

 Navigation

 	
 index

 	
 next |

 	Crawl Frontier 0.2.0 documentation

Crawl Frontier 0.2.0 documentation

This documentation contains everything you need to know about Crawl Frontier.

First steps

	Crawl Frontier at a glance

	Understand what Crawl Frontier is and how it can help you.

	Installation Guide

	Get Crawl Frontier installed on your computer.

Basic concepts

	What is a Crawl Frontier?

	Learn what a crawl frontier is and how to use it.

	Architecture overview

	See how Crawl Frontier works and its different components.

	Frontier objects

	Understand the classes used to represent links and pages.

	Frontier API

	Learn how to use the frontier.

	Settings

	See how to configure Crawl Frontier.

Extending Crawl Frontier

	Middlewares

	Filter or alter information for links and pages.

	Backends

	Define your own crawling logic.

Built-in services and tools

	Using the Frontier with Scrapy

	Learn how to use Crawl Frontier with Scrapy.

	Using the Frontier with Requests

	Learn how to use Crawl Frontier with Requests.

	Graph Manager

	Define fake crawlings for websites to test your frontier.

	Testing a Frontier

	Test your frontier in an easy way.

	Recording a Scrapy crawl

	Create Scrapy crawl recordings and reproduce them later.

	Scrapy Seed Loaders

	Scrapy middlewares for seed loading

All the rest

	Examples

	Some example projects and scripts using Crawl Frontier.

	Tests

	How to run and write Crawl Frontier tests.

	Release Notes

	See what has changed in recent Crawl Frontier versions.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Crawl Frontier at a glance

Crawl Frontier is an application framework that is meant to be used as part of a Crawling System [http://en.wikipedia.org/wiki/Web_crawler], allowing you to
easily manage and define tasks related to a Crawling Frontier.

Even though it was originally designed for Scrapy [http://scrapy.org/], it can also be used with any other Crawling Framework/System as
the framework offers a generic frontier functionality.

The purpose of this document is to introduce you to the concepts behind Crawl Frontier so that you can get an idea of
how it works and to decide if it is suited to your needs.

1. Create your crawler

Create your Scrapy project as you usually do. Enter a directory where you’d like to store your code and then run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
 scrapy.cfg
 tutorial/
 __init__.py
 items.py
 pipelines.py
 settings.py
 spiders/
 __init__.py
 ...

These are basically:

	scrapy.cfg: the project configuration file

	tutorial/: the project’s python module, you’ll later import your code from here.

	tutorial/items.py: the project’s items file.

	tutorial/pipelines.py: the project’s pipelines file.

	tutorial/settings.py: the project’s settings file.

	tutorial/spiders/: a directory where you’ll later put your spiders.

2. Integrate your crawler with the frontier

Add the Scrapy Crawl Frontier middlewares to your settings:

SPIDER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.frontier.CrawlFrontierSpiderMiddleware': 1000,
})

DOWNLOADER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.frontier.CrawlFrontierDownloaderMiddleware': 1000,
})

Create a Crawl Frontier settings.py file and add it to your Scrapy settings:

FRONTIER_SETTINGS = 'tutorial/frontier/settings.py'

3. Choose your backend

Configure frontier settings to use a built-in backend like in-memory BFS:

BACKEND = 'crawlfrontier.contrib.backends.memory.heapq.BFS'

4. Run the spider

Run your Scrapy spider as usual from the command line:

scrapy crawl myspider

And that’s it! You got your spider running integrated with Crawl Frontier.

What else?

You’ve seen a simple example of how to use Crawl Frontier with Scrapy, but this is just the surface.
Crawl Frontier provides many powerful features for making Frontier management easy and efficient, such as:

	Easy built-in integration with Scrapy and any other crawler
through its API.

	Creating different crawling logic/policies defining your own backend.

	Built-in support for database storage for crawled pages.

	Support for extending Crawl Frontier by plugging your own functionality using middlewares.

	Built-in middlewares for:
	Extracting domain info from page URLs.

	Create unique fingerprints for page URLs and domain names.

	Create fake sitemaps and reproduce crawling without crawler with the graph Manager.

	Tools for easy frontier testing.

	Record your Scrapy crawls and use it later for frontier testing.

	Logging facility that you can hook on to for catching errors and debug your frontiers.

What’s next?

The next obvious steps are for you to install Crawl Frontier, and read the
architecture overview and API docs. Thanks for your interest!

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Installation Guide

The installation steps assume that you have the following things installed:

	Python [http://www.python.org] 2.7

	pip [http://www.pip-installer.org/en/latest/installing.html] and setuptools [https://pypi.python.org/pypi/setuptools] Python packages. Nowadays pip [http://www.pip-installer.org/en/latest/installing.html] requires and
installs setuptools [https://pypi.python.org/pypi/setuptools] if not installed.

You can install Crawl Frontier using pip (which is the canonical way to install Python
packages).

To install using pip:

pip install crawl-frontier

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

What is a Crawl Frontier?

A crawl frontier is the part of a crawling system that decides the logic and policies to follow when a crawler is
visiting websites (what pages should be crawled next, priorities and ordering, how often pages are revisited, etc).

A usual crawler-frontier scheme is:

[image: ../_images/frontier_01.png]
The frontier is initialized with a list of start URLs, that we call the seeds. Once the frontier is initialized
the crawler asks it what pages should be visited next. As the crawler starts to visit the pages and obtains
results, it will inform the frontier of each page response and also of the extracted hyperlinks contained within the
page. These links are added by the frontier as new requests to visit according to the frontier policies.

This process (ask for new requests/notify results) is repeated until the end condition for the crawl is reached. Some
crawlers may never stop, that’s what we call continuous crawls.

Frontier policies can be based in almost any logic. Common use cases are usually based in score/priority systems,
computed from one or many page attributes (freshness, update times, content relevance for certain terms, etc).
They can also be based in really simple logics as FIFO [http://en.wikipedia.org/wiki/FIFO]/LIFO [http://en.wikipedia.org/wiki/LIFO_(computing)] or DFS [http://en.wikipedia.org/wiki/Depth-first_search]/BFS [http://en.wikipedia.org/wiki/Breadth-first_search] page visit ordering.

Depending on frontier logic, a persistent storage system may be needed to store, update or query information
about the pages. Other systems can be 100% volatile and not share any information at all between different crawls.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Architecture overview

This document describes the architecture of Crawl Frontier and how its components interact.

Overview

The following diagram shows an overview of the Crawl Frontier architecture with its components (referenced by numbers)
and an outline of the data flow that takes place inside the system. A brief description of the components is included
below with links for more detailed information about them. The data flow is also described below.

[image: ../_images/frontier_02.png]

Components

Crawler

The Crawler (2) is responsible for fetching web pages from the sites (1) and feeding them to the frontier which manages
what pages should be crawled next.

Crawler can be implemented using Scrapy [http://scrapy.org/] or any other crawling framework/system as the framework offers a generic
frontier functionality.

Frontier API / Manager

The main entry point to Crawl Frontier API (3) is the FrontierManager object. Frontier users, in our case the Crawler (2),
will communicate with the frontier through it.

Communication with the frontier can also be done through other mechanisms such as an HTTP API or a queue system. These
functionalities are not available for the time being, but hopefully will be in future versions.

For more information see Frontier API.

Middlewares

Frontier middlewares (4) are specific hooks that sit between the Manager (3) and the Backend (5). These middlewares
process Request and Response
objects when they pass to and from the Frontier and the Backend. They provide a convenient mechanism for extending
functionality by plugging custom code.

For more information see Middlewares.

Backend

The frontier backend (5) is where the crawling logic/policies lies. It’s responsible for receiving all the crawl info
and selecting the next pages to be crawled.

May require, depending on the logic implemented, a persistent storage (6) to manage
Request and Response
objects info.

For more information see Backends.

Data Flow

The data flow in Crawl Frontier is controlled by the Frontier Manager, all data passes through the
manager-middlewares-backend scheme and goes like this:

	The frontier is initialized with a list of seed requests (seed URLs) as entry point for the crawl.

	The crawler asks for a list of requests to crawl.

	Each url is crawled and the frontier is notified back of the crawl result as well of the extracted links the page contains. If anything went wrong during the crawl, the frontier is also informed of it.

Once all urls have been crawled, steps 2-3 are repeated until crawl of frontier end condition is reached.
Each loop (steps 2-3) repetition is called a frontier iteration.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Frontier objects

Frontier uses 2 object types: Request
and Response. They are used to represent crawling HTTP requests and
responses respectively.

These classes are used by most Frontier API methods either as a parameter or as a return value depending on the method
used.

Frontier also uses these objects to internally communicate between different components (middlewares and backend).

Request objects

	
class crawlfrontier.core.models.Request(url, method='GET', headers=None, cookies=None, meta=None)

	A Request object represents an HTTP request, which is generated for
seeds, extracted page links and next pages to crawl. Each one should be associated to a
Response object when crawled.

	Parameters:	
	url (string) – URL to send.

	method (string) – HTTP method to use.

	headers (dict) – dictionary of headers to send.

	cookies (dict) – dictionary of cookies to attach to this request.

	meta (dict) – dictionary that contains arbitrary metadata for this request.

	
cookies

	Dictionary of cookies to attach to this request.

	
headers

	A dictionary which contains the request headers.

	
meta

	A dict that contains arbitrary metadata for this request. This dict is empty for new Requests, and is usually
populated by different Crawl-frontier components (middlewares, etc). So the data contained in this dict depends
on the components you have enabled.

	
method

	A string representing the HTTP method in the request. This is guaranteed to be uppercase.
Example: GET, POST, PUT, etc

	
url

	A string containing the URL of this request.

Response objects

	
class crawlfrontier.core.models.Response(url, status_code=200, headers=None, body='', request=None)

	A Response object represents an HTTP response, which is usually
downloaded (by the crawler) and sent back to the frontier for processing.

	Parameters:	
	url (string) – URL of this response.

	status_code (int) – the HTTP status of the response. Defaults to 200.

	headers (dict) – dictionary of headers to send.

	body (dict) – the response body.

	request (dict) – The Request object that generated this response.

	
body

	A str containing the body of this Response.

	
headers

	A dictionary object which contains the response headers.

	
meta

	A shortcut to the Request.meta attribute of the
Response.request object (ie. self.request.meta).

	
request

	The Request object that generated this response.

	
status_code

	An integer representing the HTTP status of the response. Example: 200, 404, 500.

	
url

	A string containing the URL of the response.

Fields domain and fingerprint are added by built-in middlewares

Identifying unique objects

As frontier objects are shared between the crawler and the frontier, some mechanism to uniquely identify objects is
needed. This method may vary depending on the frontier logic (in most cases due to the backend used).

By default, Crawl Frontier activates the fingerprint middleware to
generate a unique fingerprint calculated from the Request.url
and Response.url fields, which is added to the
Request.meta and
Response.meta fields respectively. You can use
this middleware or implement your own method to manage frontier objects identification.

An example of a generated fingerprint for a Request object:

>>> request.url
'http://thehackernews.com'

>>> request.meta['fingerprint']
'198d99a8b2284701d6c147174cd69a37a7dea90f'

Adding additional data to objects

In most cases frontier objects can be used to represent the information needed to manage the frontier logic/policy.

Also, additional data can be stored by components using the
Request.meta and
Response.meta fields.

For instance the frontier domain middleware adds a domain info field for every
Request.meta and
Response.meta if is activated:

>>> request.url
'http://www.scrapinghub.com'

>>> request.meta['domain']
{
 "name": "scrapinghub.com",
 "netloc": "www.scrapinghub.com",
 "scheme": "http",
 "sld": "scrapinghub",
 "subdomain": "www",
 "tld": "com"
}

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Frontier API

This section documents the Crawl Frontier core API, and is intended for developers of middlewares and backends.

Crawl Frontier API / Manager

The main entry point to Crawl Frontier API is the FrontierManager
object, passed to middlewares and backend through the from_manager class method. This object provides access to all
Crawl Frontier core components, and is the only way for middlewares and backend to access them and hook their
functionality into Crawl Frontier.

The FrontierManager is responsible for loading the installed
middlewares and backend, as well as for managing the data flow around the whole frontier.

Loading from settings

Although FrontierManager can be initialized using parameters the most common way of doing this is using
Frontier Settings.

This can be done through the from_settings
class method, using either a string path:

>>> from crawlfrontier import FrontierManager
>>> frontier = FrontierManager.from_settings('my_project.frontier.settings')

or a Settings object instance:

>>> from crawlfrontier import FrontierManager, Settings
>>> settings = Settings()
>>> settings.MAX_PAGES = 0
>>> frontier = FrontierManager.from_settings(settings)

It can also be initialized without parameters, in this case the frontier will use the
default settings:

>>> from crawlfrontier import FrontierManager, Settings
>>> frontier = FrontierManager.from_settings()

Frontier Manager

	
class crawlfrontier.core.manager.FrontierManager(request_model, response_model, backend, logger, event_log_manager, middlewares=None, test_mode=False, max_requests=0, max_next_requests=0, auto_start=True, settings=None)

	The FrontierManager object encapsulates the whole frontier,
providing an API to interact with. It’s also responsible of loading and communicating all different frontier
components.

	Parameters:	
	request_model (object/string) – The Request object to be used by the frontier.

	response_model (object/string) – The Response object to be used by the frontier.

	backend (object/string) – The Backend object to be used by the frontier.

	logger (object/string) – The Logger object to be used by the frontier.

	event_log_manager (object/string) – The EventLogger object to be used by the frontier.

	middlewares (list) – A list of Middleware objects to be used by the frontier.

	test_mode (bool) – Activate/deactivate frontier test mode.

	max_requests (int) – Number of pages after which the frontier would stop (See Finish conditions).

	max_next_requests (int) – Maximum number of requests returned by get_next_requests method.

	auto_start (bool) – Activate/deactivate automatic frontier start (See starting/stopping the frontier).

	settings (object/string) – The Settings object used by the frontier.

Attributes

	
request_model

	The Request object to be used by the frontier. Can be defined with REQUEST_MODEL setting.

	
response_model

	The Response object to be used by the frontier. Can be defined with RESPONSE_MODEL setting.

	
backend

	The Backend object to be used by the frontier. Can be defined with BACKEND setting.

	
logger

	The Logger object to be used by the frontier. Can be defined with LOGGER setting.

	
event_log_manager

	The EventLogger object to be used by the frontier. Can be defined with EVENT_LOGGER setting.

	
middlewares

	A list of Middleware objects to be used by the frontier. Can be defined with MIDDLEWARES setting.

	
test_mode

	Boolean value indicating if the frontier is using frontier test mode. Can be defined with TEST_MODE setting.

	
max_requests

	Number of pages after which the frontier would stop (See Finish conditions). Can be defined with MAX_REQUESTS setting.

	
max_next_requests

	Maximum number of requests returned by get_next_requests method. Can be defined with MAX_NEXT_REQUESTS setting.

	
auto_start

	Boolean value indicating if automatic frontier start is activated. See starting/stopping the frontier. Can be defined with AUTO_START setting.

	
settings

	The Settings object used by the frontier.

	
iteration

	Current frontier iteration.

	
n_requests

	Number of accumulated requests returned by the frontier.

	
finished

	Boolean value indicating if the frontier has finished. See Finish conditions.

API Methods

	
start()

	Notifies all the components of the frontier start. Typically used for initializations (See starting/stopping the frontier).

	Returns:	None.

	
stop()

	Notifies all the components of the frontier stop. Typically used for finalizations (See starting/stopping the frontier).

	Returns:	None.

	
add_seeds(seeds)

	Adds a list of seed requests (seed URLs) as entry point for the crawl.

	Parameters:	seeds (list) – A list of Request objects.

	Returns:	None.

	
get_next_requests(max_next_requests=0)

	Returns a list of next requests to be crawled. Optionally a maximum number of pages can be passed. If no
value is passed, FrontierManager.max_next_requests
will be used instead. (MAX_NEXT_REQUESTS setting).

	Parameters:	max_next_requests (int) – Maximum number of requests to be returned by this method.

	Returns:	list of Request objects.

	
page_crawled(response, links=None)

	Informs the frontier about the crawl result and extracted links for the current page.

	Parameters:	
	response (object) – The Response object for the crawled page.

	links (list) – A list of Request objects generated from the links extracted for the crawled page.

	Returns:	None.

	
request_error(request, error)

	Informs the frontier about a page crawl error. An error identifier must be provided.

	Parameters:	
	request (object) – The crawled with error Request object.

	error (string) – A string identifier for the error.

	Returns:	None.

Class Methods

	
classmethod from_settings(settings=None)

	Returns a FrontierManager instance initialized with the passed settings argument. Argument value can either be a string path pointing to settings file or a Settings object instance. If no settings is given,
frontier default settings are used.

Starting/Stopping the frontier

Sometimes, frontier components need to perform initialization and finalization operations. The frontier mechanism to
notify the different components of the frontier start and stop is done by the
start() and
stop() methods
respectively.

By default auto_start frontier value is activated,
this means that components will be notified once the
FrontierManager object is created.
If you need to have more fine control of when different components are initialized, deactivate
auto_start and manually call frontier API
start() and
stop() methods.

Note

Frontier stop() method is not automatically called
when auto_start is active (because frontier is
not aware of the crawling state). If you need to notify components of frontier end you should call the method
manually.

Frontier iterations

Once frontier is running, the usual process is the one described in the data flow section.

Crawler asks the frontier for next pages using the
get_next_requests() method.
Each time the frontier returns a non empty list of pages (data available), is what we call a frontier iteration.

Current frontier iteration can be accessed using the
iteration attribute.

Finishing the frontier

Crawl can be finished either by the Crawler or by the Crawl Frontier. Crawl frontier will finish when a maximum number
of pages are returned. This limit is controlled by the
max_requests attribute
(MAX_REQUESTS setting).

If max_requests has a value of 0 (default value)
the frontier will continue indefinitely.

Once the frontier is finished, no more pages will be returned by the
get_next_requests method and
finished attribute will be True.

Component objects

	
class crawlfrontier.core.components.Component

	Interface definition for a frontier component
The Component object is the base class for frontier
Middleware and
Backend objects.

FrontierManager communicates with the active components
using the hook methods listed below.

Implementations are different for Middleware and
Backend objects, therefore methods are not fully described here
but in their corresponding section.

Attributes

	
name

	The component name

Abstract methods

	
frontier_start()

	Called when the frontier starts, see starting/stopping the frontier.

	
frontier_stop()

	Called when the frontier stops, see starting/stopping the frontier.

	
add_seeds(seeds)

	This method is called when new seeds are are added to the frontier.

	Parameters:	seeds (list) – A list of Request objects.

	
page_crawled(response, links)

	This method is called each time a page has been crawled.

	Parameters:	
	response (object) – The Response object for the crawled page.

	links (list) – A list of Request objects generated from the links extracted for the crawled page.

	
request_error(page, error)

	This method is called each time an error occurs when crawling a page

	Parameters:	
	request (object) – The crawled with error Request object.

	error (string) – A string identifier for the error.

Class Methods

	
classmethod from_manager(manager)

	Class method called from FrontierManager passing the
manager itself.

Example of usage:

def from_manager(cls, manager):
 return cls(settings=manager.settings)

Test mode

In some cases while testing, frontier components need to act in a different way than they usually do (for instance
domain middleware accepts non valid URLs like 'A1' or 'B1' when parsing
domain urls in test mode).

Components can know if the frontier is in test mode via the boolean
test_mode attribute.

Another ways of using the frontier

Communication with the frontier can also be done through other mechanisms such as an HTTP API or a queue system. These
functionalities are not available for the time being, but hopefully will be included in future versions.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Settings

The Crawl Frontier settings allows you to customize the behaviour of all components, including the
FrontierManager,
Middleware and
Backend themselves.

The infrastructure of the settings provides a global namespace of key-value mappings that can be used to pull
configuration values from. The settings can be populated through different mechanisms, which are described below.

For a list of available built-in settings see: Built-in settings reference.

Designating the settings

When you use Crawl Frontier, you have to tell it which settings you’re using. As
FrontierManager is the main entry point to Frontier usage,
you can do this by using the method described in the Loading from settings
section.

When using a string path pointing to a settings file for the frontier we propose the following directory structure:

my_project/
 frontier/
 __init__.py
 settings.py
 middlewares.py
 backends.py
 ...

These are basically:

	frontier/settings.py: the frontier settings file.

	frontier/middlewares.py: the middlewares used by the frontier.

	frontier/backends.py: the backend(s) used by the frontier.

How to access settings

Settings can be accessed through the
FrontierManager.settings attribute, that is passed to
Middleware.from_manager and
Backend.from_manager class methods:

class MyMiddleware(Component):

 @classmethod
 def from_manager(cls, manager):
 manager = crawler.settings
 if settings.TEST_MODE:
 print "test mode is enabled!"

In other words, settings can be accessed as attributes of the
Settings object.

Settings class

	
class crawlfrontier.settings.Settings(module=None, attributes=None)

	An object that holds frontier settings values.

	Parameters:	
	module (object/string) – A Settings object or a path string.

	attributes (dict) – A dict object containing the settings values.

Built-in frontier settings

Here’s a list of all available Crawl Frontier settings, in alphabetical order, along with their default values and the
scope where they apply.

AUTO_START

Default: True

Whether to enable frontier automatic start. See Starting/Stopping the frontier

BACKEND

Default: 'crawlfrontier.contrib.backends.memory.FIFO'

The Backend to be used by the frontier. For more info see
Activating a backend.

EVENT_LOGGER

Default: 'crawlfrontier.logger.events.EventLogManager'

The EventLoggerManager class to be used by the Frontier.

LOGGER

Default: 'crawlfrontier.logger.FrontierLogger'

The Logger class to be used by the Frontier.

MAX_NEXT_REQUESTS

Default: 0

The maximum number of requests returned by
get_next_requests API method.
If value is 0 (default), no maximum value will be used.

MAX_REQUESTS

Default: 0

Maximum number of returned requests after which Crawl frontier is finished.
If value is 0 (default), the frontier will continue indefinitely. See Finishing the frontier.

MIDDLEWARES

A list containing the middlewares enabled in the frontier. For more info see
Activating a middleware.

Default:

[
 'crawlfrontier.contrib.middlewares.domain.DomainMiddleware',
 'crawlfrontier.contrib.middlewares.fingerprint.UrlFingerprintMiddleware',
 'crawlfrontier.contrib.middlewares.fingerprint.DomainFingerprintMiddleware',
]

REQUEST_MODEL

Default: 'crawlfrontier.core.models.Request'

The Request model to be used by the frontier.

RESPONSE_MODEL

Default: 'crawlfrontier.core.models.Response'

The Response model to be used by the frontier.

TEST_MODE

Default: False

Whether to enable frontier test mode. See Frontier test mode

Built-in fingerprint middleware settings

Settings used by the UrlFingerprintMiddleware and
DomainFingerprintMiddleware.

URL_FINGERPRINT_FUNCTION

Default: crawlfrontier.utils.fingerprint.sha1

The function used to calculate the url fingerprint.

DOMAIN_FINGERPRINT_FUNCTION

Default: crawlfrontier.utils.fingerprint.sha1

The function used to calculate the domain fingerprint.

Default settings

If no settings are specified, frontier will use the built-in default ones. For a complete list of default values see:
Built-in settings reference. All default settings can be overridden.

Frontier default settings

Values:

PAGE_MODEL = 'crawlfrontier.core.models.Page'
LINK_MODEL = 'crawlfrontier.core.models.Link'
FRONTIER = 'crawlfrontier.core.frontier.Frontier'
MIDDLEWARES = [
 'crawlfrontier.contrib.middlewares.domain.DomainMiddleware',
 'crawlfrontier.contrib.middlewares.fingerprint.UrlFingerprintMiddleware',
 'crawlfrontier.contrib.middlewares.fingerprint.DomainFingerprintMiddleware',
]
BACKEND = 'crawlfrontier.contrib.backends.memory.FIFO'
TEST_MODE = False
MAX_PAGES = 0
MAX_NEXT_PAGES = 0
AUTO_START = True

Fingerprints middleware default settings

Values:

URL_FINGERPRINT_FUNCTION = 'crawlfrontier.utils.fingerprint.sha1'
DOMAIN_FINGERPRINT_FUNCTION = 'crawlfrontier.utils.fingerprint.sha1'

Logging default settings

Values:

LOGGER = 'crawlfrontier.logger.FrontierLogger'
LOGGING_ENABLED = True

LOGGING_EVENTS_ENABLED = False
LOGGING_EVENTS_INCLUDE_METADATA = True
LOGGING_EVENTS_INCLUDE_DOMAIN = True
LOGGING_EVENTS_INCLUDE_DOMAIN_FIELDS = ['name', 'netloc', 'scheme', 'sld', 'tld', 'subdomain']
LOGGING_EVENTS_HANDLERS = [
 "crawlfrontier.logger.handlers.COLOR_EVENTS",
]

LOGGING_MANAGER_ENABLED = False
LOGGING_MANAGER_LOGLEVEL = logging.DEBUG
LOGGING_MANAGER_HANDLERS = [
 "crawlfrontier.logger.handlers.COLOR_CONSOLE_MANAGER",
]

LOGGING_BACKEND_ENABLED = False
LOGGING_BACKEND_LOGLEVEL = logging.DEBUG
LOGGING_BACKEND_HANDLERS = [
 "crawlfrontier.logger.handlers.COLOR_CONSOLE_BACKEND",
]

LOGGING_DEBUGGING_ENABLED = False
LOGGING_DEBUGGING_LOGLEVEL = logging.DEBUG
LOGGING_DEBUGGING_HANDLERS = [
 "crawlfrontier.logger.handlers.COLOR_CONSOLE_DEBUGGING",
]

EVENT_LOG_MANAGER = 'crawlfrontier.logger.events.EventLogManager'

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Middlewares

Frontier Middleware sits between
FrontierManager and
Backend objects, using hooks for
Request
and Response processing according to
frontier data flow.

It’s a light, low-level system for filtering and altering Frontier’s requests and responses.

Activating a middleware

To activate a Middleware component, add it to the
MIDDLEWARES setting, which is a list whose values can be class paths or instances of
Middleware objects.

Here’s an example:

MIDDLEWARES = [
 'crawlfrontier.contrib.middlewares.domain.DomainMiddleware',
]

Middlewares are called in the same order they’ve been defined in the list, to decide which order to assign to your
middleware pick a value according to where you want to insert it. The order does matter because each middleware
performs a different action and your middleware could depend on some previous (or subsequent) middleware being applied.

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See
each middleware documentation for more info.

Writing your own middleware

Writing your own frontier backend is easy. Each Middleware
component is a single Python class inherited from Component.

FrontierManager will communicate with all active middlewares
through the methods described below.

	
class crawlfrontier.core.components.Middleware

	Interface definition for a Frontier Middlewares

Methods

	
frontier_start()

	Called when the frontier starts, see starting/stopping the frontier.

	
frontier_stop()

	Called when the frontier stops, see starting/stopping the frontier.

	
add_seeds(seeds)

	This method is called when new seeds are are added to the frontier.

	Parameters:	seeds (list) – A list of Request objects.

	Returns:	Request object list or None

Should either return None or a list of Request objects.

If it returns None, FrontierManager won’t continue
processing any other middleware and seed will never reach the
Backend.

If it returns a list of Request objects, this will be passed to
next middleware. This process will repeat for all active middlewares until result is finally passed to the
Backend.

If you want to filter any seed, just don’t include it in the returned object list.

	
page_crawled(response, links)

	This method is called each time a page has been crawled.

	Parameters:	
	response (object) – The Response object for the crawled page.

	links (list) – A list of Request objects generated from the links extracted for the crawled page.

	Returns:	Response or None

Should either return None or a Response object.

If it returns None, FrontierManager won’t continue
processing any other middleware and Backend will never be
notified.

If it returns a Response object, this will be passed to
next middleware. This process will repeat for all active middlewares until result is finally passed to the
Backend.

If you want to filter a page, just return None.

	
request_error(page, error)

	This method is called each time an error occurs when crawling a page

	Parameters:	
	request (object) – The crawled with error Request object.

	error (string) – A string identifier for the error.

	Returns:	Request or None

Should either return None or a Request object.

If it returns None, FrontierManager won’t continue
processing any other middleware and Backend will never be
notified.

If it returns a Response object, this will be passed to
next middleware. This process will repeat for all active middlewares until result is finally passed to the
Backend.

If you want to filter a page error, just return None.

Class Methods

	
classmethod from_manager(manager)

	Class method called from FrontierManager passing the
manager itself.

Example of usage:

def from_manager(cls, manager):
 return cls(settings=manager.settings)

Built-in middleware reference

This page describes all Middleware components that come with Crawl
Frontier. For information on how to use them and how to write your own middleware, see the
middleware usage guide..

For a list of the components enabled by default (and their orders) see the MIDDLEWARES setting.

DomainMiddleware

	
class crawlfrontier.contrib.middlewares.domain.DomainMiddleware

	This Middleware will add a domain info field for every
Request.meta and
Response.meta if is activated.

domain object will contains the following fields:

	netloc: URL netloc according to RFC 1808 [http://tools.ietf.org/html/rfc1808.html] syntax specifications

	name: Domain name

	scheme: URL scheme

	tld: Top level domain

	sld: Second level domain

	subdomain: URL subdomain(s)

An example for a Request object:

>>> request.url
'http://www.scrapinghub.com:8080/this/is/an/url'

>>> request.meta['domain']
{
 "name": "scrapinghub.com",
 "netloc": "www.scrapinghub.com",
 "scheme": "http",
 "sld": "scrapinghub",
 "subdomain": "www",
 "tld": "com"
}

If TEST_MODE is active, It will accept testing URLs, parsing letter domains:

>>> request.url
'A1'

>>> request.meta['domain']
{
 "name": "A",
 "netloc": "A",
 "scheme": "-",
 "sld": "-",
 "subdomain": "-",
 "tld": "-"
}

UrlFingerprintMiddleware

	
class crawlfrontier.contrib.middlewares.fingerprint.UrlFingerprintMiddleware

	This Middleware will add a fingerprint field for every
Request.meta and
Response.meta if is activated.

Fingerprint will be calculated from object URL, using the function defined in
URL_FINGERPRINT_FUNCTION setting.
You can write your own fingerprint calculation function and use by changing this setting.

An example for a Request object:

>>> request.url
'http//www.scrapinghub.com:8080'

>>> request.meta['fingerprint']
'60d846bc2969e9706829d5f1690f11dafb70ed18'

DomainFingerprintMiddleware

	
class crawlfrontier.contrib.middlewares.fingerprint.DomainFingerprintMiddleware

	This Middleware will add a fingerprint field for every
Request.meta and
Response.meta domain fields if is activated.

Fingerprint will be calculated from object URL, using the function defined in
DOMAIN_FINGERPRINT_FUNCTION setting.
You can write your own fingerprint calculation function and use by changing this setting.

An example for a Request object:

>>> request.url
'http//www.scrapinghub.com:8080'

>>> request.meta['domain']
{
 "fingerprint": "5bab61eb53176449e25c2c82f172b82cb13ffb9d",
 "name": "scrapinghub.com",
 "netloc": "www.scrapinghub.com",
 "scheme": "http",
 "sld": "scrapinghub",
 "subdomain": "www",
 "tld": "com"
}

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Backends

Frontier Backend is where the crawling logic/policies lies.
It’s responsible for receiving all the crawl info and selecting the next pages to be crawled.
It’s called by the FrontierManager after
Middleware, using hooks for
Request
and Response processing according to
frontier data flow.

Unlike Middleware, that can have many different instances activated, only one
Backend can be used per frontier.

Some backends require, depending on the logic implemented, a persistent storage to manage
Request
and Response objects info.

Activating a backend

To activate the frontier middleware component, set it through the BACKEND setting.

Here’s an example:

BACKEND = 'crawlfrontier.contrib.backends.memory.FIFO'

Keep in mind that some backends may need to be enabled through a particular setting. See
each backend documentation for more info.

Writing your own backend

Writing your own frontier backend is easy. Each Backend component is a
single Python class inherited from Component.

FrontierManager will communicate with active
Backend through the methods described below.

	
class crawlfrontier.core.components.Backend

	Interface definition for a Frontier Backend

Methods

	
frontier_start()

	Called when the frontier starts, see starting/stopping the frontier.

	Returns:	None.

	
frontier_stop()

	Called when the frontier stops, see starting/stopping the frontier.

	Returns:	None.

	
add_seeds(seeds)

	This method is called when new seeds are are added to the frontier.

	Parameters:	seeds (list) – A list of Request objects.

	Returns:	None.

	
get_next_requests(max_n_requests)

	Returns a list of next requests to be crawled.

	Parameters:	max_next_requests (int) – Maximum number of requests to be returned by this method.

	Returns:	list of Request objects.

	
page_crawled(response, links)

	This method is called each time a page has been crawled.

	Parameters:	
	response (object) – The Response object for the crawled page.

	links (list) – A list of Request objects generated from the links extracted for the crawled page.

	Returns:	None.

	
request_error(page, error)

	This method is called each time an error occurs when crawling a page

	Parameters:	
	request (object) – The crawled with error Request object.

	error (string) – A string identifier for the error.

	Returns:	None.

Class Methods

	
classmethod from_manager(manager)

	Class method called from FrontierManager passing the
manager itself.

Example of usage:

def from_manager(cls, manager):
 return cls(settings=manager.settings)

Built-in backend reference

This page describes all each backend documentation components that come with
Crawl Frontier. For information on how to use them and how to write your own middleware, see the
backend usage guide..

To know the default activated Backend check the
BACKEND setting.

Basic algorithms

Some of the built-in Backend objects implement basic algorithms as
as FIFO [http://en.wikipedia.org/wiki/FIFO]/LIFO [http://en.wikipedia.org/wiki/LIFO_(computing)] or DFS [http://en.wikipedia.org/wiki/Depth-first_search]/BFS [http://en.wikipedia.org/wiki/Breadth-first_search] for page visit ordering.

Differences between them will be on storage engine used. For instance,
memory.FIFO and
sqlalchemy.FIFO will use the same logic but with different
storage engines.

Memory backends

This set of Backend objects will use an heapq [https://docs.python.org/2/library/heapq.html] object as storage for
basic algorithms.

	
class crawlfrontier.contrib.backends.memory.BASE

	Base class for in-memory heapq Backend objects.

	
class crawlfrontier.contrib.backends.memory.FIFO

	In-memory heapq Backend implementation of FIFO [http://en.wikipedia.org/wiki/FIFO] algorithm.

	
class crawlfrontier.contrib.backends.memory.LIFO

	In-memory heapq Backend implementation of LIFO [http://en.wikipedia.org/wiki/LIFO_(computing)] algorithm.

	
class crawlfrontier.contrib.backends.memory.BFS

	In-memory heapq Backend implementation of BFS [http://en.wikipedia.org/wiki/Breadth-first_search] algorithm.

	
class crawlfrontier.contrib.backends.memory.DFS

	In-memory heapq Backend implementation of DFS [http://en.wikipedia.org/wiki/Depth-first_search] algorithm.

	
class crawlfrontier.contrib.backends.memory.RANDOM

	In-memory heapq Backend implementation of a random selection
algorithm.

SQLAlchemy backends

This set of Backend objects will use SQLAlchemy [http://www.sqlalchemy.org/] as storage for
basic algorithms.

By default it uses an in-memory SQLite database as a storage engine, but any databases supported by SQLAlchemy [http://docs.sqlalchemy.org/en/rel_0_9/dialects/index.html] can
be used.

Request and Response are
represented by a declarative sqlalchemy model [http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/declarative.html]:

class Page(Base):
 __tablename__ = 'pages'
 __table_args__ = (
 UniqueConstraint('url'),
)
 class State:
 NOT_CRAWLED = 'NOT CRAWLED'
 QUEUED = 'QUEUED'
 CRAWLED = 'CRAWLED'
 ERROR = 'ERROR'

 url = Column(String(1000), nullable=False)
 fingerprint = Column(String(40), primary_key=True, nullable=False, index=True, unique=True)
 depth = Column(Integer, nullable=False)
 created_at = Column(TIMESTAMP, nullable=False)
 status_code = Column(String(20))
 state = Column(String(10))
 error = Column(String(20))

If you need to create your own models, you can do it by using the DEFAULT_MODELS setting:

DEFAULT_MODELS = {
 'Page': 'crawlfrontier.contrib.backends.sqlalchemy.models.Page',
}

This setting uses a dictionary where key represents the name of the model to define and value the model to use.
If you want for instance to create a model to represent domains:

DEFAULT_MODELS = {
 'Page': 'crawlfrontier.contrib.backends.sqlalchemy.models.Page',
 'Domain': 'myproject.backends.sqlalchemy.models.Domain',
}

Models can be accessed from the Backend dictionary attribute models.

For a complete list of all settings used for sqlalchemy backends check the settings section.

	
class crawlfrontier.contrib.backends.sqlalchemy.BASE

	Base class for SQLAlchemy Backend objects.

	
class crawlfrontier.contrib.backends.sqlalchemy.FIFO

	SQLAlchemy Backend implementation of FIFO [http://en.wikipedia.org/wiki/FIFO] algorithm.

	
class crawlfrontier.contrib.backends.sqlalchemy.LIFO

	SQLAlchemy Backend implementation of LIFO [http://en.wikipedia.org/wiki/LIFO_(computing)] algorithm.

	
class crawlfrontier.contrib.backends.sqlalchemy.BFS

	SQLAlchemy Backend implementation of BFS [http://en.wikipedia.org/wiki/Breadth-first_search] algorithm.

	
class crawlfrontier.contrib.backends.sqlalchemy.DFS

	SQLAlchemy Backend implementation of DFS [http://en.wikipedia.org/wiki/Depth-first_search] algorithm.

	
class crawlfrontier.contrib.backends.sqlalchemy.RANDOM

	SQLAlchemy Backend implementation of a random selection
algorithm.

OPIC backend

The OPIC backend takes its name from the “Online Page Importance
Computation” algorithm, described in:

Adaptive On-Line Page Importance Computation
Abiteboul S., Preda M., Cobena G.
2003

The main idea is that we want to crawl pages which are important, and
this importance depends on which pages links to and which pages are
linked by the current page in a manner similar to PageRank. Implementation is in

	
class crawlfrontier.contrib.backends.opic.backend.OpicHitsBackend(manager, db_graph=None, db_pages=None, db_hits=None, scheduler=None, freq_estimator=None, change_detector=None, test=False)

	Frontier backend implementation based on the OPIC algorithm adaptated
to HITS scoring

	Parameters:	
	manager (FrontierManager) – Frontier manager.

	db_graph (GraphInterface) – Graph database.
If None use a new instance of graphdb.SQLite

	db_pages (PageDBInterface) – Page database. If None us a new instance of
pagedb.SQLite.

	db_hits (HitsDBInterface) – HITS database. If None use a new instance of
hitsdb.SQLite.

	scheduler (SchedulerInterface) – Decides which page to crawl next

	freq_estimator (FreqEstimatorInterface) – Frequency estimator.

	change_detector (PageChangeInterface) – Change detector.

	test (bool) – If True compute h_scores and a_scores prior to
closing.

For more information about the implementations details read the annex
OPIC details

	OPIC Details
	HITS algorithm

	OPIC algorithm

	Scheduler

	Page change rate estimator

Configuration

The constructor has a lot of arguments, but they will automatically
filled correctly from global settings. Apart from the common settings
with other backends this backend uses the following additional
settings:

	BACKEND_OPIC_IN_MEMORY (default False)

If True all information will be kept in-memory. This will make it run
faster but also will consume more memory and, more importantly, you
will not be able to resume the crawl after you shut down the spider.

	BACKEND_OPIC_WORKDIR

If BACKEND_OPIC_IN_MEMORY is False, then all the state information
necessary to resume the crawl will be kept inside this directory. If
this directory is not set a default one will be generated in the
current directory following the pattern:

crawl-opic-DYYYY.MM.DD-THH.mm.SS

Where YYYY is the current year, MM is the month, etc...

	BACKEND_OPIC_SCHEDULER

‘optimal’ will use
Optimal.
Any other value, or if not set, will use
BestFirst.

	BACKEND_TEST

If True the backend will save some information to inspect after the
databases are closed to test the backend performance.

Persistence

The following SQLite databases are generated inside the
BACKEND_OPIC_WORKDIR:

	graph.sqlite: the graph database. See Graph database.

	freqs.sqlite: the output of the scheduler. How frequently each page
should be crawled. See Revisiting scheduler.

	hash.sqlite: a hash of the body of each page the last time it was
visited. It allows to track if a page has changed. See
Page change rate estimator

	hits.sqlite: the HITS score information and additional information
for the OPIC algorithm. See HITS scores database.

	pages.sqlite: additional info about pages, like URL and domain.

	scheduler.sqlite: page value and page change rate used by the
scheduler algorithm. See Revisiting scheduler.

	updates.sqlite: number of updates in a given interval of time. Used
for page change rate estimation. See Page change rate estimator

Since they are standard SQLite databases they can be accessed using
any tool of your choice (for example sqlitebrowser [http://sqlitebrowser.org/]) which is useful for debugging or interfacing
with other tools. An example would be accesing the data inside the
databases to compare the precision of OPIC and the power method, like
it’s explained in OPIC vs power method.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

 	Backends

OPIC Details

HITS algorithm

Introduction

Since OPIC is just a way of computing the HITS score for each page we
must first understand what the HITS score is. HITS stands for
Hyperlink-Induced Topic Search, originally described in:

Authoritative sources in a hyperlinked environment
Kleinber J.
1998

The idea is to compute for each page a pair of numbers called the
Hub and Authority scores. Intutively we say a page is a hub when it
points to lot of pages with high authority, and we say that a page has
high authority if it is pointed by many hubs. Mathematically this is
expressed as:

\[\begin{split}h_i &= \sum_{j: i \to j} a_j \\
a_i &= \sum_{j: j \to i} h_j\end{split}\]

Where \(h_i\) represents the hub score of page \(i\) and
\(a_i\) represents its authority score. \(j: i \to j\)
represent the set of pages \(j\) that are pointed by
\(i\) and \(j: j \to i\) represents the set of pages
\(j\) that point to \(i\). For example, consider the following
set of pages:

The equations to compute the scores would be:

\[\begin{split}h_1 &= a_2 &\quad a_1 &= h_3\\
h_2 &= a_4 &\quad a_2 &= h_1 + h_3\\
h_3 &= a_1 + a_2 + a_4 &\quad a_3 &= 0\\
h_4 &= 0 &\quad a_4 &= h_2 + h_3\end{split}\]

The above equations can be rewritten in matrix form. Let’s define:

\[\begin{split}L = \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 1 & 1 & 0 & 1 \\
 0 & 0 & 0 & 0
\end{bmatrix}\end{split}\]

\(L\) is called the link matrix because it contains all the link
information available in the graph. Notice that \(L_{ij}\) is 1 if
there is a link between nodes \(i\) and \(j\) and 0 otherwise.
If we group the hub and authorities scores in the vectors \(h\)
and \(a\) we can write the HITS equations as:

\[\begin{split}h &= La &= (LL^T)h &= Hh\\
a &= L^Th &= (L^TL)a &= Aa\end{split}\]

The above equations always have the trivial solutions
\(h=a=0\). The other non-zero solutions are given by the
eigenvectors of the matrices \(H\) and \(A\).

Power iteration

A very simple and efficient way of getting the eigenvector with the largest
eigenvalue is using the power method: to compute the
largest eigenvector \(v\) of a matrix \(M\) simple iterate
long enough starting from a random vector \(v^0\)

\[v^k = Mv^{k-1}\]

Notice that unless the associated eigenvalue is exactly 1 you will
need to re-normalize after each iteration.

Let’s apply this method to our toy problem. Using numpy the code for
the power method is very simple:

import numpy as np

def power(M, eps=1e-6, max_iter=1000):
 """Compute the largest eigenvector of M.

 Returns: the eigenvector and the eigenvalue
 """
 v0 = np.random.rand(M.shape[0])

 converged = False
 for i in xrange(max_iter):
 v1 = M.dot(v0)
 v1 /= np.linalg.norm(v1)
 err = np.max(np.abs(v1 - v0))
 if err < eps:
 converged = True
 break

 v0 = v1
 if not converged:
 print "Warning: didn't converge"

 return v1, M[0, :].dot(v1)/v1[0]

And we can apply it to our toy problem:

L = np.array([
 0, 1, 0, 0,
 0, 0, 0, 1,
 1, 1, 0, 1,
 0, 0, 0, 0]).astype(float).reshape(4,4)

H = L.dot(L.transpose())
A = L.transpose().dot(L)

h, h_eigv = power(H)
a, a_eigv = power(A)

print "Hub scores: ", h
Hub scores: [0.32505736 0.3250578 0.88807383 0.]
print "Authority scores: ", a
Authority scores: [0.45970084 0.62796324 0. 0.62796282]

If we represent the scores directly on the graph we see how the scores
correctly represent our intuitive notion of what a hub or an
authoritative page represents:

Notice that the power method can fail. Take for example the matrix
\(L\). No matter what initial value we start iterating from, it
will always converge to a zero vector. To see why notice the following
identity which gives name to the power method:

\[v^k = Mv^{k-1} = M^2v^{k-2} = \ldots = M^kv^0\]

Now let’s compute the different powers of \(L\)

\[\begin{split}L^2 &= \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \\
L^3 &= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \\
L^4 &= L^5 = \ldots = 0\end{split}\]

The reason for this behavior is that the only eigenvalue of \(L\) is 0. There is
however a non-zero eigenvector associated to the 0 eigenvalue:

\[\begin{split}\begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix}\end{split}\]

But the power method fails to find it. A trick to solve this problem
is to apply a small perturbation \(\epsilon\) to \(L\) and
apply the power method. It should converge to an small perturbation of
the original eigenvector. Let’s try:

print power(L + 1e-5)
(array([5.52652292e-02, 3.23859608e-03, 9.98466441e-01,
1.79833785e-04]), 0.058792257444600315)

As you can see it returns a result very close to the true answer. The
perturbated eigenvector is \((0.055, 0.003, 0.998, 0.000)\) and the
perturbated eigenvalue is 0.06.

We finally end making some comments:

	The power method is efficient because the link matrix is sparse,
meaning that most of its elements are zero. However we need to have
it fully loaded in memory to perform an iteration of the algorithm.

	We don’t need to compute the \(H\) and
\(A\) matrices and instead we can perform the following
iteration:

\[\begin{split}h_{k+1} &= La_k \\
a_{k+1} &= L^Th_k\end{split}\]

Which can also be rewritten as:

\[\begin{split}\begin{pmatrix}
h \\
a
\end{pmatrix}^{k+1} = J
\begin{pmatrix}
h \\
a
\end{pmatrix}^{k}\end{split}\]

Where:

\[\begin{split}J = \begin{bmatrix}
0 & L \\
L^T & 0
\end{bmatrix}\end{split}\]

And we can check that the power method applied to matrix \(J\)
gives the same answer as before

N = L.shape[0]
J = np.zeros((2*N, 2*N))
J[:N, N:] = L
J[N:, :N] = L.transpose()
h, a = np.split(power(J, max_iter=1000)[0], 2)
h /= np.linalg.norm(h)
a /= np.linalg.norm(a)

print "Hub scores: ", h
Hub scores: [0.32505758 0.32505758 0.88807383 0.]

print "Authority scores: ",a
Authority scores: [0.45970084 0.62796303 0. 0.62796303]

Actually, it gives a warning about convergence. The reason is that
the vector built by stacking together \(h\) and \(a\)
oscillates between the following two vectors:

\[\begin{split}\begin{matrix}
 (0.200 & 0.200 & 0.545 & 0 & | & 0.363 & 0.496 & 0 & 0.496) \\
 (0.257 & 0.257 & 0.701 & 0 & | & 0.282 & 0.386 & 0 & 0.386)
 \end{matrix}\end{split}\]

However, each half part of the above vectors are equal up to a
scaling constant, and so the method converge to the correct scores.

OPIC algorithm

Introduction

OPIC is just an alternative to the power method to compute the largest
eigenvector and so it can be applied to compute the HITS score. It is
described here:

Adaptive On-Line Page Importance Computation
Abiteboul S., Preda M., Cobena G.
2003

Given a page graph, the idea is to maintain for each page two
quantities: the cash and the history. When we update a page the cash
is distributed to its children and the the total quantitiy is added
to the page history. For example, returning to our toy example let’s
suppose that at a given instant in time we have the current state of
cash and history associated to each page:

And we update page 3. Since it has 6 units of cash it will distribute
2 units to each one of its 3 children. It will also increment its
history by 6 units, since this is the total amount of cash it has
distributed and its cash will be reset to 0. The following image shows
the change in the graph state after a single update.

If we keep performing these updates, making sure that we update all
pages, the history of the pages will converge, after normalization, to
same value of the power method applied to the following matrix:

\[\begin{split}\bar{L} = \begin{bmatrix}
0 & 0 & \frac{1}{3} & 0 \\
1 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & 0
\end{bmatrix}\end{split}\]

You can see that \(\bar{L}\) is very similar to \(L^T\) since
its actually the same matrix transposed, where each column has been divided by a
normalizing factor, so as to make each column add to 1.

The utility of the OPIC method lies in the fact that it does not
matters the order in which we update the pages, nor it matters if we
update some pages more than others, as long as all pages are updated
periodically.

However, we must remember that the power method sometimes fail to
converge and we solved it by adding an small perturbation to the link
matrix. We make an equivalente modification to the OPIC algorithm by
adding an small modification to the graph: we add a virtual page that
links and is linked by all other pages. For our toy problem it would
look like this:

Let’s check our claims with some code. The following code will apply
the OPIC algorithm to an arbitrary graph. For simplicity the graph is
represented as a dictionary where the key is the node name and the
value is a list of outgoing nodes.

def add_virtual_page(graph):
 new_graph = {node: children + ['V']
 for node, children in graph.iteritems()}
 new_graph['V'] = graph.keys()
 return new_graph

example = add_virtual_page(
 {1: [2],
 2: [4],
 3: [1, 2, 4],
 4: []}
)

We now implement the algorithm, where the next page to update is
randomly selected.

import random

def opic(graph, n_iter=100):
 """Simple implementation of OPIC where all children get the
 same cash"""

 # get the list of nodes
 nodes = graph.keys()
 # build a dictionary to hold cash and history
 # we give each page an initial cash of 1
 state = {node: (1.0, 0.0) for node in nodes}
 for i in xrange(n_iter):
 node = random.choice(nodes)
 cash, history = state[node]
 children = graph[node]
 # distribute cash to children
 n_children = len(children)
 for child in children:
 child_cash, child_history = state[child]
 state[child] = (child_cash + cash/n_children,
 child_history)
 # update node state
 state[node] = (0.0, history + cash)

 # return normalized history
 history = [state[n][1] for n in nodes]
 total = sum(history)
 return zip(nodes, [h/total for h in history])

To compare against the power method we build the equivalent link
matrix, where the last row/column corresponds to the virtual page.
First without normalization:

\[\begin{split}L = \begin{bmatrix}
 0 & 1 & 0 & 0 & 1\\
 0 & 0 & 0 & 1 & 1\\
 1 & 1 & 0 & 1 & 1\\
 0 & 0 & 0 & 0 & 1\\
 1 & 1 & 1 & 1 & 0
\end{bmatrix}\end{split}\]

And after transposition and normalization:

\[\begin{split}\bar{L} = \begin{bmatrix}
0 & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 0 & 0 & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{4} & 1 & 0
\end{bmatrix}\end{split}\]

We can compare now the two methods:

for node, score in opic(example, n_iter=1000):
 print node, score

1 0.198500025862
2 0.298524016644
3 0.157148867939
4 0.345827089555

L = np.array([
 0, 1, 0, 0, 1,
 0, 0, 0, 1, 1,
 1, 1, 0, 1, 1,
 0, 0, 0, 0, 1,
 1, 1, 1, 1, 0]).astype(float).reshape(5, 5)

p, k = power(make_stochastic(L.transpose()))
p = p[:4]
p /= np.linalg.norm(p, ord=1)
print p
[0.19801978 0.29702981 0.15841572 0.34653469]

So, to summarize, if we have a matrix \(M\), where each rows sums
to 1, we can compute its largest eigenvector either by using the power
method on that matrix or by applying the OPIC algorithm in an
associated graph which has an edge from \(i\) to
\(j\) if \(M_{ji} \neq 0\). When node \(i\) with cash
\(c_i\) inside the node is updated it will give \(M_{ji}\cdot
c_i\) cash to node \(j\).

Application to HITS

Notice that we really cannot apply OPIC as HITS without modifying the
problem, since we have the requirement of all columns (or rows,
depending what you consider) summing to 1. This is a requirement for
the OPIC algorithm to work, since it assures that the amount of cash
inside the graph remains constant. Otherwise the cash would go to 0 or
to \(\infty\).

We will now use 4 scores for each
page: hub cash and history and authority cash and history. When we
update a page it will send its hub cash distributed to all its
predecessors’ authority cash, and add it to its hub history. It will send also its
authority cash distributed to all its children’s hub cash and add it to its
authority history.

The following figure shows a single step of the algorithm applied to
our toy problem, where we have ignored the virtual page to simplify
things. Actually it’s not necessary to update in the same
step the two scores however we show here both the hub and authority
cash flow.

Notice that with this algorithm what remains constant after each step
is the total amount of cash, that is, the sum of the hub and authority
cash.

If you want to see how OPIC compares against the power method the
following document shows a comparison between the two:

OPIC vs power method

Adaptive OPIC

The adaptive version of the OPIC algorithm takes into account the case
where the graph is changing. In this case the pages that were from the
beginning inside the graph have accumulated more history than the
newer ones, even if the later are more important. Of course, if we
freeze the graph this unbalance will in the long term be corrected but
it could take lot of time.

One possible solution would be to discard all the pages history and
restart again, but this is overkill since probably we are already near
to the correct solution. The adaptive version of OPIC proposes a
middle ground: to discard the history before a certain time starting
from now. To do this exactly we would need to save the history of each
page at every point of time. A more efficient alternative is to
estimate how much history we should discard. This is called in the
original paper history interpolation and is the approach that has been
taken in this implementation.

Notice that the adaptive version has introduced a new parameter: a
time window outside of which we should ignore history.

Adding external relevance measure

Although once of the nice properties of HITS scoring is that it only
requires link information it has been demonstrated that adding content
based information can greatly improve the effectivenes of topic
focused crawlers. There are lots of ways in which we could fusion an
external relevance score and the HITS scores to give a global score of
page relevance and we will describe now the one developed in this
case.

We will consider that the external relevance score is another measure
of the page authority (a good hub can be empty of content, as long as
it points to relevant one) and ranges between 0 (not relevant at all)
and 1 (completely relevant).

With this in mind we modify the distribution of authority cash when we
update a page. Let’s call \(r_i\) the relevance score for page
\(i\), which has \(P_i\) parent pages pointing to it. If page
\(i\) is relevant we want to distribute all its authority cash
back to its parents, but if it’s not relevant we want to avoid
distributing any cash back. Since we don’t want to destroy cash what
we will do instead is to give that cash to the virtual
page.

Mathematically, if we have \(a_i\) authority cash:

	Give \(a_i\cdot z(r_i)\) cash to each parent page.

	Give \(a_i[1 - P_i\cdot z(r_i)]\) cash to the virtual page.

Where \(z\) is a function of the page relevance and must satisfy
the following conditions:

\[\begin{split}z(0) &= 0 &\quad \text{No cash goes back to the parents} \\
z(1) &= \frac{1}{P} &\quad \text{All cash goes back to parents} \\
z(0.5) &= 1 - P\cdot z(0.5) &\quad \text{The virtual page counts as
 another parent}\end{split}\]

Notice that the third condition is equivalent to saying that when the
relevance is 0.5 the algorithm is equivalent to OPIC without external
relevance score.

One possible function \(z(r)\) can be build by considern the
second order polynomial fitting all the above points:

\[z(r) = \frac{2r}{P}\left(\frac{2P}{P+1}(1 - r) + (r - 0.5)\right)\]

Implementation

The algorithm described in the previous sections is implemented inside
this class:

	
class crawlfrontier.contrib.backends.opic.opichits.OpicHits(db_graph=None, db_scores=None, time_window=None, db_relevance=None)

	Implements the OPIC algorithm applied to the HITS scores problem

	Parameters:	
	db_graph (GraphInterface) – Read only graph database. If None create a new one
using SQLite

	db_scores (HitsDBInterface) – Scores database. If None create a new one using
SQLite

	time_window (float) – Ignore cash flow out of this time window.
Set to False/None to ignore.

	db_relevance (RelevanceDBInterface) – Read only relevance database. If None create a
new one using SQLite

	
a_mean

	Mean of authority scores

	
add_page(page_id)

	Add a new page

	Parameters:	page_id (str) – Page identification

	Returns:	HitsScore –
The new score assigned to the page

	
close()

	Close any associated database

	
get_scores(page_id)

	Normalized hub and authority score

	Parameters:	page_id (str) – Page identification

	Returns:	(float, float) – A tuple (hub score, authority score) for
the given page_id

	
h_mean

	Mean of hub scores

	
iscores()

	Iterate over (page id, hub score, authority score)

	
mark_update(page_id)

	Add this to the list of pages to update

To decide which pages we should update next we uuse an heuristic:
we select the pages with the highest accumulated authority or hub cash.
This function makes possible to externally add a given page to the set
of pages to be updated, irrespective of its accumulated cash.

	Parameters:	page_id (str) – Page identification

	
update(n_iter=1)

	Run a full iteration of the OPIC-HITS algorithm

	Parameters:	n_iter (int) – number of iterations

	Returns:	pair of lists – The first one contains pages with an updated
hub score and the second ones with update authority score.

As you can see it has one optional paramter, the time window of the
adaptive version, and 3 external database components:

The facilitate adding different database backends their interface has
been extracted in different abstract metaclasses.

Graph database

Every class implementing the following interface can be a drop-in
replacement for the included SQLite backend. It is not a requirement
to inherit from this class, but is recommended for checking the interface
at compile time.

Notice that this database is only accessed from
opichits.OpicHits via read operations.

	
class crawlfrontier.contrib.backends.opic.graphdb.GraphInterface

	Interface definition for a Graph database

The graph does not store any aditional data inside the nodes or edges, only
the link structure. All the function below just represent nodes as
unique identifier strings and edges as pairs of nodes (python tuples).

	
add_edge(start, end)

	Add a new edge to the graph, from start to end

	
add_node(node)

	Add a new node

	
clear()

	Delete all contents

	
close()

	Close connection and commit changes

	
delete_edge(node)

	Delete edge

	
delete_node(node)

	Delete node, and all edges connecting to this node

	
end_batch()

	Commit pending changes

	
has_node(node)

	True if node present inside graph

	
iedges()

	An iterator for all the edges

	
inodes()

	An iterator for all the nodes

	
nedges()

	Number of edges

	
neighbours(node)

	A set of nodes going to or from ‘node’

	
nnodes()

	Number of nodes

	
predecessors(node)

	A list of the predecessors for the given node

	
start_batch()

	Do not commit changes to the graph until this batch ends

	
successors(node)

	A list of the successors for the given node

The following class is a simple implementation of the above
interface using SQLite. It maintains a table with edges and a table
with nodes. The table is fully indexed for performance.

	
class crawlfrontier.contrib.backends.opic.graphdb.SQLite(db=None)

	SQLite implementation of GraphInterface

Relevance database

If this database is provided opichits.OpicHits will consult
the score associated to each page to decide how to distribute the
authority score.

Notice that this database is only accessed from
opichits.OpicHits via read operations.

As usual, there is an interface which all backends must satisfy:

	
class crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface

	Interface definition for relevance databases.

Page ID’s are unique string identifiers for pages and page scores are float
numbers between 0 and 1.

	
add(page_id, page_score)

	Add a new association

	
clear()

	Delete all contents

	
delete(page_id)

	Delete page

	
get(page_id)

	Get score for the given page

	
get_best_scores(n)

	Get the n highest scores as a list of tuples of type
(page_id, page_score)

	
iscores()

	An iterator over all tuples (page_id, page_score)

	
set(page_id, page_score)

	Change score

And there is also a batteries included SQLite implementation of the
interface:

	
class crawlfrontier.contrib.backends.opic.relevancedb.SQLite(db=None)

	A SQLite implementation for RelevanceDBInterface

HITS scores database

The HITS database contains the state of the OPIC algorithm.
Since there are several values to maintain for each page a new class
has been created for storing them:

	
class crawlfrontier.contrib.backends.opic.hitsdb.HitsScore(h_history, h_cash, h_last, a_history, a_cash, a_last)

	Just a container for the following (modifiable) fields:

	Parameters:	
	h_history – Accumulated hub cash

	h_cash – Non-spent hub cash

	h_last – Total hub cash the last time it was updated

	a_history – Accumulated authority cash

	a_cash – Non-spent authority cash

	a_last – Total authority cash the last time it was updated

First, the interface.

	
class crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface

	Interface definition for every HITS database.

The keys of this database are page id’s, unique string identifiers for each
page, and the values are HitsScore instances.

	
add(page_id, page_score)

	Associate page_score with page_id

	
clear()

	Delete all contents

	
close()

	Close connection and commit changes

	
delete(page_id)

	Delete association

	
get(page_id)

	Get the HitsScore associated with page_id

	
get_a_total()

	Total accumulated authority score

	
get_count()

	Get number of scores in database

	
get_h_total()

	Total accumulated hub score

	
get_highest_a_cash(n=1)

	Get the highest authority cash

	
get_highest_h_cash(n=1)

	Get the highest hub cash

	
increase_a_cash(page_id_list, a_cash)

	Increase the cash in the given pages in this amount

	
increase_all_cash(h_cash, a_cash)

	Increase the cash in all pages in this amount

	
increase_h_cash(page_id_list, h_cash)

	Increase the cash in the given pages in this amount

	
iteritems()

	Iterate over hits scores

	Returns:	iterator over pairs – Each pair has the form
(page_id, page_score)

	
set(page_id, page_score)

	Change the HitsScore associated with page_id

And of course, the SQLite already provided implementation:

	
class crawlfrontier.contrib.backends.opic.hitsdb.SQLite(db=None)

	SQLite based implementation for HitsDBInterface

Make a new connection to a HITS scores database or, if
None provided make a new in-memory

Scheduler

Introduction

Having a measure of page importance is only the first step. Now we need to
consider which page should we be crawling next. In order for the
scheduler to take that decision it must have some information about
the pages. We will assume that it has two items of
information about each page: the change rate of the page and a measure
of the page value. With this information it must give back to us the
next pages to crawl. With these considerations we define the interface
that all schedulers must satisfy:

	
class crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface

	Interface that must be satisfied by all schedulers

	
close()

	Close all databases

	
delete(page_id)

	Remove page from scheduler

	
get_next_pages(n_pages)

	Return next pages to crawl

	
set_rate(page_id, rate_new)

	Set change rate for given page

	
set_value(page_id, value_new)

	Set page value for given page

BestFirst

One possible strategy for an scheduler is just to be greedy: visit the
next page in the frontier that gives the most value. This type of crawler
is implemented in:

	
class crawlfrontier.contrib.backends.opic.scheduler.BestFirst(rate_value_db=None)

	A BestFirst crawler always return the next page with highest value.

To be really BestFirst get_next_pages should be called with n_pages=1.
However, the crawler runs OK if its asked for the next best n_pages.

	Parameters:	rate_value_db (SchedulerDBInterface .schedulerdb.SchedulerDBInterface) – database to store page_id, rate, value triplets

Revisiting scheduler

BestFirst as is has one obvious limitation: it doesn’t revisit web
pages since once a page is crawled it is deleted from the frontier. We
could modify it, adding an estimation of each web page change rate and
then reconsidering a page after some time has passed
depending.

Another possibility is to use an scheduler which is not greedy,
but optimal in the sense that maximizes the long term effectiviness of
the crawler if some assumptions about page change rate hold. This
scheduler is implemented inside:

	
class crawlfrontier.contrib.backends.opic.scheduler.Optimal(n_clusters=100, rate_value_db=None, freq_db=None)

	Compute the optimal refresh frequency, with a fixed computational
cost

	Parameters:	
	n_clusters (int) – number of clusters to use for the approximation

	rate_value_db (SchedulerDBInterface .schedulerdb.SchedulerDBInterface) – database to store page_id, rate, value triplets

	freq_db (FreqDBInterface .freqdb.FreqDBInterface) – database to store the scheduler solution

	
crawl_rate

	Get crawl rate

	
frequency(page_id)

	Get the optimal refresh frequency for a page

As you can see there are two databases associated to the scheduler:

The scheduler database is just for maintaining an association between
pages and page change rates and values. As usual it can be anything
that adheres to the following interface:

	
class crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface

	
	
add(page_id, page_rate, page_value)

	Add a new association

	
clear()

	Delete all contents

	
get(page_id)

	Get (page_rate, page_value) for the given page

	
get_best_value(n_pages=1, delete=False)

	Get the pages with highest value

	Parameters:	
	n_pages (int) – number of pages to retrieve

	delete (bool) – if True remove the retrieves pages from the
database

	
iter()

	An iterator over all tuples (rate, value)

	
set(page_id, page_rate, page_value)

	Change association

Of course there is an already provided SQLite implementation:

	
class crawlfrontier.contrib.backends.opic.schedulerdb.SQLite(db=None)

	A SQLite implementation for the SchedulerDBInterface

The “freqs” database associates pages with optimal frequencies as
computed by the scheduler. However it not only takes stores the
association but also allows to query what is the next page to be
crawled.

The interface is defined in:

	
class crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface

	Interface definition for every FreqDB database

	
add(page_id, page_freq)

	Associate page_freq with page_id, where:

	Parameters:	
	page_id (str) – an string which identifies the page

	page_freq (float) – refresh frequency of the page (Hz)

	
clear()

	Delete all contents

	
close()

	Close connection and commit changes

	
delete(page_id)

	Delete association

	
get_next_pages(n=1)

	Return the next pages, to maintain the desired frequency

	
set(page_id, page_freq)

	Change the frequency associated with page_id

And the SQLite implementation:

	
class crawlfrontier.contrib.backends.opic.freqdb.SQLite(db=None)

	SQLite based implementation for FreqDBInterface

Make a new connection to a frequency database or, if
None provided make a new in-memory

The justification of the optimal scheduler algorithm is quite lengthy
and so is not included here. If you are interested in the details the it is
described here:

	Optimal revisiting algorithm

	Estimation of page change rate \(\lambda\)

Page change rate estimator

Right now it is assumed that the pages probability of change follow a
Poisson distribution. The details are given in the description of the
scheduler algorithm Optimal revisiting algorithm.

As always any implementation satisfying the following interface can be
used:

	
class crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface

	
	
add(page_id)

	Add initial frequency estimation for page_id

page_id – An string which identifies the page

	
close()

	Persist or flush all necesary information

	
delete(page_id)

	Stop tracking page_id

	
frequency(page_id)

	Return the estimated refresh frequency for the page. If the page is
not being tracked return None

	
refresh(page_id, updated)

	Add new refresh information for page_id

updated – A boolean indicating if the page has changed

And we already have a working SQLite implementation, which just counts
the number of updates in a given time interval:

	
class crawlfrontier.contrib.backends.opic.freqest.Simple(db=None, clock=None, default_freq=0.0)

	The simple estimator just computes the frequency as the total
number of updates divided by the total observation time

Initialize estimator

	Arguments:

	
	db – updates database to use. If None provided create a new

	in-memory one.

	clock – A function that returns elapsed time in seconds from a

	fixed origin in time.

	default_freq – Return this frequency if not enough info available to

	compute an estimate

The frequency estimator expects as input whether or not a page has
changed but does not make any assumption of what constitutes a change
since this is the responsability of a page change estimator, which has
a very simple interface: given a page and its body returns True if the
change has changed:

	
class crawlfrontier.contrib.backends.opic.pagechange.PageChangeInterface

	Interface for all page change detectors

	
update(page_id, page_body)

	Returns one of the change status for the page

The value returned is one of the fields of Status

The current implementation is very simple since it just tests for any
change in the body of the page by computing its hash. Notice that very
simple changes, which don’t really add new content, will be detected
as a change.

	
class crawlfrontier.contrib.backends.opic.pagechange.BodySHA1(db=None)

	

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

 	Backends

 	OPIC Details

OPIC vs power method

In the following document we analyze a real crawl, obtained from
running the example in the crawl-frontier repository. It may take some
time:

crawl-frontier/examples/scrapy_frontier$ scrapy crawl example -s MAX_REQUESTS=2000
2015-01-30 22:32:33+0100 [scrapy] INFO: Scrapy 0.24.4 started (bot: scrapy_frontier)
.
.
.
2015-01-30 22:46:46+0100 [example] INFO: Spider closed (finished)

After that you should have a directory crawl-opic populated with
several databases:

crawl-frontier/examples/scrapy_frontier/crawl-opic$ ls -1sh
total 71M
540K freqs.sqlite
 45M graph.sqlite
156K hash.sqlite
7,9M hits.sqlite
8,3M pages.sqlite
4,6M scheduler.sqlite
4,9M updates.sqlite

For a description of what the above databases are about see
Persistence. In particular, two databases in the above list
give us an snapshot of the OPIC algorithm state: graph and hits.

The following script even allow us to run the OPIC algorithm whithout
the crawler running and see how the OPIC score converges to the score
computed using the power method, validating therefore the correcteness
of our implementation.

You can download download the script too.

#!/usr/bin/env python
"""
This script makes a plot comparing the hub/authority score of the OPIC
algorithm against an equivalent power method.

Requirements:
 - numpy
 - scipy
 - matplotlib
 - crawlfrontier
"""

usage = """Compares the precision of the Power Method against OPIC computing
the HITS score.

python opic-precision.py backend_opic_workdir

The main output is a plot of the page scores using both methods
"""

import sys
import os

import matplotlib.pylab as plt
import numpy as np
import scipy.sparse

from crawlfrontier.contrib.backends.opic.opichits import OpicHits
import crawlfrontier.contrib.backends.opic.graphdb as graphdb
import crawlfrontier.contrib.backends.opic.hitsdb as hitsdb

def graph_to_hits_matrix(db):
 """
 Returns a tuple with:

 i2n: mapping between row/column number and node identifier
 H : hub matrix
 A : authority matrix
 h : virtual page hub vector
 a : virtual page authority vector
 """
 i2n = [n for n in db.inodes()]
 n2i = {n: i for i, n in enumerate(i2n)}
 N = len(i2n)

 H = scipy.sparse.dok_matrix((N, N), dtype=float)
 A = scipy.sparse.dok_matrix((N, N), dtype=float)
 h = np.zeros((N,))
 a = np.zeros((N,))
 for node in i2n:
 i = n2i[node]
 succ = db.successors(node)
 for s in succ:
 w = 1.0/(len(succ) + 1)
 A[n2i[s], i] = w
 a[i] = w
 pred = db.predecessors(node)
 for p in pred:
 w = 1.0/(len(pred) + 1)
 H[n2i[p], i] = w
 h[i] = w

 return (i2n, H, A, h, a)

def hits_pm(H, A, h, a, err_max=1e-4, iter_max=500, verbose=False):
 """Return hub and authority scores.

 Parameters:

 H : hub matrix
 A : authority matrix
 h : virtual page hub vector
 a : virtual page authority vector
 """
 # Number of pages
 N = H.shape[0]

 # Hub score
 x = np.random.rand(N)
 x /= np.sum(x)

 # Authority score
 y = np.random.rand(N)
 y /= np.sum(y)

 vh = 0.0
 va = 0.0

 i = 0
 while True:
 xn = H.dot(y) + va/N
 yn = A.dot(x) + vh/N

 vh = h.dot(y)
 va = a.dot(x)

 sa = np.sum(yn)
 sh = np.sum(xn)
 va /= sa
 yn /= sa
 vh /= sh
 xn /= sh

 eps = max(
 np.linalg.norm(xn - x, ord=np.inf),
 np.linalg.norm(yn - y, ord=np.inf)
)

 x = xn
 y = yn

 if verbose:
 print "iter={0:06d} eps={1:e}".format(i, eps)

 if eps < err_max:
 break

 i += 1
 if i > iter_max:
 break

 return (x, y)

def precision_crawl(workdir):
 # Load databases inside workdir
 opic1 = OpicHits(
 db_graph=graphdb.SQLite(os.path.join(workdir, 'graph.sqlite')),
 db_scores=hitsdb.SQLite(os.path.join(workdir, 'hits.sqlite'))
)

 print "Converting crawled graph to sparse matrix... ",
 i2n, H, A, h, a = graph_to_hits_matrix(opic1._graph)
 print "done"

 print "Computing HITS scores using power method... ",
 # h1: hub score, power method
 # a1: authority score, power method
 h_pm, a_pm = hits_pm(H, A, h, a, verbose=False)
 print "done"

 # Estimate error of OPIC
 # --

 # Matched against the same pages as power method.
 # h2: hub score, OPIC
 # a2: authority score, OPIC
 h_iter_1, a_iter_1 = zip(*[opic1.get_scores(page_id)
 for page_id in i2n])

 h_iter_2 = H.dot(A.dot(h_iter_1))
 h_iter_2 /= np.sum(h_iter_2)

 # To compute the error of opic authority score
 a_iter_2 = A.dot(H.dot(a_iter_1))
 a_iter_2 /= np.sum(a_iter_2)

 print "Error of OPIC algorithm (L^inf metric):"
 print " Hub score : ", \
 np.linalg.norm(h_iter_2 - h_iter_1, ord=np.inf)
 print " Authority score: ", \
 np.linalg.norm(a_iter_2 - a_iter_1, ord=np.inf)

 # Compare OPIC against PM
 # --

 # h_dist_pm: ordered from lowest to highest hub scores for PM
 # h_opic : OPIC hub scores following PM page order
 h_dist_pm, h_pm_ids = zip(*sorted(zip(h_pm, i2n)))
 h_opic = [opic1.get_scores(page_id)[0]
 for page_id in h_pm_ids]

 # a_dist_pm: ordered from lowest to highest authority scores for PM
 # a_opic : OPIC authority scores following PM page order
 a_dist_pm, a_pm_ids = zip(*sorted(zip(a_pm, i2n)))
 a_opic = [opic1.get_scores(page_id)[1]
 for page_id in a_pm_ids]

 h_dist_opic = sorted(h_opic)
 a_dist_opic = sorted(a_opic)

 # Improve OPIC scores
 # --
 print "Additional opic iterations"
 opic2 = OpicHits(db_graph=opic1._graph, db_scores=None)
 for i in xrange(10):
 opic2.update(n_iter=1000)
 print " ", (i+1)*1000

 h_opic_improved = [opic2.get_scores(page_id)[0] for page_id in h_pm_ids]
 a_opic_improved = [opic2.get_scores(page_id)[1] for page_id in a_pm_ids]

 h_dist_opic_improved = sorted(h_opic_improved)
 a_dist_opic_improved = sorted(a_opic_improved)

 # Plot figure
 # --
 fig = plt.figure()
 fig.suptitle('Power method vs OPIC')

 # Hub score PM vs OPIC
 ax1 = plt.subplot(221)
 plt.hold(True)
 ax1.set_ylabel('Hub score')
 ax1.set_title('Power method vs OPIC')
 p1, = plt.plot(h_dist_pm, 'r-')
 p2, = plt.plot(h_dist_opic, 'b-')
 p3, = plt.plot(h_opic, 'b.')
 ax1.legend(
 [p1, p2, p3],
 ['Power method', 'OPIC (dist)', 'OPIC'],
 loc='upper left'
)

 # Authority score PM vs OPIC
 ax2 = plt.subplot(223, sharex=ax1)
 plt.hold(True)
 ax2.set_ylabel('Authority score')
 ax2.set_xlabel('Page')

 p1, = plt.plot(a_dist_pm, 'r-')
 p2, = plt.plot(a_dist_opic, 'b-')
 p3, = plt.plot(a_opic, 'b.')

 # Hub score PM vs OPIC improved
 ax3 = plt.subplot(222, sharex=ax1, sharey=ax1)
 plt.hold(True)
 ax3.set_title('Power method vs OPIC improved')

 p1, = plt.plot(h_dist_pm, 'r-')
 p2, = plt.plot(h_dist_opic_improved, 'b-')
 p3, = plt.plot(h_opic_improved, 'b.')

 # Authority score PM vs OPIC improved
 ax4 = plt.subplot(224, sharex=ax1, sharey=ax2)
 plt.hold(True)
 ax4.set_xlabel('Page')

 p1, = plt.plot(a_dist_pm, 'r-')
 p2, = plt.plot(a_dist_opic_improved, 'b-')
 p3, = plt.plot(a_opic_improved, 'b.')

 return fig

if __name__ == '__main__':
 if len(sys.argv) != 2:
 sys.exit(usage)

 fig = precision_crawl(sys.argv[1])
 plt.show()

We can run the above script:

crawl-frontier/examples/scrapy_frontier$ python opic-precision.py crawl-opic/
Converting crawled graph to sparse matrix... done
Computing HITS scores using power method... done
Error of OPIC algorithm (L^inf metric):
 Hub score : 0.00589243418972
 Authority score: 0.00451756698138
Additional opic iterations
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

And at the end it will generate a plot comparing the hub and authority
scores as computed by the power method and OPIC. We include now a zoom
of the plot near the highest scored pages, which is the most
interesting method and discuss the meaning of the plot.

[image: ../_images/opics-precision.png]
first notice that we requested 2000 pages but if you look at the
x-axis of the figure there are more than 40000 pages. This is because
we not only show crawled pages, but also uncrawled links, which
constitute most of the graph database.

There are two rows in the above plot. The first row shows hub scores
and the second row shows authority scores. Also, the first column
shows a comparison of the power method vs the OPIC scores, just as
they were in the database after the crawl finished. The second column
show the same result for the power method, but the OPIC scores are
improved by performing additional iterations of the algorithm without
crawling additional pages.

Each subplot has three lines. The red line shows the power method
score for each page. The continous blue line shows the OPIC score for
each page, but without having the pages in the same ordering as the
power method. Showing this line is useful to have a look of how the
OPIC scores are distributed but we cannot compare directly the red and
blue lines. The dots show the OPIC score for each page, this time with
the same page ordering as the power method. We can use the three lines
to get an idea of what are the differences between the scores computed
by the OPIC and the power method. The following figure explains how:

With this in mind we can see in the plot of OPIC vs power method that:

	After the crawl is finished there is quite a difference in the
scores, although there is a good correlation between OPIC and the
power method. This means that both methods will likely agree that a
page is in the top 5% of pages, but the exact score or rank within
that margin could be very different.

	If we continue iterating the OPIC algorithm after the crawl is
finished the scores between the two methods converge. This is
mainly because the OPIC algorithm plays with unfair rules: it
computes the score while the graph is growing, while the power
method was run with the graph frozen. This shows that if we run
both methods in equal conditions they get the same results. That’s
why we need the adaptive version of the OPIC algorithm, however,
tuning the time window parameter is difficult. Another solution is
to iterate more frequently the OPIC algorithm when the graph
changes, but this consumes a lot of CPU.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

 	Backends

 	OPIC Details

Optimal revisiting algorithm

Introduction

This algorithm is based mainly on the following paper:

Effective Page Refresh Policies For Web Crawlers
Junghoo C. and Garcia-Molina H.

I will keep the notation similar to the above paper, and I will
summarize some results to make it easier to follow.

The problem is: we have several web pages, which have possibly changed
since the last time we crawled them. We want to know the optimal
refreshing rate for them, for some meaning of optimal. Obviously, the
refreshing rate cannot be unbounded, since we have a limited bandwith
and computer resources.

Refreshing rate restriction

First, we repeat some concepts from the original paper.

	\(I_i\): time interval between consecutive
refreshes for page \(i\), this is the unknown we want to
calculate.

	\(f_i\): refreshing frequency, just \(f_i=1/I_i\)

	\(\lambda_i\): change rate for page \(i\). We make the
assumption that change rates for web pages follow a Poisson
process. It seems this is a very reasonable assumption.

	\(N\): total number of pages we want to refresh in a
time interval \(I\)

	\(\bar{f}\): mean refreshing rate: \(\bar{f}=1/I\)

We can now state our refreshing rate constraint: during time interval
\(I\) we refresh \(I/I_i\) number of times page \(i\). It must be:

\[\sum_{i=1}^N \frac{I}{I_i}=N\]

Or equivalently by simple manipulation:

\[\frac{1}{N}\sum_{i=1}^Nf_i=\bar{f}\]

Target function

We now define the value of a new page refresh \(V_i\), which is our
first step towards a global value function, which we want to
maximize. Notice that this target function is different from the
original paper, which considered two different ones: freshness and
age. We will however follow the same process, but for this different
objective.

\[\begin{split}V_i = \begin{cases}
 w_i & \mbox{if new content found} \\
 0 & \mbox{otherwise }
 \end{cases}\end{split}\]

Of course, we don’t know the value \(V_i\) until we refresh the page,
but we can compute its expected value. Remember we said refreshing
rates follow a Poisson distribution, so we have that if \(X\) is the
number of page modifications since last time we refreshed:

\[\begin{split}Pr\{X=0\} &=e^{-\lambda t} \\
Pr\{X>0\} &= 1 - e^{-\lambda t}\end{split}\]

Where \(t\) is the amount of time that has passed since the last refresh.

The expected value of a refresh, is then:

\[\begin{split}E[V_i(t)]=Pr\{X=0\} \cdot 0 + Pr\{X>0\} \cdot w_i =
 w_i(1 - e^{-\lambda_i t_i})\end{split}\]

We could finish now and say that our strategy is to crawl at each
instant \(t\) the page that maximizes the expected refresh value
\(E[V_i(t)]\). This however has two problems:

	Even if a page has at a given time the maximum
expected value, it could be better to wait and refresh it later, since
it may have a higher expected value.

	This expected value is a
function of time and we would need to recompute constantly the
expected value of all our candidate pages. Consider the following
figure showing three different possible curves for \(E[V_i(t)]\) for
three different pages, as a function of time. Notice how the page with
the maximum expected value moves as a function of time.

The problem of which pages to refresh in the next period
of time, such to as maximize the gained value in that period is very
difficult, but we can make it more simple if that period of time goes
to infinity, meaning that we search for a strategy that maximizes the
value gained in all future time. In this case, we are a looking for an
stationary solution and all our unknowns are the frequency at which we
refresh each page.

If we refresh page \(i\) with frequency \(f_i\) the expected value for
each refresh is:

\[\bar{V}_i = w_i\left(1 - e^{-\lambda_i/f_i}\right)\]

And the value per unit of time we extract from the page is:

\[\bar{T}_i = f_i\bar{V}_i=f_iw_i\left(1 -
 e^{-\lambda_i/f_i}\right)\]

Our target function is the total value per unit of time:

\[\bar{T} = \sum_{i=1}^N f_iw_i\left(1 -
 e^{-\lambda_i/f_i}\right)\]

And the optimization problem we want to solve is:

\[\underset{f}{\text{maximize }} \bar{T}\]

And for \(i=1\dotsc N\) we have the constraints:

\[\begin{split}\frac{1}{N}\sum_{i=1}^N f_i &= \bar{f} \\
f_i &\geq 0\end{split}\]

Let’s have a look at the shape of our problem. The following figure
shows the behavior of the function \(\bar{T}\) (with \(w=1\)):

The following figure shows the constraints for a problem with just two
pages:

We can graphically solve the problem for a particular instance if we
restrict ourselves with two pages. For example, consider the following
weights and refresh rates for two pages:

\[\begin{split}w_1 &= 1 & \lambda_1 &= 5 \\
w_2 &= 5 & \lambda_2 &= 1\end{split}\]

If we plot the contour curves for \(\bar{T}\) and the constraints we see
that there are two kinds of solutions, depending of whether the
maximum happens in the interior or in the boundaries (\(f_1 = 0\) or
\(f_2=0\)):

If we cut the surface \(\bar{T}\) with the plane defined by the
constraint \((f_1 + f_2)/2=\bar{f}\) we transform the problem into a
maximization problem in just one unknown:

We see that for low values of \(\bar{f}\), it’s better to not refresh at
all the first page. However, as the available frequency increases it
starts to make sense to refresh all pages. The following figure shows
the refresh frequencies for the two pages as a function of the
available frequency \(\bar{f}\). It’s interesting to note that although
initially the first page is not refreshed at all, past a certain value
of \(\bar{f}\) it is refreshed more frequently than the other one.

Solution computation

Introducing the Lagrange multipliers
\(\alpha\) and \(\beta=(\beta_i, i=1\dotsc N)\) we build the Lagrangian:

\[L = \bar{T} + \alpha\left(\frac{1}{N}\sum_1^N f_i -
f\right) + \frac{1}{2}\sum_1^N\beta_i^2 f_i\]

A necessary condition for a solution to be a local optimum requires
that the gradient of the Lagrangian vanishes (Karush–Kuhn–Tucker
conditions):

\[\begin{split}\nabla_f L &= 0 \\
 \frac{\partial L}{\partial \alpha} &= 0 \\
\nabla_\beta L &= 0\end{split}\]

Since \(\bar{T}\) is a linear combination of \(\bar{T}_i\), and each
\(\bar{T}_i\) is concave, then \(\bar{T}\) is concave. Since our
constraints are linear the whole problem is concave and any local
maximum is also a global maximum. Furthermore, there are no local
minimums, so every solution that satisfies the KKT conditions is a
global maximum.

Newton-Raphson’s method

We now to try to solve the KKT
equations directly. Calling \(h = \nabla L\), we must make \(h = 0\) to
find an equilibrium point. There are therefore \(2N + 1\) equations to
solve:

\[\begin{split}i&=1...N & h_i &= \frac{\partial L}{\partial f_i}
&&=\frac{\partial \bar{T}}{\partial f_i} + \frac{1}{N}\alpha +
\frac{1}{2}\beta_i^2 &= 0 \\
i&=1...N & h_{N+i} &= \frac{\partial
L}{\partial \beta_i} &&= \beta_i f_i &= 0 \\
&& h_{2N+1} &=
\frac{\partial L}{\partial \alpha} &&= \frac{1}{N}\sum_1^Nf_i - f &= 0\end{split}\]

Calling \(x=(f, \beta, \alpha)\), the Newton-Raphson method makes the
following approximation of the function in the neighborhood of the
point \(x_k\):

\[h(x) \approx h(x_k) + \left(\nabla h\right)_k (x - x_k)\]

From the above, we have:

\[\begin{split}x_{k+1} &= x_k + \left(\Delta x\right)_k \\
\left(\nabla h\right)_k \left(\Delta x\right)_k &= -h(x_k)\end{split}\]

Solving for \(\Delta x\) is not difficult, since our equations are
loosely coupled:

\[\forall i \neq j \quad \frac{\partial h_i}{\partial
 f_j} = \frac{\partial h_{N+i}}{\partial f_j} = 0\]

So we have:

\[\begin{split}i&=1 \dotsc N & \frac{\partial^2 \bar{T}_i}{\partial
 f_i^2}\Delta f_i + \beta_i\Delta \beta_i + \frac{1}{N}\Delta
 \alpha &= -h_i\\
i&=1 \dotsc N & \beta_i \Delta f_i + f_i \Delta\beta_i &= -h_{N+i} \\
&& \frac{1}{N}\sum_1^N\Delta f_i &= -h_{2N+1}\end{split}\]

And we can solve easily the above system of equations.
For \(i =1 \dotsc N\) compute:

\[\begin{split}\frac{\partial \bar{T}}{\partial f_i} &= w_i \left[1 - \left(1 + \frac{\lambda_i}{f_i}\right)e^{-\lambda_i/f_i} \right] \\
a_i &= \frac{1}{ \beta_i^2 + w_i \left(\frac{\lambda_i}{f_i}\right)^2e^{-\frac{\lambda_i}{f_i}} } \\
b_i &= \frac{\partial \bar{T}_i}{\partial f_i} + \frac{1}{N}\alpha - \frac{1}{2}\beta_i^2\end{split}\]

Compute then:

\[\Delta \alpha = \frac{1}{\sum_1^N
a_if_i}\sum_1^N \left[f - f_i\left(1 + a_ib_i\right) \right]\]

And then again for \(i = 1 \dotsc N\):

\[\begin{split}\frac{\Delta
f_i}{f_i} &= a_i\left(b_i + \frac{1}{N}\Delta \alpha\right) \\
\Delta
f_i &= f_i\left(\frac{\Delta f_i}{f_i}\right) \\
\Delta \beta_i &=
-\beta_i\left(1 + \frac{\Delta f_i}{f_i}\right)\end{split}\]

Notice that once that \(f_i=0\) or \(\beta_i=0\) the algorithm gets stuck
at that value. The problem with this is that as new pages are added,
or maybe already present pages are changed (in \(w_i\) or \(\lambda_i\))
\(L\) changes. It would be very convenient to start searching for a new
solution from the current one, since it’s an iterative procedure,
however we cannot do that, since once a page has its refresh frequency
set to zero, it cannot change.

Dual ascent

Since our problem is concave, then we know
that the solution to our original problem is also the solution to the
unconstrained problem:

\[\underset{\alpha,\beta}{\min}\,\underset{f}{\max}\,L\]

In more intuitive terms, the solution to the constrained maximization
problem is given by a saddle point of the Lagrangian.

We could just use a gradient descent:

\[\begin{split}f^{k+1} &= f^k + \epsilon\nabla_f L \\
\alpha^{k+1} &= \alpha^k - \epsilon
\frac{\partial L}{\partial \alpha} \\
\beta^{k+1} &= \beta^k - \epsilon \nabla_\beta L\end{split}\]

However we get the same problem of getting stuck when reaching
\(\beta_i=0\). Notice that the update equation is:

\[\beta^{k+1}=\beta^k(1 - \epsilon f^k)\]

We drop the inequality multipliers from the Lagrangian and impose
these constraints directly while searching for a new point.

Our new Lagrangian is therefore:

\[L = \bar{T} + \alpha\left(\frac{1}{N}\sum_1^N f_i - \bar{f}\right)\]

For a fixed value of \(\alpha\) we first solve:

\[Q(\alpha)=\underset{f}{\max}\,L(f, \alpha)\]

Subject to:

\[f \ge 0\]

Notice that:

\[\frac{\partial^2 \bar{T}}{\partial f_i^2} =
-w_i\frac{\lambda_i^2}{f_i^3}e^{-\frac{\lambda_i}{f_i}}\]

And we have that:

\[\begin{split}\lim_{f_i \to 0}\frac{\partial^2 \bar{T}}{\partial f_i^2} &= 0 \\
\frac{\partial^2 \bar{T}}{\partial f_i^2} & \le 0\end{split}\]

This means that:

\[\max\,\frac{\partial
\bar{T}}{\partial f_i} = \left.\frac{\partial \bar{T}}{\partial
f_i}\right|_{f_i=0}=w_i\]

Notice also that the Lagrangian can be decomposed in:

\[\begin{split}L&= \sum_1^N L_i - \alpha\bar{f} \\
L_i &= \bar{T}_i + \frac{1}{N}\alpha f_i\end{split}\]

The maximization of \(L\) relative to \(f\) is equivalent to the
maximization of each \(L_i\) relative to \(f_i\).

We can see that the maximization of \(L_i\) relative to \(f_i\) have the
following solutions depending on the value of \(\alpha\):

\[\begin{split}\text{If }\alpha & \ge 0 & \frac{\partial L_i}{\partial f_i} &> 0 &
 f_i &\to \infty \\
\text{If }\alpha & \le -Nw_i & \frac{\partial
 L_i}{\partial f_i} &< 0 & f_i &= 0\end{split}\]

Otherwise we solve:

\[\frac{\partial L_i}{\partial f_i}
= \frac{\partial \bar{T}_i}{\partial f_i} + \frac{1}{N}\alpha = 0\]

The above equation gives a solution of the form:

\[\frac{f_i^*}{\lambda_i}=g\left(\frac{\alpha}{w_iN}\right)\]

We can pre-compute \(g(x)\) function for \(-1 < x < 0\) with:

\[\begin{split}u^{k+1} &= \log \frac{1 + u^{k}}{1 + x} \\
g(x) &=\frac{1}{\lim_{k \to \infty}u^k}\end{split}\]

Using the above we get the following figure:

We have now an efficient method to compute:

\[Q(\alpha)=L(\alpha, f^*)\]

We now need to solve:

\[\underset{\alpha}{\min}\,Q(\alpha)\]

Which is an unidimensional minimization problem. We play safe and use
the golden search algorithm, which is guaranteed to find the minimum
even when the first derivative is not continuous. We search inside the
region \(\alpha \in [-N\underset{i}{\max}\,w_i, 0]\).

For a description of the golden section search algorithm see for
example:

Numerical Recipes, Third Edition Section
10.2 Golden Section Search in One Dimension

Approximation for a large number of pages

Substituting

\[f_i^*=\lambda_i g\left(\frac{\alpha}{Nw_i}\right)\]

in the Lagrangian we get:

\[\begin{split}Q_i &= L_i(\alpha, f_i^*) =
\lambda_i w_i h\left(\frac{\alpha}{Nw_i} \right) \\
h\left(\frac{\alpha}{Nw_i}\right) &=
g\left(\frac{\alpha}{Nw_i}\right)\left\{ 1 -
e^{-\left[g\left(\frac{\alpha}{Nw_i}\right)\right]^{-1}} +
\frac{\alpha}{w_iN} \right\}\end{split}\]

The following figure shows the shape of \(h\):

Now, imagine we cluster the values of the pages \(w\) in \(K\)
clusters. Let’s call \(W[k]\) the value of the \(k^{th}\) cluster and
\(I[k]\) will be the indices of pages inside the cluster:

\[I[k] = \left\{i: w_i \sim W[k] \right\}\]

Then we rewrite \(Q\) as:

\[\begin{split}Q(\alpha) &= \sum_{i=1}^NQ_i - \alpha\bar{f} = \\
&= \sum_{k=1}^K\sum_{i \in I[k]}Q_i - \frac{\alpha}{N}\bar{f}\end{split}\]

And make the approximation:

\[\sum_{i \in I[k]}Q_i = \left(\sum_{i \in I[k]}\lambda_i\right)W[k]
h\left(\frac{\alpha}{NW[K]}\right)\]

We call the accumulated page refresh rate inside the cluster \(k\) as:

\[\Lambda [k] = \sum_{i \in I[k]}\lambda_i\]

Finally, we rephrase our minimization problem:

\[Q(\alpha) = \sum_{k=1}^K \Lambda[k]W[k]
h\left(\frac{\alpha}{NW[k]}\right) - \alpha\bar{f}\]

Of course it remains open how to actually perform the clustering, an
operation that can be in itself costly. As a first approximation we
can assume that \(0 < w_i \le 1\) and divide this interval equally in
\(K\) clusters:

\[\begin{split}W[k] &= \frac{1}{2N}(2k-1) \\ I[k] &= \left\{i:
\frac{1}{N}(k-1) < w_i \le \frac{1}{N}k \right\}\end{split}\]

Another possibility would be doing some kind of online k-means:

Web-Scale K-Means Clustering
D. Sculley

Implementation

The above algorithm main class is implemented in

	
class crawlfrontier.contrib.backends.opic.scheduler.OptimalSolver(verbose=False)

	Initialize the solver.

	Parameters:	verbose (bool) – If True print convergence info

	
solve(values, rates, frequency, n_pages)

	Get frequencies that maximize page value per unit of time

	Parameters:	
	values (list) – a list of page values (float in (0,1])

	rates (list) – a list of page change rates (float > 0)

	n_pages – number of pages

It must be that:

n_pages >= len(values) == len(rates)

And the supporting algorithms are also implemented inside the same module.
The “clustering” algorithm is in

	
class crawlfrontier.contrib.backends.opic.scheduler.WCluster(n_clusters=100)

	Cluster the w_i values of the pages

Initialize clusters

	Parameters:	n_clusters (int) – Number of clusters to use

	
add(page_value, page_rate)

	Adds page to cluster

	
static clamp(w)

	Make sure 0 <= w <= 1

	
cluster_index(w)

	For the given page value, find the cluster index

	
delete(page_value, page_rate)

	Deletes page from cluster

And the golden section search has been also implemented to avoid external
dependencies:

	
crawlfrontier.contrib.backends.opic.scheduler.golden_section_search(f, xmin, xmax, eps=1e-08, verbose=False)

	Find the minimum of a function using the golden section search algorithm

	Parameters:	
	f (function) – function to bracket

	xmin (float) – left side of the start interval

	xmax (float) – right side of the start interval

	eps (float) – required precision. Stop when the minimum is found inside
an interval with length less than this value

	verbose (bool) – If true print convergence results

	Returns:	a pair of triples – (xa, xb, xc), (fa, fb, fc) or None if failure

The returned values obey:

f(xa) > f(xb)
f(xc) > f(xc)
xa < xb < xc

|xc - xa| < eps

Failure can happen only if the search could not be initialized, because
otherwise the algorithm is sure to converge.

Estimation of page change rate \(\lambda\)

So, we have refreshed a page with the following intervals of time
between refreshes, for \(M\) different refreshes:

\[I^1, I^2 \dotsc I^M\]

We partition the set of refreshes into two sets: \(U\) is the set of
refreshes when the page has been updated and \(S\) is the set of
refreshes where we observed the page remained the same. More exactly:

\[\begin{split}U \cup S &= {1 \dotsc M} \\
U \cap S &= \emptyset \\
i \in U &\implies \text{Page changed at the end of } I^i \\
i \in S &\implies \text{Page did not change at the end of } I^i\end{split}\]

The likelihood of this observation:

\[\begin{split}L &= \prod_{i \in S} e^{-\lambda I^i} \prod_{i \in U}
\left(1 - e^{-\lambda I^i} \right) \\
&= e^{-\lambda \sum_{i \in S }I^i} \prod_{i \in U} \left(1 - e^{-\lambda I^i} \right)\end{split}\]

The log-likelihood:

\[\log L = -\lambda \sum_{i \in S }I^i + \sum_{i \in U}
\log \left(1 - e^{-\lambda I^i} \right)\]

Maximization of the log-likelihood gives us the following equation,
where we apply the change \(\theta = e^{-\lambda}\):

\[\sum_{i \in U} I^i \frac{\theta^{I^i}}{1 -
\theta^{I^i}} = \sum_{i \in S}I^i\]

Now, the above equation is very easy to solve if all intervals are
equal: \(I^i=I\)

\[\theta^I = \frac{|S|}{|S| + |U|}\]

Or in terms of the original \(\lambda\):

\[\lambda = \frac{1}{I}\log \left(1 +
\frac{|U|}{|S|}\right)\]

The formula for \(\lambda\) when the intervals are constant is not only
simple, is also very convenient if we want to maintain estimating
\(\lambda\), since we just need to track how many times the page was
updated, \(|U|\), and how many times it remained the same \(|S|\).

It’s interesting to note that we could very easily estimate \(\lambda\)
if we could observe all changes in the web page. In that case, since
\(\lambda\) is the estimated number of changes in an interval of time we
could just say:

\[\lambda = \frac{|U|}{\sum I^i}\]

We will use this latter formula, which will always give a biased lower
bound for \(\lambda\), as a simple approximation to estimate \(\lambda\).

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Using the Frontier with Scrapy

Using Crawl Frontier is quite easy, it includes a set of Scrapy middlewares [http://doc.scrapy.org/en/latest/topics/downloader-middleware.html] that encapsulates frontier usage and
can be easily configured using Scrapy settings [http://doc.scrapy.org/en/latest/topics/settings.html].

Activating the frontier

The frontier uses 2 different middlewares: CrawlFrontierSpiderMiddleware and CrawlFrontierDownloaderMiddleware.

To activate the frontier in your Scrapy project, just add them to the SPIDER_MIDDLEWARES [http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-SPIDER_MIDDLEWARES] and
DOWNLOADER_MIDDLEWARES [http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES] settings:

SPIDER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.frontier.CrawlFrontierSpiderMiddleware': 1000,
})

DOWNLOADER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.frontier.CrawlFrontierDownloaderMiddleware': 1000,
})

Create a Crawl Frontier settings.py file and add it to your Scrapy settings:

FRONTIER_SETTINGS = 'tutorial/frontier/settings.py'

Organizing files

When using frontier with a Scrapy project, we propose the following directory structure:

my_scrapy_project/
 my_scrapy_project/
 frontier/
 __init__.py
 settings.py
 middlewares.py
 backends.py
 spiders/
 ...
 __init__.py
 settings.py
 scrapy.cfg

These are basically:

	my_scrapy_project/frontier/settings.py: the frontier settings file.

	my_scrapy_project/frontier/middlewares.py: the middlewares used by the frontier.

	my_scrapy_project/frontier/backends.py: the backend(s) used by the frontier.

	my_scrapy_project/spiders: the Scrapy spiders folder

	my_scrapy_project/settings.py: the Scrapy settings file

	scrapy.cfg: the Scrapy config file

Running the Crawl

Just run your Scrapy spider as usual from the command line:

scrapy crawl myspider

In case you need to disable frontier, you can do it by overriding the FRONTIER_ENABLED
setting:

scrapy crawl myspider -s FRONTIER_ENABLED=False

Frontier Scrapy settings

Here’s a list of all available Crawl Frontier Scrapy settings, in alphabetical order, along with their default values
and the scope where they apply:

FRONTIER_ENABLED

Default: True

Whether to enable frontier in your Scrapy project.

FRONTIER_SCHEDULER_CONCURRENT_REQUESTS

Default: 256

Number of concurrent requests that the middleware will maintain while asking for next pages.

FRONTIER_SCHEDULER_INTERVAL

Default: 0.01

Interval of number of requests check in seconds. Indicates how often the frontier will be asked for new pages if
there is gap for new requests.

FRONTIER_SETTINGS

Default: None

A file path pointing to Crawl Frontier settings.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Using the Frontier with Requests

To integrate frontier with Requests [http://docs.python-requests.org/en/latest/] library, there is a RequestsFrontierManager class available.

This class is just a simple FrontierManager wrapper that uses
Requests [http://docs.python-requests.org/en/latest/] objects (Request/Response) and converts them from and to frontier ones for you.

Use it in the same way that FrontierManager, initialize it with
your settings and use Requests [http://docs.python-requests.org/en/latest/] Request and Response objects.
get_next_requests method will return a Requests [http://docs.python-requests.org/en/latest/] Request object.

An example:

import re

import requests

from urlparse import urljoin

from crawlfrontier.contrib.requests.manager import RequestsFrontierManager
from crawlfrontier import Settings

SETTINGS = Settings()
SETTINGS.BACKEND = 'crawlfrontier.contrib.backends.memory.FIFO'
SETTINGS.LOGGING_MANAGER_ENABLED = True
SETTINGS.LOGGING_BACKEND_ENABLED = True
SETTINGS.MAX_REQUESTS = 100
SETTINGS.MAX_NEXT_REQUESTS = 10

SEEDS = [
 'http://www.imdb.com',
]

LINK_RE = re.compile(r'href="(.*?)"')

def extract_page_links(response):
 return [urljoin(response.url, link) for link in LINK_RE.findall(response.text)]

if __name__ == '__main__':

 frontier = RequestsFrontierManager(SETTINGS)
 frontier.add_seeds([requests.Request(url=url) for url in SEEDS])
 while True:
 next_requests = frontier.get_next_requests()
 if not next_requests:
 break
 for request in next_requests:
 try:
 response = requests.get(request.url)
 links = [requests.Request(url=url) for url in extract_page_links(response)]
 frontier.page_crawled(response=response, links=links)
 except requests.RequestException, e:
 error_code = type(e).__name__
 frontier.request_error(request, error_code)

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Graph Manager

The Graph Manager is a tool to represent web sitemaps as a graph.

It can easily be used to test frontiers. We can “fake” crawler request/responses by querying pages to the graph manager,
and also know the links extracted for each one without using a crawler at all. You can make your own fake tests or use
the Frontier Tester tool.

You can use it by defining your own sites for testing or use the Scrapy Recorder to record
crawlings that can be reproduced later.

Defining a Site Graph

Pages from a web site and its links can be easily defined as a directed graph, where each node represents a page and
the edges the links between them.

Let’s use a really simple site representation with a starting page A that have links inside to tree pages B, C, D.
We can represent the site with this graph:

[image: ../_images/site_01.png]
We use a list to represent the different site pages and one tuple to define the page and its links, for the previous
example:

site = [
 ('A', ['B', 'C', 'D']),
]

Note that we don’t need to define pages without links, but we can also use it as a valid representation:

site = [
 ('A', ['B', 'C', 'D']),
 ('B', []),
 ('C', []),
 ('D', []),
]

A more complex site:

[image: ../_images/site_02.png]
Can be represented as:

site = [
 ('A', ['B', 'C', 'D']),
 ('D', ['A', 'D', 'E', 'F']),
]

Note that D is linking to itself and to his parent A.

In the same way, a page can have several parents:

[image: ../_images/site_03.png]
site = [
 ('A', ['B', 'C', 'D']),
 ('B', ['C']),
 ('D', ['C']),
]

In order to simplify examples we’re not using urls for page representation, but of course urls are the intended use
for site graphs:

[image: ../_images/site_04.png]
site = [
 ('http://example.com', ['http://example.com/anotherpage', 'http://othersite.com']),
]

Using the Graph Manager

Once we have defined our site represented as a graph, we can start using it with the Graph Manager.

We must first create our graph manager:

>>> from crawlfrontier import graphs
>>> g = graphs.Manager()

And add the site using the add_site method:

>>> site = [('A', ['B', 'C', 'D'])]
>>> g.add_site(site)

The manager is now initialized and ready to be used.

We can get all the pages in the graph:

>>> g.pages
[<1:A*>, <2:B>, <3:C>, <4:D>]

Asterisk represents that the page is a seed, if we want to get just the seeds of the site graph:

>>> g.seeds
[<1:A*>]

We can get individual pages using get_page, if a page does not exists None is returned

>>> g.get_page('A')
<1:A*>

>>> g.get_page('F')
None

CrawlPage objects

Pages are represented as a CrawlPage object:

	
class CrawlPage

	A CrawlPage object represents an Graph Manager page, which is usually generated in the Graph Manager.

	
id

	Autonumeric page id.

	
url

	The url of the page.

	
status

	Represents the HTTP code status of the page.

	
is_seed

	Boolean value indicating if the page is seed or not.

	
links

	List of pages the current page links to.

	
referers

	List of pages that link to the current page.

In our example:

>>> p = g.get_page('A')
>>> p.id
1

>>> p.url
u'A'

>>> p.status # defaults to 200
u'200'

>>> p.is_seed
True

>>> p.links
[<2:B>, <3:C>, <4:D>]

>>> p.referers # No referers for A
[]

>>> g.get_page('B').referers # referers for B
[<1:A*>]

Adding pages and Links

Site graphs can be also defined adding pages and links individually, the same graph from our example can be defined
this way:

>>> g = graphs.Manager()
>>> a = g.add_page(url='A', is_seed=True)
>>> b = g.add_link(page=a, url='B')
>>> c = g.add_link(page=a, url='C')
>>> d = g.add_link(page=a, url='D')

add_page and add_link can be combined with add_site and used anytime:

>>> site = [('A', ['B', 'C', 'D'])]
>>> g = graphs.Manager()
>>> g.add_site(site)
>>> d = g.get_page('D')
>>> g.add_link(d, 'E')

Adding multiple sites

Multiple sites can be added to the manager:

>>> site1 = [('A1', ['B1', 'C1', 'D1'])]
>>> site2 = [('A2', ['B2', 'C2', 'D2'])]

>>> g = graphs.Manager()
>>> g.add_site(site1)
>>> g.add_site(site2)

>>> g.pages
[<1:A1*>, <2:B1>, <3:C1>, <4:D1>, <5:A2*>, <6:B2>, <7:C2>, <8:D2>]

>>> g.seeds
[<1:A1*>, <5:A2*>]

Or as a list of sites with add_site_list method:

>>> site_list = [
 [('A1', ['B1', 'C1', 'D1'])],
 [('A2', ['B2', 'C2', 'D2'])],
]
>>> g = graphs.Manager()
>>> g.add_site_list(site_list)

Graphs Database

Graph Manager uses SQLAlchemy [http://www.sqlalchemy.org/] to store and represent graphs.

By default it uses an in-memory SQLite database as a storage engine, but any databases supported by SQLAlchemy [http://docs.sqlalchemy.org/en/rel_0_9/dialects/index.html] can
be used.

An example using SQLite:

>>> g = graphs.Manager(engine='sqlite:///graph.db')

Changes are committed with every new add by default, graphs can be loaded later:

>>> graph = graphs.Manager(engine='sqlite:///graph.db')
>>> graph.add_site(('A', []))

>>> another_graph = graphs.Manager(engine='sqlite:///graph.db')
>>> another_graph.pages
[<1:A1*>]

A database content reset can be done using clear_content parameter:

>>> g = graphs.Manager(engine='sqlite:///graph.db', clear_content=True)

Using graphs with status codes

In order to recreate/simulate crawling using graphs, HTTP response codes can be defined for each page.

Example for a 404 error:

>>> g = graphs.Manager()
>>> g.add_page(url='A', status=404)

Status codes can be defined for sites in the following way using a list of tuples:

>>> site_with_status_codes = [
 ((200, "A"), ["B", "C"]),
 ((404, "B"), ["D", "E"]),
 ((500, "C"), ["F", "G"]),
]
>>> g = graphs.Manager()
>>> g.add_site(site_with_status_codes)

Default status code value is 200 for new pages.

A simple crawl faking example

Frontier tests can better be done using the Frontier Tester tool, but here’s an example of
how fake a crawl with a frontier:

from crawlfrontier import FrontierManager, graphs, Request, Response

if __name__ == '__main__':
 # Load graph from existing database
 graph = graphs.Manager('sqlite:///graph.db')

 # Create frontier from default settings
 frontier = FrontierManager.from_settings()

 # Create and add seeds
 seeds = [Request(seed.url) for seed in graph.seeds]
 frontier.add_seeds(seeds)

 # Get next requests
 next_requets = frontier.get_next_requests()

 # Crawl pages
 while (next_requests):
 for request in next_requests:

 # Fake page crawling
 crawled_page = graph.get_page(request.url)

 # Create response
 response = Response(url=crawled_page.url, status_code=crawled_page.status)

 # Update Page
 page = frontier.page_crawled(response=response
 links=[link.url for link in crawled_page.links])
 # Get next requests
 next_requets = frontier.get_next_requests()

Rendering graphs

Graphs can be rendered to png files:

>>> g.render(filename='graph.png', label='A simple Graph')

Rendering graphs uses pydot [https://code.google.com/p/pydot/], a Python interface to Graphviz [http://www.graphviz.org/]‘s Dot language.

How to use it

Graph Manager can be used to test frontiers in conjunction with Frontier Tester and also
with Scrapy Recordings.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Testing a Frontier

Frontier Tester is a helper class for easy frontier testing.

Basically it runs a fake crawl against a Frontier, crawl info is faked using a Graph Manager
instance.

Creating a Frontier Tester

FrontierTester needs a Graph Manager and a
FrontierManager instances:

>>> from crawlfrontier import FrontierManager, FrontierTester, graphs
>>> graph = graphs.Manager('sqlite:///graph.db') # Crawl fake data loading
>>> frontier = FrontierManager.from_settings() # Create frontier from default settings
>>> tester = FrontierTester(frontier, graph)

Running a Test

The tester is now initialized, to run the test just call the method run:

>>> tester.run()

When run method is called the tester will:

	Add all the seeds from the graph.

	Ask the frontier about next pages.

	Fake page response and inform the frontier about page crawl and its links.

Steps 1 and 2 are repeated until crawl or frontier ends.

Once the test is finished, the crawling page sequence is available as a list of frontier
Request objects:

Test Parameters

In some test cases you may want to add all graph pages as seeds, this can be done with the parameter add_all_pages:

>>> tester.run(add_all_pages=True)

Maximum number of returned pages per
get_next_requests call can be set using frontier
settings, but also can be modified when creating the FrontierTester with the max_next_pages argument:

>>> tester = FrontierTester(frontier, graph, max_next_pages=10)

An example of use

A working example using test data from graphs and basic backends:

from crawlfrontier import FrontierManager, Settings, FrontierTester, graphs

def test_backend(backend):
 # Graph
 graph = graphs.Manager()
 graph.add_site_list(graphs.data.SITE_LIST_02)

 # Frontier
 settings = Settings()
 settings.BACKEND = backend
 settings.TEST_MODE = True
 frontier = FrontierManager.from_settings(settings)

 # Tester
 tester = FrontierTester(frontier, graph)
 tester.run(add_all_pages=True)

 # Show crawling sequence
 print '-'*40
 print frontier.backend.name
 print '-'*40
 for page in tester.sequence:
 print page.url

if __name__ == '__main__':
 test_backend('crawlfrontier.contrib.backends.memory.heapq.FIFO')
 test_backend('crawlfrontier.contrib.backends.memory.heapq.LIFO')
 test_backend('crawlfrontier.contrib.backends.memory.heapq.BFS')
 test_backend('crawlfrontier.contrib.backends.memory.heapq.DFS')

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Recording a Scrapy crawl

Scrapy Recorder is a set of Scrapy middlewares [http://doc.scrapy.org/en/latest/topics/downloader-middleware.html] that will allow you to record a scrapy crawl and store it into a
Graph Manager.

This can be useful to perform frontier tests without having to crawl the entire site again or even using Scrapy.

Activating the recorder

The recorder uses 2 different middlewares: CrawlRecorderSpiderMiddleware and CrawlRecorderDownloaderMiddleware.

To activate the recording in your Scrapy project, just add them to the SPIDER_MIDDLEWARES [http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-SPIDER_MIDDLEWARES] and
DOWNLOADER_MIDDLEWARES [http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES] settings:

SPIDER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.recording.CrawlRecorderSpiderMiddleware': 1000,
})

DOWNLOADER_MIDDLEWARES.update({
 'crawlfrontier.contrib.scrapy.middlewares.recording.CrawlRecorderDownloaderMiddleware': 1000,
})

Choosing your storage engine

As Graph Manager is internally used by the recorder to store crawled pages, you can choose
between different storage engines.

We can set the storage engine with the RECORDER_STORAGE_ENGINE setting:

RECORDER_STORAGE_ENGINE = 'sqlite:///my_record.db'

You can also choose to reset database tables or just reset data with this settings:

RECORDER_STORAGE_DROP_ALL_TABLES = True
RECORDER_STORAGE_CLEAR_CONTENT = True

Running the Crawl

Just run your Scrapy spider as usual from the command line:

scrapy crawl myspider

Once it’s finished you should have the recording available and ready for use.

In case you need to disable recording, you can do it by overriding the RECORDER_ENABLED
setting:

scrapy crawl myspider -s RECORDER_ENABLED=False

Recorder settings

Here’s a list of all available Scrapy Recorder settings, in alphabetical order, along with their default values and the
scope where they apply.

RECORDER_ENABLED

Default: True

Activate or deactivate recording middlewares.

RECORDER_STORAGE_CLEAR_CONTENT

Default: True

Deletes table content from storage database in Graph Manager.

RECORDER_STORAGE_DROP_ALL_TABLES

Default: True

Drop storage database tables in Graph Manager.

RECORDER_STORAGE_ENGINE

Default: None

Sets Graph Manager storage engine used to store the recording.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Scrapy Seed Loaders

Crawl Frontier has some built-in Scrapy middlewares for seed loading.

Seed loaders use the process_start_requests method to generate requests from a source that are added later to the
FrontierManager.

Activating a Seed loader

Just add the Seed Loader middleware to the SPIDER_MIDDLEWARES scrapy settings:

SPIDER_MIDDLEWARES.update({
 'crawl_frontier.contrib.scrapy.middlewares.seeds.FileSeedLoader': 650
})

FileSeedLoader

Load seed URLs from a file. The file must be formatted contain one URL per line:

http://www.asite.com
http://www.anothersite.com
...

Yo can disable URLs using the # character:

...
#http://www.acommentedsite.com
...

Settings:

	SEEDS_SOURCE: Path to the seeds file

S3SeedLoader

Load seeds from a file stored in an Amazon S3 bucket

File format should the same one used in FileSeedLoader.

Settings:

	SEEDS_SOURCE: Path to S3 bucket file. eg: s3://some-project/seed-urls/

	SEEDS_AWS_ACCESS_KEY: S3 credentials Access Key

	SEEDS_AWS_SECRET_ACCESS_KEY: S3 credentials Secret Access Key

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Examples

The project repo includes an examples folder with some scripts and projects using CrawlFrontier:

examples/
 requests/
 scrapy_frontier/
 scrapy_recording/
 scripts/

	requests: Example script with Requests [http://docs.python-requests.org/en/latest/] library.

	scrapy_frontier: Scrapy Frontier example project.

	scrapy_recording: Scrapy Recording example project.

	scripts: Some simple scripts.

Note

This examples may need to install additional libraries in order to work.

You can install them using pip:

pip install -r requirements/examples.txt

requests

A simple script that follow all the links from a site using Requests [http://docs.python-requests.org/en/latest/] library.

How to run it:

python links_follower.py

scrapy_frontier

A simple script with a spider that follows all the links for the sites defined in a seeds.txt file.

How to run it:

scrapy crawl example

scrapy_recording

A simple script with a spider that follows all the links for a site, recording crawling results.

How to run it:

scrapy crawl recorder

scripts

Some sample scripts on how to use different frontier components.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Tests

Crawl Frontier tests are implemented using the pytest [http://pytest.org/latest/] tool.

You can install pytest [http://pytest.org/latest/] and the additional required libraries used in the tests using pip:

pip install -r requirements/tests.txt

Running tests

To run all tests go to the root directory of source code and run:

py.test

Writing tests

All functionality (including new features and bug fixes) must include a test case to check that it works as expected,
so please include tests for your patches if you want them to get accepted sooner.

Backend testing

A base pytest [http://pytest.org/latest/] class for Backend testing is provided:
BackendTest

Let’s say for instance that you want to test to your backend MyBackend and create a new frontier instance for each
test method call, you can define a test class like this:

class TestMyBackend(backends.BackendTest):

 backend_class = 'crawlfrontier.contrib.backend.abackend.MyBackend'

 def test_one(self):
 frontier = self.get_frontier()
 ...

 def test_two(self):
 frontier = self.get_frontier()
 ...

 ...

And let’s say too that it uses a database file and you need to clean it before and after each test:

class TestMyBackend(backends.BackendTest):

 backend_class = 'crawlfrontier.contrib.backend.abackend.MyBackend'

 def setup_backend(self, method):
 self._delete_test_db()

 def teardown_backend(self, method):
 self._delete_test_db()

 def _delete_test_db(self):
 try:
 os.remove('mytestdb.db')
 except OSError:
 pass

 def test_one(self):
 frontier = self.get_frontier()
 ...

 def test_two(self):
 frontier = self.get_frontier()
 ...

 ...

Testing backend sequences

To test Backend crawling sequences you can use the
BackendSequenceTest class.

BackendSequenceTest class will run a complete crawl of the passed
site graphs and return the sequence used by the backend for visiting the different pages.

Let’s say you want to test to a backend that sort pages using alphabetic order.
You can define the following test:

class TestAlphabeticSortBackend(backends.BackendSequenceTest):

 backend_class = 'crawlfrontier.contrib.backend.abackend.AlphabeticSortBackend'

 SITE_LIST = [
 [
 ('C', []),
 ('B', []),
 ('A', []),
],
]

 def test_one(self):
 # Check sequence is the expected one
 self.assert_sequence(site_list=self.SITE_LIST,
 expected_sequence=['A', 'B', 'C'],
 max_next_requests=0)

 def test_two(self):
 # Get sequence and work with it
 sequence = self.get_sequence(site_list=SITE_LIST,
 max_next_requests=0)
 assert len(sequence) > 2

 ...

Testing basic algorithms

If your backend uses any of the basic algorithms logics, you can just
inherit the correponding test base class for each logic and sequences will be automatically tested for it:

from crawlfrontier.tests import backends

class TestMyBackendFIFO(backends.FIFOBackendTest):
 backend_class = 'crawlfrontier.contrib.backends.abackend.MyBackendFIFO'

class TestMyBackendLIFO(backends.LIFOBackendTest):
 backend_class = 'crawlfrontier.contrib.backends.abackend.MyBackendLIFO'

class TestMyBackendDFS(backends.DFSBackendTest):
 backend_class = 'crawlfrontier.contrib.backends.abackend.MyBackendDFS'

class TestMyBackendBFS(backends.BFSBackendTest):
 backend_class = 'crawlfrontier.contrib.backends.abackend.MyBackendBFS'

class TestMyBackendRANDOM(backends.RANDOMBackendTest):
 backend_class = 'crawlfrontier.contrib.backends.abackend.MyBackendRANDOM'

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Crawl Frontier 0.2.0 documentation

Release Notes

0.2.0 (released 2015-01-12)

	Added documentation (Scrapy Seed Loaders+Tests+Examples) (8e5f60d [https://github.com/scrapinghub/crawl-frontier/commit/8e5f60d])

	Refactored backend tests (00910bf [https://github.com/scrapinghub/crawl-frontier/commit/00910bf], 5702bef [https://github.com/scrapinghub/crawl-frontier/commit/5702bef], 9567566 [https://github.com/scrapinghub/crawl-frontier/commit/9567566])

	Added requests library example (8796011 [https://github.com/scrapinghub/crawl-frontier/commit/8796011])

	Added requests library manager and object converters (d6590b6 [https://github.com/scrapinghub/crawl-frontier/commit/d6590b6])

	Added FrontierManagerWrapper (4f04a48 [https://github.com/scrapinghub/crawl-frontier/commit/4f04a48])

	Added frontier object converters (7da51a4 [https://github.com/scrapinghub/crawl-frontier/commit/7da51a4])

	Fixed script examples for new changes (101ea27 [https://github.com/scrapinghub/crawl-frontier/commit/101ea27])

	Optional Color logging (only if available) (c0ba0ba [https://github.com/scrapinghub/crawl-frontier/commit/c0ba0ba])

	Changed Scrapy frontier and recorder integration to scheduler+middlewares (cbe5f4f [https://github.com/scrapinghub/crawl-frontier/commit/cbe5f4f] / 2fcdc06 [https://github.com/scrapinghub/crawl-frontier/commit/2fcdc06] / f7bf02b [https://github.com/scrapinghub/crawl-frontier/commit/f7bf02b] / 0d15dc1 [https://github.com/scrapinghub/crawl-frontier/commit/0d15dc1])

	Changed default frontier backend (03cd307 [https://github.com/scrapinghub/crawl-frontier/commit/03cd307])

	Added comment support to seeds (7d48973 [https://github.com/scrapinghub/crawl-frontier/commit/7d48973])

	Added doc requirements for RTD build (27daea4 [https://github.com/scrapinghub/crawl-frontier/commit/27daea4])

	Removed optional dependencies for setup.py and requirements (c6099f3 [https://github.com/scrapinghub/crawl-frontier/commit/c6099f3] / 79a4e4d [https://github.com/scrapinghub/crawl-frontier/commit/79a4e4d] / e6910e3 [https://github.com/scrapinghub/crawl-frontier/commit/e6910e3])

	Changed tests to pytest (848d2bf [https://github.com/scrapinghub/crawl-frontier/commit/848d2bf] / edc9c01 [https://github.com/scrapinghub/crawl-frontier/commit/edc9c01] / c318d14 [https://github.com/scrapinghub/crawl-frontier/commit/c318d14])

	Updated docstrings and documentation (fdccd92 [https://github.com/scrapinghub/crawl-frontier/commit/fdccd92] / 9dec38c [https://github.com/scrapinghub/crawl-frontier/commit/9dec38c] / 71d626f [https://github.com/scrapinghub/crawl-frontier/commit/71d626f] / 0977bbf [https://github.com/scrapinghub/crawl-frontier/commit/0977bbf])

	Changed frontier componets (Backend and Middleware) to abc (1e74467 [https://github.com/scrapinghub/crawl-frontier/commit/1e74467])

	Modified Scrapy frontier example to use seed loaders (0ad905d [https://github.com/scrapinghub/crawl-frontier/commit/0ad905d])

	Refactored Scrapy Seed loaders (a0eac84 [https://github.com/scrapinghub/crawl-frontier/commit/a0eac84])

	Added new fields to Request and Response frontier objects (bb64afb [https://github.com/scrapinghub/crawl-frontier/commit/bb64afb])

	Added ScrapyFrontierManager (Scrapy wrapper for Frontier Manager) (8e50dc0 [https://github.com/scrapinghub/crawl-frontier/commit/8e50dc0])

	Changed frontier core objects (Page/Link to Request/Response) (74b54c8 [https://github.com/scrapinghub/crawl-frontier/commit/74b54c8])

0.1

First release of Crawl Frontier.

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Crawl Frontier 0.2.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	a_mean (crawlfrontier.contrib.backends.opic.opichits.OpicHits attribute)

 	add() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface method)

 	(crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	(crawlfrontier.contrib.backends.opic.scheduler.WCluster method)

 	(crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	add_edge() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	add_node() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	

 	add_page() (crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	add_seeds() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.components.Component method)

 	(crawlfrontier.core.components.Middleware method)

 	(crawlfrontier.core.manager.FrontierManager method)

 	
 AUTO_START

 	

 	setting

 	auto_start (crawlfrontier.core.manager.FrontierManager attribute)

B

 	

 	
 BACKEND

 	

 	setting

 	Backend (class in crawlfrontier.core.components)

 	backend (crawlfrontier.core.manager.FrontierManager attribute)

 	

 	BestFirst (class in crawlfrontier.contrib.backends.opic.scheduler)

 	body (crawlfrontier.core.models.Response attribute)

 	BodySHA1 (class in crawlfrontier.contrib.backends.opic.pagechange)

C

 	

 	clamp() (crawlfrontier.contrib.backends.opic.scheduler.WCluster static method)

 	clear() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	(crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	(crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	close() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface method)

 	(crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	(crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	(crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	(crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface method)

 	cluster_index() (crawlfrontier.contrib.backends.opic.scheduler.WCluster method)

 	Component (class in crawlfrontier.core.components)

 	cookies (crawlfrontier.core.models.Request attribute)

 	crawl_rate (crawlfrontier.contrib.backends.opic.scheduler.Optimal attribute)

 	crawlfrontier.contrib.backends.memory.BASE (built-in class)

 	crawlfrontier.contrib.backends.memory.BFS (built-in class)

 	crawlfrontier.contrib.backends.memory.DFS (built-in class)

 	

 	crawlfrontier.contrib.backends.memory.FIFO (built-in class)

 	crawlfrontier.contrib.backends.memory.LIFO (built-in class)

 	crawlfrontier.contrib.backends.memory.RANDOM (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.BASE (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.BFS (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.DFS (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.FIFO (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.LIFO (built-in class)

 	crawlfrontier.contrib.backends.sqlalchemy.RANDOM (built-in class)

 	CrawlPage (built-in class)

D

 	

 	delete() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface method)

 	(crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	(crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface method)

 	(crawlfrontier.contrib.backends.opic.scheduler.WCluster method)

 	delete_edge() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	delete_node() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	

 	
 DOMAIN_FINGERPRINT_FUNCTION

 	

 	setting

 	DomainFingerprintMiddleware (class in crawlfrontier.contrib.middlewares.fingerprint)

 	DomainMiddleware (class in crawlfrontier.contrib.middlewares.domain)

E

 	

 	end_batch() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	event_log_manager (crawlfrontier.core.manager.FrontierManager attribute)

 	

 	
 EVENT_LOGGER

 	

 	setting

 	EventLogger (built-in class)

F

 	

 	finished (crawlfrontier.core.manager.FrontierManager attribute)

 	FreqDBInterface (class in crawlfrontier.contrib.backends.opic.freqdb)

 	FreqEstimatorInterface (class in crawlfrontier.contrib.backends.opic.freqest)

 	frequency() (crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.scheduler.Optimal method)

 	from_manager() (crawlfrontier.core.components.Backend class method)

 	

 	(crawlfrontier.core.components.Component class method)

 	(crawlfrontier.core.components.Middleware class method)

 	from_settings() (crawlfrontier.core.manager.FrontierManager class method)

 	
 FRONTIER_ENABLED

 	

 	setting

 	

 	
 FRONTIER_SCHEDULER_CONCURRENT_REQUESTS

 	

 	setting

 	
 FRONTIER_SCHEDULER_INTERVAL

 	

 	setting

 	
 FRONTIER_SETTINGS

 	

 	setting

 	frontier_start() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.components.Component method)

 	(crawlfrontier.core.components.Middleware method)

 	frontier_stop() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.components.Component method)

 	(crawlfrontier.core.components.Middleware method)

 	FrontierManager (class in crawlfrontier.core.manager)

G

 	

 	get() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	(crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	get_a_total() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	get_best_scores() (crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	get_best_value() (crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	get_count() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	get_h_total() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	get_highest_a_cash() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	

 	get_highest_h_cash() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	get_next_pages() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface method)

 	get_next_requests() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.manager.FrontierManager method)

 	get_scores() (crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	golden_section_search() (in module crawlfrontier.contrib.backends.opic.scheduler)

 	GraphInterface (class in crawlfrontier.contrib.backends.opic.graphdb)

H

 	

 	h_mean (crawlfrontier.contrib.backends.opic.opichits.OpicHits attribute)

 	has_node() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	headers (crawlfrontier.core.models.Request attribute)

 	

 	(crawlfrontier.core.models.Response attribute)

 	

 	HitsDBInterface (class in crawlfrontier.contrib.backends.opic.hitsdb)

 	HitsScore (class in crawlfrontier.contrib.backends.opic.hitsdb)

I

 	

 	id (CrawlPage attribute)

 	iedges() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	increase_a_cash() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	increase_all_cash() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	increase_h_cash() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	inodes() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	

 	is_seed (CrawlPage attribute)

 	iscores() (crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	iter() (crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	iteration (crawlfrontier.core.manager.FrontierManager attribute)

 	iteritems() (crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

L

 	

 	links (CrawlPage attribute)

 	
 LOGGER

 	

 	setting

 	

 	Logger (built-in class)

 	logger (crawlfrontier.core.manager.FrontierManager attribute)

M

 	

 	mark_update() (crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	
 MAX_NEXT_REQUESTS

 	

 	setting

 	max_next_requests (crawlfrontier.core.manager.FrontierManager attribute)

 	
 MAX_REQUESTS

 	

 	setting

 	max_requests (crawlfrontier.core.manager.FrontierManager attribute)

 	

 	meta (crawlfrontier.core.models.Request attribute)

 	

 	(crawlfrontier.core.models.Response attribute)

 	method (crawlfrontier.core.models.Request attribute)

 	Middleware (class in crawlfrontier.core.components)

 	
 MIDDLEWARES

 	

 	setting

 	middlewares (crawlfrontier.core.manager.FrontierManager attribute)

N

 	

 	n_requests (crawlfrontier.core.manager.FrontierManager attribute)

 	name (crawlfrontier.core.components.Component attribute)

 	nedges() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	

 	neighbours() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	nnodes() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

O

 	

 	OpicHits (class in crawlfrontier.contrib.backends.opic.opichits)

 	OpicHitsBackend (class in crawlfrontier.contrib.backends.opic.backend)

 	

 	Optimal (class in crawlfrontier.contrib.backends.opic.scheduler)

 	OptimalSolver (class in crawlfrontier.contrib.backends.opic.scheduler)

P

 	

 	page_crawled() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.components.Component method)

 	(crawlfrontier.core.components.Middleware method)

 	(crawlfrontier.core.manager.FrontierManager method)

 	PageChangeInterface (class in crawlfrontier.contrib.backends.opic.pagechange)

 	

 	predecessors() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

R

 	

 	
 RECORDER_ENABLED

 	

 	setting

 	
 RECORDER_STORAGE_CLEAR_CONTENT

 	

 	setting

 	
 RECORDER_STORAGE_DROP_ALL_TABLES

 	

 	setting

 	
 RECORDER_STORAGE_ENGINE

 	

 	setting

 	referers (CrawlPage attribute)

 	refresh() (crawlfrontier.contrib.backends.opic.freqest.FreqEstimatorInterface method)

 	RelevanceDBInterface (class in crawlfrontier.contrib.backends.opic.relevancedb)

 	Request (class in crawlfrontier.core.models)

 	

 	request (crawlfrontier.core.models.Response attribute)

 	request_error() (crawlfrontier.core.components.Backend method)

 	

 	(crawlfrontier.core.components.Component method)

 	(crawlfrontier.core.components.Middleware method)

 	(crawlfrontier.core.manager.FrontierManager method)

 	
 REQUEST_MODEL

 	

 	setting

 	request_model (crawlfrontier.core.manager.FrontierManager attribute)

 	Response (class in crawlfrontier.core.models)

 	
 RESPONSE_MODEL

 	

 	setting

 	response_model (crawlfrontier.core.manager.FrontierManager attribute)

S

 	

 	SchedulerDBInterface (class in crawlfrontier.contrib.backends.opic.schedulerdb)

 	SchedulerInterface (class in crawlfrontier.contrib.backends.opic.scheduler)

 	set() (crawlfrontier.contrib.backends.opic.freqdb.FreqDBInterface method)

 	

 	(crawlfrontier.contrib.backends.opic.hitsdb.HitsDBInterface method)

 	(crawlfrontier.contrib.backends.opic.relevancedb.RelevanceDBInterface method)

 	(crawlfrontier.contrib.backends.opic.schedulerdb.SchedulerDBInterface method)

 	set_rate() (crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface method)

 	set_value() (crawlfrontier.contrib.backends.opic.scheduler.SchedulerInterface method)

 	
 setting

 	

 	AUTO_START

 	BACKEND

 	DOMAIN_FINGERPRINT_FUNCTION

 	EVENT_LOGGER

 	FRONTIER_ENABLED

 	FRONTIER_SCHEDULER_CONCURRENT_REQUESTS

 	FRONTIER_SCHEDULER_INTERVAL

 	FRONTIER_SETTINGS

 	LOGGER

 	MAX_NEXT_REQUESTS

 	MAX_REQUESTS

 	MIDDLEWARES

 	RECORDER_ENABLED

 	RECORDER_STORAGE_CLEAR_CONTENT

 	RECORDER_STORAGE_DROP_ALL_TABLES

 	RECORDER_STORAGE_ENGINE

 	REQUEST_MODEL

 	RESPONSE_MODEL

 	TEST_MODE

 	URL_FINGERPRINT_FUNCTION

 	Settings (class in crawlfrontier.settings)

 	settings (crawlfrontier.core.manager.FrontierManager attribute)

 	Simple (class in crawlfrontier.contrib.backends.opic.freqest)

 	

 	solve() (crawlfrontier.contrib.backends.opic.scheduler.OptimalSolver method)

 	SQLite (class in crawlfrontier.contrib.backends.opic.freqdb)

 	

 	(class in crawlfrontier.contrib.backends.opic.graphdb)

 	(class in crawlfrontier.contrib.backends.opic.hitsdb)

 	(class in crawlfrontier.contrib.backends.opic.relevancedb)

 	(class in crawlfrontier.contrib.backends.opic.schedulerdb)

 	start() (crawlfrontier.core.manager.FrontierManager method)

 	start_batch() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

 	status (CrawlPage attribute)

 	status_code (crawlfrontier.core.models.Response attribute)

 	stop() (crawlfrontier.core.manager.FrontierManager method)

 	successors() (crawlfrontier.contrib.backends.opic.graphdb.GraphInterface method)

T

 	

 	
 TEST_MODE

 	

 	setting

 	

 	test_mode (crawlfrontier.core.manager.FrontierManager attribute)

U

 	

 	update() (crawlfrontier.contrib.backends.opic.opichits.OpicHits method)

 	

 	(crawlfrontier.contrib.backends.opic.pagechange.PageChangeInterface method)

 	url (crawlfrontier.core.models.Request attribute)

 	

 	(CrawlPage attribute)

 	(crawlfrontier.core.models.Response attribute)

 	

 	
 URL_FINGERPRINT_FUNCTION

 	

 	setting

 	UrlFingerprintMiddleware (class in crawlfrontier.contrib.middlewares.fingerprint)

W

 	

 	WCluster (class in crawlfrontier.contrib.backends.opic.scheduler)

 Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

 _static/up.png

_static/down.png

topics/contributing.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

Contributing to Crawl Frontier

Note

TO-DO!

lorem ipsum...

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

topics/faq.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

Frequently Asked Questions

Note

TO-DO!

lorem ipsum...

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

search.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

topics/common-practices.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

Common practices

Note

TO-DO!

lorem ipsum...

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

_images/site_02.png

_images/frontier_02.png
! Z# M onuo)
L g |

1 MU Jafuoy

mws

CRAWL FRONTIER

frontier 1

JoBeueyy | 1dV Jonuol

samen

_images/site_01.png
e

topics/wip.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

Work in progress

Note

TO-DO!

lorem ipsum...

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

_images/opics-precision.png
Power method vs OPIC

Power method vs OPIC Power method vs OPIC improved
0010]| — Power method 0.010
— OPIC (dist)
« + OPIC

0.008 0.008

o
§ 0.006 0.006

2

5

z
0.004 0.004
0.002 0.002
0.000 0.000

39000 39500 40000

0.0016 0.0016
0.0014 0.0014
0.0012 0.0012

<4
S 0.0010 0.0010

=
£ 0.0008 0.0008

£
Z 0.0006 0.0006
0.0004 0.0004
0.0002 0.0002
0.0000 0.0000

39000 39500 40000 39000 39500 40000

_images/site_04.png
example.com

example.com/anotherpage

_images/site_03.png

_images/frontier_01.png
frontier

topics/frontier-logging.html

 Navigation

 		
 index

 		Crawl Frontier 0.2.0 documentation »

Logging

Note

TO-DO!

lorem ipsum...

Logger Object

		
class Logger

		A Logger object represents ...

EventLogger Object

		
class EventLogger

		A EventLogger object represents ...

 © Copyright 2014, ScrapingHub.
 Created using Sphinx 1.2.3.

