

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ConfigSync - synchronize config files among different systems

ConfigSync - synchronize config files among different systems

Contents:

	configsync.configsync Module

	configsync.configsync_config Module

	configsync.configsync_core Module

	configsync.configsync_gui Module

Indices and tables

	Index

	Module Index

	Search Page

configsync Package

	mod:	configsync.configsync Module

	mod:	configsync.configsync_config Module

Module contains objects to manipulate, execute and resolve the ConfigSync configuration.

	
class configsync.configsync_config.ConfigSyncConfig[source]

	This class is supposed to manipulate the ConfigSync configuration. It also stores the
list of remotelly synchronized files and methods to load/store configuration from/to
files.

	
restoreConfiguration()[source]

	Restore stored configuration from a file or create the path to the configuration
file and set the default values.

	
restoreFileList()[source]

	Restore file list from remote directory if exists. Otherwise clear the file list
as there shouldn’t be any files stored. This should be called after
ConfigSync.restoreConfiguration() method as the file list should be in the git
working directory set in configuration.

	
setConfigDefaults()[source]

	Set default values to configuration if there’s no configuration stored yet.

	
storeConfiguration()[source]

	Store configuration into file to make them persistent.

	
storeFileList()[source]

	Store file list to a file on remote directory.

	
class configsync.configsync_config.ConfigSyncConfigContainer[source]

	Container of the ConfigSync local configuration. The configuration is not synchronized
remotelly and is store under user home directory in .configsync folder.

	
addFile(_file, _synced)[source]

	Add a file into list of synced files. Every entry consists of an original file
name and a local file name the remote file is synced with. The ‘file name’ means
a full path in this case.

	Parameters:	
	_file (string) – Original file name (remote)

	_synced (string) – Local sync target file

	
delFile(_file)[source]

	Delete a file entry from the list. It occurs when the file is not synchronized
any more.

	Parameters:	_file (string) – Full path of the synchronized file

	
existsFile(_file)[source]

	Check the (remote) file existence in the list of synchronized files.

	Parameters:	_file (string) – Full path of the expected synchronized file

	Returns:	True if the file exists in the list

	Return type:	bool

	
getValue(_file)[source]

	Return a name of the local file which is synchronized with the file given in
parameter

	Parameters:	_file (string) – Full path of the synchronized file

	Returns:	Full path of the local file which is synchronized with the given one

	Return type:	string

	
class configsync.configsync_config.ConfigSyncFilesContainer[source]

	Container of file list. This file list is synchornized.
The file list consists from trio - file name, file original owner, count of linked sides

	
addFile(_file, _owner)[source]

	Add a file into a list of remote files. Every file is represented by its name with
name of computer of its origin and count of linked sides. The count of linked
sides is set to 1.

	Parameters:	
	_file (string) – Full name of the synchronized file

	_owner (string) – Name of the computer of the file’s origin

	
addFileLink(_file)[source]

	Increase the count of synced sides by 1.

	Parameters:	_file (string) – Full name of the synchronized file

	
delFile(_file)[source]

	Deete a file entry from the list of synced files. The file should be deleted after
the count of synced sides goes bellow 1.

	Parameters:	_file (string) – Full name of the synchronized file

	
delFileLink(_file)[source]

	Decrease the count of synced sides by 1. It also checks ify the count goes
bellow 1. It’s represented by the return value.

	Parameters:	_file (string) – Full name of the synchronized file

	Returns:	True if the decreasing makes the count be bellow 1 and the actual file deleting is needed.

	Return type:	bool

	
existsFile(_file)[source]

	Check the (remote) file existence in the list of synchronized files.

	Parameters:	_file (string) – Full name of the synchronized file

	mod:	configsync.configsync_core Module

Module contains the core of ConfigSync synchronization. It contains all the real
functionality of git control and file manipulation. Take a look into implemented methods
to get more perspective.

	
class configsync.configsync_core.ConfigSyncCore(_config=<configsync.configsync_config.ConfigSyncConfig object>)[source]

	ConfigSync synchronization core.

	
createWorkingDirectory(_path)[source]

	Create git working directory. In this directory the ConfigSync synchronization git
instance is proceed.

	Parameters:	_path (string) – Path to the working directory

	Returns:	True if working directory created successfully

	Return type:	bool

	
gitAdd(_file)[source]

	Add given file to local branch. This is called after every file change.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – File basename in working directory

	
gitAddFilelist()[source]

	Add a file list to local branch. This is called after every file change.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitClone(_repo, _path)[source]

	Clone given repository into the given working directory. This method is proceed
only once after configuration of ConfigSync is set.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

TODO: The address should be parsed and checked if this is correct git address.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	
	_repo (string) – Link to the git repository

	_path (string) – Path to the working directory

	Returns:	True if clone command passed without any error

	Return type:	bool

	
gitCommit()[source]

	Git commit command. The commit message contains machine name and time stamp.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitPull()[source]

	Git pull command.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitPush()[source]

	Git push command.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitRemove(_file)[source]

	Remove a file from local branch. This is called after every file remove.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – File basename in working directory

	
linkFile(_f, _s)[source]

	Make a hardlink to the file to synchronize to ConfigSync working
directory to begin file tracking.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	
	_f (string) – Path to the original file what should be synchronized

	_s (string) – Path to the file in ConfigSync working directory

	
synchronize()[source]

	Do the synchronization itself.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

	
unlinkFile(_file)[source]

	Split a hardlink connection between two files to make them independent. This
method is called when file should not be synchronized any longer.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – Path to the file in ConfigSync working directory

	mod:	configsync.configsync_gui Module

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ConfigSync - synchronize config files among different systems

configsync.configsync Module

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ConfigSync - synchronize config files among different systems

configsync.configsync_config Module

Module contains objects to manipulate, execute and resolve the ConfigSync configuration.

	
class configsync.configsync_config.ConfigSyncConfig[source]

	Bases: object

This class is supposed to manipulate the ConfigSync configuration. It also stores the
list of remotelly synchronized files and methods to load/store configuration from/to
files.

	
restoreConfiguration()[source]

	Restore stored configuration from a file or create the path to the configuration
file and set the default values.

	
restoreFileList()[source]

	Restore file list from remote directory if exists. Otherwise clear the file list
as there shouldn’t be any files stored. This should be called after
ConfigSync.restoreConfiguration() method as the file list should be in the git
working directory set in configuration.

	
setConfigDefaults()[source]

	Set default values to configuration if there’s no configuration stored yet.

	
storeConfiguration()[source]

	Store configuration into file to make them persistent.

	
storeFileList()[source]

	Store file list to a file on remote directory.

	
class configsync.configsync_config.ConfigSyncConfigContainer[source]

	Bases: object

Container of the ConfigSync local configuration. The configuration is not synchronized
remotelly and is store under user home directory in .configsync folder.

	
addFile(_file, _synced)[source]

	Add a file into list of synced files. Every entry consists of an original file
name and a local file name the remote file is synced with. The ‘file name’ means
a full path in this case.

	Parameters:	
	_file (string) – Original file name (remote)

	_synced (string) – Local sync target file

	
delFile(_file)[source]

	Delete a file entry from the list. It occurs when the file is not synchronized
any more.

	Parameters:	_file (string) – Full path of the synchronized file

	
existsFile(_file)[source]

	Check the (remote) file existence in the list of synchronized files.

	Parameters:	_file (string) – Full path of the expected synchronized file

	Returns:	True if the file exists in the list

	Return type:	bool

	
getValue(_file)[source]

	Return a name of the local file which is synchronized with the file given in
parameter

	Parameters:	_file (string) – Full path of the synchronized file

	Returns:	Full path of the local file which is synchronized with the given one

	Return type:	string

	
class configsync.configsync_config.ConfigSyncFilesContainer[source]

	Bases: object

Container of file list. This file list is synchornized.
The file list consists from trio - file name, file original owner, count of linked sides

	
addFile(_file, _owner)[source]

	Add a file into a list of remote files. Every file is represented by its name with
name of computer of its origin and count of linked sides. The count of linked
sides is set to 1.

	Parameters:	
	_file (string) – Full name of the synchronized file

	_owner (string) – Name of the computer of the file’s origin

	
addFileLink(_file)[source]

	Increase the count of synced sides by 1.

	Parameters:	_file (string) – Full name of the synchronized file

	
delFile(_file)[source]

	Deete a file entry from the list of synced files. The file should be deleted after
the count of synced sides goes bellow 1.

	Parameters:	_file (string) – Full name of the synchronized file

	
delFileLink(_file)[source]

	Decrease the count of synced sides by 1. It also checks ify the count goes
bellow 1. It’s represented by the return value.

	Parameters:	_file (string) – Full name of the synchronized file

	Returns:	True if the decreasing makes the count be bellow 1 and the actual file deleting is needed.

	Return type:	bool

	
existsFile(_file)[source]

	Check the (remote) file existence in the list of synchronized files.

	Parameters:	_file (string) – Full name of the synchronized file

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ConfigSync - synchronize config files among different systems

configsync.configsync_core Module

Module contains the core of ConfigSync synchronization. It contains all the real
functionality of git control and file manipulation. Take a look into implemented methods
to get more perspective.

	
class configsync.configsync_core.ConfigSyncCore(_config=<configsync.configsync_config.ConfigSyncConfig object>)[source]

	Bases: object

ConfigSync synchronization core.

	
createWorkingDirectory(_path)[source]

	Create git working directory. In this directory the ConfigSync synchronization git
instance is proceed.

	Parameters:	_path (string) – Path to the working directory

	Returns:	True if working directory created successfully

	Return type:	bool

	
gitAdd(_file)[source]

	Add given file to local branch. This is called after every file change.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – File basename in working directory

	
gitAddFilelist()[source]

	Add a file list to local branch. This is called after every file change.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitClone(_repo, _path)[source]

	Clone given repository into the given working directory. This method is proceed
only once after configuration of ConfigSync is set.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

TODO: The address should be parsed and checked if this is correct git address.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	
	_repo (string) – Link to the git repository

	_path (string) – Path to the working directory

	Returns:	True if clone command passed without any error

	Return type:	bool

	
gitCommit()[source]

	Git commit command. The commit message contains machine name and time stamp.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitPull()[source]

	Git pull command.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitPush()[source]

	Git push command.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

FIXME: The executed command should use native module instead of calling system
dependent program.

	
gitRemove(_file)[source]

	Remove a file from local branch. This is called after every file remove.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – File basename in working directory

	
linkFile(_f, _s)[source]

	Make a hardlink to the file to synchronize to ConfigSync working
directory to begin file tracking.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	
	_f (string) – Path to the original file what should be synchronized

	_s (string) – Path to the file in ConfigSync working directory

	
synchronize()[source]

	Do the synchronization itself.

TODO: The command output should be checked. An error or password or encryption
information could be required. The check should be added.

FIXME: The command execution is quite time consuming. It should be done on
background.

	
unlinkFile(_file)[source]

	Split a hardlink connection between two files to make them independent. This
method is called when file should not be synchronized any longer.

FIXME: The executed command should use native module instead of calling system
dependent program.

	Parameters:	_file (string) – Path to the file in ConfigSync working directory

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ConfigSync - synchronize config files among different systems

configsync.configsync_gui Module

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ConfigSync - synchronize config files among different systems

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 configsync	

 	
 	
 configsync.configsync_config	

 	
 	
 configsync.configsync_core	

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ConfigSync - synchronize config files among different systems

Index

 A
 | C
 | D
 | E
 | G
 | L
 | R
 | S
 | U

A

 	

 	addFile() (configsync.configsync_config.ConfigSyncConfigContainer method), [1]

 	

 	(configsync.configsync_config.ConfigSyncFilesContainer method), [1]

 	

 	addFileLink() (configsync.configsync_config.ConfigSyncFilesContainer method), [1]

C

 	

 	configsync.configsync_config (module), [1]

 	configsync.configsync_core (module), [1]

 	ConfigSyncConfig (class in configsync.configsync_config), [1]

 	ConfigSyncConfigContainer (class in configsync.configsync_config), [1]

 	

 	ConfigSyncCore (class in configsync.configsync_core), [1]

 	ConfigSyncFilesContainer (class in configsync.configsync_config), [1]

 	createWorkingDirectory() (configsync.configsync_core.ConfigSyncCore method), [1]

D

 	

 	delFile() (configsync.configsync_config.ConfigSyncConfigContainer method), [1]

 	

 	(configsync.configsync_config.ConfigSyncFilesContainer method), [1]

 	

 	delFileLink() (configsync.configsync_config.ConfigSyncFilesContainer method), [1]

E

 	

 	existsFile() (configsync.configsync_config.ConfigSyncConfigContainer method), [1]

 	

 	(configsync.configsync_config.ConfigSyncFilesContainer method), [1]

G

 	

 	getValue() (configsync.configsync_config.ConfigSyncConfigContainer method), [1]

 	gitAdd() (configsync.configsync_core.ConfigSyncCore method), [1]

 	gitAddFilelist() (configsync.configsync_core.ConfigSyncCore method), [1]

 	gitClone() (configsync.configsync_core.ConfigSyncCore method), [1]

 	

 	gitCommit() (configsync.configsync_core.ConfigSyncCore method), [1]

 	gitPull() (configsync.configsync_core.ConfigSyncCore method), [1]

 	gitPush() (configsync.configsync_core.ConfigSyncCore method), [1]

 	gitRemove() (configsync.configsync_core.ConfigSyncCore method), [1]

L

 	

 	linkFile() (configsync.configsync_core.ConfigSyncCore method), [1]

R

 	

 	restoreConfiguration() (configsync.configsync_config.ConfigSyncConfig method), [1]

 	

 	restoreFileList() (configsync.configsync_config.ConfigSyncConfig method), [1]

S

 	

 	setConfigDefaults() (configsync.configsync_config.ConfigSyncConfig method), [1]

 	storeConfiguration() (configsync.configsync_config.ConfigSyncConfig method), [1]

 	

 	storeFileList() (configsync.configsync_config.ConfigSyncConfig method), [1]

 	synchronize() (configsync.configsync_core.ConfigSyncCore method), [1]

U

 	

 	unlinkFile() (configsync.configsync_core.ConfigSyncCore method), [1]

 Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		ConfigSync - synchronize config files among different systems »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/configsync/configsync_config.html

 Navigation

 		
 index

 		
 modules |

 		ConfigSync - synchronize config files among different systems »

 		Module code »

 Source code for configsync.configsync_config

#!/usr/bin/env python3
#-*- coding: UTF-8 -*-

Copyright (c) 2013 Martin Simon
#
The MIT License (MIT)
#
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
Module contains objects to manipulate, execute and resolve the ConfigSync configuration.
"""

import pickle
import os

[docs]class ConfigSyncConfigContainer:
 """
 Container of the ConfigSync local configuration. The configuration is not synchronized
 remotelly and is store under user home directory in .configsync folder.
 """
 def __init__(self):
 """
 Initialize the configuration container. All the values are initialized to empty
 strings and the synchonization flag is set to False. The file list is initialized
 to empty set as there is nothing synced yet.
 """
 self.name = ''
 self.path = ''
 self.repo = ''
 self.synced = False
 self.files = {}

[docs] def addFile(self, _file, _synced):
 """
 Add a file into list of synced files. Every entry consists of an original file
 name and a local file name the remote file is synced with. The 'file name' means
 a full path in this case.

 :param _file: Original file name (remote)
 :type _file: string
 :param _synced: Local sync target file
 :type _synced: string
 """
 if not _file in self.files:
 self.files[_file] = _synced

[docs] def delFile(self, _file):
 """
 Delete a file entry from the list. It occurs when the file is not synchronized
 any more.

 :param _file: Full path of the synchronized file
 :type _file: string
 """
 del self.files[_file]

[docs] def existsFile(self, _file):
 """
 Check the (remote) file existence in the list of synchronized files.

 :param _file: Full path of the expected synchronized file
 :type _file: string
 :return: True if the file exists in the list
 :rtype: bool
 """
 return _file in self.files

[docs] def getValue(self, _file):
 """
 Return a name of the local file which is synchronized with the file given in
 parameter

 :param _file: Full path of the synchronized file
 :type _file: string
 :return: Full path of the local file which is synchronized with the given one
 :rtype: string
 """
 return self.files[_file]

[docs]class ConfigSyncFilesContainer:
 """
 Container of file list. This file list is synchornized.
 The file list consists from trio - file name, file original owner, count of linked sides
 """
 def __init__(self):
 """
 Initialize list of files. By default the list is empty after initialization.
 """
 self.files = {}

[docs] def addFile(self, _file, _owner):
 """
 Add a file into a list of remote files. Every file is represented by its name with
 name of computer of its origin and count of linked sides. The count of linked
 sides is set to *1*.

 :param _file: Full name of the synchronized file
 :type _file: string
 :param _owner: Name of the computer of the file's origin
 :type _owner: string
 """
 if not self.existsFile(_file):
 self.files[_file] = [_owner, 1]

[docs] def delFile(self, _file):
 """
 Deete a file entry from the list of synced files. The file should be deleted after
 the count of synced sides goes bellow *1*.

 :param _file: Full name of the synchronized file
 :type _file: string
 """
 del self.files[_file]

[docs] def addFileLink(self, _file):
 """
 Increase the count of synced sides by *1*.

 :param _file: Full name of the synchronized file
 :type _file: string
 """
 if self.existsFile(_file):
 self.files[_file][1] = self.files[_file][1] + 1

[docs] def delFileLink(self, _file):
 """
 Decrease the count of synced sides by *1*. It also checks ify the count goes
 bellow *1*. It's represented by the return value.

 :param _file: Full name of the synchronized file
 :type _file: string
 :return: True if the decreasing makes the count be bellow *1* and the actual file deleting is needed.
 :rtype: bool
 """
 if self.existsFile(_file):
 cnt = self.files[_file][1]
 if cnt == 1:
 return True
 elif cnt > 1:
 self.files[_file][1] = cnt - 1
 return False
 else:
 return False

[docs] def existsFile(self, _file):
 """
 Check the (remote) file existence in the list of synchronized files.

 :param _file: Full name of the synchronized file
 :type _file: string
 """
 return _file in self.files

[docs]class ConfigSyncConfig:
 """
 This class is supposed to manipulate the ConfigSync configuration. It also stores the
 list of remotelly synchronized files and methods to load/store configuration from/to
 files.
 """
 def __init__(self):
 """
 Initialize the ConfigSyncConfig class. ConfigSync default home directory is set
 to ~/.configsync and in this directory the configuration is stored as well as the
 git working directory. Also the name of configuration file is set. Part of
 initialization is restoring stored configuration (if any) and file list (if any).
 """
 self.homeDir = os.path.expanduser("~") + '/.configsync/'
 self.confFile = '.config'
 self.filesFile = ''
 self.data = ConfigSyncConfigContainer()
 self.files = ConfigSyncFilesContainer()
 self.restoreConfiguration()
 self.restoreFileList()

[docs] def setConfigDefaults(self):
 """
 Set default values to configuration if there's no configuration stored yet.
 """
 self.data.name = 'My Synchronized Machine'
 self.data.path = self.homeDir + 'syncdir/'
 self.data.repo = 'ssh://git@gitserver.tld/user_name/repo.git'
 self.data.synced = False

[docs] def restoreFileList(self):
 """
 Restore file list from remote directory if exists. Otherwise clear the file list
 as there shouldn't be any files stored. This should be called after
 ConfigSync.restoreConfiguration() method as the file list should be in the git
 working directory set in configuration.
 """
 self.filesFile = self.data.path + "/.files"
 if os.path.exists(self.filesFile):
 f = open(self.filesFile,"rb")
 self.files.files = pickle.load(f)
 else:
 self.files.files.clear()

[docs] def storeFileList(self):
 """
 Store file list to a file on remote directory.
 """
 f = open(self.filesFile, "wb+")
 pickle.dump(self.files.files, f)
 f.close()

[docs] def restoreConfiguration(self):
 """
 Restore stored configuration from a file or create the path to the configuration
 file and set the default values.
 """
 if os.path.exists(self.homeDir + self.confFile):
 f = open(self.homeDir + self.confFile, "rb")
 self.data = pickle.load(f)
 f.close()
 self.data.synced = True
 else:
 if not os.path.exists(self.homeDir):
 os.mkdir(self.homeDir)
 self.setConfigDefaults()

[docs] def storeConfiguration(self):
 """
 Store configuration into file to make them persistent.
 """
 self.data.synced = True
 f = open(self.homeDir + self.confFile, "wb+")
 pickle.dump(self.data, f)
 f.close()

 © Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

_modules/configsync/configsync_core.html

 Navigation

 		
 index

 		
 modules |

 		ConfigSync - synchronize config files among different systems »

 		Module code »

 Source code for configsync.configsync_core

#!/usr/bin/env python3
#-*- coding: UTF-8 -*-

Copyright (c) 2013 Martin Simon
#
The MIT License (MIT)
#
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
Module contains the core of ConfigSync synchronization. It contains all the real
functionality of git control and file manipulation. Take a look into implemented methods
to get more perspective.
"""

from configsync.configsync_config import ConfigSyncConfig
import os
import subprocess
import shutil
import time

[docs]class ConfigSyncCore:
 """
 ConfigSync synchronization core.
 """
 def __init__(self, _config = ConfigSyncConfig()):
 """
 Initialize class. The optional parameter can be instance of ConfigSyncConfig class
 to synchronize core actions with actual configuration (and file list as it's
 a part of configuration itself).

 :param _config: ConfigSyncConfig instance to synchronize core actions with configuration
 :type _config: ConfigSyncConfig instance
 """
 self.config = _config

[docs] def createWorkingDirectory(self, _path):
 """
 Create git working directory. In this directory the ConfigSync synchronization git
 instance is proceed.

 :param _path: Path to the working directory
 :type _path: string
 :return: True if working directory created successfully
 :rtype: bool
 """
 try:
 if os.path.isdir(_path):
 shutil.rmtree(_path)
 os.mkdir(_path)
 return True
 except:
 return False

[docs] def gitClone(self, _repo, _path):
 """
 Clone given repository into the given working directory. This method is proceed
 only once after configuration of ConfigSync is set.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 TODO: The address should be parsed and checked if this is correct git address.

 FIXME: The executed command should use native module instead of calling system
 dependent program.

 :param _repo: Link to the git repository
 :type _repo: string
 :param _path: Path to the working directory
 :type _path: string
 :return: True if clone command passed without any error
 :rtype: bool
 """
 cmd = ['git', 'clone', _repo, _path]
 p = subprocess.Popen(cmd)
 p.wait()
 return True

[docs] def gitAddFilelist(self):
 """
 Add a file list to local branch. This is called after every file change.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The executed command should use native module instead of calling system
 dependent program.
 """
 _path = self.config.data.path
 _file = self.config.filesFile
 print("DBG: 'git add",_file,"'")
 cmd = ['git', 'add', _file]
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def gitAdd(self, _file):
 """
 Add given file to local branch. This is called after every file change.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The executed command should use native module instead of calling system
 dependent program.

 :param _file: File basename in working directory
 :type _file: string
 """
 print("DBG: 'git add", _file, "'")
 _path = self.config.data.path
 cmd = ['git', 'add', _file]
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def gitRemove(self, _file):
 """
 Remove a file from local branch. This is called after every file remove.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The executed command should use native module instead of calling system
 dependent program.

 :param _file: File basename in working directory
 :type _file: string
 """
 print("DBG: 'git rm", _file, "'")
 _path = self.config.data.path
 cmd = ['git', 'rm', _file]
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def gitPull(self):
 """
 Git pull command.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The command execution is quite time consuming. It should be done on
 background.

 FIXME: The executed command should use native module instead of calling system
 dependent program.
 """
 print("DBG: 'git pull'")
 _path = self.config.data.path
 cmd = ['git', 'pull']
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def gitPush(self):
 """
 Git push command.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The command execution is quite time consuming. It should be done on
 background.

 FIXME: The executed command should use native module instead of calling system
 dependent program.
 """
 print("DBG: 'git push -u origin master'")
 _path = self.config.data.path
 cmd = ['git', 'push', '-u', 'origin', 'master']
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def gitCommit(self):
 """
 Git commit command. The commit message contains machine name and time stamp.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The command execution is quite time consuming. It should be done on
 background.

 FIXME: The executed command should use native module instead of calling system
 dependent program.
 """
 _path = self.config.data.path
 _msg = "\"" + self.config.data.name + "-" + time.strftime("%Y-%m-%d(%H:%M:%S)") + "\""
 print("DBG: 'git commit -m", _msg,"'")
 cmd = ['git', 'commit', '-m', _msg]
 p = subprocess.Popen(cmd, cwd = _path)
 p.wait()

[docs] def linkFile(self, _f, _s):
 """
 Make a hardlink to the file to synchronize to ConfigSync working
 directory to begin file tracking.

 FIXME: The executed command should use native module instead of calling system
 dependent program.

 :param _f: Path to the original file what should be synchronized
 :type _f: string
 :param _s: Path to the file in ConfigSync working directory
 :type _s: string
 """
 print("DBG: 'ln -f", _f, _s,"'")
 cmd = ['ln', '-f', _f, _s]
 p = subprocess.Popen(cmd)
 p.wait()

[docs] def unlinkFile(self, _file):
 """
 Split a hardlink connection between two files to make them independent. This
 method is called when file should not be synchronized any longer.

 FIXME: The executed command should use native module instead of calling system
 dependent program.

 :param _file: Path to the file in ConfigSync working directory
 :type _file: string
 """
 print("DBG: unlink file")
 cmd = ['mv', _file, "/tmp/tmpname"]
 p = subprocess.Popen(cmd)
 p.wait()

 cmd = ['cp', '/tmp/tmpname', _file]
 p = subprocess.Popen(cmd)
 p.wait()

 cmd = ['rm', '/tmp/tmpname']
 p = subprocess.Popen(cmd)
 p.wait()

[docs] def synchronize(self):
 """
 Do the synchronization itself.

 TODO: The command output should be checked. An error or password or encryption
 information could be required. The check should be added.

 FIXME: The command execution is quite time consuming. It should be done on
 background.
 """
 self.gitCommit()
 self.gitPush()

 © Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		ConfigSync - synchronize config files among different systems »

 All modules for which code is available

		configsync.configsync_config

		configsync.configsync_core

 © Copyright 2013, Martin Simon.
 Created using Sphinx 1.3.5.

