

HEROES Academy Computer Science Cookbooks

Welcome to the HEROES Cookbook. For now, there is only the essentials of Python.

You should use these examples as part of your problem solving. You should ask yourself
“what is it that I need to do?” and then find an example that does what you need to do.
Using that example as a guide, you can then write code that does what you want!

Note: If you are using Python 2, there are a couple built-in commands
that change when using Python 3. But, there is some (coming soon) code
to make it act like Python 3.

Python Essentials

Variables

	Primitive Variables

	Boolean algebra

	Containers

Code Structure

	Conditionals

	Loops

	Functions

	Class Basics

	Advanced Classes

Using Libraries

	Built-in Functions

	Built-in Modules

Working with files

	Read and Write Files

	Reading and Writing JSON Files

Primitive Variables

Numbers

Integers

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	# create an integer
x = 5

convert an integer string
x = str('5')

convert a float to an integer
note: don't depend on this for rounding, it rounds in weird ways
x = int(5.5)

convert a string of any number base
for example, binary
x = int('1010101', base=2)

Floats

	1
2
3
4
5
6
7
8

	# create a float
x = 5.5

convert a float string
x = float("5.5")

convert an integer to a float
x = float(5)

Basic math operations

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	x = 100

1. Add
x = x + 5
x += 5

2. Subtract
x = x - 5
x -= 5

3. Multiply
x = x * 5
x *= 5

4. Divide
x = x / 5
x /= 5

5. Power
x = x ** 2
x **= 2

Advanced math operations

	1
2
3
4
5
6
7
8

	# 1. Integer Division
x = x // 5
x //= 5

2. Modulo
x = 84
x = x % 5
x %= 5

Use the math library

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import math

x = 10

pow is power, same as x ** 2
x = math.pow(x, 2)

ceil rounds up and floor rounds down
x = 5.5
y = math.ceil(x) # y is 6.0
z = math.floor(x) # z in 5.0

some other useful ones:
math.sqrt(x)
math.cos(x)
math.sin(x)
math.tan(x)

this will give you pi:
math.pi

Strings

Add two strings together

	1
2
3
4

	first_name = "euclid "
space = " "
last_name = "von rabbitstein"
full_name = first_name + space + last_name

Repeat a string

	1
2
3
4
5
6
7

	message = "Repeat me!"
repeated10 = message * 10

I like to use it for pretty printing code results
line = "-" * 12
print(" Title! ")
print(line)

Index into a string

	1
2
3
4
5

	first_name = "Euclid"
last_name = "Von Rabbitstein"
first_initial = first_name[0]
last_initial = last_name[0]
initials = first_initial + last_initial

Slice a string

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# the syntax is
my_string[start:stop]
this includes the start position but goes UP TO the stop
you can leave either empty to go to the front or end

target = "door"
last_three = target[1:]
first_three = target[:3]
middle_two = target[1:3]

you can use negatives to slice off the end!
all_but_last = target[:-1]

pig_latin = target[1:] + target[0] + "ay"

String’s inner functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	full_name = "euclid von Rabbitstein"

all caps
full_name_uppered = full_name.upper()

all lower
full_name_lowered = full_name.lower()

use lower to make sure something is lower before you compare it
user_command = "Exit"
if user_command.lower() == "exit":
 print("now I can exit!")

first letter capitalized
full_name_capitalized = full_name.capitalize()

split into a list
full_name_list = full_name.split(" ")

strip off any extra spaces
test_string = " extra spaces everywhere "
stripped_string = test_string.strip()

replace things in a string
full_name_replaced = full_name.replace("von", "rabbiticus")

use replace to delete things from a string!
test_string = "annoying \t tabs in \t the string"
fixed_string = test_string.replace("\t","")

Boolean algebra

Create a literal boolean variable

	1
2

	literal_boolean = True
other_one = False

Create a boolean variable from comparisons

	1
2
3
4
5

	x = 9
y = 3
x_is_bigger = x > y # True
x_is_even = x % 2 == 0 # False
x_is_multiple_of_y = x % y == 0 # True

Combine two boolean variables with ‘and’ and ‘or’

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# example data
card_suit = "Hearts"
card_number = 7

save the results from comparisons!
card_is_hearts = card_suit == "Hearts"
card_is_diamond = card_suit == "Diamond"
card_is_big = card_number > 8

only 1 of them needs to be true
card_is_red = card_is_hearts or card_is_diamond

both need to be true
card_is_good = card_is_red and card_is_big

creates the opposite!
card_is_bad = not card_is_good

Containers

Lists

Create an empty list

	1
2
3

	new_list = list()
or
new_list = []

Create a list with items

	1

	my_pets = ['euclid', 'leta']

Add onto a list

	1

	my_pets.append('socrates')

Index into a list

	1
2
3

	first_pet = my_pets[0]
second_pet = my_pets[1]
third_pet = my_pets[2]

Slice a list into a new list

	1
2
3
4
5
6
7

	# the syntax is
my_list[start:stop]
this includes the start position but goes UP TO the stop
you can leave either empty to go to the front or end

first_two_pets = my_pets[:2]
last_two_pets = my_pets[1:]

Test if a value is inside a list

	1
2
3
4
5
6

	## with any collection, you can test if an item is inside the collection
it is with the "in" keyword

my_pets = ['euclid', 'leta']
if 'euclid' in my_pets:
 print("Euclid is a pet!")

Sets

Create a set or convert a list to a set

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	my_pet_list = ['euclid', 'leta']

you can convert lists to sets using the set keyword
my_pet_set = set(my_pet_list)

sets are like lists but you can't index into them or slice them
they are used for fast membership testing

you can create a new set by:
my_pet_set = set(['euclid', 'leta'])

Add an item to a set

	1
2
3
4

	my_new_set = set()

instead of append, like a list, you use 'add'
my_new_set.add("Potatoes")

Using sets to enforce uniqueness

	1
2
3
4
5
6

	my_grocery_list = ['potatoes', 'cucumbers', 'potatoes']

now if you want to make sure items only appear once, you can convert it to a set
it will automatically do this for you, because items are only allowed to be in sets one time

my_grocery_set = set(my_grocery_list)

Conditionals

If, elif, and else

Use an if to test for something

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	power_level = 1000
min_power_level = 500
max_power_level = 1000

one thing is larger than another
if power_level > minimum_power_level:
 print("We have enough power!")

if power_level == max_power_level:
 print("You have max power!")

Create conditional logic

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	selected_option = 2

if selected_option == 1:
 print("Doing option 1")
elif selected_option == 2:
 print("Doing option 2")
elif selected_option == 3:
 print("doing option 3")
else:
 print("Doing the default option!")

Nest one if inside another if

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	name = "euclid"
animal = "bunny"

if animal == "bunny":
 if name == "euclid":
 print("Euclid is my bunny")
 elif name == "leta":
 print("Leta is my bunny")
 else:
 print("this is not my bunny..")
else:
 print("Not my animal!")

Loops

For Loops

Write a for loop

	1
2

	for i in range(10):
 print("do stuff here")

Use the for loop’s loop variable

	1
2
3
4

	for i in range(10):
 new_number = i * 100
 print("The loop variable is i. It equals {}".format(i))
 print("I used it to make a new number. That number is {}".format(new_number))

Use range inside a for loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	start = 3
stop = 10
step = 2

for i in range(stop):
 print(i)

for i in range(start, stop):
 print(i)

for i in range(start, stop, step):
 print(i)

Use a list inside a for loop

	1
2
3
4

	my_pets = ['euclid', 'leta']

for pet in my_pets:
 print("One of my pets: {}".format(pet))

Nest one for loop inside another for loop

	1
2
3
4

	for i in range(4):
 for j in range(4):
 result = i * j
 print("{} times {} is {}".format(i, j, result))

While Loops

Use a comparison

	1
2
3
4
5

	response = ""

while response != "exit":
 print("Inside the loop!")
 response = input("Please provide input: ")

Use a boolean variable

	1
2
3
4
5
6
7

	done = False

while not done:
 print("Inside the loop!")
 response = input("Please provide input: ")
 if response == "exit":
 done = True

Loop forever

	1
2

	while True:
 print("Don't do this! It is a bad idea.")

Special Loop Commands

Skip the rest of the current cycle in the loop

	1
2
3
4
5

	for i in range(100):
 if i < 90:
 continue
 else:
 print("At number {}".format(i))

Break out of the loop entirely

	1
2
3
4

	while True:
 response = input("Give me input: ")
 if response == "exit":
 break

Functions

The syntax for a function

The first line of a function, called the function header, requires the following:

	the def keyword,

	the name

	parenthesis

	a colon

For example:

	1

	def some_name():

	Notice that there is a space between the def and the function name, some_name.

	There is also NO space between some_name and the parenthesis.

	In the most basic version, there is nothing inside the parenthesis.

	Immediately following the parenthesis (with NO space!), there is a colon.

You are free to name functions whatever you want. Everything else must remain the same!

Go to the next section to see how we put code inside a function.

No arguments and returns nothing

When there is nothing inside the parenthesis in a function header, we
say that the function takes no arguments. When it doesn’t
send back a value, we say it returns nothing.

For example:

	1
2

	def say_hello():
 print("hello!")

Now, if you want to call the function, go to the next part!

Calling a function you wrote

When you write a function, you give it a name. For example, in the section
just before this one, the function name is say_hello.

If you have a python file where you have defined that function, you can then
call it. Calling a function looks just like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	### this is the definition! It does not call the function
def say_hello():
 ## this comment is inside the function, because of the indentation!
 print("hello!")
 ## this comment is also inside the function

this comment is outside the function! The indentation is gone

the function has to be called outside of the function!!
We use its name plus parenthesis
say_hello()

Notice a couple of things:

	The name of the function is say_hello.

	
	At the end of the code above, on line 11, we use the function.

	
	This is also known as executing or calling a function.

	
	Python knew to call the function because of the parenthesis in line 11.

	
	It is part of an agreement with Python and programmers that programmers will use

parenthesis in this way, immediately after a function name, to tell it that it wants to call a function.

Takes one argument

Now, let’s look at how a function can have a single argument.
This is why there are parenthesis in the function header.
This lets specify what arguments a function will have.

	1
2
3
4
5
6
7
8

	def say_something(the_thing):
 print("2. I will say something now!")
 print(the_thing)
 print("4. I just said something!")

print("1. I am going to call the say_something function!")
say_something("3. This is cool!")
print("5. I just called the function!")

In this example, there are a lot of print statements!
Run the code and see the order in which they print out.
I have numbered the print statement so you can see the order.

**The important thing to know: **

	Once Python “enters” into the function to start running the code, it is

in a local context
- This means that the variable named the_thing exists only inside the function
- It is a temporary variable Python makes to hold the value you pass in when you
call the function.

Returns a value

Now let’s look at how you can return items from a function!

	1
2

	def double(x):
 return 2*x

Takes two arguments

	1
2
3
4
5

	def exp_func(x, y):
 result = x ** y
 return result

final_number = exp_func(10, 3)

Takes keyword arguments

	1
2
3
4
5
6
7
8

	def say_many_times(message, n=10):
 print("Inside the say_many_times function!")
 for i in range(n):
 print(message)

say_many_times("Hi!", 2)
say_many_times("Yay!")

Class Basics

First class

Defining class is a recipe. Take a look at the syntax:

	1
2
3

	class Dog:
 name = 'default name'
 age = 0

The important part to notice is the class Dog:. This is what indicates the beginning of the code block.
After the class is defined, two variables are declared. These variables are inside the class. Think of them like files in a folder.

	1
2
3
4
5

	class Dog:
 name = 'default name'
 age = 0

fido = Dog()

This code instantiates the class. This means you are using the recipe to create a new object.

To repeat the vocabulary:

	instantiate: use the recipe to create an object

	object: a specific instance of a class. think of this like a cookie from a cookie recipe.

Using the first class

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	class Dog:
 name = 'default name'
 age = 0

fido = Dog()

print("1. Fido's name: ", fido.name)
fido.name = "Fido"

print("2. Fido's name: ", fido.name)

george = Dog()
print("3. George's name: ", george.name)
print("3. Fido's name: ", fido.name)

george.name = "George"
print("4. George's name: ", george.name)
print("4. Fido's name: ", fido.name)

Run this example.

You will see that changing the internal properties of fido and george stay inside fido and george!
This is another example of scope. Just like inside functions are local scope, inside objects are local scope!

Getting access to internal variables

	1
2
3
4
5
6
7
8
9

	class Dog:
 name = 'default name'
 age = 0

def speak(some_dog):
 print("My name is {}. Bow wow!".format(some_dog.name))

fido = Dog()
speak(fido)

We can write functions which use the fido object as its argument and
access the internal variables!

Getting access to internal variables

You can see from the last example that you access the internal variables using the dot notation.
But, what if you wanted to write a function inside the object? How can you access the variables?

Let’s try this:

	1
2
3
4
5
6
7
8
9

	class Dog:
 name = 'default name'
 age = 0

 def speak():
 print("My name is {}. Bow wow!".format(name))

fido = Dog()
fido.speak()

Do you think this will work? Nope! Scope doesn’t let us do that!

There is a second reason why the code above won’t work and that reason is also what solves things!

	1
2
3
4
5
6
7
8
9

	class Dog:
 name = 'default name'
 age = 0

 def speak(self):
 print("My name is {}. Bow wow!".format(self.name))

fido = Dog()
fido.speak()

When you use the function that is inside an object, python adds a variable without you having to do anything!
That variable is called the self variable. This is just like having the
function outside of the class, except that Python puts the self variable
there automatically, so we don’t have to.

def __init__(self)

The __init__ function is one of Python’s special functions -
this is indicated by the double underscore (__) on either side of the function name.
init is a keyword (like print or if`) and Python already knows what it’s used for.

When you write your own class, sometimes it’s helpful to have a kind of setup
function that runs whenever you make a new copy of the class. For example,
if you write the Door class we’ve been using as an example, you might
want the Door to print out “Hello!” the first time someone makes it. And,
every new Door that gets made will also say “Hello!”

This is what the __init__ function is for: it’s a special function that
runs once every time an object of that type (in our example, Door) is made.

So, for example:

	1
2
3
4
5
6

	class Door:
 def __init__(self):
 print("Hello!")

first_door = Door()
second_door = Door()

The code above will print out “Hello!” twice - once for first_door, and again for second_door.

That’s an example of an __init__ function that doesn’t take any arguments. Usually, this isn’t the case - because __init__ is a setup function, you want the user to provide certain information about the object when they make it.

Here’s an example:

	1
2
3
4
5
6
7
8

	class Door:
 def __init__(self, in_name, in_height):
 self.name = in_name
 self.height = in_height
 print("Hello! My name is " + self.name)

first_door = Door("Gerald", 10)
second_door = Door("Geraldina", 12)

In this code, when a Door object is created,
it takes two arguments: the name, and the height.
These arguments are then used for setting up the Door object
(i.e., they set up the properties self.name and self.height)

Advanced Classes

Design patterns and examples for classes! Use these to help you solve problems.

Defining a class

	1
2
3
4

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Instantiating an object

	1
2

	# create the object!
fido = Dog("Fido", 7)

Writing a method

A method is the name of a function when it is part of a class.

You always have to include self as a part of the method arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("Bow wow!")

fido = Dog("Fido", 7)
fido.bark()

Using the self variable

You can access object variables through the self variable.
Think of it like a storage system!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()

odie = Dog("Odie", 20)
odie.bark()

Using the property decorator

You can have complex properties that compute like methods but act like properties.
Properties cannot accept arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

Inheriting properties and methods

You can inherit properties and methods from the ancestors!
For example, the initial function below is inherited.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age

class Dog(Animal):
 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

You can also override certain things and call the methods of the ancestor!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "dog")

 def make_noise(self):
 self.bark()

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "cat")

 def make_noise(self):
 self.meow()

 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.make_noise()
print("Fido is {} in human years".format(fido.human_age))

garfield = Cat("Garfield", 5, 4, "cat")
garfield.make_noise()

Using the classmethod decorator

There is a nice Python syntax which lets you define custom creations for your objects.

For example, if you wanted certain types of dogs, you could do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

fido = Dog("Fido", 5, "Labrador")

But you could also do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

 @classmethod
 def labrador(cls, name, age):
 return cls(name, age, "Labrador")

fido = Dog.labrador("Fido", 5)

Important parts:

	
	Instead self, it has cls as its first argument.

	
	This is a variable which points to the class being called.

	
	@classmethod is right above the definition of the class.

	
	It absolutely has to be exactly like this

	No spaces in between, just sitting on top of the class definition

	It’s called a decorator.

	
	It returns cls(name, age, "Labrador").

	
	This is exactly the same as Dog("Fido", 5, "Labrador") in this instance

	Overall, it is letting you shortcut having to put in the labrador string.

This is a simple example, but it is useful for more complex classes

Built-in Functions

Built-in Functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	print("This prints to the console/terminal!")

notice the space at the end!
it helps so that what you type isn't right next to the ?
name = input("What is your name? ")

use input to get an integer
age = input("How old are you?")
but it's still a string!
convert it
age = int(age)

test the length of a list or string
name_length = len(name)

get the absolute value of a number
positive_number = abs(5 - 100)

get the max and min of two or more numbers
num1 = 10**3
num2 = 2**5
num3 = 100003
biggest_one = max(num1, num2, num3)
smallest_one = min(num1, num2, num3)
can do any number of variables here
max(num1, num2) works
and max(num1, num2, num3, num4)

max/min with a list
ages = [12, 15, 13, 10]
min_age = min(age)
max_age = max(age)

sum over the items in a list
more list stuff is below
ages = [12, 15, 13, 10]
sum_of_ages = sum(ages)
number_of_ages = len(ages)
average_age = sum_of_ages / number_of_ages

Built-in Modules

Time module

Using time.time() to count how long something takes

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import time

start = time.time()

for i in range(10000):
 continue

new_time = time.time()
total_time = new_time - start
print(total_time)

Using time.sleep(n) to wait for n seconds

	1
2
3
4
5
6
7
8
9

	import time

start = time.time()

time.sleep(10)

end = time.time()

print(start - end)

Random Module

Generate a random number between 0 and 1

	1
2
3
4

	import random

num = random.random()
print("the random number is {}".format(num))

Generate a random number between two integers

	1
2
3
4

	import random

num = random.randint(5, 100)
print("the random integer between 5 and 100 is {}".format(num))

Select a random item from a list

	1
2
3
4
5

	import random

my_pets = ['euclid', 'leta']
fav_pet = random.choice(my_pets)
print("My randomly chosen favorite pet is {}".format(fav_pet))

Read and Write Files

It is common to read and write files to store and process data and information.
This could the saving of a game or processing a file.

There are a couple new syntax items we haven’t talked about yet.

1. with is Python syntax that temporarily creates variables and handles
the creation and closing. We use it with files so Python makes sure the file
closes when we are done and doesn’t corrupt the file. with will
create a new code block, so it’s important to note that as soon as the code block ends
(a line of code starts that isn’t indented the 4 spaces needed to be in the
with code block), then Python closes the file.

2. open is a Python command to open a file. With only one argument,
that argument is assumed to be the filepath. There are optional arguments. The
important one is a second argument which will tell Python whether you are
reading or writing the file. When you don’t put in the second argument,
Python assumes it is 'r' for reading.

3. as is Python syntax only used with the with command. You should
keep note of the syntax as a whole and follow that pattern.

Reading the file

	1
2
3

	filepath = "file_location.txt"
with open(filepath) as file_obj:
 data = file_obj.read()

in this example, we knew where the location of the file is. This is vital and there are
two different ways to think about this.

	
	The relative path is based on the file that’s running the code (or where

	the iPython console thinks it is currently at)

	You have to know the absolute path, which is the fully path to the file.

I recommend trying this out with a file that’s in the same folder as the python
file. This is the relative path style. Then the filepath is just the filename.

The hidden second argument to open

As mentioned above, open can have a second argument. In this
example, the second argument is not there and Python has a default value for it.
To explicitly put it there so we can see the value, it would look like:

	1
2
3

	filepath = "file_location.txt"
with open(filepath, 'r') as file_obj:
 data = file_obj.read()

The 'r' stands for read

Variations on read

There are a couple of different ways you can read in the file.
The example above showed the function file_obj.read(). This gets
the entire file in as a string. Another way is to use file_obj.read_lines().
If you’re doing line by line processing, I recommend the second. If not, I recommend the first.

Things to be careful of

Strings can be tricky. They can include characters that you don’t want.
For example, with file_obj.read(), all of the new lines (the characters that
give new lines when printed) are still in there (as \n).
You can fix this by removing them from the string using the replace function:

	1
2
3
4
5
6

	x = "this has \n\tweird characters"

x = x.replace("\n", "")
x = x.replace("\t, "")
print(x)
assert x == "this has weird characters"

Writing to files

Writing to files is very similar. The important things to notice:

	There is now an 'w' in the syntax: with open(filepath, 'w') as file_obj.
This means Python is now writing to the file. Be careful though!
This will always overwrite any file that is already there!

2. You have to write the new lines yourself (otherwise everything will be on
one line!)

	1
2
3
4
5
6

	filepath = "file_location.txt"
with open(filepath, 'w') as file_obj:

 file_obj.write("This is in the file")
 file_obj.write("So is this! But this one has the new line\n")
 file_obj.write("Here is some more stuff")

Reading and Writing JSON Files

JSON files are really useful. They let you store not just plain text, but
dictionaries! You pronounce them as “Jay-Sawn”
(Jason is more like “Jay-Sun”, which isn’t quite right here)

Writing a JSON file

Writing a JSON file is called “dumping”.

	1
2
3
4
5
6

	import json

bunny_dict = {"name": "Euclid", "age": 2}

with open("bunny.json", "w") as fp:
 json.dump(bunny_dict, fp)

And that’s it! One nice part about JSON is it that you can dump a JSON dictionary
to a string instead of a file!

	1
2
3
4
5
6
7

	import json

bunny_dict = {"name": "Euclid", "age": 2}

new_str = json.dumps(bunny_dict)

print(new_str)

Notice that it is json.dumps now. The s in dumps means “dump string”.

Reading a JSON file

Loading a JSON file is called “loading”

	1
2
3
4

	import json

with open("bunny.json", "r") as fp:
 bunny_dict = json.load(fp)

Pretty easy! The nice part about using JSON is that you can use dictionaries
to store information. This means you can store and load information which
requires more structure than a plain string, like character information or save game state.

Tutorials

Essentials and Basics

	Planning with Flow Charts and Structure

Text-Based

	Interactive Stories and Games

	Ciphers

Planning with Flow Charts and Structure

Flow charts and structure

You should decide on the structure and topic of your project pretty early.

For example:

	if you are doing a story, what is the context and background?

	if you are doing a game, what is the goal? what are the parts?

	similar to a game, if you are doing a library (like encryption), what is the goal?

A flow chart starts with the initial point.
For an interactive story or game, this is the beginning of the game.
For a library, it will be the beginning of the algorithm.
The logic of the code will flow from this initial point.
You can use either paper to draw this or you can use an online website
(for example, draw.io is an ok one [https://www.draw.io/]).

Any specific point in the story is sometimes called the “state”.
The state is a specific setting of variables. And since this is a story
you are programming, the set of variables are the variables you will be using
to keep track of the story.

Remember that you are drawing the information flow.
Here is a real life example. [https://pbs.twimg.com/media/C6A7smLUsAAzJeS.jpg].
Though, they don’t use the dimaonds I recommend below, but instead use colors.
You can do whichever you want.

This page has really good, simple examples of flow charts [https://www.programiz.com/article/flowchart-programming]

There are several kinds of shapes in the flow charts:

Ovals are start/end points

Ovals are either the starting or ending points. They are where the story starts and stops.

Rectangles/Boxes are processing points

Boxes represent the processing of information. Into the box flows some information and
out flows other information. You draw this as a line flowing into a box and a line flowing out.

Diamonds are decision points

If there is a condition in your code, you draw that as a diamond. Since the information
flow is being drawn as lines, a line connect to the diamond. It is good to draw an arrow on the line to show
which direction it is flowing.

Each choice is a different path from the diamond.
I usually try to keep my diamonds as True/False and have a path come off one side of the diamond
and off the point opposite from where the information flow entered the diamond.

Other shapes

There are a lot of shapes people use and slightly different ways to use them.
You have complete freedom to represent other types of information flow with other shapes.
Just make sure you use them the same way everywhere. I personally only work with these three shapes.

Interactive Stories and Games

Understanding State

The word state refers to a specific setting of variables. In practice, there are
several different ways you could accomplish this.
It is important to think about it in the following way:
in the flow chart, you are defining how information flows from state to state, but in the code, you should
be trying to design code that works similarly for every state.

The simplest state, for example, is to have just a single number which represents
which state you are in. Then, when you need to have code that is conditional on the state, you could do:

	1
2
3
4
5
6
7
8

	state = 1 # for example

if state == 0:
 print("In state 0")
if state == 1:
 print("In state 1")
if state == 2:
 print("In state 2")

The Main Loop

When doing things like stories and games, you need to have a loop which manages the repeated behaviors.
In other words, you make code that handles all states, and you use a while loop
which keeps looping over the code.

Here is an example. I used state as an integer to keep track of
what point the user is in the story.

game_over = False
state = 0

while not game_over:

 if state == -1:
 game_over = True
 elif state == 0:
 print("Welcome to the dungeon..")
 print("You are in a dark room. Do you go left or right?")
 choice = input("> ")
 if choice == "left":
 state = 1
 elif choice == "right":
 state = -1
 print("You ran into a monster and died!")
 else:
 print("I don't understand that command!")
 elif state == 1:
 print("more code here and for other states!")

While the above code is good and you could write the entire game like that,
you have two choices for how to make it more compact, easier to write,
and easier to use.

The first is to use functions. For this method, you would have a test
to see which state you are in and then call different functions based on that
state.

The second is to use classes. For this method, you have objects can accomplish
the actions of the different states, but they have a shared function.
That way, from the perspective of the main loop, the same function is being called every time.

Using Functions

The game loop above could get really messy and long. One way to manage
the top-level view without having too crazy of code is to break parts up into states.
For example, you could put the above first-state code into a function

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	def state_0():
 print("Welcome to the dungeon..")
 print("You are in a dark room. Do you go left or right?")
 choice = input("> ")
 if choice == "left":
 state = 1
 elif choice == "right":
 state = -1
 print("You ran into a monster and died!")
 else:
 print("I don't understand that command!")

 return state

the main game loop
state = 0
game_over = False
while not game_over:
 if state == -1:
 game_over = True
 elif state == 0:
 state = state_0()
 elif state == 1:
 print("more stuff")

Notice how cleaner this code is!
Try to write state functions so that your code stays clean.
It is good practice to break code into chunks like this.

Notice that the function returns the state integer.
The reason you’d want to return this is because then you’re
letting each state decide whether the game ended. You could do it another way,
if you wanted. For example, you could have player information like health.
And then, you pass that information into the function and pass it back out.
You could then check to see if player health was 0 and that would end the game.

More complex states

You could also be writing more complex states. For example, you could
be using a dictionary or a list with information in it.

euclid = {'location': 'kitchen', 'health': 10, 'name': 'Euclid'}

You could create classes for things like this:

class Bunny:
 def __init__(self, name, location, health):
 self.name = name
 self.location = location
 self.health = heatlh

euclid = Bunny("Euclid", "kitchen", 10000)

An example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

	class Human:
 def __init__(self, name, health, location):
 self.name = name
 self.health = health
 self.location = location
 self.thing_type = 'human'

class Animal:
 def __init__(self, name, health, location, animal_type):
 self.name = name
 self.location = location
 self.health = health
 self.thing_type = "animal"
 self.animal_type = animal_type

def get_response(options):
 while True:
 print("Options: ")
 for option in options:
 print("\t{}".format(option))
 user_choice = input("What do you do? ")

 if user_choice not in options:
 print("'{}' is not a valid option, try again".format(user_choice))
 else:
 return user_choice

def kitchen(player, world):
 print("You are in the kitchen.. it is very spooky and very scary")

 animals_in_kitchen = list(world.animals['kitchen'].items())

 if len(animals_in_kitchen) == 0:
 print("Nothing in the kitchen.. how boring.")
 print("I wish you could go to other rooms now...")

 for animal_name, animal in animals_in_kitchen:
 print("Suddenly, a {} comes out of no where!".format(animal.animal_type))

 options = ['pet', 'run away', 'hide']

 choice = get_response(options)

 if choice == 'pet':
 print("You tried to pet him, but he bit your finger!")
 player.health = 0
 elif choice == "run away":
 print("You successfully ran away into the garage")
 player.location = "garage"
 elif choice == "hide":
 print("You hide under the table!")
 world.move_animal(animal, from_location="kitchen", to_location="hidden")

def garage(player, world):
 print("You are in the garage.. and you're locked in. whoops!")
 print("You are stuck here forever")
 player.health = 0

class World:
 def __init__(self):
 self.locations = {"hidden": None}
 self.animals = {"hidden": {}}
 self.player = None

 def put_in_world(self, new_thing, thing_type):
 location = new_thing.location
 if location not in self.locations.keys():
 raise Exception("Location '{}' hasn't been added yet!!".format(location))
 if thing_type == 'animal':
 ## note: you can't have the same names, it will overwrite!
 self.animals[location][new_thing.name] = new_thing
 elif thing_type == 'player':
 self.player = new_thing
 else:
 raise Exception("Not supported yet: {}".format(thing_type))

 def add_location(self, location, location_function):
 self.locations[location] = location_function
 self.animals[location] = dict()

 def move_animal(self, animal, from_location, to_location):
 del self.animals[from_location][animal.name]
 self.animals[to_location][animal.name] = animal

euclid = Animal(name="Euclid", health=10, location="kitchen", animal_type='bunny')
player = Human(name="Mr. McMahan", health=100, location="kitchen")

this is putting the function inside the dictionary!
world = World()

world.add_location('kitchen', kitchen)
world.add_location('garage', garage)
world.put_in_world(player, 'player')
world.put_in_world(euclid, 'animal')

game_active = True

max_num_turns = 100

while game_active:
 location = player.location
 location_function = world.locations[location]

 location_function(player, world)

 if player.health == 0:
 print("Player has passed out! The game was too much. game over")
 game_active = False
 else:
 options = ['leave', 'keep going']

 choice = get_response(options)

 if choice == 'leave':
 print("Goodbye!")
 game_active = False

Ciphers

Substitution Cipher

There are many different kinds of ciphers. A simple one is a substitution cipher.
This is where you create a dictionary that maps one letter to another.
Then, you can loop over the message and make a new one!

Since we are programmers, we don’t always want to make things from scratch.
Let’s look at some shortcuts too.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	import string

print("the string package has a bunch of useful things for strings in Python")
print("We are going to use it to get all of our letters")

letters = string.ascii_lowercase

print(letters)

cipher = dict() ## an empty dictionary

n_letters = len(letters)

for i in range(n_letters):
 from_letter = letters[i]

 ### now, let's get the opposite letter
 ## n_letters is 26, and i starts at 0
 ## but we want the first to_letter_index to be 25. so let's subtract 1.
 ## what is the last number i will be? what will this index be then?
 to_letter_index = n_letters - i - 1
 to_letter = letters[to_letter_index] ### this will start at n_letters and work backwards!

 cipher[from_letter] = to_letter

print("We have now made our cipher, let's use it to encrypt a message!")

message = "this is a test Message"

print("Because we only made our cipher with lowercase letters, let's make sure the message is lowercase too")

message = message.lower()

print("Now we are going to use the accumulator pattern.")
print("This means we start with an empty string and add onto it, one letter at a time")

encrypted_message = ""
for letter in message:

 ### make sure to test to see if the letter is even in the cipher. if it's not
 ### it is a space or a number. let's leave them along and just add them into
 ### the resulting string!
 if letter in cipher.keys():
 new_letter = cipher[letter]
 else:
 new_letter = letter ## just set it equal it self

 encrypted_message += new_letter ## remember the += is a shortcut!

print("We have encrypted the message {} and it has become {}".format(message, encrypted_message))

Decrypting

Decrypting is the opposite of encrypting: you just map backwards.

One way to do this is to just use the dictionary we made and reverse it!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	import string
letters = string.ascii_lowercase
n_letters = len(letters)

cipher = dict() ## an empty dictionary
decrypt = dict() ## an empty dictionary

for i in range(n_letters):
 from_letter = letters[i]
 ### now, let's get the opposite letter
 ## n_letters is 26, and i starts at 0
 ## but we want the first to_letter_index to be 25. so let's subtract 1.
 ## what is the last number i will be? what will this index be then?
 to_letter_index = n_letters - i - 1
 to_letter = letters[to_letter_index] ### this will start at n_letters and work backwards!

 cipher[from_letter] = to_letter
 decrypt[to_letter] = from_letter

you could have also done this:
decrypt = dict()
for from_letter, to_letter in cipher.items():
 decrypt[to_letter] = from_letter

and now you use it as we did with the cipher above

Caesar Cipher

A really awesome fact is that the Caesar Cipher is named after Ceasar himself.

From the Wikipedia page [https://en.wikipedia.org/wiki/Caesar_cipher#History_and_usage]:

> The Caesar cipher is named after Julius Caesar, who, according to Suetonius,
> used it with a shift of three to protect messages of military significance.
> While Caesar’s was the first recorded use of this scheme, other substitution ciphers are known to have been used earlier.[4][5]

> “If he had anything confidential to say, he wrote it in cipher,
> that is, by so changing the order of the letters of the alphabet,
> that not a word could be made out. If anyone wishes to decipher these,
> and get at their meaning, he must substitute the fourth letter of the alphabet, namely D, for A, and so with the others.”
> - Suetonius, Life of Julius Caesar 56

> His nephew, Augustus, also used the cipher, but with a right shift of one, and it did not wrap around to the beginning of the alphabet:
> “Whenever he wrote in cipher, he wrote B for A, C for B, and the rest of the letters on the same principle, using AA for Z.”
> - Suetonius, Life of Augustus 88

> Evidence exists that Julius Caesar also used more complicated systems,[6] and one writer, Aulus Gellius, refers to a (now lost) treatise on his ciphers:
> “There is even a rather ingeniously written treatise by the grammarian Probus concerning the secret meaning of letters in the composition of Caesar’s epistles.”
> - Aulus Gellius, Attic Nights 17.9.1–5

A Caesar Cipher is just a substitution cipher which has a specific shift of letters!

So, let’s assume we will use the exact same code above, but let’s change how
we make the cipher dictionary. The following code should only
replace the for loop above that makes the cipher dictionary.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	import string
letters = string.ascii_lowercase
n_letters = len(letters)

caesar_cipher = dict() ## an empty dictionary
shift_number = 3 ### Let's shift like Caesar!

for i in range(n_letters):
 from_letter = letters[i]

 ### now, let's get the encrypting letter
 ### but this time, let's use the cipher!
 to_letter_index = i + 3

 ### but what if other_index is larger than 26 now? We need to make sure
 ### it wraps back around to the length of the alphabet:
 to_letter_index = to_letter_index % 26

 ### now store it!
 to_letter = letters[to_letter_index] ### this will start at n_letters and work backwards!

 cipher[from_letter] = to_letter

print("We have now made the Caesar Cipher, let's use it to encrypt a message!")

message = "this is a test Message"

print("Because we only made our cipher with lowercase letters, let's make sure the message is lowercase too")

message = message.lower()

print("Now we are going to use the accumulator pattern.")
print("This means we start with an empty string and add onto it, one letter at a time")

encrypted_message = ""
for letter in message:

 ### make sure to test to see if the letter is even in the cipher. if it's not
 ### it is a space or a number. let's leave them along and just add them into
 ### the resulting string!
 if letter in cipher.keys():
 new_letter = cipher[letter]
 else:
 new_letter = letter ## just set it equal it self

 encrypted_message += new_letter ## remember the += is a shortcut!

print("We have encrypted the message {} and it has become {}".format(message, encrypted_message))

ROT-13

When the shift is 13, it is called ROT-13 for “rotation 13”.
Although not that secure (it can be decoded easily), it does provide a nice
example because both the encryption and decryption dictionaries would be the same,
at least for English because we have 26 letters.

To read more about it, check out the wikipedia entry [https://en.wikipedia.org/wiki/ROT13].
You should try the ROT-13 in your Caesar Cipher.

Index

Minecraft Architect Tutorial

The goal of this tutorial is walk you through how to be a minecraft architect.

The first steps are going to be:

	Get the correct setup going (see ../installminecraft)

	Start interacting with the world

This tutorial will cover a few of the basic information and then some techniques for building things in minecraft.

To start:

	Start the minecraft server

	Log into the minecraft client (make sure you set the version under the profile settings to 1.9.2!)

	connect to a world at the address localhost or 127.0.0.1

4. Open up an iPython terminal to test the connection and type in

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("hello world!")

5. From now on, you should use a file and do the first following lines so that you have access to the mc object and the Vec3 class.

from mcpi.minecraft import Minecraft
from mcpi.vec3 import Vec3
mc = Minecraft.create()

Information: User-Centric Positioning

The first thing you should think about is that everything you do is based around the user.
The user is located at a specific place in the world, which are the set of (x,y,z) coordinates.
So, when you construct anything, you are constructing relative to them.

You get the positions by:

pos = mc.player.getPos()
to see what this looks like, you can do
print(pos, type(pos))
you can also get the x,y,z individually:
print(pos.x, type(pos.x))
print(pos.y, type(pos.y))
print(pos.z, type(pos.z))

It is best to draw things out on paper and plan them.
For instance, if you want to make a wall next to the user, you should figure out what the adjustments to the x and z would be.
One spot away from the user would be pos.x-1 or pos.z-1

Information: Placing Blocks

You can place either a single block or multiple blocks of the same type.

Single Blocks

For a single block, you either specify a Vec3 object, or the 3 coordinates.
You also specify the block number. You will have a book looking these up.

pos = mc.player.getPos()
set by the Vec3
mc.setBlock(pos, 42)
set by each spot individually
mc.setBlock(pos.x, pos.y, pos.z, 42)

but probably set in front of user, not where they are
mc.setBlock(pos.x+1, pos.y, pos.z+1, 42)

Vectors can add, so instead of typing out the 1 away with each spot individually, you can do

pos = mc.player.getPos()
offset = Vec3(1,0,1)
new_pos = pos + offset
mc.setBlock(new_pos, 42)
you could have also done:
mc.setBlock(pos + offset, 42)
or even
mc.setBlock(pos + Vec3(1,0,1), 42)

Multiple Blocks

For multiple blocks, you are specifying a cube. For this, you have to give the two corners of the cube.
For example, you could do:

mc.setBlocks(0,0,0, 3, 3, 3, 42)

This would create a 3 by 3 by 3 cube. Note, because I didn’t use relative coordinates, you won’t be able to find this cube.
To make it relative to the player:

pos = mc.player.getPos()
mc.setBlocks(pos.x, pos.y, pos.z, pos.x+3, pos.y+3, pos.z+3, 42)
or more easily:
mc.setBlocks(pos, pos+Vec3(3,3,3), 42)

Let’s make a giant box around the player. You will probably have to break your way out.

pos = mc.player.getPos()
mc.setBlocks(pos-Vec3(5,5,5), pos+Vec3(5,5,5), 42)

Technique: Layers

When you’re placing blocks, if you want to have a unique shape, you can play the blocks in layers.
Imagine building a pirate ship, for example. Each layer starting from the bottom would get longer and longer and slightly wider.
This would create a oval-type shape that ships have on their bottom.

You could do the layer technique for faces, buildings, triangles, etc.

How could you use the layer technique to build a four-sided pyramid?

Technique: Negative Space

One thing you can do is think about building things with negative space.

For example, let’s say I wanted to build a box around the player, but I didn’t want them to suffocate.
Well, you could create the cube first, and then replace the inner part of the cube with a smaller cube of air.

pos = mc.player.getPos()
cube_size = Vec(5,5,5)
air_size = Vec(4,4,4)
mc.setBlocks(pos-cube_size, pos+cube_size, 42)
mc.setBlcoks(pos-air_size, pos+air_size, 0)

Technique: Block Collections

Another thing you can do is create collections of blocks using lists and then
have a function which can iterate over them and place them one at a time.

def set_points(points, mc, block_type):
 for point in points:
 mc.setBlock(point, block_type)

example usage
pos = mc.player.getPos()
points = list()
for i in range(10):
 points.append(pos+Vec3(-1*(i%5), i%5, i%5))
set_points(points, mc, 42)

Technique: Circles

You could also do a block collection that uses sin or cos to create a circle. I will explicitly give this one to you.
Here I am using a set because it enforces uniqueness. No point can exist twice.

def taxicab_circle_x(r):
 point_set = set()
 x = 0
 for angle in range(360):
 theta = math.radians(angle)
 y = math.floor(r*math.sin(theta))
 z = math.floor(r*math.cos(theta))
 point_set.add(Vec3(x, y, z))
 return point_set

Data Analysis Tutorial

More datasets

	Simpler Datasets [https://vincentarelbundock.github.io/Rdatasets/datasets.html]

	A huge list of datasets [https://github.com/caesar0301/awesome-public-datasets]

	538’s datasets [https://github.com/fivethirtyeight/data]

Overview

The goal of this tutorial is to talk about the important parts of beginning data analysis.

The typical analysis pipeline goes through the following stages:

	Think about the data you would like

	
	Either find a way to collect that data, or find data that already exists

	
	sometimes you might have to compromise on data because it’s easier to just use stuff that exists already

	I have provided links to datasets above.

	For this tutorial, there is a titanic dataset

	
	Write code that takes the data from a file or database and loads it into a data structure

	
	We will be using Pandas, a data management library

	Pandas makes manipulating data really easy

	
	Write code that puts the data into different forms that match the task you want to do.

	
	For instance, if you want to view interesting properties of your data as a scatter plot, you need to get two lists: one for the x positions and 1 for the y positions

	You should be thinking about what kinds of things the data can tell you

I will be writing this tutorial while looking at the titanic dataset.
The titanic dataset is a list of passengers, information about them, and whether they survived or not.

Getting the Data

I have made the data easy to get:

from urllib import request
import pandas as pd
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)

Using Pandas and Matplotlib

Some example tutorials

	Simple Graphics [http://pbpython.com/simple-graphing-pandas.html]

	Beautiful Plots [https://datasciencelab.wordpress.com/2013/12/21/beautiful-plots-with-pandas-and-matplotlib/]

Some simple operations

Selecting a column

age_column = df['Age']

Selecting a subset

df2 = df[age_column > 0]

View the columns

print(df2.columns)

Visualize a scatter plot

plt.scatter(df2['Survived'], df2['Age']);
or with columns out
surv_col = df2['Survived']
age_col = df2['Age']

Seaborn

If you don’t already have it, to install seaborn, type in a single cell in your Jupyter Notebook:

!pip install seaborn

Then, you can do the following:

import seaborn as sns
sns.barplot(data=df, x='Pclass', y='Survived')

You can see more examples of seaborn plots at the seaborn website [https://stanford.edu/~mwaskom/software/seaborn/examples/index.html]

Some examples to get you started:

sns.countplot(data=df, x='Sex', hue='Survived')

do these in different cells otherwise they will try to plot on top of each other
sns.factorplot(data=df, x='Pclass', y='Age', col='Sex', kind='swarm', hue='Survived', x_order=[1, 2, 3])

Science

To use data for science, you want to get summarize what happened.
In other words, you want to tell a story with the data.
To do this, you have to look at the different properties: counts, means, proportions, etc.

A good way to formulate a scientific question is to think about different groups.
If the rate at which something happens is different between the two groups, then there is an effect of group.

Some terminology

	Proportion: A proportion is a number between 0 and 1 that signifies the part to whole relationship.
- If you eat half of a cake, the proportion you ate is 0.5

	Percentage: A percentage is a number between 0 and 100 that signifies the part to whole relationship
- If you eat half of a cake, the percentage is 50%

Questions you can ask

	How many people were on the Titanic?

	What percentage of the passengers did not survive?

	How many of the passengers were male? How many were female?

	How many male passengers survived? How many female? Is there an interesting relationship?

	What is the proportion of 3rd class passengers who survived?

	Is there an effect of class on the survivability of the gender?

	What is the mean age per class?

Additional setup

A version I was working that renames and cleans a version of the dataset:

from urllib import request
import pandas as pd
import seaborn as sns
%matplotlib inline
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)
cols = df.columns.values
idx = list(cols).index('Pclass')
cols[idx] = "Class"
df.columns = cols
df_clean = df[df['Age']>0]

And a couple extra plots I was looking at:

super fancy
sns.factorplot(data=df_clean, kind='violin', split=True, inner='stick', scale='count', x='Class', y='Age', hue='Survived', col='Sex')

really sad
sns.factorplot(data=df_clean, kind='bar', col='Class', x='SibSp', y='Age', hue='Survived', row='Sex')

Chatbot Tutorial

The goal of this tutorial is to introduce the idea of reflex-response agents and finite state automata.

Reflex-Response Agents

Agent is a word used in Artificial Intelligence to refer to programs that are meant to act on their own.

There are several types of agents. The one we will cover here is a reflex-response agent.
Our reflex-response agent will look at the world in turns. Each turn, there is an input, and each turn, it has to choose an output.
This is what is meant by reflex-response. It responds as a reflex to the input.

There are some famous reflex-response agents. The most famous is Eliza [https://en.wikipedia.org/wiki/ELIZA].
When you plan your chatbot, you should think about how it compares to Eliza. In fact, it wouldn’t be bad to try to recreate her.

So, what does it take for a Reflex-Response Agent?
There needs to a separation of the two major components: the agent’s brain and the agent’s interface.
The brain handles the thinking, the interface handles the communication through the terminal.

Our reflex-response agent is going to be slightly more advanced than usual, however.
I will cover that in the brain section.

Interace

So, begin by designing the interface. How should it act?
It should be a while loop that acts in the following steps:
1. Present information to the user about the task
2. Ask the agent what it wants to say
3. Show that to the user
4. Wait for the human to say something
5. Send the human’s response to agent
6. Go back to Step 2.

For a pure turn based reflex-response agent, that is all that it takes to interface with the human.
Of course, it would be better if it were more like a chat room or text messaging interface where the agent didn’t have to wait for the human to respond and vice versa.
However, that’s more of a second stage project.

Brain

The brain needs to be able to take the input from the human and respond to it.
You should do this so the agent’s brain has an internal state. This means that
it can keep track of different properties, such as the user’s name or what it has previously said.

For this, you need to design the agent’s class.
- What functions should it have?
- What should it pay attention to?
- What properties are important in the conversation?
- What do you want the agent to do?

I have implemented an agent before that kept track of todo lists and reminded me of things.
I have also had it so that it could check on things like the time.

A basic agent class could look like

class Agent:
 def __init__(self, important, properties):
 self.important = self.important
 self.properties = self.properties
 self.startup_stuff()

 def startup_stuff(self):
 ''' any complex startup logic should go here '''

 def observe(self, observation):
 ''' this is the incoming sentence. you could call it something else if you'd like.
 I call it observation just because I also deal with agents that see properties of the world
 '''

 def speak(self):
 ''' this should have the agent say something. this is the sentence shown to the user
 '''

And that’s about it. You have to figure out how you want the agent to respond to sentences, now.
For this, you have to see if the incoming string matches something you know about.
One possible way of doing this is think about it in the following sense:

	
	Get the input string and process it by checking it for words or phrases

	
	for example, maybe the user said “Hi! How are you” and you want to find the phrase “How are you”

	Have your checking be a process which returns a number, perhaps 1-5, depending on what it found.

	Have a set of responses set up that respond to the numbers 1-5.

The reason this method could be good is that you’re funneling the wide range of the ways people could say things
into a smaller number. Then, you write responses to that smaller number.
The process of reducing the wide range of ways people could say things is called classification.
By writing code that classifies, you are doing rule-based classification.

You could even have a function which checks for things like: “My name is”, “I am”, “You are”, “we will”.
Then, you can take whatever is the in the rest of that sentence and use it in some way.

Finite State Automata

I will briefly cover finite state automata. Today you should concentrate on the agent.

In a conversation, we go through a series of states. A state means a certain settings of the current situation.
For example, when we first see someone, we are the “greeting” state. This means that the appropriate things to say are about greetings.
Then, we move to another state. In class, we move to a “checkpoint” state where I ask the students how their homework went.

An agent that has states and has transitions between states is called a finite state automata. For example:

[image: http://oldblogimages.metawrap.com/2008/WindowsLiveWriter/PracticalApplicationsOfFiniteStateMachin_C2DB/244px-Finite_state_machine_example_with_comments.svg_2.png]
It is useful to represent the states explicitly.
The reason is that you might have different responses to the same exact string given different states.
If you wanted into class and said “goodbye”, I would be confused. If the class is ending and you say “goodbye”, that makes sense.

The way you can represent states in an agent is to a separate class for states.
Then, you would have a new copy for each new type of state.
Each state copy would be setup with different variables so it could manage the things you want to do.

Then, inside the agent, whenever it gets an input, it would use the current state to get its response.
It would then decide whether or not it should stay in the same state or move to a new state.
A good way of managing this is to have each state have a set of conditions. As soon as those conditions are met,
it tells the agent that it should move on.

These are all very complex ideas.
One nice blog post on these types of ideas are from the gamasutra blog [http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php].

Animation

The tools we are going to use for animation are going to be PyGame and Python.
There is information on how to install pygame linked here.

PyGame

PyGame provides you with a couple core things:

	A way to interact with a canvas

	A set of ways to draw shapes and images to the canvas

	A procedure for repeating the code and updating the screen to make things animated

There are a couple initial things for pygame.

I have outlined the basic code here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import pygame

INIT SECTION
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)

size = (700, 500)
done = False

pygame.init()

screen = pygame.display.set_mode(size)
clock = pygame.time.Clock()

pygame.display.set_caption("My Animation")

This is the header code for pygame. It does the following things:

	Imports the pygame library

	Defines some basic colors. These are in the RGB format in tuples.

	Define the size of the screen as a tuple.

	Create a boolean variable to represent whether the animation is done yet.

	pygame.init() starts the pygame engine.

	
	After the engine is started, you can set the screen size and get the clock.

	
	the clock is useful for setting and changing the frames per second.

	You can also optionall set the title of the screen

With this part, you are not quite done. You now need to have the game loop!

Game Loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	# -------- Main Program Loop -----------
while not done:
 #### EVENT CHECK SECTION
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 #### CLEAR THE SCREEN
 screen.fill(WHITE)

 #### DRAWING SECTION

 # empty

 #### TELL THE SCREEN TO UPDATE
 pygame.display.flip()

 #### TELL THE CLOCK YOU WANT 60 FRAMES PER SECOND
 clock.tick(60)

Close the window and quit.
pygame.quit()

You should combine this code with the code from the last second.
When run together, it should open a blank white screen.
Let me know if it doesn’t, because then there is something wrong.

Drawing Objects

Pygame has several different objects it can draw.
There is a specific format to them.
There are complete docs at the pygame docs [https://www.pygame.org/docs/ref/draw.html], but I will
describe a couple things here.

The screen object created in the initial section is very important.
It is used to reference the screen for drawing!
Inside the drawing section in the while loop, add the following:

	1

	pygame.draw.rect(screen, BLACK, (0, 0, 100, 100))

This code does the following:

	It uses the pygame.draw.rect function draw a rectangle

	It uses the screen object to draw to the screen

	It uses the BLACK color to pick the rectangle’s color

	
	It uses a 4-length tuple (0,0,100,100) to define the shape of the rectangle.

	
	The format of this tuple is: (left_x, top_y, width, height)

The pygame website describes this code as: rect(Surface, color, Rect, width=0) -> Rect.
This means that the rect(...) function takes as input the Surface, which we call screen,
a color, a capital-R Rect, and optionally the width. The arrow means it returns back a
capital-R Rect.

The capital-R Rect is a specific PyGame variable type. I will show
how to use that in the next section. But, you can also just use tuples in this case.
We also aren’t saving the Rect that it produces.

Explore the code on the pygame docs. Explore the different shapes.
To list them here:

rect(Surface, color, Rect, width=0) -> Rect
polygon(Surface, color, pointlist, width=0) -> Rect
circle(Surface, color, pos, radius, width=0) -> Rect
ellipse(Surface, color, Rect, width=0) -> Rect
arc(Surface, color, Rect, start_angle, stop_angle, width=1) -> Rect
line(Surface, color, start_pos, end_pos, width=1) -> Rect
lines(Surface, color, closed, pointlist, width=1) -> Rect

We are not importing the functions completely, so we are calling them as
pygame.draw.* where the * is polygon, circle, rect, etc.

Keeping track of state

The structure of the pygame code is:

create variables and initialize them

start loop
 draw and update things inside the loop
 the loop ends when the animation ends

close the window

In order to keep track of the state of things, you have to create variables
to represent the state in the first part.

An easy way to play with this is to create x and y variables and
set them to some number like 0

x = 0
y = 0

then use them to draw the object inside the loop.

inside the loop
pygame.draw.rect(surface, BLACK, (x, y, 100, 100))

Finally, you can then change the x and y inside the loop!

x += 1
y += 1

Now, the object will move!

The core elements of the game loop

The game loop follows this pattern:

	Handle Events

	Update states

	Draw everything

Where you should go from here

Your goal now is to make an animation. You can continue to use variables like above
and use functions to modify those variables. You can also use classes,
which are described elsewhere and in the cookbooks linked below.

You should work on doing the following:

	Putting the game loop inside a function or inside a class

	Put the event handling, state updating, and drawing inside functions or classes.

You should also answer the following questions:

	What is the overall goal of your animation?

	What are the pieces of your animation?

	How do those pieces change over time?

	What variables do you need to represent those changes?

	What python syntax is really useful for all of these things?

In addition to the main cookbooks, there are a couple additional cookbooks which you can use:

	
	Simple PyGame cookbook

	
	covers pygame examples without using classes

	
	PyGame with Classes cookbook

	
	covers pygame using classes

	has a lot of functionality explained!

Battleship Requirements

	Start a new game, randomize the locations of the ships

	Make sure they aren’t overlapping

	At each turn, get the user’s selection of place

	At each turn, get the computer’s random choice

	Update the game and see if the player or computer have died

	Repeat

Making the game board

	1
2
3
4
5
6
7
8
9

	def make_gameboard():
 game_board = dict()

 for letter in available_letters:
 for number in available_numbers:
 cell_string = "{}{}".format(letter, number)
 print("adding {} to the game board".format(cell_string))
 game_board[cell_string] = "o"
 return game_board

Starting a game and Randomizing

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import random

available_letters = "abcd..." ## fill this in
min_num = 1 ## or whatever you want
max_num = 10 ## or whatever you want

game_board = make_gameboard()

letter = random.choice(letter)
number = random.randint(min_num, max_num)
cell_string = "{}{}".format(letter, number)

now that you have a letter and a number, how do you place the ships?

Testing with a dictionary

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	def get_userchoice(game_board):
 while True:
 user_choice = input("What's your next move...")
 ## test for existance first
 if user_choice not in game_board:
 print("{} is not a valid option".format(user_choice))
 ## test to see if it's good or bad, we are keeping track with x and o in this example
 elif game_board[user_choice] == "x":
 print("Already been done!")
 else:
 ## this escapes the while loop
 return user_choice

Minecraft Architect Tutorial

The goal of this tutorial is walk you through how to be a minecraft architect.

The first steps are going to be:

	Get the correct setup going (see ../installminecraft)

	Start interacting with the world

This tutorial will cover a few of the basic information and then some techniques for building things in minecraft.

To start:

	Start the minecraft server

	Log into the minecraft client (make sure you set the version under the profile settings to 1.9.2!)

	connect to a world at the address localhost or 127.0.0.1

4. Open up an iPython terminal to test the connection and type in

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("hello world!")

5. From now on, you should use a file and do the first following lines so that you have access to the mc object and the Vec3 class.

from mcpi.minecraft import Minecraft
from mcpi.vec3 import Vec3
mc = Minecraft.create()

Information: User-Centric Positioning

The first thing you should think about is that everything you do is based around the user.
The user is located at a specific place in the world, which are the set of (x,y,z) coordinates.
So, when you construct anything, you are constructing relative to them.

You get the positions by:

pos = mc.player.getPos()
to see what this looks like, you can do
print(pos, type(pos))
you can also get the x,y,z individually:
print(pos.x, type(pos.x))
print(pos.y, type(pos.y))
print(pos.z, type(pos.z))

It is best to draw things out on paper and plan them.
For instance, if you want to make a wall next to the user, you should figure out what the adjustments to the x and z would be.
One spot away from the user would be pos.x-1 or pos.z-1

Information: Placing Blocks

You can place either a single block or multiple blocks of the same type.

Single Blocks

For a single block, you either specify a Vec3 object, or the 3 coordinates.
You also specify the block number. You will have a book looking these up.

pos = mc.player.getPos()
set by the Vec3
mc.setBlock(pos, 42)
set by each spot individually
mc.setBlock(pos.x, pos.y, pos.z, 42)

but probably set in front of user, not where they are
mc.setBlock(pos.x+1, pos.y, pos.z+1, 42)

Vectors can add, so instead of typing out the 1 away with each spot individually, you can do

pos = mc.player.getPos()
offset = Vec3(1,0,1)
new_pos = pos + offset
mc.setBlock(new_pos, 42)
you could have also done:
mc.setBlock(pos + offset, 42)
or even
mc.setBlock(pos + Vec3(1,0,1), 42)

Multiple Blocks

For multiple blocks, you are specifying a cube. For this, you have to give the two corners of the cube.
For example, you could do:

mc.setBlocks(0,0,0, 3, 3, 3, 42)

This would create a 3 by 3 by 3 cube. Note, because I didn’t use relative coordinates, you won’t be able to find this cube.
To make it relative to the player:

pos = mc.player.getPos()
mc.setBlocks(pos.x, pos.y, pos.z, pos.x+3, pos.y+3, pos.z+3, 42)
or more easily:
mc.setBlocks(pos, pos+Vec3(3,3,3), 42)

Let’s make a giant box around the player. You will probably have to break your way out.

pos = mc.player.getPos()
mc.setBlocks(pos-Vec3(5,5,5), pos+Vec3(5,5,5), 42)

Technique: Layers

When you’re placing blocks, if you want to have a unique shape, you can play the blocks in layers.
Imagine building a pirate ship, for example. Each layer starting from the bottom would get longer and longer and slightly wider.
This would create a oval-type shape that ships have on their bottom.

You could do the layer technique for faces, buildings, triangles, etc.

Technique: Negative Space

One thing you can do is think about building things with negative space.

For example, let’s say I wanted to build a box around the player, but I didn’t want them to suffocate.
Well, you could create the cube first, and then replace the inner part of the cube with a smaller cube of air.

pos = mc.player.getPos()
cube_size = Vec(5,5,5)
air_size = Vec(4,4,4)
mc.setBlocks(pos-cube_size, pos+cube_size, 42)
mc.setBlcoks(pos-air_size, pos+air_size, 0)

Technique: Block Collections

Another thing you can do is create collections of blocks using lists and then
have a function which can iterate over them and place them one at a time.

def set_points(points, mc, block_type):
 for point in points:
 mc.setBlock(point, block_type)

example usage
pos = mc.player.getPos()
points = list()
for i in range(10):
 points.append(pos+Vec3(-1*(i%5), i%5, i%5))
set_points(points, mc, 42)

You could also do a block collection that uses sin or cos to create a circle. I will explicitly give this one to you.
Here I am using a set because it enforces uniqueness. No point can exist twice.

def taxicab_circle_x(r):
 point_set = set()
 x = 0
 for angle in range(360):
 theta = math.radians(angle)
 y = math.floor(r*math.sin(theta))
 z = math.floor(r*math.cos(theta))
 point_set.add(Vec3(x, y, z))
 return point_set

Turtle Artist

The basics of a turtle artist are being able to make creations that are more complicated than a single function.

The goals you should have are:

	
	Create a class which wraps around a turtle

	
	This means that it has an internal variable that is a turtle (or multiple turtles)

	All of the class functions will then use that single turtle to do things

	
	Make it either interactive or periodic.

	
	
	Periodic means the Turtle Artist goes through phases and those phases repeat forever.

	
	This does not mean a single looping turtle that draws the same thing forever.

	You could think of a clock, for example, which constantly updates the time.

	Interactive means that you can use the keyboard to influence how the turtle does things.

	It should be a purposeful design. Randomly doing things is not an acceptable solution.

I recommend the interactive route. There are a lot of cool things you can do!

For instance:

import turtle
class SuperTurtle:
 def __init__(self):
 self.grow_bigger = True

 def run(self):
 self.screen = turtle.Screen()
 self.inner_turtle = turtle.Turtle()
 self.screen.onkey(self.square, "s")
 self.screen.onkey(self.speed_up, "f")
 self.screen.onclick(self.hop)
 self.screen.ontimer(self.size_cycle, 50)
 self.screen.listen()

 def square(self):
 for i in range(4):
 self.inner_turtle.forward(100)
 self.inner_turtle.left(90)
 def speed_up(self):
 current_speed = self.inner_turtle.speed()
 if current_speed < 10:
 self.inner_turtle.speed(current_speed+1)
 def hop(self, x, y):
 self.inner_turtle.penup()
 self.inner_turtle.goto(x,y)
 self.inner_turtle.pendown()

 def size_cycle(self):
 s1, s2, s3 = self.inner_turtle.shapesize()
 if self.grow_bigger:
 self.inner_turtle.shapesize(s1+1, s2+1, s3)
 else:
 self.inner_turtle.shapesize(s1-1, s2-1, s3)
 if s1+1 > 20:
 self.grow_bigger = False
 elif s1-1 < 5:
 self.grow_bigger = True
 self.screen.ontimer(self.size_cycle, 50)

bob = SuperTurtle()
bob.run()
turtle.done()

Classes Cookbook

Design patterns and examples for classes! Use these to help you solve problems.

Defining a class

	1
2
3
4

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Instantiating an object

	1
2

	# create the object!
fido = Dog("Fido", 7)

Writing a method

A method is the name of a function when it is part of a class.

You always have to include self as a part of the method arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("Bow wow!")

fido = Dog("Fido", 7)
fido.bark()

Using the self variable

You can access object variables through the self variable.
Think of it like a storage system!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()

odie = Dog("Odie", 20)
odie.bark()

Using the property decorator

You can have complex properties that compute like methods but act like properties.
Properties cannot accept arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

Inheriting properties and methods

You can inherit properties and methods from the ancestors!
For example, the initial function below is inherited.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age

class Dog(Animal):
 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

You can also override certain things and call the methods of the ancestor!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "dog")

 def make_noise(self):
 self.bark()

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "cat")

 def make_noise(self):
 self.meow()

 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.make_noise()
print("Fido is {} in human years".format(fido.human_age))

garfield = Cat("Garfield", 5, 4, "cat")
garfield.make_noise()

Using the classmethod decorator

There is a nice Python syntax which lets you define custom creations for your objects.

For example, if you wanted certain types of dogs, you could do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

fido = Dog("Fido", 5, "Labrador")

But you could also do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

 @classmethod
 def labrador(cls, name, age):
 return cls(name, age, "Labrador")

fido = Dog.labrador("Fido", 5)

Important parts:

	
	Instead self, it has cls as its first argument.

	
	This is a variable which points to the class being called.

	
	@classmethod is right above the definition of the class.

	
	It absolutely has to be exactly like this

	No spaces in between, just sitting on top of the class definition

	It’s called a decorator.

	
	It returns cls(name, age, "Labrador").

	
	This is exactly the same as Dog("Fido", 5, "Labrador") in this instance

	Overall, it is letting you shortcut having to put in the labrador string.

This is a simple example, but it is useful for more complex classes

Cookbook

A set of common recipes and design patterns

Game Loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	import pygame

start pygame's engines
pygame.init()

set the screen size
WINDOW_SIZE = (700, 500)

get a screen
screen = pygame.display.set_mode(WINDOW_SIZE)

get a clock used for FPS control
clock = pygame.time.Clock()

a simple flag variable for the loop
done = False

the main game loop
while not done:

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 #### update the display and move forward 1 frame
 pygame.display.flip()
 # --- Limit to 60 frames per second
 self.clock.tick(FPS)

Drawing

Using Rect to draw

Rect is a useful PyGame class that is a wrapper around the standard rectangle information.

x = 0
y = 0
width = 100
height = 100
r1 = pygame.Rect(x, y, width, height)

The variable r1 now has access to a variety of different properties

x,y
top, left, bottom, right
topleft, bottomleft, topright, bottomright
midtop, midleft, midbottom, midright
center, centerx, centery
size, width, height
w,h

You can also update r1 using any of those variables. For example:

	1
2
3

	r1.center = (50,50)
r1.right = 10
r1.bottomright = 75

Bouncing off obstacles

Basic collision detection with screen boundaries

In the simplest case, we are testing to see if our rect is over some threshold.
This happens in the case of bouncing off the edges of the screen.
For this example, we assume we know the height and width of the window as well.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	# W, H are window width and window height

if r1.right > W:
 print("Over right side")
elif r1.left < 0:
 print("over left side")

if r1.top < 0:
 print("Over top")
elif r1.bottom > H:
 print("Over bottom")

Changing direction based on screen boundary collision

Let’s assume that the object in question is moving at some speed. In other words,
the x and y properties are being updated by some variable
dx and dy. Then, when the object bounces,
it should flip the signs of those speeds.

	1
2
3
4
5
6
7
8
9

	# W, H are window width and window height
r1.x += dx

if r1.right > W or r1.left < 0:
 dx *= -1

r1.y += dy
if r1.top < 0 or r1.bottom > H:
 dy *= -1

Colliding with another Rect

If you wanted to collide with another Rect, there are several different
ways you could it. The easiest way is to use the built in functions which test for collision.
However, these functions don’t tell you which parts collided.
An example of why this is a problem:

	There is a collision with a Rect and an obstacle from the bottom

	The Rect’s right side is technically past the obstacle’s left

	But, the issue is the y-movement, not the x-movement.

The first part of the solution is to update the X and Y parts separately.
With this method, one dimension is changed and checked for collisions.
Then, the other is changed and checked for collisions.

The second part of the solution is to “snap” the edges of the object and the obstacle together.
This just means making them line up exactly so no more collision is taking place.

The below code illustrates the Rect collision code,
the separate x and y movements, and the edge snapping.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	'''
in this example, self.rect is the rect of the object you are moving
'''

def move(self, dx, dy, other_rects):

 # move this object in the x direction
 self.rect.x += dx

 # go over each obstacle
 for other_rect in other_rects:

 # if there is a collision
 # since we moved only the x, we know it has to be this object's left or right
 if self.rect.colliderect(other_rect):

 # if dx is positive, it is moving right
 # if the right side is past the other rect's left, snap them together
 if dx > 0 and self.rect.right > other_rect.left:
 self.rect.right = other_rect.left

 # if dx is negative, it is moving left
 # if the left side is past the other rect's right, snap them together
 elif dx < 0 and self.rect.left < other_rect.right:
 self.rect.left = other_rect.right

 # move this object in the y direction
 self.rect.y += dy

 # go over each obstacle
 for other_rect in other_rects:

 # if there is a collision
 # since we moved only the y, we know it has to be this object's top or bottom
 if self.rect.colliderect(other_rect):

 # if dy is positive, it is moving down
 # if the bottom is past the other rect's top, snap them together
 if dy > 0 and self.rect.bottom > other_rect.top:
 self.rect.bottom = other_rect.top

 # if dy is negative, it is moving up
 # if the top is past the other rect's bottom, snap them together
 elif dy < 0 and self.rect.top < other_rect.bottom:
 self.rect.top = other_rect.bottom

Cookbook

A set of common recipes and design patterns for pygame with classes

Game Loop

The main game logic can be divided into two parts:

	Initialize the variables

	
	Run the game loop which does the following steps:

	
	Handle Events

	Update objects

	Draw

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	import pygame

class Game:

 def initialize(self):

 ## start pygame's engines
 pygame.init()

 ## get a screen
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## get a clock used for FPS control
 self.clock = pygame.time.Clock()

 self.example_box = pygame.Rect(0, 0, 100, 100)

 def run(self):
 ## a simple flag variable for the loop
 done = False

 ## the main game loop
 while not done:

 ### 1. Events

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 ### 2. Updates
 ## update the example box with whatever you want
 self.example_box.x += 1

 ## 3. Drawing
 pygame.draw.rect(self.screen, BLACK, self.example_box)

 #### update the display and move forward 1 frame
 pygame.display.flip()
 # --- Limit to 60 frames per second
 self.clock.tick(FPS)

Basic Sprites

There are several ways to include objects, monsters, obstacles, etc in your pygame code.
The best way is to define your own classes that inherit from pygame’s Sprite class.

You should think of this as defining recipes for different objects in your game.
In this section, there are the following recipes:

	
	A basic sprite

	
	the core components of a sprite and how to use them

	
	Adding the drawing function to the basic sprite

	
	You can put the logic for the sprites inside the class, so it makes the game logic cleaner

	Your game shouldn’t have to worry about how sprites get drawn!

	
	Colliding with one other sprite

	
	Colliding with another sprite is handled just like in the simple case

	The trick is to correctly identify how the collision happened so you can fix it!

	
	Using Groups of sprites

	
	Group is a special pygame object that gives us extra shortcuts!

	
	Colliding with many sprites

	
	Using a Group, we can easily get the list of sprites our main sprite is colliding with

	
	Adding an image to your sprite

	
	Usually you will want to draw more than basic shapes. This will show you how!

	
	Adding event handling to your sprite

	
	If you want your sprite to do things, it should handle its own event logic!

	This means that the game just gives the events to the sprite and the sprite does what it needs to do.

	
	Making an animated sprite

	
	This will show you how the basic animation happens

Basic Sprite

For our basic sprite, we will subclass pygame’s sprite class.
Subclassing means that we will tell python that our new class is the exact same
as pygame’s sprite class. Then, whatever we can specialize any parts we want.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	class BasicSprite(pygame.sprite.Sprite):

 # by defining this function, we are overriding the parent class's function
 def __init__(self, color, width, height):

 # this is a special command which tells python to execute the parent's function
 # the pattern is
 # super(ThisClassName, self).func_to_call()
 super(BasicSprite, self).__init__()

 ### When you sublcass the sprite, you need two things

 # 1. self.image

 self.image = pygame.Surface([width, height])
 self.image.fill(color)

 # 2. self.rect

 self.rect = self.image.get_rect()

 # self.rect starts out at 0,0. if you want to change the location, you have to update these coordinates
 # this hard codes the BasicSprite to start at the coordinates 50,50
 self.rect.x = 50
 self.rect.y = 50

You can use this class in the same places you would before:

	Instantiate (create) the object at the beginning of the game

	Update the coordinates inside the game loop

	Draw the coordinates inside the game loop

One of the nice features about using sprites is that we only have to draw the
sprite’s self.image property. We do this with the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 self.example_object = BasicSprite(BLACK, 100, 100)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 ## the way to read this dot notation is:
 ## inside this Game object access (using "self") a variable called example_object
 ## inside example_object is the property "image" (which we defined just above)
 ## inside image is a function called blit
 ## blit takes two arguments:
 ## 1. the surface it should draw on, this is our screen.
 ## 2. the coordinates of where to draw it. this is the rect inside example_object
 ## overall, the syntax is:
 ## surface_variable.blit(screen_variable, rect_variable)

 self.example_object.image.blit(self.screen, self.example_object.rect)

 ## then don't forget the rest of the code here

So, to summarize:

	Subclass pygame’s Sprite class and define the self.image and self.rect.

	
	Inside the Game object’s initialize function, use the class to make a new object

	
	save this object to the self variable so we can access it later

	
	Inside the Game object’s run function, use the saved object to draw

	
	the syntax for drawing a sprite is showing above.

	You are calling blit to draw the sprite’s surface onto the main surface.

Adding the drawing function to the basic sprite

Doing that drawing logic inside the game loop is a bit messy.
Also, maybe we want to change how we draw the object based on some situation.
We don’t want to have the main game loop get all messy with that code.

To solve this problem, we put a draw function inside the BasicSprite class

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	class BasicSprite(pygame.sprite.Sprite):

 # by defining this function, we are overriding the parent class's function
 def __init__(self, color=BLACK, width=100, height=100):
 # notice it has default values for its paremeters!

 # this is a special command which tells python to execute the parent's function
 # the pattern is
 # super(ThisClassName, self).func_to_call()
 super(BasicSprite, self).__init__()

 ### When you sublcass the sprite, you need two things

 # 1. self.image

 self.image = pygame.Surface([width, height])
 self.image.fill(color)

 # 2. self.rect

 self.rect = self.image.get_rect()

 # self.rect starts out at 0,0. if you want to change the location, you have to update these coordinates
 # this hard codes the BasicSprite to start at the coordinates 50,50
 self.rect.x = 50
 self.rect.y = 50

 def draw(self, screen):
 # draw this object's image onto the passed in screen variable
 self.image.blit(self.screen, self.rect)

Moving a sprite

Moving a sprite is really easy! Everytime through the game loop, the sprite is drawn
using its internal rect object, which stores the location coordinates.

To move it, we just change those coordinates before it is drawn!

We are going to have a theme with this code. Any functionality we want our
BasicSprite to have, we will put it inside that class!

To illustrate how you can subclass and keep specializing, let’s subclass our previous
BasicSprite to make a MovingSprite:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class MovingSprite(BasicSprite):
 # MovingSprite has all the functions and properties that
 # BasicSprite has

 def move(self, dx, dy):
 ## move dx units in the x direction
 ## move dy units in the y direction

 self.rect.x += dx
 self.rect.y += dy

Now, let’s change one more thing about this. Let’s alter the __init__ function
so that the dx and dy are internal!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class MovingSprite(BasicSprite):
 # MovingSprite has all the functions and properties that
 # BasicSprite has
 def __init__(self, color=BLACK, width=100, height=100):
 super(MovingSprite, self).__init__(color, width, height)

 self.dx = 0
 self.dy = 0

 def move(self):
 ## move dx units in the x direction
 ## move dy units in the y direction

 self.rect.x += self.dx
 self.rect.y += self.dy

Colliding with one other sprite

Pygame provides several ways to handle collisions with sprite objects.

From the documentation, it says the following thing:

pygame.sprite.collide_rect()

Collision detection between two sprites, using rects.

collide_rect(left, right) -> bool

Tests for collision between two sprites. Uses the pygame rect colliderect function to calculate the collision.
Intended to be passed as a collided callback function to the *collide functions. Sprites must have a “rect” attributes.

Basically, this means that you can give this function two sprites and it will tell
you True or False.

We are going to have a theme with this code. Any functionality we want our
sprite objects to have, we will put it inside that class!

To illustrate how you can subclass and keep specializing, let’s subclass our previous
BasicSprite to make a CollisionSprite:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	class CollisionSprite(BasicSprite):
 # CollisionSprite has all the functions and properties that
 # BasicSprite has, which has all of the functions BasicSprite has!

 def handle_collision(self, other_sprite, dx, dy):
 # we are going to define the logic for handling the collision with
 # one other sprite

 # there are two extra variables this function is taking.
 # they are the dx and dy. we need these so we know which direction
 # the sprite is moving!
 # Note: we want to make sure we only move x or y.
 # if we are moving both, then we don't know whether the collision
 # is from the top/bottom or from the sides.

 if dx != 0 and dy != 0:
 # this syntax is:
 # "raise" is a way of manually throwing errors and exceptions
 # "Exception" is the default exception
 # by doing
 # raise Exception(some_message)
 # we are stopping the program and causing an error.
 raise Exception("ERROR: don't move both x and y at the same time; Collision checking is impossible if you do this!")

 if pygame.sprite.collide_rect(self, other_sprite):
 ## if this "if" is true, then this means a collision is happening!
 ## let's check and see which direction it is

 ## check if the sprite is moving in the x direction:
 # if dx is positive, it is moving right
 # if the right side is past the other rect's left, snap them together
 if dx > 0 and self.rect.right > other_sprite.rect.left:
 self.rect.right = other_sprite.rect.left

 # if dx is negative, it is moving up
 # if the left side is past the other rect's right, snap them together
 elif dx < 0 and self.rect.left < other_sprite.rect.right:
 self.rect.left = other_sprite.rect.right

 # if dy is positive, it is moving down
 # if the bottom is past the other rect's top, snap them together
 if dy > 0 and self.rect.bottom > other_sprite.rect.top:
 self.rect.bottom = other_sprite.rect.top

 # if dy is negative, it is moving up
 # if the top is past the other rect's bottom, snap them together
 elif dy < 0 and self.rect.top < other_sprite.rect.bottom:
 self.rect.top = other_sprite.rect.bottom

 ## Let's re-write the move function from before to handle collisions
 def move(self, other_sprite=None):
 ## we will assume that we are given access to a single other sprite
 ## as an argument to this function
 ## we will give it a default value of None though, so it's only optional

 ## move dx units in the x direction
 self.rect.x += self.dx

 if other_sprite is not None:
 # handle the x collision!
 self.handle_collision(other_sprite, self.dx, 0)

 ## move dy units in the y direction
 self.rect.y += self.dy

 if other_sprite is not None:
 # handle the y collision!
 self.handle_collision(other_sprite, 0, self.dy)

Using Groups of sprites

Pygame’s Group class is really useful for storing objects.
We would use it inside the initialize function of Game so store
each of the sprites that we create.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## use group to manage a list of basic sprites
 self.basic_sprites = pygame.sprite.Group()

 # let's create a couple basic sprites
 for i in range(5):
 # create the new sprite
 # notice no self variable
 # that's because I know I'm not saving this inside self
 # instead, I'm saving this inside self.basic_sprites
 new_sprite = BasicSprite(BLACK, 100, 100)

 # doing this to offset the sprites so we can see them
 new_sprite.rect.x += i * 50
 new_sprite.rect.y += i * 50

 # save it to self.basic_sprites
 self.basic_sprites.add(new_sprite)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 # because you used a group to handle the basic sprites, you
 # can shortcut the drawing of them by using group's draw function:

 self.basic_sprites.draw(self.screen)

Colliding with many sprites

First, we are going to add some functionality to our CollisionSprite to handle group collisions!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	class GroupCollisionSprite(CollisionSprite):
 # CollisionSprite has all the functions and properties that
 # CollisionSprite has, which has all of the functions CollisionSprite has!

 def handle_group_collision(self, sprite_group, dx, dy):
 # we pass in the "sprite_group", and the movements again

 # the False here is the option to remove all sprites being collided with
 # from the group.
 # if True, sprite_group will no longer have them and they won't be drawn anymore
 # the returned object, colliding_sprites, is a list of sprites!
 colliding_sprites = pygame.sprite.spritecollide(self, sprite_group, False)

 # go through each of the sprites in this list
 for sprite in colliding_sprites:

 # use the function from CollisionSprite to handle this!

 self.handle_collision(sprite, dx, dy)

 ## Let's re-write the move function from before to handle group collisions
 def move(self, collision_group=None):
 ## we will assume that we are given access to a single other sprite
 ## as an argument to this function
 ## we will give it a default value of None though, so it's only optional

 ## move dx units in the x direction
 self.rect.x += self.dx

 # make sure it's not the default value
 if collision_group is not None:
 # handle the x collision!
 self.handle_group_collision(collision_group, self.dx, 0)

 ## move dy units in the y direction
 self.rect.y += self.dy

 # make sure it's not the default value
 if collision_group is not None:
 # handle the y collision!
 self.handle_group_collision(collision_group, 0, self.dy)

Now that we have GroupCollisionSprite which can handle colliding with a group
of sprites, let’s add it into Game.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## use group to manage a list of basic sprites
 self.basic_sprites = pygame.sprite.Group()

 # let's create a couple basic sprites
 for i in range(5):
 # create the new sprite
 # notice no self variable
 # that's because I know I'm not saving this inside self
 # instead, I'm saving this inside self.basic_sprites
 new_sprite = BasicSprite(BLACK, 100, 100)

 # doing this to offset the sprites so we can see them
 new_sprite.rect.x += i * 50
 new_sprite.rect.y += i * 50

 # save it to self.basic_sprites
 self.basic_sprites.add(new_sprite)

 # it has the same __init__ function as BasicSprite
 self.hero = GroupCollisionSprite(BLACK, 100, 100)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 # remember the loop order:
 # Events, Updates, and then Draw

 # Updates is where collisions and movement goes
 # let's move the hero and have it handle sprite collision!
 self.hero.move(self.basic_sprites)

 # because you used a group to handle the basic sprites, you
 # can shortcut the drawing of them by using group's draw function:

 self.basic_sprites.draw(self.screen)
 self.hero.draw(self.screen)

Adding an image to your sprite

Adding an image is super easy! The main thing is to change how self.image gets defined!

Since our class, GroupCollisionSprite has so much functionality now, let’s just subclass it
and override the __init__ function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class ImageSprite(GroupCollisionSprite):

 def __init__(self, image_filename, colorkey=WHITE):

 # because all of the arguments in BasicSprite were optional, we
 # can just call the init function
 super(ImageSprite, self).__init__()

 # now, we overwrite image
 self.image = pygame.image.load(image_filename).convert()

 # Set our transparent color
 self.image.set_colorkey(colorkey)

 # refresh the rect now
 self.rect = self.image.get_rect()

And that’s it!

If you wanted to do this without subclassing GroupCollisionSprite, you
could just subclass pygame.sprite.Sprite again and define self.image in this way.

Adding event handling to your sprite

It’s really useful to be able to handle keyboard input! In fact, if you want
people to play your game, it has to be able to handle input.

There are two ways you could do this. You could add code inside Game which will
manually update the hero. But we don’t want Game to care about such things!

So, instead, we will let Game just give every single event to the hero!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Game:

 def run(self):
 done = False

 ## the main game loop
 while not done:

 ## the event loop

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 else:
 # if the event isn't a quitting event, give it to the hero!
 self.hero.handle_event(event)

And that’s it! Now, writing this code creates an expectation from python that
our hero will have this function implemented. So, let’s do that.

class EventHandlingSprite(ImageSprite):
 # I inherited from the ImageSprite
 # if you don't want to do this, you can replace ImageSprite with GroupCollisionSprite
 # since that was our second most advanced sprite so far

 # remember, because we are inheriting, we get all of the functionality from before!

 def handle_event(self, event):
 # there are a couple of different pygame events:
 if event.type == pygame.KEYDOWN:
 # this is a keydown event
 # this means a key is pressed

 if event.key == pygame.K_LEFT:
 self.dx = -5
 elif event.key == pygame.K_RIGHT:
 self.dx = 5
 elif event.type == pygame.KEYUP:
 # this is a keyup event
 # this means a key was let go

 if event.key == pygame.K_LEFT:
 self.dx = 0
 elif event.key == pygame.K_RIGHT:
 self.dx = 0

Thsi is really simple event handling. For instance, if you press two keys at once,
this will have some weird results. But at least it will handle some input!

To overcome the two-keys-at-once problem, you will have to do something a bit more complicated.
For instance, you could have the left key subtract 5 from self.dx and then
use min to make sure it is never smaller than -5. You could also have some
boolean variables that are internal to the sprite which keep track of which keys have been pressed.

Making an animated sprite

Basic Game Physics

Physics is very important to games! Since you are telling the game how each object
updates, you have to use math to update the objects to match how physics works.
This can sometimes be hard, but there are plenty of ways to make it easier.

In this section, there are the following recipes:

	
	Bouncing off walls

	
	If an object is moving in a direction and encounters an obstacle, it could bounce

	Bouncing in certain ways looks and feels weird

	So, you should bounce in a way that feels real!

	
	Gravity

	
	Instead of letting objects freely move in both x and y directions, gravity constantly affects the y!

	You can think of this as making so that your object always wants to be moving down at 9 units at a time

	
	Jumping

	
	Jumping is just the opposite of gravity

	When the jump happens, there is a force which makes the object want to move up at 9 units!

	In other words, the y speed is set to -9

	Then, every frame, the speed slowly goes back to +9.

Handling Keyboard Input

	
	Basic keyboard input

	
	handle single keys

	do specialized things

	
	Continuous keyboard input

	
	continue to do something until key is released

	this is basically the example in the earlier section!

	
	Advanced continuous keyboard input

	
	use extra variables to keep track of which key was pressed!

Scoreboards

	
	Drawing an extra surface that never moves

	
	In the same logic as the sprite, except that it doesn’t move and is always drawn last.

Menus

	
	Use a “card” concept to draw different viewpoints

	
	A “card” is a certain way the game is

	The standard one is your actual game

	The menu one handles menu inputs and draws the menu

	Inside the game loop, you check which card is active and give all event, update, and draw information to it.

	The card then gives all up the information to its members.

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		HEROES Academy Computer Science Cookbooks

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

