cooperative Documentation
Release 0.1.10

John W Lockwood IV

April 11, 2015

Contents

1 Getting Started with cooperative 3
2 Examples 5
2.1 Write computation code t0 COOPerative. vttt e e e e e e e e 5

3 cooperative Package 7
3.1 cooperativePackage e 7
32 _metaModule. e e 8
3.3 Subpackages e e e 8

4 tests Package 11
4.1 test_cooperativeModule e e 11
5 Indices and tables 15

Python Module Index 17

cooperative Documentation, Release 0.1.10

Contents:

Contents 1

cooperative Documentation, Release 0.1.10

2 Contents

CHAPTER 1

Getting Started with cooperative

Write non-blocking computationally expensive code to go along with non-blocking io, without having to think about
everything in callbacks.

batch_accumulate will iterate over a generator in batches, yielding to other iterators passed into
twisted.internet.task.cooperate

cooperative Documentation, Release 0.1.10

4 Chapter 1. Getting Started with cooperative

CHAPTER 2

Examples

2.1 Write computation code to cooperative.

#!/usr/bin/env python

+ coding: utf-8 _+_

from operator import add

import sys

from twisted.internet import defer
from twisted.internet.task import react

from twisted.python import log

from cooperative import batch_accumulate

def expensive (number) :

log.msg("starting {}".format (number))
for value in range (100000) :
if 25000 == value:
log.msg ("1/4 for {}".format (number))
if 50000 == value:
log.msg("1/2 for {}".format (number))
if 75000 == value:
log.msg("3/4 for {}".format (number))

yield number » value / 3.0

@defer.inlineCallbacks
def do_some_expensive_things (number) :
mmwmn
Perform one expensive computation cooperatively with any
other iterator passed into twisted’s cooperate, then
use it’s result to pass into the second computation.

:param number:

:rreturn:

mmn

result = yield batch_accumulate (1000, expensive (number))
total = reduce (add, result, 0)

log.msg ("first for {}: {}".format (number, total))

result = yield batch_accumulate (1000, expensive (int (total/1e9)))

cooperative Documentation, Release 0.1.10

total reduce (add, result, 0)
log.msg("second for {}: {}".format (number, total))
defer.returnValue (total)

def main (reactor) :

dl = do_some_expensive_things (54.0)
d2 = do_some_expensive_things (42)
d3 = do_some_expensive_things (10)
d4 = do_some_expensive_things (34)

Enqueue events to simulate handling external events
d5 = defer.Deferred() .addCallback (log.msqg)
reactor.calllater (0.3, d5.callback, "########## simulated request 1 ####HH#HH###")

d6 = defer.Deferred() .addCallback (log.msqg)
reactor.calllater (0.5, d6.callback, "########## sim request 2 H###f###HFHH#H#")

d7 = defer.Deferred() .addCallback (log.msqg)
reactor.calllater (1.0, d7.callback, "########## simulated request 3 ###F#HFHFHH###")

return defer.gatherResults([dl, d2, d3, d4, d5, d6, d7]).addCallback(log.msqg)
if _ name_ == "_ _main_ ":

log.startLogging (sys.stdout)
react (main, [])

6 Chapter 2. Examples

CHAPTER 3

cooperative Package

3.1 cooperative Package

class cooperative.ValueBucket
Bases: object

Produces a callable that accumulates all non-None values it is called with in order.
The contents may be accessed or collected and drained, to make room for new content.
contents ()

Returns contents

drain_contents ()
Starts a new collection to accumulate future contents and returns all of existing contents.

cooperative.accumulate (a_generator, cooperator=None)
Start a Deferred whose callBack arg is a deque of the accumulation of the values yielded from a_generator.

Parameters a_generator — An iterator which yields some not None values.

Returns A Deferred to which the next callback will be called with the yielded contents of the gen-
erator function.

cooperative.accumulation_handler (stopped_generator, spigot)
Drain the contents of the bucket from the spigot.

Parameters
* stopped_generator — Generator which as stopped
* spigot — a Bucket.

Returns The contents of the bucket.

cooperative.batch_accumulate (max_batch_size, a_generator, cooperator=None)
Start a Deferred whose callBack arg is a deque of the accumulation of the values yielded from a_generator which
is iterated over in batches the size of max_batch_size.

It should be more efficient to iterate over the generator in batches and still provide enough speed for non-
blocking execution.

Parameters
* max_batch_size — The number of iterations of the generator to consume at a time.

* a_generator — An iterator which yields some not None values.

cooperative Documentation, Release 0.1.10

Returns A Deferred to which the next callback will be called with the yielded contents of the gen-
erator function.

3.2 meta Module

3.3 Subpackages

3.3.1 tests Package

test_cooperative Module

class cooperative.tests.test_cooperative.Doer (own_reactor, own_cooperator)
Bases: object
count =0

run (*args, **kwargs)
Cooperatively iterator over two iterators consecutively and the result of the final one is returned.

Returns

class cooperative.tests.test_cooperative.TestAccumulate (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

test_accumulate (*args, **kwargs)
Ensure that within an inline callback function, a accumulate wrapped generator yields the result of the
output of the generator.

Returns

test_failure (*args, **kwargs)
Ensure that within an inline callback function, a accumulate based function yields the result if it’s cooper-
ative generator.

Since and_the_winner_is is designed to always log and error, Ensure one IndexError is logged.
Returns

test_multi_deux_batched (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.

Ensure cooperatively run generators will complete no matter the length.

Ensure the longest one will continue to iterate after the others run out of iterations.

Ensure those called with batch_accumulate will iterate over the generator in batches the size of max_size.
Returns

test_multi_deux_chain (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.
Ensure cooperatively run generators will complete no matter the length.
Ensure the longest one will continue to iterate after the others run out of iterations.

Returns

8 Chapter 3. cooperative Package

cooperative Documentation, Release 0.1.10

test_multi_winner (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Returns

test_multi_winner_ chain (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.
Returns

test_trice_winner (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Returns

class cooperative.tests.test_cooperative.TestHandler (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

test_accumulation handler ()
Ensure the return value of accumulation_handler is the contents of a Bucket instance with it’s contents
drained.

Returns

class cooperative.tests.test_cooperative.TestOwnCooperator (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

setUp ()
Create a reactor and Cooperator that can be controlled.

Instantiate a Doer with the reactor and cooperator.
Create a Looping Call and set it’s clock to the reactor.
Returns
tearDown ()

test_control_coop ()
Ensure control of own cooperator.

Returns

cooperative.tests.test_cooperative.i_get_tenth_ 11 (value)
Yield the tenth and eleventh item of value.

Parameters value —
Returns
cooperative.tests.test_cooperative.run_some_with_error (*args, **kwargs)
Cooperatively iterator over two iterators consecutively, but the second one will always raise an IndexError,
which is caught, logged and a message is returned.
Returns
cooperative.tests.test_cooperative.run_some_without_error (*args, **kwargs)
Cooperatively iterator over two iterators consecutively and the result of the final one is returned.
Parameters value — Any sequence.

Returns

3.3. Subpackages 9

cooperative Documentation, Release 0.1.10

10 Chapter 3. cooperative Package

CHAPTER 4

tests Package

4.1 test_cooperative Module

class cooperative.tests.test_cooperative.Doer (own_reactor, own_cooperator)
Bases: object

count =0

run (*args, **kwargs)
Cooperatively iterator over two iterators consecutively and the result of the final one is returned.

Returns

class cooperative.tests.test_cooperative.TestAccumulate (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

test_accumulate (*args, **kwargs)
Ensure that within an inline callback function, a accumulate wrapped generator yields the result of the
output of the generator.

Returns

test_failure (*args, **kwargs)
Ensure that within an inline callback function, a accumulate based function yields the result if it’s cooper-
ative generator.

Since and_the_winner_is is designed to always log and error, Ensure one IndexError is logged.
Returns

test_multi_deux batched (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.

Ensure cooperatively run generators will complete no matter the length.

Ensure the longest one will continue to iterate after the others run out of iterations.

Ensure those called with batch_accumulate will iterate over the generator in batches the size of max_size.
Returns

test_multi_deux_chain (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.

11

cooperative Documentation, Release 0.1.10

Ensure cooperatively run generators will complete no matter the length.
Ensure the longest one will continue to iterate after the others run out of iterations.
Returns

test_multi_winner (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Returns

test_multi winner_ chain (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Ensure the result of gatherResults can be chained together in order.
Returns

test_trice_winner (*args, **kwargs)
Ensure multiple inline callback functions will run cooperatively.

Returns

class cooperative.tests.test_cooperative.TestHandler (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

test_accumulation handler ()
Ensure the return value of accumulation_handler is the contents of a Bucket instance with it’s contents
drained.

Returns

class cooperative.tests.test_cooperative.TestOwnCooperator (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

setUp ()
Create a reactor and Cooperator that can be controlled.

Instantiate a Doer with the reactor and cooperator.
Create a Looping Call and set it’s clock to the reactor.
Returns
tearDown ()

test_control_coop ()
Ensure control of own cooperator.

Returns

cooperative.tests.test_cooperative.i_get_tenth_ 11 (value)
Yield the tenth and eleventh item of value.

Parameters value —
Returns
cooperative.tests.test_cooperative.run_some with_error (*args, **kwargs)
Cooperatively iterator over two iterators consecutively, but the second one will always raise an IndexError,

which is caught, logged and a message is returned.

Returns

12 Chapter 4. tests Package

cooperative Documentation, Release 0.1.10

cooperative.tests.test_cooperative.run_some_without_error (*args, **kwargs)
Cooperatively iterator over two iterators consecutively and the result of the final one is returned.

Parameters value — Any sequence.

Returns

4.1. test_cooperative Module 13

cooperative Documentation, Release 0.1.10

14 Chapter 4. tests Package

CHAPTER 5

Indices and tables

* genindex
* modindex

e search

15

cooperative Documentation, Release 0.1.10

16 Chapter 5. Indices and tables

Python Module Index

C

cooperative, 7

cooperative._meta, 8
cooperative.tests.test_cooperative, 11

17

cooperative Documentation, Release 0.1.10

18 Python Module Index

Index

A

accumulate() (in module cooperative), 7
accumulation_handler() (in module cooperative), 7

B

batch_accumulate() (in module cooperative), 7

C

contents() (cooperative.ValueBucket method), 7

cooperative (module), 7

cooperative._meta (module), 8

cooperative.tests.test_cooperative (module), 8, 11

count (cooperative.tests.test_cooperative.Doer attribute),
8,11

D

Doer (class in cooperative.tests.test_cooperative), 8, 11
drain_contents() (cooperative.ValueBucket method), 7

i_get_tenth_11() (in module
tive.tests.test_cooperative), 9, 12

coopera-

R

run() (cooperative.tests.test_cooperative.Doer method), 8,
11

run_some_with_error() (in module coopera-
tive.tests.test_cooperative), 9, 12
run_some_without_error() (in module coopera-

tive.tests.test_cooperative), 9, 12

S

test_accumulate() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 8, 11

test_accumulation_handler() (coopera-
tive.tests.test_cooperative. TestHandler
method), 9, 12

test_control_coop() (coopera-
tive.tests.test_cooperative. TestOwnCooperator
method), 9, 12

test_failure() (cooperative.tests.test_cooperative. TestAccumulate

method), 8, 11

test_multi_deux_batched() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 8, 11

test_multi_deux_chain() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 8, 11

test_multi_winner() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 8, 12

test_multi_winner_chain() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 9, 12

test_trice_winner() (coopera-
tive.tests.test_cooperative. TestAccumulate
method), 9, 12

TestAccumulate (class in
tive.tests.test_cooperative), 8, 11

TestHandler (class in cooperative.tests.test_cooperative),
9,12

TestOwnCooperator (class in
tive.tests.test_cooperative), 9, 12

coopera-

coopera-

setUp() (cooperative.tests.test_cooperative.TestOwnCooperay)r

method), 9, 12

T

ValueBucket (class in cooperative), 7

tearDown() (cooperative.tests.test_cooperative. TestOwnCooperator

method), 9, 12

19

	Getting Started with cooperative
	Examples
	Write computation code to cooperative.

	cooperative Package
	cooperative Package
	_meta Module
	Subpackages

	tests Package
	test_cooperative Module

	Indices and tables
	Python Module Index

