

Welcome to ConfigHub documentation

ConfigHub is a platform for software configuration. Configuration is managed
programmatically or through the web-based user interface.

Overview and Installation

	ConfigHub overview
	Context properties

	Context resolution

	Installation and setup
	Installation

	Create personal account

	Create an organization

	Create ConfigHub repository

Usage

	Properties editor
	Editor toolbar

	Create a new property

	Add value to existing key

	Editing keys and values

Property and File Security

	Security groups

Access Controls

	Teams

	Team Access Control
	Create team access rule

	Tokens
	Creating a token

	Adding security groups to tokens

	Deleting a token

API Requests and Schema

	Config Pull

	Config Push

	Single File Pull

	Repository Info

	All Repositories

	System Status

APIs on GitHub: Java [https://github.com/ConfigHubPub/JavaAPI], Python [https://github.com/ConfigHubPub/PythonAPI]

ConfigHub overview

All configuration can be boiled down to key-value pairs (properties). Ignoring the format
that surrounds various configuration components, configuration differences are always reduced to properties.

For example, in Development environment, a config file may contain a line like:

<Connector port="8080" redirectPort="8443"/>

While in Production the same line looks like this:

<Connector port="80" redirectPort="443"/>

Therefore, the merged configuration could be written as:

<Connector port="${ http.port }" redirectPort="${ http.redirect }"/>

And we have our two properties: http.port and http.redirect.

Context properties

In order to eliminate a mesh of configuration file and property duplication, ConfigHub changes the definition
of a property. By assigning a context to a property value, a single property key can have multiple values,
each with a unique context signature.

Note

	Context Property

	property = key: [context_1: value, context_2: value, …]

When an application/client requests configuration, they only need to specify their context. Using a request
context, the exact key-value pairing occurs, and the result is returned to the client.

Using example above, a request context Production would return:

http.port: 80
http.redirect: 443

While a request with context Development would return:

http.port: 8080
http.redirect: 8443

In this example, context is very simple - its composed with a single context hierarchy, Environment. However,
context can be as complex as your environment demands - up to 10 context element hierarchy.

Context resolution

Context resolution is a process during which value-context of each key is compared to the request context in order
to determine which properties should be returned.

Matching value to request context occurs in two steps:

1. Semantic Filter

For each context hierarchy, corresponding context-values from request and property are compared.
For a match, corresponding context values have to satisfy following rules:

	If both are specified, they have to be the same;

	Either or both are a wildcard.

Example: Context-Request resolution

Assume a context property is defined with for a key logger.level with 4 values.

	
	Environment

	Application

	Instance

	

	Request-Context

	Production

	WebServer

	Webserver-Jim

	

	Value-Context

	*

	*

	Webserver-Jim

	Match

	Value-Context

	Production

	WebServer

	*

	Match

	Value-Context

	Production

	*

	*

	Match

	Value-Context

	Development

	*

	*

	No Match

The semantic filter has matched 3 values, and ignored a single value because Environment
context hierarchy from Request-Context “Production” did not match “Development”.

2. Weight Filter

Weighted filter is only applied if Context-Request is fully-qualified (each context hierarchy is specified).

As repository’s context scope can vary in size (see Choosing Repository Context Scope), each of the context
blocks is assigned specific weight. The widest scope specifications (left) carry less weight, while most
specific parts (right) carry most weight.

For example, in a repository with 3 context hierarchies, weight is assigned as follows:

Environment [40] | Application [80] | Instance [160]

This repository might have a property defined with multiple values. Each value-context also has weight.

Example: Fully-Specified Request-Context resolution

	
	Environment

	Application

	Instance

	Weight

	

	Value-Context

	*

	*

	Webserver-Jim

	160

	Match

	Value-Context

	Production

	WebServer

	*

	40 + 80 = 120

	

	Value-Context

	Production

	*

	*

	40

	

The value with the highest weight is matched, as it is the most relevant value for the given context request.

Here’s the ConfigHub property editor view of the same property - with the values expanded.

[image: ../_images/semanticFilter.png]

Installation and setup

The fastest way to evaluate ConfigHub is to use the
hosted demo version [https://demo.confighub.com].

	Installation

	Create personal account

	Create an organization

	Create ConfigHub repository

Installation

System requirements

The ConfigHub server application has the following prerequisites:

	Some modern Linux distribution (Debian Linux, Ubuntu Linux, or CentOS recommended)

	MySQL 5 or PostgreSQL 9 or later (latest stable version is recommended)

	Oracle Java SE 8 or later (latest stable update is recommended)

Download and install

	Download and install Java8 to your localhost. Set the JAVA_HOME environment variable to Java’s bin directory:

export JAVA_HOME=/path/to/java8/bin

	Download [https://www.confighub.com/download] the latest version of ConfigHub:

	Uncompress the downloaded file:

tar -xzvf confighub-<version>.tar.gz

ConfigHub service configuration

	There are two configuration sections:

	
	Database connections

	Server configuration

	Database connections

Database connection is configured in confighub-<version>/server/conf/tomee.xml file.
ConfigHub uses a database for storage of all repository and user related data.

As of version v1.6, ConfigHub supports MySQL and PostgreSQL databases. Here’s an example of
a database configuration:

<?xml version="1.0" encoding="UTF-8"?>
<tomee>

 <Resource id="ConfigHubMainDS" type="DataSource">
 JdbcDriver = org.postgresql.Driver
 JdbcUrl = jdbc:postgresql://127.0.0.1:5432/ConfigHubMain
 UserName = username
 Password = password

 JtaManaged = false
 validationQuery="SELECT 1"
 maxWaitTime = 2 seconds
 maxActive = 200
 </Resource>

</tomee>

The resource IDs ConfigHubMainDS and the parameter
JtaManaged = false have to remain unchanged. The rest of the datasource definition can
be modified to your specific needs.

Note

For the rest of the the optional parameters, please consult Tomee documentation [http://tomee.apache.org/datasource-config.html]

	Server configuration

Edit the configuration file confighub.sh or confighub.bat for Windows installations in confighub-<version> directory.
Each configuration parameter has to be specified.

Memory assigned to the ConfigHub service. It is recommended to assign 4g or more.
export ALLOCATED_MEMORY=4g

HTTP and HTTPs ports
export HTTP_PORT=80
export HTTPS_PORT=443

Path to the location where all ConfigHub service logs are stored.
export LOG_PATH=/var/log/confighub

Specify an override to the default self-signed certificate/keystore.
export KEYSTORE_FILE=cert/confighub_default.jks
export KEYSTORE_ALIAS=confighub
export KEYSTORE_PASSWORD=confighub

Starting and stopping ConfigHub service

	Start ConfigHub:

confighub-<version>/server/bin/startup.sh

	Stop ConfigHub:

confighub-<version>/server/bin/shutdown.sh

Note

If you are running ConfigHub on a reserved port (i.e. 80, and 443), use root access (or sudo).

Create personal account

To create a personal account click on the Sign Up button (top-right) of the browser.

Note

In the near future, we will support LDAP integration.

Create an organization

Organizations are a better way to share management responsibilities for your repositories.
Some aspects of repository management are limited to repository owners, or admins - for example,
deleting tokens, changing repository settings, adding/removing team members as well as access
permissions.

To distribute this workload, organization let’s you assign repository owners and administrators.

To create a new organization, once logged in:

	Click on the New link (top-right) and choose Organization

	Enter the Organization name, and save.

Once the organization is created, you can create repositories and add users as owners and administrators.

	Role

	Access Description

	Owner

	Can manage every aspect of the organization and grant
administrative access to other ConfigHub users.
Only owners can delete repositories.

	Administrator

	Can manage repositories, teams, access control and can
add other ConfigHub users to the repositories.

Create ConfigHub repository

Location where all configuration is kept. Much like a repository for code, ConfigHub
repository is a storage for configuration.

A repository can be owned by either a personal account, or an organization.

To create a new repository, once logged in:

	Click on the New link (top-right) and choose Repository

	Choose the owner account and enter the repository name. Description is optional

	Choose and label your context, and save.

Choosing repository context

When deciding on a repository context, you are essentially modeling your environments.

There are several factors you will need to consider when choosing the context scope for your
repository. Are you running multiple independent projects, do you have different
environments, multiple applications and do they run several instances?

Even though context scope can always be changed, getting it right the first time will save
you some time in the long run.

To help you determine the right scope, answering these questions might help:

	Do you have different environments (i.e. Development, Production, Test, etc.)?

	Do you have multiple applications?

	Are you running multiple instances (with different configuration) of your applications?

Each time you answered yes, your context scope grew by factor of one. And if you did answer
yes to all of them, your labeled context should look like this:
Environment | Application | Instance.

Context hierarchy order

Context is defined in the order of precedence. From the widest scope (left), to the
narrowest scope (right) - similar to the way you would narrow in on a general specification.
For example, to explain a person Jim, you could say: Human > Male > Jim,
and therefore your repository context would be set up as: Species | Sex | Name.

Properties editor

Properties are traditionally defined as::

key: value

In ConfigHub, a property is defined with a context attached to the value. This schema allows
many values to be assigned to a single key, with the requirement that each value’s context
is unique among other values assigned to the same key.:

key: [
 context: value,
 context: value,
 ...
]

Following sections show how context properties and context elements are created, edited and deleted.

Editor toolbar

Properties editor is the default view of ConfigHub UI where all/resolved properties are managed.
The properties toolbar allows provides following functionality:

[image: ../../../_images/propertiesToolbar.png]

	Context selection

These fields allow you to set the working context, and view configuration that is “resolved” by that context.
Unlike the context requested by the client, editor context can have multiple context elements specified in
a single context hierarchy.

For example, if you wanted to see configuration returned for both Production and Development environments,
you could select both in the Environment context hierarchy. The returned configuration would show all
keys and values that can be returned for the combination of the specified context.

We call this type of context - where any number of context elements can be selected per context hierarchy, a
non-qualified context;

	Search type

Searching keys, comments or values, may return results either among the resolved values (as indicated by
specified context #1), or among all configuration properties in this repository.

The All selection, searches all properties in the repository, where Resolved searches only among properties
resolved by the specified context.

	New property

This button toggles the new property form, where a new or existing key can be specified as well as a property value.

	Comparison View

Side-by-side comparison of resolved properties from any combination of contexts, times or tags.

	All key toggle

Let’s you see all property keys. If some keys did not resolve values as per the specified context #1, these
keys will not be shown in the properties editor. Clicking this key, will include them in the display, but
their values are still left out of the view.

	Key sort order

Keys are sorted alphabetically. Sort order toggles direction.

	Value context alignment

To see all value contexts aligned as a table view, toggle this button.

	Pagination navigation

Move between pages of results.

Create a new property

[image: ../../../_images/newProperty.png]

	Readme

Comment for the property key. Visible and searchable in property editor.

	Key Attributes

	Type: Refers to the data type of values. When a non-Text value is selected, this value type is enforced in the UI, and the type information is included in the JSON API response.

	Security: Chose pre created Security Group. All values assigned to the key will adhere to access controls set by the Security Group, and will be encrypted as per Security Group settings.

	Push: If enabled, this key and its values may be modified via PUSH API.

	Key

Property key is unique per repository. Specifying a key that is already defined, will just add new value to the
existing key. Deprecated flag can be enabled for a key. If enabled, client PULL response JSON will include
a deprecated flag on the key object. Use this flag to log all deprecated key usages.

	Value

Value for this key. If Type (key attribute) flag is specified, value input field is changed in consideration of
the value type.

	Context

Each key’s value has to have a unique context. Having a unique context guarantees that a fully-specified-context,
as requested by the client applications, can only receive back a single value per key.

Each context’s hierarchy may contain a wildcard or a single context element.

	Save or Save with change comments

Clicking on a talk-bubble button next to the “Save property” will pop-open a “Change comment” text box. Comments
entered here will be visible next to the change in the Revisions tab.

Add value to existing key

Mousing over the existing key, attributes or values, shows additional options for the key.

[image: ../../../_images/entry.png]
Choosing New value will open a new value form.

[image: ../../../_images/newValue.png]
The value’s form elements are the same as specified in Create a new property section.
Additional option is the Active toggle. When a value is Disabled, it is treated as if it is deleted.
A Disabled value is never returned to the client.

Editing keys and values

Double clicking on a key or a value, will open the editing form for either key or a value.
You can also click on Edit key from the key’s options menu. Clicking the right array next to the value
will also trigger the value form.

Security groups

Security Group is an abstract wrapper to which properties and/or files may be assigned. Security Group is
password protected, so any modification of the data contained in them requires authentication before the change is
allowed.

In addition to a password challenge, security group may also be defined with Encryption enabled using one of
several provided cyphers. If enabled, content assigned to a security group will, in addition to being password
protected, be encrypted, using the selected cypher and the security group’s password.

[image: ../../_images/securityGroup.png]

Securing files and properties

Once the security group is created, you can add any number of properties and files to it.
To assign an existing property to a security group, you need to add a security group to the key.

	Assignment to a property

[image: ../../_images/keySecurityGroup.png]

	Assignment to a file

[image: ../../_images/fileSecurityGroup.png]

Teams

To organize repository contributors, create Teams and add any user with a ConfigHub account to a single team per repository.
Administrator and repository owner accounts are privileged to manage teams and their members.

To enable access controls for teams, go to:

Settings > Configuration > Access control management

Team Access Control

Team access rules let repository owners/admins set write limits to both configuration properties and files for each team.
The rules defined limit users ability to create/modify/delete properties and files. The rules apply when manipulating
config via UI as well as API.

For access rules to apply via API, a token needs to apply access rules for a specific team.

To enable access controls for teams, go to:

Settings > Configuration > Access control management

Once enabled, you can create rules that will govern Read/Write privileges for members of each team.

Create team access rule

To create a new access rule, select a team and click “new” next to “Team rules” section.

[image: ../../_images/newRule.png]
You can add any number or rules to each team. Rules will govern write privileges to both properties and files in UI
as well as the API Push when token assigned to a team/team member is used.

Key Rule

Key rules are matched against a property key only
1. Select Read/Write or Read-Only option that will be applied if a rule is matched against a key
2. Select “Key”
3. Choose matching type when comparing keys against a match string you will specify
4. Enter a matching string
5. Click “Create Rule”

Context Rule

Context rules are matched against property values and files.

	Select Read/Write or Read-Only option that will be applied if a rule is matched against a property and/or file

	Select “Context”

	Choose matching type:
- “Contains Any” - if any context elements specified in the rule is found in the context definition of a property value’s or file’s context, rule is matched.
- “Contains All” - all context elements specified have to be present in property value’s or file’s context.
- “Does not contain” - property value’s or file’s context cannot have any context elements found in this rule to match.
- “Resolves” - if this rule’s context resolves the context of the property value or a file, rule will match.
- “Does not resolve” - property value’s or file’s context is not resolved by this context query.

	Specify context elements

	Click “Create Rule”

Tokens

Repository tokens are used by the client APIs. Optionally, a repository could be set up to allow API access without
a token (Repository > Settings > Configuration > API Settings), by default, token is required for both API push and
pull.

A ConfigHub token is a JSON JWT Web token, following industry standard RFC 7519 method for representing claims securely
between two parties. In its payload, it contains only a repository id. Once the token is received by a ConfigHub
instance, its validity, expiration and active flags are checked. Content is only returned of all checks are validated.

Tokens with a team assigned to “Push Access Rules”, will prevent modification to configuration if any rule from the
team prevents write access.

Creating a token

[image: ../../_images/token.png]

	Token name has to be unique among tokens.

	Expiration date is optional. If set, token will no longer be accepted after the expiration is reached.

	Push Key Override - if enabled will allow property value Push via API, regardless of the property key’s Push setting.

	Push Access Rules - let’s you specify a team. Access rules defined for the team will be applied for all API Push requests issued by the client.

	Security Groups entered into this field will pre-authorize the token to decrypt values and files assigned to them prior to returning the data via API Pull request.

	Managed By - let’s you specify who has visibility to this token.

Adding security groups to tokens

[image: ../../_images/tokens.png]
Security Groups can be added to a token at creation time, or any time thereafter. Furthermore, all repository
members may edit any other token to add/remove security groups from them. As long as they can authenticate to the
security group, they can adjust any other token.

The intention is that, if need be, a user which knows a password to a security group can extend access to
config that is protected/encrypted by the security group without sharing security group’s the password with another
user - token owner.

Deleting a token

A personal token, where “Managed By” is “Only You” can be deleted by the token’s owner and repository owner/admin.
All other tokens - those assigned to teams, admins, or all, can be delete by the repository owner/admin.

Config Pull

With fully specified context, pull configuration from ConfigHub service.
The JSON response may contain key-value pairs, as well as resolved files (as per request).

	API URL (with token): https://confighub-api/rest/pull

	API URL (no token): https://confighub-api/rest/pull/<account>/<repository>

Note

	All data returned is in JSON format.

	All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

	All parameters are passed through HTTP header fields.

	Returned data will contain resolved properties and files, unless limited by the No-Properties or No-Files flags.

	Method: GET

Usage

curl -i https://api.confighub.com/rest/pull \
 -H "Client-Token: <token>" \
 -H "Context: <context>" \
 -H "Application-Name: myApp" \
 -H "Client-Version: <optional version>" \
 -H "Tag: <optional tag label>" \
 -H "Repository-Date: <optional repo date>"

HTTP/1.1 200 OK
Date: Fri, 10 Jun 2016 22:38:13 GMT
Content-Type: application/json
Content-Length: 2167
Server: TomEE
{
 "generatedOn": "06/10/2016 22:38:13",
 "account": "ConfigHub",
 "repo": "Demo",
 "context": "Production;TimeKepper",
 "files": {
 "demo.props": {
 "content": " ... ",
 "content-type": "text/plain"
 },
 "server.xml": {
 "content": " ... ",
 "content-type": "application/xml"
 }
 },
 "properties": {
 "db.host": {
 "val": "prod.mydomain.com"
 },
 "server.http.port": {
 "val": "80"
 },
 "db.name": {
 "val": "ProdDatabase"
 },
 ...
 "db.user": {
 "val": "admin"
 }
 }
}

Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository
are specified as part of the URL.

Context

Context for the pull request has to be a fully-qualified-context (each context rank has to be specified -
no wildcards). Context items are semi-colon delimited, and have to be in context
rank order. For example, a repository with context size of 3 levels Environment > Application > Instance
could be defined as:

-H "Context: Production;MyApp;MyAppInstance "

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to pull
configuration. If not specified, latest configuration is returned.

Tag

Name of the defined tag. Returned configuration is for a point in time as specified by the tag. If both
Tag and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer
available.

Security-Profile-Auth

If a repository is enabled for and uses Security-Profiles (SP) with encryption, choose any of several
ways to decrypt resolved property values.

	Server-Side decryption by providing SP name(s) and password(s):
- Token is created that specifies SP name/password pairs;
- SP name/password pairs are specified using this request parameter.

	Client-Side decryption is also available by:
- Use of ConfigHub API in a selected language come functionality for local decryption;
- A client can implement its own decryption;

Security-Profile-Auth uses JSON format: {'Security-Profile_1':'password', 'Security-Profile_2':'password',...}

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Application-Name

This field helps you identify application or a client pulling configuration. Visible in Pull Request tab.

Include-Comments

If value is true response includes comments for property keys.

Include-Value-Context

If value is true response includes context of resolved property values.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

No-Properties

If value is true key-value pairs are not returned. This is useful if you are only interested in
pulling files, and want to make transaction more efficient.

No-Files

If value is true resolved files are not returned. This is useful if you are only interested in
pulling properties, and want to make transaction more efficient.

Config Push

Push API allows clients to update or create properties, context values and tags.

	API URL (with token): https://confighub-api/rest/push

	API URL (no token): https://confighub-api/rest/push/<account>/<repository>

Note

	All data returned is in JSON format.

	No data is returned.

	Response code: 200 (Success); 304 (Not modified).

	Method: POST

Usage

curl -i https://api.confighub.com/rest/push \
 -H "Content-Type: application/json" \
 -H "Client-Token: <token>" \
 -H "Client-Version: v1.5" \
 -H "Application-Name: myApp" \
 -X POST -d '
 {
 "changeComment": "Adding a new key and value",
 "enableKeyCreation": true,
 "data": [
 {
 "key": "propertyKey",
 "readme": "",
 "deprecated": false,
 "vdt": "Text",
 "push": true,
 "securityGroup": "GroupName",
 "password": "",
 "values": [
 {
 "context": "el;*;el2",
 "value": "",
 "active": true
 },
 {
 "context": "el;*;*",
 "value": "",
 "active": true
 }
]
 },
 {
 "file": "/path/to/filename.ext",
 "context": "el;*;*",
 "content": "some file content"
 }
 ...
]
 }'

Successful Response:

HTTP/1.1 200 OK
Date: Tue, 15 Nov 2016 17:15:43 GMT
Content-Length: 0
Server: TomEE

Error Response:

HTTP/1.1 304 Not Modified
Date: Tue, 15 Nov 2016 02:49:23 GMT
ETag: "Invalid password specified."
Server: TomEE

Request Headers

Content-Type Required

Content-type header attribute must be set to application/json.

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository
are specified as part of the URL.

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Application-Name

This field helps you identify application or a client pushing configuration. Visible in Pull Request tab.

JSON File Format

Json file you are uploading is a Json Object.

As the push transaction is atomic, a top level changeComment parameter will apply for all changes.

The format allows for addition, modification and deletion of any specified element. To delete any
element (i.e. key and all values, or a specific value, or a specific file), add parameter “opp”: “delete” to the element.

For example, to delete a key “aKey” and all its values, specify:

{
 "data": [
 {
 "key": "aKey",
 "opp": "delete"
 }
]
}

To delete a specific key value:

{
 "data": [
 {
 "key": "aKey",
 "values": {
 "context": "el;*;*",
 "opp": "delete"
 }
 }
]
}

Single File Pull

With fully specified context, pull a specific file from ConfigHub service.
The response contains raw, resolved configuration file

	API URL (with token): https://confighub-api/rest/rawFile

	API URL (no token): https://confighub-api/rest/rawFile/<account>/<repository>

Note

	All data returned is in JSON format.

	
	All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

	
	All parameters are passed through HTTP header fields.

	Returned data is the content of the resolved file.

	Method: GET

Usage

curl -i https://api.confighub.com/rest/rawFile \
 -H "Client-Token: <token>" \
 -H "Context: <context>" \
 -H "File: <absolute path>" \
 -H "Application-Name: myApp" \
 -H "Client-Version: <optional version>" \
 -H "Tag: <optional tag label>" \
 -H "Repository-Date: <optional repo date>"

Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository
are specified as part of the URL.

Context

Context for the pull request has to be a fully-qualified-context (each context rank has to be specified -
no wildcards). Context items are semi-colon delimited, and are ordered in order of have to be in context
rank order. For example, a repository with context size of 3 levels Environment > Application > Instance
could be defined as:

-H "Context: Production;MyApp;MyAppInstance "

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to pull
configuration. If not specified, latest configuration is returned.

Tag

Name of the defined tag. Returned configuration is for a point in time as specified by the tag. If both
Tag and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer
available.

Security-Profile-Auth

If a repository is enabled for and uses Security-Profiles (SP) with encryption, choose any of several
ways to decrypt resolved property values.

	Server-Side decryption by providing SP name(s) and password(s):
- Token is created that specifies SP name/password pairs;
- SP name/password pairs are specified using this request parameter.

	Client-Side decryption is also available by:
- Use of ConfigHub API in a selected language come functionality for local decryption;
- A client can implement its own decryption;

Security-Profile-Auth uses JSON format: {'Security-Profile_1':'password', 'Security-Profile_2':'password',...}

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Application-Name

This field helps you identify application or a client pulling configuration. Visible in Pull Request tab.

Repository Info

This API provides information about a specific repository. It allows for glob syntax search of
configuration files, and context definition.

	API URL (with token): https://confighub-api/rest/info

	API URL (no token): https://confighub-api/rest/info/<account>/<repository>

Note

	All data returned is in JSON format.

	All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

	All parameters are passed through HTTP header fields.

	Method: GET

Usage

curl -i https://api.confighub.com/rest/info \
 -H "Client-Token: <token>" \
 -H "Repository-Date: <ISO 8601 date (UTC)>" \
 -H "Tag: <repo tag>" \
 -H "Client-Version: v1.5" \
 -H "Files: true/false" \
 -H "Files-Glob: <glob expression>" \
 -H "Context-Elements: true/false" \
 -H "Context-Labels: <comma delimited list>" \
 -H "Pretty: true/false"

HTTP/1.1 200 OK
Date: Wed, 16 Nov 2016 18:12:33 GMT
Content-Type: application/json
Content-Length: 483
Server: TomEE
{
 "account": "ConfigHub",
 "repository": "HowItWorks",
 "generatedOn": "11/16/2016 18:12:33",
 "context": ["Environment", "Application"],
 "contextElements":
 {
 "Environment": ["Production", "Development"],
 "Application": ["Analytics", "Collector", "WebDashboard"]
 },
 "files": [
 {
 "name": "nginx2.conf",
 "path": "nginx/nginx2.conf",
 "lastModified": 1479260284272
 }
]
}

Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository
are specified as part of the URL.

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to pull
repository information. If not specified, latest information is returned.

Tag

Name of the defined tag. Returned information is for a point in time as specified by the tag. If both
Tag and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer available.

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Files

Boolean flag to indicate if all files should be returned. If Files-Glob header is specified, this
flag is ignored and treated true by default.

Files-Glob

Enables glob expressions while searching for files over their path and name.

Context-Elements

Boolean flag to indicate if all context elements should be returned. If Context-Labels header is
specified, this flag is ignored and treated true by default.

Context-Labels

Limit context elements returned by the list of context labels. Comma delimited list of context labels.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

All Repositories

Use this API to get full details of settings for all defined repositories.

	API URL: https://confighub-api/rest/info/all

Note

	All data returned is in JSON format.

	All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

	All parameters are passed through HTTP header fields.

	Method: GET

Usage

curl -i https://api.confighub.com/rest/info/all \
 -H "Client-Version: v1.5" \
 -H "Pretty: true/false"

HTTP/1.1 200 OK
Date: Fri, 25 Nov 2016 19:47:39 GMT
Content-Type: application/json
Content-Length: 2776
Server: TomEE
[
 {
 "account": "ConfigHub",
 "name": "Demo",
 "isPrivate": false,
 "isPersonal": false,
 "description": "This is a demo repository. Saving changes is disabled for all options, however all options are available for you to explore.",
 "created": "2016-05-05T16:26Z",
 "accessControlsEnabled": false,
 "vdtEnabled": true,
 "securityEnabled": true,
 "contextGroupsEnabled": true,
 "keyCount": 27,
 "valueCount": 42,
 "userCount": 1,
 "context": [
 "Environment",
 "Application"
]
 },
 {
 "account": "ConfigHub",
 "name": "HowItWorks",
 "isPrivate": false,
 "isPersonal": false,
 "created": "2016-10-04T21:19Z",
 "accessControlsEnabled": false,
 "vdtEnabled": true,
 "securityEnabled": true,
 "contextGroupsEnabled": false,
 "keyCount": 13,
 "valueCount": 23,
 "userCount": 0,
 "context": [
 "Environment",
 "Application"
]
 }
]

Request Headers

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

System Status

API returns details of ConfigHub License and version.

	API URL: https://confighub-api/rest/info/system

Note

	All data returned is in JSON format.

	All parameters are passed through HTTP header fields.

	Method: GET

Usage

curl -i https://api.confighub.com/rest/info/system \
 -H "Client-Version: v1.5" \
 -H "Pretty: true/false"

HTTP/1.1 200 OK
Date: Fri, 25 Nov 2016 19:55:01 GMT
Content-Type: application/json
Content-Length: 635
Server: TomEE
{
 "version": {
 "version": "v1.2.0"
 },
 "license": {
 "First Name": "John",
 "Last Name": "Doe",
 "Email": "john.doe@acme.com",
 "Company": "Acme Inc.",
 "Title": "CTO",
 "Type": "Trial",
 "Expires": "Wed, Mar 1, 2017",
 "LicenseKey": "..."
 }
}

Request Headers

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is
not a required parameter, you are encouraged to specify a version.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

Index

Client APIs

ConfigHub offers client APIs in several languages.

	Java

	Python

Files

Much like context properties, files are structured similarly. A file path + name act the same as a
property key. The file schema has context attributed, just as property value.

One distinction a file has over property value is that its content can contain specially annotated
property keys. When a file is returned as a result of application request, those property keys are
substituted for their resolved values.

So, a file with schema::

<attrib name="foo" value="${ foo.bar }">

Will be resolved to foo.bar’s value, whatever it may be. The file returned to the application will be::

<attrib name="foo" value="some value">

Schema

The following sections explain the REST API schema for various programmatic interactions
with the ConfigHub service.

Java

Java API provides full interface for configuration pull. In addition it adds several convenience utilities.

Download Java Client API [https://www.confighub.com/download], read the
V1.0 JavaDoc [https://www.confighub.com/api/docs/Java/v1/index.html?com/confighub/client/ConfigHub.html].

Usage

public static void main(String... args)
{
 String token = "..."
 String context = "Production;WebServer;WebServer-Jim";
 ConfigHub configHub = new ConfigHub(token, context)
 .applicationName("HelloConfigApp");

 CHProperties properties = configHub.getProperties();

 // Backup properties to a local file
 properties.toFile("properties.json");

 int dbPort = properties.getInteger("db.port");
 String dbHost = properties.get("db.host");
 String dbUser = properties.get("db.user");
 String dbPassword = properties.get("db.password");

 // Get a few files
 configHub.requestFile("demo.props");
 configHub.requestFile("foo");

 CHFiles files = configHub.getFiles();
 files.writeFile("demo.props", "demo.props");
 files.writeFile("foo", "foo");
}

Decrypting values

Values can be decrypted by either:
#. Adding a security group to a token;
#. Specifying security group name and password in the API call.

Alternatively, you may also decrypting manually, as the value returned will be encrypted.

This section explains the second option - when you want your application to specify the passwords to
specific security groups.

ConfigHub configHub = new ConfigHub(token, context)
 .applicationName("HelloConfigApp")
 .decryptSecurityGroup("dbPasswords", "db-pass-123")
 .decryptSecurityGroup("keystore", "key-secret-0");
CHProperties properties = configHub.getProperties();

With the call from the example above, all values of keys assigned to security groups “dbPasswords” and
“keystore” will be returned decrypted.

Type defined properties

Property keys that have specified type are ready to use as per type definition. For example, a key with
value type defined as Integer, can be processed either as an Integer or a String.

int dbPort = props.getInteger("db.port"); // as Integer
Long dbPort = props.getLong("db.port"); // or as Long
String dbPort = props.get("db.port"); // or as String

Assigning to an incorrect type, for example a Boolean, will throw a ClassCastException.

Default property value

Each value get(key, default) method call can optionally specify a default value.

Saving properties to file

You may choose to locally save your pulled configuration to a file. Configuration is in JSON format.

CHProperties properties = new ConfigHub(token, context)
 .applicationName("MyAppName")
 .getProperties();
properties.toFile("/path/to/backup/config.json");

The resulting JSON configuration file:

{
 "context": "Production;TimeKeeper",
 "account": "ConfigHub",
 "repo": "Demo",
 "config": {
 "db.name": {
 "val": "ProdDatabase"
 },
 "db.user": {
 "val": "admin"
 },
 ...
 "db.password": {
 "val": "prod-password"
 }
 }
}

Reading properties from file

API provides an option to read configuration from a stored JSON file.

ConfigHub configHub = new ConfigHub(token, context);
// Load properties from file
CHProperties properties = configHub.getPropertiesFromFile("/path/to/config.json");

The config file has to have a context key defined in the JSON object root that matches the requested context.
If contexts are not the same, API throws ConfigHubException.

Pulling resolved files from repository

You may also pull files with ConfigHub variables substituted for resolved property values through the API.

ConfigHub configHub = new ConfigHub(token, context);
configHub.requestFile("conf.properties");
configHub.requestFile("server.xml");
configHub.requestFile("log4j2.xml");

// Pull files from ConfigHub
CHFiles files = configHub.getFiles();

// Get file content as a String
String confProps = files.get("conf.properties");

// Or save them to a local file
files.writeFile("log4j2.xml", "/path/to/log4j2.xml");

Python

This is a helper script to get you started with the Python configuration pull requests.

#!/usr/bin/python

ConfigHub API for configuration and files stored in a repository.
-h option gives usage.

import httplib
import sys, getopt
import json
import os
import errno

token = ''
context = ''
outfile = ''
appName = ''
files = {}
noProps = ''
serverUrl = 'confighubHost'
version = "v1.0"

print (sys.version)

def main(argv):
 try:
 opts, args = getopt.getopt(argv,
 "hc:t:o:a:v:f:np",
 ["context=", "token=", "fileout=", "appName=", "version=", "file=", "no-props"])

 except getopt.GetoptError:
 print 'test.py -c <context> -t <token> -o <fileout> -a <appName> -v <version> -f <repoFileName > localfileName> -np <no-props>'
 sys.exit(2)

 for opt, arg in opts:
 if opt == '-h':
 print 'test.py -c <context> -t <token> -o <fileout> -a <appName> -v <version> -f <repoFileName > localfileName> -np <no-props>'
 sys.exit()
 elif opt in ("-t", "--token"):
 global token
 token = arg.strip()
 elif opt in ("-c", "--context"):
 global context
 context = arg.strip()
 elif opt in ("-o", "--fileout"):
 global outfile
 outfile = arg.strip()
 elif opt in ("-a", "--appName"):
 global appName
 appName = arg
 elif opt in ("-a", "--appName"):
 global version
 version = arg.strip()
 elif opt in ("-f", "--file"):
 global files
 fin,fout = arg.split('>')
 files[fin.strip()] = fout.strip()
 elif opt in ("-u", "--url"):
 global serverUrl
 serverUrl = arg.strip()
 elif opt in ("-np", "--no-props"):
 global noProps
 noProps = 'true'

if __name__ == "__main__":
 main(sys.argv[1:])

if (token == '') or (context == ''):
 print("Token and context must be specified")
 sys.exit()

filesToGet = ",".join(list(files.keys()))

headers = {
 'Client-Token': token,
 'Context': context,
 'Client-Version': version,
 'Application-Name': appName,
 'Files': filesToGet,
 'No-Properties': noProps,
}

conn = httplib.HTTPSConnection(serverUrl)
conn.request("GET", "/rest/pull", {}, headers)

r1 = conn.getresponse()
jc = r1.read()
conn.close()

jsonConfig = json.loads(jc)

for repoFileName in jsonConfig['files']:
 localFileName = files[repoFileName]

 try:
 os.makedirs(os.path.dirname(localFileName))
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 with open(localFileName, "w") as f:
 f.write(jsonConfig['files'][repoFileName])

if outfile != '':
 try:
 os.makedirs(os.path.dirname(outfile))
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 del jsonConfig['files']
 with open(outfile, 'w') as outfile:
 json.dump(jsonConfig, outfile, indent=4)

Creating properties and adding values

[image: ../../../_images/propertiesToolbar.png]

Editing and deleting properties

Managing context elements

Editor toolbar

Properties editor is the default view of ConfigHub UI where all/resolved properties are managed.
The properties toolbar allows provides following functionality:

[image: ../../../_images/propertiesToolbar.png]

	
	Context selection

	These fields allow you to set the working context, and view configuration that is “resolved” by that context.
Unlike the context requested by the client, editor context can have multiple context elements specified in
a single context hierarchy.

For example, if you wanted to see configuration returned for both Production and Development environments,
you could select both in the Environment context hierarchy. The returned configuration would show all
keys and values that can be returned for the combination of the specified context.

We call this type of context - where any number of context elements can be selected per context hierarchy, a
non-qualified context;

	
	Search type

	Searching keys, comments or values, may return results either among the resolved values (as indicated by
specified context #1), or among all configuration properties in this repository.

The All selection, searches all properties in the repository, where Resolved searches only among properties
resolved by the specified context.

	
	New property

	This button toggles the new property form, where a new or existing key can be specified as well as a property value.

	
	Comparison View

	Comparison view is a side-by-side view of the properties from either/or different contexts or time/tag.

	
	All key toggle

	Let’s you see all property keys. If some keys did not resolve values as per the specified context #1, these
keys will not be shown in the properties editor. Clicking this key, will include them in the display, but
their values are still left out of the view.

	Key sort order

	
	Value context alignment

	To see all value contexts aligned as a table view, toggle this button.

	
	Pagination navigation

	Move between pages of results.

 _images/tokens.png
Default / edit
Active / created a day ago

Expiration: Thu, Nov 16 2017, 04:20 pm

Push Override: Enabled
Push Access Rules: -

Managed By: Developers
Security Groups: Passwords

eyJhbGci0iJIUzIINiJ9.eyJpc3Mi0ilDb25maWdIdWIilClya
WQi0jcsInRzIjotMTA1IMjc2NjYON30.8MYmOm09eIP1Y7tgNoU
z1si4wWaCxG5_Qg38NVsh1XQ

Jim / edit

Active / created 10 minutes ago

Expiration:

Push Override:
Push Access Rules:

Managed By:
Security Groups:

Never

Disabled
Support

8 jim

On API Pull, decrypt files and values assigned to these security

groups

_static/ajax-loader.gif

_images/semanticFilter.png
Environment / new Application / new Instance / new

evsenerym
Q All ¥ | keys, comments and values e Al | |2

logger. level

> DEBUG * > % > WebServer-Jim
> ERROR Production > WebServer > ok
> INFO Production > % > %
> DEBUG Development > x > x ~ Out of context

It
A
v

_images/token.png
Name:

Expiration:

Key Push Override:

Push Access Rules:

Security Groups:

Managed By:

Neverv -—-——m—o—o—o0o0 2
Disabledv —-——7+7—-—7-—+"-———-———— 3
On API Push, modify keys and values regardless of key's "Push" selection

Nonev —-—————— 4

On API Push, access rules defined for selected team will be enforced

-5

On API Pull, decrypt files and values assigned to these security groups

Onlyyouvy —-——r-mm-"--—7-——7-—"-—"—"—"—"— 6

Create API token Cancel

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/newValue.png
Application logs storage.
logger.path

Active: n

Value:

Context: =

Environment

¢ Add value Cancel

> /var/log/collector
> /var/log/webDash
> /var/log/analytics

N

* v

Application

Production > Collector
Production > WebDashboard

Production > Analytics

_images/propertiesToolbar.png
o} Config Revisions Security Tokens Pull requests Teams Settings

Release: latest v </> Properties [3 Files

Environment / new Application / new

:
‘ Q Al ~ ﬁ(eys, comments and values ’ e Al | |2

| .

|
2 3 4 586

~N— i
oo

_images/newProperty.png
Readme:

Key:

Value:

Context:

Type: Text v & Security: Off «

*

Environment

¢ Save property Cancel

</> Properties

3 - -

&, Push: Disabled v

A 4 *

Application

-
» ' »
@Deprecated

N

N

— 3

_images/newRule.png
Team rules / new

Read-Only v when key~ contains v

Key

Context

_images/securityGroup.png
Config Revisions & Security Tokens Pull requests

Security Group Name:

DBPasswords

B0) Encryptwith | AES/CBC/PKCS5Padding « | cipher
AES/CBC/PKCS5Padding

Password: AES/ECB/PKCS5Padding

DES/CBC/PKCS5Padding
DES/ECB/PKCS5Padding

Re-enter Password: DESede/CBC/PKCS5Padding
sescssese DESede/ECB/PKCS5Padding

Create security group Cancel

Teams

Settings

nav.xhtml

 Table of Contents

 		
 Welcome to ConfigHub documentation

 		
 ConfigHub overview

 		
 Context properties

 		
 Context resolution

 		
 1. Semantic Filter

 		
 2. Weight Filter

 		
 Installation and setup

 		
 Installation

 		
 System requirements

 		
 Download and install

 		
 ConfigHub service configuration

 		
 Starting and stopping ConfigHub service

 		
 Create personal account

 		
 Create an organization

 		
 Create ConfigHub repository

 		
 Choosing repository context

 		
 Context hierarchy order

 		
 Properties editor

 		
 Editor toolbar

 		
 Create a new property

 		
 Add value to existing key

 		
 Editing keys and values

 		
 Security groups

 		
 Securing files and properties

 		
 Teams

 		
 Team Access Control

 		
 Create team access rule

 		
 Key Rule

 		
 Context Rule

 		
 Tokens

 		
 Creating a token

 		
 Adding security groups to tokens

 		
 Deleting a token

 		
 Config Pull

 		
 Usage

 		
 Request Headers

 		
 Config Push

 		
 Usage

 		
 Request Headers

 		
 JSON File Format

 		
 Single File Pull

 		
 Usage

 		
 Request Headers

 		
 Repository Info

 		
 Usage

 		
 Request Headers

 		
 All Repositories

 		
 Usage

 		
 Request Headers

 		
 System Status

 		
 Usage

 		
 Request Headers

_images/fileSecurityGroup.png
server/conf/

File:
tomee.xml
Active: n @ Security: Off «
. Off
Context: - *
DBPasswords
Environment Application

¢ Save file Cancel Preview

_static/plus.png

_images/keySecurityGroup.png
Readme:

Type: Text » & Security: Off & Push: Disabled v

Ky db.password off
| DBPasswords
¢ Save key change Cancel |

2 values assigned v

@Deprecated

_static/file.png

_images/entry.png
1

2

Application logs storage.
logger.path | optionsv | 4values~ sorted by: context relevance «

> /var/log/col + Newvalue
> /var/log/webl

¢4 Edit key
> /var/log/ana

% Linkto

Production > Collector
Production > WebDashboard

Production > Analytics

3

_static/minus.png

_static/up-pressed.png

_static/up.png

