yaml>".format(sys.argv[0]))

 config = Configurator.prepare_yaml_file(sys.argv[1])

 return config

def initializedb():

 config = parse_config_argv()
 service = Service(config, (Subsystem.database,))
 service.initialize_db()

def scan_received():

 config = parse_config_argv()
 service = Service(config, (Subsystem.database, Subsystem.backend, Subsystem.event_handler_registry))
 service.scan_received()

def helper():
 config = parse_config_argv()

 Configurator.setup_startup(config)

 service = Service(config, ALL_SUBSYSTEMS, daemon=True)
 exit_code = service.start()
 sys.exit(exit_code)

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/tools/broadcast.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.tools.broadcast

"""Broadcast outgoing transactions.

Broadcaster is responsible for the following things

* Check that there hasn't been any interrupted broadcats before

* Make sure there can be one and only one attempt to broadcast at any moment - so we don't have double broadcast problems

* Scan database for outgoing external transactions

* Merge and allocate these transactions to outgoing broadcasts

* If there are any unbroadcasted broadcasts, mark them scheduled for broadcast and attempt to broadcast them
"""

import datetime
import logging
from collections import Counter

logger = logging.getLogger(__name__)

def _now():
 return datetime.datetime.utcnow()

[docs]class Broadcaster:
 """Create and send transactions to the cryptoasset networks."""

 def __init__(self, wallet, conflict_resolver, backend):

 assert wallet.id, "We can operate only on persisted wallets"

 self.wallet_model = wallet.__class__
 self.wallet_id = wallet.id
 self.conflict_resolver = conflict_resolver
 self.backend = backend

[docs] def get_wallet(self, session):
 """Get a wallet instance within db transaction."""
 Wallet = self.wallet_model
 return Wallet.get_by_id(session, self.wallet_id)

[docs] def get_broadcast(self, session, broadcast_id):
 """Get a wallet instance within db transaction."""

 assert type(broadcast_id) == int

 NetworkTransaction = self.wallet_model.coin_description.NetworkTransaction
 ntx = session.query(NetworkTransaction).get(broadcast_id)
 assert ntx.transaction_type == "broadcast"
 return ntx

[docs] def collect_for_broadcast(self):
 """
 :return: Number of outgoing transactions collected for a broadcast
 """

 @self.conflict_resolver.managed_transaction
 def build_broadcast(session):

 wallet = self.get_wallet(session)

 # Get all outgoing pending transactions which are not yet part of any broadcast
 NetworkTransaction = wallet.coin_description.NetworkTransaction

 txs = wallet.get_pending_outgoing_transactions()

 # TODO: If any priority / mixing rules, they should be applied here
 if txs.count() > 0:
 count = txs.count()
 broadcast = NetworkTransaction()
 broadcast.transaction_type = "broadcast"
 broadcast.state = "pending"
 broadcast.opened_at = None
 broadcast.closed_at = None
 session.add(broadcast)
 session.flush()
 txs.update({"network_transaction_id": broadcast.id})

 logger.info("Collected %d outgoing transaction for broadcast %d", count, broadcast.id)
 else:
 logger.debug("Did not find outgoing transactions for broadcast")
 count = 0

 return count

 return build_broadcast()

[docs] def check_interrupted_broadcasts(self):
 """Check that there aren't any broadcasts which where opened, but never closed.

 :return: List Open broadcast ids or empty list if all good
 """
 @self.conflict_resolver.managed_transaction
 def get_open_broadcasts(session):
 wallet = self.get_wallet(session)
 Broadcast = wallet.Broadcast
 bs = session.query(Broadcast).filter(Broadcast.opened_at != None, Broadcast.closed_at == None) # noqa
 return [b.id for b in bs]

 return get_open_broadcasts()

[docs] def send_broadcasts(self):
 """Pick up any unbroadcasted broadcasts and attempt to send them.

 Carefully do broadcasts within managed transactions, so that if something goes wrong we have a clear audit trail where it failed. Then one can manually check the blockchain if our transaction got there and close the broadcast by hand.

 :return: tuple (broadcasted network transaction count, total charged network fees)
 """

 @self.conflict_resolver.managed_transaction
 def get_ready_broadcasts(session):
 wallet = self.get_wallet(session)
 NetworkTransaction = wallet.coin_description.NetworkTransaction
 return session.query(NetworkTransaction).filter(NetworkTransaction.transaction_type == "broadcast", NetworkTransaction.opened_at == None, NetworkTransaction.closed_at == None) # noqa

 @self.conflict_resolver.managed_non_retryable_transaction
 def mark_for_sending(session, broadcast_id):
 """Mark we are going to send this broadcast and get backend data needed for to build the network transaction.

 :yield: (address, amount) tuples how much to send to each address
 """
 b = self.get_broadcast(session, broadcast_id)
 assert b.opened_at is None
 b.opened_at = _now()
 session.add(b)

 outputs = Counter()

 for tx in b.transactions:
 assert tx.state == "pending"
 assert tx.receiving_account is None
 assert tx.amount > 0
 assert tx.address
 assert tx.address.address
 outputs[tx.address.address] += tx.amount

 return outputs

 @self.conflict_resolver.managed_non_retryable_transaction
 def mark_sending_done(session, broadcast_id, txid):
 b = self.get_broadcast(session, broadcast_id)
 assert b.closed_at is None
 b.txid = txid
 b.closed_at = _now()
 b.state = "broadcasted"
 session.add(b)

 # TODO: See if we can write update() more neatly
 tx_ids = [tx.id for tx in b.transactions]
 Transaction = b.coin_description.Transaction
 session.query(Transaction).filter(Transaction.id.in_(tx_ids)).update(dict(state="broadcasted", processed_at=_now()), synchronize_session=False)

 @self.conflict_resolver.managed_transaction
 def charge_fees(session, broadcast_id, fee):
 wallet = self.get_wallet(session)
 broadcast = self.get_broadcast(session, broadcast_id)
 return wallet.charge_network_fees(broadcast, fee)

 ready_broadcasts = get_ready_broadcasts()
 count = ready_broadcasts.count()
 if count == 0:
 logger.debug("No broadcasts ready for sending to network")
 else:
 logger.info("%d broadcasts prepared for sending", count)

 broadcasted_count = 0
 total_fees = 0

 for b in ready_broadcasts:
 # Note: This is something we must NOT attempt to retry
 logger.info("Opening broadcast %d for sending", b.id)
 outgoing = mark_for_sending(b.id)

 try:
 txid, fee = self.backend.send(outgoing, "Outgoing broadcast {}".format(b.id))
 assert txid
 broadcasted_count += 1
 except Exception as e:
 # Transaction broadcast died and we don't know why. We are pretty much dead in this situation, as we don't know if it is safe to try to re-broadcast the transaction or not.
 logger.error("Failed to broadcast external transaction %s", e)
 logger.exception(e)

 #: TODO: Throw emergency event here?
 continue

 logger.info("Closing broadcast %d as done, it got txid %s", b.id, txid)
 mark_sending_done(b.id, txid)

 if fee:
 charge_fees(b.id, fee)
 total_fees += fee

 return broadcasted_count, total_fees

[docs] def do_broadcasts(self):
 """Collect new outgoing transactions for a broadcast and send out all existing and new outgoing transactions."""
 self.collect_for_broadcast()
 return self.send_broadcasts()

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/tools/confirmationupdate.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.tools.confirmationupdate

"""Network transactions are considered open as long as the confirmation threshold has not been reached.

Because backends do not actively report the progress of confirmation status, we poll the backend for all network transactions (deposits, broadcasts) until the confirmation threshold has been reached. For example, *bitcoind* gives you a walletnotify only for 0 and 1 confirmations. *block.io* does not have any confirmation hooks, but you can subcribe to *chain.so* real-time API to receive 0 confirmations notificatoin to an address.

:py:func:`cryptoassets.core.tools.confirmationupdate.update_confirmations` polls the backend. It will scan all transactions where confirmation threshold has not been reached and then ask the backend of more transaction details. Eventually all open incoming transactions exceed the confirmation threshold and we can stop polling them.

The poller is set up in :py:class:`cryptoassets.core.service.main.Service`.

More information about walletnotify behavior

* http://bitcoin.stackexchange.com/a/24483/5464
"""

import logging

from cryptoassets.core.models import GenericConfirmationTransaction

logger = logging.getLogger(__name__)

[docs]def get_open_network_transactions(session, NetworkTransaction, confirmation_threshold):
 """Get list of transaction_type, txid of transactions we need to check."""
 ntxs = session.query(NetworkTransaction).filter(NetworkTransaction.confirmations < confirmation_threshold, NetworkTransaction.txid != None) # noqa
 return [(ntx.transaction_type, ntx.txid) for ntx in ntxs]

[docs]def update_confirmations(transaction_updater, confirmation_threshold):
 """Periodically rescan all open transactions for one particular cryptocurrency.

 We try to keep transaction conflicts in minimum by not batching too many backend operations per each database session.

 :param confirmation_treshold: Rescan the transaction if it has less confirmations than this

 :param transaction_updater: :py:class:`cryptoassets.core.backend.transactionupdater.TransactionUpdater` instance

 :return: Number of txupdate events fired
 """

 Transaction = transaction_updater.coin.transaction_model
 NetworkTransaction = transaction_updater.coin.network_transaction_model
 backend = transaction_updater.backend
 coin = transaction_updater.coin

 assert issubclass(Transaction, (GenericConfirmationTransaction,))
 assert type(confirmation_threshold) == int

 @transaction_updater.conflict_resolver.managed_transaction
 def get_open_ntxs(session):
 return get_open_network_transactions(session, NetworkTransaction, confirmation_threshold)

 open_ntxs = get_open_ntxs()

 if len(open_ntxs) == 0:
 return 0, 0

 logger.debug("Starting open transaction scan, coin:%s open network transactions: %d", coin.name, len(open_ntxs))

 total_txupdate_events = 0
 for transaction_type, txid in open_ntxs:
 assert txid
 txdata = backend.get_transaction(txid)
 logger.debug("Updating confirmations for %s type %s", txid, transaction_type)
 _, txupdate_events = transaction_updater.update_network_transaction_confirmations(transaction_type, txid, txdata)
 total_txupdate_events += len(txupdate_events)

 return txupdate_events

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/backend/transactionupdater.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.backend.transactionupdater

import datetime
from collections import Counter
import logging
from decimal import Decimal

from sqlalchemy.orm.session import Session

from ..coin.registry import Coin
from ..event.registry import EventHandlerRegistry
from ..event import events

from ..utils.conflictresolver import ConflictResolver

logger = logging.getLogger(__name__)

#: bitcoind gettransaction details and our network transaction types
_detail_categories = {
 "deposit": "receive",
 "broadcast": "send"
}

[docs]class TransactionUpdater:
 """TransactionUpdater write transactions updates from API/backend to the database.

 TransactionUpdater uses :py:class:`cryptoassets.core.utils.conflictresolver.ConflictResolver` database transaction helper when updating transactions. This gives us guarantees that updates having possible db transaction conflicts are gracefully handled.

 The backend has hooked up some kind of wallet notify handler. The wallet notify handler uses TransactionUpdater to write updates of incoming transactoins to the database.

 TransactionUpdater is also responsible to fire any notification handlers to signal the cryptoassets client application to handle new transactions.

 TransactionUpdater is generally run inside :py:class:`cryptoassets.core.service.main.Server` process, as this process is responsible for all incoming transaction updates. No web or other front end should try to make their own updates.
 """

 def __init__(self, conflict_resolver, backend, coin, event_handler_registry):
 """
 :param conflict_resolver: :py:class:`cryptoassets.core.utils.conflictresolver.ConflictResolver`

 :param backend: :py:class:`cryptoasets.core.backend.base.CoinBackend` instance. TODO: To be removed - redundant with ``coin``.

 :param coin: :py:class:`cryptoasets.core.coin.registry.Coin` instance

 :param event_handler_registry: :py:class`cryptoassets.core.event.registry.EventHandlerRegistry` instance
 """
 assert isinstance(coin, Coin)
 assert isinstance(conflict_resolver, ConflictResolver)

 self.backend = backend
 self.coin = coin
 self.conflict_resolver = conflict_resolver

 # Simple book-keeping of number of transactions we have handled
 self.count = 0

 #: UTC timestamp when we got the last transaction notification
 self.last_wallet_notify = None

 if event_handler_registry:
 assert isinstance(event_handler_registry, EventHandlerRegistry)
 #: event_handler_registry registry we are going to inform about transaction status updates
 self.event_handler_registry = event_handler_registry
 else:
 self.event_handler_registry = None

 #: Diagnostics and bookkeeping statistics
 self.stats = Counter(network_transaction_updates=0, deposit_updates=0, broadcast_updates=0)

 def _update_address_deposit(self, ntx, address, amount, confirmations):
 """Handle an incoming transaction update to a single address.

 TODO: confirmations is relevant for mined coins only. Abstract it away here.

 We received an update regarding cryptocurrency transaction ``txid``. This may be a new transaction we have not seen before or an existing transaction. If the transaction confirmation count is exceeded, the transaction is also marked as credited and account who this address belongs balance is topped up.

 ``_update_address_deposit`` will write the updated data to the database.

 Note that a single cryptocurrency transaction may contain updates to several addresses or several received sections to a single address.

 :return: tuple (Transaction id, boolean credited) for the Transaction object created/updated related to external txid
 """

 assert amount > 0

 session = Session.object_session(ntx)

 Address = self.coin.address_model

 address_obj = session.query(Address).filter(Address.address == address).first() # noqa

 if address_obj:

 assert address_obj.account, "Tried to _update_deposit() on non-deposit address. Depositing to: {}, address object is {}, label {}".format(address, address_obj, address_obj.label)

 wallet = address_obj.account.wallet

 # Credit the account
 # Pass confirmations in the extra transaction details
 extra = dict(confirmations=confirmations)

 account, transaction = wallet.deposit(ntx, address, amount, extra)

 confirmations = transaction.confirmations

 logger.info("Wallet notify account %d, address %s, amount %s, tx confirmations %d", account.id, address, amount, confirmations)

 # This will cause Transaction instance to get transaction.id
 session.flush()

 return account.id, transaction.id, (transaction.credited_at is not None)

 else:
 logger.info("Skipping transaction notify for unknown address %s, amount %s", address, amount)
 return None, None, None

 def _is_known_deposit_address(self, session, address):
 """Check if the address is belonging to us or in some third party system in merged transaction."""
 Address = self.coin.address_model
 address_obj = session.query(Address).filter(Address.address == address).first() # noqa

 # We have not seen this address before
 if not address_obj:
 return False

 # This is not a deposit address generated by us
 if not address_obj.is_deposit():
 return False

 return True

 def _get_broadcasted_transactions(self, ntx):
 """Get and verify the list of transaction broadcast concerned.

 We received an update regarding cryptocurrency transaction ``txid``. Because this is an outgoing transaction we must know about transaction this already.

 Note that a single network transaction may contain several outbound transactions. We will return a list of all outbound transactions which received updates.

 :return: List of Transaction objects that were updatesd
 """

 session = Session.object_session(ntx)

 Transaction = self.coin.transaction_model

 transactions = session.query(Transaction).filter(Transaction.network_transaction == ntx, Transaction.state.in_(["pending", "broadcasted"])) # noqa

 transactions = list(transactions)

 assert len(transactions) > 0
 return transactions

[docs] def verify_amount(self, transaction_type, txdata, address, amount):
 """Check that transaction amounts have not somehow changed between confirmations.

 It gets tricky here because bitcoind reports its internal stuff and has negative amounts for send transactions, versus what you see in blockchain and other services is only receiving outputs. We place some temporary workaround we hope to get rid of later.
 """

 total = 0

 # set by block.io to make sure we don't do bitcoind mappings
 if txdata.get("only_receive"):
 transaction_type = "deposit"

 # This transaction has new confirmations
 for detail in txdata["details"]:

 if detail["category"] != _detail_categories[transaction_type]:
 # Don't crash when we are self-sending into back to our wallet.
 # This will filter out "send" and "receive" both inside the same tx
 continue

 assert isinstance(detail["amount"], Decimal), "Problem decoding txdata detail {}".format(detail)

 if detail["address"] == address:
 # This transaction contained sends to some other addresses too, not just us
 if transaction_type == "deposit":
 assert detail["amount"] > 0
 total += self.backend.to_internal_amount(detail["amount"])
 else:
 assert detail["amount"] < 0
 total += -self.backend.to_internal_amount(detail["amount"])

 if total != amount:
 logger.warning("verify_amount() failed. Expected: %s got: %s", amount, total)

 return total == amount

[docs] def update_network_transaction_confirmations(self, transaction_type, txid, txdata):
 """Create or update NetworkTransaction in the database.

 Ask the backend about updates for a network transaction. Any action is taken only if the confirmation count has changed since the last call.

 For desposits, updates the confirmation count of inbound network deposit transaction. For all associated receiving addresses and transactions, confirmation and crediting check if performed, account balances updated and ``txupdate`` event fired.

 For broadcasts, updates the confirmation count of outbound transactions.

 Relevant event handlers are fired (:py:attr:`cryptoassets.core.transactionupdater.TransactionUpdater.event_handler_registry`)

 :param transaction_type: "deposit" or "broadcast". Note that we might have two ntx's for one real network transaction, as we are sending bitcoins to ourselves.

 :param txid: Network transaction hash

 :param txdata: Transaction details, as given by the backend, translated to *bitcoind* format

 :return: Tuple (new or existing network transaction id, fired txupdate events as a list)
 """

 assert txid
 assert txdata

 @self.conflict_resolver.managed_transaction
 def handle_ntx_update(session, transaction_type, txid, txdata):

 txupdate_events = []

 NetworkTransaction = self.coin.coin_description.NetworkTransaction

 if transaction_type == "deposit":
 # In the case of deposit, we may need to create initial ntx event_handler_registry
 ntx, created = NetworkTransaction.get_or_create_deposit(session, txid)
 session.flush()
 elif transaction_type == "broadcast":
 # For broadcasts, we should always know about ntx beforehand as broadcasted it
 ntx = session.query(NetworkTransaction).filter_by(transaction_type="broadcast", txid=txid).first()
 assert ntx, "Tried to update non-existing broadcast {}".format(txid)
 created = False
 else:
 raise AssertionError("Unknown network transaction type {}".format(transaction_type))

 assert ntx.txid == txid, "Corrupted txid in the look-up process"

 # Make sure we don't think we are updating deposit, when in fact, we are updating broadcast
 assert transaction_type == ntx.transaction_type, "Got confused with network transaction {}, asserted it is {}".format(ntx, transaction_type)

 # Confirmations have not changed, nothing to do
 if not created:
 if ntx.confirmations == txdata["confirmations"]:
 return ntx.id, []

 confirmations = ntx.confirmations = txdata["confirmations"]
 self.stats["network_transaction_updates"] += 1

 logger.info("Updating network transaction %d, type %s, state %s, txid %s, confirmations to %s", ntx.id, ntx.transaction_type, ntx.state, ntx.txid, ntx.confirmations)

 if ntx.transaction_type == "deposit":

 # Verify transaction data looks good compared what we have recorded earlier in the database
 for tx in ntx.transactions:

 # XXX: verify_amount() fails with multisig transactions?
 # https://chain.so/tx/BTC/40ad00b473f2cc9f33a84779eb22b8d233ef47b35a2afec77e2fff805af60084
 if not self.verify_amount(ntx.transaction_type, txdata, tx.address.address, tx.amount):
 logger.warn("The total amount of txid %s, type %s, for address %s did not match. Expected: %s. Txdata: %s", txid, ntx.transaction_type, tx.address.address, tx.amount, txdata)

 # Sum together received per address
 addresses = Counter() # address -> amount mapping

 # XXX: room for optimization, do _is_known_deposit in single SQL batch
 for detail in txdata["details"]:
 if detail["category"] == "receive":

 # Do not care about the address unless it is our receiving address, otherwise it can be just some third party transfer in a merged transaction
 if not self._is_known_deposit_address(session, detail["address"]):
 logger.debug("Bailing out unknown address %s", detail["address"])
 continue

 addresses[detail["address"]] += self.backend.to_internal_amount(detail["amount"])

 for address, amount in addresses.items():

 # Handle updates to deposits
 account_id, transaction_id, credited = self._update_address_deposit(ntx, address, amount, confirmations)

 logger.debug("Received deposit update for account %s, address %s, credited %s, confirmations %d", account_id, address, credited, confirmations)

 if not account_id:
 # This address was not in our system
 continue

 self.stats["deposit_updates"] += 1

 event = events.txupdate(coin_name=self.coin.name, network_transaction=ntx.id, transaction_type=ntx.transaction_type, txid=txid, transaction=transaction_id, account=account_id, address=address, amount=amount, confirmations=confirmations, credited=True)
 txupdate_events.append(event)

 else:
 # Handle updates to broadcasts
 transactions = self._get_broadcasted_transactions(ntx)

 assert len(transactions) > 0

 # TODO: Reverify outgoing amounts here

 for t in transactions:

 logger.debug("Received broadcast update for transaction %d", t.id)

 event = events.txupdate(coin_name=self.coin.name, network_transaction=ntx.id, transaction_type=ntx.transaction_type, txid=txid, transaction=t.id, account=t.sending_account.id, address=t.address.address, amount=t.amount, confirmations=confirmations, credited=None)
 txupdate_events.append(event)

 self.stats["broadcast_updates"] += 1

 return ntx.id, txupdate_events

 ntx_id, txupdate_events = handle_ntx_update(transaction_type, txid, txdata)

 if txupdate_events:

 # Fire event handlers outside the db transaction
 notifier_count = len(self.event_handler_registry.get_all()) if self.event_handler_registry else 0
 logger.info("Posting txupdate notify for %d event_handler_registry, current transaction updater stats %s", notifier_count, self.stats)
 if self.event_handler_registry:
 for e in txupdate_events:
 self.event_handler_registry.trigger("txupdate", e)

 return ntx_id, txupdate_events

[docs] def handle_wallet_notify(self, txid):
 """Handle incoming wallet notifications.

 Fetch transaction info from the backend and update all receiving addresses we are managing within that transaction.

 :param txid: Network transaction hash
 """
 self.last_wallet_notify = datetime.datetime.utcnow()

 txdata = self.backend.get_transaction(txid)
 # XXX: bitcoind sends updates for broacasted transactions too? In any case this will filter them out and confirmations are updated via tools.confirmationupdate
 return self.update_network_transaction_confirmations("deposit", txid, txdata)

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/tools/walletimport.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.tools.walletimport

"""Import existing wallet balance to the accounting.

If you have a wallet in some service and you wish to use it with *cryptoassets.core*, you need to tell *cryptoassets.core* what to do with the existing balance in the wallet, from the time before the wallet was managed by *cryptoassets.core*.

This is especially useful for testing. To run unit tests you need to have some cryptocurrency balance somewhere. You have known backends which you configure the unit tests to connect to. These backends have default wallets and there is some balance on these wallets, so unit tests can perform withdraw tests.
"""
import datetime
import logging

from sqlalchemy.orm.session import Session

logger = logging.getLogger(__name__)

def has_unaccounted_balance(backend, wallet):

 balance = backend.get_backend_balance()
 if balance > wallet.balance:
 return True
 elif balance < wallet.balance:
 raise RuntimeError("We have more coins on our accounts than the backend has balance.")
 else:
 return False

[docs]def create_import_transaction(amount, account):
 """Put wallet extra coins, for which we do not know the owner, on a specific account.

 Execute inside transaction manager.

 :param Decimal amount: How many extra coins to account

 :param account: Account instance where to put coins
 """

 assert amount > 0
 assert account.id
 assert account.wallet

 session = Session.object_session(account)

 Transaction = account.coin_description.Transaction
 wallet = account.wallet

 all_imports = session.query(Transaction).filter(Transaction.receiving_account == account, Transaction.state == "balance_import")
 counted = all_imports.count()

 t = Transaction()
 t.sending_account = None
 t.receiving_account = account
 t.wallet = wallet
 t.amount = amount
 t.state = "balance_import"
 t.credited_at = datetime.datetime.utcnow()
 t.label = "Backend balance import #{}".format(counted+1)
 session.add(t)

 logger.info("Imported balance %s to account %d", amount, account.id)

 account.balance += amount
 wallet.balance += amount

[docs]def import_unaccounted_balance(backend, wallet, account):
 """Creates a new transaction which will put all assets in the wallet on a new account."""

 assert account.wallet.id == wallet.id

 logger.debug("Importing balance from backend %s", backend)

 balance = backend.get_backend_balance()
 if balance == 0:
 logger.debug("Backend has zero balance")

 if balance > wallet.balance:
 logger.debug("Creating import transaction")
 create_import_transaction(balance - wallet.balance, account)
 elif balance < wallet.balance:
 raise RuntimeError("We have more coins on our accounts than the backend has balance.")
 else:
 # Our accounting and backend balance match
 logger.debug("Backend balance is sync with the wallet")
 return

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/event/events.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.event.events

def txupdate(coin_name, transaction, network_transaction, transaction_type, txid, account, address, amount, credited, **extra):
[docs] """txupdate event reports the confirmation changes of incoming transaction (deposit) or outgoing transaction (broadcasted).

 This event is fired for each transaction, when its ``confirmations`` changes. One network transaction may contain several deposit or broadcast transactions and they all trigger the event.

 When the incoming transaction is first seen in the network, but it is not yet confirmed, confirmations is 0. Evaluate the risk of `double spending <https://en.bitcoin.it/wiki/Double-spending>`_ for these kind of transactions in your application context.

 :param coin_name: Lowercase acronym name for this asset

 :param transaction: Id of :py:class:`cryptoasset.core.models.GenericTransaction` instance

 :param network_transaction: Id of :py:class:`cryptoasset.core.models.GenericNetworkTransaction` instance

 :param transaction_type: String ``deposit`` (incoming) or ``broadcast`` (outgoing)

 :param txid: Network transaction id (transaction hash) as a string

 :param account: Database account id as int, either receiving account (deposit) or sending account (broadcast)

 :param amount: How much the transaction is worth of, as Decimal

 :param credited: Has this transaction reaches system-set confirmation threshold

 :param extra: Any cryptoasset specific data as dict, e.g. ``dict(confirmations=0)`` in the case of mined coins

 :return: Event data as dict()
 """
 assert type(coin_name) == str
 assert type(address) == str
 assert type(account) == int, "Expected account id as int, got {}".format(account)
 assert type(transaction) == int
 assert type(network_transaction) == int
 assert type(transaction_type) == str
 assert amount
 assert amount > 0
 data = dict(transaction=transaction, network_transaction=network_transaction, txid=txid, account=account, address=address, amount=amount, credited=credited)
 data.update(extra)
 return data

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/coin/registry.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.coin.registry

"""All running cryptoassets are maintained in a coin registry.

Each cryptoasset provides its own Wallet SQLAlchemy model and backend instance which is used to communicate with the network of the cryptoasset.
"""
from zope.dottedname.resolve import resolve

[docs]class CoinModelDescription:
 """Describe one cryptocurrency data structures: what SQLAlchemy models and database tables it uses.

 The instance of this class is used by :py:class:`cryptoassets.core.models.CoinDescriptionModel` to build the model relatinoships and foreign keys between the tables of one cryptoasset.
 """

 def __init__(self, coin_name, wallet_model_name, address_model_name, account_model_name, transaction_model_name, network_transaction_model_name, address_validator):
 """Create the description with fully dotted paths to Python classes.

 :param coin_name: Name of this coin, lowercase acronym
 """
 assert coin_name == coin_name.lower()

 self.coin_name = coin_name
 self.wallet_model_name = wallet_model_name
 self.address_model_name = address_model_name
 self.account_model_name = account_model_name
 self.transaction_model_name = transaction_model_name
 self.network_transaction_model_name = network_transaction_model_name
 self.address_validator = address_validator

 # Direct model class reference. Available after Python modules are loaded and Cryptoassets App session initialized
 self._Wallet = None
 self._Address = None
 self._Account = None
 self._NetworkTransaction = None
 self._Transaction = None

 @property
 def Wallet(self):
 """Get wallet model class."""
 return self._lazy_initialize_class_ref("_Wallet", self.wallet_model_name)

 @property
 def Address(self):
 """Get address model class."""
 return self._lazy_initialize_class_ref("_Address", self.address_model_name)

 @property
 def Account(self):
 """Get account model class."""
 return self._lazy_initialize_class_ref("_Account", self.account_model_name)

 @property
 def NetworkTransaction(self):
 """Get network transaction model class."""
 return self._lazy_initialize_class_ref("_NetworkTransaction", self.network_transaction_model_name)

 @property
 def Transaction(self):
 """Get transaction model class."""
 return self._lazy_initialize_class_ref("_Transaction", self.transaction_model_name)

 @property
 def wallet_table_name(self):
 return "{}_wallet".format(self.coin_name)

 @property
 def account_table_name(self):
 return "{}_account".format(self.coin_name)

 @property
 def address_table_name(self):
 return "{}_address".format(self.coin_name)

 @property
 def transaction_table_name(self):
 return "{}_transaction".format(self.coin_name)

 @property
 def network_transaction_table_name(self):
 return "{}_network_transaction".format(self.coin_name)

 def _lazy_initialize_class_ref(self, name, dotted_name):
 val = getattr(self, name, None)
 if val:
 return val
 else:
 val = resolve(dotted_name)
 setattr(self, name, val)
 return val

[docs]class Coin:
 """Describe one cryptocurrency setup.

 Binds cryptocurrency to its backend and database models.

 We also carry a flag if we are running in testnet or not. This affects address validation.
 """

 def __init__(self, coin_description, backend=None, max_confirmation_count=15, testnet=False):
 """Create a binding between asset models and backend.

 :param coin_description: :py:class:`cryptoassets.core.coin.registry.CoinModelDescription`

 :param testnet: Are we running a testnet node or real node.

 :param backend: :py:class:`cryptoassets.core.backend.base.CoinBackend`
 """

 assert isinstance(coin_description, CoinModelDescription)

 self.coin_description = coin_description

 #: Subclass of :py:class:`cryptoassets.core.backend.base.CoinBackend`.
 self.backend = None

 #: Lowercase acronym name of this asset
 self.name = None

 #: This is how many confirmations ``tools.confirmationupdate`` tracks for each network transactions, both incoming and outgoing, until we consider it "closed" and stop polling backend for updates.
 self.max_confirmation_count = max_confirmation_count

 self.testnet = testnet

 @property
 def address_model(self):
 """Property to get SQLAlchemy model for address of this cryptoasset.

 Subclass of :py:class:`cryptoassets.core.models.GenericAddress`.
 """
 return self.coin_description.Address

 @property
 def transaction_model(self):
 """Property to get SQLAlchemy model for transaction of this cryptoasset.

 Subclass of :py:class:`cryptoassets.core.models.GenericTransaction`.
 """
 return self.coin_description.Transaction

 @property
 def account_model(self):
 """Property to get SQLAlchemy model for account of this cryptoasset.

 Subclass of :py:class:`cryptoassets.core.models.GenericAccount`.
 """
 return self.coin_description.Account

 @property
 def wallet_model(self):
 """Property to get SQLAlchemy model for account of this cryptoasset.

 Subclass of :py:class:`cryptoassets.core.models.GenericWallet`.
 """
 return self.coin_description.Wallet

 @property
 def network_transaction_model(self):
 """Property to get SQLAlchemy model for account of this cryptoasset.

 Subclass of :py:class:`cryptoassets.core.models.GenericWallet`.
 """
 return self.coin_description.NetworkTransaction

[docs] def validate_address(self, address):
 """Check the address validy against current network.

 :return: True if given address is valid.
 """
 return self.coin_description.address_validator.validate_address(address, self.testnet)

[docs]class CoinRegistry:
 """Holds data of set up cryptocurrencies.

 Usually you access this through :py:attr:`cryptoasssets.core.app.CryptoassetsApp.coins` instance.

 Example::

 cryptoassets_app = CryptoassetsApp()
 # ... setup ...

 bitcoin = cryptoassets_app.coins.get("btc)

 print("We are running bitcoin with backend {}".format(bitcoin.backend))

 """

 def __init__(self):
 self.coins = {}

 def register(self, name, coin):
 self.coins[name] = coin
 # Setup backref
 coin.name = name

[docs] def all(self):
 """Get all registered coin models.

 :return: List of tuples(coin name, Coin)
 """
 return self.coins.items()

[docs] def get(self, name):
 """Return coin setup data by its acronym name.

 :param name: All lowercase, e.g. ``btc``.
 """
 return self.coins.get(name)

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_modules/cryptoassets/core/event/script.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.event.script

"""Run a script on a notification.

Execute an UNIX command on a new event.

Blocks the execution until the executed command returns.

The following environment variables are set for the script::

 CRYPTOASSETS_EVENT_NAME="event name as a string"
 CRYPTOASSETS_EVENT_DATA="JSON encoded data"

If the executed command returns non-zero status, this notification handler raises ``ShellNotificationFailed``.

Configuration options

:param class: Always ``cryptoassets.core.event.script.ScriptEventHandler``.

:param script: Executed shell command

:param log_output: If true send the output from the executed command to cryptoassets logs on INFO log level
"""

import logging
import json
import subprocess
import os

from .base import EventHandler

logger = logging.getLogger(__name__)

[docs]class ScriptNotificationFailed(Exception):
 """Script executed for the notification returned non-zero exit code."""

class ScriptEventHandler(EventHandler):

 def __init__(self, script, log_output=False):
 self.script = script
 self.log_output = log_output in ("true", True)

 def trigger(self, event_name, data):
 assert type(event_name) == str
 data = json.dumps(data)
 args = (self.script,)

 env = os.environ.copy()
 env["CRYPTOASSETS_EVENT_NAME"] = event_name
 env["CRYPTOASSETS_EVENT_DATA"] = data

 p = subprocess.Popen(args, shell=True, env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
 stdout, stderr = p.communicate()

 if self.log_output:
 logger.info("Executed notification script %s, exit code %d", args, p.returncode)
 logger.info("stdout: %s", stdout)
 logger.info("stderr: %s", stderr)

 if p.returncode != 0:
 raise ScriptNotificationFailed("Executing notification script {} got exit value {}".format(args, p.returncode))

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_images/logo.png

_images/koalatrain.jpg

_modules/cryptoassets/core/coin/validate.html

 Navigation

 		
 index

 		
 modules |

 		cryptoassets.core - Cryptoassets and Bitcoin framework for Python »

 		Module code »

 Source code for cryptoassets.core.coin.validate

"""Coin models support pluggable address validators.

We provide some validators just to make sure we don't write bad outgoing transactions to our database.
"""

import abc
import logging
from hashlib import sha256

logger = logging.getLogger(__name__)

[docs]class AddressValidator(abc.ABC):
 """Define address validation interface.

 You should not call this directly, instead use :py:meth:`cryptoassets.core.coin.registry.Coin.validate_address`.

 """

 @abc.abstractmethod
[docs] def validate_address(self, address, testnet):
 """
 :param address: Address as a string

 :param testnet: We are in testnet

 :return: True if the address is valid
 """

class NullAddressValidator(AddressValidator):

 def validate_address(self, address, testnet):
 return True

[docs]class HashAddresValidator(AddressValidator):
 """Check that hash in the address is good.

 Does not do extensive checks like address type, etc. one could do with pycoin.

 http://rosettacode.org/wiki/Bitcoin/address_validation
 """

 digits58 = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'

 def decode_base58(self, bc, length):
 n = 0
 for char in bc:
 n = n * 58 + self.digits58.index(char)
 return n.to_bytes(length, 'big')

 def check_bc(self, bc):
 bcbytes = self.decode_base58(bc, 25)
 return bcbytes[-4:] == sha256(sha256(bcbytes[:-4]).digest()).digest()[:4]

 def validate_address(self, address, testnet):
 return self.check_bc(address)

[docs]class NetworkCodeAddressValidator(AddressValidator):
 """Check if Bitcoin style address is valid using pycoin library.

 XXX: Issues, could not get working.
 """

 def __init__(self, netcode, testnetcode):
 self.netcode = netcode
 self.testnetcode = testnetcode

 def validate_address(self, address, testnet):
 raise NotImplementedError()

 © Copyright 2015 Mikko Ohtamaa.
 Created using Sphinx 1.3.1.

_images/cryptoassets_framework.png
Crypoassets.core

<<component>>
Your application

g

<<component>>
cryptoassets helper service

v

<<component>>]
QL database

ered B

<<component>>
bitcoind

<<component>>
blockio

<<component>>
blockchain.info

unity Editio

_static/comment-close.png

_static/logo.png

_static/ajax-loader.gif

