
copper Documentation
Release 0.1.0

Kenneth Lyons

Feb 10, 2018

Contents

1 User Guide 3
1.1 Common Blocks . 3
1.2 Connecting Blocks . 4
1.3 Implementing Pipeline Blocks . 5
1.4 Post-Process Hooks . 6

2 API 9
2.1 core . 9
2.2 common . 11
2.3 sources . 14

Python Module Index 17

i

ii

copper Documentation, Release 0.1.0

copper is a small infrastructure for processing data in a pipeline style. You create pipeline blocks, then connect them
up with an efficient (but still readable) syntax. It was originally created for flexibly creating pipelines in real-time
signal processing applications, but it can be useful in offline applications as well.

Contents 1

copper Documentation, Release 0.1.0

2 Contents

CHAPTER 1

User Guide

In copper, data processing is implemented through a Pipeline. A pipeline is a series of processing routines for
transforming raw input data (e.g. electrophysiological data such as EMG) into useful output, such as the velocity of a
cursor on the screen. These routines can usually be broken down into blocks which have common functionality.

1.1 Common Blocks

The typical picture for an electrophysiological signal processing pipeline looks something like:

Input
↓

Windowing

↓

Conditioning

↓

Feature Extraction

↓

Intent Recognition

↓

Output Mapping

↓
Output

3

copper Documentation, Release 0.1.0

Each block in this example is really a type of processing block, and the actual processing involved in each can vary.
copper implements some of the common cases, but creating custom blocks and connecting them together in a pipeline
structure is simple. Also, the picture above shows a simple series structure, where each block takes input only from the
block before it. More complex structures are sometimes convenient or necessary, and some complexity is supported.

1.1.1 Windowing

Windowing involves specifying a time window over which the rest of the pipeline will operate. That is, a windower
keeps track of the current input data and optionally some data from the past, concatentating the two and passing it
along. This is useful for calculating statistics over a sufficient sample size while updating the pipeline output at a rapid
rate, achieved by overlapping windows. In an offline processing context (i.e. processing static recordings), windowing
also specifies how much data to read in on each iteration through the recording.

Windowing is handled by a Windower.

1.1.2 Conditioning

Raw data conditioning (or pre-processing) usually involves things like filtering and normalization. Usually the output
of a conditioning block does not fundamentally change the representation of the input.

1.1.3 Feature Extraction

Features are statistics computed on a window of input data. Generally, they should represent the information contained
in the raw input in a compact way. For example, you might take 100 samples of data from six channels of EMG and
calculate the root-mean-square value of each channel during that 100-sample window of time. This results in an array
of length 6 which represents the amplitude of each channel in the high-dimensional raw data. A feature extractor is
just a collection of features to compute from the input.

Features in copper are classes that take all of their parameters in __init__ and perform their operation on the input
in a compute method.

Features are typically used by adding a handful of them to a FeatureExtractor and putting that extractor in a
Pipeline.

1.1.4 Intent Recognition

Intent recognition is the prediction or estimation of what the user intends to do based on the signals generated. An
example would be a large signal sensed at the group of extensor muscles in the forearm for communicating “wrist
extension.” Sometimes this mapping can be specified a priori, but most of the time we rely on machine learning
techniques to infer this mapping from training data.

1.2 Connecting Blocks

The core module is a small infrastructure for processing data in a pipeline style. You create or use the built-in
PipelineBlock objects, then connect them up with an efficient (but still readable) syntax with a Pipeline.

The syntax for expressing pipeline structure is based on lists and tuples. Lists hold elements that are connected in
series:

4 Chapter 1. User Guide

copper Documentation, Release 0.1.0

[a, b]:

a b

The input is whatever a takes, and the output is whatever b outputs. Tuples hold elements that are connected in
parallel:

(a, b):

a

b

The input goes to both a and b, and the output is whatever a and b output in a list. If we connect another element in
series with a parallel block, it must be a block that handles multiple inputs:

[(a, b), c]:

a
c

b

The bottom line is: pipeline blocks accept input types and they specify the output types. You are responsible for
ensuring that pipeline blocks can be connected as specified.

Sometimes, you might want to pass the output of a block to some block structure and somewhere downstream. To
handle this case, there is a PassthroughPipeline that you can use as a block within another pipeline:

passthrough pipeline p ← (b, c):

b

c

[a, p, d]:

b
a pd → a d

c

The pass-through pipeline places its own output(s) after its input, so the input is accesible on the other side. There are
cases where this type of structure is possible with a list/tuple expression, but sometimes the pass-through pipeline as a
block is needed. The above example is one of those cases.

1.3 Implementing Pipeline Blocks

Pipeline blocks are simple to implement. It is only expected that you implement a process() method which takes
one argument (data) and returns something. For multi-input blocks, you’ll probably want to just expand the inputs
right off the bat (e.g. in_a, in_b = data). Usually, the output is some processed form of the input data:

import copper

class FooBlock(copper.PipelineBlock):
def process(self, data):

1.3. Implementing Pipeline Blocks 5

copper Documentation, Release 0.1.0

return data + 1

class BarBlock(copper.PipelineBlock):
def process(self, data):

return 2 * data

With some blocks implemented, the list/tuple syntax described above is used for specifying how they are connected:

a = FooBlock()
b = BarBlock()
p = copper.Pipeline([a, b])

Now, you just give the pipeline input and get its output:

input = 3
result = p.process(input)

In this case, the result would be 2 * (input + 1) == 8.

1.4 Post-Process Hooks

Sometimes, it’s useful to be able to hook into some block in the pipeline to retrieve its data in the middle of a run
through the pipeline. For instance, let’s say you have a simple pipeline:

[a, b]:

a b

You run some data through the pipeline to get the result from block b, but you also want to run some function with the
output of a. PipelineBlock takes a hooks keword argument which takes a list of functions to execute after the
block’s process method finishes. To use hooks, make sure your custom block calls the parent PipelineBlock
__init__ method. For example:

import copper

class FooBlock(copper.PipelineBlock):
def __init__(self, hooks=None):

super(FooBlock, self).__init__(hooks=hooks)

def process(self, data):
return data + 1

class BarBlock(copper.PipelineBlock):
def process(self, data):

return 2 * data

def foo_hook(data):
print("FooBlock output is %d".format(data))

a = FooBlock(hooks=[foo_hook])
b = BarBlock()

p = copper.Pipeline([a, b])
result = p.process(3)

6 Chapter 1. User Guide

copper Documentation, Release 0.1.0

Now, the call to process on the pipeline will input 3 to block a, block a will add 1 then print FooBlock output
is 4, and then 4 will be passed to block b, which will return 8.

1.4. Post-Process Hooks 7

copper Documentation, Release 0.1.0

8 Chapter 1. User Guide

CHAPTER 2

API

These are the modules/subpackages which constitute copper.

2.1 core

Base classes for pipelines and pipeline blocks.

class copper.core.PipelineBlock(name=None, hooks=None)
Base class for all blocks in copper.

Notes

Blocks should take their parameters in __init__ and provide at least the process method for taking in data
and returning some result.

process(data)
Process input data and produce a result.

Subclasses must implement this method, otherwise it shouldn’t really be a PipelineBlock.

clear()
Clear the state of the block.

Some blocks don’t keep stateful attributes, so clear does nothing by default.

class copper.core.Pipeline(blocks, name=None)
Feedforward arrangement of blocks for processing data.

A Pipeline contains a set of :class:‘PipelineBlock‘s which operate on data to produce a final output.

To create a pipeline, the following two rules are needed: blocks in a list processed in series, and blocks in a tuple
are processed in parallel.

9

copper Documentation, Release 0.1.0

Blocks that are arranged to take multiple inputs should expect to take the corresponding number of inputs in the
order they are given. It is up to the user constructing the pipeline to make sure that the arrangement of blocks
makes sense.

Parameters blocks (container) – The blocks in the pipline, with lists processed in series and
tuples processed in parallel.

named_blocks
dict – Dictionary of blocks in the pipeline. Keys are the names given to the blocks in the pipeline and
values are the block objects.

process(data)
Calls the process method of each block in the pipeline, passing the outputs around as specified in the
block structure.

Parameters data (object) – The input to the first block(s) in the pipeline. The type/format
doesn’t matter to copper, as long as the blocks you define accept it.

Returns out – The data output by the process method of the last block(s) in the pipeline.

Return type object

clear()
Calls the clear method on each block in the pipeline. The effect depends on the blocks themselves.

class copper.core.PassthroughPipeline(blocks, expand_output=True, name=None)
Convenience block for passing input along to output.

A passthrough pipeline block is useful when you want to process some data then provide both the processed
output as well as the original input to another block downstream.

class copper.core.CallablePipelineBlock(func, func_args=None, func_kwargs=None,
name=None, hooks=None)

A PipelineBlock that does not require persistent attributes.

Many PipelineBlock implementations don’t require attributes to update on successive calls to the process
method, but instead are essentially a function that can be called repeatedly. This class is for conveniently
creating such a block.

If the function you want to use takes additional arguments, such as a keyword argument that

Note: if you use an anonymous function as the func argument, (e.g. lambda x: 2*x), it is recommended
to explicitly give the block a meaningful name.

Parameters

• func (callable(data)) – Function that gets called when the block’s process method
is called. Should take a single input and return output which is compatible with whatever is
connected to the block.

• func_args (list, optional) – List (or tuple) of additional arguments to pass to func
when calling it for processing. If None (default), no arguments are used.

• func_kwargs (dict) – Keyword argument name/value pairs to pass to func when calling
it for processing. If None (default), no keyword arguments are used.

• name (str, optional, default=None) – Name of the block. By default, the name
of the processor function is used.

• hooks (list, optional, default=None) – List of callables (callbacks) to run
when after the block’s process method is called.

10 Chapter 2. API

copper Documentation, Release 0.1.0

2.2 common

Common processing tasks.

class copper.common.Windower(length)
Windows incoming data to a specific length.

Takes new input data and combines with past data to maintain a sliding window with optional overlap. The
window length is specified directly, so the overlap depends on the length of the input.

The input length may change on each iteration, but the Windower must be cleared before the number of
channels can change.

Parameters length (int) – Total number of samples to output on each iteration. This must be at
least as large as the number of samples input to the windower on each iteration.

See also:

copper.common.Ensure2D Ensure input to the windower is 2D.

Examples

Basic use of a windower:

>>> import copper
>>> import numpy as np
>>> win = copper.Windower(4)
>>> win.process(np.array([[1, 2], [3, 4]]))
array([[0., 0., 1., 2.],

[0., 0., 3., 4.]])
>>> win.process(np.array([[7, 8], [5, 6]]))
array([[1., 2., 7., 8.],

[3., 4., 5., 6.]])
>>> win.clear()
>>> win.process(np.array([[1, 2], [3, 4]]))
array([[0., 0., 1., 2.],

[0., 0., 3., 4.]])

If your data is 1-dimensional (shape (n_samples,)), use an Ensure2D block in front of the Windower:

>>> win = copper.Windower(4)
>>> p = copper.Pipeline([copper.Ensure2D(), win])
>>> p.process(np.array([1, 2]))
array([[0., 0., 1., 2.]])

clear()
Clear the buffer containing previous input data.

process(data)
Add new data to the end of the window.

Parameters data (array, shape (n_channels, n_samples)) – Input data.
n_samples must be less than or equal to the windower length.

Returns out – Output window with the input data at the end.

Return type array, shape (n_channels, length)

2.2. common 11

copper Documentation, Release 0.1.0

class copper.common.Centerer(name=None, hooks=None)
Centers data by subtracting out its mean.

process(data)
Center each row of the input.

Parameters data (array, shape (n_channels, n_samples)) – Input data.

Returns out – Input data that’s been centered.

Return type array, shape (n_channels, n_samples)

class copper.common.Filter(b, a=1, overlap=0)
Filters incoming data with a time domain filter.

This filter implementation takes filter coefficients that are designed by the user – it merely applies the filter to
the input, remembering the final inputs/outputs from the previous update and using them as initial conditions for
the current update.

Parameters

• b (ndarray) – Numerator polynomial coefficients of the filter.

• a (ndarray, optional) – Denominator polynomial coefficients of the filter. Default
is 1, meaning the filter is FIR.

• overlap (int, optional) – Number of samples overlapping in consecutive inputs.
Needed for correct filter initial conditions in each filtering operation. Default is 0, meaning
the final inputs/outputs of the previous update are used.

See also:

copper.common.Ensure2D Ensure input to the filter is 2D.

Examples

Design a filter using scipy and use the coefficients:

>>> import copper
>>> import numpy as np
>>> from scipy.signal import butter
>>> b, a = butter(4, 100/1000/2)
>>> f = copper.Filter(b, a)
>>> f.process(np.random.randn(1, 5))
array([...

Use a filter in combination with a Windower, making sure to account for overlapping data in consecutive
filtering operations. Here, we’ll use a window of length 5 and pass in 3 samples at a time, so there will be an
overlap of 2 samples. The overlapping samples in each output will agree:

>>> w = copper.Windower(5)
>>> f = copper.Filter(b, a, overlap=2)
>>> p = copper.Pipeline([w, f])
>>> out1 = p.process(np.random.randn(1, 3))
>>> out2 = p.process(np.random.randn(1, 3))
>>> out1[:, -2:] == out2[:, :2]
array([[True, True]], dtype=bool)

clear()
Clears the filter initial conditions.

12 Chapter 2. API

copper Documentation, Release 0.1.0

Clearing the initial conditions is important when starting a new recording if overlap is nonzero.

process(data)
Applies the filter to the input.

Parameters data (ndarray, shape (n_channels, n_samples)) – Input signals.

class copper.common.FeatureExtractor(features, hooks=None)
Computes multiple features from the input, concatenating the results.

Each feature should be able to take in the same data and output a 1D array, so overall output of the FeatureEx-
tractor can be a single 1D array.

This block isn’t strictly necessary, since you could just apply multiple feature blocks in parallel and the result of
each will be passed to the next block. However, the block following feature computation typically expects the
input to be a single array (or row) per data sample.

Parameters features (list) – List of (name, feature) tuples (i.e. implementing a compute
method).

named_features
dict – Dictionary of features accessed by name.

feature_indices
dict – Dictionary of (start, stop) tuples indicating the bounds of each feature, accessed by name. Will be
empty until after data is first passed through.

clear()
Clears the output array.

This should be called if the input is going to change form in some way (i.e. the shape of the input array
changes).

process(data)
Run data through the list of features and concatenates the results.

The first pass (after a clear call) will be a little slow since the extractor needs to allocate the output array.

Parameters data (array, shape (n_channels, n_samples)) – Input data. Must
be appropriate for all features.

Returns out

Return type array, shape (n_features,)

class copper.common.Estimator(estimator)
A pipeline block wrapper around scikit-learn’s idea of an estimator.

An estimator is an object that can be trained with some data (fit) and, once trained, can output predictions
from novel inputs. A common use-case for this block is to utilize a scikit-learn pipeline in the context of a axopy
pipeline.

Parameters estimator (object) – An object implementing the scikit-learn Estimator interface
(i.e. implementing fit and predict methods).

process(data)
Calls the estimator’s predict method and returns the result.

class copper.common.Transformer(transformer, hooks=None)
A pipeline block wrapper around scikit-learn’s idea of a transformer.

A transformer is trained with some data (fit) and, once trained, can output projections of the input data to
some other space. A common example is projecting data in high-dimensional space to a lower-dimensional
space using principal components analysis.

2.2. common 13

copper Documentation, Release 0.1.0

Parameters transformer (object) – An object implementing the scikit-learn Transformer in-
terface (i.e. implementing fit and transform methods).

process(data)
Calls the transformer’s transform method and returns the result.

class copper.common.Ensure2D(orientation=’row’)
Transforms an array to ensure it has 2 dimensions.

Input with shape (n,) can be made to have shape (n, 1) or (1, n).

Parameters orientation ({'row', 'col'}, optional) – Orientation of the output. If
‘row’, the output will have shape (1, n), meaning the output is a row vector. This is the
default behavior, useful when the data is something like samples of a 1-channel signal. If ‘col’,
the output will have shape (n, 1), meaning the output is a column vector.

Examples

Output row data:

>>> import numpy as np
>>> import copper
>>> block = copper.Ensure2D()
>>> block.process(np.array([1, 2, 3]))
array([[1, 2, 3]])

Output column data:

>>> block = copper.Ensure2D(orientation='col')
>>> block.process(np.array([1, 2, 3]))
array([[1],

[2],
[3]])

process(data)
Make sure data is 2-dimensional.

If the input already has two dimensions, it is unaffected.

Parameters data (array, shape (n,)) – Input data.

Returns out – Output data, with shape specified by orientation.

Return type array, shape (1, n) or (n, 1)

2.3 sources

Data streams for processing with a pipeline.

copper.sources.segment(data, length, overlap=0)
Generate segments of an array.

Each segment is of a specified length and optional overlap with the previous segment. Only segments of the
specified length are retrieved (if segments don’t fit evenly into the data).

Parameters

• data (array, shape (n_channels, n_samples)) – Data to segment.

14 Chapter 2. API

copper Documentation, Release 0.1.0

• length (int) – Number of samples to retrieve in each chunk.

• overlap (int, optional) – Number of overlapping samples in consecutive chunks.

Yields segment (array (n_channels, length)) – Segment of the input array.

Examples

Segment a 2-channel recording:

>>> import numpy as np
>>> from copper.sources import segment
>>> x = np.arange(8).reshape(2, 4)
>>> x
array([[0, 1, 2, 3],

[4, 5, 6, 7]])
>>> seg = segment(x, 2)
>>> next(seg)
array([[0, 1],

[4, 5]])
>>> next(seg)
array([[2, 3],

[6, 7]])

Consecutive segments with overlapping samples agree:

>>> seg = segment(x, 3, overlap=2)
>>> next(seg)
array([[0, 1, 2],

[4, 5, 6]])
>>> next(seg)
array([[1, 2, 3],

[5, 6, 7]])

copper.sources.segment_indices(n, length, overlap=0)
Generate indices to segment an array.

Each segment is of a specified length with optional overlap with the previous segment. Only segments of the
specified length are retrieved if they don’t fit evenly into the the total length. The indices returned are meant to
be used for slicing, e.g. data[:, from:to].

Parameters

• n (int) – Number of samples to segment up.

• length (int) – Length of each segment.

• overlap (int, optional) – Number of overlapping samples in consecutive segments.

Yields

• from (int) – Index of the beginning of the segment with respect to the input array.

• to (int) – Index of the end of the segement with respect to the input array.

Examples

Basic usage – segment a 6-sample recording into segments of length 2:

2.3. sources 15

copper Documentation, Release 0.1.0

>>> import numpy as np
>>> from copper.sources import segment_indices
>>> list(segment_indices(6, 2))
[(0, 2), (2, 4), (4, 6)]

Overlapping segments:

>>> list(segment_indices(11, 5, overlap=2))
[(0, 5), (3, 8), (6, 11)]

16 Chapter 2. API

Python Module Index

c
copper.common, 11
copper.core, 9
copper.sources, 14

17

copper Documentation, Release 0.1.0

18 Python Module Index

Index

C
CallablePipelineBlock (class in copper.core), 10
Centerer (class in copper.common), 11
clear() (copper.common.FeatureExtractor method), 13
clear() (copper.common.Filter method), 12
clear() (copper.common.Windower method), 11
clear() (copper.core.Pipeline method), 10
clear() (copper.core.PipelineBlock method), 9
copper.common (module), 11
copper.core (module), 9
copper.sources (module), 14

E
Ensure2D (class in copper.common), 14
Estimator (class in copper.common), 13

F
feature_indices (copper.common.FeatureExtractor

attribute), 13
FeatureExtractor (class in copper.common), 13
Filter (class in copper.common), 12

N
named_blocks (copper.core.Pipeline attribute), 10
named_features (copper.common.FeatureExtractor

attribute), 13

P
PassthroughPipeline (class in copper.core), 10
Pipeline (class in copper.core), 9
PipelineBlock (class in copper.core), 9
process() (copper.common.Centerer method), 12
process() (copper.common.Ensure2D method), 14
process() (copper.common.Estimator method), 13
process() (copper.common.FeatureExtractor method), 13
process() (copper.common.Filter method), 13
process() (copper.common.Transformer method), 14
process() (copper.common.Windower method), 11
process() (copper.core.Pipeline method), 10

process() (copper.core.PipelineBlock method), 9

S
segment() (in module copper.sources), 14
segment_indices() (in module copper.sources), 15

T
Transformer (class in copper.common), 13

W
Windower (class in copper.common), 11

19

	User Guide
	Common Blocks
	Connecting Blocks
	Implementing Pipeline Blocks
	Post-Process Hooks

	API
	core
	common
	sources

	Python Module Index

