

Contextional

A context-based functional testing tool for Python

	Overview
	Why Use Contextional?

	Installation

	Quick Example

	Writing Tests
	The Basics
	Order of Fixture Execution
	Setups

	Test Setups

	Test Teardowns

	Teardowns

	Alternate Explanation

	Getting Started
	Do I need to install anything?

	Do I need to import anything?

	How do I create the first layer?

	How do I add a test?

	How do I get the tests to run?

	How do I add fixtures (i.e. setups and teardowns)?

	How do I predefine a Context that I can use elsewhere?

	How can my fixtures and tests use persistent resources as they run?

	Can I see a simple example to get me started?

	Advanced Usage
	Metaprogramming

	Parameterization
	How do I format the sets of parameters that I want to use?

	Reference
	GroupContextManager

Indices and tables

	Index

	Module Index

	Search Page

Overview

Why Use Contextional?

Short answer

	fast and easy to use

	works with unittest, unittest2, nose, and pytest

	deterministic fixture and test order without being tied to a class

	might significantly improve functional test suite run time

	much better test output organization and readability (doesn’t even need to be
used for functional tests)

Long answer

If you use the standard unittest/unittest2 libraries to write
functional tests, you’re likely to have a very complicated test suite, as the
only thing you should have in each test method should be a single assert, your
test classes should each only pertain to one specific scenario, and the setups
and teardowns for each test class should be completely isolated from and
independant of all the other test classes.

The more complex the thing you’re testing is, the more scenarios you’ll have to
cover, which means more test classes that you’ll have to write. A properly made
functional test suite for a decently complex product can easily take a very
long time to run, as each test class will have to run every bit of setup
required for it to run and then completely tear it all down once it’s finished
running all its tests.

It’s not a best practice to have a test class try and rely on any previously
run classes when writing tests in the traditional fashion, as the order they
run in isn’t deterministic.

That’s where Contextional comes in.

Contextional uses a combination of with statements and decorators to let
you quickly and easily define fixtures and tests with easy-to-read descriptions
for each context and test. This is done to make sure each fixture and test
happens in a logical and deterministic order and that the test output is
organized and more idiomatic.

Installation

You can install Contextional through pip with:

$ pip install contextional

Quick Example

Code:

from contextional import GroupContextManager as GCM

with GCM("Main Group") as MG:

 @GCM.add_setup
 def setUp():
 GCM.value = 1

 @GCM.add_test("value is 1")
 def test(case):
 case.assertEqual(GCM.value, 1)

 with GCM.add_group("Child Group"):

 @GCM.add_setup
 def setUp():
 GCM.value += 1

 @GCM.add_test("value is now 2")
 def test(case):
 case.assertEqual(GCM.value, 2)

MG.create_tests()

Test output:

Main Group
 value is 1 ... ok
 Child Group
 value is now 2 ... ok

Writing Tests

The Basics

Contextional utilizes contexts (with statements) so you can easily
control how your tests and fixtures play out.

You should know that any code you’ve written along side your fixture and test
definitions is getting run, so you can use this to your advantage to influence
how your fixtures and tests get defined. But none of the tests or fixtures you
defined will get used if you don’t call create_tests() on the
Context instance that you made (see below for
example usage).

This might seem odd, but it’s required for two reasons:

	It allows you to create a Context, containing
layers of tests and fixtures, that can be included in other
Context objects, and it will only get run if
create_tests() is called by those Context
objects.

	Contextional needs to modify the global namespace of the module you want the
tests to be created in so that it can create the unittest.TestCase
classes in it (depending on the Python implementation you’re using, this may
also require you to pass globals() to create_tests()).

TL;DR The examples below should answer most questions you have.

Order of Fixture Execution

Setups

When enterring a layer, all of the setups defined in that layer are executed,
in the order that they were defined.

Test Setups

Test-level setups are executed before every test that is defined in the same
layer as them.

Test Teardowns

Test-level teardowns are executed after every test that is defined in the same
layer as them.

Teardowns

When exiting a layer (i.e. the tests defined in the layer and all of the
layer’s descendant layers have all been executed), all of the teardowns defined
in that layer are executed, in the order that they were defined.

Warning

Fixtures will only be executed for the layer that they are defined in.

Test-level fixtures will only be used for the tests that were declared in
the same layer that they were, and none of the tests in any descendant
layers will execute them.

Layer-level fixtures only execute once. Even if the layer that they were
defined in has more than one child layer, they will still only be executed
once.

Warning

If a layer has no tests, nor does any of its descendant layers, then any
fixtures declared in that layer will not be executed.

Note

It doesn’t matter if you define fixtures before or after fixtures of
different types, tests, or child layers. The order in which you define a
fixture is only relevant when compared to other fixtures of the same type.

For example, you can define setup A, then test 1, and then setup
B, but setup A will still be executed before setup B, and setup
B will still be executed before test 1.

Alternate Explanation

Here’s some pseudocode that might help clarify:

def run_layer_tests(layer):
 # layer setups
 for setup in layer.setups:
 setup()

 # tests
 for test in layer.tests:
 # test setups
 for test_setup in layer.test_setups:
 test_setup()

 test()

 # test teardowns
 for test_teardown in layer.test_teardowns:
 test_teardown()

 # child layers
 for child_layer in layer.children:
 run_layer_tests(child_layer)

 # layer teardowns
 for teardown in layer.teardowns:
 teardown()

Getting Started

Do I need to install anything?

Yes, you’ll need to install contextional through pip, like so:

$ pip install contextional

Do I need to import anything?

Yes, but luckily, you only need to import GCM (GcmMaker), like
this:

from contextional import GCM

How do I create the first layer?

To create the first layer, you’ll just need to import
GCM and use a with statement to create a
Context instance while giving the first layer of that
Context a description. That instance is what you’ll be
using to add fixtures, tests, and child layers.

Here’s what this looks like:

from contextional import GCM

with GCM("First Layer") as FL:

Here we’ve given the first layer a description of “First Layer”, and created a
Context instance, FL, that we can use to add
fixtures, tests, and child layers.

How do I add a test?

For that, you would use GCM.add_test(), which is a
decorator that takes a single argument (the description of the test).

Here’s what it will look like once we’ve added a test:

from contextional import GCM

with GCM("First Layer") as FL:

 @GCM.add_test("1 is True")
 def test(case):
 case.assertTrue(1)

How do I get the tests to run?

After you’re done defining everything, you may have noticed that your tests
didn’t actually run. That’s likely because you will need to have your
GCM call create_tests(), and make sure you
pass it globals() as an argument. This is what creates the stuff that
your testing framework will actually use.

Here’s what it looks like:

from contextional import GCM

with GCM("First Layer") as FL:

 @GCM.add_test("1 is True")
 def test(case):
 case.assertTrue(1)

FL.create_tests()

With that, you can just use your testing framework like you normally would, and
it will automatically detect and run these tests (assuming it works with tests
made with unittest). For example, if you use nosetests to run your
tests, you can just run it like this:

$ nosetests -v

If you do that, the test output for this would look something like this:

First Layer
 1 is True ... ok

Note

If you experience any problems with create_tests(), try passing it
globals() (i.e. FL.create_tests(globals())). It tries to
automatically grab the namespace of the module it’s called in, but,
depending on the implementation of Python that you’re using, it might have
some issues, but this should resolve them.

Do I have to name the test “test”?

Not at all; you can name it whatever you want. I just find that giving it a
name of test makes it easy and straightforward to read. But if you would
prefer to name it something else, you absolutely can. The same goes for
fixtures, as well.

In fact, every test and fixture that you define and decorate using the
GCM‘s decorator methods will not exist after the
decorator is evaluated, as the decorator doesn’t return a function to replace
it. This was done intentionally so that nothing is leftover that could
be found by the test discovery process that you wouldn’t want to be found.

Does the test have to take an argument?

Nope. But if you have it take an argument, you can use that argument to access
the unittest.TestCase assert method and any assert methods you
provided with :method:`.GCM.utilize_asserts`.

Does the argument that the test takes have to be named “case”?

Nope. It can be named whatever you want. Naming it “case” is just a
suggestion.

Can the test take more than one argument?

Nope. It’s either no arguments, or one argument.

If you’re looking to do something like paramaterized tests, Contextional does
support it, but you’ll have to go to the “Advanced” section below to find out
more about how to do that.

How do I add fixtures (i.e. setups and teardowns)?

Adding fixtures is also done through a decorator. You have the following
options for fixtures:

	GCM.add_setup()

	GCM.add_test_setup()

	GCM.add_test_teardown()

	GCM.add_teardown()

To add a setup for the layer, you would do something like this:

from contextional import GCM

with GCM("Main Group") as MG:

 @GCM.add_setup
 def setUp():
 GCM.value = 1

 @GCM.add_test("value is 1")
 def test(case):
 case.assertEqual(GCM.value, 1)

MG.create_tests()

And with that, our test output would look like this:

Main Group
 value is 1 ... ok

You would take the same approach for all the other fixture types.

Can I have a layer with fixtures, but no tests?

Yes, but in order for it to be used, that layer must have a descendant layer
that has tests. Otherwise, it will be ignored.

Also, if the fixtures are test-level fixtures (i.e. test setups and test
teardowns), then they will definitely not be used if there aren’t any tests
defined in the same layer.

Then can I at least have multiple fixtures of a given type in a single layer?

Yes, and this is actually recommended. It’s good to break up the various steps
of your setups/teardowns into individual functions as it compartmentalizes your
code in the event that you want to make a change or have an error.

Can I have each of those fixtures spit out what they’re doing while they do it?

You sure can.

Just like tests can be given a description, setups and teardowns can also be
given a description that will be printed out as each one is run; and if it
throws an error, you’ll see that description in the error report.

Here’s an example of how to give a fixture a description:

from contextional import GCM

with GCM("Main Group") as MG:

 @GCM.add_setup("do a thing")
 def setUp():
 GCM.value = 1

 @GCM.add_teardown("undo all the things")
 def setUp():
 del GCM.value

 with GCM.add_group("Child Group"):

 @GCM.add_setup("do another thing")
 def setUp():
 GCM.value += 1

 @GCM.add_teardown("undo that last thing")
 def setUp():
 GCM.value -= 1

 @GCM.add_test("value is 2")
 def test(case):
 case.assertEqual(GCM.value, 2)

MG.create_tests()

and that would output this:

Main Group
 # do a thing
 Child Group
 # do another thing
 value is 2 ... ok
 # undo that last thing
 # undo all the things

Do I have to give a description to every setup and teardown?

Nope.

Not everything needs a description, so if you don’t give a fixture a
description, it just won’t show up in the test output.

However, if a fixture throws an error, a generic description of the fixture
will be spat out to show where the error occured specifically. It would look
something like this:

Main Group
 Child Group
 # setup (2/5) ERROR
 some test ... FAIL
 # teardown (1/1) ERROR

And you would see something similar in the error report.

The two numbers are 1) the 1-indexed position of the fixture and 2) the total
number of fixtures of that type in that layer. So if you see # setup (2/5)
ERROR, that means there were 5 setups total in that group, and the 2nd one
threw an error.

How do I predefine a Context that I can use elsewhere?

Whenever you define a Context, it doesn’t need to have its tests
run. That only happens if you have it call create_tests(). However, you
can create a Context, which contains layers of fixtures and tests,
that you can include in any other Context at any point,
and even use it multiple times in the same Context.

To do this, you just need to create a Context containing
the layers and fixtures that you want to use elsewhere, using the exact same
syntax that you would use with any other Context, but
don’t have it call create_tests(). Once you’ve done this, go to where
you are creating the Context that you want to include
your predefined Context, and have it call
includes() at the point that you want it to include the predefined
Context.

The process looks something like this:

from contextional import GCM

with GCM("Predefined Group") PG:

 @GCM.add_setup
 def setUp():
 GCM.value += 1

 @GCM.add_test("value is now 2")
 def test(case):
 case.assertEqual(GCM.value, 2)

with GCM("Main Group") as MG:

 @GCM.add_setup
 def setUp():
 GCM.value = 1

 @GCM.add_test("value is 1")
 def test(case):
 case.assertEqual(GCM.value, 1)

 GCM.includes(PG)

MG.create_tests()

The output for this would look something like this:

Main Group
 value is 1 ... ok
 Predefined Group
 value is now 2 ... ok

Can I use the predefined Context in more than one spot?

Yep!

Even multiple times in the same Context?

Yup!

What about in other modules than the one I created it in?

Absolutely!

The Context that you want to include in other any
Context is just like any other object. Even though it was
created using context managers, nothing really happens to it once the outermost
context is exited. Because of this, all you need to do is import it in the
module you want to use it.

So if you started it off by saying:

with GCM("Includable Group") as IG:

then you would only need to say this in the module that would use it:

from some.module import IG

What if I want to include the predefined tests, fixtures, and/or child groups from a Context alongside those from my current group?

You can just use combine(), then. It takes the tests, fixtures, and child
groups of a Context and makes them part of the group
you’re merging them into, so they won’t just be added as a child group.

This is useful if you know you are going to be using identical tests but on
different things.

It looks something like this:

def multiplier(num_1, num_2):
 return num_1 * num_2

with GCM("value test") as vt:

 @GCM.add_test("value")
 def test(case):
 case.assertEqual(
 GCM.value,
 GCM.expected_value,
)

with GCM("Main Group") as MG:

 with GCM.add_group("2 and 3"):

 @GCM.add_setup
 def setUp():
 GCM.value = multiplier(2, 3)
 GCM.expected_value = 6

 GCM.combine(vt)

 with GCM.add_group("3 and 5"):

 @GCM.add_setup
 def setUp():
 GCM.value = multiplier(3, 5)
 GCM.expected_value = 15

 GCM.combine(vt)

Output:

Main Group
 value is 1 ... ok
 Sub Group
 value is still 1 ... ok

How can my fixtures and tests use persistent resources as they run?

Normally, when working with unittest.TestCase, you could use class
attributes in setUpClass() or tearDownClass() (i.e. cls), or
instance attributes in setUp() or tearDown() (i.e. self) to
give your fixtures and tests access to persistent resources.

To let you do something similar, Contextional uses some Python magic to let
each Context access a shared, persistent namespace.

You may have noticed it in the examples above, but the shared, persistent
namespace is accessed through GCM. Just access an attribute of
GCM in any test or fixture, and as long as it isn’t one of it’s normal
attributes, you’ll be referencing a persistent namespace from one test/fixture
to another.

Can I see a simple example to get me started?

Sure! Here you go:

from contextional import GCM

with GroupContextManager("Predefined Group") PG:

 @GCM.add_test("value is still 1")
 def test(case):
 case.assertEqual(GCM.value, 1)

with GCM("Main Group") as MG:

 @GCM.add_setup
 def setUp():
 GCM.value = 1

 @GCM.add_test("value is 1")
 def test(case):
 case.assertEqual(GCM.value, 1)

 GCM.includes(PG)

 with GCM.add_group("Child Group"):

 @GCM.add_setup
 def setUp():
 GCM.value += 1

 @GCM.add_test("value is now 2")
 def test(case):
 case.assertEqual(GCM.value, 2)

 with GCM.add_group("Another Child Group"):

 @GCM.add_setup
 def setUp():
 GCM.value += 1

 @GCM.add_test("value is now 3")
 def test(case):
 case.assertEqual(GCM.value, 3)

MG.create_tests()

That would output the following:

Main Group
 value is 1 ... ok
 Predefined Group
 value is still 1 ... ok
 Child Group
 value is now 2 ... ok
 Another Child Group
 value is now 3 ... ok

Advanced Usage

Metaprogramming

Contextional works by having you write normal code that, when evaluted during
the test discovery process, creates objects containing information about the
tests you want to create and how you want them to run. Those objects are later
used to create the tests that actually get run by the testing framework (when
you call create_tests()).

Because of this, you can use any tools at your disposal to help create those
objects just like you would create any other object in a Python script.

For example, let’s say you have a series of characters that you want to check
exist in a larger string. You could quickly write all of those tests using a
for loop:

from string import ascii_lowercase

main_string = "the quick brown fox jumped over the lazy dog"

with GCM(main_string) as MG:

 for letter in ascii_lowercase:

 @GCM.add_test("contains '{}'".format(letter))
 def test(case):
 case.assertIn(letter, main_string)

which would spit out something like this:

the quick brown fox jumped over the lazy dog
 contains 'a' ... ok
 contains 'b' ... ok
 contains 'c' ... ok
 ...
 contains 'x' ... ok
 contains 'y' ... ok
 contains 'z' ... ok

You can even do it for whole child groups:

from string import ascii_lowercase

main_string = "the quick brown fox jumped over the lazy dog"

with GCM(main_string) as MG:

 for letter in ascii_lowercase:

 with GCM.add_group("Letter: '{}'".format(letter.upper())):

 @GCM.add_test("is present")
 def test(case):
 case.assertIn(letter, main_string)

which would be something like this:

the quick brown fox jumped over the lazy dog
 Letter: 'A'
 is present ... ok
 Letter: 'B'
 is present ... ok
 Letter: 'C'
 is present ... ok
 ...
 Letter: 'X'
 is present ... ok
 Letter: 'Y'
 is present ... ok
 Letter: 'Z'
 is present ... ok

Parameterization

Contextional handles parameterization by allowing you to pass
parameters to add_group(). If parameters are passed,
Contextional will make one version of the parameterized group for
each set of parameters, so if you have 5 sets of parameters for a
group, 5 versions of that group will be created. All of the child
groups of the parameterized group will be included in each version
of the parameterized group.

How do I format the sets of parameters that I want to use?

There’s actually 2 parts to this that you can utilize.

Collections of Sets (or “Collections of Collections”)

First, is how you provide the collection of sets.

You can either put each set of parameters into a set/list/
tuple, like so:

with GCM("Main Group") as MG:

 my_params = (
 (1, 3, 5),
 (2, 4, 6),
)
 with GCM.add_group("Parameterized Group:", params=my_params):

or you can put them in a Mapping (e.g. a dict), like this:

with GCM("Main Group") as MG:

 my_params = {
 "odds": (1, 3, 5),
 "evens": (2, 4, 6),
 }
 with GCM.add_group("Parameterized Group:", params=my_params):

The difference, is in the test output. Each version of the parameterized group
will need to distinguish itself from the other versions of itself so that
someone reading the test output can more easily tell where a problem occured
(if there was one). To do this, the description of the group is changed.

If the collection of sets used was a set/list/tuple, then the
set of parameters itself will be appended to the group’s normal description. In
the example above, you would see the output look like this:

Main Group
 Parameterized Group: (1, 3, 5)
 ...
 Parameterized Group: (2, 4, 6)
 ...

If the collection of sets used was a Mapping, then the key for the set of
parameters itself will be appended to the group’s normal description. In the
example above, you would see the output look like this:

Main Group
 Parameterized Group: odds
 ...
 Parameterized Group: evens
 ...

The Sets of Parameters Themselves

Regardless of what kind of collection the sets of parameters are put into
together, the individual set of parameters that each version of the group uses
will be unpacked and passed as arguments to each of the setUp() functions
that were defined in the root layer of the parameterized group. Child groups of
the parameterized group will not have the parameters passed to them. It is up
to the setUp() function(s) of parameterized group to make sure their
child groups can access the parameters, if needed.

If a set of parameters is a set/list/tuple, then it will be
unpacked with a single *, so you can either have your setUp()
functions catch them all with a *args, or just make sure they take the
right number of ordered arguments. It will look something like this:

with GCM("Main Group") as MG:

 my_params = (
 (1, 3, 5),
 (2, 4, 6),
)
 with GCM.add_group("Parameterized Group:", params=my_params):

 @GCM.add_setup
 def setUp(*args):
 # some code

 @GCM.add_setup
 def setUp(num_1, num_2, num_3):
 # some code

If a set of parameters is a Mapping (e.g. a dict), then it will be
unpacked with a **, so your setUp() functions can catch them all with
a **kwargs, or they can accept the appropriately name keyword arguments.
That will look something like this:

with GCM("Main Group") as MG:

 my_params = (
 {
 "num_1": 1,
 "num_2": 3,
 "num_3": 5,
 },
 {
 "num_1": 2,
 "num_2": 4,
 "num_3": 6,
 },
)
 with GCM.add_group("Parameterized Group:", params=my_params):

 @GCM.add_setup
 def setUp(**kwargs):
 # some code

 @GCM.add_setup
 def setUp(num_1, num_2, num_3):
 # some code

This allows you to set default values for your parameters, and control how much
flexibility you want with your parameters.

Reference

GroupContextManager

	
contextional.GroupContextManager

	

Index

 G

G

 	
 	GroupContextManager (in module contextional)

 nav.xhtml

 Table of Contents

 		Contextional

 		Overview

 		Why Use Contextional?

 		Installation

 		Quick Example

 		Writing Tests

 		The Basics

 		Order of Fixture Execution

 		Getting Started

 		Advanced Usage

 		Metaprogramming

 		Parameterization

 		Reference

 		GroupContextManager

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

