
cppmat Documentation

Tom de Geus

Oct 21, 2019





Contents

1 Overview 3

2 Example 5

3 Contents 7

i



ii



cppmat Documentation

Note: This library is free to use under the MIT license. Any additions are very much appreciated, in terms of suggested
functionality, code, documentation, testimonials, word of mouth advertisement, . . . . Bugs or feature requests can be
filed on GitHub. As always, the code comes with no guarantee. None of the developers can be held responsible for
possible mistakes.

Tip: This document should be considered as a quick-start guide. A lot effort has been spent on the readability of
the code itself (in particular the *.h files should be instructive). One is highly encouraged to answer more advanced
questions that arise from this guide directly using the code. Download buttons to the relevant files are included
throughout this reader.

This header-only module provides C++ classes and several accompanying methods to work with n-d arrays and/or
tensors. It’s usage, programmatically and from a compilation perspective, is really simple. One just has to #include
<cppmat/cppmat.h> and tell your compiler where cppmat is located (and to use the C++14 or younger standard).
Really, that’s it!

Contents 1

https://github.com/tdegeus/cppmat/blob/master/LICENSE
https://github.com/tdegeus/cppmat/blob/master/LICENSE
https://github.com/tdegeus/cppmat/zipball/master
https://github.com/tdegeus/cppmat/tarball/master
mailto:tom@geus.me
http://www.geus.me
https://github.com/tdegeus/cppmat
http://cppmat.geus.me
https://github.com/tdegeus/cppmat/blob/master/LICENSE
http://github.com/tdegeus/cppmat


cppmat Documentation

2 Contents



CHAPTER 1

Overview

The following dynamically sized classes can be used.

Class Description
cppmat::array array of arbitrary rank
cppmat::matrix matrix (array of rank 2)
cppmat::vector vector (array of rank 1)
cppmat::symmetric::matrix symmetric, square, matrix
cppmat::diagonal::matrix diagonal, square, matrix
cppmat::cartesian::tensor4 4th-order tensor
cppmat::cartesian::tensor2 2nd-order tensor
cppmat::cartesian::tensor2s 2nd-order symmetric tensor
cppmat::cartesian::tensor2d 2nd-order diagonal tensor
cppmat::cartesian::vector 1st-order tensor (a.k.a. vector)

Each of these classes has a fixed size equivalent (that is usually more efficient):

Fixed size Dynamical size
cppmat::tiny::array cppmat::array
cppmat::tiny::matrix cppmat::matrix
cppmat::tiny::vector cppmat::vector
cppmat::tiny::symmetric::matrix cppmat::symmetric::matrix
cppmat::tiny::diagonal::matrix cppmat::diagonal::matrix
cppmat::tiny::cartesian::tensor4 cppmat::cartesian::tensor4
cppmat::tiny::cartesian::tensor2 cppmat::cartesian::tensor2
cppmat::tiny::cartesian::tensor2s cppmat::cartesian::tensor2s
cppmat::tiny::cartesian::tensor2d cppmat::cartesian::tensor2d
cppmat::tiny::cartesian::vector cppmat::cartesian::vector

Each fixed size class has an equivalent which can view a const-pointer (with limited functionality):

3



cppmat Documentation

View pointer Fixed size
cppmat::view::array cppmat::tiny::array
cppmat::view::matrix cppmat::tiny::matrix
cppmat::view::vector cppmat::tiny::vector
cppmat::view::symmetric::matrix cppmat::tiny::symmetric::matrix
cppmat::view::diagonal::matrix cppmat::tiny::diagonal::matrix
cppmat::view::cartesian::tensor4 cppmat::tiny::cartesian::tensor4
cppmat::view::cartesian::tensor2 cppmat::tiny::cartesian::tensor2
cppmat::view::cartesian::tensor2s cppmat::tiny::cartesian::tensor2s
cppmat::view::cartesian::tensor2d cppmat::tiny::cartesian::tensor2d
cppmat::view::cartesian::vector cppmat::tiny::cartesian::vector

4 Chapter 1. Overview



CHAPTER 2

Example

#include <cppmat/cppmat.h>

int main()
{

cppmat::array<double> A({10,10,10});

A(0,0,0) = ...

...

return 0;
}

5



cppmat Documentation

6 Chapter 2. Example



CHAPTER 3

Contents

3.1 cppmat

3.1.1 cppmat::array

[var_regular_array.h, var_regular_array.hpp]

A C++ class for dynamically sized arrays or arbitrary rank. For example, a rank 3 array is allocated as follows:

#include <cppmat/cppmat.h>

int main()
{

cppmat::array<double> A({10,10,10});

A(0,0,0) = ...

...

std::cout << A << std::endl;

return 0;
}

Tip:

• If you know that you will work exclusively with a rank 1 or 2 array (i.e. a vector or a matrix), consider
using cppmat::vector, cppmat::matrix, cppmat::symmetric::matrix, and , cppmat::diagonal::matrix. This can
enhance readability and/or efficiency.

• If your array is not very big and its size is known at compile time consider using cppmat::tiny::array (or the
fixed size equivalents of the other classes). This avoids dynamic memory allocation, and usually speeds-up your
code.

7



cppmat Documentation

• If your array is part of an external array (for example a bigger array) which you want to just read from, consider
using cppmat::view::array.

• To format the print use the regular C++ mechanism, e.g. std::cout << std::setw(5) <<
std::setprecision(3) << A << std::endl;

Methods

• A(i,j,k)

Returns the entry at (i,j,k). Use this to read or write.

A negative index may also be used (in that case the indices have to be int) which counts down from the last
index along that axis. For example A(-1,-1,-1) in the last index of the above array. This implies some extra
operations, so if you do not use this feature input the indices as size_t.

The number of indices (i.e. A(i), A(i,j), A(i,j,k), . . . ) may be lower or equal to the rank, all ‘omitted’
indices are assumed to be zero.

See Indexing for additional directives.

• A[i]

Returns the i-th entry of the plain storage. Use this to read or write.

• A.at(first, last)

Returns the entry {i,j,k}, which are stored in a list. The function takes an iterator to the first and the last
index of this list. See Advanced indexing.

• A.item(i,j,k)

Returns an iterator to the entry at (i,j,k).

• A.index(i)

Returns an iterator to the i-th entry of the plain storage.

• A.data(), A.begin(), A.end()

Return an iterator to the data, the first, or the last entry of the matrix.

• A.rank()

Returns the ranks of the array (i.e. the number of axes).

• A.size()

Returns the total number of entries in the matrix.

• A.shape(i)

Returns the shape along dimension i (a negative number may be used that counts down from the last axis, e.g.
A.shape(-1) is the same as A.shape(A.rank()-1).

• A.shape()

Returns the shape along all dimensions (vector).

• A.resize({...}[, D])

Resize the matrix. Enter a value to initialize all allocated entries.

• A.reshape({...})

Change the shape of the matrix. It is required that the total number of entries does not change.

8 Chapter 3. Contents



cppmat Documentation

• A.chrank(N)

Change the rank to N (with shape 1 along the added axes). A reduction of rank is only allowed if the shape is 1
along the reduced axes.

• A.setZero(), A.setOnes(), A.setConstant(D), A.setArange(), A.setRandom([start,
end])

Set all entries to zero or one, a constant, the index in the flat storage, or a random value.

• A.setCopy(first[, last])

Copy the individual entries from some external object that is specified using iterators. Note that the flat-size has
to match, i.e. last - first == size().

• A.copyTo(first[, last])

Copy the individual entries to an external iterator.

• A.abs()

Returns an array with the absolute values of each entry.

• A.norm()

Returns the norm (sum of absolute values).

• A.argmin(), A.argmax()

Return the plain storage index of the minimum/maximum.

• A.min([axis]), A.max([axis])

Return the minimum or the maximum entry.

• A.sum([axis])

Return the sum of all entries, or along one or more axes.

• A.mean([axis])

Return the mean of all entries, or along one or more axes.

• A.average(weights[, axis, normalize])

Compute the weighted average of all entries, or along one or more axes. See NumPy and Wikipedia. Optionally
the result can be returned without normalization.

• A.where()

Returns a vector with the plain storage indices of all non-zero entries.

• A.equal(D), A.not_equal(D), A.greater(D), A.greater_equal(D), A.less(D), A.
less_equal(D)

Return array of booleans, based on the condition.

• A.slice(...)

Returns a slice of the array. The input are std::vector<size_t> with the indices to select along that axis
(these vectors can be also input using the {...} syntax). An empty vector (or simply {}) implies that all
indices along that axis are selected.

Tip: If you use something other than size_t as the type for indices (e.g. int), the functions size, shape, rank,
and strides can be templated to directly get the type you want. For example:

3.1. cppmat 9

https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean


cppmat Documentation

cppmat::array<double> A({10,10,10});

for ( int i = 0 ; i < A.size<int>() ; ++i )
...

(Named) constructors

• cppmat::array<double>(shape)

Allocate to a certain shape, nothing is initialized. The shape has to be specified as a
std::vector<size_t>, from which the rank is automatically deduced. Alternatively the {...} nota-
tion can be used, to avoid a separate variable.

• cppmat::array<double>::Random(shape[, start, end])

Allocate to a certain shape, set entries to a random value.

• cppmat::array<double>::Arange(shape)

Allocate to a certain shape, set entries to its index in the flat storage.

• cppmat::array<double>::Zero(shape)

Allocate to a certain shape, set all entries to zero.

• cppmat::array<double>::Ones(shape)

Allocate to a certain shape, set all entries to one.

• cppmat::array<double>::Constant(shape, constant)

Allocate to a certain shape, set all entries to a certain constant.

• cppmat::array<double>::Copy(shape, first[, last])

Allocate to a certain shape, copy the individual entries from some external object that is specified using iterators.
Note that the flat-size has to match, i.e. last - first == size().

External operations

• cppmat::array<double> = cppmat::min(A, B)

Construct an array taking the minimum of two arrays for each entry.

• cppmat::array<double> = cppmat::max(A, B)

Construct an array taking the maximum of two arrays for each entry.

Indexing

In principle the number of indices should match the rank of the array (i.e. A.rank()). Though one can:

• Reference to a certain index using a higher-dimensional equivalent. For example:

cppmat::array<double> A({10,10});

A(5,5,0) = ...

10 Chapter 3. Contents



cppmat Documentation

is perfectly acceptable. Note that higher-dimensions can only be trailing ones, using for example A(0,5,5) is
not acceptable, nor is, of course, A(5,5,1).

• Refer to the beginning of a block (e.g. a row) by omitting the trailing zero indices. For example, a pointer to the
beginning of the second row of the above matrix is obtained by &A(1) (which is fully equivalent to &A(1,0)).

Tip: A negative index may also be used (in that case the indices have to be int) which counts down from the last
index along that axis. For example A(-1,-1) in the last index of the above matrix. To input any periodic index
(i.e. to turn-off the bound-checks) use .setPeriodic(true) on the array object. In that case A(-1,-1) ==
A(10,10) for the above matrix.

This does involve some extra operations, so if you do not use this feature input the indices as size_t.

Advanced indexing

To allow an arbitrary number of indices at runtime (i.e. the case in which the number of indices is not known at compile
time), cppmat::array can also be supplied with the indices stored in a list, using the .at(first,last), where
first and last are iterators to the beginning and the end of this list of indices. When the indices are also stored in
a cppmat::array these iterators can be easily obtained using .item(i,j). Consider this example:

#include <cppmat/cppmat.h>

int main()
{

// example matrix
// --------------

cppmat::array<size_t> A({2,4});

A(0,0) = 0; A(0,1) = 1; A(0,2) = 2; A(0,3) = 3;
A(1,0) = 10; A(1,1) = 11; A(1,2) = 12; A(1,3) = 13;

// view, based on list of indices
// ------------------------------

cppmat::array<size_t> index({2,2});

index(0,0) = 0; index(0,1) = 1;
index(1,0) = 1; index(1,1) = 2;

for ( size_t i = 0 ; i < index.shape(0) ; ++i )
std::cout << A.at(index.item(i), index.item(i)+index.shape(1)) << std::endl;

return 0;
}

Storage

The matrix is stored row-major. For a 2-d matrix of size (3,4) this implies the following storage

[[0, 1, 2, 3],
[4, 5, 6, 7]]

3.1. cppmat 11

https://en.wikipedia.org/wiki/Row-_and_column-major_order


cppmat Documentation

The strides indicate per axis how many entries one needs to skip to proceed to the following entry along that axis.
For this example

strides = [4, 1]

Note: References

• Row- and column-major order (Wikipedia)

• Reduction (sum) along arbitrary axes of a multidimensional array (StackOverflow)

Tip: One can switch back-and-forth between matrix indices and the plain storage using the compress and
decompress functions. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::array<size_t> A({2,4});

std::cout << A.compress(1,2) << std::endl;

std::vector<size_t> idx = A.decompress(6);

for ( auto &i : idx )
std::cout << i << ", ";

std::cout << std::endl;

return 0;
}

Prints

6
1, 2,

3.1.2 cppmat::matrix

[var_regular_matrix.h, var_regular_matrix.hpp]

Class for 2-d matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::matrix<double> A(10,10);

A(0,0) = ...

...

return 0;
}

12 Chapter 3. Contents

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://stackoverflow.com/a/49905058/2646505


cppmat Documentation

The entire interface is the same as for cppmat::array, though there is obviously no chrank method.

3.1.3 cppmat::vector

[var_regular_vector.h, var_regular_vector.hpp]

Class for 1-d matrices (a.k.a. vectors). For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::vector<double> A(10);

A(0) = ...

...

return 0;
}

The entire interface is the same as for cppmat::array, though there is obviously no chrank method.

Tip: One can almost seamlessly switch between std::vector and cppmat::vector. For example the follow-
ing would work:

std::vector<double> A = cppmat::vector<double>::Random(10);

3.2 cppmat::symmetric

3.2.1 cppmat::symmetric::matrix

[var_symmetric_matrix.h, var_symmetric_matrix.hpp]

Square, symmetric, matrix, whereby only the upper-diagonal components are stored:

[ X, X, X ;
X, X ;

X ]

The remaining components are inferred from symmetry. This offers memory advantages, but also computational
advantages as the library is fed with additional knowledge of the matrix.

#include <cppmat/cppmat.h>

int main()
{

cppmat::symmetric::matrix<double> A(3,3);

A(0,0) = ...

// A(0,1) = ... -> same as A(1,0) = ...

(continues on next page)

3.2. cppmat::symmetric 13



cppmat Documentation

(continued from previous page)

...

std::cout << A << std::endl;

return 0;
}

Storage

The storage order is as follows:

[ 0, 1, 2 ;
3, 4 ;

5 ]

For an NxN matrix (square by definition), the component (i,j) can be extracted by

if (i <= j) i*N - (i-1)*i/2 + j - i;
else j*N - (j-1)*j/2 + i - j;

3.3 cppmat::diagonal

3.3.1 cppmat::diagonal::matrix

[var_diagonal_matrix.h, var_diagonal_matrix.hpp]

Square, diagonal, matrix, whereby only the diagonal components are stored:

[ X ;
X ;

X ]

The remaining components are imposed to be zero. This offers memory advantages, but also computational advantages
as the library is fed with additional knowledge of the matrix.

#include <cppmat/cppmat.h>

int main()
{

cppmat::diagonal::matrix<double> A(3,3);

A(0,0) = ...

// A(0,1) = ... -> not allowed
// ... = A(0,1) -> allowed, returns zero

...

std::cout << A << std::endl;

return 0;
}

14 Chapter 3. Contents



cppmat Documentation

Storage

The storage order is as follows:

[ 0 ;
1 ;

2 ]

3.4 cppmat::cartesian

Provides classes for 4th- and 2nd order tensors and vectors. For example, a fourth order identity tensor in 3-D is
obtained as follows:

#include <cppmat/cppmat.h>

int main()
{

cppmat::cartesian::tensor4<double> A = cppmat::cartesian::tensor4<double>::I(3);

...

std::cout << A << std::endl;

return 0;
}

Tip: If you know that you will work in a fixed (and small) number of dimensions (e.g. 2 or 3), please consider using
cppmat::tiny::cartesian instead of cppmat::cartesian. This is generally more efficient as it can take advantage of the
knowledge that the arrays are fixed size and relatively small. Also several loops are unrolled.

Tip: The notation can be shortened to:

#include <cppmat/cppmat.h>

using T4 = cppmat::cartesian::tensor4<double>;

int main()
{

T4 A = T4::I(3);

...

return 0;
}

3.4.1 Classes

cppmat::cartesian::tensor4

[var_cartesian_tensor4.h, var_cartesian_tensor4.hpp]

3.4. cppmat::cartesian 15



cppmat Documentation

4th-order tensor (rank 4 tensor) of arbitrary dimension.

cppmat::cartesian::tensor4<double> A(3);

A(0,0,0,0) = ...

cppmat::cartesian::tensor2

[var_cartesian_tensor2.h, var_cartesian_tensor2.hpp]

2nd-order tensor (rank 2 tensor) of arbitrary dimension.

cppmat::cartesian::tensor2<double> A(3);

A(0,0) = ...

cppmat::cartesian::tensor2s

[var_cartesian_tensor2s.h, var_cartesian_tensor2s.hpp]

Symmetric 2nd-order tensor.

cppmat::cartesian::tensor2s<double> A(3);

A(0,0) = ...

For example, for the case of 3 dimensions, the following components are stored:

[ X , X , X ;
X , X ;

X ]

The remaining components are inferred from symmetry. See cppmat::symmetric::matrix.

cppmat::cartesian::tensor2d

[var_cartesian_tensor2d.h, var_cartesian_tensor2d.hpp]

diagonal 2nd-order tensor.

cppmat::cartesian::tensor2d<double> A(3);

A(0,0) = ...

For example, for the case of 3 dimensions, the following components are stored:

[ X ;
X ;

X ]

The remaining components are imposed to be zero. See cppmat::diagonal::matrix.

16 Chapter 3. Contents



cppmat Documentation

cppmat::cartesian::vector

[var_cartesian_vector.h, var_cartesian_vector.hpp]

Vector (rank 1 tensor) of arbitrary dimension. For example:

cppmat::cartesian::vector<double> A(3);

A(0) = ...

Note: Because of the flexibility of C++ it is easy to switch between these specialized classes and the more general
cppmat::cartesian::tensor2 classes. For example, the following will work:

using T2 = cppmat::cartesian::tensor2 <double>;
using T2d = cppmat::cartesian::tensor2d<double>;

T2d I = T2d::I(3);
T2 A = I;

or even

T2 I = T2d::I(3);

Also arithmetic works:

T2d A = 3.0 * I;

Note that it is even possible to perform arithmetic between the three different 2nd-order tensor classes, whereby the
output type depends on the type of operator.

Finally, all the Methods accept all three classes - cppmat::cartesian::tensor2,
cppmat::cartesian::tensor2s, cppmat::cartesian::tensor2d - allowing their usage with-
out any prior type casting. In fact the methods will often perform better for the specialized classes since fewer
operations are needed.

Note: The easy automatic conversion described above is not possible from a class to another
where more assumptions on the structure are made (e.g. from cppmat::cartesian::tensor2 to
cppmat::cartesian::tensor2d) because information is (potentially) lost.

3.4.2 Methods

All the methods of cppmat::array (or cppmat::matrix, cppmat::symmetric::matrix, cppmat::symmetric::matrix, or
cppmat::vector) are overloaded. In addition, the following tensor algebra is available.

Note: Below the rank can be inferred from the indices, but should be easy to understand even without them. Pseudo-
code is used to introduce the methods. For the first method it is short for:

cppmat::cartesian::tensor4<double> A = cppmat::cartesian::tensor4<double>::I(3);
cppmat::cartesian::tensor2<double> B = cppmat::cartesian::tensor2<double>::I(3);

cppmat::cartesian::tensor2<double> C = A.ddot(B);

3.4. cppmat::cartesian 17



cppmat Documentation

Finally, each occurrence of cppmat::cartesian::tensor2 can be replaced by
cppmat::cartesian::tensor2s or cppmat::cartesian::tensor2d. The latter two often per-
form better.

• cppmat::cartesian::tensor4<X>:

– cppmat::cartesian::tensor4<X> C = A.ddot(const cppmat::cartesian::tensor4<X>
&B)

Double tensor contraction : 𝐶𝑖𝑗𝑚𝑛 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑙𝑘𝑚𝑛

– cppmat::cartesian::tensor2<X> C = A.ddot(const cppmat::cartesian::tensor2<X>
&B)

Double tensor contraction 𝐶𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑙𝑘

– cppmat::cartesian::tensor4<X> C = A.T()

Transposition 𝐶𝑙𝑘𝑗𝑖 = 𝐴𝑖𝑗𝑘𝑙

– cppmat::cartesian::tensor4<X> C = A.LT()

Left transposition 𝐶𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑘𝑙

– cppmat::cartesian::tensor4<X> C = A.RT()

Right transposition 𝐶𝑖𝑗𝑙𝑘 = 𝐴𝑖𝑗𝑘𝑙

• cppmat::cartesian::tensor2<X>:

– cppmat::cartesian::tensor2<X> C = A.ddot(const cppmat::cartesian::tensor4<X>
&B)

Double tensor contraction 𝐶𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑗𝑖𝑘𝑙

– X C = A.ddot(const cppmat::cartesian::tensor2<X> &B)

Double tensor contraction 𝐶 = 𝐴𝑖𝑗𝐵𝑗𝑖

– cppmat::cartesian::tensor2<X> C = A.dot(const cppmat::cartesian::tensor2<X>
&B)

Tensor contraction 𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘

– cppmat::cartesian::vector<X> C = A.dot(const cppmat::cartesian::vector<X>
&B)

Tensor contraction 𝐶𝑖 = 𝐴𝑖𝑗𝐵𝑗

– cppmat::cartesian::tensor4<X> C = A.dyadic(const cppmat::cartesian::tensor2<X>
&B)

Dyadic product 𝐶𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙

– cppmat::cartesian::tensor2<X> C = A.T()

Transposition 𝐶𝑗𝑖 = 𝐴𝑖𝑗

– X C = A.trace()

The trace of the tensor (i.e. the sum of the diagonal components) 𝐶 = 𝐴𝑖𝑖

– X C = A.det()

The determinant 𝐶 = det𝐴

18 Chapter 3. Contents



cppmat Documentation

– cppmat::cartesian::tensor2<X> C = A.inv()

The inverse 𝐶𝑖𝑗 = 𝐴−1
𝑖𝑗

• cppmat::cartesian::vector<X>:

– X C = A.dot(const cppmat::cartesian::vector<X> &B)

Tensor contraction 𝐶 = 𝐴𝑖𝐵𝑖

– cppmat::cartesian::vector<X> C = A.dot(const cppmat::cartesian::tensor2<X>
&B)

Tensor contraction 𝐶𝑗 = 𝐴𝑖𝐵𝑖𝑗

– cppmat::cartesian::tensor2<X> C = A.dyadic(const cppmat::cartesian::vector<X>
&B)

Dyadic product 𝐶𝑖𝑗 = 𝐴𝑖𝐵𝑗

– cppmat::cartesian::vector<X> C = A.cross(const cppmat::cartesian::vector<X>
&B)

Cross product �⃗� = �⃗�⊗ �⃗�

Note: One can also call the methods as functions using cppmmat::ddot(A,B), cppmmat::dot(A,
B), cppmmat::dyadic(A,B), cppmmat::cross(A,B), cppmmat::T(A), cppmmat::RT(A),
cppmmat::LT(A), cppmmat::inv(A), cppmmat::det(A), and cppmmat::trace(A). This is fully
equivalent (in fact the class methods call these external functions).

3.5 cppmat::tiny

3.5.1 cppmat::tiny::array

[fix_regular_array.h, fix_regular_array.hpp]

Class for fixed size, small, n-d arrays. For example for a rank 3 array:

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::array<double,3,10,10,10> A;

A(0,0,0) = ...

...

return 0;
}

Note that the first ‘shape’ is the rank of the array, the rest are the shape along each axis.

Compared to cppmat::array the size of the array cannot be dynamically changed. Consequently there is no dynamic
memory allocation, often resulting in faster behavior. For the rest, most methods are the same as for cppmat::array,
though sometimes slightly more limited in use.

3.5. cppmat::tiny 19



cppmat Documentation

3.5.2 cppmat::tiny::matrix

[fix_regular_matrix.h, fix_regular_matrix.hpp]

Class for fixed size, small, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::matrix<double,10,10> A;

A(0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::matrix.

3.5.3 cppmat::tiny::vector

[fix_regular_vector.h, fix_regular_vector.hpp]

Class for fixed size, small, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::vector<double,10> A;

A(0) = ...

...

return 0;
}

Most methods are the same as for cppmat::vector.

3.5.4 cppmat::tiny::symmetric::matrix

[fix_symmetric_matrix.h, fix_symmetric_matrix.hpp]

Class for fixed size, small, symmetric, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::symmetric::matrix<double,10,10> A;

A(0,0) = ...

(continues on next page)

20 Chapter 3. Contents



cppmat Documentation

(continued from previous page)

...

return 0;
}

Most methods are the same as for cppmat::symmetric::matrix.

3.5.5 cppmat::tiny::diagonal::matrix

[fix_diagonal_matrix.h, fix_diagonal_matrix.hpp]

Class for fixed size, small, symmetric, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::diagonal::matrix<double,10,10> A;

A(0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::diagonal::matrix.

3.5.6 cppmat::tiny::cartesian

cppmat::tiny::cartesian::tensor4

[fix_cartesian_tensor4.h, fix_cartesian_tensor4.hpp]

Class for fixed size, small, fourth order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::cartesian::tensor4<double,3> A;

A(0,0,0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::cartesian::tensor4.

cppmat::tiny::cartesian::tensor2

[fix_cartesian_tensor2.h, fix_cartesian_tensor2.hpp]

3.5. cppmat::tiny 21



cppmat Documentation

Class for fixed size, small, second order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::cartesian::tensor2<double,3> A;

A(0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::cartesian::tensor2.

cppmat::tiny::cartesian::tensor2s

[fix_cartesian_tensor2s.h, fix_cartesian_tensor2s.hpp]

Class for fixed size, small, symmetric, second order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::cartesian::tensor2s<double,3> A;

A(0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::cartesian::tensor2s.

cppmat::tiny::cartesian::tensor2d

[fix_cartesian_tensor2d.h, fix_cartesian_tensor2d.hpp]

Class for fixed size, small, diagonal, second order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::cartesian::tensor2d<double,3> A;

A(0,0) = ...

...

return 0;
}

22 Chapter 3. Contents



cppmat Documentation

Most methods are the same as for cppmat::cartesian::tensor2d.

cppmat::tiny::cartesian::vector

[fix_cartesian_vector.h, fix_cartesian_vector.hpp]

Class for fixed size, small, vector. For a 3-d vector

#include <cppmat/cppmat.h>

int main()
{

cppmat::tiny::cartesian::vector<double,3> A;

A(0,0) = ...

...

return 0;
}

Most methods are the same as for cppmat::cartesian::vector.

3.6 cppmat::view

3.6.1 cppmat::view::array

[map_regular_array.h, map_regular_array.hpp]

This class can be used to ‘view’ a const external pointer. This can be useful to refer to a part of a bigger array. For
example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::array<double> container = cppmat::array<double>::Arange({100,4,2});

cppmat::view::array<double,2,4,2> view;

view.setMap(&container(10)); // equivalent to "view.setMap(&container(10,0,0));"

std::cout << view << std::endl;
}

This prints:

80, 81;
82, 83;
84, 85;
86, 87;

3.6. cppmat::view 23



cppmat Documentation

Warning: Since C++ performs garbage collection you should use cppmat::view with care. You are responsi-
ble that pointers do not go out of scope.

Tip: One can also use the Map constructor instead of the setMap method:

using Mat = cppmat::view::matrix<double,4,2>;

Mat view = Mat::Map(&container(10));

Note: This function cannot make any modification to the view. Its usage is thus somewhat limited. To get a wider
functionality use cppmat::tiny::array. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::array<double> container = cppmat::array<double>::Arange({100,4,2});

cppmat::tiny::array<double,2,4,2> copy;

copy.setCopy(container.item(10), container.item(10)+copy.size());

std::cout << copy << std::endl;
}

Note that copy is now a copy. I.e. any modification to copy will not result in a modification in container.

Note that the following syntax could also have been used:

using Mat = cppmat::tiny::matrix<double,4,2>;

Mat copy = Mat::Copy(container.item(10), container.item(10)+8);

Or the following:

using Mat = cppmat::tiny::matrix<double,4,2>;

Mat copy = Mat::Copy(container.item(10));

Or the following:

std::copy(container.item(10), container.item(10)+copy.size(), copy.data());

3.6.2 cppmat::view::matrix

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::matrix<double,10,10> A;

(continues on next page)

24 Chapter 3. Contents



cppmat Documentation

(continued from previous page)

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::matrix.

3.6.3 cppmat::view::vector

[map_regular_vector.h, map_regular_vector.hpp]

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::vector<double,10> A;

A.setMap(...)

... = A(0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::vector.

3.6.4 cppmat::view::symmetric::matrix

[map_symmetric_matrix.h, map_symmetric_matrix.hpp]

Class to view a pointer to a fixed size, symmetric, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::symmetric::matrix<double,10,10> A;

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::symmetric::matrix.

3.6. cppmat::view 25



cppmat Documentation

3.6.5 cppmat::view::diagonal::matrix

[map_diagonal_matrix.h, map_diagonal_matrix.hpp]

Class to view a pointer to a fixed size, symmetric, matrices. For example:

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::diagonal::matrix<double,10,10> A;

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::diagonal::matrix.

3.6.6 cppmat::view::cartesian

cppmat::view::cartesian::tensor4

[map_cartesian_tensor4.h, map_cartesian_tensor4.hpp]

Class to view a pointer to a fixed size, fourth order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::cartesian::tensor4<double,3> A;

A.setMap(...)

... = A(0,0,0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::cartesian::tensor4.

cppmat::view::cartesian::tensor2

[map_cartesian_tensor2.h, map_cartesian_tensor2.hpp]

Class to view a pointer to a fixed size, second order tensors. For a 3-d tensor

26 Chapter 3. Contents



cppmat Documentation

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::cartesian::tensor2<double,3> A;

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::cartesian::tensor2.

cppmat::view::cartesian::tensor2s

[map_cartesian_tensor2s.h, map_cartesian_tensor2s.hpp]

Class to view a pointer to a fixed size, symmetric, second order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::cartesian::tensor2s<double,3> A;

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::cartesian::tensor2s.

cppmat::view::cartesian::tensor2d

[map_cartesian_tensor2d.h, map_cartesian_tensor2d.hpp]

Class to view a pointer to a fixed size, diagonal, second order tensors. For a 3-d tensor

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::cartesian::tensor2d<double,3> A;

A.setMap(...)

... = A(0,0)

(continues on next page)

3.6. cppmat::view 27



cppmat Documentation

(continued from previous page)

...

return 0;
}

Most methods are the same as for cppmat::tiny::cartesian::tensor2d.

cppmat::view::cartesian::vector

[map_cartesian_vector.h, map_cartesian_vector.hpp]

Class to view a pointer to a fixed size, vector. For a 3-d vector

#include <cppmat/cppmat.h>

int main()
{

cppmat::view::cartesian::vector<double,3> A;

A.setMap(...)

... = A(0,0)

...

return 0;
}

Most methods are the same as for cppmat::tiny::cartesian::vector.

3.7 Access to storage

The storage of all the classes can be accessed through the data() method, which is complemented with the iterators
begin() and end(). Consider the following examples

3.7.1 Creating a cppmat-object

Copy constructor

#include <cppmat/cppmat.h>

using T2 = cppmat::cartesian3d::tensor2<double>;

int main()
{

std::vector<double> data(3*3);

for ( size_t i = 0 ; i < 3*3 ; ++i )
data[i] = static_cast<double>(i);

T2 A = T2::Copy(data.begin(), data.end());

(continues on next page)

28 Chapter 3. Contents



cppmat Documentation

(continued from previous page)

std::cout << "A = " << A << std::endl;
}

std::copy

#include <cppmat/cppmat.h>

using T2 = cppmat::cartesian3d::tensor2<double>;

int main()
{

std::vector<double> data(3*3);

for ( size_t i = 0 ; i < 3*3 ; ++i )
data[i] = static_cast<double>(i);

T2 A;

std::copy(data.begin(), data.end(), A.begin());

std::cout << "A = " << A << std::endl;
}

3.8 STL(-like) extensions

3.8.1 Out-of-place functions

• min/max

cppmat::array<double> C = cppmat::min(A, B);

3.8.2 std::vector

• Formatted print

If cppmat is loaded one can also view STL-vectors as easily as

std::cout << A << std::endl;

• Delete item

A = cppmat::del(A, -1);

• argsort

std::vector<size_t> idx = cppmat::argsort(A);

• linspace

std::vector<double> A = cppmat::linspace(0.0, 1.0, 11);

• min/max

std::vector<double> C = cppmat::min(A, B);

3.8. STL(-like) extensions 29



cppmat Documentation

3.9 Histogram

3.9.1 histogram

template<typename X>
std::tuple<std::vector<double>, std::vector<double>> histogram(

const std::vector<X> &data, size_t bins=10, bool density=false, bool return_
→˓edges=false
)

Create a histogram. Returns std::tie(P, x): the count and the locations on the bins (their midpoints, or their
edges if return_edges=true).

3.9.2 histogram_uniform

template<typename X>
std::tuple<std::vector<double>, std::vector<double>> histogram_uniform(

const std::vector<X> &data, size_t bins=10, bool density=false, bool return_
→˓edges=false
)

Create a histogram such that each bins contains the same number of entries. Returns std::tie(P, x): the count
and the locations on the bins (their midpoints, or their edges if return_edges=true).

3.10 Compiling

3.10.1 Introduction

This module is header only. So one just has to #include <cppmat/cppmat.h> somewhere in the source code,
and to tell the compiler where the header files are. For the latter, several ways are described below.

Before proceeding, a word about optimization. Of course one should use optimization when compiling the release of
the code (-O2 or -O3). But it is also a good idea to switch off the assertions in the code (mostly checks on size) that
facilitate easy debugging, but do cost time. Therefore, include the flag -DNDEBUG. Note that this is all C++ standard.
I.e. it should be no surprise, and it is always a good idea to do.

3.10.2 Manual compiler flags

GNU / Clang

Add the following compiler’s arguments:

-I${PATH_TO_CPPMAT}/src -std=c++14

Note: (Not recommended)

If you want to avoid separately including the header files using a compiler flag, git submodule is a nice way to
go:

30 Chapter 3. Contents



cppmat Documentation

1. Include the submodule using git submodule add https://github.com/tdegeus/cppmat.
git.

2. Include using #include "cppmat/src/cppmat/cppmat.h".

If you decide to manually copy the header file, you might need to modify this relative path to your liking.

Or see (Semi-)Automatic compiler flags. You can also combine the git submodule with any of the below compil-
ing strategies.

3.10.3 (Semi-)Automatic compiler flags

Install

To enable (semi-)automatic build, one should ‘install’ cppmat somewhere.

Install systemwide (depends on your privileges)

1. Proceed to a (temporary) build directory. For example

$ cd /path/to/temp/build

2. ‘Install’ cppmat:

$ cmake /path/to/cppmat
$ make install

Note: One usually does not need any compiler arguments after following this protocol.

Install in custom location (user)

1. Proceed to a (temporary) build directory. For example

$ cd /path/to/temp/build

2. ‘Install’ cppmat, to install it in a custom location

$ mkdir /custom/install/path
$ cmake /path/to/cppmat -DCMAKE_INSTALL_PREFIX:PATH=/custom/install/path
$ make install

3. Add the following path to your ~/.bashrc (or ~/.zshrc):

export PKG_CONFIG_PATH=/custom/install/path/share/pkgconfig:$PKG_CONFIG_PATH
export CPLUS_INCLUDE_PATH=$HOME/custom/install/path/include:$CPLUS_INCLUDE_PATH

Note: One usually does not need any compiler arguments after following this protocol.

Note: (Not recommended)

3.10. Compiling 31



cppmat Documentation

If you do not wish to use CMake for the installation, or you want to do something custom. You can, of course. Follow
these steps:

1. Copy the file src/cppmat.pc.in to cppmat.pc to some location that can be found by pkg_config
(for example by adding export PKG_CONFIG_PATH=/path/to/cppmat.pc:$PKG_CONFIG_PATH
to the .bashrc).

2. Modify the line prefix=@CMAKE_INSTALL_PREFIX@ to prefix=/path/to/cppmat.

3. Modify the line Cflags: -I${prefix}/@CPPMAT_INCLUDE_DIR@ to Cflags:
-I${prefix}/src.

4. Modify the line Version: @CPPMAT_VERSION_NUMBER@ to reflect the correct release version.

Compiler arguments from ‘pkg-config’

Should the compiler for some reason not be able to find the headers, instead of -I... one can now use

`pkg-config --cflags cppmat` -std=c++14

as compiler argument.

Compiler arguments from ‘cmake’

Add the following to your CMakeLists.txt:

set(CMAKE_CXX_STANDARD 14)

find_package(PkgConfig)

pkg_check_modules(CPPMAT REQUIRED cppmat)
include_directories(${CPPMAT_INCLUDE_DIRS})

Note: Except the C++ standard it should usually not be necessary to load cppmat explicitly, as it is installed in a
location where the compiler can find it.

3.10.4 Compiling Python modules that use cppmat

To compile Python modules that use cppmat using for example

python setup.py build
python setup.py install

One can ‘install’ cppmat’s headers to the include directory that Python uses. One can obtain cppmat from PyPi:

pip install cppmat

Or install from a local copy:

pip install /path/to/cppmat

32 Chapter 3. Contents



cppmat Documentation

3.11 Python interface

This library provides an interface to pybind11 such that an interface to NumPy arrays is automatically provided when
including a function with any of the cppmat classes:

cppmat class Rank of NumPy-array
cppmat::array n
cppmat::matrix 2
cppmat::vector 1
cppmat::tiny::array 2
cppmat::tiny::matrix 2
cppmat::tiny::vector 1
cppmat::cartesian::tensor4 4
cppmat::cartesian::tensor2 2
cppmat::cartesian::tensor2s 2
cppmat::cartesian::tensor2d 2
cppmat::cartesian::vector 1
cppmat::tiny::cartesian::tensor4 4
cppmat::tiny::cartesian::tensor2 2
cppmat::tiny::cartesian::tensor2s 2
cppmat::tiny::cartesian::tensor2d 2
cppmat::tiny::cartesian::vector 1

Warning: On the Python side all the matrices (cppmat::matrix, cppmat::symmetric::matrix,
and cppmat::diagonal::matrix) and 2nd-order tensors (cppmat::cartesian::tensor2,
cppmat::cartesian::tensor2s, and cppmat::cartesian::tensor2d) are all square matrices
(rank 2 NumPy arrays). This means that when a function that has cppmat::symmetric::matrix or
cppmat::cartesian::tensor2s as argument, the upper-diagonal part is read; while when it has an
argument cppmat::diagonal::matrix or cppmat::cartesian::tensor2d only the diagonal is
considered.

This requires extra attention as information might be lost. To optimize for speed and flexibility no checks
are performed in the release libraries derived from cppmat!

You can ask cppmat to check for this, by omitting the -DNDEBUG compiler flag (this enables several assertions, so
it may cost you some efficiency).

(The same holds for the classes under cppmat::tiny::.)

To use this feature one has to:

#include <cppmat/pybind11.h>

3.11.1 Building

[tensorlib.zip]

Building is demonstrated based on the ‘tensorlib’ example.

3.11. Python interface 33

https://github.com/pybind/pybind11


cppmat Documentation

CMake

[CMakeLists.txt]

cmake_minimum_required(VERSION 2.8.12)
project(tensorlib)

# set optimization level
# - aggressive optimization
# compiler: ... -O3
set(CMAKE_BUILD_TYPE Release)
# - switch off assertions (more risky but faster)
# compiler: ... -DNDEBUG
add_definitions(-DNDEBUG)

# set C++ standard
# - compiler: ... -std=c++14
set(CMAKE_CXX_STANDARD 14)

# find cppmat
# - compiler: ... -I${CPPMAT_INCLUDE_DIRS}
find_package(PkgConfig)
pkg_check_modules(CPPMAT REQUIRED cppmat)
include_directories(${CPPMAT_INCLUDE_DIRS})

# find pybind11
find_package(pybind11 REQUIRED)
pybind11_add_module(tensorlib tensorlib.cpp)

Build using

cd /path/to/tempdir
cmake /path/to/tensorlib
make

For this to work, pybind11 must be ‘installed’ on the system.

Tip: Alternatively you can include pybind11 as a sub-folder (for example using git submodule add https:/
/github.com/pybind/pybind11.git). In that case, replace find_package(pybind11 REQUIRED)
by add_subdirectory(pybind11) in CMakeLists.txt.

Tip: To link to external libraries, include at the end of your CMakeLists.txt

target_link_libraries(${PROJECT_NAME} PUBLIC ${PROJECT_LIBS})

setup.py

[setup.py]

from setuptools import setup, Extension

import sys
(continues on next page)

34 Chapter 3. Contents



cppmat Documentation

(continued from previous page)

import setuptools
import pybind11
import cppmat

__version__ = '0.0.1'

ext_modules = [
Extension(
'tensorlib',
['tensorlib.cpp'],
include_dirs=[

pybind11.get_include(False),
pybind11.get_include(True ),
cppmat .get_include(False),
cppmat .get_include(True )

],
language='c++'

),
]

setup(
name = 'tensorlib',
description = 'Tensorlib',
long_description = 'This is an example module, it no real use!',
keywords = 'Example, C++, C++11, Python bindings, pybind11',
version = __version__,
license = 'MIT',
author = 'Tom de Geus',
author_email = 'tom@geus.me',
url = 'https://github.com/tdegeus/cppmat/docs/examples/tensorlib',
ext_modules = ext_modules,
extra_compile_args = ["-DNDEBUG"], # switch off assertions
install_requires = ['pybind11>=2.1.0','cppmat>=0.2.1'],
cmdclass = {'build_ext': cppmat.BuildExt},
zip_safe = False,

)

As shown in this example building using the setup.py can be simplified using some routines in the cppmat python
module. These routines have been taken from pybind, most notably from Sylvain Corlay and Dean Moldovan. They
are merely attached to this module to simplify your life.

Build using

python3 setup.py build
python3 setup.py install

Tip: Replace the executable with your favorite Python version, e.g. with python.

CMake & setup.py

CMake can be called from the setup.py to take advantage of both. In that case the setup.py would be simply

3.11. Python interface 35

https://github.com/pybind


cppmat Documentation

import setuptools, cppmat

setuptools.setup(
name = 'tensorlib',
version = '0.0.1',
author = 'Tom de Geus',
author_email = 'email@address.com',
description = 'Description',
long_description = '',
ext_modules = [cppmat.CMakeExtension('tensorlib')],
cmdclass = dict(build_ext=cppmat.CMakeBuild),
zip_safe = False,

)

3.12 Notes for developers

3.12.1 Structure

Note:

3.12.2 Make changes / additions

Be sure to run the verification code in develop/! All existing checks should pass, while new check should be added
to check new functionality.

The Catch library has been used to run the checks, it should be used also for all new checks. To compile the checks:

1. Download and install Catch.

2. Compile all test cases:

$ mkdir develop/build
$ cd develop/build
$ cmake ..
$ make

3. Run ./cppmatTest.

3.12.3 Python

The Python package of this module python/cppmat/__init__.py is essentially used to allow distribution of
the header files that constitute this library through PyPi. In addition a small Python package cppmat is provided that
allows easy setup.py formulations of derived packages. These features can also be used when one is just interested
in using pybind11 and one does not intend to use cppmat itself.

3.12.4 Create a new release

1. Update the version number in src/cppmat/macros.h.

2. Upload the changes to GitHub and create a new release there (with the correct version number).

36 Chapter 3. Contents

http://catch-lib.net


cppmat Documentation

3. Upload the package to PyPi:

$ python3 setup.py bdist_wheel --universal
$ twine upload dist/*

3.12. Notes for developers 37


	Overview
	Example
	Contents

