

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Confloader 1.1a1 documentation

Introduction

Confloader was developed to make handling configuration in .ini format easier.
While Python standard library offers the framework for creating an .ini parser
that is fine-tuned to your needs, Confloader developers found that rewriting
the parser each time was tedious, and the basic tools provided by the standard
library insufficient for repeated use.

While Confloader may be as flexible as the ConfigParser suite from the
standard library, it has a growing number of features to cover majority of
scenarios that applications may encounter, and offers facilities of combining
and managing collections of configuration file fragments.

Source code

Confloader source code can be found on GitHub [https://github.com/Outernet-Project/confloader] and is released under BSD
license. See the LICENSE file in the source tree for more information.

Documentation

	Writing .ini files
	Sections

	Options

	Data types

	Referencing other configuration files

	Extending lists

	Working with configuration files
	Loading configuration files

	Adding options from configuration files at runtime

	Accessing options

	API documentation

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Confloader 1.1a1 documentation

Writing .ini files

The .ini format that is used by Confloader is more or less the same as the one
used by Python’s standard library ConfigParser [https://docs.python.org/2/library/configparser.html] module.

Sections

The configuration file consists of sections which start with the section header
in [name] format. Section naming is arbitrary and completely up to the
user, but there are two special sections, [global] and [config] which
have special handling in Confloader.

Options

The configuration options are specified using key=value format. Leading
whitespace, whitespace around the equals sign, and whitespace around the value
are ignored. A simple value may look like this:

foo = bar

Values can span multiple lines. Unlike ConfigParser, multi-line values have
special meaning to Confloader, which we will discuss later. At it’s simplest,
multiline value may look like this:

foo = Long value that
 spans multiple lines.

Note that leading whitespace in the second line is completely ignored.

Data types

Values that appear to be of some type will be coerced to that type.
Currently, coercion is supported for the following types:

	integer

	float

	byte size

	boolean

	null/None

	list

Numeric values

If the value is strictly numeric, it will be treated as an integer or a float.
Presence of the decimal dot determines the actual type used. For instance:

foo = 12 # becomes int(12)
bar = 1.2 # becomes float(1.2)

Negative numbers are also supported with a - prefix. There cannot be any
whitespace between the prefix and the digits, however.

Byte size values

Byte size values are similar to numeric values but they have ‘KB’, ‘MB’, or
‘GB’ suffix. The suffix may be separated from the digits by a blank, and is
case-insensitive (e.g., ‘KB’ is the same as ‘kb’ and same as ‘Kb’).

These values translate to integers in bytes, where the prefixes are not metric
but powers of 1024 as per JEDEC. Here is an example:

foo = 2MB # becomes int(2 * 1024 * 1024) == int(2097152)

Boolean and null values

Boolean and null values are words with special meaning. These words are:

	yes (True)

	no (False)

	true (True)

	false (False)

	null (None)

	none (None)

These words are case-insensitive, so ‘Yes’ is the same as ‘yes’, and ‘NULL’ is
the same as ‘nuLL’.

Here are a few examples:

foo = yes
bar = False
baz = none

Lists

Lists are a special form of multi-line values. Lists are specified by starting
the value with a newline and listing list items one item per line. For
example:

foo =
 foo
 bar
 baz

The above value will be translated to a list of strings: ['foo', 'bar',
'baz'].

All other types except multiline values and lists themselves can be used in
lists. This inclues integers, floats, booleans, and bytes.

Referencing other configuration files

Configuration files can be made modular by cross-referencing other
configuration file fragments. This is done by two list keys in a special
[config] section. Here is an example:

[config]

defaults =
 networking.ini
 visuals.ini

include =
 /etc/myapp.d/networking.ini
 /etc/myapp.d/visuals.ini
 /etc/myapp.d/overrides.ini

The above example references two configuration files as defaults, and three
files as includes. The primary difference between defaults and includes is in
how they affect the configuration file in which they appear. Defaults serve as
a base, which teh current configuration file overrides, while include override
the current configuration.

The paths are evaluated relative to the configuration files. In the above
example, the default configuration files are all assumed to reside in the same
location as the configuation file in which they are referenced. Absolute paths
are unaffected by this.

Paths may include glob patterns supported by Python’s glob module. The
above example for the include key can be rewritten as:

include =
 /etc/myapp.d/*.ini

All of the paths referenced by the [config] section are optional, in the
sense that missing paths will not cause failure.

Extending lists

Lists can be extended between two configuration files. This is best described
through an example:

default.ini
[foo]

bar =
 1
 2
 3

master.ini
[config]

defaults =
 default.ini

[foo]

+bar =
 4
 5
 6

By prefixing a key with a plus sign (+), the bar list in master.ini
will be used to extend the bar list in default.ini. The resulting value
will be [1, 2, 3, 4, 5, 6].

This also applies to extensions defined in an include, which do not replace the
original keys found in the configuration file in which it is referenced, but
extends it instead.

When Confloads encounters an extend key, but there is nothing to extend, it
will simply create an empty list and extend it. For example, if the
default.ini in the above example did not contain any bar key, the
result would be a list that contains only the elements from master.ini‘s
bar list: [4, 5, 6].

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Confloader 1.1a1 documentation

Working with configuration files

This section gives you a quick overview of Confloader library usage.

Loading configuration files

Configuration files can be loaded from files or file descrptors and objects
that support file-descriptor-like API (e.g., StringIO). To load a
configuration file, you can use the from_file() method on the
confloader.ConfDict class:

from confloader import ConfDict

conf = ConfDict.from_file('config.ini')

If the configuration file is blank, missing, contains no section, or has
options that are dangling outside sections, or otherwise malformed, you will
get a ConfigurationError exception. This exception is available as an
attribute on the ConfDict class as convenience:

try:
 conf = ConfDict.from_file('nonexistent.ini')
except ConfDict.ConfigError:
 print('Oh noes!')

Application may specify its own defaults when loading configuration files. This
is done by using the defaults argument which must be a dictionary:

conf = ConfDict.from_file('config.ini', defaults={
 'myoption1': 12,
 'myoption2': no
})

If, for some reason, you don’t like type conversions, you can omit type
conversion by passing the skip_clean flag:

conf = ConfDict.from_file('config.ini', skip_clean=True)

List extension can be suppressed by using noextend parameter:

conf = ConfDict.from_file('config.ini', noextend=True)

Adding options from configuration files at runtime

The confiuration object, once instantiated, can be further manipulated by
calling the import_from_file method on the ConfigDict objects. For
example:

conf = ConfDict.from_file('config.ini')
conf.import_from_file('fragment.ini')

This method has two modes. The first mode is the include mode, which overwrites
existing options using the options from the specified file. The other mode is
the defaults mode which only fills in the blank while leaving existing options
intact. The defaults mode is enabled by supplying as_defaults=True
argument.

By default, calling import_from_file on a non-existent configuration file
will raise the ConfigError exception. This exception can be suppressed by
passing the ignore_missing=True argument.

Accessing options

Options are accessed via keys that are a combination of the section name and
option name.

[foo]

bar = 1

The bar option from the above example is accessed as config['foo.bar'].

There is a special section named [global]. Options that appear in this
section are unprefixed.

[global]

foo = yes

The foo option from the above example is acessed as conf['foo'].

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Confloader 1.1a1 documentation

API documentation

	
class confloader.ConfDict(*args, **kwargs)

	Dictionary subclass that is used to hold the parsed configuration options.

ConfDict is instantiated the same way as dicts. For this
reason, the paths to configuation files and similar are not passed to the
constructor. Instead, you should use the from_file()
classmethod.

Because this class is a dictionary, you can use the standard dict API
to access and modify the keys. There is a minor difference when accessing
key values, though. When using the subscript notation,
ConfigurationFormatError is raised instead of KeyError
when the key is missing.

	
exception ConfigurationError

	Raised when application is not configured correctly.

	
exception ConfDict.ConfigurationFormatError(keyerr)

	Raised when configuration file is malformed.

	
ConfDict.configure(path, skip_clean=False, noextend=False)

	Configure the ConfDict instance for processing.

The path is a path to the configuration file. skip_clean
parameter is a boolean flag that suppresses type conversion during
parsing. noextend flag suppresses list extension.

	
classmethod ConfDict.from_file(path, skip_clean=False, noextend=False, defaults={})

	Load the values from the specified file. The skip_clean flag is
used to suppress type conversion. noextend flag suppresses list
extension.

You may also specify default options using the defaults argument.
This argument should be a dict. Values specified in this dict are
overridden by the values present in the configuration file.

	
ConfDict.get_option(section, name, default=None)

	Returns a single configuration option that matches the given section
and option names. Optional default value can be specified using the
default parameter, and this value is returned when the option is
not found.

As with get_section() method, this method operates
on the parsed configuration file rather than dictionary data.

	
ConfDict.get_section(name)

	Returns an iterable containing options for a given section. This method
does not return the dict values, but instead uses the underlying
parser object to retrieve the values from the parsed configuration
file.

	
ConfDict.import_from_file(path, as_defaults=False, ignore_missing=False)

	Imports additional options from specified file. The as_default flag
can be used to cause the options to only be imported if they are not
already present. The ignore_missing suppresses the
ConfigurationError exception when the specified file is
missing.

	
ConfDict.load()

	Parses and loads the configuration data. This method will trigger a
sequence of operations:

	initialize the parser, and load and parse the configuration file

	check the configuration file

	perform preprocessing (check for references to other files)

	process the sections

	process any includes or extensions

Any problems with the referenced defaults and includes will propagate
to this call.

Note

Using this method for reloading the configuration is not
recommended. Instead, create a new instance using the
from_file() method.

	
ConfDict.sections

	Returns an iterable containing the names of sections. This method uses
the underlying parser object and does not work with the dict values.

	
ConfDict.setdefaults(other)

	This method is a counterpart of the update() method and
works like setdefault(). The other argument is a
dict or dict-like object, whose key-value pairs are added to the
ConfDict object if the key does not exist already.

	
exception confloader.ConfigurationError

	Raised when application is not configured correctly.

	
exception confloader.ConfigurationFormatError(keyerr)

	Raised when configuration file is malformed.

	
confloader.extend_key(d, key, val)

	Extends a dictionary key with a specified iterable. If the key does not
exist, it is assigned a list before extending. If the key exists, but maps
to a non-list value, the key value is convereted to a list before being
extended.

	
confloader.get_compound_key(section, key)

	Return the key that will be used to look up configuration options. Except
for the global keys, the compoint key is in <section>.<option> format.

	
confloader.get_config_path(default=None)

	Attempt to obtain and return a path to configuration file specified by
--conf command line argument, and fall back on specified default path.
Default value is None.

	
confloader.make_list(val)

	If the value is not a list, it is converted to a list. Iterables like tuple
and list itself are converted to lists, whereas strings, integers, and
other values are converted to a list whose sole item is the original value.

	
confloader.parse_key(section, key)

	Given section name and option name (key), return a compound key and a flag
that is True if the option marks an extension.

	
confloader.parse_size(size)

	Parses size with B, KB, MB, or GB suffix and returns in size bytes. The
suffix is not metric but based on powers of 1024. The suffix is also
case-insensitive.

	
confloader.parse_value(val)

	Detect value type and coerce to appropriate Python type. The input must be
a string and the value’s type is derived based on it’s formatting. The
following types are supported:

	boolean (‘yes’, ‘no’, ‘true’, ‘false’, case-insensitive)

	None (‘null’, ‘none’, case-insensitive)

	integer (any number of digits, optionally prefixed with minus sign)

	float (digits with floating point, optionally prefix with minus sign)

	byte sizes (same as float, but with KB, MB, or GB suffix)

	lists (any value that sarts with a newline)

Other values are returned as is.

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Confloader 1.1a1 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 confloader	

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Confloader 1.1a1 documentation

Index

 C
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | S

C

 	

 	ConfDict (class in confloader)

 	ConfDict.ConfigurationError

 	ConfDict.ConfigurationFormatError

 	ConfigurationError

 	

 	ConfigurationFormatError

 	configure() (confloader.ConfDict method)

 	confloader (module)

E

 	

 	extend_key() (in module confloader)

F

 	

 	from_file() (confloader.ConfDict class method)

G

 	

 	get_compound_key() (in module confloader)

 	get_config_path() (in module confloader)

 	

 	get_option() (confloader.ConfDict method)

 	get_section() (confloader.ConfDict method)

I

 	

 	import_from_file() (confloader.ConfDict method)

L

 	

 	load() (confloader.ConfDict method)

M

 	

 	make_list() (in module confloader)

P

 	

 	parse_key() (in module confloader)

 	parse_size() (in module confloader)

 	

 	parse_value() (in module confloader)

S

 	

 	sections (confloader.ConfDict attribute)

 	

 	setdefaults() (confloader.ConfDict method)

 Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Confloader 1.1a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Confloader 1.1a1 documentation »

 All modules for which code is available

		confloader

 © Copyright 2014-2016, Outernet Inc.
 Created using Sphinx 1.3.5.

_static/comment-close.png

