

Welcome to CPy2Py’s documentation!

The purpose of cpy2py is to run a single application across multiple Python interpreters.
This allows for portability of old code, as well as compatibility across implementations.

While cpy2py strives for usability, it uses some advanced techniques under the hood.
The documentation thus covers several different

	Practical Introduction to using cpy2py

	Examples and Demonstrators using cpy2py

	Readme and Overview

The working principles and usage are described in the following topical pages:

	Using Objects in CPy2Py

	Using Functions in CPy2Py

Indices and tables

	Index

	Module Index

	Search Page

Index

 C
 | E
 | K
 | N
 | P
 | T

C

 	
 	CPY2PY_DEBUG

E

 	
 	
 environment variable

 	CPY2PY_DEBUG

 	PYTHONOPTIMIZE

K

 	
 	kernel

N

 	
 	Native Twin

P

 	
 	Proxy Twin

 	
 	PYTHONOPTIMIZE

T

 	
 	Twin Object

 	twinfunction

 	
 	Twins

 	Twinterpreters

CPy2Py

[image: PyPI Package] [https://pypi.python.org/pypi/cpy2py] [image: Code Health] [https://landscape.io/github/maxfischer2781/cpy2py/master] [image: Test Health] [https://travis-ci.org/maxfischer2781/cpy2py] [image: Code Coverage] [https://codecov.io/gh/maxfischer2781/cpy2py]

Multi-intepreter execution environment

cpy2py allows multiple interpreters to act as one application. In parallel
to the main interpreter, other interpreters are run to execute parts of
the application.

Table of Contents

	CPy2Py

	Quick Guide

	Current Status

Quick Guide

To connect two interpreters using cpy2py, it must be installed in both of them.
For example, to use CPython and PyPy in a single application, make sure the package is available to them:

python -m pip install cpy2py --user
pypy -m pip install cpy2py --user

Twinterpreters and TwinMasters

A twinterpreter is simply another interpreter running as a subprocess -
with some glue and magic sprinkled on it. You can control and create them
using a cpy2py.TwinMaster.

You should only ever worry about two methods: TwinMaster.start()
launches the twinterpreter. TwinMaster.execute() executes
an arbitrary callable in the twinterpreter.

from cpy2py import TwinMaster
from my_module import my_function
twinterpreter = TwinMaster('pypy')
twinterpreter.start()

if __name__ == "__main__":
 twinterpreter.execute(my_function, 1, 2, 3, 'ka-pow!', doctor="who?")

TwinObjects

The real power of cpy2py are Twins - objects living in one
twinterpreter and being represented by proxies in any other interpeter.
Using twins, you can seamlessly split your application across multiple
twinterpreters.

You create twins by inheriting from
cpy2py.TwinObject instead of object [https://docs.python.org/3/library/functions.html#object] and
setting a __twin_id__. That’s it.

from cpy2py import TwinObject
class SuperComputer(TwinObject):
 __twin_id__ = 'pypy' # makes class native to pypy twinterpeter

 def megaloop(self, x, y):
 return sum(a+b for a in range(x) for b in range(y))

class CWrapper(TwinObject):
 __twin_id__ = 'python' # makes class native to python twinterpeter

 def callme(self, who, what="buy milk"):
 return some_clib.c_fcn_cll_cplx_xmpl(who, what)

If you don’t set __twin_id__ on a child of
cpy2py.TwinObject,
the class will always be native to the main interpreter. Handy for all
the stuff that’s needed everywhere but really doesn’t belong anywhere.

	note

	At the moment, you have to explicitly start a class’s native
twinterpreter before instantiating the class. Only the main
interpreter is always available, of course.

TwinFunctions

Instead of full-fletched objects, you can also define functions as twins.
These are automatically called in their native twinterpreter.

from cpy2py import twinfunction

@twinfunction('pypy')
def superlooper(count=1000, add=3, start=0):
 for _ in range(count):
 start += add
 return add

print(superlooper(int(1E6), 1))

	note

	A cpy2py.twinfunction() is a regular function wrapping a
callable. Unlike a cpy2py.TwinObject, it will not pass
attribute assignments.

Debugging

The core of cpy2py supports some logging [https://docs.python.org/3/library/logging.html#module-logging] facilities.
All such loggers are children of the __cpy2py__ logger. By default,
no active handlers are attached and propagation is disabled. If needed,
you reconfigure them like any other logging [https://docs.python.org/3/library/logging.html#module-logging] logger to suit your
needs.
Note that if python is run with the -O flag, several logging calls are
skipped entirely to improve performance.

For small scale debugging, one can set the environment variable
CPY2PY_DEBUG. If it is defined and not empty, logging output
is written to stderr. In addition, if it names a valid logging [https://docs.python.org/3/library/logging.html#module-logging]
level, that logging level is used.

Note that loggers are meant for development and only address the internal
state. Your application should not depend on this information. Unless
cpy2py misbehaves (or you suspect it to), ignore its logging.

Current Status

CPy2Py is stable at its core, but still has some features missing.
What’s there is more than sufficient to significantly enhance your applications.

Features

	Seamlessly integrates into python code.

	All internals are wrapped away behind the plain python interfaces.
No eval, exec or code strings required.

	Lightweight hooks optimize objects and functions for use with cpy2py.

	If needed, any pickle’able callable can be dispatched to another interpreter.

	Objects natively integrate with twinterpreters.

	Objects can live in a specific interpreter, with proxies replacing them in others.
Classes and instances transparently interact with cpy2py in the background.

	Both class and instance attributes work as expected.
Methods, classmethods, staticmethods and descriptors are fully supported.

	Inheritance is fully supported, including multiple inheritance.
Affiliation to interpreters can be changed freely.

	A wide range of interpeters is supported.

	Pure python, no dependencies means perfect portability.

	Any interpreter compatible with python 2.6 to 3.7 is supported.

	Virtual Environments work out of the box.

	Tested with cpython and pypy, on Linux and Mac OSX.

Gotchas/Limitations

	Importing functions and classes from __main__ may fail if the module can only be imported via its path.

	By default, calls across interpreters are blocking and not threadsafe.
If recursion switches between twinterpreters, cpy2py.TwinMaster must use the 'async' kernel.

	Module level settings are not synchronized.
For example, configuration of logging [https://docs.python.org/3/library/logging.html#module-logging] is not applied to twinterpreters.
Use TwinGroupState for initialisation,
write modules aware of twinterpreters, or use immutable module-level initializers.

	A weakref [https://docs.python.org/3/library/weakref.html#module-weakref] to objects only takes local references into account, not cross-interpreter references.

Performance

Dispatching to another twinterpreter adds about 200 - 300 us of overhead.
This is mainly due to serialization for the IPC between the interpreters.
Using the asynchronous kernel, there is an additional overhead for creating threads.

In general, twinterpreters get faster the shorter they have to wait between requests.
pypy twinterpreters benefit from a high number of requests, allowing their JIT to warm up.
Python3 connections are the fastest, provided that both twinterpreters support pickle protocol 4.

A notable fraction of time is spent on debugging output via logging [https://docs.python.org/3/library/logging.html#module-logging].
Even if no output is produced, cpy2py is optimized to a point where the logging call is noticeable.
If needed, any per-call logging can be disabled by running python in optimized mode.
See the python documentation on the -O [https://docs.python.org/3/using/cmdline.html#cmdoption-o] option and PYTHONOPTIMIZE [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONOPTIMIZE] environment variable.

You can benchmark the overhead yourself using the cpy2py_benchmark tools.

	pypy2

	15x15k

	30x5k

	300x1

	pypy2

	187 ± 1.5 us

	228 ± 2.5 us

	505 ± 51.8 us

	pypy3

	165 ± 1.3 us

	209 ± 2.4 us

	402 ± 8.0 us

	python2.7

	178 ± 0.6 us

	139 ± 0.3 us

	239 ± 7.6 us

	python3.4

	149 ± 0.4 us

	118 ± 0.2 us

	258 ± 8.0 us

Definitions and Terms

	Twins

	Twins are a group of entities created from the same code.
Each twin appears and acts indistinguishable from its siblings.
Together, they represent a single logical entity.

	Twinterpreters

	A group of interpreters acting as one to run a single program.
Each twinterpreter runs only a portion of the program.
However, the twinterpreters interact to create a single runtime environment.

	Twin Object

	Twins representing an entire object [https://docs.python.org/3/library/functions.html#object] as their logical entity.
In each twinterpreter, at least one TwinObject exists for a given object [https://docs.python.org/3/library/functions.html#object].
Each TwinObject exposes the same attributes, methods and features as its siblings.
However, there is only one Native Twin representing the actual object.
All other twins are :term:`Proxy Twin`s.

	Native Twin

	The twin holding the actual data and methods of a Twin Object group.
It is native to a twinterpreter, which stores its data and executes code.
For the most part, the Native Twin acts like a regular object [https://docs.python.org/3/library/functions.html#object].
However, it is known to its Proxy Twin`s and lives as long as any :term:`Proxy Twin is alive.

	Proxy Twin

	A twin taking the place of a Native Twin in a non-native twinterpreter.
When interacting with a Proxy Twin, those actions are implicitly relayed to the Native Twin.
Client code need not care about the nature of a Proxy Twin - it is a full-fledged paceholder of its twin.

	twinfunction

	A lightweight relative of Twin Object for callables.
Calling a twinfunction follows the same semantics as any operation on a Twin Object.

	kernel

	The underlying connection between two twinterpreter.
Each kernel handles the communication at process level, and provides delegation of primitive commands.

Using Functions in CPy2Py

Functions are lightweight, callable cousing of objects:

	plain functions, behaving like object [https://docs.python.org/3/library/functions.html#object] instances

	twinfunction(), behaving like TwinObject

Normal functions live separately in each twinterpreter, and passing them between twinterpreters creates clones.
A twinfunction() can be passed around transparently;
unlike a TwinObject, this only affects its nature as being callable.
Other actions, such as assigning attributes, are not transparent across twinterpreters.

Magic Keys and Reserved Attributes

To keep track of state across several processes, cpy2py uses magic elements.
Some of them are useful to manually define, some for introspection, and some only used internally.

Magic Keys for Manual Definition

	cpy2py.TwinObject.__twin_id__

	cpy2py.kernel_state.TWIN_ID

	cpy2py.kernel_state.MASTER_ID

Other Magic Keys

	:py:envvar: __CPY2PY_TWIN_ID__

	:py:envvar: __CPY2PY_MASTER_ID__

Internal Magic Keys

	cpy2py.proxy.proxy_object.TwinObject.__instance_id__

	cpy2py.proxy.proxy_object.TwinObject.__import_mod_name__

	cpy2py.proxy.proxy_object.TwinObject.__is_twin_proxy__

Using Objects in CPy2Py

There are two types of objects as far as CPy2Py is concerned:

	plain classes derived from object [https://docs.python.org/3/library/functions.html#object]

	twin classes derived from TwinObject

The difference is in how objects behave when passed between twinterpreters.
Plain objects are copied (pass-by-value), while twin objects preserve their identity (pass-by-object/reference).
Since the former is not how Python usually handles objects, this may lead to unexpected side-effects.

Working with TwinObject

CPy2Py’s baseclass TwinObject behaves like object [https://docs.python.org/3/library/functions.html#object] whenever possible.
Both are meant to be used as the baseclass for custom classes.
When not using twinterpreters, the two lead to the same behaviour.

class RegularObject(object):
 def foo(self):
 return 2

class CPy2PyObject(TwinObject):
 def foo(self):
 return 2

The difference is that twin classes are aware of twinterpreters.
They have a native twinterpreter, in which they exist as defined.
In any other twinterpreter, they automatically resolve to a twin proxy.

class PyPyObject(TwinObject):
 __twin_id__ = 'pypy' # makes class native to pypy twinterpeter

 # regular class definition
 def foo(self):
 return 2

The proxy acts as a transparent replacement for the native class and instances.
Native objects and proxies can be safely created, passed around and manipulated.
The underlying hooks of CPy2Py ensure that behaviour appears the same in any twinterpeter.

my_instance = CPy2PyObject() # create native object or proxy transparently
my_instance.foo() # return 2
my_instance.bar = 2 # add attribute, visible to native object and all proxies

The native Twinterpeter

Any class derived from TwinObject is native to only one twinterpreter.
This is where its instances actually “live”, i.e. where data are kept and methods executed.
All other twinterpreters just use proxies to the live instances.

A class’ native twinterpeter is set via the class’ attribute __twin_id__.
It can be a string, in which case it must name a twinterpeter, e.g. “pypy” or “python”.
Alternatively, it can be a magic CPy2Py key, e.g. to always use the main twinterpeter.
The corresponding twinterpeter must be running whenever an instance is created or used.

Choosing a Twinterpreter

A TwinObject has the same interface in every twinterpreter -
it is executed only in its native twinterpreter, however.
The choice of twinterpreter is dictated by the required execution environment.

Objects that perform complex, extensive computations can benefit greatly from the pypy interpreter.
Its JIT and optimizations can provide several factors of speedup.

When interfacing with C libraries, objects ideally reside in the normal python interpreter.
This also includes objects that rely on functions or objects written in cython.

Objects which mainly exist to be passed around ideally reside in the main twinterpreter.
In turn, the main twinterpreter should be chosen to minimize passing objects between twinterpreters.

Working with object [https://docs.python.org/3/library/functions.html#object]

Using plain object [https://docs.python.org/3/library/functions.html#object] classes with CPy2Py is fine in principle.
They will behave as usual and may be used in any twinterpeter.
Their behaviour is only affected when they are explicitly or implicitly passed between twinterpreters.
Usually, this happens when using them as arguments to methods of a TwinObject.

class TranslatorObject(TwinObject):
 __twin_id__ = 'pypy' # makes class native to pypy twinterpeter

 def make_str(self, other): # other is passed implicitly to pypy twinterpeter
 return '%s got %s' % (self, other)

 def pass_on(self, other):
 return other # other is back again, possibly creating a different object

 def insert_at(self, other, item, at):
 other[at] = item # modify cloned other inplace
 return other # return modified clone

CPy2Py must serialize and de-serialize objects to pass them between twinterpeters.
The side effects of this depend on the object.
Mostly, this is dictated by whether an object can be manipulated inplace.
In addition, passing objects back and forth creates clones.

Limitation of object [https://docs.python.org/3/library/functions.html#object]

Immutable types, such as int [https://docs.python.org/3/library/functions.html#int] or frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset], will transition gracefully.
The most notable effect is that identity may be violated.
In the following example, the last assert will fail.

translator = TranslatorObject()
test_int = 5
test_set = frozenset((1,2,3))
assert test_int == translator.pass_on(test_int), "Value comparison works"
assert test_set == translator.pass_on(test_set), "Member value comparison works"
assert test_int is translator.pass_on(test_int), "Primitives are singleton'ish"
assert test_set is translator.pass_on(test_set), "Collections are singleton'ish" # raises AssertionError

Mutable types, such as list [https://docs.python.org/3/library/stdtypes.html#list] or many custom classes, will misbehave when mutated.
If not mutated, a properly written class (and all native types) behave like immutable types.
In the following example, a list [https://docs.python.org/3/library/stdtypes.html#list] is mutated;
this does not propagate to the original object.

translator = TranslatorObject()
test_list = [1,2,3]
assert test_list == translator(test_list), "Member value comparison"
cloned_list = translator.pass_on(test_list)
inserted_list = translator.insert_at(test_list, 0, 0)
test_list[0] = 0
assert test_list == inserted_list, "Modifications are consistent"
assert test_list == translator.pass_on(test_list), "Nested passing is consistent"
assert test_list == cloned_list, "Mutations are transparent" # raises AssertionError

Practical Introduction to using cpy2py

This section provides the main manual and tutorials of cpy2py.

Tutorials and Guides

	Getting started: A simple application
	Preparing your environment

	Interlude: Torturing the CPU

	Pinning a function to an interpreter

	Epilogue: No Free Lunch

Getting started: A simple application

Running an application using cpy2py requires only regular Python workflows.
The catch is that you must prepare (at least) two Python environments for your application.
However, this mainly boils down to installing the proper dependencies in the proper environment.

A common use case for cpy2py is to bridge the fast PyPy with the extensible CPython.
This example uses pypy3 and python3 to run a single application.

Preparing your environment

In order for two interpreters to communicate, both must have cpy2py installed.
This can be done using pip for each interpreter:

python3 -m pip install cpy2py --user
pypy3 -m pip install cpy2py --user

That’s it!
Your interpreters are now both ready to run your application.

Interlude: Torturing the CPU

To begin, we write an application without using cpy2py.
This is a naive number cruncher that runs well in PyPy, but slow in CPython:

file cpy2py_demo.py
def sum_series(max_n):
 return [
 (n, sum(range(n)))
 for n in range(0, max_n + 1, max_n // 10)
]

if __name__ == "__main__":
 for n, total in sum_series(50000000):
 print(n, '=>', total)

Give it a try with both PyPy and CPython;
the later should be significantly slower.

pypy3 cpy2py_demo.py
python3 cpy2py_demo.py

	note

	If the example is too fast or slow for your liking, adjust the max_n parameter.

Pinning a function to an interpreter

It is obvious that performance differences are due to sum_series; the print loop is negligible.
Thus, we want sum_series to always execute with PyPy.
Ideally, the remaining application remains untouched by this optimisation.

We can pin sum_series to an interpreter using cpy2py.twinfunction().
For simplicity, we use the executable name "pypy3" to both identify and call the interpreter:

file cpy2py_demo.py, version 2
from cpy2py import twinfunction

@twinfunction('pypy3')
def sum_series(max_n):
 return [
 (n, sum(range(n)))
 for n in range(0, max_n + 1, max_n // 10)
]

if __name__ == "__main__":
 for n, total in sum_series(50000000):
 print(n, '=>', total)

This is enough to have sum_series be executed in PyPy.
When called from CPython, the function is offloaded to a second interpreter.
You should see a significant speedup when executing the script with CPython.

Epilogue: No Free Lunch

You may notice that running your script directly with pypy3 is slower after adding cpy2py.
This is because cpy2py has to setup an extensive bookkeeping infrastructure.

	Runtime

	CPython3

	PyPy3

	unpinned

	6.9s

	0.4s

	pinned

	1.2s

	0.8s

While this overhead will likely be reduced in the future, it will always be notable for short scripts.
Make sure the use of cpy2py is beneficial or required before applying it.

Dispatching functions to specific Twinterpreters

This example uses two functions, which are assigned to specific interpreters -
pypy and the default python. The pypy function is used to speed up a
nested loop of O(N2) complexity. At the same time, the python
function uses the matplotlib module, which is not available in
other interpreters.

from cpy2py import TwinMaster, twinfunction
import sys
import time
import math

extensive code run in PyPy for optimizations
@twinfunction('pypy')
def prime_sieve(max_val):
 """Sieve prime numbers"""
 start_time = time.time()
 primes = [1] * 2 + [0] * (max_val - 1)
 for value, factors in enumerate(primes):
 if factors == 0:
 for multiple in xrange(value * value, max_val + 1, value):
 primes[multiple] += 1
 return {
 'xy_matrix': [
 [primes[idx] == 0 for idx in range(minidx, minidx + int(math.sqrt(max_val)))]
 for minidx in range(0, max_val, int(math.sqrt(max_val)))
],
 'info': '%s in %.1fs' % (sys.executable, time.time() - start_time)
 }

matplotlib in CPython
@twinfunction('python')
def draw(xy_matrix, info='<None>'):
 """Draw an XY matrix and attach some info"""
 from matplotlib import pyplot
 pyplot.copper()
 pyplot.matshow(xy_matrix)
 pyplot.xlabel(info, color="red")
 pyplot.show()

native function not assigned to particular interpreter
def main():
 """Find and draw prime numbers"""
 import argparse
 cli = argparse.ArgumentParser('function twin example')
 cli.add_argument('COUNT', help='size of computation', type=int, default=int(1E6), nargs='?')
 options = cli.parse_args()
 # Twinterpreters must be started explicitly
 twins = [TwinMaster('python'), TwinMaster('pypy')]
 for twin in twins:
 twin.start()
 # twins can be chained directly
 draw(**prime_sieve(options.COUNT))

protect main thread from executing again in other interpreters
if __name__ == '__main__':
 main()

Examples and Demonstrators using cpy2py

This section provides examples of small applications using cpy2py.

Examples and Demonstrators

	Dispatching functions to specific Twinterpreters

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to CPy2Py’s documentation!

