

Welcome to Python Package Template’s documentation!

This is an opinionated attempt to document how I deploy a python
application with documentation, testing, pypi, and continuous
deployment. This project will be updated as I change my python
development practices. Number one this is a learning experience.

This project is a python package itself and full documentation is
available on readthedocs. Each of the steps below includes a link to
the section in the documentation.

	setup a bare python package with git repo (setup.py, README.md, .gitignore, <package>)

	setup pypi deployment with git tags vX.X.X

	setup conda deployment with git tags vX.X.X

	setup docker deployment with git tags vX.X.X

	setup testing on each commit with pytest

	setup documentation with sphinx on readthedocs and self hosted

	setup command line interface with argparse

	setup badges for README.md

Contents:

	Packaging
	setup.py

	LICENSE.md

	README.md

	CHANGELOG.md

	PyPi
	.gitlab-ci.yml

	Conda

	Docker
	Gitlab Registry + Docker Hub

	Docker Image Size

	Testing
	setup.py

	setup.cfg

	test/test_example.py

	.gitlab-ci.yml

	Documentation
	docs/Makefile

	docs/conf.py

	readthedocs.org

	.readthedocs.yml

	static documentation site

	.gitlab-ci.yml

	Command Line Interface
	setup.py

	<package>/__main__.py

	Badges

Indices and tables

	Index

	Module Index

	Search Page

Packaging

In this section I will talk about how create a simple python package
that can be installed using python setup.py install. These are the
basics sharing your package with other users. In order to get your
package to install with pip you will need to complete the steps in
this guide and PyPi. The reason is that this guide only shows
how to let someone install your package if they have the package
directory on their machine.

This guide was taken from several resources:

	setup.py reference documentation [https://setuptools.readthedocs.io/en/latest/setuptools.html]

	pypi sample project [https://github.com/pypa/sampleproject]

	kennethreitz setup.py [https://github.com/kennethreitz/setup.py]

	pypi supports markdown [https://dustingram.com/articles/2018/03/16/markdown-descriptions-on-pypi]

Is anyone else troubled by the fact that so many links are necissary
for simple python package development?!

Overview of typical package

README.md
CHANGELOG.md
LICENSE.md
setup.py
<package>/

__init__.py

setup.py

The most important file is the setup.py file. All required and
optional fields are given <required> and <optional>
respectively.

from setuptools import setup, find_packages
from codecs import open
from os import path

here = path.abspath(path.dirname(__file__))

Get the long description from the README file
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
 long_description = f.read()

setup(
 name='<required>',
 version='<required>',
 description='<required>',
 long_description=long_description,
 long_description_content_type="text/markdown",
 url='<optional>',
 author='<optional>',
 author_email='<optional>',
 license='<optional>',
 classifiers=[
 # Trove classifiers
 # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers
 'License :: OSI Approved :: MIT License',
 'Programming Language :: Python',
 'Programming Language :: Python :: 3.6',
 'Programming Language :: Python :: Implementation :: CPython'
],
 keywords='<optional>',
 packages=find_packages(exclude=['docs', 'tests']),
 # setuptools > 38.6.0 needed for markdown README.md
 setup_requires=['setuptools>=38.6.0'],
)

While setuptools docs [https://setuptools.readthedocs.io/en/latest/setuptools.html] detail
each option. I still needed some of the keyworks in more plain
english. This is not an exhaustive list so make sure to reference the
setuptools docs.

	name

	the name of package on pypi and when listed in pip. This is not
the name of the package that you import via python. The name of the
import will always be the name of the package directory for example
pypkgtemp.

	version

	make sure that the version numbers when pushing to pypi are unique. Also best to
follow semantic versioning [https://semver.org/].

	description

	keep it short and describe your package

	long_description

	make sure that you have created a README.md file in
the project directory. Why use a README.md instead of README.rst?
It’s simple, Github, Bitbucket, Gitlab, etc. all will display a
README.md as the homepage.

	url

	link to git repo url

	author

	give yourself credit!

	author_email

	nobody should really use this address to contact you about the package

	license

	need help choosing a license? use choosealicense [https://choosealicense.com/]

	classifiers

	one day would be nice to know why they are important. list of available tags [https://pypi.python.org/pypi?%3Aaction=list_classifiers].

	keywords

	will help with searching for package on pypi

	packages

	which packages to include in python packaging. using
find_packages is very helpful.

	setup_requires

	list of packages required for setup. Note that versioning uses environment markers [https://www.python.org/dev/peps/pep-0508/#environment-markers].

LICENSE.md

If you do not include a license it is by default copyrighted and
unable to be used by others. This is why it is so important to give
your work a license. A great resource for this is choosealicense.com [https://choosealicense.com].

README.md

A README is the first document someone sees when they visit your
project make it an inviting document with an overview of everthing the
programmer needs.

CHANGELOG.md

A changelog is something that I did not really adopt in my projects
until I started forgeting what I had done in the past week. I git log
is not designed for this! Some great advice can be found in Keep a
CHANGELOG [https://keepachangelog.com/en/0.3.0/]. Their motto is
“Don’t let your friends dump git logs into CHANGELOGs™”

At this point you have a simple python package setup! Obviously the
readme, changelog, and license are all optional but HIGHLY
recommended. Next we will share our package with the whole world
through continuous deployment (:doc:`pypi`_).

PyPi

PyPi otherwise known as the cheeseshop is the packaging repository for
python. PyPi has been going through some great changes recently
including a new UI and not requiring registering new projects. PyPi
deployment can seem daunting. Twine [https://github.com/pypa/twine]
is your best friend.

PyPi has two repositories. The testing repository [https://test.pypi.org/] and main repository [https://pypi.org]. when you are trying out deploying packages I
would advise starting with testing. Older guides for using PyPi will
state that you need to pre-register a package. This is no longer the
case.

First you will need to create a pypi account. The testing and
production repositories require separate accounts. Look for the
Register link in the top right of the site. After creating your
account keep track of the username and password.

From this point we have everything needed to do a simple manual
deployment to pypi. If you dont want to submit to the testing
repository remove --repository-url
https://test.pypi.org/legacy/. You will be prompted for your
username and password.

	pip install twine

	python setup.py sdist bdist_wheel

	twine upload --repository-url https://test.pypi.org/legacy/ dist/*

This is easy! But one issue is that this process is not
automated. Really we would like anytime that we create a new release
on git that it is pushed to pypi. This is where Gitlab comes to the
rescue.

Gitlab has a continuous deployment and continuous integration pipeline
that is free to use. This will only work for code that is stored in a
Gitlab repo.

Add the following to a .gitlab-ci.yml file in the root of your
project. The reason that there are two twine upload steps is because
there is currently a flaw in the markdown processing (issue [https://github.com/di/markdown-description-example/issues/1]). Hopefully
this is fixed soon.

.gitlab-ci.yml

variables:
 TWINE_USERNAME: SECURE
 TWINE_PASSWORD: SECURE
 TWINE_REPOSITORY_URL: https://test.pypi.org/legacy/

stages:
 - deploy

deploy:
 image: python:3.6
 stage: deploy
 script:
 - pip install -U twine setuptools
 - pip list
 - python setup.py sdist bdist_wheel
 - twine upload dist/*.tar.gz
 - twine upload dist/*.whl
 only:
 - /^v\d+\.\d+\.\d+([abc]\d*)?$/ # PEP-440 compliant version (tags)

Additionally settings->CI/CD->Secret variables the environment
variables TWINE_PASSWORD and TWINE_USERNAME need to be set. At
this point whenever a git tag of the form vX.Y.Z is pushed to
Gitlab a new version will be pushed to PyPi. Make sure that your git
tags match the version number! PyPi does not allow you to change a
currently existing version of your project. This is a good thing since
we should all do our best to follow semantic versioning [https://semver.org/].

Once you would like to deploy to the main PyPi repository change
TWINE_REPOSITORY_URL to https://upload.pypi.org/legacy/.

So you now have a package that can be shared with the entire world!
But you have no testing… the next section Testing will show
you how to include testing via pytest.

Conda

Conda is an alternative package manger to PyPi. It comes with many
features that PyPi packaging does not handle well such as including
compiled libraries and c dependencies.

While traditional Python packages are stored in pypi.org [https://pypi.org] conda python packages are stored at anaconda.org [https://anaconda.org]. These steps do not require that you have
already deployed a package to PyPi.

First create an account through https://anaconda.org
<https://anaconda.org>. Unlike PyPi there is no test repo to submit
your package to. Anaconda takes a different philosophy where each user
has a collection of packages and jupyter notebooks in their repo. The
approach I will show you does not require that you have conda
installed on your machine. If you would like to experiment with the
build tool I would recommend pulling the continuum conda build
docker container continuumio/miniconda3 [https://hub.docker.com/r/continuumio/miniconda3]. The default
continuumio/anaconda3 docker environment is over 3.5 GB
unzipped. Why are the continuum docker containers so large?

docker pull continuumio/miniconda3
docker run -i -t continuumio/miniconda3 /bin/bash

Once you start the docker container you can do the following steps for
package deployment to conda. These steps will be automated later with
a Gitlab build script. In order to upload packages you will either
need to login to your account via anaconda login or create an
account token will all account access. I would recommend creating an
account token so that you can revoke access at any time. To create an
account token go to settings->access on anaconda.org when you are
logged in.

	conda install anaconda-client setuptools conda-build -y

	python setup.py bdist_conda

	anaconda -t $ANACONDA_TOKEN upload -u $ANACONDA_USERNAME /opt/conda/conda-bld/linux-64/<package>-<version>-<pyversion>.tar.bz2

The first step ensures that all packages are the right version and we
have the command line anaconda tool. Anaconda has it hidden in their
documentation that they have a convenient build tool for python
packages [https://conda.io/docs/user-guide/tasks/build-packages/build-without-recipe.html]
that does not require a recipe. When running in a conda environment
they have overridden setuptools to include bdist_conda for building
conda packages. The build command will build the package, run tests,
and check that each command created exits. After your package is built
you can now upload to conda. If you are building within a docker
container chances are that their is only one conda build so you can
shorten the upload command to anaconda upload
/opt/conda/conda-bld/linux-64/<package>*.tar.bz2. Otherwise you will
have to chose the build that is provided at the end of the python
setup.py bdist_conda output.

From some of my initial tests I was surprised that many packages
available on PyPi are not available on conda and thus made the
builds fail. These errors are most likely due to me know understanding
the conda tools well. If your build succeeded you should see the
package listed on https://anaconda.org/<username>.

Since we are all about automation lets make this process automatic on
Gitlab!

variables:
 TWINE_USERNAME: SECURE
 TWINE_PASSWORD: SECURE
 TWINE_REPOSITORY_URL: https://test.pypi.org/legacy/
 ANACONDA_USERNAME: SECURE
 ANACONDA_TOKEN: SECURE

stages:
 - deploy

deploy_conda:
 image: continuumio/miniconda3:latest
 stage: deploy
 script:
 - conda install anaconda-client setuptools conda-build -y
 - python setup.py bdist_conda
 - anaconda -t $ANACONDA_TOKEN upload -u $ANACONDA_USERNAME /opt/conda/conda-bld/linux-64/pypkgtemp*.tar.bz2
 only:
 - /^v\d+\.\d+\.\d+([abc]\d*)?$/ # PEP-440 compliant version (tags)

Docker

While PyPi and Conda are great ways to distribute python applications
to python developers. We would like to have an easier way to
distribute applications to linux and OSX users. Containers are a great
way of achieving this. For this we will use docker for our builds with
a Dockerfile. Explaining dockerfiles are outside of the scope of
this documentation but here is a general build template for
Docker. You will want to put the docker file in the root of your
project.

FROM python:3.6-slim
MAINTAINER Chris Ostrouchov

ARG VERSION=v1.1.0
ARG USERNAME=costrouc
ARG PROJECT=python-package-template

Download package, install package, no cache
RUN pip install --no-cache-dir https://gitlab.com/$USERNAME/$PROJECT/repository/$VERSION/archive.tar.gz

ENTRYPOINT ["helloworld"]
CMD ["fizzbuzz", "-n", "10"]

Lets explain some of the settings. FROM describes the docker
container that we derive from. In this case starting with base python
is a good start. MAINTAINER is exactly what it sounds like it is
an easy way to declare the package maintainer. Since dockerfiles work
in layers we need to do all our work in one run command to reduce
size. Luckily if we have built our python package correctly the run
step should be very simple using pip. Finally ENTRYPOINT and
CMD set the default command and arguments respectively. Once you
have a template you have many choices on where to share your docker
container. I will show here how to upload your container to
dockerhub. First create an account at docker hub [https://hub.docker.com/] and signup. Then create a repository with
your desired repository name. Then follow these simple steps to build
an image and push to docker hub.

	docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD

	docker build -t $USERNAME/$PACKAGE:$VERSION --build-arg VERSION=$VERSION .

	docker push $USERNAME/$PACKAGE:$VERSION

It really is as simple as that!

Gitlab Registry + Docker Hub

Now we would like to automate this with gitlab to deploy our container
to gitlab registries and docker hub. Here is the additions to .gitlab-ci.yml.

 variables:
 DOCKER_PASSWORD: SECURE
 DOCKER_USERNAME: SECURE

stages:
 - test
 - deploy

 deploy_docker:
 image: docker:git
 stage: deploy
 services:
 - docker:dind
 script:
 - docker build -t python-package-template:$CI_COMMIT_TAG --build-arg VERSION=$CI_COMMIT_TAG .
 # push to dockerhub
 - docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD
 - docker tag python-package-template:$CI_COMMIT_TAG costrouc/python-package-template:$CI_COMMIT_TAG
 - docker tag python-package-template:$CI_COMMIT_TAG costrouc/python-package-template:latest
 - docker push costrouc/python-package-template:$CI_COMMIT_TAG
 - docker push costrouc/python-package-template:latest
 # push to gitlab registry
 - docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.gitlab.com
 - docker tag python-package-template:$CI_COMMIT_TAG registry.gitlab.com/costrouc/python-package-template:$CI_COMMIT_TAG
 - docker tag python-package-template:$CI_COMMIT_TAG registry.gitlab.com/costrouc/python-package-template:latest
 - docker push registry.gitlab.com/costrouc/python-package-template:$CI_COMMIT_TAG
 - docker push registry.gitlab.com/costrouc/python-package-template:latest
 only:
 - /^v\d+\.\d+\.\d+([abc]\d*)?$/ # PEP-440 compliant version (tags)

With this you should now be able to deploy to both gitlab and docker!
Of course like before in PyPi and Conda you will need to add your
secret environment variables to the gitlab CI/CD.

Docker Image Size

If you visit the official python docker repository [https://hub.docker.com/_/python/] there are many many choices for
base images to start from for each version. To simplify your choices
you need to pick a python version (2.7, 3.3, 3.5, 3.6, etc.), whether
the image is based on a large ubuntu image, debian minimal, or
alpine. My advice is that I have found several applications not to
work on the extremely minimal alpine but if it does use it (90.4
MB). You should have no problem using the debian minimal image (slim)
and this should be your default choice (162 MB). Use the ubuntu image
as a last resort as it is HUGE (691 MB).

The size of a docker image will determine how fast a container
management framework such as kubernetes [https://kubernetes.io/]
can spinup your instance. Smaller is better and “too big” is always
relative. I stick to less than 300-400 MB.

Testing

Testing should be required for all source code. While there are many
tools available for testing python code pytest in my option is the
clear winner. I beleive this is due to pytest being the most
pythonic framework for testing. PyTest gives a guide on integrating
it into your project [https://docs.pytest.org/en/latest/goodpractices.html]. The
following will give a setup that is both simple and
opinionated. Another easy win we can get with pytest is code
coverage. We will use the add-on package pytest-cov for this.

setup.py

setup(
 ...
 setup_requires=['pytest-runner', ...],
 tests_require=['pytest', 'pytest-cov'],
)

setup.cfg

[aliases]
test=pytest

That is all you need to get pytest running! You can run all tests
via the command python setup.py test or py.test. Now that is
all assuming you have tests. pytest by default will look for tests
in the tests directory and runs all files with the name
test_<filename>.py. In order to get the additional coverage report
with the tests you need to add some additional arguments python
setup.py test --addopts "--cov=pypkgtemp". Read the pytest
documentation [https://docs.pytest.org/en/latest/] for more detailed
documentation . For example create a file tests/test_example.py
with the following code.

test/test_example.py

def test_example():
 assert 1 == 1

Now run the test via python setup.py test and you should see that
one test passes. Similarly how we discussed that all new tags of our
project should be pushed to PyPi we should also test all commits when
they are pushed to gitlab. Adding to the .gitlab-ci.yml setup in
the :doc:`pypi`_ documentation.

.gitlab-ci.yml

stages:
 - test
 - deploy

test:
 image: python:3.6
 stage: test
 script:
 - pip install .
 - pip list
 - python setup.py test --addopts "--cov=<package-directory>"

With these changes it will test every commit given to Gitlab and will
only submit a new package if all tests pass! All of this has been
automated for us. In order to get the coverage report setup correctly
you will need to tell gitlab the regular expression to use in order to
parse the coverage report. For pytest-cov this is
^TOTAL\s+\d+\s+\d+\s+(\d+)\%\s*$.

Documentation

Documenting a python project is a daunting task. Even though I myself
have had experience with documentation it always takes me time to get
the setup just right. In python the standard way to create
documentation is with Sphinx [http://www.sphinx-doc.org/en/master/]. Sphinx is not
straightforward to use and relies heavily on restructured text [https://en.wikipedia.org/wiki/ReStructuredText]. Restructured text
is a somewhat more verbose markup language than Markdown but is not
too hard to learn the syntax [http://docutils.sourceforge.net/docs/user/rst/quickref.html]. There
is a lot to learn to use RST properly with python sadly. Most of the
installation instructions follow the awesome An idiot’s guide to
Python documentation with Sphinx and ReadTheDocs [https://samnicholls.net/2016/06/15/how-to-sphinx-readthedocs/]. My
changes are that I want to show how to include docstring in the google
format and how to additionally deploy documentation on a static site
without readthedocs.

First you will install sphinx and create a docs folder in the root of
your project. If you want to use the readthedocs theme for the
documentation you will need to install the sphinx_rtd_theme [https://github.com/rtfd/sphinx_rtd_theme].

	pip install sphinx sphinx_rtd_theme

	mkdir docs

Next you will want to setup a basic sphinx project. You will do this
by running the command sphinx-quickstart within the docs folder.
Most of the default options are good. You will need to set a project
name, version, and answer yes to autodoc since we want our
project source code to be documented. At this point you will have very
basic sphinx documentation. Next we need to add our package source
documentation. This can be done via the sphinx tool
sphinx-autodoc. Add the following to your Makefile in the
docs. Now run make apidocs to add the outline of your source
code.

docs/Makefile

Add to the makefile the following lines.

apidocs:
 sphinx-apidoc -o source/ ../<package>

If you wanted the readthedocs theme instead of the default you will need to modify docs/conf.py.

...
html_theme = 'sphinx_rtd_theme'
...

The default sphinx apidoc is tedious and verbose. I recommend using
sphinx napoleon docstrings [http://www.sphinx-doc.org/en/stable/ext/napoleon.html] which has
been standardized by google and numpy. In order to use napoleon the
extension needs to be added.

docs/conf.py

...
extensions = [
 ...
 'sphinx.ext.napoleon'
]
...

Here is an example of simple function being documented in the google
style. See the google docstring format [https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments]
for further details.

def fizzbuzz(n):
 """A super advanced fizzbuzz function

 Write a program that prints the numbers from 1 to 100. But for
 multiples of three print “Fizz” instead of the number and for the
 multiples of five print “Buzz”. For numbers which are multiples of
 both three and five print “FizzBuzz” Prints out fizz and buzz

 Args:
 n (int): number for fizzbuzz to count to

 Returns:
 None: prints to stdout fizzbuzz
 """
 def _fizzbuzz(i):
 if i % 3 == 0 and i % 5 == 0:
 return 'FizzBuzz'
 elif i % 3 == 0:
 return 'Fizz'
 elif i % 5 == 0:
 return 'Buzz'
 else:
 return str(i)
 print("\n".join(_fizzbuzz(i+1) for i in range(n)))

If you want math support there is a mathjax extension. Just again
modify conf.py. If you want latex support when exporting to a pdf
follow this math sphinx documentation [http://www.sphinx-doc.org/en/stable/ext/math.html].

...
extensions = [
 ...
 'sphinx.ext.mathjax'
]
...

Math can then simply be included inline or in block format. Use the
awesome latex markup language [https://en.wikibooks.org/wiki/LaTeX/Mathematics] to write
equations.

as some inline text

:math:`\beta \gamma`

or as a block math equation

.. math::

 \beta = \gamma

At this point you are ready to go! You can run make html within
the docs folder and it will build the website in
docs/_build/html. Okay so great we have the static files for the
website but how do I deploy them?! There are two answers and you can
choose both: self hosting and readthedocs.org [https://readthedocs.org].

readthedocs.org

First you will signup an account with readthedocs.org. It is not
necessary to link an account as readthedocs will work with any
publicly available version controlled repo. Import a project ->
Import Manually and give the project a unique name and specify the
repository url. The name that you provide determines the url
<name>.readthedocs.org. For full documentation see the
https://docs.readthedocs.io/en/latest/getting_started.html.

Readthedocs will detect and change in the repository and rebuilt the
documentation. However often times the default configuration does not
work with cutting edge projects and also by default does not install
the project when building the documentation. To specify the
readthedocs configuration in your project you should use
.readthedocs.yml [https://docs.readthedocs.io/en/latest/yaml-config.html?highlight=.readthedocs.yml]. A basic configuration is specified below. Readthedocs uses docker containers and has many more configuration options. With this you should be all setup! Read the documentation for additional options.

.readthedocs.yml

build:
 image: latest

python:
 version: 3.6
 setup_py_install: true

Scientific packages often have dependencies that require c extensions or cython. In order to use readthedocs that has c extension dependencies you will need to mock out all the dependencies in the conf.py. This is documented in the readthedocs FAQ [https://docs.readthedocs.io/en/latest/faq.html?highlight=setup.py%20install#i-get-import-errors-on-libraries-that-depend-on-c-modules]. One more reason I would recommend hosting the static site yourself.

import sys
from unittest.mock import MagicMock

class Mock(MagicMock):
 @classmethod
 def __getattr__(cls, name):
 return MagicMock()

MOCK_MODULES = ['pygtk', 'gtk', 'gobject', 'argparse', 'numpy', 'pandas']
sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

static documentation site

Sometimes it is nicer to just deploy the static website yourself. With
this deployment we get much more flexibility on the resulting
documentation. Read the docs is an awesome resource but it does have
limitations. For instance one issue I have had is that it does not
generate docstrings from cextensions such as cython [http://cython.org/] code and cannot handle packages with c
extensions. There are workarounds by mocking the modules [https://docs.readthedocs.io/en/latest/faq.html?highlight=setup.py%20install#i-get-import-errors-on-libraries-that-depend-on-c-modules]. In
these cases we can use Gitlab CD/CI for deploying our own static site.

Since we already have a pipeline for our project lets include the
static website building. Add the following to .gitlab-ci.yml

.gitlab-ci.yml

stages:
 - test
 - deploy
 - docs

pages:
 image: python:3.6
 stage: docs
 script:
 - pip install sphinx sphinx_rtd_theme
 - pip install -e .
 - mkdir public
 - cd docs
 - make apidocs
 - make html
 - cp -r _build/html/* ../public
 artifacts:
 paths:
 - public
 only:
 - master

We are using gitlab pages [https://docs.gitlab.com/ee/user/project/pages/index.html] to deploy
our website. It should be available at
<username>.gitlab.io/<repo>. If you would like to add a custom
domain follow either my blog at gitlab static site deployment [https://chrisostrouchov.com/posts/hugo_static_site_deployment/] or
look at the gitlab cloudflare documentation [https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/].

Now you have your documentation completed!

Command Line Interface

There are numerous tools in python to help you create a command line
interface. Some of these include click, docopt, and SO many
others. Personally I have found that argparse in the standard
library does 90% of the things that I need in a command line. Since
argparse is in the stdlib full documentation is available argparse [https://docs.python.org/3/library/argparse.html]

setup.py

setup(
 ...
 entry_points={
 'console_scripts': [
 '<command>=<package>.__main__:main'
]
 },
 ...
)

<package>/__main__.py

import argparse
import sys

def main():
 parser = argparse.ArgumentParser()
 subparsers = parser.add_subparsers()
 add_subcommand_fizzbuzz(subparsers)
 if len(sys.argv) == 1:
 parser.print_help()
 sys.exit(1)
 args = parser.parse_args()
 args.func(args)

def add_subcommand_fizzbuzz(subparsers):
 parser = subparsers.add_parser('fizzbuzz', help='do the fizzbuzz!')
 parser.set_defaults(func=handle_subcommand_fizzbuzz)
 parser.add_argument('-n', '--number', type=int, default=100, help='number for fizzbuzz to count to')

def handle_subcommand_fizzbuzz(args):
 from pypkgtemp.hello import fizzbuzz
 fizzbuzz(args.number)

if __name__ == '__main__':
 main()

And there you have the simplest non trivial and scalable
argparser. This demonstration shows how to create subcommands and take
options with certain types and defaults. You can run the example via
<command> fizzbuzz -n 42 or <command> fizzbuzz.

Badges

Obviously the most important part about creating packages is the
amount of flair that you have. Badges are the way to achieve
this. Many of the sites described in the documentation provide badges
such as conda, gitlab, and readthedocs. Sadly PyPi does not provide
badges but we can still get them from shields.io [https://shields.io].

For the conda badges go to
anaconda.org/<username>/<package>/badges and you will see a list
of available badges that you can use. For gitlab badges go to
https://gitlab.com/<username>/<project>/settings/ci_cd
and scroll to Pipeline status pipeline status and coverage report
should be available. The coverage report relies on the fact that you
setup coverage described in the testing section. For readthedocs a single badge is provided to show that documentation is building http://<package>.readthedocs.io/en/latest/?badge=latest.

Markdown and restructured text are not the best formats for creating
tables (org mode is [https://orgmode.org/manual/Tables.html]). But
for non emacs uses and a way to embed a table in markdown we can just
use HTML. I stole this idea from what the pandas developers did [https://raw.githubusercontent.com/pandas-dev/pandas/master/README.md].

They use a simple html table.

<table>
<tr>
 <td>Latest Release</td>
 <td></td>
</tr>
 <td></td>
 <td></td>
</tr>
<tr>
 <td>Package Status</td>
 <td></td>
</tr>
<tr>
 <td>License</td>
 <td></td>
</tr>
<tr>
 <td>Build Status</td>
 <td>

 </td>
</tr>
<tr>
 <td>Coverage</td>
 <td></td>
</tr>
<tr>
 <td>Conda</td>
 <td>

 </td>
</tr>
<tr>
 <td>Documentation</td>
 <td>

 </td>
</tr>
</table>

Looking at a README.md you can see the resulting table.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypkgtemp	

 	
 	
 pypkgtemp.hello	

Index

 F
 | H
 | P

F

 	
 	fizzbuzz() (in module pypkgtemp.hello)

H

 	
 	hello (pypkgtemp.hello.HelloWorld attribute)

 	
 	HelloWorld (class in pypkgtemp.hello)

 	helloworld() (pypkgtemp.hello.HelloWorld static method)

P

 	
 	pypkgtemp (module)

 	
 	pypkgtemp.hello (module)

pypkgtemp

	pypkgtemp package
	Submodules

	pypkgtemp.hello module

	Module contents

pypkgtemp package

Submodules

pypkgtemp.hello module

	
class pypkgtemp.hello.HelloWorld(firstname, lastname)

	Bases: object

HelloWorld class will tell you hello!

	
hello

	say hello to user

a longer message about what this function does

	Returns

	special hello message to user

	Return type

	str

	
static helloworld(name)

	string with special hello message to name

	Parameters

	name (str) – the person to say hello to

	Returns

	special hello world message

	Return type

	str

	
pypkgtemp.hello.fizzbuzz(n)

	A super advanced fizzbuzz function

Write a program that prints the numbers from 1 to 100. But for
multiples of three print “Fizz” instead of the number and for the
multiples of five print “Buzz”. For numbers which are multiples of
both three and five print “FizzBuzz” Prints out fizz and buzz

	Parameters

	n (int) – number for fizzbuzz to count to

	Returns

	prints to stdout fizzbuzz

	Return type

	None

Module contents

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python Package Template’s documentation!

 		
 Packaging

 		
 setup.py

 		
 LICENSE.md

 		
 README.md

 		
 CHANGELOG.md

 		
 PyPi

 		
 .gitlab-ci.yml

 		
 Conda

 		
 Docker

 		
 Gitlab Registry + Docker Hub

 		
 Docker Image Size

 		
 Testing

 		
 setup.py

 		
 setup.cfg

 		
 test/test_example.py

 		
 .gitlab-ci.yml

 		
 Documentation

 		
 docs/Makefile

 		
 docs/conf.py

 		
 readthedocs.org

 		
 .readthedocs.yml

 		
 static documentation site

 		
 .gitlab-ci.yml

 		
 Command Line Interface

 		
 setup.py

 		
 <package>/__main__.py

 		
 Badges

_static/up-pressed.png

_static/up.png

_static/plus.png

