ConWhAt

Release d25712c

John Griffiths

May 14, 2018
About ConWhAt
1 Overview 1
2 Ontology & Representation 1
3 ConWhAt Atlases 3
4 Installation 4
5 Downloading ConWhAt Atlases 5
6 Exploring ConWhAt Atlases 6
7 Defining a Lesion 12
8 Assess network impact of lesion 13

1 Overview

Classical and modern schemas for defining and characterizing neuroanatomical structures in white
matter tissue can be categorized along two main dimensions Ontology and Representation. Each of
these has two main flavours: tract-based/connectivity-based, and image-based/streamline-based. This
perspective is a key part of the rationale for, and design of, the ConWhAt software and atlases. Read
more about these concepts here’.

For info about the design and construction of the ConWhAt volumetric and streamlinetric atlases, see
here?.

2 Ontology & Representation

Classical and modern schemas for defining and characterizing neuroanatomical structures in white
matter tissue can be categorized along two main dimensions Ontology and Representation. Each of
these has two main flavours: tract-based/connectivity-based, and image-based/streamline-based.

* http:/ /conwhat.readthedocs.io/en/latest/about_conwhat/ontology_and_representation.html
2 http:/ /conwhat.readthedocs.io/en/latest/about_conwhat/conwhat_atlases.html

http://conwhat.readthedocs.io/en/latest/about_conwhat/ontology_and_representation.html
http://conwhat.readthedocs.io/en/latest/about_conwhat/conwhat_atlases.html

2.1 Ontology

Conventional approaches to atlasing white matter structures follow a tract-based ontology: they assign
locations in stereotaxic space to a relatively small number of gross white matter tracts from the classical
neuroanatomy literature.

This has been an extremely successful program of research, particularly in relation to post-mortem
dissections and MR image or tractography streamline segmentation methodologies, as it draws on
some of the brain’s most salient and consistent macroscopic structural features.

Unfortunately, however, tract-based ontologies aren’t particularly well-suited to network-based de-
scriptions of brain organization. The reason for this is that identifying that a given spatial location
falls within one or other canonical white matter tract (e.g. the inferior longitudinal fasciculus) doesn’t
in itself say very much about the specific grey matter connectivity of that location. Although they
consist of many hundreds of thousands of structural connections (axons), the white matter tracts per
se are not descriptions of connectivity, but rather of large 3D geometric structures that can be located
relative to certain anatomical landmarks.

The second flavour of white matter ontology, which is becoming increasingly prominent in modern
modern neuroscientific research, is a connectivity-based one. The idea here is that rather than follow-
ing the classical anatomical tract nomenclature, to label white matter voxels according to the grey
matter regions that their constituent fibers interconnect. Combining this with the modern macro-
connectomics tractography approach (whole-brain tractography, segmented using region pairs from
a given grey matter parcellation), gives the connectome-based white matter atlas methodology, which is
what ConWhALt (and other earlier tools, notably NeMo) is designed to support.

The benefit of this approach is that a scientist/clinician/citizen can take a set of (standard space)
coordinates, or a nifti-format ROI mask such as a binary lesion map, and straightforwardly query
which grey matter region pairs (i.e. connectome-edges) have fibers passing through those locations.

That information can then be used together with the used parcellation’s canonical connectome (norma-
tive group-averaged connectivity matrix), to obtain a lesion-modified structural (macro) connectome.
This can be done very quickly with zero tractography data or analysis required, and as little as a list
of numbers (voxel coordinates) as input.

An important point to emphasize is that the tract-based and connectivity-based ontologies are not
diametrically opposed; in fact they should be regarded as highly complementary. This is why we have
also included support in ConWhAt for standard tract-based atlas analyses.

2.2 Representation

Traditionally, anatomical atlases have (as the name suggests) existed as collections of more-or-less
schematic two- or three-dimensional depictions, printed on the pages of a (generally quite large) book.
Whilst this mode of representation is by no means uncommon, atlases in modern neuroimaging are
generally understood to be digital data structures, which bear varying degrees of resemblance to their
paper-based forebears.

In particular, representations of white matter anatomical data in neuroimaging come in two flavours:
image-based (which we refer to as volumetric), and (tractography) streamline-based (which we refer to
neologistically as streamlinetric). These two forms of representation are very different beasts, each with
its own set of distinctive features and pros/cons (which is why we make a major effort to support both
in ConWhAt)

For example: the basic units of volumetric representations are scalar-valued (voxel intensities), which
when taken as a set can code for complex and rich encoding of 3D shapes in virtue of their arrangement
on a regular 3D grid. In contrast, the basic units of streamlinetric representations are vector-valued;
namely lists of coordinates in 3D space. Each individual streamline (unlike each individual voxel)
therefore provides some holistic 3D shape information. The closest equivalent of voxel intensities for

streamlines would be the presence of overlapping multiple streamlines; although this is much less
compressed than scalar intensity values.

The definition and interpretation of ‘damage” also turns out to be somewhat different for volumetric
vs. streamlinetric representations. In the volumetric case, damage (defined as e.g. proportional
overlap with a lesion) is evaluated independently for every voxel. In the streamlinetric case, damage
is instead evaluated independently for every streamline, with the important corollary that evaluations
at different spatial locations are not independent of each other. In short, if an upstream part of a
streamline is considered to be damaged, then downstream parts are also considered to be damaged,
even if they themselves are nowhere near the damaged area. Which is, of course, how one would
expect real damage to axons to operate. Streamlinetric quantifications of damage are somewhat more
difficult to work with than their volumetric equivalents, however.

There has been relatively little work done on direct comparisons of volumetric and streamlinetric
characterizations of lesions, or indeed of white matter in general. ConWhAt is to our knowledge the
first and only atlas-based tool that allows direct comparison between the two.

3 ConWhAt Atlases

A central component of ConWhAt is the large set of connectome-based white matter atlases we have
developed for use with the software. The atlas construction methodology is described in detail in
Griffiths & McIntosh (in prep). Here we give a brief summary:

All of the ConWhA' atlases were constructed from on dipy> deterministic whole-brain HARDI tractog-
raphy reconstructions using the HCP WU-Minn corpus. Whole-brain streamline sets were segmented
with region pairs using a broad set of brain parcellations, yielding anatomical connectivity matrices
and connectome edge-labelled streamline sets. The streamlines are then entered into both volumetric
and a streamlinetric atlas construction pipelines:

¢ Volumetric workfow: convert streamlines to track density images (visitation maps), spatially
normalize, average

e Streamlinetric workflow: spatially normalize streamlines, concatenate, cluster

3 http:/ /nipy.org/dipy/

http://nipy.org/dipy/

about_conwhat/../figs/atlas_construction_fig.png

4 Installation

4.1 Using latest github master source

Clone latest version from github
Now go to the cloned folder and install manually

Alternatively, simply add the cloned path to your pythonpath.

4.2 Using pypi

(coming soon)

4.3 Using with docker

(coming soon)
¢ Install docker-engine (instructions here)*
® Build the docker container

e Start Jupyter notebook server in the container

The following section was generated from doc/examples/downloadingc.onwhat,tlases.ipynb

5 Downloading ConWhAt Atlases

Import the fetcher function

In [34]: from conwhat.utils.fetchers import fetch conwhat_atlas
import glob

Define the output directory

In []: atlas_dir = '/scratch/hpc3230/Data/convwhat_atlases'

Define which atlas to grab

In [4]: atlas_name = 'CWL2k8Sc33Vol3d100s_vO01'

Break a leg

In [30]: fetch_conwhat_atlas(atlas_name,atlas_dir,remove_existing=True);

removing existing folder

duplicate file detected - removing...
rm CWL2k85c33Vol3d100s_vO1.zip

downloading data_file CWL2k8Sc33Vol3d100s_vO01l.zip...
wget https://www.nitrc.org/frs/download.php/10381/CWL2k8Sc33V013d100s_v01.zip

unzipping file...
unzip CWL2k8Sc33Vol3d100s_v01l.zip

finished unzipping.

The zipped and unzipped atlas folders are now there in the top-level atlas
directory;

In [35]: glob.glob(atlas_dir + '/x')

Out [35]: ['/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_vO1',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01.zip',
'/scratch/hpc3230/Data/conwhat_atlases/README.md ']

The .zip file can be optionally removed automatically if desired.
volumetric atlas folders contain a small number of fairly small .txt files

In [36]: glob.glob('/s/Js/*.txt' Y%(atlas_dir,atlas_name))

4 https:/ /docs.docker.com/engine/installation/

https://docs.docker.com/engine/installation/

Out [36]: ['/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/region_mapping_fsav_rh.txt',

.and

In [38]:
Out [38] :

In [39]:
Out [39] :

'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/weights.txt',
"/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/mappings.txt',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v0l/region_labels.txt',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/bounding boxes.txt',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33V013d100s_v01/hemispheres.txt',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33V013d100s_v01/cortex.txt',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v0l/region_mapping fsav_lh.txt']

larger number of nifti images; one for each atlas structure

glob.glob('/s/%s/*.nii.gz' %(atlas_dir,atlas_name)) [:5]

['/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01/vismap_grp_7-64_norm.nii.gz',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vo13d100s_v01/vismap_grp_23-30_norm.nii.gz'

>

'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol13d100s_v01/vismap_grp_65-69_norm.nii.gz',
'/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol13d100s_v01/vismap_grp_55-70_norm.nii.gz',
"/scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/vismap_grp_28-64_norm.nii.gz']

len(glob.glob('/s//%s/*.nii.gz' %(atlas_dir,atlas_name)))
2445

End of doc/examples/downloadingconwhat,tlases.ipynb

The following section was generated from doc/examples/exploringconwhat,tlases.ipynb

6 Exploring ConWhAt Atlases

There are four different atlas types in ConWhat, corresponding to the 2 ontology
types (Tract-based / Connectivity-Based) and 2 representation types (Volumetric /
Streamlinetric).

(More on this schema here5)

In [1]: # ConWhAt stuff

from conwhat import VolConnAtlas,StreamConnAtlas,VolTractAtlas,StreamTractAtlas
from conwhat.viz.volume import plot_vol_scatter,plot_vol_and_rois_nilearn

Neuroimaging stuff
import nibabel as nib
from nilearn.plotting import plot_stat_map,plot_surf_roi

Viz stuff

Jmatplotlib inline

from matplotlib import pyplot as plt
import seaborn as sns

Generic stuff
import glob, numpy as np, pandas as pd, networkx as nx

We’ll start with the scale 33 lausanne 2008 volumetric connectivity-based atlas.

Define the atlas name and top-level directory location

In [2]: atlas_dir = '/scratch/hpc3230/Data/convwhat_atlases'

atlas_name = 'CWL2k8Sc33V0l3d100s_vO1'

Initialize the atlas class

In [3]: vca = VolConnAtlas(atlas_dir=atlas dir + '/' + atlas_name,

atlas_name=atlas_name)

5 http:/ /conwhat.readthedocs.io/en/latest/about_conwhat/ontology_and_representation.html

http://conwhat.readthedocs.io/en/latest/about_conwhat/ontology_and_representation.html

loading file mapping
loading vol bbox
loading connectivity

This atlas object contains various pieces of general information
In [9]: vca.atlas_name

Out[9]: 'CWL2k8Sc33V013d100s_vO1'

In [8]: vca.atlas dir

Out[8]: '/scratch/hpc3230/Data/conwhat_atlases/CWL2k83c33Vol3d100s_vO01'

Information about each atlas entry is contained in the vfms attribute, which
returns a pandas dataframe

In [14]: vca.vfms.head()

Out[14] : name nii_file mnii_file_id 4dvolind
0 61_to_80 vismap_grp_62-81 _norm.nii.gz 0 NaN
1 38_to_55 vismap_grp_39-56_norm.nii.gz 1 NaN
2 28_to_38 wvismap_grp_29-39_norm.nii.gz 2 NaN
3 18_to_19 vismap_grp_19-20_norm.nii.gz 3 NaN
4 26_to_55 vismap_grp_27-56_norm.nii.gz 4 NaN

Additionally, connectivity-based atlases also contain a networkx graph object vca.
Gnx, which contains information about each connectome edge

In [62]: vca.Gnx.edges[(10,35)]

Out[62]: {'attr_dict': {'4dvolind': nan,

'fullname': 'L_paracentral_to_L_caudate',
'idx': 1637,

'name': '10_to_35"',

'nii_file': 'vismap_grp_11-36_norm.nii.gz',

'nii_file id': 1637,
'weight': 50.240000000000002,
'xmax': 92,

'xmin': 61,

'ymax': 167,
'ymin': 75,
'zmax': 92,
'zmin': 62}}

Individual atlas entry nifti images can be grabbed like so

In [144]: img = vca.get_vol_from_vfm(1637)

getting atlas entry 1637: image file /scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33V0ol3d100s_v01/vismap_
In [146]: plot_stat_map(img)

Out [146]: <nilearn.plotting.displays.OrthoSlicer at O0x7fb19fada410>

054

041

027

014

=45 1]

Or alternatively as a 3D scatter plot, along with the x,y,z bounding box
In [155]: vca.bbox.ix[1637]

Out [155]: xmin 61
Xmax 92
ymin 75
ymax 167
zmin 62
zmax 92

Name: 1637, dtype: int64
In [134]: ax = plot_vol_scatter(vca.get_vol_ from_vfm(1l),c='r',bg_img='nilearn_destrieux',
bg_params={'s': 0.1, 'c':'k'},figsize=(20, 15))
ax.set_x1im([0,200]); ax.set_ylim([0,200]); ax.set_z1lim([0,200]);

getting atlas entry 1: image file /scratch/hpc3230/Data/conwhat_atlases/CWL2k8Sc33Vol3d100s_v01l/vismap_grp

We can also view the weights matrix like so:
In [38]: fig, ax = plt.subplots(figsize=(16,12))
sns.heatmap (np.loglp(vca.weights) ,xticklabels=vca.region_labels,

yticklabels=vca.region_labels,ax=ax) ;
plt.tight_layout ()

L lateralorbitofrontal
- L arsurﬁtaﬁlas 1

St r?u aris
Limsn%Fnr'\slgg_?e r%n al
L_cau'aé%?jﬁ?é?%ﬂ?

L precentra

racentra

Il__ros%[alante orcingulate
—taudalantenorcingulate
- osteriorcinguljate
Isthpuscingulat
= OstCen

A ungus
L_pericalcaning
L Iatera Oicl |la‘
ingual

L para |L cgl ”a\.I
P Tpgl?thFlnE?1
L iR s
L middJetemporal

anks:
L superigriempora
L_transwversetemporal

insula
L tnalaizpispe |

L accu "L‘p:aﬂgl.l:ng
i
R_Iateralm%ili%ﬁgn?g
Rﬁu?rsorblltallls
rantalpole
R_raedialﬁ‘rbitufmntal
parstriangularis

rsoperular
R m%’g mi d?ekgn{aj
- superiorfronta
R caudalrﬂwddlelrcnla
- precentral
R garaceqtral
B _rostralanteniorcingulate
R_caugalanterijorcingulate
- PosiEnorcingy
ISEhmusCingu

~_ R postcent
R_supramargina:
Rhﬂ#erlorganeta
inferiorparietal
~ R_precuneus

Hick
R parah\ppucampm
- R entorrlnlal

R_temporalpcle

e Ember

ankss
R_superiottempora
R_transversetempora
R insula
R_thalamuspraper
'ﬁ caudate
‘putamen
R pallidum
R_[gcﬁun'ﬂsensarea
ypeocampus
~ R_amygdala]) LB L e e) o " " T
E Je-por=t B35 e o ELCEEEFEE o] EEEE R e bR R
£ SoEEEESEL S0 D R = ==t F=i=] UEESSEERconos n2R ED 520
g cESZSSeoeict e Ry PR S e e 555501522 u b o nor et paer pa oD REREE
5 OO SERELEEES CEECEE-gniGem=cEEBEaDEREL D L5 SUCEREEEEECEECEREC AR E
] $ESEEEEEEEES e T e e ey S kW g g R
B = =22 WoQ L e e =4 =3 = m
3 BaEEESRErEEa EEL Ew E-LLESSSa5ESPag et BE225TEE e U5l 5Y ExakERS
5 BE- S8 2 G g GETTCf m Se- BB BRE EaEa"E] BUie 5B cemoD ob ® 50
= JmmvEJaé‘E SE8 §E g CF BeFmEmEIE ey =3 a w § C8E DY m g2
& =) = o = [- = = = L eEE T 1
== EE o = L] aqm [| E)
z EEam ! =5 RE ro® Bo kxS § e ! < B CgRAg B =
= TR ol fE - B fexidz B (- e (-2 o«
- £g- -5, < = =5 £ e el
H 4 e B e
i e
-4 =3

The vca object also contains x,y,z bounding boxes for each structure

We also stored additional useful information about the ROIs in the associated
parcellation, including cortical/subcortical labels

In [156]: vca.cortex

Out[156]: array([1., 1., 1., 1., 1., 1., 1., 1., 1 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1 1., 0., 0., 0., 0., O.,
0., 0., 0., 1., 1., 1., 1 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1 1., 1., 1., 1., 1., 1.,
t., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., O.,
0., 0., 0., 0., 0.1)

.. .hemisphere labels

In [157]: vca.hemispheres

Out[157]: array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., L1,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., O., O.,
0., o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,
0. 0. 0. 0. 0. 0. 0. 0. 0., 0., O. 0. 0.

., 0.1

o

L) L) L)

..and region mappings to freesurfer’s fsaverage brain

In [1568]: vca.region_mapping fsav_lh

Out[158]: array([24., 29., 28., ..., 16., 7., 7.1)

In [159]: vca.region_mapping fsav_rh

Out[159]: array([24., 29., 22., ..., 9., 9., 9.1)

which can be used for, e.g. plotting ROI data on a surface

In [167]: £ = '/opt/freesurfer/freesurfer/subjects/fsaverage/surf/lh.inflated’
vtx,tri = nib.freesurfer.read_geometry(f)
plot_surf_roi([vtx,tril],vca.region_mapping fsav_lh);

End of doc/examples/exploring.onwhat,tlases.ipynb

The following section was generated from doc/examples/defining,syntheticesion.ipynb

7 Defining a Lesion

Conducting a lesion analysis in ConWhAt is extremely simple. All that is needed
is a binary .nii format lesion mask, with ones indicating lesioned tissue, and
zeros elsewhere.

(Note: we terms like ‘lesion’ and ‘damage’ throughout most of this
documentation, as that is the most natural primary context for ConWhAt
analyses. Remember however that all we are doing at the end of the

day is doing a set of look-up operations between a list of standard
space coordinates on the one hand (as defined by non-zero values in

a .nii image), and the spatial locations of each ‘connectome edge’

- 1i.e. each entry in our anatomical connectivity matrix. One can
envisave many alternative interpretations/applications of this procedure;
for example to map the connectivity effects of magnetic field or

current distributions from nonivasive brain stimulation). Still, for
concreteness and simplicity, we stick with ‘lesion’, ‘damage’, etc. for
the most part.)

A common way to obtain a lesion map is to from a patient’s Tl-weighted MR image.
Although this can be done manually, it is strongly recommended to use an automated
lesion segmentation tools, followed by manual editing.

An alternative way is simply to define a lesion location using standard
space coordinates, and build a ‘lesion’ mask de-novo. This is what we do in
the following example. On the next page we do a ConWhAt connectome-based
decomposition analysis on this ‘synthetic’ lesion mask.

In [18]: # ConWhAt stuff
from conwhat import VolConnAtlas,StreamConnAtlas,VolTractAtlas,StreamTractAtlas
from conwhat.viz.volume import plot_vol_and_rois_nilearn

Neuroimaging stuff

import nibabel as nib

from nilearn.plotting import plot_roi

from nipy.labs.spatial_models.mroi import subdomain_from_balls

from nipy.labs.spatial_models.discrete_domain import grid_domain_from_image

Viz stuff
Jmatplotlib inline
from matplotlib import pyplot as plt

Generic stuff
import numpy as np

Define some variables

In [25]: # Locate the standard space template image
fsl_dir = '/global/software/fsl/5.0.10"
tl mni_file = fsl_dir + '/data/standard/MNI152_T1_1mm_brain.nii.gz'
tl_mni_img = nib.load(tl_mni_file)

This is the output we will save to file and use in the next example
lesion_file = 'synthetic_lesion_20mm_sphere_-46_-60_6.nii.gz"'

Define the ‘synthetic lesion’ location and size using standard (MNI) space
coordinates

In [19]: com = [-46,-60,6] # com = centre of mass
rad = 20 # radius

Create the ROI

In [20]: domain = grid_domain_from_image(tl_mni_img)
lesion_img = subdomain_from_balls(domain,np.array([com]), np.array([rad])).to_image()

Plot on brain slices

In [28]: plot_roi(lesion_img,bg_img=tl mni_img,black_bg=False);

Save to file
In [29]: lesion_img.to_filename(lesion_file)

...now we move on to doing a lesion analysis with this file.

End of doc/examples/defining,syntheticjesion.ipynb

The following section was generated from doc/examples/assessingihe,etwork;mpact,fiesions.ipynb

8 Assess network impact of lesion

In [1]: # ConWhAt stuff
from conwhat import VolConnAtlas,StreamConnAtlas,VolTractAtlas,StreamTractAtlas
from conwhat.viz.volume import plot_vol_scatter

Neuroimaging stuff

import nibabel as nib

from nilearn.plotting import (plot_stat_map,plot_surf_roi,plot_roi,
plot_connectome,find_xyz_cut_coords)

from nilearn.image import resample_to_img

Viz stuff

Jmatplotlib inline

from matplotlib import pyplot as plt
import seaborn as sns

Generic stuff
import glob, numpy as np, pandas as pd, networkx as nx
from datetime import datetime

/global/home/hpc3230/Software/miniconda2/envs/jupyter/lib/python2.7/site-packages/hbpy/__init__.py:36:

from ._conv import register_converters as _register_converters

Fut

We now use the synthetic lesion constructed in the previous example in a ConWhAt
lesion analysis.

In [2]: lesion_file = 'synthetic_lesion_20mm_sphere_ -46_-60_6.nii.gz' # we created this file from scratch

Take another quick look at this mask:

In [3]: lesion_img = nib.load(lesion_file)
plot_roi(lesion_file);

Since our lesion mask does not (by construction) have a huge amount of spatial
detail, it makes sense to use one of the lower-resolution atlas. As one might
expect, computation time is considerably faster for lower-resolution atlases.

In [4]: cw_atlases_dir = '/global/scratch/hpc3230/Data/conwhat_atlases' # change this accordingly
atlas_name = 'CWL2k8Sc33V01l3d100s_vO1'
atlas_dir = 'Js//s' %(cw_atlases_dir, atlas_name)

See the previous tutorial on ‘exploring the conwhat atlases’ for more info on how
to examine the components of a given atlas in ConWhAt.

Initialize the atlas
In [5]: cw_vca = VolConnAtlas(atlas_dir=atlas_dir)

loading file mapping
loading vol bbox
loading connectivity

Choose which connections to evaluate.
This is normally an array of numbers indexing entries in cw_vca.vfims.

Pre-defining connection subsets is a useful way of speeding up large analyses,
especially if one is only interested in connections between specific sets of
regions.

As we are using a relatively small atlas, and our lesion is not too extensive, we
can assess all connections.

In [6]: idxs = 'all' # alternatively, something like: range(1,100), indicates the first 100 cnxns (rows ir
Now, compute lesion overlap statistics.

In [18]: jlc_dir = '/global/scratch/hpc3230/joblib_cache_dir' # this is the cache dir where joblib writes
lo_df,lo_nx = cw_vca.compute_hit_stats(lesion_file,idxs,n_jobs=4,joblib_cache_dir=jlc_dir)

computing hit stats for roi synthetic_lesion_20mm_sphere_-46_-60_6.nii.gz

This takes about 20 minutes to run.

vca.compute_hit_stats() returns a pandas dataframe, lo_df, and a networkx object,
lo_nx.

Both contain mostly the same information, which is sometimes more useful in one of
these formats and sometimes in the other.

lo_df is a table, with rows corresponding to each connection, and columns for each
of a wide set of statistical metrics® for evaluating sensitivity and specificity
of binary hit/miss data:

In [28]: lo _df.head()

Out [28]: metric ACC BM F1 FDR FN FNR FP \
idx
0 0.990646 0.104859 0.098135 0.911501 29696.0 0.889874 37851.0
3 0.987324 0.011683 0.014279 0.988855 32708.0 0.980132 58828.0
7 0.987160 -0.006617 0.001185 0.999075 33316.0 0.998352 59404.0
10 0.994367 -0.000926 0.000147 0.999589 33368.0 0.999910 7305.0
11 0.989105 0.048907 0.044941 0.962227 31520.0 0.944533 47152.0
metric FPR Kappa MCC MK NPV PPV ™ \
idx
0 0.005266 0.330534 0.094054 0.084363 0.995864 0.088499 7149810.0
3 0.008185 0.329134 0.008766 0.006577 0.995433 0.011145 7128833.0
7 0.008265 0.329023 -0.004966 -0.003727 0.995348 0.000925 7128257.0
10 0.001016 0.331450 -0.001976 -0.004215 0.9956374 0.000411 7180356.0
11 0.006560 0.329846 0.040403 0.033378 0.995605 0.037773 7140509.0
metric TNR TP TPR corr_nothr corr_thr corr_thrbin
idx
0 0.994734 3675.0 0.110126 0.042205 0.042205 0.094054
3 0.991815 663.0 0.019868 -0.001487 -0.001487 0.008766
7 0.991735 556.0 0.001648 -0.003549 -0.003549 -0.004966
10 0.998984 3.0 0.000090 -0.001975 -0.001975 -0.001976
11 0.993440 1851.0 0.055467 0.017664 0.017664 0.040403

Typically we will be mainly interested in two of these metric scores:

TPR - True positive (i.e. hit) rate: number of true positives, divided by number
of true positives + number of false negatives

corr_thrbin - Pearson correlation between the lesion amge and the thresholded,
binarized connectome edge image (group-level visitation map)

In [27]: lo df[['TPR', 'corr_thrbin']].iloc[:10].T

OQut[27]: idx 0 3 7 10 11 13\
metric
TPR 0.110126 0.019868 0.001648 0.000090 0.055467 0.002128

corr_thrbin 0.094054 0.008766 -0.004966 -0.001976 0.040403 0.005801

idx 14 15 18 19
metric
TPR 0.000569 0.000000 0.098469 0.023523

corr_thrbin 0.000641 -0.002543 0.169234 0.029414
We can obtain these numbers as a ‘modification matrix’ (connectivity matrix)

In [33]: tpr_adj = nx.to_pandas_adjacency(lo_nx,weight='TPR')
cpr_adj = nx.to_pandas_adjacency(lo_nx,weight='corr_thrbin')

These two maps are, unsurprisingly, very similar:

6 https:/ /en.wikipedia.org/wiki/Sensitivity_and_specificity

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

In [104]: np.corrcoef (tpr_adj.values.ravel(), cpr_adj.values.ravel())

Out[104]: array([[1. 0.96271946] ,
[0.96271946, 1. 1D

In [79]: fig, ax = plt.subplots(ncols=2, figsize=(12,4))

sns.heatmap (tpr_adj,xticklabels='"', 6 yticklabels=""

,vmin=0,vmax=0.5,ax=ax[0]);

sns.heatmap(cpr_adj,xticklabels=""' 6 yticklabels='",vmin=0,vmax=0.5,ax=ax[1]);
-05 -05
-04 -04
-0.3 03
- 0.2 -0.2
- 0.1 -0l
-0.0 -0.0
(...with an alternative color scheme...)
In [70]: fig, ax = plt.subplots(ncols=2, figsize=(12,4))
sns.heatmap (tpr_adj, xticklabels='',yticklabels='"',6cmap='Reds',
mask=tpr_adj.values==0,vmin=0,vmax=0.5,ax=ax[0]);
sns.heatmap(cpr_adj,xticklabels='"',yticklabels='"',6cmap='Reds"',
mask=cpr_adj.values==0,vmin=0,vmax=0.5,ax=ax[1]);
-05 -05
- 0.4 -0.4
-03 -03
4 e K -02 -02
S i e o
= T mama -0l e -01
n q‘:: y-l = N} #"
= ol i :
- 0.0 -00

We can list directly the most affected (greatest 7 overlap) connections,

In [85]: cw_vca.vfms.loc[lo_df.index].head()

Out [85] : name nii file nii file id
idx
0 61_to_80 vismap_grp_62-81_norm.nii.gz
3 18_to_19 wvismap_grp_19-20_norm.nii.gz
7 45_to_48 vismap_grp_46-49_norm.nii.gz
10 19_to_68 vismap_grp_20-69_norm.nii.gz
11 21_to_61 vismap_grp_22-62_norm.nii.gz

To plot the

modification matrix information on a brain,

4dvolind

0 NaN
3 NaN
7 Nal
10 Nal
11 Nal

we first need to some

spatial locations to plot as nodes. For these, we calculate (an approprixation
to) each atlas region’s centriod location:

In [101]: parc_img = cw_vca.region nii
parc_dat = parc_img.get_data()
parc_vals = np.unique(parc_dat) [1:]

ccs = {roival: find_xyz_cut_coords(nib.NiftilImage((dat==roival).astype(int),img.affine),
activation_ threshold=0) for roival in roivals}
ccs_arr = np.array(ccs.values())

Now plotting on a glass brain:

In []: fig, ax = plt.subplots(figsize=(16,6))
plot_connectome (tpr_adj.values,ccs_arr,axes=ax,edge_threshold=0.2,colorbar=True,
edge_cmap='Reds',edge_vmin=0,edge_vmax=1.,
node_color='lightgrey',node_kwargs={'alpha': 0.4});
#edge_vmin=0, edge_vmax=1)

In [118]: fig, ax = plt.subplots(figsize=(16,6))
plot_connectome(cpr_adj.values,ccs_arr,axes=ax)

Out[118]: <nilearn.plotting.displays.OrthoProjector at 0x7f454ceabb90>

End of doc/examples/assessingihe,etworkimpact, fiesions.ipynb

	Overview
	Ontology & Representation
	ConWhAt Atlases
	Installation
	Downloading ConWhAt Atlases
	Exploring ConWhAt Atlases
	Defining a Lesion
	Assess network impact of lesion

