
condorpy Documentation
Release 0.0.0

Scott Christensen

Sep 28, 2018

Contents

1 User Manual 3
1.1 Creating Jobs . 3

1.1.1 Job Properties . 4
1.1.2 Setting Job Attributes . 5
1.1.3 Sub-Jobs . 6
1.1.4 Working Directory . 6

1.2 Using Job Templates . 6
1.3 Remote Scheduling . 6
1.4 A Guide to File Paths . 6
1.5 Workflows . 6

2 Overview of HTCondor 7
2.1 What is HTCondor . 7
2.2 Universes . 8
2.3 Checkpointing . 9
2.4 Flocking . 9
2.5 DAGMan . 9
2.6 ClassAds . 9
2.7 HPC vs. HTC . 9
2.8 Under the Hood . 9

3 API Reference 11
3.1 condorpy package . 11

3.1.1 Submodules . 11
3.1.2 condorpy.job module . 11
3.1.3 condorpy.node module . 11
3.1.4 condorpy.templates module . 11
3.1.5 condorpy.workflow module . 11
3.1.6 Module contents . 11

4 Description 13

5 Installing 15

6 Installing from Source 17

7 Getting Started 19

i

8 TODO 21

9 Acknowledgements 23

10 Indices and tables 25

ii

condorpy Documentation, Release 0.0.0

condorpy Python interface for high-throughput computing with HTCondor

Version 0.0.0

Author Scott Christensen

Team CI-Water

Homepage http://tethysplatform.org/condorpy

License BSD 2-Clause

Contents:

Contents 1

http://tethysplatform.org/condorpy

condorpy Documentation, Release 0.0.0

2 Contents

CHAPTER 1

User Manual

1.1 Creating Jobs

The CondorPy Job object represents an HTCondor job (which is sometimes called a cluster; see Sub-Jobs). A Con-
dorPy Job automatically creates an HTCondor submit description file (or job_file). CondorPy seeks to simplify
the process of creating HTCondor jobs as much as possible, but it is still helpful to understand how submit description
files work. For a good overview see Submitting a Job in the HTCondor Users’ Manual.

Creating a new CondorPy Job object is very easy and only requires a name:

from condorpy import Job

job = Job(name='my_job')

The job can then be configured by setting properties and attributes (see Job Properties and Setting Job Attributes). For
convenience the Job constructor can also take a number of other arguments, which help to configure the job when it is
created. For example:

from condorpy import Job, Templates

job = Job(name='my_job',
attributes=Templates.base,
num_jobs=5,
host='example.com',
username='root',
private_key='~/.ssh/id_rsa',
executable='my_script.py',
arguments=('arg1', 'arg2')
)

Here is a brief explanation of the arguments used in this example with links for additional details:

• attributes: A dictionary of job attributes. In this case a Template is used (see Using Job Templates).

• num_jobs: The number of sub-jobs that will be created as part of the job (see Sub-Jobs).

3

http://research.cs.wisc.edu/htcondor/manual/current/2_5Submitting_Job.html

condorpy Documentation, Release 0.0.0

• host: The hostname or IP address of a remote scheduler where the job will be submitted (see Remote Schedul-
ing).

• username: The username for the remote scheduler (see Remote Scheduling).

• private_key: The path the the private SSH key used to connect to the remote scheduler (see Remote Schedul-
ing).

• **kwargs: A list of keyword arguments (in this example executable and arguments) that will be added
to the attributes dictionary (see Setting Job Attributes).

For a full list of arguments that can be used in the Job constructor see the API Reference.

1.1.1 Job Properties

Jobs have the following properties (some of which may be set and others are read only):

• name (str): The name of the job. This is used to name the job_file, the log_file, and the
initial_directory. The job_name job attribute in the attributes dictionary is also set by the
name property.

• attributes (dict, read_only): A list of job attributes and their values. This property can be set in the Job
constructor and can be modified by setting individual job attributes (see Setting Job Attributes).

• num_jobs (int): The number of sub-jobs that are part of the job. This can also be set when submitting the job
(see Sub-Jobs).

• cluster_id (int, read_only): The id used to identify the job on the HTCondor scheduler.

• status (str, read_only): The status of the job.

• statuses (dict, read_only): A dictionary where the keys are all possible statuses and the values are the number
of sub-jobs that have that status. The possible statuses are:

– ‘Unexpanded’

– ‘Idle’

– ‘Running’

– ‘Removed’

– ‘Completed’

– ‘Held’

– ‘Submission_err’

• job_file (str, read_only): The file path to the job file in the form [initial_directory]/[name].job

• log_file (str, read_only): The file path to the main log file and by default is
[initial_directory]/logs/[name].log

• initial_directory (str, read_only): The home directory for the job. All input files are relative to this di-
rectory and all output files are written back to this directory (see A Guide to File Paths). By default the directory
is created in the current working directory and is called [name]. This property comes from the initialdir
job attribute.

• remote_input_files (list or tuple): A list or tuple of file paths to files that need to be transfered to a
remote scheduler (see Remote Scheduling).

4 Chapter 1. User Manual

condorpy Documentation, Release 0.0.0

1.1.2 Setting Job Attributes

Job attributes are key-value pairs that get written to the job file (i.e. the HTCondor submit description file). These attributes can be set in four different ways:

1. Using the attributes parameter in the Job constructor.

2. Using **kwargs in the Job constructor.

3. Using the set method of a job object.

4. Assigning values to attributes directly on a job object.

Valid job attributes are any of the commands that can be listed in the HTCondor submit description file. For a complete
list and description of these commands see the HTCondor condor_submit documentation.

Using the attributes parameter in the Job constructor

The attributes parameter in the Job constructor accepts a dictionary, which becomes the attributes of the newly
created job. This is often used to pass is a template that has pre-configured attributes, but it can be any dictionary
object.

The following example uses a template to initialize a job with several job attributes using the attributes parameter
of the Job constructor.

from condorpy import Job, Templates

job = Job(name='my_job', attributes=Templates.base)

This next example modifies a template to initialize a job with customized job attributes.

from condorpy import Job, Templates

my_attributes = Templates.base
my_attributes['executable'] = 'my_script.py'
my_attributes['arguments'] = ('arg1', 'arg2')

job = Job(name='my_job', attributes=my_attributes

Using **kwargs in the Job constructor

Additional job attributes can be set in the Job constructor by using keyword arguments (or kwargs).

In the following example executable and arguments are keyword arguments that get added as job attributes.

from condorpy import Job, Templates

job = Job(name='my_job', attributes=Templates.base, executable='my_script.py',
→˓arguments=('arg1', 'arg2'))

Using the set method of a job object

Once an object has been instantiated from the Job class then attributes can be set using the set method.

In this example the executable and arguments attributes are set after the job has been created.

1.1. Creating Jobs 5

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html

condorpy Documentation, Release 0.0.0

from condorpy import Job, Templates

job = Job(name='my_job', attributes=Templates.base)
job.set('executable', 'my_script.py')
job.set('arguments', ('arg1', 'arg2'))

Assigning values to attributes directly on a job object

For convenience job attributes can be assigned directly on the job object.

In the following example the executable and arguments attributes are set as attributes on the job object.

from condorpy import Job, Templates

job = Job(name='my_job', attributes=Templates.base)
job.executable = 'my_script.py'
job.arguments = ('arg1', 'arg2')

1.1.3 Sub-Jobs

It is often useful to have a single job execute multiple times with different arguments, or input data. This is what
HTCondor calls a cluster of multiple jobs. In CondorPy it is said that the job has multiple sub-jobs. Creating multiple
sub-jobs in CondorPy can be done in two ways: setting the num_jobs property of the job, or passing in a queue
argument to the submit method, which also sets the nubm_jobs property.

creating 100 sub-jobs by setting the num_jobs property
job.num_jobs = 100

creating 100 sub-jobs by passing in a queue argument to the submit method
job.submit(queue=100)

1.1.4 Working Directory

1.2 Using Job Templates

1.3 Remote Scheduling

1.4 A Guide to File Paths

1.5 Workflows

6 Chapter 1. User Manual

CHAPTER 2

Overview of HTCondor

This is designed to be a basic, high-level overview of some of the key features and functionality of HTCondor. For a
complete reference for HTCondor see the HTCondor User Manual.

Warning: I am not an expert in HTCondor. I’ve worked with HTCondor for the last several years and have
realized that there is a steep learning curve. This overview is designed to give a brief introduction to some of the
main concepts of HTCondor as I understand them, for those that want to use HTCondor, but are not experts in the
field of scientific computing.

2.1 What is HTCondor

HTCondor is a job scheduling and resource management software. HTCondor creates an HTC system by grouping, or
“pooling”, network-connected computing resources. A common example of an HTCondor pool is a set of lab or office
computers that are all on the same network and configured (through HTCondor) to be part of the same computing
system. Each computer in the pool is assigned one or more roles such as matchmaker, resource, or agent. Background
processes, called daemons, which are specified in the computer’s HTCondor configuration file determine the role(s)
of a computer. Each pool has only one matchmaker, which serves as the central manager. All other computers in the
pool are resources and/or agents and are configured to report to the central manager. A resource is also known as a
worker, and is a computer designated to run jobs. And an agent, also known as a scheduler, is a computer designated
to schedule jobs. Any computer in the pool (including the central manager) may function as both a resource and an
agent. Figure 1 shows a possible HTCondor pool configuration.

Figure 1. Possible HTCondor pool configurations.

To submit a job to the pool a user must create a file to describe the job requirements, including the executable and any
input or output files. This file is known as a problem solver. The user submits the problem solver to an agent, which
advertises the requirements needed to run the job to the central manager. Similarly, each resource in the pool also
advertises its availability, capabilities, and preferences to the central manager. This advertising, from both the agents
and the resources, is done using a schema-free language called ClassAds. Periodically the central manager scans the
ClassAds from resources and from agents and try to match jobs and resources that are compatible. When a match
is made, the central manager notifies the agent and the resource of the match. It is then the agent’s responsibility to

7

http://research.cs.wisc.edu/htcondor/manual/

condorpy Documentation, Release 0.0.0

contact the resource and start the job. This interaction is handled by a process running on the agent, known as the
shadow, which communicates with a process running on the resource, called the sandbox. The shadow provides all
of the details required to execute a job, while the sandbox is responsible for creating a safe and isolated execution
environment for the job.

2.2 Universes

HTCondor provides several runtime environments called universes. The two most common universes are the standard
universe and the vanilla universe. The standard universe is only available on Unix machines. It enables remote system
calls so the resource that is running the job can remotely make calls to the agent to open and read files, which means
that job files need not be transferred, but can remain on the submitting machine. It also provides a mechanism called
checkpointing. Checkpointing enables a job to save its state. Thus when a resource becomes unavailable in the middle
of executing a job (because, for example, a user starts using the computer where the job is running), the job can start on
a new resource from the most recent checkpoint. The vanilla universe is the default universe and is the most generic.
It requires that the computing resources have a shared file system or that files be transferred from the submitting
machine to the computing resource. The vanilla universe does not provide the checkpointing mechanism, and thus, if
a job is interrupted mid-execution, it must be restarted on a new resource. Various other universes are available and
are described in greater detail in the user manual

8 Chapter 2. Overview of HTCondor

condorpy Documentation, Release 0.0.0

2.3 Checkpointing

2.4 Flocking

HTCondor also provides a mechanism, called flocking, for submitting jobs to more than one pool of resources. Flock-
ing enables organizations to combine resources while maintaining control of their own pool. For a machine to be able
to flock to a remote pool the remote scheduler must be identified in the configuration on that machine. Additionally,
the remote scheduler must accept the machine to be flocked from in its own configuration. The submitting machine
will first try to match jobs in its native pool, but when resources are not available then it will “flock” jobs to the remote
pool. Generally, a remote pool will not have a shared file system, so jobs that are flocked must enable the file transfer
mechanism.

2.5 DAGMan

HTCondor is ideal for embarrassingly parallel batch jobs, but it also provides a way of executing workflows using
directional acyclic graphs (DAGs). A DAG specifies a series of jobs, referred to as nodes, that need to be run in
a particular order and also defines the relationships between nodes using parent-child notation. This allows for the
common situation where the output from a preliminary set of simulations is used as input for a subsequent set of
simulations. An alternative scheduler called a DAG Manager (DAGMan) is used to orchestrate submitting jobs in the
proper order to the normal scheduler. If a node in the DAG fails, the DAGMan generates a rescue DAG that keeps
track of which nodes are completed and those that still need to run. A rescue DAG can be resubmitted, and it will
continue the workflow from where it left off. This provides a robust mechanism for executing large workflows or a
large number of jobs.

2.6 ClassAds

2.7 HPC vs. HTC

2.8 Under the Hood

2.3. Checkpointing 9

condorpy Documentation, Release 0.0.0

10 Chapter 2. Overview of HTCondor

CHAPTER 3

API Reference

3.1 condorpy package

3.1.1 Submodules

3.1.2 condorpy.job module

3.1.3 condorpy.node module

3.1.4 condorpy.templates module

3.1.5 condorpy.workflow module

3.1.6 Module contents

11

condorpy Documentation, Release 0.0.0

12 Chapter 3. API Reference

CHAPTER 4

Description

Condorpy is a wrapper for the command line interface (cli) of HTCondor and enables creating submitting and moni-
toring HTCondor jobs from Python. HTCondor must be installed to use condorpy.

13

condorpy Documentation, Release 0.0.0

14 Chapter 4. Description

CHAPTER 5

Installing

$ pip install condorpy

15

condorpy Documentation, Release 0.0.0

16 Chapter 5. Installing

CHAPTER 6

Installing from Source

$ python setup.py install

17

condorpy Documentation, Release 0.0.0

18 Chapter 6. Installing from Source

CHAPTER 7

Getting Started

>>> from condorpy import Job, Templates
>>> job = Job('job_name', Templates.vanilla_transfer_files)
>>> job.executable = 'job_script'
>>> jobs.arguments = 'input_1 input_2'
>>> job.transfer_input_files = 'input_1 input_2'
>>> job.transfer_output_files = 'output'
>>> job.submit()

19

condorpy Documentation, Release 0.0.0

20 Chapter 7. Getting Started

CHAPTER 8

TODO

21

condorpy Documentation, Release 0.0.0

22 Chapter 8. TODO

CHAPTER 9

Acknowledgements

This material was developed as part of the CI-Water project which was supported by the National Science Foundation
under Grant No. 1135482

23

http://ci-water.org/

condorpy Documentation, Release 0.0.0

24 Chapter 9. Acknowledgements

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

25

	User Manual
	Creating Jobs
	Job Properties
	Setting Job Attributes
	Sub-Jobs
	Working Directory

	Using Job Templates
	Remote Scheduling
	A Guide to File Paths
	Workflows

	Overview of HTCondor
	What is HTCondor
	Universes
	Checkpointing
	Flocking
	DAGMan
	ClassAds
	HPC vs. HTC
	Under the Hood

	API Reference
	condorpy package
	Submodules
	condorpy.job module
	condorpy.node module
	condorpy.templates module
	condorpy.workflow module
	Module contents

	Description
	Installing
	Installing from Source
	Getting Started
	TODO
	Acknowledgements
	Indices and tables

