

    
      
          
            
  
Cookiecutter V2 Template Format Proposal


Contents:


	Introduction

	Format Proposal
	Required Metadata Template Fields
	name Field

	cookiecutter_version Field

	variables Field

	The Minium Cookiecutter Template





	Optional Metadata Template Fields
	description Field (Optional)

	version Field (Optional)

	authors Field (Optional)

	license Field (Optional)

	keywords Field (Optional)

	url Field (Optional)

	Example Cookiecutter Template





	Variables Array
	Required Variable Fields

	Optional Variable Fields









	Extra Context Overwrite Considerations
	Overwrite Considerations Regarding ‘default’ & ‘choices’ Fields
	Use Case #1 - Update ‘default’ field - ‘choices’ gets updated

	Use Case #2 - Update ‘choices’ field - ‘default’ field gets updated

	Use Case #3 - Update both ‘choices’ & ‘default’ fields

	Use Case #4 - Update ‘default’ field, but its not in the ‘choices’ list





	Special Overwrite Syntax for Renaming a Variable

	Special Overwrite Syntax for Removing a Field from a Variable





	Document Repository

	Appendix






	Index







          

      

      

    

  

    
      
          
            
  
Introduction

This document describes a new Cookiecutter version 2 template format based on
two sources:


	A proof-of-concept submitted via Cookiecutter Pull Request #848 [https://github.com/audreyr/cookiecutter/pull/848]
by hackebrot [https://github.com/hackebrot]. Specific format information from this pull request is
contained herein as notes by hackebrot [https://github.com/hackebrot].

	Additional format features and functionality described herein are based on
implementation and usage experience associated with
a specific reference implementation of Cookiecutter [https://github.com/eruber/cookiecutter/tree/new-2.0-context] by eruber [https://github.com/eruber] that
supports this proposed template format.



This document is not meant to serve as a formal template format specification;
it exists simply to describe the template format proposed and its
evolution based on solving practical issues encountered when using the format
to implement a large complex project template.

All errors (via omission or commission), oversights, and/or misguided
implementation decisions reflected herein, rest solely on the shoulders of the
primary author, eruber [https://github.com/eruber].





          

      

      

    

  

    
      
          
            
  
Format Proposal

The Cookiecutter version 1 template is a simple JSON file defining a dictionary
of key/value pairs that identify variables used in a jinja2 context.

The version 2 template adds additional template metadata that exists outside
the jinja2 context, but is expected to support features in the future that
will enhance the overall user experience.


Required Metadata Template Fields

Currently the minimum number of required metadata fields is three:


	name

	cookiecutter_version

	variables




name Field

The name field is a string identifying the name of the template.

For example:

"name": "the-most-famous-template-of-all",






Note

hackebrot:
We can use this for dumping the JSON context for –replay. Currently we
make a good guess based on the directory name of the cloned git repository,
which is not great for local templates or relative paths. This could be
something like an ID.






cookiecutter_version Field

The cookiecutter_version field is a string identifying version information

The current implementation assumes this field identifies the minimum version
of Cookiecutter required to process the template, as in:

"cookiecutter_version": "2.0.0",





There are other meanings of this field to consider, see the note below.


Note

hackebrot:
This either indicats the version of cookiecutter that this template requires
or the version of the spec itself. Not entirely sure what’s better in this case
and if we want to separate them. Going forward this will allow us to exit early
if the used cookiecutter CLI is not the latest one, but the template depends
on a new built-in extension or new fields.






variables Field

The variables field is an array of objects implementated as an
array of ordered dictionaries (OrderedDict [https://docs.python.org/3.6/library/collections.html#collections.OrderedDict]). Each element of the array,
being an OrderedDict, is a set of key/value pairs associated with a unique
variable that is part of the jinja2 context.

The various required and optional key/value pairs associated with a variable
will be identified in the Variables Array section later in this document.


Note

hackebrot:
The elements of this array represent a single variable, similarly to what you
currently find in a cookiecutter.json file.






The Minium Cookiecutter Template

Based on what has been disclosed so far, an example of a minium legal
(though relatively useless) Cookiecutter version 2 template would look like
this:

{
    "name": "template-name",
    "cookiecutter_version": "2.0.0",
    "variables": []
}










Optional Metadata Template Fields

The following fields are optional:


	description

	version

	authors

	license

	keywords

	url




description Field (Optional)

The description field is a string containing a human readable description
of the template.


Note

hackebrot:
This can be used for user facing aspects, like a welcome message when running
cookiecutter.






version Field (Optional)

The version field is a string containing a version identifier; ideally
conforming the the Semantic Versioning specification (semver [http://semver.org/]). This version
identifier is used to version control the template.


Note

hackebrot:
This will help us generate helpful error messages.






authors Field (Optional)

The authors is an array of strings that identify the template’s
maintainers.


Note

hackebrot:
Again this will help users in case they encounter issues. Currently users tend
to raise issues on the cookiecutter project rather than the template. I would
like to emphasize that template authors need to make sure that their templates
work.






license Field (Optional)

The license field is a string identifying the license for the template code.


Note

hackebrot:
The template itself is not runnable software, but contains source code. So I
would argue that it should specify a license. Obviously this is not binding if
the repository is missing a LICENSE file or w/e the license in question
requires. We don’t need this for a Minimal Viable Product.






keywords Field (Optional)

The keywords field is an array of strings similar in spirit to PyPI
keywords.


Note

hackebrot:
Providing keywords in a template makes it easier for tools, such as the new
Cookiecutter Explorer in Visual Studio or Cibopath, to search for templates.
Currently users need to go to the template repo and scan through the README or
even the template code to see if a template uses certain frameworks.






url Field (Optional)

The url field is a string URL for the template project.


Note

hackebrot:
We can use this to point users to the project if they encounter an error. This
would certainly be optional.






Example Cookiecutter Template

Below is an example Cookiecutter template showing all the required and optional
metadata fields; note that the variables array is still empty, but not for long:

{
    "name": "python-project-skeleton-template",
    "cookiecutter_version": "2.0.0",

    "description": "Cookiecutter template for a general purpose Python project skeleton",
    "authors": ["E.R. Uber"],
    "version": "0.3.7",
    "license": "MIT",
    "keywords": ["cookiecutter","python", "project", "template", "skeleton"],
    "url": "http://python-project-skeleton.readthedocs.io/en/latest/index.html",

    "variables": []
}










Variables Array

The variables field is an array of ordered dictionaries (OrderedDict [https://docs.python.org/3.6/library/collections.html#collections.OrderedDict]).
Each dictionary represents a varible in the jinja2 context.


Required Variable Fields

The following fields are required to be defined for each variable:


	name

	default




name Variable Field

The name variable field is a string defining the name of the variable in
the jinja2 context.

For example:

{
   "name": "project_repo",
   ...
}






Note

hackebrot:
This is nothing different from what we have in the current
cookiecutter.json as keys. These must not be templated!






default Variable Field

The default variable field can be of any legal default value type and
is the default value of the variable named in the previous section.

The various legal types supported will be addressed in a later section.

For example, the variable named ‘project_repo’, may have a default value of
“cookiecutter-template-converter” as in:

{
   "name": "project_repo",
   "default": "cookiecutter-template-converter",
   ...
}






Note

hackebrot:
Again this is what we already have as values. If a default is a string, we must
assume it is templated, so we render it before prompting the user.








Optional Variable Fields

The following variable fields are optional:


	type

	description

	prompt

	prompt_user

	hide_input

	choices

	skip_if

	do_if

	if_yes_skip_to

	if_no_skip_to

	validation

	validation_flags

	validation_msg




type Variable Field (Optional)

The type variable field is a string that defines the type of the variable.

The type field’s default value is: string.


Note

hackebrot:
This defaults to string, which reflects the current behaviour (right now we
cast every value to string, so we can render it). Having a type allows us not
only to make use of Click [http://click.pocoo.org/6/] types for prompts, but we can also cast the
values after they have been rendered.



The reference implementation supports the following default value types:



	string

	boolean

	yes_no

	int

	json

	float

	uuid







Note

eruber:
The proof-of-concept proposal omitted types float and uuid,
but they were added to the Cookiecutter reference implementation since
they are both inherently supported by the underlying user prompt
functionality provided by Click [http://click.pocoo.org/6/].






description Variable Field (Optional)

The description variable field is a string used to describe what the
variable means.

The description field’s default value is: None.


Note

hackebrot:
We can show this if the users runs verbose mode, to make it even clearer for
what a variable is used for and potentially indicate what the requirements for
a field are.




Note

eruber:
It would appear that in Cookiecutter v1.6.0 (upon which the
reference implementation of Cookiecutter v2 is based) does not
pass the command line –verbose option to the main cookiecutter API
call (its just used to control the logging level). So in the
reference implementation, it is hardwired to True. Thus if a
description is defined, it will be emitted prior to a user prompt.

The reason the Cookiecutter reference implementation does pass
the verbose option into the Cookiecutter API is because the reference
implementation has a set of implementation guidelines and one of those
guidelines was NOT to change the Cookiecutter API.






prompt Variable Field (Optional)

The prompt variable field is a string that will be used to prompt the user
for input.

The prompt field’s default value is rendered by jinja2 as:

'Please enter a value for "{variable.name}"'






Note

hackebrot:
Currently we show variable [default]:, but a template author could provide
a more friendly message allowing for a better user experience.






prompt_user Variable Field (Optional)

The prompt_user variable field is a boolean that if true will show user
prompts; and if false will not prompt the user for input.

The prompt_user field’s default value is: True


Note

hackebrot:
This can be used to hide prompts from a user if the template author wishes to
use these fields but retrieve the information from somewhere else, for example
the current year. This is currently supported with a hack by prepending a
variable name with _.




Note

eruber:
The reference implementation also still honors this hack – a
variable name prefixed with an underscore does not generate a user
prompt – it has the same effect as “prompt_user” : false being
specified in the template.






hide_input Variable Field (Optional)

The hide_input variable field is a boolean - when specified as true will
allow user input, but will not echo the user’s keystrokes back to the console.
This makes it suitable for entering sensitive information like passwords.

The hide_input field’s default value is: False


Note

eruber:
Though not documented in the his pull request write-up, the
actual proof-of-concept code for context.py [https://github.com/hackebrot/cookiecutter/blob/new-context-format/cookiecutter/context.py] by hackebrot [https://github.com/hackebrot] does
implement the hide_input field - and thus, so does the Cookiecutter
reference implementation.






choices Variable Field (Optional)

The choices variable field is an array of string, boolean, or number which
lists valid choice values for that variable.

The choices field’s default value is: []


Note

hackebrot:
This is currently supported with lists in cookiecutter.json. However this
field would be optional for a variable and is different from type in the
sense that a choice will still be processed to have the specified type when
stored to the context






skip_if Variable Field (Optional)

The skip_if variable field is a string that holds conditionals based on
other fields. The conditional logic is rendered by jinja2.

The skip_if field’s default value is: ‘’

If the conditional in the skip_if string evaluates to True, then this
variable is skipped – the user will see no prompt to enter data for this
variable.


Note

hackebrot:
This one is a bit tricky. In it’s current form it would be a string containing
a jinja2 template. When prompting the user this is rendered and checked for
equality against “True”. This allows us to skip variables based on
previously entered information.






do_if Variable Field (Optional)

The do_if variable field is a string that holds conditionals based on
other fields. The conditional logic is rendered by jinja2.

The do_if field’s default value is: ‘’

If the conditional in the do_if string evaluates to True, then this
variable is NOT skipped – the user will be prompted to enter data for this
variable.


Note

eruber:
This field was added to the reference implementation to offer a
balance to the skip_if field – sometimes its just more
convenient to express the logic in terms of what variable should be
processed rather than what variable should be skipped.






if_yes_skip_to Variable Field (Optional)

The if_yes_skip_to variable field is a string that names a variable to
process next if the value of the current variable is True (yes).

This field is used with yes_no type variables to allow conditional
processing that can skip multiple variables.

The if_yes_skip_to field’s default value is: None


Note

eruber:
Added to the Cookiecutter reference implementation. Having only a
skip_if mechanism became logically complex when trying to skip
multiple variables. This field makes skipping over mulitple
variables very easy.






if_no_skip_to Variable Field (Optional)

The if_no_skip_to variable field is a string that names a variable to
process next if the value of the current variable is False (no).

This field is used with yes_no type variables to allow conditional
processing that can skip multiple variables.

The if_no_skip_to field’s default value is: None


Note

eruber:
Added to the Cookiecutter reference implementation as a logical
balance to the if_yes_skip_to field.






validation Variable Field (Optional)

The validation variable field is a string containing a regular expression
used to validate the user input.

The validation field’s default value is: None


Note

hackebrot:
This would allow us to have some additional checks for accepting user input.
Think of PEP8 compliant names for Python modules. Rather than using a
post_gen_project hook and abort generation, we could ask the user to try
entering another value.






validation_flags Variable Field (Optional)

The validation_flags variable field is a list of strings. Each item in the
list names a validation flag that can be specified to control the behaviour
of the validation field’s validation check. Specifying a flag in this list
is equivalent to setting the validation flag to True, not specifying a flag is
equivalent to setting it to False.

The validation_flags field’s default value is: []

The default value of this variable has no effect on the validation check.


	The validation flags supported are:

	
	ascii - enabling re.ASCII

	debug - enabling re.DEBUG

	ignorecase - enabling re.IGNORECASE

	locale - enabling re.LOCALE

	mulitline - enabling re.MULTILINE

	dotall - enabling re.DOTALL

	verbose - enabling re.VERBOSE



See: https://docs.python.org/3/library/re.html#re.compile






Note

eruber:
This field was added to the Cookiecutter reference implementation
to complete the validation field’s functionality.



For example, to perform input vaildation that ignores case and enables
verbose, do this:

"validation": "SOME-REALLY-MIND-ALTERING-REGULAR-EXPRESSION",
"validation_flags": ["ignorecase", "verbose"]








validation_msg Variable Field (Optional)

The validation_msg variable field is a string that can be used to specify
a more user friendly message to be issued when input validation fails.

The validation_msg field’s default value is: None


Note

eruber:
This field was added to the Cookiecutter reference implementation
when it became apparent that the normal validation failure message
that emits the validation regular expression, can at times, use
some additional validation input hints – especially if the
validation regular expression is complex. See the example below.



For example, to support validation of a semantic version number with all of
its features, the following variable might be defined:

{
    "name": "project_version",
    "default": "0.0.1",
    "description": "Enter the project's semantic version number (see: semver.org).",
    "prompt": "A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL",
    "validation": "^([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)(-)?(-[0-9A-Za-z-\\.]*)*(\\+)?(\\+[0-9A-Za-z-\\.]*)*$",
    "validation_msg": "Follow the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT contain leading zeroes.",
    "type": "string"
}





As you can see the validation’s regular expression is somewhat daunting, so if
a validation_msg is specified it will be issued in addition to the default
validation failure message that emits the regular expression.

A console session that illustrates would look like:

Enter the project's semantic version number (see: semver.org).
A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL [0.0.1]: 0.01.001
Input validation failure against regex: '^([0-9]|[1-9]+[0-9]*)\.([0-9]|[1-9]+[0-9]*)\.([0-9]|[1-9]+[0-9]*)(-)?(-[0-9A-Za-z-\.]*)*(\+)?(\+[0-9A-Za-z-\.]*)*$', try again!
Follow the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT contain leading zeroes.
A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL [0.0.1]: 0.1.1















          

      

      

    

  

    
      
          
            
  
Extra Context Overwrite Considerations

This section identifies further functionality in the Cookiecutter reference
implemenation because the new template format requires new solutions in the
area of context overwriting.

Context overwriting occurs when the [EXTRA_CONTEXT] is
specified on the command line as explained in the Cookiecutter docs
section Injecting Extra Context [http://cookiecutter.readthedocs.io/en/latest/advanced/injecting_context.html].


Note

eruber:
Note that because the new template’s jinja2 context is an array of
OrderedDict elements – one for each variable in the jinja2 context;
the EXTRA_CONTEXT specified by the user, must also be an array of
OrderedDict elements – one for each variable that the EXTRA_CONTEXT
wishes to overwrite.




Overwrite Considerations Regarding ‘default’ & ‘choices’ Fields

When a variable is defined that has both the default and the choices fields,
these two fields influence each other. If one of these fields is updated, but
not the other field, then the other field will be automatically updated by the
overwrite logic.

If both fields are updated, then the default value will be moved to the first
location of the choices field if it exists elsewhere in the list; if the default
value is not in the list, it will be added to the first location in the choices
list. The overwrite logic will take care of this even though the extra context
choices list does not explicitly specify this behavior.


Use Case #1 - Update ‘default’ field - ‘choices’ gets updated

For example, if default and choices fields of a variable named
“director_name” look like this:

{
   "name": "director_name",
   ...
   "default": "Allan Smithe",
   "choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John Houston"],
   '''
}





and the extra context dictionary specified by the user looks like this
(injecting an update to the default field):

'extra_context': [
    {
        'name': 'director_name',
        'default': 'John Ford',
    }
]





then the overwrite logic will leave the fields looking like this:

{
   "name": "director_name",
   ...
   "default": "John Ford",
   "choices", ["John Ford", "Allan Smithe", "Ridley Scott", "Victor Fleming", "John Houston"],
   ...
}








Use Case #2 - Update ‘choices’ field - ‘default’ field gets updated

For example, if default and choices fields of a variable named
“director_name” look like this:

{
   "name": "director_name",
   ...
   "default": "Allan Smithe",
   "choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John Houston"],
   ...
}





and the extra context dictionary looks like this (injecting an update to
the choices field):

'extra_context': [
    {
        'name': 'director_name',
        'choices': ['Ridley Scott', 'Allan Smithe', 'Victor Fleming', 'John Ford', 'John Houston'],
    }
]





then the overwrite logic will leave the fields looking like this:

{
   "name": "director_name",
   ...
   "default": "Ridley Scott",
   "choices": ["Ridley Scott", "Allan Smithe", "Victor Fleming", "John Ford", "John Houston"],
   ...
}








Use Case #3 - Update both ‘choices’ & ‘default’ fields

For example, if default and choices fields of a variable named
“director_name” look like this:

{
   "name": "director_name",
   ...
   "default": "Allan Smithe",
   "choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John Houston"],
   ...
}





and the extra context looks like this (injecting updates to both the
default and the choices fields):

'extra_context': [
    {
        'name': 'director_name',
        'default': 'Victor Fleming',
        'choices': ['Ridley Scott', 'Allan Smithe', 'Victor Fleming', 'John Ford', 'John Houston'],
    }
]





then the overwrite logic will leave the choices and default
fields updated as follows:

{
   "name": "director_name",
   ...
   "default": "Victor Fleming",
   "choices": ["Victor Fleming", "Allan Smithe", "Ridley Scott", "John Ford", "John Houston"],
   ...
}








Use Case #4 - Update ‘default’ field, but its not in the ‘choices’ list

For example, if default and choices fields of a variable named
“director_name” look like this:

{
   "name": "director_name",
   ...
   "default": "Allan Smithe",
   "choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John Houston"],
   ...
}





and the extra context looks like this (injecting a director name that is
not in the choices list):

'extra_context': [
    {
        'name': 'director_name',
        'default': 'Otto Preminger',
    }
]





then the overwrite logic will leave the choices and default
fields updated as follows:

{
   "name": "director_name",
   ...
   "default": "Otto Preminger",
   "choices": ["Otto Preminger", "Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John Houston"],
   ...
}










Special Overwrite Syntax for Renaming a Variable

Because the algorithm chosen to find a variable’s dictionary entry (in the
variables list of OrderDicts) uses the variable’s ‘name’ field; it could not
be used to simultaneously hold a new ‘name’ field value.

Therefore the following extra context dictionary entry snytax was introduced
to allow the ‘name’ field of a variable to be changed:

{
   'name': 'CURRENT_VARIABLE_NAME::NEW_VARIABLE_NAME',
}





The variable’s current name is post-fixed with a double colon (::) followed by
the new name of the variable.

For example, to change a variable’s ‘name’ field from
‘director_credit’ to ‘producer_credit’, would require:

{
   'name': 'director_credit::producer_credit',
}





The overwrite logic also takes care of updating in other references to the
variable’s name that might exists elsewhere in the variable – for example,
if the variable’s name were used in an a skip_if field.




Special Overwrite Syntax for Removing a Field from a Variable

It is possible that a previous extra context overwrite requires that a
subsequent variable field be removed.

In order to accomplish this a remove field token is used in the
extra context as follows:

{
   'name': 'director_cut',
   'skip_if': '<<REMOVE::FIELD>>',
}





In the example above, the extra context overwrite results in the variable
named ‘director_cut’ having it’s ‘skip_if’ field removed.

Of course the name field and the default field cannot be removed from
a variable, their existence is mandatory. Any attempt to remove one of these
fields will result in an exception.







          

      

      

    

  

    
      
          
            
  
Document Repository

The source for this document is on GitHub [https://github.com/eruber/cookiecutter-v2-template-proposal].





          

      

      

    

  

    
      
          
            
  
Appendix

This appendix houses the primary Cookiecutter project template that drove
the implementation decisions made in the reference implementation referenced
in this guide:

{
    "name": "python-project-skeleton-template",
    "cookiecutter_version": "2.0.0",
    "_inception": "Transformed by cctconvert 1.0.1 Fri Nov  3 20:17:29 2017",
    "description": "Cookiecutter template for a general purpose Python project skeleton",
    "authors": ["E.R. Uber"],
    "license": "MIT",
    "keywords": ["cookiecutter", "python", "project", "template", "skeleton"],
    "url": "https://github.com/eruber/python-project-skeleton",
    "variables": [
        {
            "name": "author_name",
            "default": "E.R. Uber",
            "description": "Identify the author of this project.",
            "prompt": "Enter the author's name",
            "type": "string"
        },
        {
            "name": "author_email",
            "default": "eruber@gmail.com",
            "prompt": "Enter the author's email address",
            "type": "string"
        },
        {
            "name": "project_name",
            "default": "Project Skeleton",
            "prompt": "Enter a short, space delimited, name for the project",
            "type": "string"
        },
        {
            "name": "project_version",
            "default": "0.0.1",
            "description": "Enter the project's semantic version number (see: semver.org).",
            "prompt": "A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL",
            "validation": "^([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)(-)?(-[0-9A-Za-z-\\.]*)*(\\+)?(\\+[0-9A-Za-z-\\.]*)*$",
            "validation_msg": "Follow the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT contain leading zeroes.",
            "type": "string"
        },
        {
            "name": "project_dist",
            "default": "{{ cookiecutter.project_name.lower().replace(' ', '-') }}-{{ cookiecutter.project_version }}",
            "prompt_user": false,
            "type": "string"
        },
        {
            "name": "project_repo",
            "default": "python-{{ cookiecutter.project_name.lower().replace(' ', '-') }}",
            "prompt": "Enter the project's repository name",
            "type": "string"
        },
        {
            "name": "project_pkg",
            "default": "{{ cookiecutter.project_repo.replace('-', '_') }}",
            "prompt": "Enter the project's Python package name",
            "type": "string"
        },
        {
            "name": "project_description",
            "default": "A general purpose Python project skeleton",
            "prompt": "Enter a short description of the project",
            "type": "string"
        },
        {
            "name": "project_license",
            "default": "Apache2",
            "prompt": "Select the project's Open Source License",
            "type": "string",
            "choices": [
                "Apache2",
                "BSD3",
                "ISC",
                "MIT",
                "GNU-GPL-v3"
            ]
        },
        {
            "name": "project_cmdline_interface",
            "default": "none",
            "description": "Select a Command Line Interface for the project.",
            "prompt": "If the project will have no Command Line Interface, select none",
            "type": "string",
            "choices": [
                "none",
                "click"
            ]
        },
        {
            "name": "project_graphical_inteface",
            "default": "none",
            "description": "Select a Graphical User Interface for the project.",
            "prompt": "If the project will have no Graphical User Interface, select none",
            "type": "string",
            "choices": [
                "none",
                "tk",
                "wxwidgets",
                "kivy"
            ]
        },
        {
            "name": "project_shell_interface",
            "default": "none",
            "description": "Select a Shell Interface for the project.",
            "prompt": "If the project will have no Shell Interface, select none",
            "type": "string",
            "choices": [
                "none",
                "cmd",
                "shellocity"
            ]
        },
        {
            "name": "project_machine_interface",
            "default": "none",
            "description": "Select a Machine Interface for the project.",
            "prompt": "If the project will have no Machine Interface, select none",
            "type": "string",
            "choices": [
                "none",
                "api"
            ]
        },
        {
            "name": "project_configuration_enabled",
            "default": true,
            "prompt": "Will this project require a configuration file?",
            "type": "yes_no",
            "if_no_skip_to": "project_uses_existing_logging_facilities"
        },
        {
            "name": "project_config_format",
            "default": "toml",
            "prompt": "Select a configuration file format.",
            "type": "string",
            "choices": [
                "toml",
                "yaml",
                "json",
                "ini"
            ]
        },
        {
            "name": "project_uses_existing_logging_facilities",
            "default": false,
            "prompt": "Will this project use existing external logging facilities?",
            "type": "yes_no",
            "if_yes_skip_to": "github_username"
        },
        {
            "name": "project_logging_enabled",
            "default": true,
            "prompt": "Will this project provide its own logging facilities?",
            "type": "yes_no",
            "if_no_skip_to": "github_username"
        },
        {
            "name": "project_console_logging_enabled",
            "default": true,
            "prompt": "Will the project's logging facilities include logging to the console?",
            "type": "yes_no",
            "if_no_skip_to": "project_file_logging_enabled",
            "do_if": "{{cookiecutter.project_logging_enabled == True}}"
        },
        {
            "name": "project_console_logging_level",
            "default": "WARN",
            "prompt": "Select the minimum logging level to log to the console.",
            "type": "string",
            "choices": [
                "WARN",
                "INFO",
                "DEBUG",
                "ERROR"
            ],
            "do_if": "{{cookiecutter.project_logging_enabled == True}}"
        },
        {
            "name": "project_file_logging_enabled",
            "default": true,
            "prompt": "Will the project's logging facilities include logging to a file?",
            "type": "yes_no",
            "if_no_skip_to": "github_username",
            "do_if": "{{cookiecutter.project_logging_enabled == True}}"
        },
        {
            "name": "project_file_logging_level",
            "default": "DEBUG",
            "prompt": "Select the minimum logging level to log to a file",
            "type": "string",
            "choices": [
                "DEBUG",
                "INFO",
                "WARN",
                "ERROR"
            ],
            "do_if": "{{cookiecutter.project_logging_enabled == True}}"
        },
        {
            "name": "project_file_logging_type",
            "default": "log_to_single_file",
            "prompt": "Select what type of file logging should be used",
            "type": "string",
            "choices": [
                "log_to_single_file",
                "log_to_rotating_file"
            ],
            "do_if": "{{cookiecutter.project_logging_enabled == True}}"
        },
        {
            "name": "github_username",
            "default": "eruber",
            "prompt": "Enter your GitHub User Name",
            "type": "string"
        },
        {
            "name": "test_framework",
            "default": "pytest",
            "description": "Select what type of test framework to use.",
            "prompt": "Selecting none will generate no test framework support",
            "type": "string",
            "choices": [
                "pytest",
                "none"
            ]
        },
        {
            "name": "test_coverage_enabled",
            "default": true,
            "prompt": "Will this project's testing report on test coverage?",
            "type": "yes_no"
        },
        {
            "name": "ci_travis_enabled",
            "default": true,
            "prompt": "Will this project use Continuous Integration facilities provided by Travis?",
            "type": "yes_no"
        },
        {
            "name": "ci_appveyor_enabled",
            "prompt": "Will this project use Continuous Integration facilities provided by AppVeyor?",
            "default": true,
            "type": "yes_no"
        },
        {
            "name": "project_coding_standards",
            "default": "flake8",
            "description": "Select a coding standards support tool.",
            "prompt": "Selecing none will have the effect of running no code quality scans",
            "type": "string",
            "choices": [
                "flake8",
                "pylama",
                "none"]
        },
        {
            "name": "project_complexity_enabled",
            "prompt": "Should a pytest plugin to run McCabe Code Complexity Checker be added to this project?",
            "default": true,
            "type": "yes_no",
            "do_if": "{{ cookiecutter.test_framework == 'pytest' }}"
        },
        {
            "name": "deploy_pypi_enabled",
            "default": true,
            "prompt": "Will this project ultimately be deloyed to Python's Package Index site?",
            "type": "yes_no"
        },
        {
            "name": "deploy_readthedocs_enabled",
            "default": true,
            "prompt": "Will this project's documentation ultimately be deployed to ReadTheDocs.org?",
            "type": "yes_no"
        },
        {
            "name": "_derived",
            "type": "json",
            "default": {
                "author": "{{ cookiecutter.author_name }} <{{ cookiecutter.author_email }}>",
                "incept_date": "{% now 'local', '%c' %}",
                "project_file_logging_rotating_file_count": "5",
                "github": {
                    "url": "https://github.com/{{ cookiecutter.github_username }}/{{ cookiecutter.project_repo }}"
                },
                "ci": {
                    "travis": {
                        "username": "{{ cookiecutter.github_username }}",
                        "url": "https://travis-ci.org/{{ cookiecutter.travis_username }}/{{ cookiecutter.project_repo }}"
                    },
                    "appveyor": {
                        "username": "{{ cookiecutter.github_username }}",
                        "url": "https://travis-ci.org/{{ cookiecutter.travis_username }}/{{ cookiecutter.project_repo }}"
                    }
                },
                "deploy": {
                    "pypi": {
                        "username": "{{ cookiecutter.github_username }}",
                        "url": "https://pypi.python.org/pypi"
                    },
                    "readthedocs": {
                        "username": "{{ cookiecutter.github_username }}",
                        "url_project": "https://readthedocs.org/projects/{{ cookiecutter.project_repo }}/",
                        "url_docs": "http://{{ cookiecutter.project_repo }}.readthedocs.io/en/latest/"
                    }
                }
            },
            "prompt_user": false
        }
    ]
}









          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | K
 | L
 | M
 | O
 | U
 | V
 


A


  	
      	Authors Field (Optional Metadata)


  





C


  	
      	
    Cookiecutter Template Examples

      
        	Minimum


        	Showing All Metadata Fields


      


  





D


  	
      	Description Field (Optional Metadata)


  





K


  	
      	Keywords Field (Optional Metadata)


  





L


  	
      	License Field (Optional Metadata)


  





M


  	
      	Mandatory Cookiecutter Metadata Fields


  

  	
      	Metadata - Cookiecutter Version Field


      	Metadata - Name Field


  





O


  	
      	Optional Cookiecutter Metadata Fields


      	
    overwrite

      
        	choices field


        	default field


        	removing field from variable


        	renaming variable name


      


  





U


  	
      	URL Field (Optional Metadata)


  





V


  	
      	
    Variables Array Entry

      
        	Choices Field (Optional)


        	Default Field (Required)


        	Description Field (Optional)


        	Do_if Field (Optional)


        	Hide_Input Field (Optional)


        	If_No_Skip_To Field (Optional)


        	If_Yes_Skip_To Field (Optional)


        	Name Field (Required)


        	Optional Fields


        	Prompt Field (Optional)


        	Prompt_User Field (Optional)


        	Required Fields


        	Skip_If Field (Optional)


        	Type Field (Optional)


        	Validation Field (Optional)


        	Validation_Flags Field (Optional)


        	Validation_Msg Field (Optional)


      


  

  	
      	Variables Array Field


      	Variables Array Field Section


      	Version Field (Optional Metadata)


  







          

      

      

    

  _static/down.png





nav.xhtml

    
      Table of Contents


      
        		Cookiecutter V2 Template Format Proposal


        		Introduction


        		Format Proposal
          
          		Required Metadata Template Fields
            
            		name Field


            		cookiecutter_version Field


            		variables Field


            		The Minium Cookiecutter Template


            


          


          		Optional Metadata Template Fields
            
            		description Field (Optional)


            		version Field (Optional)


            		authors Field (Optional)


            		license Field (Optional)


            		keywords Field (Optional)


            		url Field (Optional)


            		Example Cookiecutter Template


            


          


          		Variables Array
            
            		Required Variable Fields


            		Optional Variable Fields


            


          


          


        


        		Extra Context Overwrite Considerations
          
          		Overwrite Considerations Regarding 'default' & 'choices' Fields
            
            		Use Case #1 - Update 'default' field - 'choices' gets updated


            		Use Case #2 - Update 'choices' field - 'default' field gets updated


            		Use Case #3 - Update both 'choices' & 'default' fields


            		Use Case #4 - Update 'default' field, but its not in the 'choices' list


            


          


          		Special Overwrite Syntax for Renaming a Variable


          		Special Overwrite Syntax for Removing a Field from a Variable


          


        


        		Document Repository


        		Appendix


      


    
  

_static/down-pressed.png





_static/ajax-loader.gif





_static/minus.png





_static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png





_static/comment.png





_static/comment-close.png





_static/up.png





