Craftr Documentation
Release 1.1.1.dev.0

Niklas Rosenstein

July 08, 2016

Contents

1 Requirements 3
2 Contents 5
3 Getting Started 55
4 Installation 57
5 Targets 59
6 Tasks 61
7 Generator Functions 63
8 Frameworks 65
9 Build Options 67
10 craftrec.py Files 69
11 Colorized Output 71
12 Debugging 73
13 Additional Links 75
14 Indices and tables 77

Python Module Index 79

Craftr Documentation, Release 1.1.1.dev.0

Craftr is a next generation build system based on Ninja and Python that features modular and cross-platform build
definitions at the flexibility of a Python script and provides access to multiple levels of build automation abstraction.

Contents 1

https://github.com/ninja-build/ninja
https://www.python.org/

Craftr Documentation, Release 1.1.1.dev.0

2 Contents

CHAPTER 1

Requirements

* Ninja

 Python 3.4 or newer

https://github.com/ninja-build/ninja
https://www.python.org/

Craftr Documentation, Release 1.1.1.dev.0

4 Chapter 1. Requirements

CHAPTER 2

Contents

2.1 Command-line interface

Craftr’s command-line interface should feel easy, quick and efficient to use. There are only flags that alter the manifest

export and build process and no subcommands.

2.1.1 Synopsis

usage: craftr h] [-V] [-v] [-m MODULE] [-b] [-e] [-c] [-d PATH] [-p PATH]
D <key>[=<value>]] [-I PATH] [-N ...] [-t {standard,external}]

[-
[-
[-—no-rc] [--rc FILE] [--strace-depth INT] [--rts]
[-—rts—at HOST:PORT]

[targets [targets ...]]

https://github.com/craftr-build/craftr

positional arguments:
targets

optional arguments:
-h, —--help show this help message and exit
-V, —--version
-v, ——-verbose
-m MODULE, —--module MODULE
-b, —--skip-build
-e, ——-skip-export
-c, ——-clean
-d PATH, --build-dir PATH
-p PATH, —--project-dir PATH
-D <key>[=<value>], —--define <key>[=<value>]
-1 PATH, —--search-path PATH
-N ..., —--ninja-args
-t {standard, external}, --buildtype {standard,external}
——-no-rc
-—rc FILE
—-—strace-depth INT
—-—rts
—-—rts—at HOST:PORT

Craftr Documentation, Release 1.1.1.dev.0

2.1.2 targets
Zero or more targets to build. Target names can be absolute or relative to the main module name (beginning with a
period). Targets that are referenced from modules that haven’t been imported already will be imported.

If the specified target or targets are only Python backed tasks (see craftr.task ()), Ninja will not be invoked
since the tasks can be executed solely on the Python side. In many cases, this is often even desired (eg. if you’re using
Craftr only for tasks).

21.3 -V, —-version

Display the version of Craftr and exit immediately.

21.4 -v, --verbose

Add to the verbosity level of the output. This flag can be specified mutliple times. Passing the flag once will enable
debug output and show module name and line number on logging from Craftr modules. Also, stracktraces are printed
for craftr.error () uses in Craftr modules.

A verbosity level of two will enable stacktraces also for logging calls with craftr.info () and craftr.warn ().

This flag will also cause —v to be passed to subsequent invokations of Ninja.

215 -m, —--module

Specify the main Craftr module that is initially loaded. If not specified, the Craftfile in the current working directory
is loaded.

2.1.6 -b, --skip-build

Skip the build phase.

2.1.7 -e, --skip-export

Skip the export phase and, if possible, even the step of executing Craftr modules. If -n, --no-build isnot passed,
ie. building should take place, a previous invocation must have exported the Ninja build manifest before, otherwise
the build can not execute.

If a manifest is present, Craftr loads the original search path (—I) and options (-D), so you don’t have to specify it on
the command-line again! Craftr will act like a pure wrapper for Ninja in this case.

Note that in cases where tasks are used and required for the build step, Craftr can not skip the execution phase.

Changed in v1.1.0: Inverted behaviour.

2.1.8 -¢, --clean

Clean the specified targets. Pass the flag twice to clean recursively which even works without explicitly specifying a
target to clean.

6 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

219 -d, --build-dir

Specify the build directory. Craftr will automatically switch to this directory before the main module is exeucted and
will stay inside it until the build is completed.

2110 -p, --project-dir

Similar to -d, --build-dir, but this option will cause Craftr to use the current working directory as build direc-
tory and instead load the main module from the specified project directory.

2.1.11 -D, --define

Format: -D key [=value]

Set an option, optionally with a specific string value. This option is set in the environment variables of the Craftr
process and inherit by Ninja. The key may be anything, but if it begins with a period, it will be automatically prefixed
with the main module identifier.

As an example, say the Craftfile in your working directory has the identifier my_module. Using -D.debug=yes
will set the environment variable my_module . debug to the string ’ yes’.

If you leave out the value part, the option is set to the string value ' true’. If you keep the assignment operator
without value, the option will be unset.

2112 -1, --search-path

Add an additional search path for Craftr modules.

2.1.13 -N, --ninja-args

Consumes all arguments after it and passes it to the Ninja command in the build step.

2.1.14 -t, --buildtype {standard, external}

Switch between standard or externally controlled build. Choosing the external option will cause target generator
functions to consider environment variables like CFLAGS, CPPFLAGS, LDFLAGS and LDLIBS or whatever else is
applicable to the target generator you’re using.

Note: The consideration of these environment variables is completely dependent on the implementation of the target
generator.

See also:

The selected buildtype can be read from the craftr.Session.buildtype attribute.

2.1.15 ——no-rc

Don’trun craftrc.py files

2.1. Command-line interface 7

Craftr Documentation, Release 1.1.1.dev.0

2.1.16 ——rc

Specify a file that will be executed before anything else. It will be executed the same way craftrc.py files are.
Can be combined with ——no-rc to exclusively run the specified file.

2.1.17 —-strace-depth

Specify the depth of the stacktrace when it is printed. This is only for stacktraces printed with the Logging. The default
value is 5. Also note that frames of builtin modules are hidden from this stacktrace.

2.1.18 ——rts

Keep alive the Craftr runtime server until you quit it with CTRL+C.

2.1.19 ——rts-at

Specify the HOST : PORT for the Craftr runtime server instead of picking loopback and a random port.

2.2 Craftr Standard Library

2.2.1 Standard Library Modules

craftr.ext.archive

Classes

class craftr.ext.archive.Archive (name=None, base_dir=None, prefix=None, format="zip’)
Helper class to build and a list of files for an archive and then create that archive from that list. If no name is
specified, it is derived from the prefix. The format mustbe ’ zip’ for now.

add (name, rel_dir=None, arc_name=None, parts=None)
Add a file, directory or Target to the archive file list. If parts is specified, it must be a number which
specifies how many parts of the arc name are kept from the right.

Note: name can be a filename, the path to a directory, a glob pattern or list. Note that a directory will be
globbed for its contents and will then be added recursively. A glob pattern that yields a directory path will
add that directory.

exclude (filter)
Remove all files in the Archive’s file list that match the specified filter. The filter can be a string, in which
case it is applied with fnmatch () or a function which accepts a single argument (the filename).

rename (old_arcname, new_arcname)
Rename the old_arcname to new_arcname. This will take folders into account.

save ()
Save the archive.

8 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.cmake

CMake-style file configuration.

from craftr import path
from craftr.ext import cmake

cvconfig = cmake.configure_file(
input = path.local('cmake/templates/cvconfig.h.in"),

environ = {
'BUILD_SHARED_LIBS': True,
"CUDA_ARCH_BIN': '...',
#

info('cvconfig.h created in', cvconfig.include)

Functions

craftr.ext.cmake.configure_f£ile (input, output=None, environ={}, inherit_environ=True)
Renders the CMake configuration file using the specified environment and optionally the process’ environment.

If the output parameter is omitted, an output filename in a special include/ directory will be generated from
the input filename. The . in suffix from input will be removed if it exists.

Parameters
* input — Absolute path to the CMake config file.
* output — Name of the output file. Will be automatically generated if omitted.

* environ — A dictionary containing the variables for rendering the CMake configuration
file. Non-existing variables are considered undefined.

* inherit_environ — If True, the environment variables of the Craftr process are addi-
tionally taken into account.

Returns A ConfigResult object.

Classes

class craftr.ext.cmake.ConfigResult (*args, **kwargs)

craftr.ext.compiler

This module provides common utility functions that are used by compiler interface implementations, for example to
convert source filenames to object filenames using gen_objects ().

Functions

craftr.ext.compiler.detect_compiler (program, language)
Detects the compiler interface based on the specified program assuming it is used for the specified language.
Returns the detected compiler or raises ToolDetectionError. Supports all available compiler toolset implemen-
tations.

2.2. Craftr Standard Library 9

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.compiler.gen_output_dir (output_dir)
Given an output directory that is a relative path, it will be prefixed with the current modules’ project name. An
absolute path is left unchanged. If None is given, the current working directory is returned.

craftr.ext.compiler.gen_output (output, output_dir="", suffix=None)
craftr.ext.compiler.gen_objects (sources, output_dir="obj’, suffix=None)

craftr.ext.compiler.remove_£flags (command, remove_flags, builder=None)
Helper function to remove flags from a command.

Parameters
* command — A list of command-line arguments.
* remove_flags — An iterable of flags to remove.
* builder - Optionally, a craftr. TargetBuilder that will be used for logging.

Returns The “command” list, but it is also directly altered.

Exceptions

class craftr.ext.compiler.ToolDetectionError
This exception is raised if a command-line tool could not be successfully be detected.

Submodules

craftr.ext.compiler._base Provides a convenient base class for Craftr compilers.

craftr.ext.compiler.base Provides aconvenient base class for Craftr compilers.

class craftr.ext.compiler.base.BaseCompiler (**kwargs)
This is a convenient base class for implementing compilers.

Params kwargs Arbitrary keyword arguments from which a Framework will be created and as-
signed to the settings member

from craftr.ext.compiler.base import BaseCompiler
from craftr.ext.compiler import gen_output

class SimpleGCC (BaseCompiler) :
def compile(self, sources, frameworks, =xxkwargs):
builder = self.builder (sources, frameworks, kwargs)
include = builder.merge ('include')
defines = builder.merge('defines')

outputs = gen_output (builder.input, suffix='.ob7j")

command = ['gcc', '-c', '$in', '-c', '-0o', 'Sout']
command += ['-I' + x for x in include]
command += ['-D' + x for x in defines]

return builder.create_target (command, outputs, foreach=True)

In the above example, the TargetBuilder returned by builder () has the following framework option
resolution order (first is first):

1.The *+xkwargs passed to compile ()

2.The Framework objects in frameworks

10 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

3.The settings framework of SimpleGCC
4.If the sources list contained an Target s, the Framework s of these targets will be considered

settings
A Framework that will be included in the TargetBuilder returned by the buiIlder () method.

builder (inputs, frameworks, kwargs, **_add_kwargs)
Create a TargetBuilder that includes the settings Framework of this BaseCompiler.

fork (**kwargs)
Create a fork of the compiler that overrides/add parameters in the settings with the specified
*xkwargs.

register_ hook (call, handler)
Registers a handler for the method call that will be invoked when a TargetBuilder was created. It will
allow the “handler” to set up default and additional settings.

craftr.ext.compiler.csc
class craftr.ext.compiler.csc.CSCompiler (program=’csc’)
Class for compiling C-Sharp programs using Microsoft CSC.

compile (filename, sources, target="exe’, defines=(), optimize=True, warn=None, warnaserror=False,
appconfig=None, baseaddress=None, checked=False, debug=False, main=None, plat-
form=None, unsafe=False, win32icon=None, win32manifest=None, win32res=None, addi-
tional_flags=())

craftr.ext.compiler.cython Interface for compiling Cython source code. See also Using Craftr for
Cython projects.

class craftr.ext.compiler.cython.CythonCompiler (program=None, detect=True, **kwargs)
Compiler interface for Cython. Note that this class does not provide functionality to actually compile the C/C++
source files generated by Cython.

A small example:

from craftr import path, options
from craftr.ext.compiler.cython import cythonc

c_files = cythonc.compile (
py_sources = path.glob ('mymodule/*x/*.pyx"),
python_version = int (options.get ('python version', 3)),
fast_fail = True,

cpp = True,
)

compile (py_sources, outputs=None, frameworks=(), target_name=None, **kwargs)
Compile the specified py_sources files to C or C++ source files.

Parameters
* py_sources — A listof .pyx or . py files.

* outputs — Override the output filenames. If omitted, default output filenames are gen-
erated.

» frameworks — List of additional frameworks.
* target_name — Alternative target name.

¢ include - Additional include directories for Cython.

2.2. Craftr Standard Library 11

Craftr Documentation, Release 1.1.1.dev.0

e fast_fail — True to enable the ——fast-fail flag.
* cpp — True to translate to C++ source files.

* embed - Pass ——embed to Cython. Note that if multiple files are specfied in
“py_sources”, all of them will have a int main () function.

* additional_flags — List of additional flags for the Cython command.
* python_version — The Python version to build for (2 or 3). Defaults to 3.
Produces the following meta variables in the returned target:
ecython_outdir — The common output directory of the Cython source files

compile_project (main=None, sources=[], python_bin="python’, cc=None, ld=None, defines=(),

**kwargs)
Compile a set of Cython source files into dynamic libraries for the Python version specified with
“python_bin”.
Parameters

* main — Optional filename of a . pyx file that will be compiled with the ——embed option
and compiled to an executable file.

¢ sources — A list of the .pyx source files.
e python_bin — The name of the Python executable to compile for.
* cc — Alternative C/C++ compiler implementation. Defaults to plat form.cc
e 1d - Alternative linker implementation. Defaults to plat form.1d
* defines — Additional defines for the compiler invokation.
Returns A ProjectResult object
name = ‘Cython’

class craftr.ext.compiler.cython.PythonInfo (pybin)
Container class for meta information of an installed Python version. The information is read from the
craftr.ext.python module.

fw
The framework retrieved with get_python_framework ()

conf
The Python version’s setuptools configuration retrieved with get_python_config_vars.

major_version
Returns the major version number of the Python installation.

craftr.ext.compiler.cython.ecythone = <craftr.ext.compiler.cython.CythonCompiler object>
An instance of the Cyt honCompi Ier created with the default arguments.

craftr.ext.compiler.flex
class craftr.ext.compiler.flex.FlexCompiler (program="flex’)
Interface for the lex compiler.

compile (sources, output=None, debug=False, fast=False, case_insensitive=False,
max_compatibility=False, performance_report=False, no_warn=False, interactive=False,
bits=None, cpp=False, compress=None, prefix=None)

12 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.compiler.gcc

craftr.ext.compiler.gcc.detect (program)
Assuming program points to GCC or GCC++, this function determines meta information about it. The returned
dictionary contains the following keys:

eversion
eversion_str
ename

starget
sthread_model

ecpp_stdlib (only present for GCC++)

Raises
* OSError —If program can not be executed (eg. if it does not exist).
* ToolDetectionError — If program is not GCC or GCC++.

class craftr.ext.compiler.gcc.GeeCompiler (program, language="c’, desc=None, **kwargs)
Interface for the GCC compiler.

Note: Currently inherits the LLVM implementation. Will eventually get its own implementatio in the future,
but not as long as the LLVM version works well for GCC, too.

name = ‘GCC (Craftr-LLVM-Backend)’

craftr.ext.compiler. java

craftr.ext.compiler. java.get_class_files (sources, source_dir, output_dir)

class craftr.ext.compiler. java.JavaCompiler (javac=’javac’, jar="jar’)
Class for compiling Java source files using the java compiler.

compile (source_dir, sources=None, debug="False, warn=True, classpath=(), additional_flags=())

get_version ()
Returns a tuple of (name, version).

make_ jar (filename, classes, entry_point=None)

craftr.ext.compiler.llvm

craftr.ext.compiler.llvm.detect (program)
Assuming program points to Clang or Clang++, this function determines meta information about it. The returned
dictionary contains the following keys:

Parameters
* version —
e version_str -
* name —
* target —
e thread model —

* cpp_stdlib — (only present for C++ compilers)

2.2. Craftr Standard Library 13

https://docs.python.org/3/library/exceptions.html#OSError

Craftr Documentation, Release 1.1.1.dev.0

Raises
* OSError - If program can not be executed (eg. if it does not exist).

* ToolDetectionError - If program is not Clang or Clang++.
class craftr.ext.compiler.llvm.LlvmCompiler (program, language, desc=None, **kwargs)
Interface for the LLVM compiler.

compile (sources, frameworks=(), target_name=None, **kwargs)

Parameters
* sources — A list of input source files.
* frameworks — List of Framework objects.
* target_name — Override target name.

Supported framework options:

Parameters
* include - Additional include directories.
* defines — Preprocessor definitions.
e forced_include - Force includes for every compilation unit.
* exceptions — Allows you to disable exceptions.
* language — Override compilation language. Choices are ' ¢’ , ' cpp’, ' asm’
* debug - True ot disable optimizations and enable debugging symbols.
* std - Set the C/C++ standard (-—std argument)
e pedantic — Enable the ——pedantic flag
* pic — Enable position independent code.

¢ warn — Warning level. Choices are “ al11l’, ' none’ and None (latter is different in that
it adds no warning related compiler flag at all).

* optimize — Optimization level. Choices are ' debug’, ' speed’, ' size’, 'none’
and None

* autodeps — True if automatic dependencies should be enabled (for recompiles when
only headers change). Default is True.

* description - Target description (shown during Ninja build).

* osx_fwpath — Additional search path for OSX frameworks.

¢ osx_frameworks — OSX frameworks to take into account.

* program — Override the compiler command.

* additional_flags — Additional flags for the compiler command-

* gcc_additional_ flags — Additional flags (GCC only).

* gcc_compile_additional_flags — Additional flags (GCC only).
* gcc_remove_flags — Flags to remove (GCC only).

* gcc_compile_remove_flags — Flags to remove (GCC only).

* 11lvm_additional_flags — Additional flags (LLVM only).

* 11lvm_compile_additional_flags — Additional flags (LLVM only).

14 Chapter 2. Contents

https://docs.python.org/3/library/exceptions.html#OSError

Craftr Documentation, Release 1.1.1.dev.0

1lvm_remove_flags — Flags to remove (LLVM only).

1lvm_compile_remove_flags — Flags to remove (LLVM only).

1ink (output, inputs, frameworks=(), target_name=None, **kwargs)

Parameters

output — The name of the output file. The platform-dependent appropriate suffix is

automatically appended unless keep_suffix is True.

inputs — A list of input files/targets.

frameworks — List of additional Framework objects. Note that the frameworks of

Target objects listed in inputs are taken into account automatically.

target_name - Override target name.

Supported framework options:

Parameters

output_type — The output type. Canbe "bin’ or " dl1l’
keep_suffix — Do not replace the suffix of the specified output files.
debug — True to enable debug symbols and disable optimization.
1libs — Additional library names to link with.

gcc_libs — Additional library names to link with (GCC only).
1lvm_libs — Additional library names to link with (LLVM only).
linker_args — Additional linker aguments.

gcc_linker_args — Additional linker aguments (GCC only).
1lvm_linker_ args — Additional linker aguments (LLVM only).
linker_ script — Linker script input file.

libpath — Additional search directory to search for libraries.
external_1libs — Absolute paths of additional libraries to link with.
osx_fwpath — Additional search path for frameworks (OSX only).
osx_frameworks — Frameworks to link with (OSX only).
description — Target description (displayed during Ninja build).
program — Override the linker program to incoke.
additional_flags — Additional flags for the linker.
gcc_additional_flags — Additional flags for the linker (GCC only).
gcc_link_additional_flags — Additional flags for the linker (GCC only).
gcc_remove_flags — Flags to remove (GCC only).
gcc_link_remove_flags — Flags to remove (GCC only).

1lvm_additional_flags — Additional flags for the linker (LLVM only).

1lvm_link_additional_flags — Additional flags for the linker (LLVM only).

1lvm_remove_flags — Flags to remove (LLVM only).
1lvm_link_remove_flags — Flags to remove (LLVM only).

2.2,

Craftr Standard Library

15

Craftr Documentation, Release 1.1.1.dev.0

Target .meta variables:
Parameters
* link output - The output filename of the link operation.

* link_target — The filename of the target that can be passed into the linker. This is
required because on Windows this needs to be a different value than 1ink_output.
Only valid with output_type="d11’.

name = ‘LLVM’

craftr.ext.compiler.msvc

craftr.ext.compiler.msvc.detect (program)
Detects the version of the MSVC compiler from the specified program name and returns a dictionary with
information that can be passed to the constructor of MsvcCompiler or raises ToolDetectionError.

This function also supports detecting the Clang-CL compiler.
Parameters program — The name of the program to execute and check.
Returns
dict of
* name (either " msvc’ or ' clang-cl’)
* version
e version_str
e target
¢ thread_model
* msvc_deps_prefix
Raises
* OSError - If program can not be executed (eg. if it does not exist).

* ToolDetectionError — If program is not GCC or GCC++.
craftr.ext.compiler.msvc.get_vs_install_dir (versions=None, prefer_newest=True)
Returns the path to the newest installed version of Visual Studio. This is determined by reading the environment
variables VS« *x COMNTOOLS.

If “versions” is specified, it must be a list of three-digit version numbers like 100 for Visual Studio 2010, 110
for 2012, 120 for 2013, 140 for 2015, etc.

Parameters

* versions — Optionally, a list of acceptable Visual Studio version numbers that will be
considered. If specified, the first detected installation will be used.

* prefer_newest — True if the newest version should be preferred.
Returns st r of the main installation directory.

Raises ToolDetectionError — If no Visual Studio insallation could be found.

Note: The option VSVERSIONS can be used to override the “versions” parameter if no explicit value is
specified.

16 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.compiler.msvc.get_vs_environment (install_dir, arch=None)
Given an installation directory returned by get_vs_ install dir (),returns the environment thatis created
from running the Visual Studio vars batch file.

Parameters
* install_dir - The installation directory.

* arch - The architecture name. If no value is specified, an architecture matching the current
host operating system is selected.

Note: The option VSARCH can be used to specify the default value for “arch” if no explicit value is specified.

class craftr.ext.compiler.msvc.MsveCompiler (program="cl’, language=’c’, desc=None,
**kwargs)
Interface for the MSVC compiler.

Parameters

* program — The name of the MSVC compiler program. If not specified, c1 will be tested,
otherwise get_vs_install_dir () will be used.

* language — The language name to compile for. Must be ¢, c++ or asm.

* desc - The description returned by detect (). If not specified, detect () will be called
by the constructor.

* kwargs — Additional arguments that will be taken into account as a Framework to
compile ().

compile (sources, frameworks=(), target_name=None, meta=None, **kwargs)
Supported options:

elanguage

einclude (/ I) [list of str]

edefines (/D) [list of str]

eforced_include (/FI) [list of str]

edebug (/O0d /zi /RTC1l /FC /Fd /FS)[True, False]

ewarn (/W4, /w)[’all’, ’'none’, None]

eoptimize (/0d, /01, /02, /Os)[’'speed’, ’'size’, ’'debug’, ’'none’, None]
eexceptions (/EHsc) [True, False, None]

eautodeps (/showIncludes)

edescription

*msvc_runtime_library (/MT, /MTd, /MD, /MDd)[’static’, ’‘dynamic’, None]
*msvc_disable_warnings (/wd) [list of int/str]

eprogram

eadditional_flags

*msvc_additional_flags

*msvc_compile_additional_flags

emsvc_remove_flags

2.2. Craftr Standard Library 17

Craftr Documentation, Release 1.1.1.dev.0

*msvc_compile_remove_{flags
*msvc_use_default_defines

Unsupported options supported by other compilers:
estd
*pedantic
*pic
*0sx_fwpath
*0osx_frameworks

Target meta variables: none

name = ‘msvc’

class craftr.ext.compiler.msvc.MsveLinker (program="link’, desc=None, **kwargs)
Interface for the MSVC linker.

1ink (output, inputs, frameworks=(), target_name=None, meta=None, **kwargs)
Supported options:

eoutput_type

*keep_suffix

elibpath

elibs

emsvc_libs

*win32_libs

*win64_libs

sexternal_libs

emsvc_external_libs

*debug

edescription

eprogram

eadditional_flags

*msvc_additional_flags

emsvc_link_additional_flags

*msvc_remove_flags

*msvc_link_remove_flags
Target meta variables:

elink_output — The output filename of the link operation.

elink_target — The filename that can be specified to the linker. This is necessary because on Windows
you pass in a separately created . 1ib file instead of the . d11 output file.

name = ‘msvc:link’

18 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

class craftr.ext.compiler.msvc.MsveAr (program="lib’, **kwargs)
Interface for the MSVC lib tool.

name = ‘msvc:lib’

staticlib (output, inputs, export=(), frameworks=(), target_name=None, meta=None, **kwargs)
Supported options:

eprogram
eadditional_flags
*msvc_additional_flags
*msvc_staticlib_additional_flags
edescription
Target meta variables:
estaticlib_output — The output filename of the library operation.

class craftr.ext.compiler.msvc.MsveSuite (vsversions=None, vsarch=None)
Represents an MSVC installation and its meta information.

craftr.ext.compiler.nvce

class craftr.ext.compiler.nvcc.NvecCompiler
Interface for the NVIDIA CUDA compiler. Uses the environment variable CUDA_PATH to determine the CUDA
toolkit location.

Important: This has been tested on Windows only, yet.

compile (sources, machine=64, static=True)
get_opencl_context (arch=64)

get_opencl_framework (arch=64)

craftr.ext.compiler.protoc
craftr.ext.compiler.protoc.get_proto_meta (filename)

Extracts the package declaration and various meta information from the specified .proto file.
class craftr.ext.compiler.protoc.ProtoCompiler (program=’"protoc’)

Interface for the Google Protocol Buffers Compiler.

compile (sources, proto_path=(), cpp_out=None, java_out=None, python_out=None)

craftr.ext.compiler.yacc
class craftr.ext.compiler.yacc.YaccCompiler (program="yacc’)
Interface for yacc.

compile (infile, output=None, prefix=None, backtracing=False, write_defs=False,
write_interface=False, write_graphic=False, symbol_prefix=None, reentrant=~False, de-
bug=False)

craftr.ext.git

A very small interface for querying information about a Git repository.

2.2. Craftr Standard Library 19

Craftr Documentation, Release 1.1.1.dev.0

Examples

Display a note in console if build is started with unversioned changes in the Git repository.

git = load_module('git') .Git (project_dir)
info('Current Version:', git.describe())
if git.status(exclude='727?"):

info ('Unversioned changes present.')

Export a GIT_VERSION. h header file into the build directory (not to mess with your source tree!)

from craftr import =«
from craftr.ext import git

def write_gitversion():

filename = path.buildlocal ('include/GIT_VERSION.h")
dirname = path.dirname (filename)
if session.export:

path.makedirs (dirname)

description = git.Git (project_dir) .describe ()

with open(filename, 'w') as fp:

fp.write ('#pragma once\n#define GIT_VERSION "{}"\n'.format (description))

return dirname

gitversion_dir = write_gitversion() # Add this to your includes

Classes

class craftr.ext.git.Git (git_dir)

branch ()
branches ()
describe (mode="tags’, all=False, fallback=True)

status (include=None, exclude=None)

craftr.ext.platform

This module represents the current platform that Craftr is running on by importing the correct implementation based
on sys.platform. Be sure to check out the Platform Interface documentation.

Platform C/C++ Toolset

craftr.ext.platform.asm
The Assembler retrieved with plat form.get_tool ()

craftr.ext.platform.cec
The C compiler retrieved with plat form.get_tool ()

craftr.ext.platform.ecxx
The C++ compiler retrieved with platform.get_tool ()

craftr.ext.platform.1ld
The linker retrieved with plat form.get_tool ()

20 Chapter 2. Contents

https://docs.python.org/3/library/sys.html#sys.platform

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.platform.ar

The archiver retrieved with platform.get_tool ()

Constants

craftr.ext.platform.WIN32 = ‘win’
Windows platform name

craftr.ext.platform.DARWIN = ‘mac’
Mac OS platform name

craftr.ext.platform.LINUX = ‘linux’
Linux platform name

craftr.ext.platform.CYGWIN = ‘cygwin’
Cygwin platform name

Submodules

craftr.ext.platform.cygwin

craftr.ext.platform.darwin

craftr.ext.platform.linux

craftr.ext.platform.win32

craftr.ext.python

This Craftr extension module provides information about Python installations that are required for compiling C-
extensions. Use the get_python_framework () function to extract all the information from a Python installation

using its distutils module.

craftr.ext.python.get_python_config_vars (python_bin)
Given the name or path to a Python executable, this function returns the dictionary that would be returned by

distutils.sysconfig.get_config_vars().

craftr.ext.python.get_python_framework (python_bin)
Uses get_python_config_vars () toread the configuration values and returns a Framework from that

data that exposes the following options:

Variables

* include - List of include paths (derived from INCLUDEPY)

* libpath — List of library paths (derived from LIBDIR)

craftr.ext.rules

craftr.ext.rules.alias (*targets, target_name=None)

Create an alias target that causes all specified “targets” to be built.

Parameters

2.2. Craftr Standard Library

21

Craftr Documentation, Release 1.1.1.dev.0

* targets — The targets to create an alias for. You may pass None for an element, in which
case it is ignored.

* target_name — Alternative target name.

craftr.ext.rules.run (commands, args=(), inputs=(), outputs=None, cwd=None, pool=None, descrip-

tion=None, target_name=None, multiple=False)
This function creates a Target that runs a custom command. The function is three different modes based on

the first parameter.

1.If commands is a Target, that target must list exactly one file in its outputs and that file is assumed to be
a binary and will be executed by the target created by this function. The args parameter may be a list of
additional arguments for the program.

2.If commands is a list, it is handled as a list of commands, never as a single command. Thus a string in the
list represents a complete command, as does a list of strings (representing the command as its individual
arguments).

3.If commands is a string, it will be treated as a single command.

If multiple commands need to be invoked, TargetBuilder.write_multicommand_file is used to
create a script to invoke multiple commands.

__Examples__
main = 1d.link(
output = 'main',
inputs = objects,
)
run = rules.run(main, args = [path.local('testfile.dat')])
run = rules.run ([

'commandl argsll argsl2 argsl3',
['command2', 'args2l', 'args22', 'args23'],
], cwd = path.local('test'), multiple=True)

Parameters
* commands — A Target, string or list of strings/command lists.
* args — Additional program arguments when a Target is specified for commands.

* inputs — A list of input files for the command. These can be referenced using the Ninja
variable %$1in in the command(s).

* outputs — A list of outputs generated by the command. These can be referenced using the
Ninja variable $out in the command(s).

* cwd — An optional working directory to switch to when executing the command(s). If None
is passed, the build directory is used.

* pool — Override the default pool that the command is executed in. If a Target is passed
for commands, this will default to console.

* description — Optional target description displayed when building with Ninja.

* multiple — True if commands is a list of commands. This will cause a shell/batch script
to be created and invoked by Ninja.

* target_name — An optional override for the return target’s name.

Returns A Target.

22

Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.rules.render_template (femplate, output, context, env=None, target_name=None)

Creates a task () that renders the file template using Jinja2 with the specified context to the output file.

craftr_module (my_project)

import jinja2
from craftr import path
from craftr.ext import rules

We can use the render_ template () task factory to render
a Jinja2 template that outputs a linker script.

1d_script = rules.render_template (

template = path.local('my_project.ld.jinja2'),

output = 'test.html',

env = jinjaZ.Environment (
variable_start_string (s,
variable_end_string = 'S},

) ’

context = dict (

Context variables here

Parameters
* template — Filename of a Jinja template.
* output — Output filename.
* context — Context dictionary.

* env—A jinja2.Environment object.

* target_name — Optional target name. Automatically deduced from the assigned variable

if omitted.

craftr.ext.unix
craftr.ext.unix.pkg_config (*flags)
Calls pkg-config with the specified flags and returns a list of the returned flags.

class craftr.ext.unix.Ar (program="ar’, **kwargs)
Interface for the Unix ar archiver.

name = ‘Unix AR’

staticlib (output, inputs, target_name=None, meta=None, **kwargs)
Supported options:

sprogram

ear_additional_flags — A string of additional flags (not a list!)
Target meta variables:

estaticlib_output — The output filename of the library operation.

class craftr.ext.unix.Ld (program="Ild’, **kwargs)
Interface for the Unix /d command.

1ink (output, inputs, frameworks=(), target_name=None, meta=None, **kwargs)
Supported options:

2.2. Craftr Standard Library

23

Craftr Documentation, Release 1.1.1.dev.0

sprogram
elinker_script
Target meta variables:
elink_output — The output filename of the link operation.
name = ‘Unix LD’

class craftr.ext.unix.Objcopy (program="objcopy’, detect=True, **kwargs)
Interface for the objcopy tool.

name = ‘Unix Objcopy’

¢

objcopy (output_format, inputs, outputs=None, target_name=None, output_dir="‘, meta=None,

**kwargs)
Performs an objcopy task with an output file (no append!) given the specified inputs generating outputs

with the specified output_format. If outputs is omitted, it will be automatically generated from inputs.
Supported options:

eprogram

eoutput_suffix

einput_format

ebinary_architecture

edescription

Target meta variables: none

2.2.2 General Properties

Compiler implementations should consider the ’ debug’ option when handling the build parameters. More specifi-
cally, given a target uses a TargetBuilder, it is usually good practice to read the debug option like this:

‘ debug = builder.get ('debug', options.get_bool ('debug'))

2.2.3 Platform Interface

All platform.xxx modules implement this interface.
platform.name
A string identifier of the platform. Currently implemented values are
e "win’
e "cygwin’
e "linux’’
e "darwin’
platform.standard
A string identifier of the platform standard. Currently implemented values are
e 'nt’

* "posix’

24 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

platform.obj (x)

Given a filename or list of filenames, replaces all suffixes with the appropriate suffix for compiled object files for the
platform.

platform.bin (x)

Given a filename or list of filenames, replaces all suffixes with the appropriate suffix for binary executable files for the
platform.

platform.dll (x)

Given a filename or list of filenames, replaces all suffixes with the appropriate suffix for shared library files for the
platform.

platform.1lib (x)

Given a filename or list of filenames, replaces all suffixes with the appropriate suffix for static library files for the
platform.

platform.get_tool (name)

Given the name of a tool, returns an object that implements the respective tools interface. The returned object may
already consider environment variables like CC and CXX. Possible values for name are

Name | Description

el C Compiler (see C/C++ Compiler Interface)

"c++’ | C++ Compiler (see C/C++ Compiler Interface)

"asm’ | ASM Compiler (see C/C++ Compiler Interface)

r1d’ Linker (usually the same as C compiler on Linux/Mac OS) (see Linker Interface)
"ar’ Static libary generator (archiver) (see Archiver Interface)

2.2.4 C/C++ Compiler Interface

compiler.compile (sources, frameworks=(), target_name=None, **kwargs)

Target .meta output variables:
None

Known Implementations
e craftr.ext.compiler.msvc.MsvcCompiler.compile ()
e craftr.ext.compiler.llvm.LlvmCompiler.compile ()

2.2.5 Linker Interface

linker.1link (output, inputs, output_type="bin’, frameworks=(), target_name=None, **kwargs)

Target .meta output variables:
"1link_output’ ’link_target’ \ Absolute output filename Linker target filename (1)

(1) This is required because on Windows you can not passed the actuall DLL filename to the linker but you must pass
to it the also generated . 1ib file which is what this * 1ink_target’ value is pointing to. Other implementations
like GCC/LLVM just fill in the same filename as in ’ 1ink_output’

Known Implementations
e craftr.ext.compiler.msvc.MsvcLinker.1link ()

e craftr.ext.compiler.llvm.LlvmCompiler.link ()

2.2. Craftr Standard Library 25

Craftr Documentation, Release 1.1.1.dev.0

2.2.6 Archiver Interface

archiver.staticlib (output, inputs, target_name=None, **kwargs)

Target .meta output variables:
’staticlib_output’ | Absolute output filename

Known Implementations
* craftr.ext.compiler.msvc.MsvcAr.staticlib()

e craftr.ext.unix.Ar.staticlib()

2.3 Extension Modules

Craftr comes with a set of builtin modules that contain useful functionality to quickly write powerful Craftfiles. Most
of the modules contain compiler classes which in turn expose rule functions (ie. functions with a high level interface
that produce low-level targets). For more information on the standard library, see Craftr Standard Library.

2.3.1 A primer on Craftr modules
While Craftr modules can be imported from a Craftfile like any other Python module, they are sligthly different in the
file structure to make them easier to use for common build scenarios. There are two ways to create a Craftr module:
1. ACraftfile.py file witha #craftr_module (<module_name>) declaration at the top of the file
2. Acraftr.ext.<module_name>.py file

While 2) is used more commonly for pure extension modules (eg. the whole standard library of Craftr is built of those
files), 1) is preferred for the main build module of a project. There is no technical difference between these two types
of files though.

2.3.2 Importing Craftr Modules

The craftr.Session object manages a list of search paths for Craftr modules. It is important to note that the
Craftr modules in this search path must not be directly inside the listed directories, but they are additionally searched
for one level deeper in the folder structure.

Consider the following project structure:

my_project/
Craftfile.py
src/
vendor/
qt5/
craftr.ext.gqt5.py

In order to be able to import the Qt5 module, you only need to add the vendor/ directory to the search path! This is
a design decision that was made for plain convenience.

#craftr_module (my_project)

from craftr import =«

session.path.append (path.local ('vendor'))
from craftr.ext import gtb

26 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

2.4 Tutorials

2.4.1 Using Craftr for C++ projects (TODO)

Todo

Nice tutorial there

2.4.2 Using Craftr for Cython projects

Craftr has convenient support for compiling Cython projects. The easy way is to use compile_project ().

from craftr import =«
from craftr.ext.compiler import cython

cython.cythonc.compile_project (
sources = path.glob('src/*.pyx"),
python_bin = options.get ('PYTHON', 'python'),
additional_flags = ['-Xprofile=True'],

For more control, the Cython invocation and C/C++ source file compiling can be done manually. Below is the equiva-
lent long version of the above shorthand:

craftr_module (cython_test)

from craftr import =«

from craftr.ext import platform, python
from craftr.ext.compiler import cython

1. Find the compilation information for the target Python version.
py = cython.PythonInfo (options.get ('PYTHON', 'python'))

2. Compile the .pyx files to C-files.
pyxc_sources = cython.cythonc.compile (
py_sources = path.glob('src/*.pyx"),
python_version = py.major_version,
cpp = False,
additional_flags = ['-Xprofile=True']

3. Compile each C file to a shared library.
for pyxfile, cfile in zip (pyxc_sources.inputs, pyxc_sources.outputs) :
platform.1d.link (
output = path.setsuffix(pyxfile, py.conf['SO0']),

output_type = 'dll’',
keep_suffix = True, # don't let link() replace the suffix
inputs = platform.cc.compile (

sources = [cfile],

frameworks = [py.fw],

pic = True

2.4. Tutorials 27

Craftr Documentation, Release 1.1.1.dev.0

Compiling with ——embed

Cython has an ——embed command-line option that will cause the generated C/C++ source code to contain amain ()
entry point. You can just pass the main parameter to compile_project () and it will automatically generate an
executable:

from craftr import =«
from craftr.ext import rules
from craftr.ext.compiler import cython

project = cython.cythonc.compile_project (
main = path.local('main.pyx'),
python_bin = options.get ('PYTHON', 'python'),

Allows you to invoke ‘craftr .run' to compile and run
run = rules.run(project.main_bin)

Note: You can combine compiling C-Extensions and an executable in a single call to compile project ().

2.4.3 Writing a Compiler Plugin

Craftr does not provide you with “one way to do it”. There are multiple ways you can make Craftr generate the
command you need it to. You can hard-code the command by creating a Target from scratch or you can im-
plement a Generator Function. What we do most of the time is to implement a Compiler Class which inherits
craftr.ext.compiler._base.BaseCompiler. It allows us to create instances of “compiler interfaces”
with different settings, which makes these settings included in all procedures that generate targets.

Manual Targets

First things first though, here’s a small example how you can just manually create a target and have Craftr export that
into the Ninja manifest:

from craftr import path, Target

main = Target (
command = 'gcc $in -Wall -std=c++1l1 -o S$Sout',
inputs = path.glob('src/*x.c'),
outputs = ['main'],

)

Notice how we specify just plain “main’ as the output file: relative filenames will be considered relative to the build
directory! Craftr automatically and always changes the working directory to the build directory before executing any
code.

Generator Functions

Given the above simple GCC example, we can make things a bit more customizable by implementing a function that
generates the command and target for us.

from craftr import path, Target

def compile(sources, output, include=[], defines=[],

28 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

lib=[], libpath=[], warn='1l', std='c99'):
command = ['gcc', '$in', '-W' + warn, '-std=' + std)
command += ['-I' + x for x in include]
command += ['-D' + x for x in defines]
command += ['-L' + x for x in libpath]
command += ['-1' + x for x in 1ib]
return Target (command, sources, [output])

main = compile (
sources = path.glob('src/*.c'"),
output = 'main',
warn = 'all',
std = 'c++11'

Using the TargetBuilder

While the above example already looks nice, it still has problems, or say, complications: What will you do if you make
use of some libraries and have a number of additional include directories, defines, libpaths and libs? Just concatenate
them by hand?

Craftr’s solution to this problem are Framework s. They represent a collection of settings that can either be merged
(e.g. for things like include directories, defines, etc.) or the first available setting can be used (e.g. for some one-off
compiler option). In Craftr, everything has frameworks. Just for example, a Target has a list of frameworks that
have been used to generate it, thus if other targets are created taking it as an input, they can automatically re-use these
frameworks and the user doesn’t have to manually specify the framework yet another time.

from craftr.ext.platform import cc, 1d
from craftr.ext.some_ library import some_library_framework

obj = cc.compile(
sources = path.glob('src/*.c'),
frameworks = [some_library_framework]

bin = 1d.link(
inputs = obj,
output = 'main'
<: Note how we do not add "some_library_framework" in this call

)

Moving on to creating Ta rget generator functions with the Target Bui 1der! This class handles a bunch of things,
but don’t let yourself be confused about all these internals yet. They are here for reference:

1. Evaluate a list of inputs that can consist of filenames or targets. Filenames are automatically normalized and for
targets, the output files will be added to the input files and the frameworks will be included into the frameworks
list.

2. Include a list of frameworks passed directly to the generator function.

3. Create a new Framework from the additional keyword arguments passed to the generator function, but
this framework will not be included in the generated targets framework list! You don’t want your
additional_ flags passed to cc.compile () also being passed to ar.staticlib () automatically
)

4. All frameworks will then be expanded into a single list using expand_frameworks () (to flatten out frame-
work dependencies).

2.4. Tutorials 29

Craftr Documentation, Release 1.1.1.dev.0

5. A FrameworkJoin will be created from all frameworks (including the special ~xkwargs framework) to
enable the generator function to read the settings.

122

Now, how Tracer would say it, “let’s get to it already
not in the previous examples.

. Note that I’ve also added a 1anguage parameter which I did

from craftr import path, Target, TargetBuilder

def compile (sources, output, frameworks=(), target_name=None, language='c', xxkwargs):
builder = TargetBuilder (sources, frameworks, kwargs, name=target_name)
include = builder.merge ('include')
defines builder.merge('defines"')
libpath = builder.merge('libpath')
lib = builder.merge('lib"'")
std = builder.get ('std', 'c99'")
warn = builder.get ('warn', '1")

Same code as above
command = ['gcc', '-x', language, '$in', '-W' + warn, '-std=' + std)

command += ['-I' + x for x in include]
command += ['-D' + x for x in defines]
command += ['-L' + x for x in libpath]
command += ['-1' + x for x in 1lib]

return builder.create_target (command, output)

Now we can use some other Craftfiles that expose Frameworks.

(You know, Craftr's not really popular yet so there's literally
only my own stuff right now :P)

from craftr.ext.libs.nr_iterator import nr_iterator

from craftr.ext.libs.nr_math3d import nr_math3d

main = compile (
language = 'c++t',
sources = path.glob('src/*.cpp'),
output = 'main',
frameworks = [nr_iterator, nr_math3d]

Using the BaseCompiler

It has a number of advantages, but you're free to use a plain generator function as shown in the previous example!
There’s really not much to be changed for using a BaseCompi ler instead:

from craftr import path, Target
from craftr.ext.compiler. base import BaseCompiler

class SimpleGCC (BaseCompiler) :

def compile(self, sources, output, frameworks=(), target_name=None, language='c', =*x*k
builder = self.builder (sources, frameworks, kwargs, name=target_name)
... exactly the same code as in the previous example

gcc = SimpleGCC ()
main = gcc.compile (

#

30 Chapter 2. Contents

args) :

Craftr Documentation, Release 1.1.1.dev.0

However! you can now pass additional settings to the SimpleGCC () constructor that will be taken into account as
well. Note that these are considered last after everything else (« xkwargs, frameworks list, input target frameworks
and only then the settings passed to the constructor).

Monkeypatching existing compilers

This is a technique that is used for instance by the maxon.c4d extension modules which requires additional preprocess-
ing of the parameters passed to cxx.compile () and 1d.link (). Since vl.1.1, the BaseCompiler supports
hooking in after a TargetBuilder was created for a specific method call.

def _my_link_hook (builder) :
debug = builder.get ('debug', options.get_bool ('debug', False))
builder.setdefault ('output_type', 'dll")
builder.add_framework (Framework ('_my_link_hook"',
defines = ['_DEBUG'] if debug else ['NDEBUG'],
), local=True)

1d = platform.1ld.fork()
ld.register_hook ('link', _my_link_hook)

2.4.4 Automate build product distribution

Craftr provides a Archive class that can be used to easily create an archive of the products that are generated by the
build, in the same step!

craftr_module (test)

from craftr import =«

from craftr.ext import platform, archive as _archive, git as _git
git = _git.Git (project_dir)

binary = platform.ld.link(
inputs = platform.cc.compile (
sources = path.glob('src/x.c')
)

output = 'main'

)

@task (requires = [binary])

def archive():
name = '"{}—{}-{}'.format (project_name, git.describe (), platform.name)
archive = _archive.Archive (prefix = name, base_dir = project_dir)

archive.add(binary.outputs)

archive.add('res')

archive.save ()

info ("Archive created:", path.normpath (archive.name, session.cwd))

Below you can find an example invokation of the script on Windows:

A craftr .archive -v

detected ninja v1.6.0

cd "build"

load 'craftr.ext.test'

(craftr.ext.platform, line 74): Detected VS architecture: amd64
exporting 'build.ninja'

rts listening at 127.0.0.1:54411

$ ninja test.archive -v

2.4. Tutorials 31

https://github.com/craftr-build/maxon.c4d

Craftr Documentation, Release 1.1.1.dev.0

[1/3] "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amdé64\cl.exe" /nologo
[2/3] "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\link.exe" /nolog
[3/3] craftr-rts—-invoke test.archive

(craftr.ext.:rts:): [127.0.0.1:54412] connection accepted
(craftr.ext.:rts:): [127.0.0.1:54412] @Q test.archive()
(craftr.ext.test, line 20): Archive created:

c:\users\niklas\desktop\tes\test-vl.l-win.z

2.5 API Documentation

This part of the documentation contains the API reference of the functions and classes that can be used in Craftfiles.

2.5.1 craftr.ext

class craftr.ext.CraftrImporter (session)
Meta-path import hook for importing Craftr modules from the craftr.ext parent namespace. Only functions
inside a session context.

find_module (fullname, path=None)
PEP 0302 — New Import Hooks
import_file (filename)

Imports a Craftr module by filename. Raises ImportError if filename is not a Craftr module or if the file is
not the same as would be imported when importing it by its module identifier.

update (force=False)
Should be called if sys.path or Session.path has been changed to rebuild the module cache and delay-load
virtual modules if a physical was found.

class craftr.ext .CraftrLoader (kind, filename, session)
Loader class created by the :class:CraftrImporter.

load_module (fullname)
PEP 0302 — New Import Hooks

craftr.ext.get_module_ident (filename)

Extracts the module identifier from file at the specified filename and returns it, or None if the file does not contain
a craftr_module(...) declaration in the first comment-block.

2.5.2 craftr.options

Utility functions to read options from the environment.

craftr.options.get (name, default=None, inherit_global=True)

Reads an option value from the environment variables. The option name will be prefixed by the identifier of the
module that is currently executed, eg:

craftr_module (test)

from craftr import options, environ

value = options.get ('debug', inherit_global=False)
is equal to

value = environ.get ('test.debug')

Parameters

* name — The name of the option.

32 Chapter 2. Contents

/c c:\users\i
o c:\users\n:

ip

Craftr Documentation, Release 1.1.1.dev.0

* default — The default value that is returned if the option is not set in the environment. If
Not Implemented is passed for default and the option is not set, a KeyError is raised.

* inherit_global - If this is True, the option is also searched globally (ie. name without
the prefix of the currently executed module).

Raises KeyError — If default is Not Implemented and the option does not exist.
craftr.options.get_bool (name, default=False, inherit_global=True)

Read a boolean option. The actual option value is interpreted as boolean value. Allowed values that are inter-
preted as correct boolean values are: *’, ' true’, ' false’’ ", “‘'yes’,’'no’,’0’ and’ 1’

Raises
* KeyError — If default is Not Implemented and the option does not exist.

* ValueError — If the option exists but has a value that can not be interpreted as boolean.

2.5.3 craftr.path

craftr.path.addprefix (subject, prefix)
Given a filename, this function will prepend the specified prefix to the base of the filename and return it. filename
may be an iterable other than a string in which case the function is applied recursively and a list is being returned
instead of a string.

__Important__: This is not the directy equivalent of addsuffix() as it considered subject to be a filename and
appends the prefix only to the files base name.

craftr.path.addsuffix (subject, suffix, replace=False)
Given a string, this function appends suffix to the end of the string and returns the new string.

subject may be an iterable other than a string in which case the function will be applied recursively on all its
items and a list is being returned instead of a string.

If the replace argument is True, the suffix will be replaced instead of being just appended. Make sure to include
a period in the suffix parameter value.

craftr.path.autoglob (path, parent=None)
Returns glob(path) if path is actually a glob-style pattern. If it is not, it will return [path] as is, not checking
wether it exists or not.

craftr.path.buildlocal (path)
Given a relative path, this function returns an absolute version assuming the path is relative to to current module’s
build directory.

Note: Can only be called from a module context (ie. from inside a Craftr module).

craftr.path.commonpath (paths)
Returns the longest sub-path of each pathname in the sequence paths. Raises ValueError if paths is empty or
contains both relative and absolute pathnames. If there is only one item in paths, the parent directory is returned.

craftr.path.get_long_path_name (path)
On Windows, this function returns the correct capitalization for path. On all other systems, this returns path
unchanged.

craftr.path.glob (*patterns, exclude=None, parent=None)
Wrapper for glob2.glob() that accepts an arbitrary number of patterns and matches them. The paths are nor-
malized with normpath(). If called from within a module, relative patterns are assumed relative to the modules
parent directory.

2.5. APl Documentation 33

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError

Craftr Documentation, Release 1.1.1.dev.0

If exclude is specified, it must be a string or a list of strings that is/contains glob patterns or filenames to be
removed from the result before returning.

craftr.path.isglob (path)
Returns True if path is a glob-able pattern, False if not.

craftr.path.iter_tree (dirname, depth=1)
Iterates over all files in dirname and its sub-directories up to the specified depth. If dirname is a list, this scheme
will be applied for all items in the list.

craftr.path.listdir (path, abs=True)
This version of os.listdir yields absolute paths.

craftr.path.local (path)
Given a path relative to the current module’s project directory, this function returns a normalized absolute path.
Just like many of the path functions, path can also be alist.

Note: Can only be called from a module context (ie. from inside a Craftr module).

craftr.path.makedirs (path)
Simple os.makedirs() clone that does not error if path is already an existing directory.

craftr.path.move (filename, basedir, newbase)
Given a filename and two directory names, this function generates a new filename which is constructed from the
relative path of the filename and the first directory and the joint of this relative path with the second directory.

This is useful to generate a new filename in a different directory based on another. Craftr uses this function to
generate object filenames.

Example:

>>> move ('src/main.c', 'src', 'build/obj")
build/obj/main.c

path may be an iterable other than a string in which case the function is applied recursively to all its items and a
list is returned instead of a string.

craftr.path.normpath (path, parent_dir=None, abs=True)
Normalizes a filesystem path. Also expands user variables. If a parent_dir is specified, a relative path is
considered relative to that directory and converted to an absolute path. The default parent directory is the
current working directory.

path may be an iterable other than a string in which case the function is applied recursively to all its items and a
list is returned instead of a string.

If abs is True, the path is returned as an absolute path always, otherwise the path is returned in its original
structure.

craftr.path.relpath (path, start="", only_sub=False)
Like the original os.path.relpath() function, but with the only_sub parameter. If only_sub is True and path is not
a subpath of start, the path is returned unchanged.

craftr.path.rmvsuffix (subject)
Given a filename, this function removes the the suffix of the filename and returns it. If the filename had no suffix
to begin with, it is returned unchanged.

subject may be an iterable other than a string in which case the function is applied recursively to its items and a
list is returned instead of a string.

craftr.path.setsuffix (subject, suffix)
Remove the existing suffix from subject and add suffix instead. The suffix must contain the dot at the beginning.

34 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

craftr.path.silent_remove (filename, is_dir=False)
Remove the file filename if it exists and be silent if it does not. Returns True if the file was removed, False if it
did not exist. Raises an error in all other cases.

Parameters
* filename — The path to the file or directory to remove.
e is_dir - If True, remove recursive (for directories).

craftr.path.split_path (path)
Splits path into a list of its parts.

class craftr.path.tempfile (suffix="", prefix="tmp’, dir=None, text=False)
A better temporary file class where the close () function does not delete the file butonly __exit__ () does.
Obviously, this allows you to close the file and re-use it with some other processing before it finally gets deleted.

This is especially important on Windows because apparently another process can’t read the file while it’s still
opened in the process that created it.

from craftr import path, shell
with path.tempfile(suffix='c', text=True) as fp:

fp.write('#include <stdio.h>\nint main() { }\n'")
fp.close()
shell.run(['gcc', fp.name])

Parameters

* suffix — The suffix of the temporary file.
» prefix — The prefix of the temporary file.
* dir — Override the temporary directory.

* text — True to open the file in text mode. Otherwise, it will be opened in binary mode.

2.5.4 craftr.shell
This module is similar to the subprocess.run() interface that is available since Python 3.5 but is a bit customized so
that it works better with Craftr.

class craftr.shell.safe
If this object is passed to quote(), it will not be escaped.

craftr.shell.quote (s)
Enhanced implementation for Windows systems as the original shlex.quote() function uses single-quotes on
Windows which can lead to problems.

craftr.shell. format (fint, *args, **kwargs)
Similar to st r. format (), but this function will escape all arguments with the quote () function.

craftr.shell.join (cmd)
Join a list of strings to a single command.

craftr.shell.find program (name)
Finds the program name in the PATH and returns the full absolute path to it. On Windows, this also takes the
PATHEXT variable into account.

Parameters name — The name of the program to find.

Returns st r — The absolute path to the program.

2.5. APl Documentation 35

https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str

Craftr Documentation, Release 1.1.1.dev.0

Raises
* FileNotFoundError — If the program could not be found in the PATH.
e PermissionError — If a candidate for “name” was found but it is not executable.

craftr.shell.test_program (name)
Uses find program () to find the path to “name” and returns True if it could be found, False otherwise.

exception craftr.shell.CalledProcessError (process)
This exception is raised when a process exits with a non-zero returncode and the run was to be checked for such
state. The exception contains the process information.

exception craftr.shell.TimeoutExpired (process, timeout)
This exception is raised when a process did not exit after a specific timeout. If this exception was raised, the
child process has already been killed.

class craftr.shell.CompletedProcess (cmd, returncode, stdout, stderr)
This class represents a completed process.

craftr.shell.run (cmd, * stdin=None, input=None, stdout=None, stderr=None, shell=False, time-

out=None, check=False, cwd=None, encoding="utf-8’)
Run the process with the specified cmd. If cmd is a list of commands and shell is True, the list will be automati-

cally converted to a properly escaped string for the shell to execute.

Note: If “shell” is True, this function will manually check if the file exists and is executable first and raise
FileNotFoundError if not.

Raises

* CalledProcessError — If check is True and the process exited with a non-zero exit-
code.

* TimeoutExpired — If timeout was specified and the process did not finish before the
timeout expires.

* OSError — For some OS-level error, eg. if the program could not be found.
craftr.shell.pipe (*args, merge=True, **kwargs)

Like run(), but pipes stdout and stderr to a buffer instead of directing them to the current standard out and error
files. If merge is True, stderr will be merged into stdout.

2.5.5 craftr.utils

Various common utilities used by Craftr and its extension modules.

Transform Functions

craftr.utils.flatten (iterable)
Given an iferable that in turn yields an iterable, this function flattens the nested iterables into a single iteration.

craftr.utils.uniquify (iterable)
Create a list of items in iterable without duplicate, preserving the order of the elements where it first appeared.

36 Chapter 2. Contents

https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#OSError

Craftr Documentation, Release 1.1.1.dev.0

Recordclass

class craftr.utils.recordclass_base (*args, **kwargs)
Base class that provides a namedtuple like interface based on the ___slots___ parameter.

class MyRecord (recordclass_base):
__slots___ = '"foo bar ham'.split()

data = MyRecord('a foo', 42, ham="spam")

items ()
keys ()
values ()

craftr.utils.recordclass (_ name, _ fields, **defaults)
Creates a new class that can represent a record with the specified fields. This is equal to a mutable namedtuple.
The returned class also supports keyword arguments in its constructor.

Parameters
e _ name — The name of the recordclass.
e _ fields — A string or list of field names.

* defaults — Default values for fields. The defaults may list field names that haven’t been
listed in fields.

Environment Variables
craftr.utils.append_path (pth)
Appends pth to the PATH environment variable.

craftr.utils.prepend_path (pth)
Prepends pth to the PATH environment variable.

craftr.utils.override_environ (new_environ=None)
Context-manager that restores the old environ on exit.

Parameters new_environ — A dictionary that will update the environ inside the context-
manager.

craftr.utils.regex Module

Regex utility functions.

craftr.utils.regex.search_get_groups (pattern, subject, mode=0)
Performs re.search () and returns a list of the captured groups, including the complete matched string as
the first group. If the regex search was unsuccessful, a list with that many items containing None is returned.

craftr.session
A Proxy to the current Session object that is being used for the current Craftr build session.

Note: If you’ve used Flask before: It’s similar to the Flask request object.

2.5. APl Documentation 37

https://docs.python.org/3/library/re.html#re.search

Craftr Documentation, Release 1.1.1.dev.0

craftr.module = <Proxy unbound>

This werkzeug.LocalProxy subclass returns the current object when called instead of forwarding the call to the
current object.

A Proxy of the Craftr module that is currently being executed. Modules are standard Python module objects.
When a Craftr extension module is being executed, this proxy points to exactly that module.

craftr _module (test)

A stupid example

from craftr import module

import sys

assert project_name == module.project_name
assert sys.modules[__name__] is module ()

2.5.6 Logging

The logging functions implement the print () interface.

craftr.debug (*args, stacklevel=1, verbosity=None, **kwargs)

craftr.info (*args, stacklevel=1, **kwargs)

craftr.warn (*args, stacklevel=1, **kwargs)

craftr.error (*args, stacklevel=1, raise_=True, **kwargs)

2.5.7 Tasks

craftr.task (func=None, *args, **kwargs)

Create a task Target that uses the Craftr RTS feature. If func is None, this function returns a decorator that
finally creates the Target, otherwise the task is created instantly.

The wrapped function must either
take no parameters, this is when both the inputs and outputs of the task are None, or

stake two parameters being the inputs and outputs of the task

@task
def hello(): # note: no parameters
info("Hello, World!™)

@task (inputs = another_target, outputs = 'some/output/file')
def make_some_output_file (inputs, outputs): # note: two parameters!
#

yat = task(some_function, inputs = yet_another_target,
name = 'yet_another_task')

Important: Be aware that tasks executed through Ninja (and thus via RTS) are executed in a seperate thread!

Note that unlike normal targets, a task is explicit by default, meaning that it must explicitly be specified on the
command line or be required as an input to another target to be executed.

Parameters

e func — The callable function to create the RTS target with or None if you want to use this
function as a decorator.

38

Chapter 2. Contents

https://docs.python.org/3/library/functions.html#print

Craftr Documentation, Release 1.1.1.dev.0

* args — Additional args for the Target constructor.
* kwargs — Additional kwargs for the Target constructor.

Returns Target or a decorator that returns Target

2.5.8 Helpers

craftr.return_ ()
Raise a ModuleReturn exception, causing the module execution to be aborted and returning back to the
parent module. Note that this function can only be called from a Craftr modules global stack frame, otherwise a
Runt imeError will be raised.

craftr.expand_inputs (inputs, frameworks=None)
Expands a list of inputs into a list of filenames. An input is a string (filename) or a Target object from which
the Target . outputs are used. Returns a list of strings.

If frameworks is specified, it must be a 1ist to which the frameworks of all input Target objects will be
appended. The frameworks need to be expanded with expand frameworks ().

craftr.expand_frameworks (frameworks, result=None)
Given a list of Framework objects, this function creates a new list that contains all objects of frameworks and
additionally all objects that are listed in each of the frameworks "frameworks™" key recursively. Duplicates
are also elimated.

craftr.import_f£ile (filename)
Import a Craftr module by filename. The Craftr module identifier must be determinable from this file either by
its #craftr_module (..) identifier or filename.

craftr.import_module (modname, globals=None, fromlist=None)
Similar to importlib.import_module (), but this function can also imports contents of modname into
globals. If globals is specified, the module will be directly imported into the dictionary. If fromlist list is *, a
wildcard import into globals will be performed, otherwise fromlist must be None or a list of names to import.

This function always returns the root module.

craftr.craftr min_ version (version_string)
Ensure the current version of Craftr is at least the version specified with version_string, otherwise call
error ().

2.5.9 Session Objects

class craftr.Session (cwd=None, path=None, server_bind=None, verbosity=0, strace_depth=3, ex-

port=False, buildtype="standard’)
This class manages a build session and encapsulates all Craftr modules and Targets.

cwd
The original working directory from which Craftr was invoked, or the directory specified with the —p
command-line option. This is different than the current working directory since Craftr changes to the build
directory immediately.

env
A dictionary of environment variables, initialized as a copy of os.environ. In a Craftfile, you can
use os.environ or the alias craftr.environ instead, which is more convenient than accessing
session.env.

path
A list of search paths for Craftr extension modules. See ext.

2.5. APl Documentation 39

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ

Craftr Documentation, Release 1.1.1.dev.0

modules
A dictionary of Craftr extension modules. Key is the module name without the craftr.ext . prefix.

targets
A dictionary mapping the full identifier to Target objects that have been declared during the build ses-
sion. When the Session is created, a clean Target which calls ninja -t clean is always created
automatically.

files_to_targets
New in v1.1.0 Maps the files produced by all targets to their producing Target object. This dictionary
is used for speeding up find _target_for_file () and to check if any file would be produced by
multiple targets.

All keys in this dictionary are absolute filenames normalized with path.normpath ().

server
An rts.CraftrRuntimeServer object that is started when the session context is entered with
magic.enter_context () and stopped when the context is exited. See on_context_enter ().

server_bind
A tuple of (host, port) which the server will be bound to when it is started. Defaults to None, in
which case the server is bound to the localhost on a random port.

ext_importer
A ext.CraftrImporter object that handles the importing of Craftr extension modules. See ext.

var
A dictionary of variables that will be exported to the Ninja manifest.

verbosity
The logging verbosity level. Defaults to 0. Used by the logging functions debug (), info (), warn ()
and error ().

strace_depth
The logging functions may print a stack trace of the log call when the verbosity is high enough. This
defines the depth of the stack trace. Defaults to 3.

export
This is set to True when the —e option was specified on the command-line, meaning that a Ninja mani-
fest will be exported. Some projects eventually need to export additional files before running Ninja, for
example with TargetBuilder.write command _file ().

buildtype
The buildtype that was specified with the ——buildtype command-line option. This attribute has two
possible values: ' standard’ and ' external’. Craftfiles and rule functions must take the buildtype
into consideration. In external’ mode, rule functions should consider external options wherever
applicable, for example the CFLAGS environment variables instead or additionally to the standard flags
for C source file compilation.

finalized
True if the Session was finalized with finalize ().

exec_if_ exists (filename)
Executes filename if it exists. Used for running the Craftr environment files before the modules are loaded.
Returns None if the file does not exist, a types.ModuleType object if it was executed.

finalize ()
Finalize the session, setting up target dependencies based on their input/output files to simplify verifying
dependencies inside of Craftr. The session will no longer accept target registrations.

40

Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

find_target_for_file (filename)
Finds a target that outputs the specified filename.

on_context_enter (prev)
Called when entering the Session context withmagic.enter_context (). Does the following things:

*Sets up the os . environ with the values from Session.env

*Adds the Session.ext_importerto sys.meta_path

Note: A copy of the original os . environ is saved and later restored in on_ context_leave (). The
os.environ object can not be replaced by another object, that is why we change its values in-place.

on_context_leave ()
Called when the context manager entered with magic.enter_context () is exited. Undos all of the
stuff that on_context_enter () did and more.

*Stop the Craftr Runtime Server if it was started
*Restore the os . environ dictionary

*Removes all craftr.ext. modules from sys.modules and ensures they are in
Session.modules (they are expected to be put there from the ext . CraftrIimporter).

register_target (rarget)
This function is used by the Target constructor to register itself to the Session. This will add the
target to the target dictionary and also update the files_to_targets mapping.

Parameters target — A Target object
Raises
* ValueError — If the name of the target is already reserved.
* RuntimeError — If this target produces a file that is already produced by another arget.

start_server ()
Start the Craftr RTS server (see Session. server). It will automatically be stopped when the session
context is exited.

2.5.10 Target Objects

class craftr.Target (command, inputs=None, outputs=None, implicit_deps=None, or-
der_only_deps=None, requires=None, foreach=False, description=None,
pool=None, var=None, deps=None, depfile=None, wmsvc_deps_prefix=None,

explicit=False, frameworks=None, meta=None, module=None, name=None)
This class is a direct representation of a Ninja rule and the corresponding in- and output files. Will be rendered

into a rule and one or many build statements in the Ninja manifest.

New in vi.1.0: A target object can also represent a Python function as a target in the Ninja manifest. This is
called an RTS task. Use the task () function to create tasks or pass a function for the command parameter of
the Target constructor. The function must accept no parameters if i nputs and output s are both None or
accept these two values as parameters.

name
The name of the target. This is usually deduced from the variable the target is assigned to if no explicit
name was passed to the Target constructor. Note that the actual name of the generated Ninja rule must
be read from fullname.

2.5. APl Documentation 41

https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/sys.html#sys.meta_path
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/sys.html#sys.modules
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Craftr Documentation, Release 1.1.1.dev.0

module
The Craftr extension module this target belongs to. Defaults to the currently executed module (retrieved
from the thread-local module). Can be None, but only if there is no module currently being executed.

command
A list of strings that represents the command to execute. A string can be passed to the constructor in which
case it is parsed with shell.split ().

inputs
A list of filenames that are listed as inputs to the target and that are substituted for $in and $in_newline
during the Ninja execution. Can be None. The Target constructor expands the passed argument with
expand_inputs (), thus also accepts a single filename, Target or a list with Targets and/or filenames.

This attribute can also be None.

outputs
A list of filenames that are listed as outputs of the target and that are substituted for $out during the Ninja
execution. Can be None. The Target constructor accepts a list of filenames or a single filename for this
attribute.

This attribute can also be None.

implicit_deps
A list of filenames that are required to build the Target, additionally to the i nput s, but are not expanded
by the $in variable in Ninja. See “Implicit dependencies” in the Ninja Manual.

order_only_deps
See “Order-only dependencies” in the Ninja Manual.

requires
A list of targets that are to be built before this target is. This is useful for speciying task dependencies that
don’t have input and/or output files.

The constructor accepts None, a Target object or a list of targets and will convert it to a list of targets.

@task
def hello():
info ("Hello!™)
@task (requires = [hello])
def ask_name () :
info ("What's your name?")

foreach
If this is set to True, the number of i nput s must match the number of outputs. Instead of generating
a single build instruction in the Ninja manifest, an instruction for each input/output pair will be created
instead. Defaults to False.

description
A description of the Target. Will be added to the generated Ninja rule. Defaults to None.

pool
The name of the build pool. Defaults to None. Can be "console" for Targets that don’t actually build
files but run a program. Craftr will treat Targets in that pool as if explicit is True.

deps
The mode for automatic dependency detection for C/C++ targets. See the “C/C++ Header Depenencies”
section in the Ninja Manual.

depfile
A filename that contains additional dependencies.

42

Chapter 2. Contents

https://ninja-build.org/manual.html
https://ninja-build.org/manual.html
https://ninja-build.org/manual.html

Craftr Documentation, Release 1.1.1.dev.0

msvc_deps_prefix
The MSVC dependencies prefix to be used for the rule.

frameworks
A list of Frameworks that are used by the Target. Rule functions that take other Targets as inputs can
include this list. For example, a C++ compiler might add a Framework with 1ibs = [’c++’] to a

Target so that the Linker to which the C++ object files target is passed automatically knows to link with
the c++ library.

Usually, a rule function uses the TargetBuilder (which internally uses expand inputs()) to
collect all Frameworks used in the input targets.

explicit
If True, the target will only be built by Ninja if it is explicitly specified on the command-line or if it is
required by another target. Defaults to False.

meta
A dictionary of meta variables that can be set from anywhere. Usually, rule functions use this dictionary
to promote additional information to the caller, for example what the actual computed output filename of
a compilation is.

graph
Initially None. After finalize () is called, this is a namedtuple of Graph which has input and output
sets of targets of the dependencies in the Target.

_ 1lshift__ (other)
Shift operator to add to the list of implicit_deps.

Note: If other is or contains a Target, the targets frameworks are not added to this Target’s framework
list!

class Graph (inputs, outputs)
Type for Target.graph

inputs
Alias for field number O

outputs
Alias for field number 1

Target .RTS_Mixed = ‘mixd’
The target and/or its dependencies are a mix of command-line targets and tasks

Target .RTS_None = ‘none’
The target and its dependencies are plain command-line targets

Target .RTS_Plain = ‘plain’
The target and all its dependencies are plain task targets

Target.as_explicit ()
Sets :attr‘explicit‘ to True and retunrs self.

Target .execute_task (exec_state=None)
Execute the rt s_func of the target. This calls the function with the inputs and outputs of the target (if
any of these are not None) or with no arguments (if both is None).

This function catches all exceptions that the wrapped function might raise and prints the traceback to stdout
and raises a TaskError with status-code 1.

2.5. APl Documentation 43

Craftr Documentation, Release 1.1.1.dev.0

Parameters exec_state —If this parameter is not None, it must be a dictionary where the task
can check if it already executed. Also, inputs of this target will be executed if the parameter
is a dictionary.

Raises
* RuntimeError — If the target is not an RTS task.

* TaskError — If this task (or any of the dependent tasks, only if exec_state is not None)
exits with a not-None, non-zero exit code.

Target .finalize (session)
Gather the inputs and outputs of the target and create a new Graph to fill the graph attribute.

Target .fullname
The full identifier of the Target. If the Target is assigned to a module, this is the module name and the
Target .name, otherwise the same as Target . name.

Target.get_rts_mode ()
Returns the RTS information for this target:

*RTS_None if this target and none of its dependencies
*RTS_PIlain if this target and all of its dependencies are tasks

*RTS_Mixed if this target or any of its dependencies are tasks but there is at least one normal target

2.5.11 TargetBuilder Objects

class craftr.TargetBuilder (inputs, frameworks=(), kwargs=None, meta=None, module=None,

o name=None, stacklevel=1) .
This is a helper class to make it easy to implement rule functions that create a Target. Rule functions usually

depend on inputs (being files or other Targets that can also contain additional frameworks), rule-level settings
and Frameworks. The TargetBuilder takes all of this into account and prepares the data conveniently.

The following example shows how to make a simple rule function that compiles C/C++ source files into object
files with GCC. The actual compiler name can be overwritten and additional flags can be specified by passing
them directly to the rule function or via frameworks (accumulative).

#craftr_module (test)

from craftr import TargetBuilder, Framework, path
from craftr.ext import platform
from craftr.ext.compiler import gen_output

def compile (sources, frameworks=(), **kwargs):
Simple rule to compile a number of source files into an
object files using GCC.

mmn

builder = TargetBuilder (sources, frameworks, kwargs)
outputs = gen_output (builder.inputs, suffix = platform.obj)
command = [builder.get ('program', 'gcc'), '-c', '$in', '-o', 'Sout']
command += builder.merge ('additional flags')
return builder.create_target (command, outputs = outputs)
copts = Framework (
additional_flags = ['-pedantic', '-wWall'],

44 Chapter 2. Contents

https://docs.python.org/3/library/exceptions.html#RuntimeError

Craftr Documentation, Release 1.1.1.dev.0

objects = compile (
sources = path.glob('src/*%/*.c'),
frameworks = [copts],
additional_flags = ['-std=cll'],
)
Parameters

* inputs — Inputs for the target. Processed by expand_inputs (), the resulting frame-
works are then processed by expand_frameworks (). The expanded inputs are saved
in the i nputs attribute of the TargetBuilder. Use this attribute instead of the original
value passed to this parameter! It is guaruanteed to be a list of filenames only.

» frameworks — A list of frameworks to take into account additionally.

* kwargs — Additional options that will be turned into their own Framework object, but it
will not be passed to the Target that is created with create_target () as these options
should not be inherited by rules that will receive the target as input.

* module — Override the module that will receive the target.

* name — Override the target name. If not specified, the target name is retrieved using Craftr’s
target name deduction from the name the target is assigned to.

* stacklevel - The stacklevel which the calling rule function is at. This defaults to 1,

which is fine for rule functions that directly create the TargetBuilder.

caller
Name of the calling function.

def my_rule (xargs, +*xkwargs):
builder = TargetBuilder (None)
assert builder.caller == 'my_ rule'

inputs
None or a pure list of filenames that have been passed via the inputs parameter of the TargetBuilder.

frameworks
A list of frameworks compiled from the frameworks of Target objects in the inputs parameter of the
constructor and the frameworks that have been specified directly with the frameworks parameter.

kwargs
The additional options that have been passed with the kwargs argument. These are turned into their own
Framework which is only taken into account for the opt i ons but it is not passed to the Target created
with create_target ().

options
A FrameworkdJoin object that is used to read settings from the list of frameworks collected from the
input Targets, the additional frameworks specified to the Ta rgetBuilder constructor and the specified
kwargs dictionary.

module

name
The name of the Target that is being built.

target_attrs
A dictonary of arguments that are set to the target after construction in create_target (). Can only
set attributes that are already attributes of the Target.

2.5.

API Documentation 45

Craftr Documentation, Release 1.1.1.dev.0

meta
Meta data for the Target that is passed directly to Target . meta.

__getitem__ (key)
Alias for FrameworkJoin._ getitem__ () onthe options.

add_framework (fw, local=False, front=False)
Adds the Framework “fw” to the builder and also to the target if “local” is False. The framework will be
appended to the end of the chain, thus is has the lowest priority unless you pass “front” to True.

Parameters
e fw — The framwork to add.

* local - If this is False, the framework will also be added to the target created by the
builder.

e front — If this is True, the framework will be added to the front of the frameworks list
and thus will be treated with high priority.

create_target (command, inputs=None, outputs=None, **kwargs)
Create a Target and return it.

Parameters
¢ command — The command-line for the Target.

* inputs — The inputs for the Target. If None, the TargetBuilder. inputs will be
used instead.

* outputs — THe outputs for the Target.

* kwargs — Additional keyword arguments for the Target constructor. Make sure that none
conflicts with the target dictionary.

Note: This function will yield a warning when there are any keys in the kwargs dictionary that have not
been read from the options.

expand_inputs (inputs)
Wrapper for expand_inputs () that will add the Frameworks extracted from the inputs to options
and frameworks.

fullname
The full name of the Target that is being built.

get (key, default=None)
Alias for FrameworkJoin.get ().

invalid_option (option_name, option_value=<object object>, cause=None)
Use this method in a rule function if you found the value of an option has an invalid option. You should
raise a ValueError on a fatal error instead.

log (level, *args, stacklevel=1, **kwargs)
Log function that includes the fullname.

merge (key)
Alias for FrameworkJoin.merge ().

mkname (name)
Create a unique target identifier which based on this target builders name and an incrementing index.

46 Chapter 2. Contents

https://docs.python.org/3/library/exceptions.html#ValueError

Craftr Documentation, Release 1.1.1.dev.0

setdefault (key, value)
Sets a value in the fwdefaults framework.

target
A dictonary of arguments that are set to the target after construction in create_target (). Can only
set attributes that are already attributes of the Target.

Deprecated since version Use: target_attrs instead.

write_command_file (arguments, suffix=None, always=False)
Writes a file to the CMDDIR folder in the build directory (ie. the current directory) that contains the
command-line arguments specified in arguments. The name of that file is the name of the Target that is
created with this builder. Optionally, a suffix for that file can be specified to be able to write multiple such
files. Returns the filename of the generated file. If always is set to True, the file will always be created
even if Session.export is set to False.

write_multicommand_file (commands, cwd=None, exit_on_error=True, suffix=None, al-

ways=False)
Write a platform dependent script that executes the specified commands in order. If exit_on_error is True,

the script will exit if an error is encountered while executing the commands.
Returns a list representing the command-line to run the script.
Parameters
* commands — A list of strings or command lists that are written into the script file.
* cwd - Optionally, the working directory to change to when the script is executed.

* exit_on_error — If this is True, the script will exit immediately if any command
returned a non-zero exit code.

* suffix — An optional file suffix. Note that on Windows, . cmd is added to the filename
after that suffix.

* always - If this is true, the file is always created, not only if a Ninja manifest is being
exported (see Session.export).

Returns A tuple of two elements. The first element is a command list that represents the com-
mand used to invoke the created script. The second element is the actual command file that
was written.

2.5.12 Framework Objects

class craftr.Framework (_Framework__fw_name=None, _Framework__init_dict=None, **kwargs)
A Framework represents a set of options that are to be taken into account by compiler classes. Eg. you might
create a framework that contains the additional information and options required to compile code using OpenCL
and pass that to the compiler interface.

Compiler interfaces may also add items to Target. frameworks that can be taken into account by other
target rules. expand_inputs () returns a list of frameworks that are being used in the inputs.

Use the FrameworkJoin class to create an object to process the data from multiple frameworks.
Parameters

e _ fw_name — The name of the Framework. If omitted, the assigned name of the calling
module will be used.

e __init_dict — A dictionary to initialize the Framework with.

* kwargs — Additional key/value pairs for the Framework.

2.5. APl Documentation 47

Craftr Documentation, Release 1.1.1.dev.0

2.5.13 FrameworkdJoin Objects

class craftr.FrameworkJoin (*frameworks)
This class is used to process a set of Frameworks and retreive relevant information from it. For some options,
you might want to read the first value that is specified in any of the frameworks, for another you may want to
create a list of all values in the frameworks. This is what the FrameworkJoin allows you to do.

Note: The FrameworkJoin does notuse expand_ frameworks () butuses the list of frameworks passed
to the constructor as-is.

>>> fwl = Framework ('fw2', defines=['DEBUG'])
>>> fw2 = Framework (defines=['DO _STUFFEF'])
>>> print (fw2.name)

'fw2'!
>>> FrameworkJoin (fwl, fw2) .merge('defines')
['DEBUG', 'DO_STUFF']

used_keys
A set of keys that have been accessed via __getitem__ (), get () and merge ().

frameworks
The list of Framework objects.

defaults
An additional framework that can be used to set default values. This framework will always be checked
last.

__iadd__ (frameworks)

get (key, default=None)
Get the first available value of key from the frameworks.

keys ()
Returns a set of all keys in all frameworks.

merge (key)
Merge all values of key in the frameworks into one list, assuming that every key is a non-string sequence
and can be appended to a list.

2.6 Craftr’'s Python Magic

Craftr uses some magic tricks behind the scenes to make the interface as convenient as possible. Most of the magic
comes from the craftr.magic module!

2.6.1 Proxies

Craftr uses the werkzeug. local module to provide the craftr.sessionand craftr.module proxies that
represent the current session and currently executed module respectively. This is how the craftr. Target con-
structor (and subsequently all functions that create a Target) knows in what module the target is being declared.

48 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

2.6.2 Target Name Deduction

Target names are automatically deduced from the variable name that the declared target is assigned to. This is enabled
by parsing the bytecode of the global stackframe of the current module. This is more convenient that writing the name
of the target twice by passing the name parameter to the craftr. Target constructor or a rule function.

objects = Target (

command = 'gcc $in -o Sout -c',
inputs = sources,
outputs = objects,

)

assert objects.name == 'objects'

Check the craftr.magic.get_assigned_name () function for details on the implementation of this feature.

2.6.3 Craftr RTS

The Craftr Runtime Server is a socket server that is started on a random port on the localhost when Craftr is started.
The craftr-rts-invoke command can connect to that server and execute Python functions in the original Craftr
process. The address of the server is saved in the CRAFTR_RTS environment variable. There are a few limitations to
this method:

* The execution phase can not be skipped when RTS is required

* You can not pipe into the craftr-rts—-invoke script

2.7 Changelog

2.7.1 v1.1.1

* Bug fixes
— Logging in Craftr RTS fails with Runtime Error (#104)
* Behaviour changes
— add __no_default target when there are no default targets, printing “no default target”
— removed default clean target, use —c or —cc command-line option
— catching craftr.ModuleError no longer prints the error text (#118)
* API related changes
— add frame and module argument to craftr.log()
— add Target.as_explicit ()

— add craftr.ext.platform.asmcompiler proxy

— craftr.memoize_tool () will be deprecated in the future and is now a synonym for
functools.lru_cache ()

— craftr.shell.run() now manually checks if the program exists and raises a
FileNotFoundError exception if it does not (only if shell=True)

— add craftr.utils.override environ ()

— add craftr.ext.rules.alias () function

2.7. Changelog 49

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/exceptions.html#FileNotFoundError

Craftr Documentation, Release 1.1.1.dev.0

— add craftr.TargetBuilder.mkname () method

— add craftr.TargetBuilder.setdefault () method

— add craftr.FrameworkJoin.defaults member

— add craftr.FrameworkJoin.iter_ frameworks () method

- movedcraftr.ext.compiler.BaseCompilertocraftr.ext.compiler.base.BaseCompiler,
backwards compatible import exists

— removed BaseCompiler._ getitem_ () and ~.__setitem__ ()
— add BaseCompiler.register_hook ()
— craftr.TargetBuilder.add_ framework () was updated

— replace craftr.utils.slotobject () with recordclass () (alias introduced for backwards
compatibility)

— craftr.utils is now a package, some name changes but backwards compatibility has been kept by
introducing aliases

- fix Proxy __name___ attribute always returning None instead of the underlying object’s member value
— fix craftr.path.buildlocal () now using project_name instead of __name_
- cc, cxx, 1d etc. are no longer proxies but real objects

e C/C++ related changes

— C/C++ compiler implementations now take debug option into account if no explicit value is passed to the
generator function

— removed ' clang’ as a compiler name

— added support for »«x_compile_remove_flags and xx*_link_remove_flags options where
* %+ can be msvc, 11vm and gcc

— add support for msvc_runtime_library and force_include options
— add support for 1ink_target output variable

* Cython related changes

add Cython tutorial to docs

Cython compiler program can now be overwritten with CYTHONC

add support for embed parameter to compile ()

add PythonInfo class
— add compile project () method
s craftr.ext.cmake

— renamed render_config () to configure_ file () to match the CMake naming and update pa-
rameter names

2.7.2 v1.1.0

e NEW: Tasks (replaces craftr.ext.rules.PythonTool)
— created with the new task () function/decorator

— can be specified on the command-line

50 Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

exported to the Ninja manifest

run through Craftr RTS

* huge file naming scheme changes (issue #95)

rename CraftfiletoCraftfile.py
rename .craftrctocraftrc.py

rename <some_module>.craftrtocraftr.ext.<some_module>.py

 Standard Library

remove craftr.ext.options module, use craftr.options instead (issue #97)

add support for msvc_runtime_library_option which can have the value ’dynamic’ or
"static’

remove craftr.ext.rules.PythonTool and rewrite ~. render_template ()
update compiler.cython documentation

fix missing foreach=True in CythonCompiler.compile ()

add craftr.ext.python module

fix —shared argument to LLVM/GCC . 1ink () rule (fix #109)

MSVC C++ compiler is now read from CXX variable instead of CC

Linux linker is now read from CC variable instead of CCLD

support for CFLAGS, CPPFLAGS, ASMFLAGS, LDFLAGS and LDLIBS (see issue #111)

Add craftr.ext.cmake module (issue #113)

¢ General

setup.py now uses entry_points to install console scripts (issue #94)

* Behaviour changes

automatically import targets specified on the command-line (issue #96)
catch possible PermissionError in CraftrImporter._rebuild_cache () (sha 16a6e307)
module and session context is now available when a task is executed (issue #99)

fix TargetBuilder.write_command_file (), now correctly returns the filename even if no file
is actually created

sophisticated target check on build-only invokation if RTS is required (and thus the execution step can not
be skipped) (issue #98)

new Craftr data caching method using JSON in the Ninja build manifest (also fixes #100) (issue #101)

Craftr RTS now works with task-targets, removed MSG_ARGUMENT and
_RequestHandler.arglist

functions wrapped with the task () decorator can now be specified on the command-line just like normal
targets (due to the fact that they are real targets also exported to the Ninja manifest)

if all targets specified on the command-line are tasks and do not depend on Ninja-buildable targets, the
task(s) will be executed without Ninja (issue #103)

if —e is not specified but the manifest does not exist, export will be forced unless the specified targets do
not require it (ie. are plain tasks) (see #103)

2.7. Changelog 51

Craftr Documentation, Release 1.1.1.dev.0

— calling Session.update () after altering Session.path is no longer necessary (issue #108)

e Command-line changes

inverted behaviour of —e!! Now causes skip of the export and eventually execution step (if possible), short
version of ——skip—-export

inverted behaviour of —b!! Now causes skip of the build phase, short version for ——skip-build

removed —f and —F command-line options completely (instead, tasks that do not depend on normal targets
can be executed without Ninja, see #103)

deprecated b flag, the build step is now always executed by default

add —n flag which is the inverse of the old —b flag, skip the build phase if specified

updated command help

passing —v will automatically add —v to the Ninja invokation

add —-buildtype option for which you can choose to pass the value standard (default) or

external

* API Changes

add task () decorator function

add TaskErr

TargetBuilder () now accepts None for its inputs parameter

or exception class

TargetBuilder () now has default values for the frameworks and kwargs parameters

removed options.get_option ()

options.get () now accepts a default parameter, updated its docstrings

passing Not Implemented for default to opt ions.get () now raises a KeyError if the option does

not exist

add option.

removed Session.update () (see issue #108)

get_bool ()

removed Session.rts_funcs

add Session
add Session
add Session
add Session
add Session
add Target.
add Target
add Target.
add Target.
add Target.
add Target

add Target.

.files_to_targets
.finalized

.finalize ()
.find_target_for_file()
.buildtype

rts_func

.requires

graph
finalize

finalized property

.get_rts_mode ()

execute_task ()

52

Chapter 2. Contents

Craftr Documentation, Release 1.1.1.dev.0

Targets can now also be tasks which will be executed through Craftr RTS by passing a callable to the
constructor for the command argument (you should prefer the task () function though)

add craftr.path.buildlocal () function

add craftr.shell.format () and ~. join () functions
— craftr.shell.run () now splits strings into a command list if the shell argument is False

* Logging

removed the craftr: [INFO] : prefix stuff

logging functions only display the source module when at least —v is specified

updated output coloring and debug message strings

stracktrace for log entries now skips builtin modules

2.7.3 v1.0.0

* initial release version

2.7. Changelog 53

Craftr Documentation, Release 1.1.1.dev.0

54 Chapter 2. Contents

CHAPTER 3

Getting Started

Craftr is built around Python-ish modules that we call Craftr modules or Craftfiles (though this name usually refers to
the first type of Craftr modules). There are two ways a Craftr module can be created:

1. Afile named Craftfile.py witha # craftr_module (...) declaration

2. Afile named craftr.ext.<module_name>.py where <module_name> is of course the name of your
Craftr module

By default, Craftr will execute the Craftfile.py from the current working directy if no different main module is
specified with the —m option. Below you can find a simple Craftfile that can build a C++ program on any platform
(that is supported by the Craftr STL).

craftr_module (my_project)
from craftr import path
from craftr.ext import platform

Create object files for each .cpp file in the src/ directory.

obj = platform.cxx.compile (
sources = path.glob('src/*.cpp'),
std = "c++11"',

Link all object files into an executable called "main".
program = platform.ld.link(

inputs = obj,

output

'main'

)

Below is a sample invokation on Windows. We pass the —v flag for additional debug output by Craftr and full
command-line output from Ninja.

A craftr -v

detected ninja v1.6.0

cd "build"

load 'craftr.ext.my_project'

(craftr.ext.my_project, line 9): unused options for compile(): {'std'}
exporting 'build.ninja'

$ ninja -v

[1/2] ¢l /nologo /c c:\users\niklas\desktop\test\src\main.cpp /Foc:\users\niklas\desktog
[2/2] link /nologo c:\users\niklas\desktop\test\build\my_project\obj\main.obj /OUT:c:\ug

A 1ls build build\my_project\
build:
build.ninja my_project/

55

\test\build\r
ers\niklas\dce

Craftr Documentation, Release 1.1.1.dev.0

build\my_project\:
main.exex obj/

56 Chapter 3. Getting Started

CHAPTER 4

Installation

pip install craftr-build

To install from the Git repository, use the —e flag to be able to update Craftr by simply pulling the latest changes from

the remote repository.

git clone https://github.com/craftr-build/craftr.git && cd craftr
pip install -e .

57

Craftr Documentation, Release 1.1.1.dev.0

58 Chapter 4. Installation

CHAPTER 5

Targets

Craftr describes builds with the craftr. Target class. Similar to rules in Makefiles, a target has input and output
files and a command to produce the output files. Note that in Craftr, targets can also represents 7asks which can be
used to embed real Python functions into the build graph.

Using the Target class directly is usually not necessary unless you have very specific requirements and need control
over the exact commands that will be executed. Or if you’re just being super lazy and need the easiest script to compile
a C program:

craftr_module (super_lazy)
from craftr import Target, path

main = Target (
command = 'gcc $in -o Sout',
inputs = path.local(['src/main.c', 'src/util.c']),
outputs = 'main'

)

The substition of $in and $out is conveniently done by Ninja.

$ craftr .main
[1/1] gcc /home/niklas/Desktop/example/src/main....til.c -o /home/niklas/Desktop/examplg

»/build/main

59

https://github.com/ninja-build/ninja

Craftr Documentation, Release 1.1.1.dev.0

60 Chapter 5. Targets

CHAPTER 6

Tasks

Tasks were initially designed as functions doing convenient operations that can be invoked from the command-line,
they can also be used to export any function as a “command” to the Ninja manifest and have the production of output
files implemented in Python.

A common use-case for tasks is to generate an archive from the build products to have it ready for distribution. Below
you can find a simple example using the archive and git extension modules:

#craftr_module (myapp)
from craftr import path, task, info
from craftr.ext import archive, git, platform

git = git.Git (project_dir)

obj = platform.cc.compile (sources = path.glob('src/*.c'))

bin = platform.ld.linkn (inputs = obj, output = 'myapp')

@task (requires = [bin])

def archive():
archive = Archive (prefix = 'myapp—{}'.format (git.describe()))
archive.add('res') # Add a directory to the archive

archive.add (bin.outputs) # Add the produced binary
archive.save ()
info('archive saved: {!r}'.format (archive.name))

Note: Craftr is clever enough to run a task directly if it doesn’t need any Ninja targets to be built before it can be
executed. For example, the following task via craftr .hello

@task
def hello():
info('Hello, World!")

See also:

Tasks invoked by Ninja are executed through the Craftr RTS.

61

Craftr Documentation, Release 1.1.1.dev.0

62 Chapter 6. Tasks

CHAPTER 7

Generator Functions

Most of the time you don’t want to be using 7argets directly but instead use functions to produce them with a high-level
interface. It is sometimes useful to create such a target generator function first and then use it to reduce the complexity
of the build script.

The Craftr standard library provides an extensive set of functions and classes that generate targets for you, most notably
the C/C++ compiler toolsets.

See also:

Since C/C++ builds are very complex and strongly vary between platforms, Craftr defines a standard interface for
compiling C/C++ source files as well as the linking and archiving steps.

* Platform Interface

* C/C++ Compiler Interface
e Linker Interface

e Archiver Interface

Functions that generate targets use the craftr. TargetBuilder that does a lot of useful preprocessing and, as
the name suggests, make building 7argets much easier.

63

Craftr Documentation, Release 1.1.1.dev.0

64 Chapter 7. Generator Functions

CHAPTER 8

Frameworks

The craftr.Framework is in fact just a dictionary (with an additional name attribute) that represents a set of
options for anything build related. How the data is interpreted depends on the generator function.

Frameworks are useful for grouping build information. They were designed for C/C++ builds but may find other uses
as well. For example, there might be a framework for a C++ library that specifies the include paths, preprocessor
definitions, linker search path and other libraries required for the library to be used in a C++ application.

For example, the Craftfile for a header-only C++ library might look as simple as this:

from craftr import Framework, path
from craftr.ext.libs.some_library import some_library
my_library = Framework (

frameworks = [some_library],
include = [path.local('include')],
libs = ['zip'],

)

As you can see in the example above, frameworks can also be nested.

Targets there were generated by helper functions (as described in the Generator Functions section) list up the frame-
works that have been used to produce the target in the Target . frameworks attribute. Passing a target directly as
input to another generator function will automatically inherit the frameworks of that target!

fw = Framework (
include = [path.local ('vendor/include'),
libpath = [path.local ('vendor/lib'")],
libs = ['vendorlibl', 'vendorlib2']

)

obj = cc.compiler (
sources = path.glob('src/*.c'"),
frameworks = [fw]

bin = 1d.link(
inputs = obj
we don't need to specify "fw" again, it is inherited from "obj"

65

Craftr Documentation, Release 1.1.1.dev.0

66 Chapter 8. Frameworks

CHAPTER 9

Build Options

Options for the build process are entirely read from environment variables. The craftr.options.get () function
is a convenient method to read the options from the environment.

In Craftr, options can be specified local for a module or globally for all modules. A local option is actually prefixed
by the full name of the Craftr module.

#craftr_module (app)

from craftr import options

name = options.get ('name’)

debug = options.get_bool ('debug')

info('Hello {}, you want a {} build?'.format (name, 'debug' if debug else 'release'))

The options can be specified locally using the following methods:

craftr -D.name="John Doe" -D.debug
craftr -Dapp.name="John Doe" -Dapp.debug
app.name="John Doe" app.debug="true" craftr # assuming your shell supports this syntasx

They can be set globally like this:

craftr -Dname="John Doe" -Ddebug
name="John Doe" debug="true" craftr # assuming your shell supports this syntax

Options and environment variables can also be set from craftrc.py files.

Oh, and say hello to John!

Hello John Doe, you want a debug build?

67

Craftr Documentation, Release 1.1.1.dev.0

68 Chapter 9. Build Options

cHAPTER 10

craftrc.py Files

Before anything, Craftr will execute a craftrc.py file if any exist. This file can exist in the current working
directory and/or the users home directory. Both will be executed if both exist! You can prevent Craftr from executing
these files by passing ——no-rc. You can also tell it to execute a specific file with the ——rc parameter (can be
combined).

This file is not executed in a Craftr module context and hence should not declare any targets, but it can be used to set
up environment variables and options.

For example, for using the craftr.ext.qt5 module on Windows, you could use this craftrc.py file in the home
directory to let the Craftr QtS module know where the Qt5 headers and libraries are located.

from os import environ
if 'Qt5Path' not in environ:
environ['Qt5Path'] = 'D:\\1ib\\0t\\5.5\\msvc2013_64"

Note that you can still specify a different Qt 5Path via the command line that will override the value set in the
craftrc.py file because the environment variables are set in the following order:

1. Variables from the parent process/shell
Variables prefixed on the command-line (like VAR=VALUE craftr ...) if your shell supports it
craftrc.py files that modify the craftr.environ

Options passed via the -D, —-—-define command-line parameter

A

Craftr modules that modify the craftr.environ

69

https://github.com/craftr-build/qt5

Craftr Documentation, Release 1.1.1.dev.0

70 Chapter 10. craftrc.py Files

CHAPTER 11

Colorized Output

Craftr colorizes output by default if it is attached to a TTY. If it is not but colorized output is still desired,
CRAFTR_ISATTY can be set to true in the environment. Also, colorized output can be disabled by setting the
variable to false instead. For any other value, default behaviour applies.

71

Craftr Documentation, Release 1.1.1.dev.0

72 Chapter 11. Colorized Output

CHAPTER 12

Debugging

Not only can you debug your Craftr build scripts with the pdb module, but you can also increase the verbosity level
for more verbose output. This is very useful for tracing down warnings or locations of errors in the output, eg.:

A craftr —--skip-build
you really shouldn't do it that way!

To find the location of that line, we can pass —v.

A craftr —--skip-build -v

detected ninja v1.6.0

cd "build"

load 'craftr.ext.test'

(craftr.ext.test, line 4): you really shouldn't do it that way!
exporting 'build.ninja'

Now if you’re really having trouble finding out how the Python script actually gets there, you can enable a stacktrace
with each line that is output with —vv.

A craftr —--skip-build -vv

detected ninja v1.6.0

cd "build"

load 'craftr.ext.test'

(craftr.ext.test, line 4): you really shouldn't do it that way!
In <module> (F:\Python34\Scripts\craftr-script.py, line 9)

In main() (c:\users\niklas\repos\craftr-build\craftr\craftr__main__.py, line 256)
In import_module () (f:\python34\lib\importlib__init__ .py, line 109)
In load_module () (c:\users\niklas\repos\craftr-build\craftr\craftr\ext.py, line 245)

In <craftr.ext.test> (Craftfile.py, line 4)
exporting 'build.ninja'

This output is also nicely colorized if you’re in a terminal that supports ANSI color codes.

73

https://docs.python.org/3/library/pdb.html#module-pdb

Craftr Documentation, Release 1.1.1.dev.0

74 Chapter 12. Debugging

CHAPTER 13

Additional Links

¢ Craftr extension modules

* Projects using Craftr

75

https://github.com/craftr-build/craftr/wiki/Craftr-Extensions
https://github.com/craftr-build/craftr/wiki/Projects-using-Craftr

Craftr Documentation, Release 1.1.1.dev.0

76 Chapter 13. Additional Links

CHAPTER 14

Indices and tables

¢ genindex
* modindex

e search

77

Craftr Documentation, Release 1.1.1.dev.0

78 Chapter 14. Indices and tables

Python Module Index

C

craftr,

craftr.
craftr.
.ext.cmake, 9
craftr.
craftr.
craftr.
craftr.
.ext.compiler.cython, 11
craftr.
craftr.
craftr.
craftr.
.ext.compiler.msvc, 16
craftr.
craftr.
craftr.
craftr.
.ext.platform, 20
craftr.

craftr

craftr

craftr

craftr

craftr.
craftr.
craftr.
.ext .python, 21
craftr.

craftr

craftr.
craftr.
craftr.
craftr.
craftr.
craftr.

32
ext, 32
ext.archive, 8

ext.compiler, 9
ext.compiler._base, 10
ext.compiler.base, 10
ext.compiler.csc, 11

ext.compiler.flex, 12
ext.compiler.gcc, 13

ext.compiler. java, 13
ext.compiler.llvm, I3

ext.compiler.nvce, 19
ext.compiler.protoc, 19
ext.compiler.yacc, 19
ext.git, 19

ext.platform.cygwin, 21
ext.platform.darwin, 21
ext.platform.linux, 21
ext.platform.win32, 21

ext.rules, 21
ext.unix, 23
options, 32
path, 33
shell, 35
utils, 36
utils.regex, 37

79

Craftr Documentation, Release 1.1.1.dev.0

80 Python Module Index

Index

Symbols

__getitem__ () (craftr. TargetBuilder method), 46
__idadd__() (craftr.FrameworkJoin method), 48
__Ishift__() (craftr.Target method), 43

A

add() (craftr.ext.archive. Archive method), 8
add_framework() (craftr. TargetBuilder method), 46
addprefix() (in module craftr.path), 33
addsuffix() (in module craftr.path), 33
alias() (in module craftr.ext.rules), 21
append_path() (in module craftr.utils), 37
Ar (class in craftr.ext.unix), 23

ar (in module craftr.ext.platform), 21
Archive (class in craftr.ext.archive), 8
archiver.staticlib() (built-in function), 26
as_explicit() (craftr. Target method), 43

asm (in module craftr.ext.platform), 20
autoglob() (in module craftr.path), 33

B

BaseCompiler (class in craftr.ext.compiler.base), 10

branch() (craftr.ext.git.Git method), 20

branches() (craftr.ext.git.Git method), 20

builder() (craftr.ext.compiler.base.BaseCompiler
method), 11

buildlocal() (in module craftr.path), 33

buildtype (craftr.Session attribute), 40

C

CalledProcessError, 36

caller (craftr.TargetBuilder attribute), 45

cc (in module craftr.ext.platform), 20

command (craftr. Target attribute), 42

commonpath() (in module craftr.path), 33

compile() (craftr.ext.compiler.csc.CSCompiler method),
11

compile() (craftr.ext.compiler.cython.CythonCompiler

method), 11

(craftr.ext.compiler.flex.FlexCompiler
method), 12
(craftr.ext.compiler.java.JavaCompiler
method), 13
(craftr.ext.compiler.llvm.LlvmCompiler
method), 14
(craftr.ext.compiler.msvc.MsvcCompiler
method), 17
(craftr.ext.compiler.nvcc.NvecCompiler
method), 19
(craftr.ext.compiler.protoc.ProtoCompiler
method), 19
(craftr.ext.compiler.yacc. YaccCompiler
method), 19

compile()
compile()
compile()
compile()
compile()
compile()

compile()

compile_project() (craftr.ext.compiler.cython.CythonCompiler

method), 12
compiler.compile() (built-in function), 25
CompletedProcess (class in craftr.shell), 36
conf (craftr.ext.compiler.cython.PythonInfo attribute), 12
ConfigResult (class in craftr.ext.cmake), 9
configure_file() (in module craftr.ext.cmake), 9
craftr (module), 32
craftr.ext (module), 32
craftr.ext.archive (module), 8
craftr.ext.cmake (module), 9
craftr.ext.compiler (module), 9
craftr.ext.compiler._base (module), 10
craftr.ext.compiler.base (module), 10
craftr.ext.compiler.csc (module), 11
craftr.ext.compiler.cython (module), 11
craftr.ext.compiler.flex (module), 12
craftr.ext.compiler.gcc (module), 13
craftr.ext.compiler.java (module), 13
craftr.ext.compiler.llvm (module), 13
craftr.ext.compiler.msvc (module), 16
craftr.ext.compiler.nvce (module), 19
craftr.ext.compiler.protoc (module), 19
craftr.ext.compiler.yacc (module), 19
craftr.ext.git (module), 19
craftr.ext.platform (module), 20
craftr.ext.platform.cygwin (module), 21

81

Craftr Documentation, Release 1.1.1.dev.0

craftr.ext.platform.darwin (module), 21
craftr.ext.platform.linux (module), 21
craftr.ext.platform.win32 (module), 21
craftr.ext.python (module), 21

craftr.ext.rules (module), 21

craftr.ext.unix (module), 23

craftr.options (module), 32

craftr.path (module), 33

craftr.shell (module), 35

craftr.utils (module), 36

craftr.utils.regex (module), 37
craftr_min_version() (in module craftr), 39
CraftrImporter (class in craftr.ext), 32
CraftrLoader (class in craftr.ext), 32
create_target() (craftr. TargetBuilder method), 46
CSCompiler (class in craftr.ext.compiler.csc), 11
cwd (craftr.Session attribute), 39

cxx (in module craftr.ext.platform), 20
CYGWIN (in module craftr.ext.platform), 21
cythonc (in module craftr.ext.compiler.cython), 12
CythonCompiler (class in craftr.ext.compiler.cython), 11

D

DARWIN (in module craftr.ext.platform), 21
debug() (in module craftr), 38

defaults (craftr.FrameworkJoin attribute), 48
depfile (craftr. Target attribute), 42

deps (craftr. Target attribute), 42

describe() (craftr.ext.git.Git method), 20
description (craftr. Target attribute), 42

detect() (in module craftr.ext.compiler.gcc), 13
detect() (in module craftr.ext.compiler.llvm), 13
detect() (in module craftr.ext.compiler.msvc), 16
detect_compiler() (in module craftr.ext.compiler), 9

E

env (craftr.Session attribute), 39

error() (in module craftr), 38

exclude() (craftr.ext.archive.Archive method), 8
exec_if_exists() (craftr.Session method), 40
execute_task() (craftr.Target method), 43
expand_frameworks() (in module craftr), 39
expand_inputs() (craftr. TargetBuilder method), 46
expand_inputs() (in module craftr), 39

explicit (craftr. Target attribute), 43

export (craftr.Session attribute), 40
ext_importer (craftr.Session attribute), 40

F

files_to_targets (craftr.Session attribute), 40
finalize() (craftr.Session method), 40

finalize() (craftr. Target method), 44

finalized (craftr.Session attribute), 40

find_module() (craftr.ext.CraftrImporter method), 32

find_program() (in module craftr.shell), 35

find_target_for_file() (craftr.Session method), 40

flatten() (in module craftr.utils), 36

FlexCompiler (class in craftr.ext.compiler.flex), 12

foreach (craftr. Target attribute), 42

fork() (craftr.ext.compiler.base.BaseCompiler method),
11

format() (in module craftr.shell), 35

Framework (class in craftr), 47

FrameworkJoin (class in craftr), 48

frameworks (craftr.FrameworkJoin attribute), 48

frameworks (craftr.Target attribute), 43

frameworks (craftr.TargetBuilder attribute), 45

fullname (craftr. Target attribute), 44

fullname (craftr. TargetBuilder attribute), 46

fw (craftr.ext.compiler.cython.PythonInfo attribute), 12

G

GcecCompiler (class in craftr.ext.compiler.gec), 13

gen_objects() (in module craftr.ext.compiler), 10

gen_output() (in module craftr.ext.compiler), 10

gen_output_dir() (in module craftr.ext.compiler), 9

get() (craftr.FrameworkJoin method), 48

get() (craftr. TargetBuilder method), 46

get() (in module craftr.options), 32

get_bool() (in module craftr.options), 33

get_class_files() (in module craftr.ext.compiler.java), 13

get_long_path_name() (in module craftr.path), 33

get_module_ident() (in module craftr.ext), 32

get_opencl_context() (craftr.ext.compiler.nvcc.NvecCompiler
method), 19

get_opencl_framework() (craftr.ext.compiler.nvec.NvccCompiler
method), 19

get_proto_meta() (in module craftr.ext.compiler.protoc),
19

get_python_config_vars() (in module craftr.ext.python),
21

get_python_framework() (in module craftr.ext.python),
21

get_rts_mode() (craftr.Target method), 44

get_version() (craftr.ext.compiler.java.JavaCompiler
method), 13

get_vs_environment() (in
craftr.ext.compiler.msvc), 16

get_vs_install_dir() (in module craftr.ext.compiler.msvc),
16

Git (class in craftr.ext.git), 20

glob() (in module craftr.path), 33

graph (craftr. Target attribute), 43

implicit_deps (craftr.Target attribute), 42
import_file() (craftr.ext.CraftrImporter method), 32
import_file() (in module craftr), 39

module

82

Index

Craftr Documentation, Release 1.1.1.dev.0

import_module() (in module craftr), 39

info() (in module craftr), 38

inputs (craftr. Target attribute), 42

inputs (craftr. Target.Graph attribute), 43

inputs (craftr. TargetBuilder attribute), 45
invalid_option() (craftr. TargetBuilder method), 46
isglob() (in module craftr.path), 34

items() (craftr.utils.recordclass_base method), 37
iter_tree() (in module craftr.path), 34

J

JavaCompiler (class in craftr.ext.compiler.java), 13
join() (in module craftr.shell), 35

K

keys() (craftr.FrameworkJoin method), 48
keys() (craftr.utils.recordclass_base method), 37
kwargs (craftr. TargetBuilder attribute), 45

L

Ld (class in craftr.ext.unix), 23

1d (in module craftr.ext.platform), 20

link() (craftr.ext.compiler.llvm.LlvmCompiler method),
15

link() (craftr.ext.compiler.msvc.MsvcLinker method), 18

link() (craftr.ext.unix.Ld method), 23

linker.link() (built-in function), 25

LINUX (in module craftr.ext.platform), 21

listdir() (in module craftr.path), 34

LlvmCompiler (class in craftr.ext.compiler.llvm), 14

load_module() (craftr.ext.CraftrLoader method), 32

local() (in module craftr.path), 34

log() (craftr.TargetBuilder method), 46

M

major_version (craftr.ext.compiler.cython.PythonInfo at-
tribute), 12

make_jar() (craftr.ext.compiler.java.JavaCompiler
method), 13

makedirs() (in module craftr.path), 34

merge() (craftr.FrameworkJoin method), 48

merge() (craftr.TargetBuilder method), 46

meta (craftr. Target attribute), 43

meta (craftr. TargetBuilder attribute), 45

mkname() (craftr.TargetBuilder method), 46

module (craftr. Target attribute), 41

module (craftr. TargetBuilder attribute), 45

module (in module craftr), 37

modules (craftr.Session attribute), 39

move() (in module craftr.path), 34

msvc_deps_prefix (craftr. Target attribute), 42

MsvcAr (class in craftr.ext.compiler.msvc), 18

MsvcCompiler (class in craftr.ext.compiler.msvc), 17

MsvcLinker (class in craftr.ext.compiler.msvc), 18
MsvcSuite (class in craftr.ext.compiler.msvc), 19

N

name (craftr.ext.compiler.cython.CythonCompiler at-
tribute), 12

name (craftr.ext.compiler.gcc.GecCompiler attribute), 13

name (craftr.ext.compiler.llvm.LlvmCompiler attribute),
16

name (craftr.ext.compiler.msvc.MsvcAr attribute), 19

name (craftr.ext.compiler.msvc.MsvcCompiler attribute),
18

name (craftr.ext.compiler.msvc.MsvcLinker attribute), 18

name (craftr.ext.unix.Ar attribute), 23

name (craftr.ext.unix.Ld attribute), 24

name (craftr.ext.unix.Objcopy attribute), 24

name (craftr. Target attribute), 41

name (craftr. TargetBuilder attribute), 45

normpath() (in module craftr.path), 34

NvccCompiler (class in craftr.ext.compiler.nvcc), 19

O

Objcopy (class in craftr.ext.unix), 24

objcopy() (craftr.ext.unix.Objcopy method), 24
on_context_enter() (craftr.Session method), 41
on_context_leave() (craftr.Session method), 41
options (craftr. TargetBuilder attribute), 45
order_only_deps (craftr. Target attribute), 42
outputs (craftr. Target attribute), 42

outputs (craftr. Target.Graph attribute), 43
override_environ() (in module craftr.utils), 37

P

path (craftr.Session attribute), 39

pipe() (in module craftr.shell), 36

pkg_config() (in module craftr.ext.unix), 23
platform.bin() (built-in function), 25

platform.dll() (built-in function), 25
platform.get_tool() (built-in function), 25
platform.lib() (built-in function), 25
platform.name (built-in variable), 24
platform.obj() (built-in function), 24
platform.standard (built-in variable), 24

pool (craftr. Target attribute), 42

prepend_path() (in module craftr.utils), 37
ProtoCompiler (class in craftr.ext.compiler.protoc), 19
PythonlInfo (class in craftr.ext.compiler.cython), 12

Q

quote() (in module craftr.shell), 35

R

recordclass() (in module craftr.utils), 37

Index

83

Craftr Documentation, Release 1.1.1.dev.0

recordclass_base (class in craftr.utils), 37

register_hook() (craftr.ext.compiler.base.BaseCompiler
method), 11

register_target() (craftr.Session method), 41

relpath() (in module craftr.path), 34

remove_flags() (in module craftr.ext.compiler), 10

rename() (craftr.ext.archive.Archive method), 8

render_template() (in module craftr.ext.rules), 22

requires (craftr. Target attribute), 42

return_() (in module craftr), 39

rmvsuffix() (in module craftr.path), 34

RTS_Mixed (craftr. Target attribute), 43

RTS_None (craftr. Target attribute), 43

RTS_Plain (craftr. Target attribute), 43

run() (in module craftr.ext.rules), 22

run() (in module craftr.shell), 36

S

safe (class in craftr.shell), 35

save() (craftr.ext.archive.Archive method), 8

search_get_groups() (in module craftr.utils.regex), 37

server (craftr.Session attribute), 40

server_bind (craftr.Session attribute), 40

Session (class in craftr), 39

session (in module craftr), 37

setdefault() (craftr.TargetBuilder method), 46

setsuffix() (in module craftr.path), 34

settings (craftr.ext.compiler.base.BaseCompiler attribute),
11

silent_remove() (in module craftr.path), 35

split_path() (in module craftr.path), 35

start_server() (craftr.Session method), 41

staticlib() (craftr.ext.compiler.msvc.MsvcAr method), 19

staticlib() (craftr.ext.unix.Ar method), 23

status() (craftr.ext.git.Git method), 20

strace_depth (craftr.Session attribute), 40

T

Target (class in craftr), 41

target (craftr. TargetBuilder attribute), 47
Target.Graph (class in craftr), 43

target_attrs (craftr. TargetBuilder attribute), 45
TargetBuilder (class in craftr), 44

targets (craftr.Session attribute), 40

task() (in module craftr), 38

tempfile (class in craftr.path), 35
test_program() (in module craftr.shell), 36
TimeoutExpired, 36

ToolDetectionError (class in craftr.ext.compiler), 10

U

uniquify() (in module craftr.utils), 36
update() (craftr.ext.CraftrImporter method), 32
used_keys (craftr.FrameworkJoin attribute), 48

\Y

values() (craftr.utils.recordclass_base method), 37
var (craftr.Session attribute), 40
verbosity (craftr.Session attribute), 40

W

warn() (in module craftr), 38

WIN32 (in module craftr.ext.platform), 21

write_command_file() (craftr. TargetBuilder method), 47

write_multicommand_file() (craftr. TargetBuilder
method), 47

Y

YaccCompiler (class in craftr.ext.compiler.yacc), 19

84

Index

	Requirements
	Contents
	Getting Started
	Installation
	Targets
	Tasks
	Generator Functions
	Frameworks
	Build Options
	craftrc.py Files
	Colorized Output
	Debugging
	Additional Links
	Indices and tables
	Python Module Index

